WorldWideScience

Sample records for biocatalytic oxidation reactions

  1. Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic nad+/nadh co-factors and [cp*rh(bpy)h]+ for selective organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Jochen; Hollman, Frank; Ho, The Vinh; Schnyder, Adrian; Fish, Richard H.; Schmid, Andreas

    2004-03-09

    The biocatalytic, regioselective hydroxylation of 2-hydroxybiphenyl to the corresponding catechol was accomplished utilizing the monooxygenase 2-hydroxybiphenyl 3-monooxygenase (HbpA). The necessary natural nicotinamide adenine dinucleotide (NAD{sup +}) co-factor for this biocatalytic process was replaced by a biomimetic co-factor, N-benzylnicotinamide bromide, 1a. The interaction between the flavin (FAD) containing HbpA enzyme and the corresponding biomimetic NADH compound, N-benzyl-1,4-dihdronicotinamide, 1b, for hydride transfers, was shown to readily occur. The in situ recycling of the reduced NADH biomimic 1b from 1a was accomplished with [Cp*Rh(bpy)H](Cl); however, productive coupling of this regeneration reaction to the enzymatic hydroxylation reaction was not totally successful, due to a deactivation process concerning the HbpA enzyme peripheral groups; i.e., -SH or -NH{sub 2} possibly reacting with the precatalyst, [Cp*Rh(bpy)(H{sub 2}O)](Cl){sub 2}, and thus inhibiting the co-factor regeneration process. The deactivation mechanism was studied, and a promising strategy of derivatizing these peripheral -SH or -NH{sub 2} groups with a polymer containing epoxide was successful in circumventing the undesired interaction between HbpA and the precatalyst. This latter strategy allowed tandem co-factor regeneration using 1a or 2a, [Cp*Rh(bpy)(H2O)](Cl){sub 2}, and formate ion, in conjunction with the polymer bound, FAD containing HbpA enzyme to provide the catechol product.

  2. Application of Enzyme Coupling Reactions to Shift Thermodynamically Limited Biocatalytic Reactions

    DEFF Research Database (Denmark)

    Abu, Rohana; Woodley, John M.

    2015-01-01

    , it can be challenging to combine several engineered enzymes in vitro for the conversion of non-natural substrates. In this mini-review we focus on enzyme coupling reactions as a tool to alleviate thermodynamic constraints in synthetically useful biocatalytic reactions. The implications of...... shift the equilibrium of otherwise thermodynamically unfavourable reactions to give a higher conversion of the target product. By coupling an energetically unfavourable reaction with a more favourable one, the multi-enzyme cascade mimics the approach taken in nature in metabolic pathways. Nevertheless...

  3. A novel system combining biocatalytic dephosphorylation of L-ascorbic acid 2-phosphate and electrochemical oxidation of resulting ascorbic acid.

    Science.gov (United States)

    Kuwahara, Takashi; Homma, Toshimasa; Kondo, Mizuki; Shimomura, Masato

    2011-03-15

    An enzyme electrode was prepared with acid phosphatase (ACP) for development of a new electric power generation system using ascorbic acid 2-phosphate (AA2P) as a fuel. The properties of the electrode were investigated with respect to biocatalytic dephosphorylation of AA2P and electrochemical oxidation of resulting ascorbic acid (AA). The enzyme electrode was fabricated by immobilization of ACP through amide linkage onto a self-assembled monolayer of 3-mercaptopropionic acid on a gold electrode. AA2P was not oxidized on a bare gold electrode in the potential sweep range from -0.1 to +0.5 V vs. Ag/AgCl. However, the enzyme electrode gave an oxidation current in citric buffer solution of pH 5 containing 10 mM of AA2P. The oxidation current began to increase at +0.2V, and reached to 5.0 μA cm(-2) at +0.5 V. The potential +0.2 V corresponded to the onset of oxidation of ascorbic acid (AA). These results suggest that the oxidation current observed with the enzyme electrode is due to AA resulting from dephosphorylation of AA2P. The oxidation current increased with increasing concentration of AA2P and almost leveled off at around the concentration of 5mM. Thus the enzyme electrode brought about biocatalytic conversion of AA2P to AA, followed by electrochemical oxidation of the AA. The oxidation current is likely to be controlled by the biocatalytic reaction. PMID:21247749

  4. Biocatalytic anode for glucose oxidation utilizing carbon nanotubes for direct electron transfer with glucose oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Vaze, Abhay; Hussain, Nighat; Tang, Chi [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Leech, Donal [School of Chemistry, National University of Ireland, Galway (Ireland); Rusling, James [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032 (United States); School of Chemistry, National University of Ireland, Galway (Ireland)

    2009-10-15

    Covalently linked layers of glucose oxidase, single-wall carbon nanotubes and poly-L-lysine on pyrolytic graphite resulted in a stable biofuel cell anode featuring direct electron transfer from the enzyme. Catalytic response observed upon addition of glucose was due to electrochemical oxidation of FADH{sub 2} under aerobic conditions. The electrode potential depended on glucose concentration. This system has essential attributes of an anode in a mediator-free biocatalytic fuel cell. (author)

  5. Biocatalytic conversion of epoxides

    NARCIS (Netherlands)

    de Vries, Erik; Janssen, DB

    2003-01-01

    Epoxides are attractive intermediates for producing chiral compounds. Important biocatalytic reactions involving epoxides include epoxide hydrolase mediated kinetic resolution, leading to the formation of diols and enantiopure remaining substrates, and enantioconvergent enzymatic hydrolysis, which g

  6. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.

    Science.gov (United States)

    Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere

    2015-02-16

    The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the α-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology. PMID:25640727

  7. Two-Input Enzymatic Logic Gates Made Sigmoid by Modifications of the Biocatalytic Reaction Cascades

    CERN Document Server

    Zavalov, Oleksandr; Halamek, Jan; Halamkova, Lenka; Korkmaz, Sevim; Arugula, Mary A; Chinnapareddy, Soujanya; Katz, Evgeny; Privman, Vladimir

    2013-01-01

    Computing based on biochemical processes is a newest rapidly developing field of unconventional information and signal processing. In this paper we present results of our research in the field of biochemical computing and summarize the obtained numerical and experimental data for implementations of the standard two-input OR and AND gates with double-sigmoid shape of the output signal. This form of response was obtained as a function of the two inputs in each of the realized biochemical systems. The enzymatic gate processes in the first system were activated with two chemical inputs and resulted in optically detected chromogen oxidation, which happens when either one or both of the inputs are present. In this case, the biochemical system is functioning as the OR gate. We demonstrate that the addition of a "filtering" biocatalytic process leads to a considerable reduction of the noise transmission factor and the resulting gate response has sigmoid shape in both inputs. The second system was developed for functi...

  8. Sustainable Biocatalytic Biodiesel Production

    DEFF Research Database (Denmark)

    Güzel, Günduz

    As part of his PhD studies, Gündüz Güzel examined the thermodynamics of reactions involved in biocatalytic biodiesel production processes, with a specific focus on phase equilibria of reactive systems. He carried out the thermodynamic analyses of biocatalytic processes in terms of phase and chemi......As part of his PhD studies, Gündüz Güzel examined the thermodynamics of reactions involved in biocatalytic biodiesel production processes, with a specific focus on phase equilibria of reactive systems. He carried out the thermodynamic analyses of biocatalytic processes in terms of phase...... and chemical equilibria as part of his main sustainable biodiesel project. The transesterification reaction of vegetable oils or fats with an aliphatic alcohol – in most cases methanol or ethanol – yields biodiesel (long-chain fatty acid alkyl esters – FAAE) as the main product in the presence of alkaline....../acid catalysts or biocatalysts (free or immobilised lipase enzymes). The reaction by-product glycerol is immiscible with the ester products (FAAE and oils/fats) in addition to the partial miscibility problem of methanol or ethanol with oils/fats. The insoluble parts of alcohol feeds or by-products form emulsion...

  9. Oxidase-based biocatalytic processes

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Woodley, John; Krühne, Ulrich

    Biocatalytic processes are gaining significant focus in frontiers where they offer unique advantages(selectivity and mild operating conditions) over chemical catalysts. It is therefore not surprising that therehave been many industrial biocatalytic processes implemented.Despite past successes, the...... implementation of a new biocatalytic process still presents some challenges (demands placed on the biocatalyst) in terms of the requirements to make a viable industrial process. Inorder for a biocatalytic process to be economically successful, it is necessary that certain a set of targetmetrics (product titre...... reaction species (substrate and product volatility for example) and the process (such as oxygen supply, ability to control pH) and are classified as reaction-related and process-related constraintsrespectively. Although the development of biocatalyst and process engineering tools offers a number...

  10. Peroxidase-active cell free extract from onion solid wastes: biocatalytic properties and putative pathway of ferulic acid oxidation.

    Science.gov (United States)

    El Agha, Ayman; Makris, Dimitris P; Kefalas, Panagiotis

    2008-09-01

    The exploitation of food residuals can be a major contribution in reducing the polluting load of food industry waste and in developing novel added-value products. Plant food residues including trimmings and peels might contain a range of enzymes capable of transforming bioorganic molecules, and thus they may have potential uses in several biocatalytic processes, including green organic synthesis, modification of food physicochemical properties, bioremediation, etc. Although the use of bacterial and fungal enzymes has gained attention in studies pertaining to biocatalytic applications, plant enzymes have been given less consideration or even disregarded. Therefore, we investigated the use of a crude peroxidase preparation from solid onion by-products for oxidizing ferulic acid, a widespread phenolic acid, various derivatives of which may occur in food wastes. The highest enzyme activity was observed at a pH value of 4, but considerable activity was retained up to a pH value of 6. Favorable temperatures for increased activity varied between 20-40 degrees C, 30 degrees C being the optimal. Liquid chromatography-mass spectrometry analysis of a homogenate/H(2)O(2)-treated ferulic acid solution showed the formation of a dimer as a major oxidation product. PMID:18930006

  11. Alkene Cleavage Catalysed by Heme and Nonheme Enzymes: Reaction Mechanisms and Biocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Francesco G. Mutti

    2012-01-01

    Full Text Available The oxidative cleavage of alkenes is classically performed by chemical methods, although they display several drawbacks. Ozonolysis requires harsh conditions (−78°C, for a safe process and reducing reagents in a molar amount, whereas the use of poisonous heavy metals such as Cr, Os, or Ru as catalysts is additionally plagued by low yield and selectivity. Conversely, heme and nonheme enzymes can catalyse the oxidative alkene cleavage at ambient temperature and atmospheric pressure in an aqueous buffer, showing excellent chemo- and regioselectivities in certain cases. This paper focuses on the alkene cleavage catalysed by iron cofactor-dependent enzymes encompassing the reaction mechanisms (in case where it is known and the application of these enzymes in biocatalysis.

  12. Enhanced biocatalytic esterification with lipase-immobilized chitosan/graphene oxide beads.

    Science.gov (United States)

    Lau, Siaw Cheng; Lim, Hong Ngee; Basri, Mahiran; Fard Masoumi, Hamid Reza; Ahmad Tajudin, Asilah; Huang, Nay Ming; Pandikumar, Alagarsamy; Chia, Chin Hua; Chia, Chi Hua; Andou, Yoshito

    2014-01-01

    In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the "insoluble" enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS) and 1-ethyl-(3-dimethylaminopropyl) carbodiimide (EDC), and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60 °C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions. PMID:25127038

  13. Enhanced biocatalytic esterification with lipase-immobilized chitosan/graphene oxide beads.

    Directory of Open Access Journals (Sweden)

    Siaw Cheng Lau

    Full Text Available In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the "insoluble" enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS and 1-ethyl-(3-dimethylaminopropyl carbodiimide (EDC, and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60 °C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions.

  14. Biocatalytic Properties and Structural Analysis of Eugenol Oxidase from Rhodococcus jostii RHA1: A Versatile Oxidative Biocatalyst.

    Science.gov (United States)

    Nguyen, Quoc-Thai; de Gonzalo, Gonzalo; Binda, Claudia; Rioz-Martínez, Ana; Mattevi, Andrea; Fraaije, Marco W

    2016-07-15

    Eugenol oxidase (EUGO) from Rhodococcus jostii RHA1 had previously been shown to convert only a limited set of phenolic compounds. In this study, we have explored the biocatalytic potential of this flavoprotein oxidase, resulting in a broadened substrate scope and a deeper insight into its structural properties. In addition to the oxidation of vanillyl alcohol and the hydroxylation of eugenol, EUGO can efficiently catalyze the dehydrogenation of various phenolic ketones and the selective oxidation of a racemic secondary alcohol-4-(1-hydroxyethyl)-2-methoxyphenol. EUGO was also found to perform the kinetic resolution of a racemic secondary alcohol. Crystal structures of the enzyme in complexes with isoeugenol, coniferyl alcohol, vanillin, and benzoate have been determined. The catalytic center is a remarkable solvent-inaccessible cavity on the si side of the flavin cofactor. Structural comparison with vanillyl alcohol oxidase from Penicillium simplicissimum highlights a few localized changes that correlate with the selectivity of EUGO for phenolic substrates bearing relatively small p-substituents while tolerating o-methoxy substituents. PMID:27123962

  15. Characterization of ionic liquid‐based biocatalytic two‐phase reaction system for production of biodiesel

    DEFF Research Database (Denmark)

    Prabhavathi Devi, Bethala Lakshmi Anu; Guo, Zheng; Xu, Xuebing

    2011-01-01

    The property of a variety of ionic liquids (ILs) as reaction media was evaluated for the production of biodiesel by enzymatic methanolysis of rapeseed oil. The IL Ammoeng 102, containing tetraaminum cation with C18 acyl and oligoethyleneglycol units, was found to be capable of forming oil....../IL biphasic reaction system by mixing with substrates, which is highly effective for the production of biodiesel with more than 98% biodiesel yield and nearly 100% conversion of oil. Conductor‐like screening model for real solvent (COSMO‐RS) in silico prediction of substrate solubility and simulation...... of partition coefficient change vs. reaction evolution indicated that the amphiphilic property of Ammoeng 102 might be responsible for creating efficient interaction of immiscible substrates; while big difference of partition coefficients of generated biodiesel and glycerol between the two phases suggests...

  16. Production of chiral alcohols from prochiral ketones by microalgal photo-biocatalytic asymmetric reduction reaction.

    Science.gov (United States)

    Yang, Zhong-Hua; Luo, Li; Chang, Xu; Zhou, Wei; Chen, Geng-Hua; Zhao, Yan; Wang, Ya-Jun

    2012-06-01

    Microalgal photo-biocatalysis is a green technique for asymmetric synthesis. Asymmetric reduction of nonnatural prochiral ketones to produce chiral alcohols by microalgal photo-biocatalysis was studied in this work. Acetophenone (ACP) and ethyl acetoacetate (EAA) were chosen as model substrates for aromatic ketones and β-ketoesters, respectively. Two prokaryotic cyanophyta and two eukaryotic chlorophyta were selected as photo-biocatalysts. The results proved that nonnatural prochiral ketones can be reduced by microalgal photo-biocatalysis with high enantioselectivity. Illumination is indispensable to the photo-biocatalysis. For aromatic ketone, cyanophyta are eligible biocatalysts. For ACP asymmetric reduction reaction, about 45% yield and 97% e.e. can be achieved by the photo-biocatalysis reaction with Spirulina platensis as biocatalyst. On the contrary, chlorophyta are efficient biocatalysts for β-ketoester asymmetric reduction reaction among the four tested algae. For EAA asymmetric reduction reaction, about 70% yield and 90% e.e. can be achieved with Scenedesmus obliquus as biocatalyst. The microalgae used in this study outperformed other characterized biocatalysts such as microbial and plant cells. PMID:22322691

  17. Artificial control of biocatalytic reaction; Seitai shokubai hanno no jin`iteki seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K. [Kyoto University, Kyoto (Japan). Institute for Chemical Research

    1997-08-25

    Selective composition of optically active compounds by use of biocatalysts is discussed. No search is made for any particular microbes or enzymes, but predetermined ones are used. For an increase in the selective yield of L-type carnitine by reducing 4-chloroacetoacetic acid ester using baker`s yeast, the ester length should be enlarged to that of octyl ester. Just as in this case, steric control by ground substance modification is often effective. Lipase helps on esterification which is contrary to hydrolysis in an organic solvent and, even in the optical division in this process, steric control by ground substance modification (for example by changing the structure of the acyl section) is effective. Immobilization of biocatalysts for use in reaction occasionally exerts some effect on stereoselectivity. Two types of enzymes may be participating in a reaction and inhibiting selectivity, and then a two-layer system of water and organic solvent may be effective in performing steric control over the situation. Another measure is to inhibit the activity of either of the two enzymes by use of a selective inhibitor utilizing enzyme reaction. The kind of solvent is also an influential factor. 11 refs., 7 figs.

  18. Sustainable Biocatalytic Biodiesel Production:A Thermodynamic Analysis

    OpenAIRE

    Güzel, Günduz

    2012-01-01

    As part of his PhD studies, Gündüz Güzel examined the thermodynamics of reactions involved in biocatalytic biodiesel production processes, with a specific focus on phase equilibria of reactive systems. He carried out the thermodynamic analyses of biocatalytic processes in terms of phase and chemical equilibria as part of his main sustainable biodiesel project. The transesterification reaction of vegetable oils or fats with an aliphatic alcohol – in most cases methanol or ethanol – yields biod...

  19. Biocatalytic portfolio of Basidiomycota.

    Science.gov (United States)

    Schmidt-Dannert, Claudia

    2016-04-01

    Basidiomycota fungi have received little attention for applications in biocatalysis and biotechnology and remain greatly understudied despite their importance for carbon recycling, ecosystem functioning and medicinal properties. The steady influx of genome data has facilitated detailed studies aimed at understanding the evolution and function of fungal lignocellulose degradation. These studies and recent explorations into the secondary metabolomes have uncovered large portfolios of enzymes useful for biocatalysis and biosynthesis. This review will provide an overview of the biocatalytic repertoires of Basidiomycota characterized to date with the hope of motivation more research into the chemical toolkits of this diverse group of fungi. PMID:26812494

  20. Progress on Biocatalytic Reaction in Various Ionic Liquid Mediums%不同离子液体反应介质在生物催化中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    杜伟燕; 李娜; 王寿江

    2012-01-01

      离子液体(ILs)因其独特物理化学性质成为新型反应溶剂和催化剂,在生物催化反应中有着广阔的应用前景。根据不同 ILs 的水溶性,其与水可形成4种反应介质,即微水 ILs 单相体系、亲水性 ILs-水单相体系、疏水性 ILs-水两相体系和 ILs 微乳液体系。本文分别介绍了不同 ILs 反应体系中生物催化剂的催化活性、稳定性和选择性,综述了这些体系中的生物催化反应研究进展。%  Ionic liquids (ILs) are new reaction mediums and catalysts for biocatalytic reaction due to their excellent physical and chemical characteristics. ILs can form 4 kinds of reaction mediums with water based on their water solubility, that is, nearly anhydrous ILs systems, hydrophilic ILs-water systems, hydrophobic ILs-water two-phase systems, and water-in-ILs microemulsions. In this article, the activity, stability and selectivity of biocatalysts in the four ILs-containing mediums are summarized and the research progresses of biocatalytic reaction in the systems are discussed.

  1. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  2. Biocatalytic properties of a peroxidase-active cell-free extract from onion solid wastes: caffeic acid oxidation.

    Science.gov (United States)

    El Agha, Ayman; Abbeddou, Souheila; Makris, Dimitris P; Kefalas, Panagiotis

    2009-04-01

    The exploitation of food residual sources consists of a major factor in reducing the polluting load of food industry wastes and developing novel added-value products. Plant food residues including trimmings and peels might contain a range of enzymes capable of transforming bio-organic molecules with potential phytotoxicity, including hydrolases, peroxidases and polyphenoloxidases. Although the use of bacterial and fungal enzymes has gained interest in studies pertaining to bioremediation applications, plant enzymes have been given less attention or even disregarded. In this view, this study aimed at the investigating the use of a crude peroxidase preparation from onion solid by-products for oxidising caffeic acid, a widespread o-diphenol, whose various derivatives may occur in food industry wastes, such as olive mill waste waters. Increased enzyme activity was observed at a pH value of 5, but considerable activity was also retained for pH up to 7. Favourable temperatures for increased activity varied between 20 degrees C and 40 degrees C, 30 degrees C being the optimal. Liquid chromatography-mass spectrometry analysis of a homogenate/H(2)O(2)-treated caffeic acid solution revealed the existence of a tetramer as major oxidation product. Based on the data generated, a putative pathway for the formation of the peroxidase-mediated caffeic acid tetramer was proposed. PMID:18670892

  3. Application of environmental and economic metrics to guide the development of biocatalytic processes

    DEFF Research Database (Denmark)

    Lima Ramos, Joana; Tufvesson, Pär; Woodley, John

    2014-01-01

    The increasing industrial interest in biocatalytic processes is predominantly driven by the need for selective chemistry, with high reaction yield (Y-reaction) and few side reactions, as well as the need for optically pure chiral molecules (in particularly in the pharmaceutical industry). Interes......The increasing industrial interest in biocatalytic processes is predominantly driven by the need for selective chemistry, with high reaction yield (Y-reaction) and few side reactions, as well as the need for optically pure chiral molecules (in particularly in the pharmaceutical industry...

  4. Oxidation-reduction reactions of metal ions.

    OpenAIRE

    Carter, D E

    1995-01-01

    Several metal or metalloid ions exist in multiple oxidation states and can undergo electron transfer reactions that are important in biological and environmental systems. There are endogenous metal ions such as iron, copper, and cobalt that participate in oxidation-reduction reactions with species of oxygen like molecular dioxygen, superoxide, and hydrogen peroxide. These reactions may be modulated by endogenous reducing agents such as glutathione, ascorbate, and tocopherol. The reactions can...

  5. A methodology for development of biocatalytic processes

    DEFF Research Database (Denmark)

    Lima Ramos, Joana

    , is also the source of the greatest opportunities. Indeed, recombinant DNA technology offers a superb complement to process technologies. Potentially this is one of the biggest advantages of biocatalysis when compared with conventional chemical catalysis, where all the reaction boundaries are fixed...... and their relationship with the overall process is not clear.The work described in this thesis presents a methodological approach for early stage development of biocatalytic processes, understanding and dealing with the reaction, biocatalyst and process constraints. When applied, this methodology has a decisive role...... tools, the number of options can be much reduced and the current process bottlenecks identified. By applying a priori this methodology, the Laboratory experts are better able to understand the most favourable operating conditions at fullscale and thus be able to collect information at these relevant...

  6. Immobilization of manganese peroxidase from Lentinula edodes and its biocatalytic generation of MnIII-chelate as a chemical oxidant of chlorophenols.

    Science.gov (United States)

    Grabski, A C; Grimek, H J; Burgess, R R

    1998-10-20

    Manganese peroxidase (MnP) purified from commercial cultures of Lentinula edodes was covalently immobilized through its carboxyl groups using an azlactone-functional copolymer derivatized with ethylenediamine and 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) as a coupling reagent. The tethered enzyme was employed in a two-stage immobilized MnP bioreactor for catalytic generation of chelated MnIII and subsequent oxidation of chlorophenols. Manganese peroxidase immobilized in the enzyme reactor (reactor 1) produced MnIII-chelate, which was pumped into another chemical reaction vessel (reactor 2) containing the organopollutant. Reactor 1-generated MnIII-chelates oxidized 2,4-dichlorophenol and 2,4, 6-trichlorophenol in reactor 2, demonstrating a two-stage enzyme and chemical system. H2O2 and oxalate chelator concentrations were varied to optimize the immobilized MnP's oxidation of MnII to MnIII. Oxidation of 1.0 mM MnII to MnIII was initially measured at 78% efficiency under optimized conditions. After 24 h of continuous operation under optimized reaction conditions, the reactor still oxidized 1.0 mM MnII to MnIII with approximately 69% efficiency, corresponding to 88% of the initial MnP activity. PMID:10099422

  7. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a...... properties to the widely discussed gold catalysts. Literature results were summarized for alcohol oxidation, epoxidation, amine oxidation, phenol hydroxylation, silane and sulfide oxidation, (side-chain) oxidation of alkyl aromatic compounds, hydroquinone oxidation and cyclohexane oxidation. It was found...

  8. Uranium oxidation: characterization of oxides formed by reaction with water

    International Nuclear Information System (INIS)

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. Results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. 27 figures

  9. Biocatalytic synthesis of highly ordered degradable dextran-based hydrogels

    OpenAIRE

    Ferreira, Lino; Gil, Maria H.; Cabrita, António M. S.; Dordick, Jonathan S.

    2005-01-01

    We have prepared unique macroporous and ordered dextran-based hydrogels using a single-step biocatalytic transesterification reaction between dextran and divinyladipate in neat dimethylsulfoxide. These hydrogels show a unimodal distribution of interconnected pores with average diameters from 0.4 to 2.0 [mu]m depending on the degree of substitution. In addition, the hydrogels show a higher elastic modulus for a given swelling ratio than chemically synthesized dextran-based hydrogels. In vivo s...

  10. Palladium-catalyzed oxidative carbonylation reactions.

    Science.gov (United States)

    Wu, Xiao-Feng; Neumann, Helfried; Beller, Matthias

    2013-02-01

    Palladium-catalyzed coupling reactions have become a powerful tool for advanced organic synthesis. This type of reaction is of significant value for the preparation of pharmaceuticals, agrochemicals, as well as advanced materials. Both, academic as well as industrial laboratories continuously investigate new applications of the different methodologies. Clearly, this area constitutes one of the major topics in homogeneous catalysis and organic synthesis. Among the different palladium-catalyzed coupling reactions, several carbonylations have been developed and widely used in organic syntheses and are even applied in the pharmaceutical industry on ton-scale. Furthermore, methodologies such as the carbonylative Suzuki and Sonogashira reactions allow for the preparation of interesting building blocks, which can be easily refined further on. Although carbonylative coupling reactions of aryl halides have been well established, palladium-catalyzed oxidative carbonylation reactions are also interesting. Compared with the reactions of aryl halides, oxidative carbonylation reactions offer an interesting pathway. The oxidative addition step could be potentially avoided in oxidative reactions, but only few reviews exist in this area. In this Minireview, we summarize the recent development in the oxidative carbonylation reactions. PMID:23307763

  11. Reactions of oxidation of plutonium metal

    International Nuclear Information System (INIS)

    The investigation into preparation of the powdery plutonium oxides under the reaction of metal plutonium with moist (5 % H2O) air and moist (5 % H2O) argon was carried out. The kinetic dependences in the 250 - 400 Deg C range are demonstrated. The vicissitude of the oxidation is shown, the activation energy is calculated for every stage. The mechanism of the metal plutonium oxidation is proposed. The obtained plutonium oxides were shown to have a high reaction ability at 300 - 400 Deg C in the moist air and moist argon media, and to be feasible for the further chemical treatment - dissolving in nitric acid, fluorination and chlorination

  12. Heterogeneous Metal Catalysts for Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Md. Eaqub Ali

    2014-01-01

    Full Text Available Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna. Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a reference guide for the selection of oxidation catalysts for both industries and academics.

  13. Model visualization for evaluation of biocatalytic processes

    DEFF Research Database (Denmark)

    Law, HEM; Lewis, DJ; McRobbie, I;

    2008-01-01

    Biocatalysis offers great potential as an additional, and in some cases as an alternative, synthetic tool for organic chemists, especially as a route to introduce chirality. However, the implementation of scalable biocatalytic processes nearly always requires the introduction of process and....../or biocatalyst enhancements to ensure effective scale-up. This paper describes a paradigm for the purpose of evaluating biocatalytic processes in order to provide guidance on process and biocatalyst modification. The paradigm is illustrated with the biocatalytic synthesis of S,S-ethylenediaminedisuccinic acid (S......,S-EDDS), a biodegradable chelant, and is characterised by the use of model visualization using `windows of operation"....

  14. The Biocatalytic Desulfurization Project

    Energy Technology Data Exchange (ETDEWEB)

    David Nunn; James Boltz; Philip M. DiGrazia; Larry Nace

    2006-03-03

    The material in this report summarizes the Diversa technical effort in development of a biocatalyst for the biodesulfurization of Petro Star diesel as well as an economic report of standalone and combined desulfurization options, prepared by Pelorus and Anvil, to support and inform the development of a commercially viable process. We will discuss goals of the projected as originally stated and their modification as guided by parallel efforts to evaluate commercialization economics and process parameters. We describe efforts to identify novel genes and hosts for the generation of an optimal biocatalyst, analysis of diesel fuels (untreated, chemically oxidized and hydrotreated) for organosulfur compound composition and directed evolution of enzymes central to the biodesulfurization pathway to optimize properties important for their use in a biocatalyst. Finally we will summarize the challenges and issues that are central to successful development of a viable biodesulfurization process.

  15. THE BIOCATALYTIC DESULFURIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Steven E. Bonde; David Nunn

    2003-01-01

    During the first quarter of the Biological Desulfurization project several activities were pursued. A project kickoff meeting was held at the Diversa facility in San Diego, CA. Activities that were in process before the meeting and begun afterwards by Diversa Corporation and Petro Star Inc. include: Technology transfer in the form of information generated by Enchira to Diversa, the purchase and installation of equipment by Diversa, development of synthetic methods and preparation of organo-sulfur substrates for use in determining enzyme activities, production of extract via Petro Star's CED process, detailed analysis of Petro Star Inc. diesel and CED extract, and several activities in molecular biology. Diversa Corporation, in the area of molecular biology, engaged in several activities in support of the task list of the contract. These included: construction of a genomic library; development and utilization of a sequence-based gene discovery effort; a parallel discovery approach based on functional expression of enzymes with the ability to oxidize organosulfur compounds. Biodesulfurization genes have already been identified and are being sequenced and subcloned for expression in heterologous biological hosts. Diversa has evaluated and adapted assays developed by Enchira used to assess the activities of DBT and DBTO{sub 2} monooxygenases. Finally, Diversa personnel have developed two novel selection/screen strategies for the improvement of biocatalyst strains by directed evolution.

  16. Biocatalytic oxidation of phenolic compounds by bovine methemoglobin in the presence of H2O2: Quantitative structure–activity relationships

    International Nuclear Information System (INIS)

    Highlights: ► The kinetics of metHb-catalyzed oxidation of a group of phenols were analyzed. ► Unusual kinetic behaviour was observed for the phenols here tested. ► QSAR equations for a number of physicochemical parameters were established. ► A relationship between the peroxidase and catalase activities of metHb was found. ► Bovine metHb might represent a good economical alternative to other peroxidases. - Abstract: In the present work, 13 p-substituted phenols with different functional groups have been systematically evaluated as metHb substrates by means of HPLC analysis. Non-hyperbolic kinetics were observed and Hill coefficients in the 0.37–1.00 range were obtained. The catalytic constants and the Hill coefficients were found to be quantitatively correlated with two independent variables: the energy level of the highest-occupied molecular orbital (EHOMO), which describes the intrinsic redox activity of the substrates and the pKa-values, which are related to substrate ionization. Oxygen evolution in the presence of each phenol derivative was also measured, and good correlation between peroxidase-like and catalase-like activities of the protein was observed. It is also shown that bovine metHb, although less active than other peroxidases, may represent a good alternative from an economical point of view for phenol removal processes. The equations here obtained may serve as a basis to further explore the potential use of metHb-mediated reactions in the treatment of phenols in wastewaters and to predict which phenol will be removed most efficiently under this treatment with satisfactory reliability.

  17. Biocatalytic oxidation of phenolic compounds by bovine methemoglobin in the presence of H{sub 2}O{sub 2}: Quantitative structure-activity relationships

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Prior, M. Teresa, E-mail: MariaTeresa.Perez@uclm.es [Department of Physical Chemistry, University of Castilla-La Mancha, Campus Universitario, E-02071 Albacete (Spain); Gomez-Bombarelli, Rafael, E-mail: R.GomezBombarelli@hw.ac.uk [Department of Physics, Heriot-Watt University, David Brewster Building G.45, Edinburgh (United Kingdom); Gonzalez-Sanchez, M. Isabel, E-mail: MIsabel.Gonzalez@uclm.es [Department of Physical Chemistry, University of Castilla-La Mancha, Campus Universitario, E-02071 Albacete (Spain); Valero, Edelmira, E-mail: Edelmira.Valero@uclm.es [Department of Physical Chemistry, University of Castilla-La Mancha, Campus Universitario, E-02071 Albacete (Spain)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer The kinetics of metHb-catalyzed oxidation of a group of phenols were analyzed. Black-Right-Pointing-Pointer Unusual kinetic behaviour was observed for the phenols here tested. Black-Right-Pointing-Pointer QSAR equations for a number of physicochemical parameters were established. Black-Right-Pointing-Pointer A relationship between the peroxidase and catalase activities of metHb was found. Black-Right-Pointing-Pointer Bovine metHb might represent a good economical alternative to other peroxidases. - Abstract: In the present work, 13 p-substituted phenols with different functional groups have been systematically evaluated as metHb substrates by means of HPLC analysis. Non-hyperbolic kinetics were observed and Hill coefficients in the 0.37-1.00 range were obtained. The catalytic constants and the Hill coefficients were found to be quantitatively correlated with two independent variables: the energy level of the highest-occupied molecular orbital (E{sub HOMO}), which describes the intrinsic redox activity of the substrates and the pK{sub a}-values, which are related to substrate ionization. Oxygen evolution in the presence of each phenol derivative was also measured, and good correlation between peroxidase-like and catalase-like activities of the protein was observed. It is also shown that bovine metHb, although less active than other peroxidases, may represent a good alternative from an economical point of view for phenol removal processes. The equations here obtained may serve as a basis to further explore the potential use of metHb-mediated reactions in the treatment of phenols in wastewaters and to predict which phenol will be removed most efficiently under this treatment with satisfactory reliability.

  18. Sustainable biocatalytic biodiesel production : A thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guezel, G.

    2012-09-15

    In the present thesis it was aimed at achieving thermodynamic analysis of reactions involved in enzymatic biodiesel production with specific focus on chemical and phase equilibria of reactive systems. Lipase-catalyzed biodiesel production (biocatalytic ethanolysis) presents significant advantages: Easy recovery of glycerol, no complex down-processing operations for elimination of catalyst and salt, and requires less organic solvent and lower energy consumption compared with conventional chemical methods. In overall, the major aims of this thesis were evaluating and subsequently finding feasible solutions to the questions emerged during the corresponding studies that have been performed worldwide. Some of the questions that were answered as appropriate as possible can be listed as follows: 1) What is the solubility of EtOH in vegetable oils and in FAEE blends and how does it change with temperature? 2) Is it possible to prevent denaturing impact of EtOH on biocatalysts? 3) What are the feedstock content (water and FFA) impacts on glycerol and EtOH miscibility with ester species? 4) Is it necessary removing glycerol by-product simultaneously? 5) Is it feasible providing monophasic or homogeneous reaction media that procure lower external mass transfer resistance? 6) What are the moisture absorption limits of FAAE species? 7) How are the interactions of reactive species in terms of miscibility/immiscibility phenomena? 8) Is it thermodynamically feasible providing monophasic reaction media? 9) How can LLE and VLE phase behaviors help to determine optimum reaction conditions? 10) How can the results of LLE and VLE studies be used so as to determine appropriate refining operations? (LN)

  19. The effect of outside conditions on anaerobic ammonia oxidation reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Min; WANG Shu-bo

    2016-01-01

    Organic carbon, inorganic carbon, temperature, pH and ORP are all to have a certain influence on the anaerobic ammonia oxidation reaction. We can draw some conclusions on the optimum conditions of anaerobic ammonia oxidation reaction. The optimum temperature of the anaerobic ammonia oxidation reaction is 30-35℃. And the optimum pH of the anaerobic ammonia reaction is 7.5-8.3. The presence of organic matters can affect the anaerobic ammonia reaction, and different organic matters have different influence on it. The concentration of the inorganic carbon also exist great influence on the reaction. High inorganic carbon concentration also can inhibit anaerobic ammonia oxidation reaction.

  20. Biocatalytic process development using microfluidic miniaturized systems

    DEFF Research Database (Denmark)

    Krühne, Ulrich; Heintz, Søren; Ringborg, Rolf Hoffmeyer;

    2014-01-01

    The increasing interest in biocatalytic processes means there is a clear need for a new systematic development paradigm which encompasses both protein engineering and process engineering. This paper argues that through the use of a new microfluidic platform, data can be collected more rapidly and...

  1. Influences of Reaction Parameters on the Product of a Geothermite Reaction: A Multi-Component Oxidation-Reduction Reaction Study

    OpenAIRE

    Faierson, Eric J.

    2009-01-01

    This study investigated an oxidation-reduction reaction involving a mixture of minerals, glass, and aluminum that exhibited thermite-type reaction behavior. Thermite reactions are a class of Self-propagating High-temperature Synthesis (SHS) reactions. Chemical reactions between raw minerals and a reducing agent, which exhibit thermite-type reaction behavior, are termed geothermite reactions by the author. Geothermite reactions have the potential for use in In-Situ Resource Utilization (ISRU...

  2. Multi-step biocatalytic strategies for chiral amino alcohol synthesis.

    Science.gov (United States)

    Villegas-Torres, Maria F; Martinez-Torres, R Julio; Cázares-Körner, Armando; Hailes, Helen; Baganz, Frank; Ward, John

    2015-12-01

    Chiral amino alcohols are structural motifs present in sphingolipids, antibiotics, and antiviral glycosidase inhibitors. Their chemical synthesis presents several challenges in establishing at least two chiral centres. Here a de novo metabolic pathway using a transketolase enzyme coupled with a transaminase enzyme has been assembled. To synthesise this motif one of the strategies to obtain high conversions from the transaminase/transketolase cascade is the use of hydroxypyruvate (HPA) as a two-carbon donor for the transketolase reaction; although commercially available it is relatively expensive limiting application of the pathway on an industrial scale. Alternately, HPA can be synthesised but this introduces a further synthetic step. In this study two different biocatalytic strategies were developed for the synthesis of (2S,3R)-2-amino-1,3,4-butanetriol (ABT) without adding HPA into the reaction. Firstly, a sequential cascade of three enzymatic steps (two transaminases and one transketolase) for the synthesis of ABT from serine, pyruvate and glycolaldehyde as substrates. Secondly, a two-step recycling cascade where serine is used as donor to aminate erythrulose (catalysed by a transketolase) for the simultaneous synthesis of ABT and HPA. In order to test the novel pathways, three new transaminases are described, two ω-transaminases able to accept a broad range of amine acceptors with serine as amine donor; and an α-transaminase, which showed high affinity towards serine (KM: 18mM) using pyruvate as amine acceptor. After implementation of the above enzymes in the biocatalytic pathways proposed in this paper, the two-step recycling pathway was found to be the most promising for its integration with E. coli metabolism. It was more efficient (10-fold higher conversion), more sustainable and cost-effective (use of low cost natural substrates and only two enzymes), and the reaction could be performed in a one-pot system. PMID:26453469

  3. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    OpenAIRE

    Beier, Matthias Josef; Grunwaldt, Jan-Dierk; Jensen, Anker Degn; Kontogeorgis, Georgios

    2011-01-01

    Denne afhandling giver indledningsvist et overblik over heterogene kobber og sølv katalysatorer til selektiv oxidation i væskefase og sammenligner virkningsgraden og katalytiske egenskaber af disse med den i vidt omfang benyttede guld katalysator. Resultater fra litteraturen er opsummeret for alkohol oxidation, epoxidation, amin oxidation, fenyl hydroxylation, silan og sulfid oxidation, (side-kæde) oxidation af alkyl aromatiske stoffer, hydroquinon oxidation samt cyklohexan oxidation. Det er ...

  4. Effect of solvents on reactions of oxidation with aliphatic peroxyacids

    OpenAIRE

    Natalia Matsyuk, Mariya Matsyuk; Volodymur Dutka

    2013-01-01

    Organic solvents effect on the reactions of oxidation involving aliphatic peroxyacids was studied. It was found the kinetic and activation parameters of the oxidation of aniline. It is shown that the reaction medium has a significant effect on the rate of the process. The epoxidation reaction of ?-pinene and ?3-karen by peroxydecanoic acid was studied. It was obtain the equation of correlation that connecting speed reaction with the basic physicochemical properties of solvents.

  5. Biocatalytic synthesis of acrylates in supercritical fluids: tuning enzyme activity by changing pressure.

    OpenAIRE

    Kamat, S.V.; Iwaskewycz, B; Beckman, E J; Russell, A.J.

    1993-01-01

    Supercritical fluids are a unique class of nonaqueous media in which biocatalytic reactions can occur. The physical properties of supercritical fluids, which include gas-like diffusivities and liquid-like densities, can be predictably controlled with changing pressure. This paper describes how adjustment of pressure, with the subsequent predictable changes of the dielectric constant and Hildebrand solubility parameter for fluoroform, ethane, sulfur hexafluoride, and propane, can be used to ma...

  6. Actinobase: Database on molecular diversity, phylogeny and biocatalytic potential of salt tolerant alkaliphilic actinomycetes

    OpenAIRE

    Sharma, Amit K; Gohel, Sangeeta; Singh, Satya P.

    2012-01-01

    Actinobase is a relational database of molecular diversity, phylogeny and biocatalytic potential of haloalkaliphilic actinomycetes. The main objective of this data base is to provide easy access to range of information, data storage, comparison and analysis apart from reduced data redundancy, data entry, storage, retrieval costs and improve data security. Information related to habitat, cell morphology, Gram reaction, biochemical characterization and molecular features would allow researchers...

  7. Efficient Biocatalytic Synthesis of Chiral Chemicals.

    Science.gov (United States)

    Zhang, Zhi-Jun; Pan, Jiang; Ma, Bao-Di; Xu, Jian-He

    2016-01-01

    Chiral chemicals are a group of important chiral synthons for the synthesis of a series of pharmaceuticals, agrochemicals, and fine chemicals. In past decades, a number of biocatalytic approaches have been developed for the green and effective synthesis of various chiral chemicals. However, the practical application of these biocatalytic processes is still hindered by the lack of highly efficient and robust biocatalysts, which usually results in the low volumetric productivity and high cost of the bioprocesses. Further step forward of biocatalysis in industrial application strongly requires the development of versatile and highly efficient biocatalysts, aiming to increase the process efficiency and facilitate the downstream processing. Recently, the fast growth of genome sequences in the database in post-genomic era offers great opportunities for accessing numerous biocatalysts with practical application potential, and the so-called genome mining approach provides time-effective and highly specific strategy for the fast identification of target enzymes with desired properties and outperforms the traditional screening of soil samples for microbial enzyme producers of interest. A number of biocatalytic processes with industrial application potential were developed thereafter. Further development of protein engineering strategies, process optimization, and cooperative work between biologists, organic chemists, and engineers is expected to make biocatalysis technology the first choice approach for the eco-friendly, highly efficient, and cost-effective synthesis of chiral chemicals in the near future. PMID:25537446

  8. Tunneling of redox enzymes to design nano-probes for monitoring NAD(+) dependent bio-catalytic activity.

    Science.gov (United States)

    Akshath, Uchangi Satyaprasad; Bhatt, Praveena

    2016-11-15

    Monitoring of bio-catalytic events by using nano-probes is of immense interest due to unique optical properties of metal nanoparticles. In the present study, tunneling of enzyme activity was achieved using redox cofactors namely oxidized cytochrome-c (Cyt-c) and Co-enzyme-Q (Co-Q) immobilized on Quantum dots (QDs) which acted as a bio-probe for NAD(+) dependent dehydrogenase catalyzed reaction. We studied how electron transfer from substrate to non-native electron acceptors can differentially modify photoluminescence properties of CdTe QDs. Two probes were designed, QD-Ox-Cyt-c and QD-Ox-Co-Q, which were found to quench the fluorescence of QDs. However, formaldehyde dehydrogenase (FDH) catalyzed reduction of Cyt-c and Co-Q on the surface of QDs lead to fluorescence turn-on of CdTe QDs. This phenomenon was successfully used for the detection of HCHO in the range of 0.01-100,000ng/mL (LOD of 0.01ng/mL) using both QD-Ox-Cyt-c (R(2)=0.93) and QD-Ox-Co-Q (R(2)=0.96). Further probe performance and stability in samples like milk, wine and fruit juice matrix were studied and we could detect HCHO in range of 0.001-100,000ng/mL (LOD of 0.001ng/mL) with good stability and sensitivity of probe in real samples (R(2)=0.97). Appreciable recovery and detection sensitivity in the presence of metal ions suggests that the developed nano-probes can be used successfully for monitoring dehydrogenase based bio-catalytic events even in the absence of NAD(+). Proposed method is advantageous over classical methods as clean up/ derivatization of samples is not required for formaldehyde detection. PMID:27179565

  9. Effect of vegetable oil oxidation on the hydrogenation reaction process

    OpenAIRE

    Kalantari, Faranak; Bahmaei, Manochehr; Ameri, Majid; Shoaei, Ehsan

    2010-01-01

    Hydrogenation has been carried out in a batch reactor with three different oxidized bleached oils in order to discover the effect of oxidation on the hydrogenation reaction process. Specifications of hydrogenated oils such as melting point, Iodine value, solid fat content and fatty acid composition of the oxidized oils were compared with their un-oxidized reference oils. Oxidized bleached sunflower oil was hydrogenated to target melting points (34, 39 and 42°C) at higher iodine values vs. its...

  10. Towards practical biocatalytic Baeyer-Villiger reactions: applying a thermostable enzyme in the gram-scale synthesis of optically-active lactones in a two-liquid-phase system

    Directory of Open Access Journals (Sweden)

    Hollmann Frank

    2005-10-01

    Full Text Available Abstract Baeyer-Villiger monooxygenases (BVMOs are extremely promising catalysts useful for enantioselective oxidation reactions of ketones, but organic chemists have not used them widely due to several reasons. These include instability of the enzymes in the case of in vitro and even in vivo systems, reactant/product inhibition, problems with upscaling and the necessity of using specialized equipment. The present study shows that the thermally stable phenylacetone monooxygenase (PAMO and recently engineered mutants can be used as a practical catalysts for enantioselective Baeyer-Villiger oxidations of several ketones on a preparative scale under in vitro conditions. For this purpose several parameters such as buffer composition, the nature of the solvent system and the co-factor regeneration system were optimized. Overall a fairly versatile and efficient catalytic system for enantioselective laboratory scale BV-oxidations of ketones was developed, which can easily be applied even by those organic chemists who are not well versed in the use of enzymes.

  11. Biocatalysts for selective oxidations

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, M. [Department of Chemistry, Chemical Technology, TU Kaiserslautern (Germany)

    2005-07-01

    Selective oxidations using oxygen (or air) and hydrogen peroxide (or tert.-butyl hydroperoxide) are important transformations in synthetic organic chemistry as well as in industrial chemistry. However, these reactions are rarely regio- or stereo-selective and the selective oxidation of non-activated C-H-bonds is a still challenging problem. In contrast, enzyme-catalyzed reactions offer mild and selective routes to oxidation products which are important intermediates for the production of fine chemicals, pharmaceuticals or even bulk chemicals. However, a productive role of biocatalysts in basic chemical processing is not obvious. For decades, it was believed that enzymes might be suitable catalysts only for specialty applications. Such beliefs were guided by the assumption that enzymes in general are expensive and thus not suitable for processes to basic chemicals. Given sufficiently good stability and acceptable space time yields, enzymes have been proven to be catalysts of choice for quite a number of applications. New technologies such as protein engineering directed evolution and metabolic engineering are likely to open up further opportunities for biocatalytic routes, provided that they can meet the stringent productivity and cost criteria set by processes to basic chemicals. This review will discuss some general features of selective biocatalytic oxidations as well as some already implanted processes. An outlook of remaining challenges and the future potential of biocatalysts in selective oxidations will also be provided. (orig.)

  12. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Vineet Jeena; Robinson, Ross S.

    2009-01-01

    The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding α-hydroxyketones.

  13. Iodine Oxide Thermite Reactions: Physical and Biological Effects

    Science.gov (United States)

    Russell, Rod; Pantoya, Michelle; Bless, Stephan; Clark, William

    2009-06-01

    We investigated the potential for some thermite-like material reactions to kill bacteria spores. Iodine oxides and silver oxides react vigorously with metals like aluminum, tantalum, and neodymium. These reactions theoretically produce temperatures as high as 8000K, leading to vaporization of the reactants, producing very hot iodine and/or silver gases. We performed a series of computations and experiments to characterize these reactions under both quasi-static and ballistic impact conditions. Criteria for impact reaction were established. Measurements of temperature and pressure changes and chemical evolution will be reported. Basic combustion characterizations of these reactions, such as thermal equilibrium analysis and reaction propagation rates as well as ignition sensitivity, will be discussed. Additionally, testing protocols were developed to characterize the biocidal effects of these reactive materials on B. subtilis spores. The evidence from these tests indicates that these reactions produce heat, pressure, and highly biocidal gases.

  14. Oxidation reaction of pyrolytic carbon coating

    International Nuclear Information System (INIS)

    The behaviour of pyrolytic carbon coatings on commercial grade graphite substrate in oxidizing environment is described. Specimens were examined under sputtering in plasma of oxygen and argon, or in an oxidizing solution of K2CrO7+H3PO4. Specimens of commercial grade graphite (ATJ) were quickly eroded under these conditions, compared to coated specimens. The erosion rate of the coating is dependent on its thickness and on the mean monticules diameter. The coatings disintegrated in the oxidizing environment in three steps: etching of monticules' boundaries; widening of the boundaries or cracking of the coating; falling off the coating. The degree of erosion decreased with increasing mean monticules diameter and increased where the diameter was non-homogeneous. The resistance of the coating to wear- under these oxidizing conditions- can be enhanced by homogenization of the coating and by its deposition in layered films. (author)

  15. Reaction mechanisms of ruthenium tetroxide mediated oxidations of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Froehaug, Astrid Elisabeth

    1995-12-31

    This thesis reports a study of the mechanism of ruthenium tetroxide mediated oxidations of saturated hydrocarbons, ethers, alkenes and alcohols. Several methods were used. The RuO{sub 4}-mediated oxidations of adamantane and cis-decalin were studied in CCl{sub 4}-CH{sub 3}CN-H{sub 2}O and in acetone-water. The rate of reaction was found to be moderately influenced by the polarity of the solvent. Solvent properties other than the polarity were also found to influence the reaction rates. From the oxidations of adamantane and adamantane-1,3,5,7-d{sub 4} two primary kinetic deuterium isotope effects were found. These were comparable with the deuterium isotope effects found for the analogous oxidations of cis-decalin and cis-decalin-d{sub 18}. The results seem to exclude both a one step hydride abstraction reaction mechanism and a one step concerted mechanism, as well as a scheme where two such mechanisms compete. The observations may be explained by a two step reaction mechanism consisting of a pre-equilibrium with formation of a substrate-RuO{sub 4} complex followed by a concerted rate determining reaction. The RuO{sub 4}-mediated oxidation of ethers was of kinetic second order with a small enthalpy of activation and a large negative entropy of activation. Oxidation of cyclopropylmethyl methyl ether gave methyl cyclopropanecarboxylate, no rearranged products were observed. On RuO{sub 4} oxidations in CCl{sub 4} with NaIO{sub 4} as stoichiometric oxidant, no chlorinated products were observed. Several observations not in agreement with a hydride or a hydrogen abstraction mechanism may be explained by assuming that the reaction proceeds by either a concerted reaction or by a reversible oxidative addition of the ether to RuO{sub 4} followed by a slow concerted step. 228 refs., 9 figs., 27 tabs.

  16. The Pathophysiology of Extracellular Hemoglobin Associated with Enhanced Oxidative Reactions

    Directory of Open Access Journals (Sweden)

    Joseph M Rifkind

    2015-01-01

    Full Text Available Hemoglobin (Hb continuously undergoes autoxidation producing superoxide which dismutates into hydrogen peroxide (H2O2 and is a potential source for subsequent oxidative reactions. Autoxidation is most pronounced under hypoxic conditions in the microcirculation and for unstable dimers formed at reduced Hb concentrations. In the red blood cell (RBC, oxidative reactions are inhibited by an extensive antioxidant system. For extracellular Hb, whether from hemolysis of RBCs and/or the infusion of Hb-based blood substitutes, the oxidative reactions are not completely neutralized by the available antioxidant system. Un-neutralized H2O2 oxidizes ferrous and ferric Hbs to Fe(IV-ferrylHb and oxyferrylHb, respectively. FerrylHb further reacts with H2O2 producing heme degradation products and free iron. OxyferrylHb, in addition to Fe(IV contains a free radical that can undergo additional oxidative reactions. Fe(IIIHb produced during Hb autoxidation also readily releases heme, an additional source for oxidative stress. These oxidation products are a potential source for oxidative reactions in the plasma, but to a greater extent when the lower molecular weight Hb dimers enter cells and tissues. Heme and oxyferryl have been shown to have a proinflammatory effect further increasing their potential for oxidative stress. These oxidative reactions contribute to a number of pathological situations including atherosclerosis, kidney malfunction, sickle cell disease and malaria. The toxic effects of extracellular Hb are of particular concern for increased hemolysis due to hemolytic anemia. Hemolysis is further exacerbated in various diseases and their treatments. Blood transfusions are required whenever there is an appreciable decrease in RBCs due to hemolysis or blood loss. It is, therefore, essential that transfused blood, whether stored RBCs or blood obtained by an Autologous Blood Recovery System from the patient, does not further increase extracellular Hb.

  17. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    Science.gov (United States)

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  18. Kinetics of transuranium element oxidation-reduction reactions in solution

    International Nuclear Information System (INIS)

    A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author)

  19. Positive patch test reactions to oxidized limonene

    DEFF Research Database (Denmark)

    Bråred Christensson, Johanna; Andersen, Klaus E; Bruze, Magnus;

    2014-01-01

    BACKGROUND: R-Limonene is a common fragrance terpene found in domestic and industrial products. R-Limonene autoxidizes on air exposure, and the oxidation products can cause contact allergy. In a recent multicentre study, 5.2% (range 2.3-12.1%) of 2900 patients showed a positive patch test reactio...

  20. A Bioorthogonal Reaction of N-Oxide and Boron Reagents.

    Science.gov (United States)

    Kim, Justin; Bertozzi, Carolyn R

    2015-12-21

    The development of bioorthogonal reactions has classically focused on bond-forming ligation reactions. In this report, we seek to expand the functional repertoire of such transformations by introducing a new bond-cleaving reaction between N-oxide and boron reagents. The reaction features a large dynamic range of reactivity, showcasing second-order rate constants as high as 2.3×10(3)  M(-1)  s(-1) using diboron reaction partners. Diboron reagents display minimal cell toxicity at millimolar concentrations, penetrate cell membranes, and effectively reduce N-oxides inside mammalian cells. This new bioorthogonal process based on miniscule components is thus well-suited for activating molecules within cells under chemical control. Furthermore, we demonstrate that the metabolic diversity of nature enables the use of naturally occurring functional groups that display inherent biocompatibility alongside abiotic components for organism-specific applications. PMID:26568479

  1. Biocatalytic Self-Cleaning Polymer Membranes

    Directory of Open Access Journals (Sweden)

    Agnes Schulze

    2015-09-01

    Full Text Available Polymer membrane surfaces have been equipped with the digestive enzyme trypsin. Enzyme immobilization was performed by electron beam irradiation in aqueous media within a one-step method. Using this method, trypsin was covalently and side-unspecific attached to the membrane surface. Thus, the use of preceding polymer functionalization and the use of toxic solvents or reagents can be avoided. The resulting membranes showed significantly improved antifouling properties as demonstrated by repeated filtration of protein solutions. Furthermore, the biocatalytic membrane can be simply “switched on” to actively degrade a fouling layer on the membrane surface and regain the initial permeability. The membrane pore structure (pore size and porosity was neither damaged by the electron beam treatment nor blocked by the enzyme loading, ensuring a stable membrane performance.

  2. Biocatalytic Pathway Selection in Transient Tripeptide Nanostructures.

    Science.gov (United States)

    Pappas, Charalampos G; Sasselli, Ivan R; Ulijn, Rein V

    2015-07-01

    Structural adaption in living systems is achieved by competing catalytic pathways that drive assembly and disassembly of molecular components under the influence of chemical fuels. We report on a simple mimic of such a system that displays transient, sequence-dependent formation of supramolecular nanostructures based on biocatalytic formation and hydrolysis of self-assembling tripeptides. The systems are catalyzed by α-chymotrypsin and driven by hydrolysis of dipeptide aspartyl-phenylalanine-methyl ester (the sweetener aspartame, DF-OMe). We observed switch-like pathway selection, with the kinetics and consequent lifetime of transient nanostructures controlled by the peptide sequence. In direct competition, kinetic (rather than thermodynamic) component selection is observed. PMID:26014441

  3. Reaction of ethanol on oxidized and metallic cobalt surfaces

    Science.gov (United States)

    Hyman, Matthew P.; Vohs, John M.

    2011-02-01

    The reaction of ethanol on metallic and oxidized cobalt surfaces was studied using temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) in order to determine the dependence of the reaction pathways on the cobalt oxidation state. The primary reaction for ethoxide species on metallic cobalt surfaces was decarbonylation producing CO, H 2 and carbon. This reaction was facile and occurred below 400 K. In contrast, CoO x surfaces which predominantly contained Co 2+ were selective for the dehydrogenation of ethoxide groups to produce acetaldehyde at 400 K. A fraction of the acetaldehyde molecules produced by this pathway were further oxidized to acetate which decomposed to produce CO 2 at 495 K. More highly oxidized Co surfaces that contained both CO 2+ and Co 3+ were active for the complete oxidation of ethanol producing CO, CO 2, and H 2O as the primary products. The insights that these results provide for understanding the mechanism of the steam reforming of ethanol on cobalt catalysts is discussed.

  4. Free-radical production and oxidative reactions of hemoglobin.

    OpenAIRE

    Winterbourn, C C

    1985-01-01

    Mechanisms of autoxidation of hemoglobin, and its reactions with H2O2, O2-, and oxidizing or reducing xenobiotics are discussed. Reactive intermediates of such reactions can include drug free radicals, H2O2, and O2-, as well as peroxidatively active ferrylhemoglobin and methemoglobin-H2O2. The contributions of these species to hemoglobin denaturation and drug-induced hemolysis, and the actions of various protective agents, are considered.

  5. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  6. Oxidation Protection of Porous Reaction-Bonded Silicon Nitride

    Science.gov (United States)

    Fox, D. S.

    1994-01-01

    Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.

  7. Some reactions of oxidizing radicals with enzymes in aqueous solution

    International Nuclear Information System (INIS)

    A range of oxidizing radicals including some inorganic radical anions and the superoxide radical, can be generated by radiolysis of aqueous solutions. These radicals are more selective in their reactions with amino acids than the hydroxyl radical. Factors controlling the apparent reactivity of radical anions with proteins, such as free radical equilibria and ion-binding, are described. The superoxide radical inactivates papain by reaction with the cysteine residue. This reaction has been studied in solutions subjected to radiations of varying linear energy transfer. (Auth.)

  8. Oxidative reactions of tetrahydrobenzimidazole derivatives with N-sulfonyloxaziridines

    OpenAIRE

    Sivappa, Rasapalli; Koswatta, Panduka; Lovely, Carl J.

    2007-01-01

    An investigation of the utility of N-sulfonyloxaziridines to effect the oxidative rearrangement of tetrahydrobenzimidazoles to spiro fused 5-imidazolones is reported. In addition to the anticipated rearrangement manifold, it was found that 2-amino substituted derivatives afford products resulting from rearrangement, or alternatively from addition of methanol or water depending on the nature of the N-substituents and reaction conditions.

  9. Metal catalyzed atmospheric oxidation reactions. A challenge to coordination chemists

    Energy Technology Data Exchange (ETDEWEB)

    Coichev, N. (Sao Paulo Univ., SP (Brazil). Inst. de Quimica); Van Eldik, R. (Universitaet Witten/Herdecke (Germany))

    1994-01-01

    Oxidation reactions of SO[sub x] and NO[sub y] species in the aqueous phase can play an important role in atmospheric chemistry and are of major environmental concern. The auto-oxidation processes are known to be catalyzed by trace metal ions and complexes. An overview of the most important reactions in metal catalyzed autoxidation processes is presented. Attention is given to the oxidation of the SO[sub x] and NO[sub y] species separately, as well as to the combined chemistry that results from the interaction of SO[sub x] and NO[sub y] species in the absence and presence of metal ions. Our work has revealed a fascinating redox cycling of the metal ions and complexes during such autoxidation processes, which has turned out to present quite a challenge to coordination chemists. (authors). 118 refs., 4 figs., 1 tab.

  10. Enzyme immobilization by fouling in ultrafiltration membranes: Impact of membrane configuration and type on flux behavior and biocatalytic conversion efficacy

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil;

    2014-01-01

    and PLGC regenerated cellulose membranes. With these two highly hydrophilic membranes, the ADH enzyme activity was fully retained even after 24h of storage of the membrane. Filtration blocking and resistance models were used to analyze the fouling/immobilization mechanisms and give explanations......Enzyme-immobilization in membranes accomplished by fostering membrane fouling was evaluated. Four different membrane configurations and five membranes were compared for immobilization of alcohol dehydrogenase (ADH) in terms of enzyme loading, permeate flux and final biocatalytic conversion....... The membrane configuration impacted the efficiency of the enzyme-immobilization as well as the biocatalytic-membrane reaction, and the “sandwich mode”, with an extra polypropylene support above the membrane skin layer, worked best due to its high flux and stable conversion. Among the membranes, a GR51PP...

  11. Biocatalytic desulfurization of petroleum and middle distillates

    International Nuclear Information System (INIS)

    Biocatalytic Desulfurization (BDS) represents an alternative approach to the reduction of sulfur in fossil fuels. The objective is to use bacteria to selectively remove sulfur from petroleum and middle distillate fractions, without the concomitant release of carbon. Recently, bacteria have been developed which have the ability to desulfurize dibenzothiophene (DBT) and other organosulfur molecules. These bacteria are being developed for use in a biocatalyst-based desulfurization process. Analysis of preliminary conceptual engineering designs has shown that this process has the potential to complement conventional technology as a method to temper the sulfur levels in crude oil, or remove the recalcitrant sulfur in middle distillates to achieve the deep desulfurization mandated by State and Federal regulations. This paper describes the results of initial feasibility studies, sensitivity analyses and conceptual design work. Feasibility studies with various crude oils and middle distillates achieved unoptimized desulfurization levels of 40-80%. Sensitivity analyses indicate that total desulfurization costs of about $3.00 per barrel for crude oil and less than $2.00 per barrel for diesel are possible. Key criteria for commercial success of the process include the cost and half-life of the biocatalyst, residence time in the reactor, oil/water ratios required to extract the sulfur and the disposition of the separated sulfur products. 9 refs., 3 figs

  12. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Tamayo-Ramos Juan Antonio

    2012-12-01

    Full Text Available Abstract Background Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. Results The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory Aspergillus niger were homologously expressed, purified and analyzed for their biocatalytic potential. All three recombinant enzymes were monomers with apparent molecular masses ranging from 80 to 110 kDa. McoA and McoG resulted to be blue, whereas McoB was yellow. The newly obtained oxidases displayed strongly different activities towards aromatic compounds and synthetic dyes. McoB exhibited high catalytic efficiency with N,N-dimethyl-p-phenylenediamine (DMPPDA and 2,2-azino-di(3-ethylbenzthiazoline sulfonic acid (ABTS, and appeared to be a promising biocatalyst. Besides oxidizing a variety of phenolic compounds, McoB catalyzed successfully the decolorization and detoxification of the widely used textile dye malachite green. Conclusions The A. niger McoA, McoB, and McoG enzymes showed clearly different catalytic properties. Yellow McoB showed broad substrate specificity, catalyzing the oxidation of several phenolic compounds commonly present in different industrial effluents. It also harbored high decolorization and detoxification activity with the synthetic dye malachite green, showing to have an interesting potential as a new industrial biocatalyst.

  13. Kinetics of the gas-phase tritium oxidation reaction

    International Nuclear Information System (INIS)

    Homogeneous gas-phase kinetics of tritium oxidation (2T2 + O2 →2T2O) have been studied with a model that accounts explicitly for radiolysis of the major species and the kinetics of the subsequent reactions of ionic, excited-state, and neutral species. Results from model calculations are given for 10-4 -1.0 mol% T2 in O2 (298 K, 1 atm). As the reaction evolves three different mechanisms control T2O production, each with a different overall rate expression and a different order with respect to the T2 concentration. The effects of self-radiolysis of pure T2 on the tritium oxidation reaction were calculated. Tritium atoms, the primary product of T2 self-radiolysis, altered the oxidation mechanism only during the first few seconds following the initiation of the T2-O2 reaction. Ozone, an important intermediate in T2 oxidation, was monitored in-situ by U.V. absorption spectroscopy for 0.01-1.0 mol% T2 an 1 atm O2. The shape of the experimental ozone time profile agreed with the model predictions. As predicted, the measured initial rate of ozone production varied linearly with initial T2 concentration ([T2]0.6o), but at an initial rate one-third the predicted value. The steady-state ozone concentration ([O3]ss) was predicted to be dependent on [T2]0.3o, but the measured value was [T2]0.6o, resulting in four times higher [O3]ss than predicted for a 1.0% T2-O2 mixture. Adding H2 to the T2-O2 mixture, to provide insight into the differences between the radiolytic and chemical behavior of the tritium, produced a greater decrease in [O3]ss than predicted. Adjusting the reaction cell surface-to-volume ratio showed implications of minor surface removal of ozone

  14. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    OpenAIRE

    Rahul Bhosale; Anand Kumar; Fares AlMomani

    2016-01-01

    The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS) cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in ...

  15. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Larsen, Flemming; Postma, Diederik Jan

    2001-01-01

    The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase in the...... incubation bags became depleted in O2 and enriched in CO2 and N2 and was interpreted as due to pyrite oxidation in combination with calcite dissolution. Sediment incubation provides a new method to estimate low rates of pyrite oxidation in unsaturated zone aquifer sediments. Oxidation rates of up to 9.4â10...

  16. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  17. Effect of vegetable oil oxidation on the hydrogenation reaction process

    Directory of Open Access Journals (Sweden)

    Kalantari, Faranak

    2010-12-01

    Full Text Available Hydrogenation has been carried out in a batch reactor with three different oxidized bleached oils in order to discover the effect of oxidation on the hydrogenation reaction process. Specifications of hydrogenated oils such as melting point, Iodine value, solid fat content and fatty acid composition of the oxidized oils were compared with their un-oxidized reference oils. Oxidized bleached sunflower oil was hydrogenated to target melting points (34, 39 and 42°C at higher iodine values vs. its reference oil with the same reaction time. Oxidized bleached soybean and canola oils were hydrogenated to target melting points (34, 39 and 42°C at higher iodine values as well, but reaction times were longer than their reference oils. The resulting solid fat content and total trans fatty acids of all hydrogenated oils were less than their references. A peroxide value above 0.5meq O2/kg for non auto-oxidized oils and above 5meq O2/kg for auto-oxidized oils will significantly change the hydrogenation process.

    La hidrogenación fue llevada cabo en un reactor discontinuo con tres aceites decoloradas y oxidadas con objeto de estudiar el efecto de la oxidación en el proceso de hidrogenación. Las especificaciones de los aceites hidrogenados tales como el punto de fusión, índice de yodo, contenido de grasa sólida y composición de ácidos grasos de los aceites oxidados fueron comparados con sus correspondientes aceites de referencia sin oxidar. El aceite de girasol decolorado y oxidado fue hidrogenado hasta alcanzar un punto de fusión (34, 39 and 42°C con altos índices de yodo versus su aceite de referencia con el mismo tiempo de reacción. Aceites decolorado y oxidado de soja y de canola fueron hidrogenados hasta alcanzar puntos de fusión (34,39 y 42°C con altos valores de yodo, pero los tiempo de reacción fueron más largos que en sus aceites de referencia. Los resultados del contenido de grasa sólida y ácidos grasos

  18. Manganese chlorins immobilized on silica as oxidation reaction catalysts.

    Science.gov (United States)

    Castro, Kelly A D F; Pires, Sónia M G; Ribeiro, Marcos A; Simões, Mário M Q; Neves, M Graça P M S; Schreiner, Wido H; Wypych, Fernando; Cavaleiro, José A S; Nakagaki, Shirley

    2015-07-15

    Synthetic strategies that comply with the principles of green chemistry represent a challenge: they will enable chemists to conduct reactions that maximize the yield of products with commercial interest while minimizing by-products formation. The search for catalysts that promote the selective oxidation of organic compounds under mild and environmentally friendly conditions constitutes one of the most important quests of organic chemistry. In this context, metalloporphyrins and analogues are excellent catalysts for oxidative transformations under mild conditions. In fact, their reduced derivatives chlorins are also able to catalyze organic compounds oxidation effectively, although they have been still little explored. In this study, we synthesized two chlorins through porphyrin cycloaddition reactions with 1.3-dipoles and prepared the corresponding manganese chlorins (MnCHL) using adequate manganese(II) salts. These MnCHL were posteriorly immobilized on silica by following the sol-gel process and the resulting solids were characterized by powder X-ray diffraction (PXRD), UVVIS spectroscopy, FTIR, XPS, and EDS. The catalytic activity of the immobilized MnCHL was investigated in the oxidation of cyclooctene, cyclohexene and cyclohexane and the results were compared with the ones obtained under homogeneous conditions. PMID:25841060

  19. Direct partial oxidation of methane to methanol: Reaction zones and role of catalyst location

    Institute of Scientific and Technical Information of China (English)

    Qijian Zhang; Dehua He; Qiming Zhu

    2008-01-01

    Direct partial oxidation of methane to methanol was investigated in a specially designed reactor. Methanol yield of about 7%-8% was obtained in gas phase partial oxidation. It was proposed that the reactor could be divided into three reaction zones, namely pre-reaction zone, fierce reaction zone, and post-reaction zone, when the temperature was high enough to initiate a reaction. The oxidation of methane proceeded and was completed mostly in the fierce reaction zone. When the reactant mixture entered the post-reaction zone, only a small amount of produced methanol would bring about secondary reactions, because molecular oxygen had been exhausted in the fierce reaction zone. A catalyst, if necessary, should be placed either in the pre-reaction zone, to initiate a partial oxidation reaction at a lower temperature, or in the fierce reaction zone to control the homogeneous free radical reaction.

  20. Recent advances on halohydrin dehalogenases-from enzyme identification to novel biocatalytic applications.

    Science.gov (United States)

    Schallmey, Anett; Schallmey, Marcus

    2016-09-01

    Halohydrin dehalogenases are industrially relevant enzymes that catalyze the reversible dehalogenation of vicinal haloalcohols with formation of the corresponding epoxides. In the reverse reaction, also other negatively charged nucleophiles such as azide, cyanide, or nitrite are accepted besides halides to open the epoxide ring. Thus, novel C-N, C-C, or C-O bonds can be formed by halohydrin dehalogenases, which makes them attractive biocatalysts for the production of various β-substituted alcohols. Despite the fact that only five individual halohydrin dehalogenase enzyme sequences have been known until recently enabling their heterologous production, a large number of different biocatalytic applications have been reported using these enzymes. The recent characterization of specific sequence motifs has facilitated the identification of novel halohydrin dehalogenase sequences available in public databases and has largely increased the number of recombinantly available enzymes. These will help to extend the biocatalytic repertoire of this enzyme family and to foster novel biotechnological applications and developments in the future. This review gives a general overview on the halohydrin dehalogenase enzyme family and their biochemical properties and further focuses on recent developments in halohydrin dehalogenase biocatalysis and protein engineering. PMID:27502414

  1. Biocatalytic Separation of N-7/N-9 Guanine Nucleosides

    DEFF Research Database (Denmark)

    Singh, Sunil K; Sharma, Vivek K; Olsen, Carl Erik;

    2010-01-01

    Vorbrüggen coupling of trimethylsilylated 2-N-isobutanoylguanine with peracetylated pentofuranose derivatives generally gives inseparable N-7/N-9 glycosyl mixtures. We have shown that the two isomers can be separated biocatalytically by Novozyme-435-mediated selective deacetylation of the 5'-O...

  2. Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction

    Directory of Open Access Journals (Sweden)

    Víctor M. Castaño

    2013-03-01

    Full Text Available Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet.

  3. Photovoltaic-driven organic electrosynthesis and efforts toward more sustainable oxidation reactions

    Directory of Open Access Journals (Sweden)

    Bichlien H. Nguyen

    2015-02-01

    Full Text Available The combination of visible light, photovoltaics, and electrochemistry provides a convenient, inexpensive platform for conducting a wide variety of sustainable oxidation reactions. The approach presented in this article is compatible with both direct and indirect oxidation reactions, avoids the need for a stoichiometric oxidant, and leads to hydrogen gas as the only byproduct from the corresponding reduction reaction.

  4. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon.

    Science.gov (United States)

    Rungnim, Chompoonut; Promarak, Vinich; Hannongbua, Supa; Kungwan, Nawee; Namuangruk, Supawadee

    2016-06-01

    The reaction mechanisms of mercury (Hg) adsorption and oxidation on halogenated activated carbon (AC) have been completely studied for the first time using density functional theory (DFT) method. Two different halogenated AC models, namely X-AC and X-AC-X (X=Cl, Br, I), were adopted. The results revealed that HgX is found to be stable-state on the AC edge since its further desorption from the AC as HgX, or further oxidation to HgX2, are energetically unfavorable. Remarkably, the halide type does not significantly affect the Hg adsorption energy but it strongly affects the activation energy barrier of HgX formation, which obviously increases in the order HgIelimination significantly decreases as I-AC>Br-AC>Cl-AC. Thus, the study of the complete reaction mechanism is essential because the adsorption energy can not be used as a guideline for the rational material design in the halide impregnated AC systems. The activation energy is an important descriptor for the predictions of sorbent reactivity to the Hg oxidation process. PMID:26943019

  5. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Mechanism of selective action of oxide catalysts (on the base of V2O4, MoO3) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  6. Surface-oxidized carbon black as a catalyst for the water oxidation and alcohol oxidation reactions.

    Science.gov (United States)

    Suryanto, Bryan H R; Zhao, Chuan

    2016-05-11

    Carbon black (CB) is popularly used as a catalyst support for metal/metal oxide nanoparticles due to its large surface area, excellent conductivity and stability. Herein, we show that surface oxidized CB itself, after acidic treatment and electrochemical oxidation, exhibits significant catalytic activity for the electrochemical oxidation of water and alcohols. PMID:27097802

  7. The structure of spinel/oxide reaction fronts during spinel-forming solid state reactions

    International Nuclear Information System (INIS)

    A series of spinels were grown by topotaxial solid state reaction on MgO(001) and sapphire (11.2) substrates. The structure of the various spinel/oxide reaction fronts was investigated by cross-sectional high resolution electron microscopy and other methods. While for extremely low misfit the reaction front is completely coherent, different interfacial defects form in other cases, depending on sing and amount of the spinel/oxide lattice misfit. For a large positive misfit, a network of misfit dislocations occurred all running along , with Burgers vectors of types a/2[101] and a/2[011] pointing out of the interface. The perpendicular Burgers vector component along [001] permits these dislocations to glide in order to cope with the advancing reaction front, avoiding kinetically unfavorable climb processes. The latter have, however, been observed in negative misfit, where the interfacial dislocation run along , with their Burgers vectors lying in the interface plane. At the sapphire/MgAl2O4 front the structure is completely different. Here the h.c.p.-type oxygen sublattice of sapphire is reconstructed into the f.c.c.-type oxygen sublattice of the spinel, which requires a tilt of the MgAl2O4 lattice and the formation of interfacial ledges

  8. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    Science.gov (United States)

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.7-fold higher activity as compared to the free enzyme. The multi-layer graphene oxide-enzyme nanoassemblies can efficiently catalyze the oxidation of anthracene, as well as the decolorization of an industrial dye, pinacyanol chloride. These materials retained almost completely their decolorization activity after five reaction cycles, proving their potential as efficient nano- biocatalysts for various applications. PMID:26927109

  9. Gas desulfurization macrokinetics in the calcium oxide reaction

    International Nuclear Information System (INIS)

    High amounts of sulfur dioxide (SO2) are produced by burning of fossil fuels in air in excess, a pollutant agent which, once reaching the atmosphere, transforms in sulfuric acid . One solution of diminishing the SO2 releases is injection of powder limestone in the oven. The reaction CaCO3 = CaO + CO2 gives rise to porous calcium oxide grains which react with SO2 in the presence of oxygen. As a result, calcium sulphate is formed by the reaction CaO + SO2 + 1/2O2 = CaSO4. This technology is convenient for thermal power plants due to small investments and simple operation. However,the desulfurization degree is reduced and the process kinetics is still unelucidated. In this work, the kinetics of the second reaction is studied by thermogravimetry with CAHN TG-121 device. Conversion-time kinetic diagrams were generated for five granulometric classes of Ca CO3 with an average diameter of 25-900 μm. The measurements were carried out at 973 K - 1173 K and gas flow speeds of 0.023 - 0.0277 m/s. The kinetic parameters of the external mass transfer, solid crust diffusion and chemical reaction were determined. The influence of external mass transfer in all operation conditions is insignificant. The influence of solid crust diffusion is dominant even for the smallest particles (25 μm). Therefore, the process is described by a combined macrokinetics reaction-diffusion model, where the resistance to the diffusion is about 80% of the total resistance. Complementary structure determinations using structural models are required for the solid undergoing the reaction in order to rigorously identify the enhancing factors of the process. (authors)

  10. Application of Moessbauer Spectroscopy to the Carbon Oxides Hydrogenation Reactions

    International Nuclear Information System (INIS)

    Iron-based catalysts have favorable activity and selectivity properties for the CO and CO2 hydrogenation reactions. Several Fe phases (oxides and carbides) can be present in these catalysts. The interaction of Fe with the other components of the catalyst (support, promoters) can affect the ease of reduction and also its transformation during the reactions. In this work, the relationship between catalytic behavior in the CO and CO2 hydrogenation reactions and the Fe phase composition of fresh and reacted catalysts was studied. Two types of catalysts were tested: a laterite and the other one made of iron supported on alumina, both unpromoted and promoted with K and Mn. Only those Fe species which can be reduced-carburized, by means of a pretreatment or by an in situ transformation under the reaction, seem to be able to perform the CO or CO2 hydrogenation. The reoxidation of the Fe carbide to magnetite was not associated to deactivation. The selectivity seems to be more affected by Fe species difficult to reduce than by magnetite produced by reoxidation

  11. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    International Nuclear Information System (INIS)

    Porous Pt and Pt–Ag alloy mesoflowers (MFs) with about 2 μm in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt–Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt72Ag28 MFs electrochemically. Both Pt45Ag55, Pt72Ag28 and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO4 and 0.5 M CH3OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 μm in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: ► Porous Pt and Pt–Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. ► Pt MFs presents an improved catalytic activity in MOR compared with Pt black. ► We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  12. Mass transfer model for two-layer TBP oxidation reactions

    International Nuclear Information System (INIS)

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development

  13. In situ infrared (FTIR) study of the borohydride oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Concha, B. Molina; Chatenet, M. [Laboratoire d' Electrochimie et de Physico-chimie, des Materiaux et des Interfaces (LEPMI), UMR 5631 CNRS/Grenoble-INP/UJF, 1130 Rue de la Piscine, BP75, 38402 Saint Martin d' Heres Cedex (France); Coutanceau, C.; Hahn, F. [Laboratoire de Catalyse en Chimie Organique (LACCO), UMR 6503 CNRS, Universite de Poitiers, 40 Av. du, Recteur Pineau, 86000 Poitiers (France)

    2009-01-15

    The direct borohydride fuel cell (DBFC) is an interesting alternative for the electrochemical power generation at lower temperatures due to its high anode theoretical specific capacity (5 A h g{sup -1}). However, the borohydride oxidation reaction (BOR) is a very complex eight-electron reaction, influenced by the nature of the electrode material (catalytic or not with respect to BH{sub 4}{sup -} hydrolysis), the [BH{sub 4}{sup -}][OH{sup -}] ratio and the temperature. In order to understand the BOR mechanism, we performed in situ infrared reflectance spectroscopy measurements (SPAIRS technique) in 1 M NaOH/1 M NaBH{sub 4} with the aim to study intermediate reactions occurring on a gold electrode (a poor BH{sub 4}{sup -} hydrolysis catalyst). We monitored several bands in B-H (1184 cm{sup -1}) and B-O bond regions (1326 and 1415 cm{sup -1}), appearing sequentially with increasing electrode polarisation. Thanks to these experimental findings, we propose possible initial elementary steps for the BOR. (author)

  14. Biocatalytic membranes for ultrafiltration treatment of wastewater containing dyes

    Energy Technology Data Exchange (ETDEWEB)

    Konovalova, V.V.; Bryk, M.T.; Nigmatullin, R.R.; Gvozdyak, P.I.; Udilova, O.F. [Dept. of Chemistry, Univ. of ' ' Kyiv-Mohyla Academy' ' , Kyiv (Ukraine)

    2000-12-01

    A possibility to prepare the biofunctional membranes showing the biocatalytic properties and use those in post-treatment of wastewater containing synthetic dyes have been established. Selected Pseudomonas mendocina and Bacillus subtilis cultures were used as biocatalysts for dye destruction. It has been established that cells in spore form are able to survive in N-methylpyrrolidone that allow to use method of polymer solution casting for membrane preparation. The optimal conditions for entrapping of whole cells of microorganisms into the polymer matrix have been determined. Membrane biocatalytic activity has been studied depending on method of casting solution preparation, biocatalyst loading and operating parameters. Dye destruction occurs both in membrane pores and on membrane surface. Membrane obtained provide discolouring of treated solutions (permeate). The dye concentration in retentate depends on the trans-membrane fluxes. The concentration in retentate need not be observed at relatively low fluxes (up to 20 l/m{sup 2} h). (orig.)

  15. Kinetic Deuterium Isotope Effects in Cytochrome P450 Oxidation Reactions

    Science.gov (United States)

    Guengerich, F. Peter

    2016-01-01

    Cytochrome P450 (P450) enzymes account for ~ 75% of the metabolism of drugs. Most of the reactions catalyzed by P450s are mixed-function oxidations, and a C-H bond is (usually) broken. The rate-limiting nature of this step can be analyzed using the kinetic isotope effect (KIE) approach. The most relevant type of KIE is one termed intermolecular non-competitive, indicative of rate-limiting C-H bond breaking. A KIE vs. kcat for several P450s showed a correlation coefficient (r2) of 0.62. Deuterium substitution has been considered as a potential means of slowing drug metabolism or redirecting sites of metabolism in some cases, and several general points can be made regarding the potential for application of deuterium in drug design/development based on what is known about P450 KIEs. PMID:24285515

  16. Study of reactions between uranium-plutonium mixed oxide and uranium nitride and between uranium oxide and uranium nitride

    International Nuclear Information System (INIS)

    A new type of combustible elements which is a mixture of uranium nitride and uranium-plutonium oxide could be used for Quick Neutrons Reactors. Three different studies have been made on the one hand on the reactions between uranium nitride (UN) and uranium-plutonium mixed oxide (U,Pu)O2, on the other hand on these between UN and uranium oxide UO2. They show a sizeable reaction between nitride and oxide for the studied temperatures range (1573 K to 1973 K). This reaction forms a oxynitride compound, MOx Ny with M=U or M=(U,Pu), whose crystalline structure is similar to oxide's. Solubility of nitride in both oxides is studied, as the reaction kinetics. (TEC). 32 refs., 48 figs., 22 tabs

  17. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-01-01

    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cycle (ηcycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  18. Surface oxidization-reduction reactions in Columbia Plateau basalts

    International Nuclear Information System (INIS)

    Results are presented which define principal oxidation-reduction reactions expected between ground water and iron in the Umtanum and Cohassett basalt flows of south central Washington. Data include kinetics of aqueous iron speciation, rates of O2 uptake and nature of oxyhydroxide precipitates. Such data are important in predicting behavior of radionuclides in basalt aquifers including determination of valence states, speciation, solubility, sorption, and coprecipitation on iron oxyhydroxide substrates and colloids. Analyses of the basalt by XPS indicates that ferrous iron is oxidized to ferric iron on the surface and that the total iron decreases as a function of pH during experimental weathering. Iron oxyhydroxide phases did not form surface coating on basalt surfaces but rather nucleated as separate plases in solution. No significant increases in Cs or Sr sorption were observed with increased weathering of the basalt. Concurrent increases in Fe(II) and decreases in Fe(III) in slightly to moderately acid solutions indicated continued oxidization of ferrous iron in the basalt. At neutral to basic pH, Fe(II) was strongly sorbed onto the basalt surface (Kd = 6.5 x 10-3 1 x m2) resulting in low dissolved concentrations even under anoxic conditions. The rate of O2 uptake increased with decreasing pH. Diffusion rates (-- 10-14 cm2 x s-1), calculated using a one-dimensional analytical model, indicate grain boundary diffusion. Comparisons of Eh values calculated by Pt electrode, dissolved O2 and Fe(II)/Fe(III) measurements showed considerable divergence, with the ferric-ferrous couple being the preferred method of estimating Eh

  19. Total Synthesis of Clavosolide A via Tandem Allylic Oxidation/Oxa-Conjugate Addition Reaction

    Science.gov (United States)

    Baker, Joseph B.; Kim, Hyoungsu; Hong, Jiyong

    2015-01-01

    The tandem allylic oxidation/oxa-conjugate addition reaction promoted by the gem-disubstituent effect in conjunction with the NHC-mediated oxidative esterification was explored for the facile synthesis of clavosolide A. PMID:26236051

  20. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    Science.gov (United States)

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  1. The reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide.

    Science.gov (United States)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions were studied with the aid of a mass spectrometer. A pinhole bleed system provided continuous sampling of the gas mixture in the cell during the reaction. It was found that the homogeneous reactions of nitric oxide and nitrogen dioxide with hydrogen peroxide are too slow to be of any significance in the upper atmosphere. However, the heterogeneous reactions may be important in the conversion of nitric oxide to nitrogen dioxide in the case of polluted urban atmospheres.

  2. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  3. Nitrosation Reaction Without Nitrogen Oxide Waste Gas Emission and Its Engineering Practice

    Institute of Scientific and Technical Information of China (English)

    CHEN Chunguang; FENG Yaqing; NIU Weiwei; CHEN Xuexi

    2013-01-01

    The gas-liquid phase equilibrium is used in controlling the nitrosation reaction process.Decomposition of nitrous acid and oxidation side reaction are suppressed in a closed reaction system.The system pressure is used as the criterion of the end of reaction,avoiding excessive feeding and reducing the decomposition of nitrous acid.The head space of the reactor is used as the gas buffer,stabilizing the feeding fluctuations and inhibiting the side reaction,decomposition of nitrous acid.Nitrogen oxide concentration is controlled at the minimum level.Thus the zero release of nitrogen oxide waste gas can be achieved without using any absorption process.

  4. Hybrid membrane with TiO2 based bio-catalytic nanoparticle suspension system for the degradation of bisphenol-A.

    Science.gov (United States)

    Hou, Jingwei; Dong, Guangxi; Luu, Belinda; Sengpiel, Robert G; Ye, Yun; Wessling, Matthias; Chen, Vicki

    2014-10-01

    The removal of micropollutant in wastewater treatment has become a key environmental challenge for many industrialized countries. One approach is to use enzymes such as laccase for the degradation of micropollutants such as bisphenol-A. In this work, laccase was covalently immobilized on APTES modified TiO2 nanoparticles, and the effects of particle modification on the bio-catalytic performance were examined and optimized. These bio-catalytic particles were then suspended in a hybrid membrane reactor for BPA removal with good BPA degradation efficiency observed. Substantial improvement in laccase stability was achieved in the hybrid system compared with free laccase under simulated harsh industrial wastewater treatment conditions (such as a wide range of pH and presence of inhibitors). Kinetic study provided insight of the effect of immobilization on the bio-degradation reaction. PMID:25084046

  5. Reaction of lithiumcarboranes with 1,2,4-triazine-4-oxides: the SNH reactions and cycle transformations

    International Nuclear Information System (INIS)

    The possibility of applying the reactions of the hydrogen nucleophilic substitution in the 1,2,4-triazine-4-oxides series for the synthesis of the heteroaryl carboranes is studied. It is established that the reaction of the 1-lithium-1,2- or 1,7-dicarbo-closo-dodecaborane with 1,2,4-triazine-4-oxides may proceed by two competing directions. Introduction of the acceptor 1,2,4-triazine cycle into the carborane skeleton may significantly facilitate the the deboration reaction process with formation of the 1-(1,2,4-triazine-5-yl)-1,2-1,7-dicarbo-nido-undecaboranes

  6. In situ photoacoustic study of water gas shift reaction over magnetite/chromium oxide and copper/zinc oxide catalysts

    International Nuclear Information System (INIS)

    Kinetic studies on the water-gas shift reaction catalyzed by magnetite/chromium oxide and copper/zinc oxide were carried out by using an in situ photoacoustic spectroscopic technique. The reactions were performed in a closed-circulation reactor system using a differential photoacoustic cell at total pressure of 40 Torr in the temperature range of 100 to 350 .deg. C. The CO2 photoacoustic signal varying with the concentration of CO2 during the catalytic reaction was recorded as a function of time. The time-resolved photoacoustic spectra obtained for the initial reaction stage provided precise data of CO2 formation rate. The apparent activation energies determined from the initial rates were 74.7 kJ/mol for the magnetite/chromium oxide catalyst and 50.9 kJ/mol for the copper/zinc oxide catalyst. To determine the reaction orders, partial pressures of CO(g) and H2O(g) in the reaction mixture were varied at a constant total pressure of 40 Torr with N2 buffer gas. For the magnetite/chromium oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.93 and 0.18, respectively. For the copper/zinc oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.79 and 0, respectively

  7. Activation energy of tantalum-tungsten oxide thermite reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Octavio G.; Munir, Zuhair A. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, CA (United States); Chemical Engineering and Materials Science, University of California, Davis, CA (United States); Kuntz, Joshua D.; Gash, Alexander E. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, CA (United States)

    2011-01-15

    The activation energy of a sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the high-pressure spark plasma sintering (HPSPS) technique at 300 and 400 C. The ignition temperatures were investigated under high heating rates (500-2000 C min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Samples consolidated at 300 C exhibit an abrupt change in temperature response prior to the main ignition temperature. This change in temperature response is attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465 to 670 C. The activation energies of the SG derived Ta-WO{sub 3} thermite composite consolidated at 300 and 400 C were determined to be 38{+-} 2 kJ mol{sup -1} and 57 {+-} 2 kJ mol{sup -1}, respectively. (author)

  8. Multicomponent reaction access to complex quinolines via oxidation of the Povarov adducts

    Directory of Open Access Journals (Sweden)

    Esther Vicente-García

    2011-07-01

    Full Text Available The tetrahydroquinolines obtained through the Povarov multicomponent reaction have been oxidized to the corresponding quinoline, giving access to a single product through a two-step sequence. Several oxidizing agents were studied and manganese dioxide proved to be the reagent of choice, affording higher yields, cleaner reactions and practical protocols.

  9. Multicomponent reaction access to complex quinolines via oxidation of the Povarov adducts

    OpenAIRE

    Esther Vicente-García; Rosario Ramón; Sara Preciado; Rodolfo Lavilla

    2011-01-01

    The tetrahydroquinolines obtained through the Povarov multicomponent reaction have been oxidized to the corresponding quinoline, giving access to a single product through a two-step sequence. Several oxidizing agents were studied and manganese dioxide proved to be the reagent of choice, affording higher yields, cleaner reactions and practical protocols.

  10. Degradation of quinoline by wet oxidation - kinetic aspects and reaction mechanisms

    DEFF Research Database (Denmark)

    Thomsen, A.B.

    1998-01-01

    The high temperature, high pressure wet oxidation reaction of quinoline has been studied as a function of initial concentration, pH and temperature. At neutral to acidic pH, it is effective in the oxidation of quinoline at 240 degrees C and above, whereas under alkaline conditions the reaction is...... markedly slowed down. The results indicate that the reaction is an auto-catalysed, free radical chain reaction transforming 99% of quinoline to other substances. Of the quinoline. 30-50% was oxidised to CO2 and H2O depending on the initial concentration. Wet oxidation of deuterium-labelled quinoline was...

  11. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction

    OpenAIRE

    KAYA, Sarp; Casalongue, Hernan G. Sanchez; Ng, May Ling; Friebel, Daniel; Ogasawara, Hirohito; Nilsson, Anders

    2014-01-01

    An iridium oxide nanoparticle electrocatalyst under oxygen evolution reaction conditions was probed in situ by ambient-pressure X-ray photoelectron spectroscopy. Under OER conditions, iridium undergoes a change in oxidation state from Ir-IV to Ir-V that takes place predominantly at the surface of the catalyst. The chemical change in iridium is coupled to a decrease in surface hydroxide, providing experimental evidence which strongly suggests that the oxygen evolution reaction on iridium oxide...

  12. Effect of phenolic-rich plant materials on protein and lipid oxidation reactions

    OpenAIRE

    Salminen, Hanna

    2009-01-01

    The antioxidant activity of natural plant materials rich in phenolic compounds is being widely investigated for protection of food products sensitive to oxidative reactions. In this thesis plant materials rich in phenolic compounds were studied as possible antioxidants to prevent protein and lipid oxidation reactions in different food matrixes such as pork meat patties and corn oil-in water emulsions. Loss of anthocyanins was also measured during oxidation in corn oil-in-water emulsions. In a...

  13. Investigation of Methanol Oxidation on Polycrystalline Pt: Importance of the Water-Gas Shift Reaction

    OpenAIRE

    TAPAN, Niyazi Alper

    2005-01-01

    A water-gas shift reaction model was proposed for methanol oxidation on polycrystalline platinum. To see if the model proposed can explain methanol oxidation on platinum metal, a polycrystalline platinum electrode was used and simulations were compared with the chronoamperometric experiments at different applied potentials, E < 0.6 V. The pseudo steady state hypothesis model shows that at E < 0.6 V the water gas shift reaction can explain the methanol oxidation. After 0.45 V th...

  14. Development of Nitric Oxide Oxidation Catalysts for the Fast SCR Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mark Crocker

    2005-09-30

    This study was undertaken in order to assess the potential for oxidizing NO to NO{sub 2} in flue gas environments, with the aim of promoting the so-called fast SCR reaction. In principle this can result in improved SCR kinetics and reduced SCR catalyst volumes. Prior to commencing experimental work, a literature study was undertaken to identify candidate catalysts for screening. Selection criteria comprised (1) proven (or likely) activity for NO oxidation, (2) low activity for SO2 oxidation (where data were available), and (3) inexpensive component materials. Catalysts identified included supported base metal oxides, supported and unsupported mixed metal oxides, and metal ion exchanged ZSM-5 (Fe, Co, Cu). For comparison purposes, several low loaded Pt catalysts (0.5 wt% Pt) were also included in the study. Screening experiments were conducted using a synthetic feed gas representative of flue gas from coal-fired utility boilers: [NO] = 250 ppm, [SO{sub 2}] = 0 or 2800 ppm, [H{sub 2}O] = 7%, [CO{sub 2}] = 12%, [O{sub 2}] = 3.5%, balance = N{sub 2}; T = 275-375 C. Studies conducted in the absence of SO{sub 2} revealed a number of supported and unsupported metal oxides to be extremely active for NO oxidation to NO{sub 2}. These included known catalysts (Co{sub 3}O{sub 4}/SiO{sub 2}, FeMnO{sub 3}, Cr{sub 2}O{sub 3}/TiO{sub 2}), as well as a new one identified in this work, CrFeO{sub x}/SiO{sub 2}. However, in the presence of SO{sub 2}, all the catalysts tested were found to be severely deactivated with respect to NO oxidation. Of these, Co{sub 3}O{sub 4}/SiO{sub 2}, Pt/ZSM-5 and Pt/CeO{sub 2} showed the highest activity for NO oxidation in the presence of SO{sub 2} (based on peak NO conversions to NO{sub 2}), although in no cases did the NO conversion exceed 7%. Reactor studies indicate there are two components to SO{sub 2}-induced deactivation of Co{sub 3}O{sub 4}/SiO{sub 2}, corresponding to an irreversible deactivation due to sulfation of the surface of the Co{sub 3

  15. Biocatalytic Conversion of Avermectin to 4″-Oxo-Avermectin: Improvement of Cytochrome P450 Monooxygenase Specificity by Directed Evolution▿ †

    Science.gov (United States)

    Trefzer, Axel; Jungmann, Volker; Molnár, István; Botejue, Ajit; Buckel, Dagmar; Frey, Gerhard; Hill, D. Steven; Jörg, Mario; Ligon, James M.; Mason, Dylan; Moore, David; Pachlatko, J. Paul; Richardson, Toby H.; Spangenberg, Petra; Wall, Mark A.; Zirkle, Ross; Stege, Justin T.

    2007-01-01

    Discovery of the CYP107Z subfamily of cytochrome P450 oxidases (CYPs) led to an alternative biocatalytic synthesis of 4″-oxo-avermectin, a key intermediate for the commercial production of the semisynthetic insecticide emamectin. However, under industrial process conditions, these wild-type CYPs showed lower yields due to side product formation. Molecular evolution employing GeneReassembly was used to improve the regiospecificity of these enzymes by a combination of random mutagenesis, protein structure-guided site-directed mutagenesis, and recombination of multiple natural and synthetic CYP107Z gene fragments. To assess the specificity of CYP mutants, a miniaturized, whole-cell biocatalytic reaction system that allowed high-throughput screening of large numbers of variants was developed. In an iterative process consisting of four successive rounds of GeneReassembly evolution, enzyme variants with significantly improved specificity for the production of 4″-oxo-avermectin were identified; these variants could be employed for a more economical industrial biocatalytic process to manufacture emamectin. PMID:17483257

  16. Studies on the Preparation of Bioactive Oligomerstilbene by Oxidative Coupling Reaction (I) -Preparation of Shegansu B using Silver Oxide as Oxidant

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The oxidative coupling reaction of isorhapontigenin using sliver oxide as oxidant afforded a major product, named shegansu B (2), which was isolated from the roots of Belamcanda chinensis (L.) DC. Both the natural and synthetic Shegansu B have the same potent antagonism activities of leukotriene B4, D4 receptor .

  17. Palladium and gold nanotubes as oxygen reduction reaction and alcohol oxidation reaction catalysts in base.

    Science.gov (United States)

    Alia, Shaun M; Duong, Kathlynne; Liu, Toby; Jensen, Kurt; Yan, Yushan

    2014-06-01

    Palladium (PdNTs) and gold nanotubes (AuNTs) were synthesized by the galvanic displacement of silver nanowires. PdNTs and AuNTs have wall thicknesses of 6 nm, outer diameters of 60 nm, and lengths of 5-10 and 5-20 μm, respectively. Rotating disk electrode experiments showed that the PdNTs and AuNTs have higher area normalized activities for the oxygen reduction reaction (ORR) than conventional nanoparticle catalysts. The PdNTs produced an ORR area activity that was 3.4, 2.2, and 3.7 times greater than that on carbon-supported palladium nanoparticles (Pd/C), bulk polycrystalline palladium, and carbon-supported platinum nanoparticles (Pt/C), respectively. The AuNTs produced an ORR area activity that was 2.3, 9.0, and 2.0 times greater than that on carbon-supported gold nanoparticles (Au/C), bulk polycrystalline gold, and Pt/C, respectively. The PdNTs also had lower onset potentials than Pd/C and Pt/C for the oxidation of methanol (0.236 V), ethanol (0.215 V), and ethylene glycol (0.251 V). In comparison to Pt/C, the PdNTs and AuNTs further demonstrated improved alcohol tolerance during the ORR. PMID:24757078

  18. Enzyme-polymer composites with high biocatalytic activity and stability

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jungbae; Kosto, Timothy J.; Manimala, Joseph C.; Nauman, E B.; Dordick, Jonathan S.

    2004-08-22

    We have applied vacuum-spraying and electrospinning to incorporate an enzyme into a polymer matrix, creating a novel and highly active biocatalytic composite. As a unique technical approach, enzymes were co-dissolved in toluene with polymers, and the solvent was then rapidly removed by injecting the mixture into a vacuum chamber or by electrospinning. Subsequent crosslinking of the enzyme with glutaraldehyde resulted in stable entrapped enzyme within the polymeric matrices. For example, an amorphous composite of alpha-chymotrypsin and polyethylene showed no significant loss of enzymatic activity in aqueous buffer for one month. Nanofibers of alpha-chymotrypsin and polystyrene also showed no decrease in activity for more than two weeks. The normalized activity of amorphous composite in organic solvents was 3-13 times higher than that of native alpha-chymotrypsin. The activity of nanofibers was 5-7 times higher than that of amorphous composite in aqueous buffer solution. The composites of alpha-chymotrypsin and polymers demonstrate the feasibility of obtaining a wide variety of active and stable biocatalytic materials with many combinations of enzymes and polymers.

  19. Relationship between measurements of blood oxidative metabolites and skin reaction in irradiated rats

    International Nuclear Information System (INIS)

    Recently, oxidative metabolites have been able to be measured by simple small device. It has been reported that the value of oxidative metabolites increases under several conditions such as hypertension, smoking, diabetes mellitus, etc. Radiation used in radiotherapy also causes free radicals and oxidative metabolites, and irradiation causes dermatitis and sometimes causes skin ulcer in the irradiated site. We analyzed the relationships between the value of oxidative metabolites and skin reactions. A certain doses of radiation were irradiated to the right thigh of rats, and oxidative metabolites of rat's blood from caudal vein were measured by d-reactive oxygen metabolites (ROMs) test using an exclusive device. Skin reactions were evaluated according to a skin-reaction grading system from the day before irradiation to day 38 after irradiation. As a results, a significant correlation was shown between irradiation dose and skin grade. And a significant correlation was also shown between the value of oxidative metabolites and irradiation dose. The increase in oxidative metabolites was seen in the Day 16 after irradiation, and that corresponded with the appearance of skin reaction. It was suggested that the value of oxidative metabolites seems to be useful for estimating degree of skin reaction and time to appear skin reaction after irradiation. (author)

  20. Sporicidal effects of iodine-oxide thermite reaction products

    Science.gov (United States)

    Russell, Rod; Bless, Stephan; Blinkova, Alexandra; Chen, Tiffany

    2012-03-01

    Iodine pentoxide-aluminum thermite reactions have been driven by impacts at 1000 m/s on steel plates 3 mm or thicker. This reaction releases iodine gas that is known to be a sporicide. To test the impact reactions for sporicidal effects, reactions took place in closed chambers containing dried Bacillus subtilis spores. The reduction in colony-forming units was dependent on the exposure time; long exposure times resulted in a 105 decrease in germination rate. This was shown to be due to the gas exposure rather than the heat or turbulence. Sporicidal effectiveness was increased by adding neodymium and saran resin.

  1. Extraordinarily small Tafel slope for oxide formation reaction on Pt (1 1 1) surface

    International Nuclear Information System (INIS)

    Oxide formation reaction current density on Pt (1 1 1) was estimated by time-differentiating oxide growth curves during a potential hold as a function of the potential and the coverage with the oxide below 0.35 ML (monolayer). The Tafel slope was 18–24 mV decade−1 in the condition where the Tafel plot is on a straight line. The reaction mechanism accounting for this small slope was proposed, in which the oxide formation process is assumed as a combination of a fast electron transfer step and a following slow step.

  2. Cellulose Digestion and Metabolism Induced Biocatalytic Transitions in Anaerobic Microbial Ecosystems

    Directory of Open Access Journals (Sweden)

    Akira Yamazawa

    2013-12-01

    Full Text Available Anaerobic digestion of highly polymerized biomass by microbial communities present in diverse microbial ecosystems is an indispensable metabolic process for biogeochemical cycling in nature and for industrial activities required to maintain a sustainable society. Therefore, the evaluation of the complicated microbial metabolomics presents a significant challenge. We here describe a comprehensive strategy for characterizing the degradation of highly crystallized bacterial cellulose (BC that is accompanied by metabolite production for identifying the responsible biocatalysts, including microorganisms and their metabolic functions. To this end, we employed two-dimensional solid- and one-dimensional solution-state nuclear magnetic resonance (NMR profiling combined with a metagenomic approach using stable isotope labeling. The key components of biocatalytic reactions determined using a metagenomic approach were correlated with cellulose degradation and metabolic products. The results indicate that BC degradation was mediated by cellulases that contain carbohydrate-binding modules and that belong to structural type A. The degradation reactions induced the metabolic dynamics of the microbial community and produced organic compounds, such as acetic acid and propionic acid, mainly metabolized by clostridial species. This combinatorial, functional and structural metagenomic approach is useful for the comprehensive characterization of biomass degradation, metabolic dynamics and their key components in diverse ecosystems.

  3. Silver Iodide-Chitosan Nanotag Induced Biocatalytic Precipitation for Self-Enhanced Ultrasensitive Photocathodic Immunosensor.

    Science.gov (United States)

    Gong, Lingshan; Dai, Hong; Zhang, Shupei; Lin, Yanyu

    2016-06-01

    In this work, we first exposed that the application of p-type semiconductor, silver iodide-chitosan nanoparticle (SICNP), acted as peroxidase mimetic to catalyze the bioprecipitation reaction for signal-amplification photocathodic immunosensing of human interleukin-6 (IL-6). After immobilization of captured antibody onto a polyethylenimine-functionalized carbon nitride (CN) matrix, SICNPs as photoactive tags and peroxidase mimetics were labeled on secondary antibodies, which were subsequently introduced onto the sensing interface to construct sandwich immunoassay platform through antigen-antibody specific recognition. Due to the matched energy levels between CN and AgI, the photocurrent intensity and photostability of SICNP were dramatically improved with rapid separation and transportation of photogenerated carriers. Moreover, the insoluble product in effective biocatalytic precipitation reaction served as electron acceptor to scavenge the photoexcited electron, leading to great amplification of the photocurrent signal of SICNP again. With the help of multiamplification processes, this photocathodic immunosensor presented a turn-on photoelectrochemical performance for IL-6, which showed wide linear dynamic range from 10(-6) to 10 pg/mL with the ultralow detection limit of 0.737 ag/mL. This work also performed the promising application of SICNP in developing an ultrasensitive, cost-effective, and enzyme-free photocathodic immunosensor for biomarkers. PMID:27180822

  4. Catalytic hydrocarbon reactions over supported metal oxides. Progress report, April 1, 1994--January 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1995-01-31

    Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. Our approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. Our current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. Oxide catalysis can be a complex process with both metal cation and oxygen anions participating in the chemical reactions. From an energy perspective carbon-carbon bond formation is particularly relevant to CO hydrogenation in isosynthesis. Hydrogenolysis and hydrogenation form the basis for heteroatom removal in fuels processing. Understanding the catalysis of these processes (and others) requires isolating reaction steps in the overall cycle and determining how structure and composition influence the individual reaction steps. Specially designed oxides, such as we use, permit one to study some of the steps in oxidation, carbon-carbon coupling and heteroatom removal catalysis. During the course of our studies we have: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by methathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.

  5. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  6. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    Science.gov (United States)

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  7. Oxidation kinetics of reaction products formed in uranium metal corrosion

    International Nuclear Information System (INIS)

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O2 and Ar-20%O2 were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates

  8. Process of forming catalytic surfaces for wet oxidation reactions

    Science.gov (United States)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  9. Electrocatalysis of the Oxygen Evolution Reaction: A Comparative Study of Anodically Formed and Nanostructured Iridium Oxides

    OpenAIRE

    Lervik, Ingrid Anne

    2010-01-01

    The thesis deals with electrocatalysts for the oxygen evolution reaction for proton-exchange membrane (PEM) water electrolysis. Water electrolysis is considered the only viable option for large-scale hydrogen production. Hydrogen is a relevant storage medium for renewable energy technologies.The oxygen-evolution reaction (OER) is a major source of loss in PEM water electrolysis, and currently costly catalysts such as iridium oxide, an oxide with a rutile structure, are employed. Optimum use o...

  10. CO2 as an Oxidant for High Temperature Reactions

    Directory of Open Access Journals (Sweden)

    Sibudjing eKawi

    2015-03-01

    Full Text Available This paper presents a review on the developments in catalyst technology for the reactions utilizing CO2 for high temperature applications. These include dehydrogenation of alkanes to olefins, the dehydrogenation of ethylbenzene to styrene and finally CO2 reforming of hydrocarbon feedstock (i.e. methane and alcohols. Aspects on the various reaction pathways are also highlighted. The literature on the role of promoters and catalyst development is critically evaluated. Most of the reactions discussed in this review are exploited in industries and related to on-going processes, thus providing extensive data from literature. However some reactions, such as CO2 reforming of ethanol and glycerol which have not reached industrial scale are also reviewed owing to their great potential in terms of sustainability which are essential as energy for the future. This review further illustrates the building-up of knowledge which shows the role of support and catalysts for each reaction and the underlying linkage between certain catalysts which can be adapted for the multiple CO2-related reactions.

  11. New Insights into the Diels-Alder Reaction of Graphene Oxide.

    Science.gov (United States)

    Brisebois, Patrick P; Kuss, Christian; Schougaard, Steen B; Izquierdo, Ricardo; Siaj, Mohamed

    2016-04-18

    Graphene oxide is regarded as a major precursor for graphene-based materials. The development of graphene oxide based derivatives with new functionalities requires a thorough understanding of its chemical reactivity, especially for canonical synthetic methods such as the Diels-Alder cycloaddition. The Diels-Alder reaction has been successfully extended with graphene oxide as a source of diene by using maleic anhydride as a dienophile, thereby outlining the presence of the cis diene present in the graphene oxide framework. This reaction provides fundamental information for understanding the exact structure and chemical nature of graphene oxide. On the basis of high-resolution (13) C-SS NMR spectra, we show evidence for the formation of new sp(3) carbon centers covalently bonded to graphene oxide following hydrolysis of the reaction product. DFT calculations are also used to show that the presence of a cis dihydroxyl and C vacancy on the surface of graphene oxide are promoting the reaction with significant negative reaction enthalpies. PMID:26953926

  12. Heterogeneous photochemical reactions of a propylene-nitrogen dioxide-metal oxide-dry air system

    Science.gov (United States)

    Takeuchi, Koji; Ibusuki, Takashi

    Photochemical reactions of a C 3H 6-NO 2-air system in the presence of metal oxide were investigated. The metal oxides showing strong photooxidation activity were found to be n-type semiconductor oxides with the energy band gap around 3 eV. Formation of cyano-compounds (HCN and CH 3CN) was also observed and the activity can be explained in terms of the adsorptivity of NO onto metal oxides. Coalfired fly ash as a model of mixed metal oxides was also examined and their photocatalytic action was discussed.

  13. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes.

    Science.gov (United States)

    Yu, Seung-Ho; Lee, Soo Hong; Lee, Dong Jun; Sung, Yung-Eun; Hyeon, Taeghwan

    2016-04-01

    Developing high-energy-density electrodes for lithium ion batteries (LIBs) is of primary importance to meet the challenges in electronics and automobile industries in the near future. Conversion reaction-based transition metal oxides are attractive candidates for LIB anodes because of their high theoretical capacities. This review summarizes recent advances on the development of nanostructured transition metal oxides for use in lithium ion battery anodes based on conversion reactions. The oxide materials covered in this review include oxides of iron, manganese, cobalt, copper, nickel, molybdenum, zinc, ruthenium, chromium, and tungsten, and mixed metal oxides. Various kinds of nanostructured materials including nanowires, nanosheets, hollow structures, porous structures, and oxide/carbon nanocomposites are discussed in terms of their LIB anode applications. PMID:26627913

  14. Impact-Driven Thermite Reactions with Iodine Pentoxide and Silver Oxide

    Science.gov (United States)

    Russell, R.; Bless, S.; Pantoya, M.

    2011-04-01

    Thermite reactions using aluminum (Al) fuel and either iodine pentoxide (I2O5) or silver oxide (Ag2O) were initiated by high-velocity impact or thermal initiation and examined for their flame propagation behavior. In the impact-ignition experiments, the Al-Ag2O reaction produced more energy than the Al-I2O5 reaction; in the thermal-ignition experiments, the I2O5 reaction produced higher flame propagation rates (1,305 m/s compared with 531 m/s). The energy released from impact-initiated reactions is significantly enhanced by reducing the size of the oxide particles. Results suggest that the reaction propagation mechanisms may be the same, even though ignition is spurred by two different stimuli (mechanically induced compaction versus thermal).

  15. Oxidation as an important factor of protein damage: Implications for Maillard reaction

    Indian Academy of Sciences (India)

    L Trnková; J Dršata; I Boušová

    2015-06-01

    Protein oxidation, the process caused especially by reactive oxygen and nitrogen species, is thought to play a major role in various oxidative processes within cells and is implicated in the development of many human diseases. This review provides a brief overview of the protein oxidation with the emphasis on the types of oxidation (oxidation of protein backbone and amino acid residues side chains, site-specific metal-catalysed protein oxidation), oxidation-dependent generation of protein hydroperoxides, carbonyl derivatives and protein–protein cross-linkages. Non-enzymatic glycoxidation (also known as Maillard reaction) as an important factor of protein damage, consequences of oxidative protein impairment and related diseases as well as means of monitoring and assessment of protein modifications are discussed.

  16. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    International Nuclear Information System (INIS)

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  17. Silicone-modified graphene oxide fillers via the Piers-Rubinsztajn reaction

    DEFF Research Database (Denmark)

    Zhang, Jianfeng; Liang, Shuai; Yu, Liyun;

    2016-01-01

    While graphene or graphene oxide can make significantimprovements in the properties of a wide variety of polymericmaterials, their incorporation can be challenged byincompatibility with the polymeric matrix. The modification ofgraphene oxide with silicones or silanes using the Piers......-Rubinsztajn reaction improves dispersibility in nonpolar materials,including organic solvents and silicone pre-elastomers. Ahigh loading (up to 10 wt %) of modified graphene oxide insilicone elastomers could be achieved, which resulted inenhanced mechanical performance and reduced gas permeability....

  18. Mutagenicity screening of reaction products from the enzyme-catalyzed oxidation of phenolic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Massey, I.J.; Aitken, M.D.; Ball, L.M.; Heck, P.E. (Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering)

    1994-11-01

    Phenol-oxidizing enzymes such as peroxidases, laccases, and mushroom polyphenol oxidase are capable of catalyzing the oxidation of a wide range of phenolic pollutants. Although the use of these enzymes in waste-treatment applications has been proposed by a number of investigators, little information exists on the toxicological characteristics of the oxidation products. The enzymes chloroperoxidase, horseradish peroxidase, lignin peroxidase, and mushroom polyphenol oxidase were used in this study to catalyze the oxidation of phenol, several mono-substituted phenols, and pentachlorophenol. Seventeen reaction mixtures representing selected combinations of enzyme and parent phenol were subjected to mutagenicity screening using the Ames Salmonella typhimurium plate incorporation assay; five selected mixtures were also incubated with the S9 microsomal preparation to detect the possible presence of promutagens. The majority of reaction mixtures tested were not directly mutagenic, and none of those tested with S9 gave a positive response. Such lack of mutagenicity of enzymatic oxidation products provides encouragement for establishing the feasibility of enzyme-catalyzed oxidation as a waste-treatment process. The only positive responses were obtained with reaction products from the lignin peroxidase-catalyzed oxidation of 2-nitrophenol and 4-nitrophenol. Clear positive responses were observed when strain TA100 was incubated with 2-nitrophenol reaction-product mixtures, and when strain TA98 was incubated with the 4-nitrophenol reaction mixture. Additionally, 2,4-dinitrophenol was identified as a reaction product from 4-nitrophenol, and preliminary evidence indicates that both 2,4- and 2,6-dinitrophenol are produced from the oxidation of 2-nitrophenol. Possible mechanism by which these nitration reactions occur are discussed.

  19. Iron and hydroxyl radicals in lipid oxidation: Fenton reactions in lipid and nucleic acids co-oxidized with lipid

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.; Schaich, K.M.

    1987-01-01

    Hydroxyl radicals can initiate lipid peroxidation in liquids, but their high reactivity affords reaction paths so short that they are unlikely to reach lipids in membrane bilayers when formed exteriorly. EPR studies of Fenton-like reactions inducing oxidation in bulk lipids indicate that iron-dependent initiation of lipid oxidation in organelles and vesicles may result from hydroxyl radicals formed within the hydrophobic membrane interiors, where they would be inaccessible to typical hydrophilic radical scavengers. The cytotoxic or cytogenetic results of lipid peroxidation, especially in nuclear membranes, may include radiominetic chemical damage to adjacent DNA or nucleoprotein. Preliminary product analyses of nucleic acid basis cooxidized with lipids in vitro support this view.

  20. Overcoming the "oxidant problem": strategies to use O2 as the oxidant in organometallic C-H oxidation reactions catalyzed by Pd (and Cu).

    Science.gov (United States)

    Campbell, Alison N; Stahl, Shannon S

    2012-06-19

    Oxidation reactions are key transformations in organic chemistry because they can increase chemical complexity and incorporate heteroatom substituents into carbon-based molecules. This principle is manifested in the conversion of petrochemical feedstocks into commodity chemicals and in the synthesis of fine chemicals, pharmaceuticals, and other complex organic molecules. The utility and function of these molecules correlate directly with the presence and specific placement of oxygen and nitrogen heteroatoms and other functional groups within the molecules. Methods for selective oxidation of C-H bonds have expanded significantly over the past decade, and their role in the synthesis of organic chemicals will continue to increase. Our group's contributions to this field are linked to our broader interest in the development and mechanistic understanding of aerobic oxidation reactions. Molecular oxygen (O(2)) is the ideal oxidant. Its low cost and lack of toxic byproducts make it a highly appealing reagent that can address key "green chemistry" priorities in industry. With strong economic and environmental incentives to use O(2), the commmodity chemicals industry often uses aerobic oxidation reactions. In contrast, O(2) is seldom used to prepare more-complex smaller-volume chemicals, a limitation that reflects, in part, the limited synthetic scope and utility of existing aerobic reactions. Pd-catalyzed reactions represent some of the most versatile methods for selective C-H oxidation, but they often require stoichiometric transition-metal or organic oxidants, such as Cu(II), Ag(I), or benzoquinone. This Account describes recent strategies that we have identified to use O(2) as the oxidant in these reactions. In Pd-catalyzed C-H oxidation reactions that form carbon-heteroatom bonds, the stoichiometric oxidant is often needed to promote difficult reductive elimination steps in the catalytic mechanism. To address this challenge, we have identified new ancillary ligands for

  1. Highly efficient oxidation of alcohols using Oxone(R) as oxidant catalyzed by ruthenium complex under mild reaction conditions

    Institute of Scientific and Technical Information of China (English)

    Zi Qiang Lei; Jian Qiang Wang; Peng Hua Yan

    2008-01-01

    Aromatic and alkyl alcohols were oxidized to the corresponding aldehydes or ketones at room temperature with high conversion and selectivity using Oxone (2KHSO5·KHSO4·K2SO4) as oxidant catalyzed by ruthenium complex Quin-Ru-Quin (where Quin = 8-hydroxyquinoline). The reaction time is very short and the preparation of complex is simple. 2008 Zi Qiang Lei. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  2. Irrelevance of Carbon Monoxide Poisoning in the Methanol Oxidation Reaction on a PtRu Electrocatalyst.

    Science.gov (United States)

    Chen, De-Jun; Tong, YuYe J

    2015-08-01

    Based on detailed in situ attenuated total-reflection-surface-enhanced IR reflection absorption spectroscopy (ATR-SEIRAS) studies of the methanol oxidation reaction (MOR) on Ru/Pt thin film and commercial Johnson-Matthey PtRu/C, a revised MOR enhancement mechanism is proposed in which CO on Pt sites is irrelevant but instead Pt-Ru boundary sites catalyze the oxygen insertion reaction that leads to the formation of formate and enhances the direct reaction pathway. PMID:26148459

  3. Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations

    DEFF Research Database (Denmark)

    Skulason, Egill; Tripkovic, Vladimir; Björketun, Mårten;

    2010-01-01

    Density functional theory calculations have been performed for the three elementary steps―Tafel, Heyrovsky, and Volmer―involved in the hydrogen oxidation reaction (HOR) and its reverse, the hydrogen evolution reaction (HER). For the Pt(111) surface a detailed model consisting of a negatively char...... detailed kinetic model based entirely on the DFT reactions and show that the exchange current follows a volcano curve when plotted against the H adsorption free energy in excellent agreement with experimental data....

  4. Supercritical carbon dioxide as an innovative reaction medium for selective oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Loeker, F.; Leitner, W. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    Although the catalytic efficiency of all catalytic oxidation processes studied in scCO{sub 2} up to now is far from being satisfactory, the principle possibility to carry out such reactions in this medium is clearly evident. Future research in our group will be directed towards the development of homogeneous and heterogeneous catalysts that are adopted to the special requirements of both the oxidation process and the supercritical reaction medium. Preliminary results from these studies regarding the epoxidation of olefins with molecular oxygen as oxidant will be presented on the conference poster. (orig.)

  5. Reactions of oxidant air pollutants with model compounds for pulmonary surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Lai, C.C.; Finlayson-Pitts, B.J. (California State Univ., Fullerton (USA))

    1990-01-01

    The authors report here results of studies of the reactions of a mono-saturated phosphatidylcholine found as one of the components of pulmonary surfactant,{beta}-oleoyl-{gamma}-palmitoyl L-{alpha}-phosphatidylcholine (OPPC), with three oxidant air pollutants, O{sub 3}, N{sub 2}O{sub 5} and NO{sub 2} respectively. Because this work is intended primarily to develop the analytical methodology needed to study the phosphatidylcholines reactions, much higher concentrations of the oxidants than found in ambient air were used. The major reaction products have been separated and identified. We report what appears to be the first identification of a phosphatidylcholine secondary ozonide.

  6. Microreactor as Efficient Tool for Light Induced Oxidation Reactions

    Czech Academy of Sciences Publication Activity Database

    Hejda, S.; Drhová, Magdalena; Křišťál, Jiří; Buzek, D.; Krystyník, Pavel; Klusoň, Petr

    2014-01-01

    Roč. 255, NOV 1 (2014), s. 178-184. ISSN 1385-8947 Grant ostatní: GA MŠMT(CZ) MŠk:CZ.1.07/2.2.00/28.0205 Institutional support: RVO:67985858 Keywords : photo microreactor * phthalocyanine * chlorophenol oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.321, year: 2014

  7. Biocatalytic desulfurization of diesel oil in an air-lift reactor with immobilized Gordonia nitida CYKS1 cells.

    Science.gov (United States)

    Lee, In Su; Bae, Hee-Sung; Ryu, Hee Wook; Cho, Kyung-Suk; Chang, Yong Keun

    2005-01-01

    A new type of air-lift reactor with immobilized Gordonia nitida CYKS1 cells on a fibrous support was designed and used for the biocatalytic desulfurization (BDS) of diesel oil. Its performance was evaluated at different phase ratios of the oil to the aqueous medium (or oil phase fractions) and different sucrose concentrations. When the reaction mixture contained 10% diesel oil (v/v), 61-67% of sulfur was removed as the sulfur content decreased from 202-250 to 76-90 mg L(-1) in 72 h. The sulfur content did not decrease any further because the remaining sulfur compounds were recalcitrant to BDS. During the desulfurization, the strain CYKS1 consumed hydrocarbons in the diesel oil, mainly n-alkanes with 10-26 carbons, as carbon source even though an easily available carbon source, sucrose, was supplied. PMID:15932256

  8. The role of terminal oxide structure and properties in nanothermite reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mily, E.J., E-mail: ejmily@ncsu.edu [North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27606 (United States); Oni, A., E-mail: aaoni@ncsu.edu [North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27606 (United States); LeBeau, J.M., E-mail: jmlebeau@ncsu.edu [North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27606 (United States); Liu, Y., E-mail: yi_liu@ncsu.edu2 [North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27606 (United States); Brown-Shaklee, H.J., E-mail: hjbrown@sandia.gov2 [Sandia National Laboratories, Electronic, Optical, and Nanomaterials Department, Albuquerque, NM 87185 (United States); Ihlefeld, J.F., E-mail: jihlefe@sandia.gov [Sandia National Laboratories, Electronic, Optical, and Nanomaterials Department, Albuquerque, NM 87185 (United States); Maria, J.-P., E-mail: jpmaria@ncsu.edu [North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27606 (United States)

    2014-07-01

    In this report, thin films of copper oxide, a common thermite oxidant, and varying metallic species (Al, Zr, and Mg) were deposited in an alternating layered geometry on sapphire by magnetron sputtering. Keeping stoichiometric equivalence, the effects of varying metallic constituents were studied with respect to their onset reaction temperature and energy output. Reaction progression was characterized by a systematic step wise vacuum anneal followed by subsequent ex situ X-ray diffraction, and differential thermal analysis. It was found that reaction temperature depends heavily on the terminal oxide's diffusion properties, showing a correlation - Highlights: • Thin film thermite laminate structures were fabricated via magnetron sputtering. • Oxygen source and interfacial area are held constant while reducing metal varied. • Thermite terminal oxide ionic diffusion barrier properties affect energy release.

  9. Evaluation of Salivary Nitric Oxide Levels in Smokers, Tobacco Chewers and Patients with Oral Lichenoid Reactions

    Science.gov (United States)

    Jose, Joy Idiculla; Sivapathasundharam, B.; Sabarinath, B.

    2016-01-01

    Introduction Nitric oxide (NO), a free radical, acts as a signalling molecule affecting numerous physiological and pathological processes. Role of nitric oxide as a mediator in tobacco related habits and the resultant oral lichenoid reactions was assessed. Aim The aim of the study is to evaluate and compare the salivary nitric oxide levels in normal patients with that of smokers, tobacco chewers and patients with oral lichenoid reactions. Materials and Methods One hundred and twenty patients were enrolled in the study which included 30 healthy patients without any chronic inflammatory lesion and habit as controls (group I), 30 smokers without the habit of tobacco/betel nut chewing and any oral lesion (group II), 30 tobacco chewers without the habit of smoking and any oral lesion (group III) and 30 histologically confirmed cases of oral lichenoid reaction with the habit of tobacco usage (group IV). Saliva from these patients was collected and the nitrite concentration was assessed. Results Our results concluded that there was highly significant increase in the nitric oxide levels in smokers, tobacco chewers and patients with oral lichenoid reactions compared to that of controls. Also, there was a significant increase in nitric oxide levels in patients with smoking associated oral lichenoid reactions in comparison with smokers and in patients with lichenoid reactions associated with tobacco chewing in comparison with tobacco chewers. Conclusion Estimation of salivary nitric oxide levels is a simple, non-invasive procedure and could be analysed to suggest the role of nitric oxide in the pathogenesis of these lesions. The increased activity of the enzyme may indicate that nitric oxide has a pathophysiological role in these lesions. PMID:26894179

  10. Chemical oxidation of anthracite with hydrogen peroxide via the Fenton reaction

    Science.gov (United States)

    Heard, I.; Senftle, F.E.

    1984-01-01

    Solutions of 30% H2O2 ranging from pH = 0 to pH = 11.5 have been used to oxidize anthracite at room temperature. The inorganic impurities, primarily pyrite, catalysed the oxidation and reduction of H2O2 (the Fenton reaction) to form the hydroxyl radical; the oxidation of the organic matter was minimal and was observed only in strong acidic solutions (pH reactions were completed in a much shorter time, the oxidation mechanism must have been of a different nature than that for the untreated anthracite. A qualitative model based on the catalytic decomposition of H2O2 by activated carbon sites in the coal surface is used to explain the oxidation of the demineralized anthracite. ?? 1984.

  11. Metal-Organic Frameworks as Catalysts for Oxidation Reactions.

    Science.gov (United States)

    Dhakshinamoorthy, Amarajothi; Asiri, Abdullah M; Garcia, Hermenegildo

    2016-06-01

    This Concept is aimed at describing the current state of the art in metal-organic frameworks (MOFs) as heterogeneous catalysts for liquid-phase oxidations, focusing on three important substrates, namely, alkenes, alkanes and alcohols. Emphases are on the nature of active sites that have been incorporated within MOFs and on future targets to be set in this area. Thus, selective alkene epoxidation with peroxides or oxygen catalyzed by constitutional metal nodes of MOFs as active sites are still to be developed. Moreover, no noble metal-free MOF has been reported to date that can act as a general catalyst for the aerobic oxidation of primary and secondary aliphatic alcohols. In contrast, in the case of alkanes, a target should be to tune the polarity of MOF internal pores to control the outcome of the autooxidation process, resulting in the selective formation of alcohol/ketone mixtures at high conversion. PMID:27113486

  12. Catalytic hydrocarbon reactions over supported metal oxides. Final report, August 1, 1986--July 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1995-10-20

    Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. The approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. The current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. During the course of these studies the author has: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by metathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.

  13. Effects of (n, γ) reaction on chromium oxides (VI)

    International Nuclear Information System (INIS)

    A study of the behaviour of the recoil atom in irradiated CrO3 has been performed. Irradiations were made in a nuclear reactor; post-irradiation analysis was performed using low voltage paper electrophoresis; an isothermal step annealing study was also conducted. Obtained values for rate constants and the activation energy for the annealing reaction are presented. A comparison with the behaviour reported for different chromates was performed. (Author)

  14. Concurrent Formation of Carbon-Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction.

    Science.gov (United States)

    Morioku, Kumika; Morimoto, Naoki; Takeuchi, Yasuo; Nishina, Yuta

    2016-01-01

    Oxidative C-H coupling reactions were conducted using graphene oxide (GO) as an oxidant. GO showed high selectivity compared with commonly used oxidants such as (diacetoxyiodo) benzene and 2,3-dichloro-5,6-dicyano-p-benzoquinone. A mechanistic study revealed that radical species contributed to the reaction. After the oxidative coupling reaction, GO was reduced to form a material that shows electron conductivity and high specific capacitance. Therefore, this system could concurrently achieve two important reactions: C-C bond formation via C-H transformation and production of functionalized graphene. PMID:27181191

  15. Role of vanadium in Keggin heteropoly molybdate supported on titania catalysts for oxidation reactions

    Indian Academy of Sciences (India)

    A Srivani; K T Venkateswara Rao; P S Sai Prasad; N Lingaiah

    2014-03-01

    Vanadium-incorporated molybdophosporic acid catalysts supported on titania were prepared and characterized by FT-IR, X-ray diffraction and laser Raman spectroscopy. Characterization data reveals the incorporation of vanadium into the primary structure of Keggin ion of MPA. Catalysts activities were evaluated for oxidation of 1,2-benzenedimethanol using H2O2 and O2 as oxidants. Vanadium-containing catalysts showed high activity compared to their parent heteropoly acids. Oxidation ability depended on the number of V atoms present in Keggin heteropoly molybdate. Effect of reaction parameters on the oxidation ability was also evaluated.

  16. Reaction mechanism for the free-edge oxidation of soot by O 2

    KAUST Repository

    Raj, Abhijeet

    2012-11-01

    The reaction pathways for the oxidation by O 2 of polycyclic aromatic hydrocarbons present in soot particles are investigated using density functional theory at B3LYP/6-311++G(d,p) level of theory. For this, pyrene radical (4-pyrenyl) is chosen as the model molecule, as most soot models present in the literature employ the reactions involving the conversion of 4-pyrenyl to 4-phenanthryl by O 2 and OH to account for soot oxidation. Several routes for the formation of CO and CO 2 are proposed. The addition of O 2 on a radical site to form a peroxyl radical is found to be barrierless and exothermic with reaction energy of 188kJ/mol. For the oxidation reaction to proceed further, three pathways are suggested, each of which involve the activation energies of 104, 167 and 115kJ/mol relative to the peroxyl radical. The effect of the presence of H atom on a carbon atom neighboring the radical site on the energetics of carbon oxidation is assessed. Those intermediate species formed during oxidation with seven-membered rings or with a phenolic group are found to be highly stable. The rate constants evaluated using transition state theory in the temperature range of 300-3000K for the reactions involved in the mechanism are provided. © 2012 The Combustion Institute.

  17. Enzymatic reactions in dense gases

    OpenAIRE

    Knez, Željko

    2012-01-01

    The developments on applications of supercritical fluids as alternative solvents for biocatalytic processes that have taken place over the past two decades have been reviewed. An overview of process parameters influencing enzyme activity and stability, the influence of process parameters on reaction rates and productivity are presented. Applications of various types of reactors for enzymatic reaction in dense fluids, limitations of using enzymes as biocatalyst in supercritical fluids as well ...

  18. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions

    Science.gov (United States)

    Rodionov, I. A.; Zvereva, I. A.

    2016-03-01

    The photocatalytic properties of layered perovskite-like oxides corresponding to the Ruddlesen–Popper, Dion–Jacobson and Aurivillius phases are considered. Of the photocatalytic reactions, the focus is on the reactions of water splitting, hydrogen evolution from aqueous solutions of organic substances and degradation of model organic pollutants. Possibilities to conduct these reactions under UV and visible light in the presence of layered perovskite-like oxides and composite photocatalysts based on them are shown. The specific surface area, band gap energy, particle morphology, cation and anion doping and surface modification are considered as factors that affect the photocatalytic activity. Special attention is paid to the possibilities to enhance the photocatalytic activity by intercalation, ion exchange and exfoliation, which are inherent in this class of compounds. Conclusions are made about the prospects for the use of layered perovskite-like oxides in photocatalysis. The bibliography includes 253 references.

  19. Development of Safe and Scalable Continuous-Flow Methods for Palladium-Catalyzed Aerobic Oxidation Reactions.

    Science.gov (United States)

    Ye, Xuan; Johnson, Martin D; Diao, Tianning; Yates, Matthew H; Stahl, Shannon S

    2010-01-01

    The synthetic scope and utility of Pd-catalyzed aerobic oxidation reactions has advanced significantly over the past decade, and these reactions have potential to address important green-chemistry challenges in the pharmaceutical industry. This potential has been unrealized, however, because safety concerns and process constraints hinder large-scale applications of this chemistry. These limitations are addressed by the development of a continuous-flow tube reactor, which has been demonstrated on several scales in the aerobic oxidation of alcohols. Use of a dilute oxygen gas source (8% O(2) in N(2)) ensures that the oxygen/organic mixture never enters the explosive regime, and efficient gas-liquid mixing in the reactor minimizes decomposition of the homogeneous catalyst into inactive Pd metal. These results provide the basis for large-scale implementation of palladium-catalyzed (and other) aerobic oxidation reactions for pharmaceutical synthesis. PMID:20694169

  20. Measuring the complex behavior of the SO2 oxidation reaction

    Directory of Open Access Journals (Sweden)

    Muhammad Shahzad

    2015-09-01

    Full Text Available The two step reversible chemical reaction involving five chemical species is investigated. The quasi equilibrium manifold (QEM and spectral quasi equilibrium manifold (SQEM are used for initial approximation to simplify the mechanisms, which we want to utilize in order to investigate the behavior of the desired species. They show a meaningful picture, but for maximum clarity, the investigation method of invariant grid (MIG is employed. These methods simplify the complex chemical kinetics and deduce low dimensional manifold (LDM from the high dimensional mechanism. The coverage of the species near equilibrium point is investigated and then we shall discuss moving along the equilibrium of ODEs. The steady state behavior is observed and the Lyapunov function is utilized to study the stability of ODEs. Graphical results are used to describe the physical aspects of measurements.

  1. Reproducible nuclear reactions upon reaction of deuterium with tungsten oxide bronze

    International Nuclear Information System (INIS)

    Investigators of anomalous nuclear phenomena in condensed media have not been able to achieve 100% reproducibility of results on observation of emission of nuclear radiation. All these experiments were carried out with solids based on metal-hydrogen systems, neither the structure nor the crystallographic orientation of which can be controlled. In contrast to all the experiments performed so far, in order to achieve a high level of reproducibility the authors used fundamentally new materials as the objects of investigation: single crystals of tungsten oxide bronzes, nonstoichiometric compounds with general formula NaxWO3. As the working surface the authors used the (001) face of the crystal, perpendicular to which the channels of the rigid W-O sublattice are located. Alkali metal cations are located in these channels and can move through them. Depending on the alkali metal content in the tungsten oxide bronze, due to the variation in the valence state of the tungsten, oxide bronzes can vary over very broad limits. This allows the authors to create structures in the crystal with high composition in gradients and gradients in properties due to them and, in particular, to also use an electric field to control the movement of ions in the crystal. Using electrochemical methods (anodic treatment in salt melts, aqueous solutions, and under vacuum), sodium can be extracted from the channels in the surface layer of the bronze crystal and substituted by hydrogen (deuterium) ions

  2. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    International Nuclear Information System (INIS)

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology

  3. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bartling, Stephan, E-mail: stephan.bartling@uni-rostock.de; Meiwes-Broer, Karl-Heinz; Barke, Ingo [Department of Physics, University of Rostock, Universitätsplatz 3, D-18051 Rostock (Germany); Pohl, Marga-Martina [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, D-18059 Rostock (Germany)

    2015-09-21

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology.

  4. Synthesis of propylene carbonate from urea and propylene glycol over zinc oxide: A homogeneous reaction

    OpenAIRE

    Dengfeng Wang; Xuelan Zhang; Tingting Cheng; Jing Wu; Qijun Xue

    2014-01-01

    In this work, several metal oxides and zinc salts were used to catalyze propylene carbonate (PC) synthesis from urea and propylene glycol (PG). According to the results of catalytic test and characterization, the catalytic pattern of ZnO was different from that of other metal oxides such as CaO, MgO and La2O3, but similar to that of zinc salts. In fact, the leaching of Zn species took place during reaction for ZnO. And ZnO was found to be the precursor of homogenous catalyst for reaction of u...

  5. Adsorption of Pentachlorophenol onto Oxide and Clay Minerals: Surface Reaction Model and Environmental Implications

    Institute of Scientific and Technical Information of China (English)

    WU Daqing; DIAO Guiyi; YUAN Peng; PENG Jinlian

    2006-01-01

    The adsorption of pentachlorophenol (PCP) onto quartz, kaolinite, illite, montmorillonite and iron oxides has been investigated by batch equilibrium techniques. The pH-dependent isotherms are curves with peak values, the position of which is at about pH= 5-6 depending on the mineral species. Based on distribution of both speciation of surface hydroxyls on minerals and PCP in solution a surface reaction model involving surface complexation and surface electrostatic attraction is presented to fit the pH-dependent isotherms, and both reaction constants are calculated. The results show that on quartz and phyllosilicate minerals the predominant adsorption reaction is surface complexation,meanwhile both of surface electrostatic attraction and surface complexation are involved on the iron oxide minerals. The reaction constants of surface electrostatic adsorption are usually one to three orders in magnitude, larger than that of surface complexation. The concentration-dependent isotherms can be well fitted by Langmuir equation with the correlation coefficient R>0.93 for kaolinite and iron oxides. The maximum adsorption is found in the order: hematite > lepidocrocite > goethite > kaolinite >quartz > montmorillonite ≈ illite, which can be interpreted by consideration of both reaction mechanism and surface hydroxyl density. The significant adsorption of PCP onto mineral surfaces suggests that clay and iron oxide minerals will play an important role as HIOCs are adsorbed in laterite or latertoid soil, which is widespread in South China.

  6. Effects of Morphology of Cerium Oxide Catalysts for Reverse Water Gas Shift Reaction

    OpenAIRE

    Kovasevic, M.; Mojet, B.L.; Ommen, van, B.; Lefferts, L.

    2016-01-01

    Reverse water gas shift reaction (RWGS) was investigated over cerium oxide catalysts of distinct morphologies: cubes, rods and particles. Catalysts were characterized by X-ray diffraction, Raman spectroscopy and temperature programmed reduction (TPR) in hydrogen. Nanoshapes with high concentration of oxygen vacancies contain less surface oxygen removable in TPR. Cerium oxide cubes exhibited two times higher activity per surface area as compared to rods and particles. Catalytic activity of the...

  7. Catalyst-Controlled Regioselectivity in the Synthesis of Branched Conjugated Dienes via Aerobic Oxidative Heck Reactions

    OpenAIRE

    Zheng, Changwu; Wang, Dian; Stahl, Shannon S.

    2012-01-01

    Pd-catalyzed aerobic oxidative coupling of vinylboronic acids and electronically unbiased alkyl olefins provides regioselective access to 1,3-disubstituted conjugated dienes. Catalyst-controlled regioselectivity is achieved by using 2,9-dimethylphenanthroline as a ligand. The observed regioselectivity is opposite to that observed from a traditional (non-oxidative) Heck reaction between a vinyl bromide and an alkene. DFT computational studies reveal that steric effects of the 2,9-dimethylphena...

  8. Kinetic and photochemical data for atmospheric chemistry reactions of the nitrogen oxides

    Science.gov (United States)

    Hampson, R. F., Jr.

    1980-01-01

    Data sheets for thermal and photochemical reactions of importance in the atmospheric chemistry of the nitrogen oxides are presented. For each reaction the available experimental data are summarized and critically evaluated, and a preferred value of the rate coefficient is given. The selection of the preferred value is discussed and an estimate of its accuracy is given. For the photochemical process, the data are summarized, and preferred for the photoabsorption cross section and primary quantum yields are given.

  9. Enantiomerically pure bithiophene diphosphine oxides as catalysts for direct double aldol reactions.

    Science.gov (United States)

    Genoni, Andrea; Benaglia, Maurizio; Rossi, Sergio; Celentano, Giuseppe

    2013-10-01

    The direct aldol reaction between aryl methyl ketones with aromatic aldehydes in the presence of tetrachlorosilane and a catalytic amount of a chiral bithiophene diphosphine oxide was studied; the product of double aldol addition was isolated as diacetate in good diastereoselectivity (up to 95:5) and enantioselectivities up to 91%. The reaction with heteroaromatic aldehydes was also investigated leading to the corresponding 1,3 diols, in some cases with excellent stereoselectivities. PMID:23744602

  10. Efficient processing of reaction-sintered silicon carbide by anodically oxidation-assisted polishing

    Science.gov (United States)

    Tu, Qunzhang; Shen, Xinmin; Zhou, Jianzhao; He, Xiaohui; Yamamura, Kazuya

    2015-10-01

    Reaction-sintered silicon carbide (RS-SiC) is a promising optical material for the space telescope systems. Anodically oxidation-assisted polishing is a method to machine RS-SiC. The electrolyte used in this study is a mixture of hydrogen peroxide (H2O2) and hydrochloric acid (HCl), and the oxidation potential has two modes: constant potential and high-frequency-square-wave potential. Oxide morphologies are compared by scanning electron microscope/energy dispersive x-ray spectroscopy and scanning white-light interferometer. The results indicate that anodic oxidation under constant potential can not only obtain a relatively smooth surface but also be propitious to obtain high material removal rate. The oxidation depth in anodic oxidation under constant potential is calculated by comparing surface morphologies before and after hydrofluoric acid etching. The theoretical oxidation rate is 5.3 nm/s based on the linear Deal-Grove model. Polishing of the oxidized RS-SiC is conducted to validate the machinability of the oxide layer. The obtained surface roughness root-mean-square is around 4.5 nm. Thus, anodically oxidation-assisted polishing can be considered as an efficient method, which can fill the performance gap between the rough figuring and fine finishing of RS-SiC. It can improve the machining quality of RS-SiC parts and promote the application of RS-SiC products.

  11. Sulphation reactions of oxidic dust particles in waste heat boiler environment. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Ranki, T.

    1999-09-01

    Sulphation of metal oxides has an important role in many industrial processes. In different applications sulphation reactions have different aims and characteristics. In the flash smelting process sulphation of oxidic flue dust is a spontaneous and inevitable phenomena, which takes place in the waste heat boiler (WHB) when cooling down hot dust laden off-gases from sulphide smelters. Oxidic dust particles (size 0 - 50 {mu}m) react with O{sub 2} and SO{sub 2} or SO{sub 3} in a certain temperature range (500 - 800 deg C). Sulphation reactions are highly exothermic releasing large amount of heat, which affects the gas cooling and thermal performance of the boiler. Thermodynamics and kinetics of the system have to be known to improve the process and WHB operation. The rate of sulphation is affected by the prevailing conditions (temperature, gas composition) and particle size and microstructure (porosity, surface area). Some metal oxides (CuO) can react readily with SO{sub 2} and O{sub 2} and act as self-catalysts, but others (NiO) require the presence of an external catalyst to enhance the SO{sub 3} formation and sulphation to proceed. Some oxides (NiO) sulphate directly, some (CuO) may form first intermediate phases (basic sulphates) depending on the reaction conditions. Thus, the reaction mechanisms are very complex. The aim of this report was to search information about the factors affecting the dust sulphation reactions and suggested reaction mechanisms and kinetics. Many investigators have studied sulphation thermodynamics and reaction kinetics and mechanisms of macroscopical metal oxide pieces, but only few articles have been published about sulphation of microscopical particles, like dust. All the found microscale studies dealt with sulphation reactions of calcium oxide, which is not present in the flash smelting process, but used as an SO{sub 2} absorbent in the combustion processes. However, also these investigations may give some hints about the sulphation

  12. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    NARCIS (Netherlands)

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene o

  13. Co-Mn-Al Mixed Oxides in NH3 Oxidation and DeNOx-SCR Reaction

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jablonska, m.; Jirátová, Květa; Chmielarz, L.; Kovanda, F.

    -: -, 2013, 2-T8-344. ISBN N. [European Congress on Catalysis – EuropaCat-XI /11./. Lyon (FR), 01.09.2013-06.09.2013] R&D Projects: GA TA ČR TA01020336 Institutional support: RVO:67985858 Keywords : catalyst preparation * Co-Mn-Al mixed oxides * NH3 oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  14. Exceptionally Active and Stable Spinel Nickel Manganese Oxide Electrocatalysts for Urea Oxidation Reaction.

    Science.gov (United States)

    Periyasamy, Sivakumar; Subramanian, Palaniappan; Levi, Elena; Aurbach, Doron; Gedanken, Aharon; Schechter, Alex

    2016-05-18

    Spinel nickel manganese oxides, widely used materials in the lithium ion battery high voltage cathode, were studied in urea oxidation catalysis. NiMn2O4, Ni1.5Mn1.5O4, and MnNi2O4 were synthesized by a simple template-free hydrothermal route followed by a thermal treatment in air at 800 °C. Rietveld analysis performed on nonstoichiometric nickel manganese oxide-Ni1.5Mn1.5O4 revealed the presence of three mixed phases: two spinel phases with different lattice parameters and NiO unlike the other two spinels NiMn2O4 and MnNi2O4. The electroactivity of nickel manganese oxide materials toward the oxidation of urea in alkaline solution is evaluated using cyclic voltammetric measurements. Ni1.5Mn1.5O4 exhibits excellent redox characteristics and lower charge transfer resistances in comparison with other compositions of nickel manganese oxides and nickel oxide prepared under similar conditions.The Ni1.5Mn1.5O4modified electrode oxidizes urea at 0.29 V versus Ag/AgCl with a corresponding current density of 6.9 mA cm(-2). At a low catalyst loading of 50 μg cm(-2), the urea oxidation current density of Ni1.5Mn1.5O4 in alkaline solution is 7 times higher than that of nickel oxide and 4 times higher than that of NiMn2O4 and MnNi2O4, respectively. PMID:27123873

  15. Infrared driven CO oxidation reactions on isolated platinum cluster oxides, PtnOm+

    NARCIS (Netherlands)

    Hermes, A. C.; Hamilton, S. M.; Cooper, G. A.; Kerpal, C.; Harding, D. J.; Meijer, G.; Fielicke, A.; Mackenzie, S. R.

    2012-01-01

    This collaboration has recently shown that infrared excitation can drive decomposition reactions of molecules on the surface of gas-phase transition metal clusters. We describe here a significant extension of this work to the study of bimolecular reactions initiated in a similar manner. Specifically

  16. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto

    2016-06-10

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  17. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    International Nuclear Information System (INIS)

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl4) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO2) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl4-UO2 shows a reaction to form uranium oxychloride (UOCl2) that has a good solubility in molten UCl4. This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl4, ZrCl4, SiCl4, ThCl4) by reaction of oxides with chlorine (Cl2) and carbon has application to the preparation of UCl4

  18. A Study and Application of Biocatalytic Synthesis of (S-N-Boc-3-hydroxypiperidine

    Directory of Open Access Journals (Sweden)

    Chen Ying

    2015-01-01

    Full Text Available This paper first uses the environmental friendly whole cell of biocatalyst pichia pastoris SIT2014 to asymmetrically synthesized anti-tumor drug of chiral intermediate (S-N-Boc-3-hydroxypiperidine.. Improve the final biocatalytic reduction yield to 85.4% based on the study of fermentation optimization and biocatalytic asymmetrical reduction system for pichia pastoris. The ee value of obtained reduction product (S-N-Boc-3-hydroxypiperidine hits over 99%. The study of this article is a successful case where the biocatalyst is applied to the green synthesis of chiral intermediate of anti-tumor drug.

  19. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    OpenAIRE

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.7-fold higher activity as compared to the free enz...

  20. Study on the Size-Dependent Oxidation Reaction Kinetics of Nanosized Zinc Sulfide

    Directory of Open Access Journals (Sweden)

    Qing-Shan Fu

    2014-01-01

    Full Text Available Numerous oxidation problems of nanoparticles are often involved during the preparation and application of nanomaterials. The oxidation rate of nanomaterials is much faster than bulk materials due to nanoeffect. Nanosized zinc sulfide (nano-ZnS and oxygen were chosen as a reaction system. The influence regularities were discussed and the influence essence was elucidated theoretically. The results indicate that the particle size can remarkably influence the oxidation reaction kinetics. The rate constant and the reaction order increase, while the apparent activation energy and the preexponential factor decrease with the decreasing particle size. Furthermore, the logarithm of rate constant, the apparent activation energy and the logarithm of preexponential factor are linearly related to the reciprocal of particle diameter, respectively. The essence is that the rate constant is influenced by the combined effect of molar surface energy and molar surface entropy, the reaction order by the molar surface area, the apparent activation energy, by the molar surface energy, and the preexponential factor by the molar surface entropy. The influence regularities and essence can provide theoretical guidance to solve the oxidation problems involved in the process of preparation and application of nanomaterials.

  1. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea

    International Nuclear Information System (INIS)

    A facile hydrothermal reaction of graphene oxide with urea was used to produce nitrogen doped graphene, and Pt nanoparticles were deposited on the obtained nitrogen doped graphene by the NaBH4 reduction route. The morphology and microstructure of the synthesized catalysts were characterized by transmission electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy, while the functional groups on the surface of the catalysts were investigated by the Fourier transform infrared spectroscopy and ultraviolet-visible absorption spectra. Cyclic voltammetry, chronoamperometry and electrochemical impedance techniques were carried out to evaluate the methanol electrocatalytic oxidation activity and durability of Pt catalysts supported on the nitrogen doped graphene. The results showed that nitrogen doping and reduction of GO were achieved simultaneously by the facile hydrothermal reaction, which had beneficial effects for the deposition process and electrocatalytic activity of Pt nanoparticles. The Pt catalysts supported on the nitrogen doped graphene substrate presented excellent activity and durability of methanol oxidation reaction, which might be promising for application in direct methanol fuel cells

  2. Iron(III Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions

    Directory of Open Access Journals (Sweden)

    Susana L. H. Rebelo

    2016-04-01

    Full Text Available Iron(III fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H2TPFPP and the corresponding iron complex [Fe(TPFPPCl], and the use of [Fe(TPFPPCl] as an oxidation catalyst in green conditions. The preparations of H2TPFPP and [Fe(TPFPPCl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(IIIporphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide and green solvent (ethanol. Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  3. Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions.

    Science.gov (United States)

    Rebelo, Susana L H; Silva, André M N; Medforth, Craig J; Freire, Cristina

    2016-01-01

    Iron(III) fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H₂TPFPP) and the corresponding iron complex [Fe(TPFPP)Cl], and the use of [Fe(TPFPP)Cl] as an oxidation catalyst in green conditions. The preparations of H₂TPFPP and [Fe(TPFPP)Cl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(III)porphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide) and green solvent (ethanol). Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed. PMID:27077840

  4. Rapid Covalent Modification of Silicon Oxide Surfaces through Microwave-Assisted Reactions with Alcohols.

    Science.gov (United States)

    Lee, Austin W H; Gates, Byron D

    2016-07-26

    We demonstrate the method of a rapid covalent modification of silicon oxide surfaces with alcohol-containing compounds with assistance by microwave reactions. Alcohol-containing compounds are prevalent reagents in the laboratory, which are also relatively easy to handle because of their stability against exposure to atmospheric moisture. The condensation of these alcohols with the surfaces of silicon oxides is often hindered by slow reaction kinetics. Microwave radiation effectively accelerates this condensation reaction by heating the substrates and/or solvents. A variety of substrates were modified in this demonstration, such as silicon oxide films of various thicknesses, glass substrates such as microscope slides (soda lime), and quartz. The monolayers prepared through this strategy demonstrated the successful formation of covalent surface modifications of silicon oxides with water contact angles of up to 110° and typical hysteresis values of 2° or less. An evaluation of the hydrolytic stability of these monolayers demonstrated their excellent stability under acidic conditions. The techniques introduced in this article were successfully applied to tune the surface chemistry of silicon oxides to achieve hydrophobic, oleophobic, and/or charged surfaces. PMID:27396288

  5. Spectrophotometric Method for the Determination of Oxidative IonsWith Decoloring Reaction Using HCPCF

    Institute of Scientific and Technical Information of China (English)

    KOU; Zongyan

    2001-01-01

    HCPCF is a color reagent for the determination of vanadium, zinc and magnesium, etc. To the best of our knowledge, no work on the decoloring reaction for analytical use of HCPCF for the determination of oxidative anions has been report. In this work, we found that some oxidative anions can oxidize HCPCF in acid medium, forming a colorless product. In addition, surfactant was used in this work, because of the low solubility of HCPCF in aqueous solutions. The purpose of this work is to establish a new, rapid and simple spectrophotometric method for the determination of NO2-, BrO3-,IO3-, IO4-and Cr2O7-based on the reaction between HCPCF and analytes in the presence of emulsion OP.……

  6. Spectrophotometric Method for the Determination of Oxidative IonsWith Decoloring Reaction Using HCPCF

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ HCPCF is a color reagent for the determination of vanadium, zinc and magnesium, etc. To the best of our knowledge, no work on the decoloring reaction for analytical use of HCPCF for the determination of oxidative anions has been report. In this work, we found that some oxidative anions can oxidize HCPCF in acid medium, forming a colorless product. In addition, surfactant was used in this work, because of the low solubility of HCPCF in aqueous solutions. The purpose of this work is to establish a new, rapid and simple spectrophotometric method for the determination of NO2-, BrO3-,IO3-, IO4-and Cr2O7-based on the reaction between HCPCF and analytes in the presence of emulsion OP.

  7. Synthesis of propylene carbonate from urea and propylene glycol over zinc oxide: A homogeneous reaction

    Directory of Open Access Journals (Sweden)

    Dengfeng Wang

    2014-11-01

    Full Text Available In this work, several metal oxides and zinc salts were used to catalyze propylene carbonate (PC synthesis from urea and propylene glycol (PG. According to the results of catalytic test and characterization, the catalytic pattern of ZnO was different from that of other metal oxides such as CaO, MgO and La2O3, but similar to that of zinc salts. In fact, the leaching of Zn species took place during reaction for ZnO. And ZnO was found to be the precursor of homogenous catalyst for reaction of urea and PG. Thus, the relationship between the amount of dissolved zinc species and the catalytic performance of employed ZnO was revealed. In addition, a possible reaction mechanism over ZnO was discussed based on the catalytic runs and the characterization of XRD, FTIR, and element analysis.

  8. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water.

    Science.gov (United States)

    Wols, B A; Hofman-Caris, C H M

    2012-06-01

    Emerging organic contaminants (pharmaceutical compounds, personal care products, pesticides, hormones, surfactants, fire retardants, fuel additives etc.) are increasingly found in water sources and therefore need to be controlled by water treatment technology. UV advanced oxidation technologies are often used as an effective barrier against organic contaminants. The combined operation of direct photolysis and reaction with hydroxyl radicals ensures good results for a wide range of contaminants. In this review, an overview is provided of the photochemical reaction parameters (quantum yield, molar absorption, OH radical reaction rate constant) of more than 100 organic micropollutants. These parameters allow for a prediction of organic contaminant removal by UV advanced oxidation systems. An example of contaminant degradation is elaborated for a simplified UV/H(2)O(2) system. PMID:22483836

  9. Oxidation of triclosan by ferrate: Reaction kinetics, products identification and toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Bin [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@csiro.au [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhao Jianliang; Zhang Lijuan; Fang Yixiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Nghiem, Long Duc [School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2011-02-15

    Research highlights: {yields} Triclosan reacted rapidly with ferrate. {yields} Oxidation resulted in a decrease in algal toxicity. {yields} No inhibition of algae growth from ferrate. - Abstract: The oxidation of triclosan by commercial grade aqueous ferrate (Fe(VI)) was investigated and the reaction kinetics as a function of pH (7.0-10.0) were experimentally determined. Intermediate products of the oxidation process were characterized using both GC-MS and RRLC-MS/MS techniques. Changes in toxicity during the oxidation process of triclosan using Fe(VI) were investigated using Pseudokirchneriella subcapitata growth inhibition tests. The results show that triclosan reacted rapidly with Fe(VI), with the apparent second-order rate constant, k{sub app}, being 754.7 M{sup -1} s{sup -1} at pH 7. At a stoichiometric ratio of 10:1 (Fe(VI):triclosan), complete removal of triclosan was achieved. Species-specific rate constants, k, were determined for reaction of Fe(VI) with both the protonated and deprotonated triclosan species. The value of k determined for neutral triclosan was 6.7({+-}1.9) x 10{sup 2} M{sup -1} s{sup -1}, while that measured for anionic triclosan was 7.6({+-}0.6) x 10{sup 3} M{sup -1} s{sup -1}. The proposed mechanism for the oxidation of triclosan by the Fe(VI) involves the scission of ether bond and phenoxy radical addition reaction. Coupling reaction may also occur during Fe(VI) degradation of triclosan. Overall, the degradation processes of triclosan resulted in a significant decrease in algal toxicity. The toxicity tests showed that Fe(VI) itself dosed in the reaction did not inhibit green algae growth.

  10. Oxidation of triclosan by ferrate: Reaction kinetics, products identification and toxicity evaluation

    International Nuclear Information System (INIS)

    Research highlights: → Triclosan reacted rapidly with ferrate. → Oxidation resulted in a decrease in algal toxicity. → No inhibition of algae growth from ferrate. - Abstract: The oxidation of triclosan by commercial grade aqueous ferrate (Fe(VI)) was investigated and the reaction kinetics as a function of pH (7.0-10.0) were experimentally determined. Intermediate products of the oxidation process were characterized using both GC-MS and RRLC-MS/MS techniques. Changes in toxicity during the oxidation process of triclosan using Fe(VI) were investigated using Pseudokirchneriella subcapitata growth inhibition tests. The results show that triclosan reacted rapidly with Fe(VI), with the apparent second-order rate constant, kapp, being 754.7 M-1 s-1 at pH 7. At a stoichiometric ratio of 10:1 (Fe(VI):triclosan), complete removal of triclosan was achieved. Species-specific rate constants, k, were determined for reaction of Fe(VI) with both the protonated and deprotonated triclosan species. The value of k determined for neutral triclosan was 6.7(±1.9) x 102 M-1 s-1, while that measured for anionic triclosan was 7.6(±0.6) x 103 M-1 s-1. The proposed mechanism for the oxidation of triclosan by the Fe(VI) involves the scission of ether bond and phenoxy radical addition reaction. Coupling reaction may also occur during Fe(VI) degradation of triclosan. Overall, the degradation processes of triclosan resulted in a significant decrease in algal toxicity. The toxicity tests showed that Fe(VI) itself dosed in the reaction did not inhibit green algae growth.

  11. Mass transfer model for two-layer TBP oxidation reactions: Revision 1

    International Nuclear Information System (INIS)

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the Canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. Bubbles containing reaction products enhance the rate of transfer of water from the aqueous layer to the organic layer. These bubbles are generated by the oxidation of TBP and its reaction products in the organic layer and by the oxidation of butanol in the aqueous layer. Butanol is formed by the hydrolysis of TBP in the organic layer. For aqueous-layer bubbling to occur, butanol must transfer into the aqueous layer. Consequently, the rate of oxidation and bubble generation in the aqueous layer strongly depends on the rate of transfer of butanol from the organic to the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments

  12. Electrochemical oxidation of americium in nitric medium: study of reaction mechanisms

    International Nuclear Information System (INIS)

    One alternative selected by the CEA for partitioning minor actinides from aqueous solutions containing fission products is the selective extraction of oxidized americium. This is the SESAME process (Selective Extraction and Separation of Americium by Means of Electrolysis) aimed to convert americium to oxidation state (VI) and then extract it with a specific extractant of high valences. This paper presents the study of the electrochemical oxidation of americium in nitric medium which represents an important stage of the process. The reaction can be divided into two main steps: oxidation of americium (III) to americium (IV), and then of americium (IV) to americium (VI). For the first oxidation step, a ligand L is needed to stabilize the intermediate species americium (IV) which disproportionates in its free form into americium (III) and (V). Phospho-tungstate or silico-tungstate are appropriate ligands because they are stable in concentrated nitric acid and show a great affinity for metallic cations at oxidation state (IV) (Table 1 lists the stability constants of americium (IV) complexes). The presence of the lacunary poly-anion lowers the potential of the americium (IV) / americium (Ill) redox pair (see Figure 5 for the diagram of the apparent formal potential of americium versus ligand concentration). This makes it thermodynamically possible to oxidize americium (III) into americium (IV) at the anode of an electrolyzer in nitric acid. For the second oxidation step, a strong oxidant redox mediator, like silver (II), is needed to convert complexed americium at oxidation state (IV) to oxidation state (V). The AmVL complex is then hydrolyzed to yield americyle (V) aqua ion. A spectroscopic Raman study with 18O labeled species showed that the oxygen atoms of the americyle moiety came from water. This indicates that water hydrolyzes the americium (V) complex to produce americyle (V) aqua ion, AmO2+. This cation reacts with silver (Il) to give americyle (VI) ion. Figure

  13. Strategies for catalyst development: possibilities of the ``rational approach`` illustrated with partial oxidation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W.; Schedel-Niedrig, T.; Schloegl, R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany). Abt. Oberflaechenphysik

    1998-12-31

    The paper discusses two petrochemical selective oxidation reactions namely the practised formation of styrene (STY) and the desired oxidative functionalisation of propane. The present knowledge about the mode of operation of oxide catalysts is critically considered. The dehydrogenation of ethylbenzene (EB) should be described by an oxidehydration with water acting as oxidant. The potential role of the coke formed during catalytic reaction as co-catalyst will be discussed. Selective oxidation is connected with the participation of lattice oxygen mechanism which transforms unselective gas phase oxygen into selective oxygen. The atomistic description of this process is still quite unclear as well as the electron structural properties of the activated oxygen atom. The Role of solid state acidity as compared to the role of lattice oxygen is much less well investigated modern multiphase-multielement oxide (MMO) catalysts. The rationale is that the significant efforts made to improve current MMO systems by chemical modifications can be very much more fruitful when in a first step the mode of action of a catalyst is clarified on the basis of suitable experiments. Such time-consuming experiments at the beginning of a campaign for catalyst improvement pay back their investment in later stages of the project when strategies of chemical development can be derived on grounds of understanding. (orig.)

  14. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    Science.gov (United States)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  15. Final Report: Catalytic Hydrocarbon Reactions over Supported Metal Oxides, August 1, 1995 - July 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, John G.

    1999-07-31

    The research program focused on the catalysis of hydrodesulfurization (HDS) over molybdenum-based catalysts and how catalyst composition, redox ability, structure and neighboring sites control the catalytic properties of metal oxides. We sought to understand the catalytic features/sites that control hydrogenation, hydrogenolysis, and isomerization during HDS. Unprompted silica-supported molybdenum oxides and molybdenum sulfides were studied. Model catalyst systems were prepared from organometallic precursors or cluster compounds to generate supported structures that feature Mo(II) and Mo(IV) cations that are isolated or in ensembles and that have either Mo-O or Mo-S bonds. Conventional MOS{sub 2} catalysts, which contain both edge and rim sites, were be studied. Finally, single-layer MOS{sub 2} structures were also prepared from 2H-MoS{sub 2} powder so that the model systems could be compared against a disulfide catalyst that only involves rim sites. Catalytic reactions for thiophene and tetrahydrothione were studied over the various catalysts. Oxidation states were determined using X-ray photoelectron spectroscopy. X-ray crystallography was used to characterize and follow changes in the MOS{sub 2} structures. The program on metal oxides prepared supported oxides that have a specific structure and oxidation state to serve as model templates for the more complex commercial catalysts and then employed these structures in reaction studies. This focus area examined the relationships between structure and cation redox characteristics in oxidation catalysis. Infrared and Raman spectroscopy were used to characterize the cations and reaction intermediates.

  16. Water-gas shift reaction on oxide/Cu(111): Rational catalyst screening from density functional theory

    Science.gov (United States)

    Liu, Ping

    2010-11-01

    Developing improved catalysts based on a fundamental understanding of reaction mechanism has become one of the grand challenges in catalysis. A theoretical understanding and screening the metal-oxide composite catalysts for the water-gas shift (WGS) reaction is presented here. Density functional theory was employed to identify the key step for the WGS reaction on the Au, Cu-oxide catalysts, where the calculated reaction energy for water dissociation correlates well with the experimental measured WGS activity. Accordingly, the calculated reaction energy for water dissociation was used as the scaling descriptor to screen the inverse model catalysts, oxide/Cu(111), for the better WGS activity. Our calculations predict that the WGS activity increases in a sequence: Cu(111), ZnO/Cu(111) < TiO2/Cu(111), ZrO2/Cu(111) < MoO3/Cu(111). Our results imply that the high performances of Au, Cu-oxide nanocatalysts in the WGS reaction rely heavily on the direct participation of both oxide and metal sites. The degree that the oxide is reduced by Cu plays an important role in determining the WGS activity of oxide/Cu catalysts. The reducible oxide can be transformed from the fully oxidized form to the reduced form due to the interaction with Cu and, therefore, the transfer of electron density from Cu, which helps in releasing the bottleneck water dissociation and, therefore, facilitating the WGS reaction on copper.

  17. Surface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts

    OpenAIRE

    Karla Herrera Delgado; Lubow Maier; Steffen Tischer; Alexander Zellner; Henning Stotz; Olaf Deutschmann

    2015-01-01

    An experimental and kinetic modeling study on the Ni-catalyzed conversion of methane under oxidative and reforming conditions is presented. The numerical model is based on a surface reaction mechanism consisting of 52 elementary-step like reactions with 14 surface and six gas-phase species. Reactions for the conversion of methane with oxygen, steam, and CO2 as well as methanation, water-gas shift reaction and carbon formation via Boudouard reaction are included. The mechanism is implemented i...

  18. Hydrogen production reaction with a metal oxide catalyst in high pressure high temperature water

    International Nuclear Information System (INIS)

    Hydrogen production from biomass was attempted in high pressure high temperature water at 573 K by adopting partial oxidation to increase the yield of H2 via CO production in the presence of ZnO. The results revealed that an addition of H2O2 as an oxidant to the reaction of glucose and sugarcane bagasse brought about the trend of increasing the yields of H2, CO, and CO2. However, the sensitivity of H2 yield on H2O2 amount was different from those of CO and CO2, namely the excess amount of H2O2 tends to decrease the H2 yield with giving a maximum at a certain H2O2 amount. These indicated that the controllability of partial oxidation would be a key factor for maximizing the H2 yield through biomass conversion by partial oxidative gasification in high pressure high temperature water

  19. Investigation of oxidative degradation and non‐enzymatic browning reactions in krill and fish oils

    DEFF Research Database (Denmark)

    Thomsen, Birgitte Raagaard; Haugsgjerd, Bjørn Ole; Griinari, Mikko; Lu, Henna Fung Sieng; Bruheim, Inge; Vogt, Gjermund; Oterhals, Åge; Jacobsen, Charlotte

    2013-01-01

    The aim of this research was to investigate the oxidation progress and pathways of krill and fish oil during 21 days of incubation at 40°C. The oxidative stability of the oils was investigated through: (i) classical methods such as peroxide value (PV), anisidine value (AV), thiobarbituric reactive...... conditions using the Oxipres™ at 90°C. The results from analysis of PV, AV, TBARS, conjugated dienes and trienes, and the antioxidant content suggested that krill oil was more oxidatively stable than fish oil. However, the color or other constituents of the krill oil might affect the result of these...... products and pyrroles formed as a result of non‐enzymatic browning reactions could only be observed in krill oil. The presence of pyrroles might have contributed to the higher oxidative stability of krill oil. Krill oil also contained a higher level of tocopherol, astaxanthin and phospholipids than fish...

  20. Bifunctional Nb/Ti-MCM-41 catalyst in oxidative acidic reaction of cyclohexene to diol

    International Nuclear Information System (INIS)

    Bifunctional oxidative and acidic catalyst was prepared by incorporating titanium ion (Ti4+) and niobic acid in meso porous molecular sieves MCM-41 structure. The catalyst is active both in oxidation, and acid-catalyzed reaction of olefin to diol. Nb/ Ti-MCM-41 catalyst was prepared by first synthesizing Ti-MCM-41 by hydrothermal method, followed by subsequent impregnation of niobic acid (Nb) into Ti-MCM-41 at various % wt Nb loading. The framework structure of Ti-MCM-41 collapsed after incorporation of Nb but the tetrahedral form of Ti4+ still maintained with octahedral Nb species. Both Bronsted and Lewis acid sites are present in all Nb/ Ti-MCM-41 samples. The formation of cyclohexanediol in the epoxidation of cyclohexene proved the bifunctional oxidative and acidic catalyst through the formation of cyclohexane oxide. The yield increased with the increase amount of the Bronsted acid sites provided by niobium species. (author)

  1. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  2. Bio-inspired immobilization of metal oxides on monolithic microreactor for continuous Knoevenagel reaction.

    Science.gov (United States)

    Song, Wentong; Shi, Da; Tao, Shengyang; Li, Zhaoliang; Wang, Yuchao; Yu, Yongxian; Qiu, Jieshan; Ji, Min; Wang, Xinkui

    2016-11-01

    A facile method is reported to construct monolithic microreactor with high catalytic performance for Knoevenagel reaction. The microreactor is based on hierarchically porous silica (HPS) which has interconnected macro- and mesopores. Then the HPS is surface modified by pyrogallol (PG) polymer. Al(NO3)3 and Mg(NO3)2 are loaded on the surface of HPS through coordination with -OH groups of PG. After thermal treatment, Al(NO3)3 and Mg(NO3)2 are converted Al2O3 and MgO. The as-synthesized catalytic microreactor shows a high and stable performance in Knoevenagel reaction. The microreactor possess large surface area and interconnected pore structures which are beneficial for reactions. Moreover, this economic, facile and eco-friendly surface modification method can be used in loading more metal oxides for more reactions. PMID:27459172

  3. Supercritical water oxidation of Quinazoline: Effects of conversion parameters and reaction mechanism.

    Science.gov (United States)

    Gong, Yanmeng; Guo, Yang; Wang, Shuzhong; Song, Wenhan

    2016-09-01

    The supercritical water oxidation reaction of quinazoline and a set of related reaction products were investigated in batch reactors by varying the temperature (T, 400-600 °C), time (t, 0-400 s), water density (ρ, 70.79-166.28  kg m(-3)) and oxidation coefficient (OC, 0-4.0). The TOC removal efficiency (CRE) increased significantly as the OC increased, whereas this effect was very limited at high OC (>2.0). Lack of oxygen resulted in low CRE and TN removal efficiency (NRE), also cause coke-formation, and giving high yield of NH3 and nitrogenous organic intermediates. Prolonging reaction time did not provide an appreciable improvement on CRE but remarkably increased NRE at temperature higher than 500 °C. Pyrimidines and pyridines as the nitrogenous intermediates were largely found in GC-MS spectrum. Polymerization among benzene, phenyl radical and benzyl radical played important roles in the formation of PAHs, such as naphthalene, biphenyl, phenanthrene. These collective results showed how the yield of intermediate products responded to changes in the process variables, which permitted the development of a potential reaction network for supercritical water oxidation of quinazoline. PMID:27179598

  4. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  5. Gas-Solid Reaction Route toward the Production of Intermetallics from Their Corresponding Oxide Mixtures

    Directory of Open Access Journals (Sweden)

    Hesham Ahmed

    2016-08-01

    Full Text Available Near-net shape forming of metallic components from metallic powders produced in situ from reduction of corresponding pure metal oxides has not been explored to a large extent. Such a process can be probably termed in short as the “Reduction-Sintering” process. This methodology can be especially effective in producing components containing refractory metals. Additionally, in situ production of metallic powder from complex oxides containing more than one metallic element may result in in situ alloying during reduction, possibly at lower temperatures. With this motivation, in situ reduction of complex oxides mixtures containing more than one metallic element has been investigated intensively over a period of years in the department of materials science, KTH, Sweden. This review highlights the most important features of that investigation. The investigation includes not only synthesis of intermetallics and refractory metals using the gas solid reaction route but also study the reaction kinetics and mechanism. Environmentally friendly gases like H2, CH4 and N2 were used for simultaneous reduction, carburization and nitridation, respectively. Different techniques have been utilized. A thermogravimetric analyzer was used to accurately control the process conditions and obtain reaction kinetics. The fluidized bed technique has been utilized to study the possibility of bulk production of intermetallics compared to milligrams in TGA. Carburization and nitridation of nascent formed intermetallics were successfully carried out. A novel method based on material thermal property was explored to track the reaction progress and estimate the reaction kinetics. This method implies the dynamic measure of thermal diffusivity using laser flash method. These efforts end up with a successful preparation of nanograined intermetallics like Fe-Mo and Ni-W. In addition, it ends up with simultaneous reduction and synthesis of Ni-WN and Ni-WC from their oxide mixtures

  6. Suppressive Effect of Interface Reaction and Water Absorption by Al Incorporation into Pr-oxide Film

    International Nuclear Information System (INIS)

    We have investigated the effects of Al incorporation into a Pr-oxide/Si gate stack formed by atomic layer deposition. The PrAlOx (PAO) layers show an amorphous structure by the incorporation of Al into the Pr-oxide. The PAO sample with 10%-Al shows good C-V characteristics without a hump, and the interface state density (Dit) is as low as 5 × 1010 cm−2 eV−1. The amount of Si in the Pr-oxide film decreases by the Al incorporation. We deduce that Al incorporation into a Pr-oxide layer inhibits reaction at the interface of the PAO/Si substrate. We found that Al incorporation into the Pr-oxide is effective against the inhibition of moisture incorporation into the oxide film. The Pr(OH)3 component, estimated by x-ray photoelectron spectroscopy, increases near the surface of the Pr-oxide and PAO films with 10%-Al after 300 days, while the SiOx component does not change. The Pr(OH)3 component decreases with increasing Al incorporation. The Dit of the PAO/Si sample with 10%-Al increases after 300 days. After post metallization annealing of the sample in N2, Dit decreases with increasing annealing temperature.

  7. Oxidative Degradation of Nadic-End-Capped Polyimides. 2; Evidence for Reactions Occurring at High Temperatures

    Science.gov (United States)

    Meador, Mary Ann B.; Johnston, J. Christopher; Cavano, Paul J.; Frimer, Aryeh A.

    1997-01-01

    The oxidative degradation of PMR (for polymerization of monomeric reactants) polyimides at elevated temperatures was followed by cross-polarized magic angle spinning (Cp-MAS) NMR. C-13 labeling of selected sites in the polymers allowed for direct observation of the transformations arising from oxidation processes. As opposed to model compound studies, the reactions were followed directly in the polymer. The labeling experiments confirm the previously reported oxidation of the methylene carbon to ketone in the methylenedianiline portion of the polymer chain. They also show the formation of two other oxidized species, acid and ester, from this same carbon. In addition, the technique provides the first evidence of the kind of degradation reactions that are occurring in the nadic end caps. Several PMR formulations containing moieties determined to be present after oxidation, as suggested by the labeling study, were synthesized. Weight loss, FTIR, and natural abundance NMR of these derivatives were followed during aging. In this way, weight loss could be related to the observed transformations.

  8. Rate Equations and Kinetic Parameters of the Reactions Involved in Pyrite Oxidation by Thiobacillus ferrooxidans.

    Science.gov (United States)

    Lizama, H M; Suzuki, I

    1989-11-01

    Rate equations and kinetic parameters were obtained for various reactions involved in the bacterial oxidation of pyrite. The rate constants were 3.5 muM Fe per min per FeS(2) percent pulp density for the spontaneous pyrite dissolution, 10 muM Fe per min per mM Fe for the indirect leaching with Fe, 90 muM O(2) per min per mg of wet cells per ml for the Thiobacillus ferrooxidans oxidation of washed pyrite, and 250 muM O(2) per min per mg of wet cells per ml for the T. ferrooxidans oxidation of unwashed pyrite. The K(m) values for pyrite concentration were similar and were 1.9, 2.5, and 2.75% pulp density for indirect leaching, washed pyrite oxidation by T. ferrooxidans, and unwashed pyrite oxidation by T. ferrooxidans, respectively. The last reaction was competitively inhibited by increasing concentrations of cells, with a K(i) value of 0.13 mg of wet cells per ml. T. ferrooxidans cells also increased the rate of Fe production from Fe plus pyrite. PMID:16348054

  9. Reaction behavior between the oxide film of LY12 aluminum alloy and the flux

    Institute of Scientific and Technical Information of China (English)

    薛松柏; 董健; 吕晓春; 顾文华

    2004-01-01

    In this paper, the brazing mechanism of LY12 aluminum alloy at middle range temperature was presented. The CsF-AlF3 non-corrosive flux was utilized to remove the complex oxide film on the surface of LY12 aluminum alloy. The results revealed that the oxide film was removed by the improved CsF-AlF3 flux accompanied with the occurrence of reaction as well as dissolution and the compounds CsF played an important role to remove the oxide film. Actually, the high activity of flux, say, the ability to remove the oxide film, was due to the presence of the compounds, such as NH4F,NH4AlF4 and composite molten salt. The production of HF was the key issue to accelerate the reaction and enhance to eliminate the oxide film by dissolution. It was found that the rare earth element La at small percentage was not enriched at the interface. Moreover, the rare earth fluoride enhanced the dissolution behavior.

  10. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    International Nuclear Information System (INIS)

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe0 foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H2O2, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe2O3 on Fe0 metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na2SO4 containing 0.5 wt% NH4F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H2O2). In case of INT-40 V in the presence of H2O2 3%, the first-order rate constant was found to be 1.7 × 10−2 min−1, and 1.2 × 10−2 min−1 with commercial hematite powder. Degradation of cyanide was much less with only H2O2. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction

  11. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl;

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac......For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling...... of the activation of NO by O2 with the fast SCR reaction, enabled by the release of NO2. According to the scheme, the SCR reaction can be divided in an oxidation of the catalyst by NO + O2 and a reduction by NO + NH3; these steps together constitute a complete catalytic cycle. Furthermore both NO and NH3...... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  12. Efficient oxidation of benzyl alcohol with heteropolytungstate as reaction-controlled phase-transfer catalyst

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of heteropolytungstates has been synthesized and utilized as catalysts to catalyze oxidation of benzyl alcohol with aqueous hydrogen peroxide. The results indicated that three of these catalysts showed the properties of reaction-controlled phasetransfer catalysis, and they had excellent catalytic ability to the oxidation of benzyl alcohol. No other by-products were detected by gas chromatography. Once the hydrogen peroxide was consumed completely, the catalyst precipitated from solvent, and the results of the catalyst recycle showed that the catalyst had high stability.

  13. Development of Ag dendrites-reduced graphene oxide composite catalysts via galvanic replacement reaction

    Science.gov (United States)

    Fu, Li; Sokiransky, Mika Matsunaka; Wang, James; Lai, Guosong; Yu, Aimin

    2016-09-01

    Silver dendrites/reduced graphene oxide (AgD/RGO) composites were synthesized via a facile galvanic replacement method. The successful formation of Ag dendrites and the graphene oxide reduction were proved by a series of characterization techniques. The possible formation mechanism of Ag dendrites during the galvanic replacement reaction was discussed. The catalytic activity of the as-synthesized AgD/RGO composite was evaluated by its performance on the chemical reduction of an organic dye methylene blue. The AgD/RGO composite showed a much higher catalytic performance and stability than that of Ag dendrites.

  14. Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms.

    Science.gov (United States)

    Karande, Rohan; Debor, Linde; Salamanca, Diego; Bogdahn, Fabian; Engesser, Karl-Heinrich; Buehler, Katja; Schmid, Andreas

    2016-01-01

    The applications of biocatalysts in chemical industries are characterized by activity, selectivity, and stability. One key strategy to achieve high biocatalytic activity is the identification of novel enzymes with kinetics optimized for organic synthesis by Nature. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp. CHX100 and their functional expression in recombinant Pseudomonas taiwanensis VLB120 enabled efficient oxidation of cyclohexane to cyclohexanol. Although initial resting cell activities of 20 U gCDW (-1) were achieved, the rapid decrease in catalytic activity due to the toxicity of cyclohexane prevented synthetic applications. Cyclohexane toxicity was reduced and cellular activities stabilized over the reaction time by delivering the toxic substrate through the vapor phase and by balancing the aqueous phase mass transfer with the cellular conversion rate. The potential of this novel CYP enzyme was exploited by transferring the shake flask reaction to an aqueous-air segmented flow biofilm membrane reactor for maximizing productivity. Cyclohexane was continuously delivered via the silicone membrane. This ensured lower reactant toxicity and continuous product formation at an average volumetric productivity of 0.4 g L tube (-1) h(-1) for several days. This highlights the potential of combining a powerful catalyst with a beneficial reactor design to overcome critical issues of cyclohexane oxidation to cyclohexanol. It opens new opportunities for biocatalytic transformations of compounds which are toxic, volatile, and have low solubility in water. PMID:26153144

  15. Oxidation and reduction reactions of the water-oxidizing complex in photosystem II

    OpenAIRE

    Pham, Long Vo

    2015-01-01

    The oxygen that we breathe and food that we eat are products of the natural photosynthesis. Molecular oxygen is crucial for life on Earth owing to its role in the glycolysis and citric acid pathways that yield in aerobic organisms the energy-rich ATP molecules. Photosynthetic water oxidation, which produces molecular oxygen from water and sunlight, is performed by higher plants, algae and cyanobacteria. Within the molecular structure of a plant cell, photosynthesis is performed by a specific ...

  16. The mechanism of oxygen reactions at porous oxide electrodes Part III: Water oxidation catalysis at RuO2/NiO mixed oxide electrodes

    OpenAIRE

    Lyons, Michael

    2014-01-01

    RuO2/NiO mixed oxide electrodes prepared by thermal decomposition were examined as potential water oxidation catalysts. Addition of just 10 mol% RuO2 to a NiO electrode was found to decrease the oxygen evolution reaction (OER) onset potential by 20% with increasing additions having significantly diminishing returns. The OER current densities for the RuO2/NiO electrode were found to increase when preconditioned by application of prolonged polarization regimes with the Tafel slope also decreasi...

  17. Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal: Homogeneous-heterogeneous methane reaction pathways

    International Nuclear Information System (INIS)

    Detailed kinetic-transport models were used to explore thermodynamic and kinetic barriers in the non-oxidative conversion of CH4 via homogeneous and homogeneous-heterogeneous pathways and the effects of continuous hydrogen removal and of catalytic sites on attainable yields of useful C2-C10 products. The homogeneous kinetic model combines separately developed models for low-conversion pyrolysis and for chain growth to form large aromatics and carbon. The H2 formed in the reaction decreases CH4 pyrolysis rates and equilibrium conversions and it favors the formation of lighter products. The removal of H2 along tubular reactors with permeable walls increases reaction rates and equilibrium CH4 conversions. C2-C10 yields reach values greater than 90 percent at intermediate values of dimensionless transport rates (delta=1-10), defined as the ratio hydrogen transport and methane conversion rates. Homogeneous reactions require impractical residence times, even with H2 removal, because of slow initiation and chain transfer rates. The introduction of heterogeneous chain initiation pathways using surface sites that form methyl radicals eliminates the induction period without influencing the homogeneous product distribution. Methane conversion, however, occurs predominately in the chain transfer regime, within which individual transfer steps and the formation of C2 intermediates become limited by thermodynamic constraints. Catalytic sites alone cannot overcome these constraints. Catalytic membrane reactors with continuous H2 removal remove these thermodynamic obstacles and decrease the required residence time. Reaction rates become limited by homogeneous reactions of C2 products to form C6+ aromatics. Higher delta values lead to subsequent conversion of the desired C2-C10 products to larger polynuclear aromatics. We conclude that catalytic methane pyrolysis at the low temperatures required for restricted chain growth and the elimination of thermodynamics constraints via

  18. Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas

    Institute of Scientific and Technical Information of China (English)

    Haitao Wang; Zhenhua Li; Shuxun Tian

    2003-01-01

    The partial oxidation of methane to synthesis gas is studied in this paper over Ni/Al2O3 catalysts under atmospheric pressure. The effects of Ni loading on the activity and stability of catalysts with 5 mm α-Al2O3 and θ-Al2O3 pellets as supports were measured in a continuous fixed bed reactor. It is found that the optimum Ni loading is 10%. And the effect of reaction conditions on partial oxidation of methane is also studied. The methane conversion and CO selectivity increase with the increase of the reaction temperature and the space velocity on 10%Ni/α-Al2O3 catalysts. The best CH4/O2 mole ratio is 2 for CO selectivity, and the optimum space velocity is 5.4×105 h-1.

  19. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    Science.gov (United States)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2014-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification by various microorganisms. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathways. To determine representative SP values for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for the NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  20. Toluene removal by oxidation reaction in spray wet scrubber: experimental, modeling and optimization

    OpenAIRE

    Roumporn Nikom; Juntima Chungsiriporn; Charun Bunyakan

    2006-01-01

    Toluene, an important volatile organic compound (VOC), is used in many kinds of industries, such as painting, printing, coating, and petrochemical industries. The emission of toluene causes serious air pollution, odor problem, flammability problem and affects human health. This paper proposes the removal of toluene from waste air using a spray wet scrubber combining the absorption and oxidation reaction. Aqueous sodium hypochlorite (NaOCl) solution was used as the scrubbing liquid in the syst...

  1. Investigation of the kinetics of the reactions of oxidation, nitration, and hydrogenation of uranium

    International Nuclear Information System (INIS)

    Various physico-chemical methods have been used to investigate the kinetics of the oxidation hydridation and nitridation of uranium. The experimental results show that the kinetics of these reactions are influenced by many factors also the Pilling and Bedworth rule is valid only under very limited conditions. The disagreement between this rule and the experimental results could be explained by the existence of numerous mechanical faults in the compounds obtained by the dry corrosion of the metal. (author)

  2. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    Directory of Open Access Journals (Sweden)

    T. Yamazaki

    2013-10-01

    Full Text Available Nitrous oxide (N2O is a potent greenhouse gas and produced in denitrification and nitrification in environmental nitrogen cycle by various microorganism. Site preference (SP of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathway. To determine representative SP value for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO purified from two species of ammonia oxidizing bacteria (AOB, Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR from Paracoccus denitrificans, respectively. The SP value for NOR reaction (−5.9 ± 2.1‰ showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰ was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2– reduction (which is followed by NO reduction to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for NH2OH oxidation pathway possibly due to a small contribution of NO2– reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  3. Kinetic determination of iodide by the oxidation reaction of benzidine with chloramine B

    International Nuclear Information System (INIS)

    Iodide catalyzed oxidation of benzidine with Chloramine B is studied for its possible application to kinetic determination of iodides. Based on the results of kinetic studies performed, optimal conditions for the catalytic reaction are revealed and a kinetic method for iodide determination is developed. The determination limit of iodide is 2x10-4 μg/ml. It was demonstrated that the proposed method can be used for the determination of iodides in water, soil, and kelp

  4. Oxidized Fatty Acid Analysis by Charge Switch Derivatization, Selected Reaction Monitoring and Accurate Mass Quantification

    OpenAIRE

    Liu, Xinping; Moon, Sung Ho; Mancuso, David J.; Jenkins, Christopher M.; Guan, Shaoping; Sims, Harold F.; Gross, Richard W.

    2013-01-01

    A highly sensitive, specific and robust method for the analysis of oxidized metabolites of linoleic, acid (LA), arachidonic acid (AA) and docosahexaenoic acid (DHA) was developed using charge-switch derivatization, LC-ESI MS/MS with selected reaction monitoring (SRM) and quantitation by high mass accuracy analysis of product ions thereby minimizing interferences from contaminating ions. Charge-switch derivatization of LA, AA and DHA metabolites with N-(4-aminomethylphenyl)-pyridinium resulted...

  5. Oxidation of elemental mercury by chlorine: Gas phase, Surface, and Photo-induced reaction pathways

    OpenAIRE

    Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

    2004-01-01

    Accurate oxidation rate constants of mercury gas are needed for determining its dispersion and lifetime in the atmosphere. They would also help in developing a technology for the control of mercury emissions from coal-fired power plants. However, it is difficult to establish the accurate rate constants primarily due to the fact that mercury easily adsorbs on solid surface and its reactions can be catalyzed by the surface. We have demonstrated a procedure that allows the determination of ...

  6. Dependence of reaction rate of pyrite oxidation on temperature, pH and oxidant concentration

    Institute of Scientific and Technical Information of China (English)

    LU; Long; WANG; Rucheng; XUE; Jiyue; CHEN; Fanrong; CHEN; J

    2005-01-01

    The kinetic sstudy of pyrite oxidation was performed in a series of experiments by a mixed flow reactor. The release rates of Fe(II) are in the order of 3.22×10-9-5.51×10-7 mol·m-2·s-1 at temperature (T ) 25 to 44℃, initial pH (pH )1.4 to 2.7, and initial Fe(III) concentration ([Fe(III)]I) 10-5 to 5×10-3 mol·kg-1. The release rate of Fe(II) increased with increasing T or/and pH or/and [Fe(III)]I in the above range. The rate law and activation energy of pyrite oxidation were derived by statistical analyses of Rfe(II) vs. [Fe(III)]I, Rfe(II) vs. pH and Rfe(II) vs. T, and are given as (1) Rate law: Rfe(II)=104.65e-64.54×103/8.31T[Fe(III)]i0.6./[H+]0.45 ; (2) activation energy: 64.54 ( 8.07 kJ·mol-1. The expression can be applied to more cases (e.g., quantifying the pollutant released from sulfide-rich mining waste and assessing reliable performance of underground repository sites where pyrite acts as an engineered barrier material). Using the rate law derived from this study, the magnitude of the pollutants transferred to secondary phases, soil and water from oxidized pyrite during Jiguanshan mine waste weathering was preliminarily estimated. The estimated magnitude is very high, suggesting that the pile has possibly posed significant impact on the water quality in this region.

  7. Hydrolysis reaction on the characterization of wormhole-like mesoporous tungsten oxide

    International Nuclear Information System (INIS)

    Wormhole-like mesostructures have promising applications in heterogeneous catalysis because channel branching within the wormhole-like mesostructures can facilitate access to active sites on the framework walls. We adopt the poly(alkylene oxide) triblock copolymer of L62 (BASF Pluronic EO8PO30EO8) as a template to form wormhole-like mesoporous tungsten oxide. In the hydrolysis experiment, 10 or 20% anhydrous ethanol was replaced with distilled deionized water (H2O). The crystallinity of wormhole-like mesoporous tungsten oxide decreases when the anhydrous ethanol solvent is replaced with H2O. Such a decrease in the relative strength of O-W-O binding attributes to the hydrolysis of the wormhole-like mesoporous tungsten oxide from Raman spectra. Specific surface area and average pore size of wormhole-like mesoporous tungsten oxide decrease with the amount of H2O replacement. The phenomenon can also be confirmed by nitrogen adsorption-desorption isotherms. These results show that the hydrolysis reactions have great significance and application for the development of wormhole-like mesoporous tungsten oxide in the future

  8. Activity and stability of the oxygen evolution reaction on electrodeposited Ru and its thermal oxides

    Science.gov (United States)

    Kim, Jin Yeong; Choi, Jihui; Kim, Ho Young; Hwang, Eunkyoung; Kim, Hyoung-Juhn; Ahn, Sang Hyun; Kim, Soo-Kil

    2015-12-01

    The activity and stability of Ru metal and its thermal oxide films for the oxygen evolution reaction (OER) were investigated. The metallic Ru films were prepared by electrodeposition on a Ti substrate and then thermally oxidized at various temperatures under atmospheric conditions. During long-term operation of the OER with cyclic voltammetry (CV) in H2SO4 electrolyte, changes in the properties of the Ru and its thermal oxides were monitored in terms of their morphology, crystal structure, and electronic structure. In the initial stages of the OER, all of the Ru thermal oxide films underwent an activation process that was related to the continuous removal of low-activity Ru oxides from the surface. With further cycling, the OER activity decreased. The rate of decrease was different for each Ru film and was related to the annealing temperatures. Monitoring of material properties indicates that the amount of stable anhydrous RuO2 is important for OER stability because it prevents both the severe dissolution of metallic Ru beneath the oxide surface and the formation of a less active hydrous RuO2 at the surface.

  9. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage.

    Science.gov (United States)

    Lu, F S H; Bruheim, I; Haugsgjerd, B O; Jacobsen, C

    2014-08-15

    The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40 °C) for 28 or 42 days. The oxidative stability of krill oil was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature firstly increased the lipid oxidation in krill oil and subsequently the non-enzymatic browning reactions. The occurrence of these reactions was most likely due to the reaction between α-dicarbonyl or carbonyl compounds with amino acids or ammonia. In addition to tocopherol and astaxanthin esters, the formation of pyrroles might help to protect the krill oil against lipid oxidation. PMID:24679797

  10. A comparative study of the oxygen evolution reaction on oxidized nickel, cobalt and iron electrodes in base

    OpenAIRE

    LYONS, MICHAEL EDWARD

    2010-01-01

    Despite the recent renewal in interest in the oxygen evolution reaction (OER) at transition metal oxide based electrodes in alkaline solution, the details of the mechanism remain controversial. While most studies focus on a particular oxide in isolation, a consistent experimental examination of the oxides of adjacent elements is likely to be fruitful with respect to mechanistic elucidation. In the present comprehensive work, the kinetics of the OER proceeding on the anodic passive oxides of i...

  11. Iron Oxides from Volcanic Soils as Potential Catalysts in the Water Gas Shift Reaction

    International Nuclear Information System (INIS)

    This study was focused on changes of the iron oxide mineralogy with temperature of two Chilean soils (Andisol and Ultisol) derived from volcanic materials and their use as iron-based catalysts in the water gas shift reaction (WGSR). Ultisol materials produced about twice as much hydrogen than did those from Andisol upon WGSR, but in both cases hydrogen yielding increased as the heating temperature of the soil materials increased from 124 deg. C to 500 deg. C. The room temperature Moessbauer spectra showed an increase of the relative proportion of the magnetically ordered components as temperature increased. Higher heating temperature produced a negative effect on the catalytic activity, whereas the organic matter destruction led to a positive effect, due to an increasing exposition of the iron oxide surfaces; heating the soil sample at 600 deg. C induced changes on the iron oxide mineralogy with a significant decrease of the catalytic activity

  12. Iron Oxides from Volcanic Soils as Potential Catalysts in the Water Gas Shift Reaction

    Science.gov (United States)

    Pizarro, C.; Escudey, M.; Moya, S. A.; Fabris, J. D.

    2005-04-01

    This study was focused on changes of the iron oxide mineralogy with temperature of two Chilean soils (Andisol and Ultisol) derived from volcanic materials and their use as iron-based catalysts in the water gas shift reaction (WGSR). Ultisol materials produced about twice as much hydrogen than did those from Andisol upon WGSR, but in both cases hydrogen yielding increased as the heating temperature of the soil materials increased from 124°C to 500°C. The room temperature Mössbauer spectra showed an increase of the relative proportion of the magnetically ordered components as temperature increased. Higher heating temperature produced a negative effect on the catalytic activity, whereas the organic matter destruction led to a positive effect, due to an increasing exposition of the iron oxide surfaces; heating the soil sample at 600 °C induced changes on the iron oxide mineralogy with a significant decrease of the catalytic activity.

  13. Characterizing Pyroxene Reaction Space in Calcium-Aluminum Rich Inclusions: Oxidation During CAI Rim Formation

    Science.gov (United States)

    Dyl, K. A.; Young, E. D.

    2009-12-01

    We define the reaction space that controls changes in pyroxene composition in CAIs and Wark-Lovering (WL) rims in an oxidizing solar nebula. Ti-rich pyroxenes in CAIs record a sub-solar oxygen fugacity (Ti3+/Ti4+~1.5). WL rim pyroxenes in the CAI Leoville 144A have a distinctly lower oxidation state.This difference supports WL rim condensation in an environment of increasing O2(g) and Mg(g) (Simon et al. 2005). We used the following phase components to identify four linearly independent reactions (Thompson 1982): diopside, CaTs (Al2Mg-1Si-1), T3 (Ti3+AlMg-1Si-1), T4 (Ti4+Al2Mg-1Si-2), En (MgCa-1), perovskite, O(g), Mg(g), SiO(g), and Ca(g). Compositional variation in this system is dominated by two reactions. The first is oxidation of Ti3+ via reaction with O and Mg in the gas phase: 1.5 O(g) + Mg(g) → ¼ Di + [Ti4+Mg3/4Ti3+-1Ca-1/4Si-1/2] (1). Pyroxene is produced and En is introduced. The second reaction (2) is perovskite formation. It is observed in the WL rim of Leoville 144A, and experiments confirm that an elevated Ti component converts pyroxene to perovskite(Gupta et al. 1973). MgCa-1 is the third linearly independent reaction (3). They combine to give: ½ Di + x Ca(g)→ x Mg(g)+ Pv + [Mg1/2-xSiTi4+-1Ca-1/2+x](2,3). Unlike (1), pyroxene is consumed in this reaction. The parameter x defines the extent of Mg-Ca exchange. When x > 0.5, WL rim formation occurs in an environment where Mg is volatile and Ca condenses. The reaction space defined by reactions (1) and (2,3) describes the transition from CAI interior to WL rims. WL rim pyroxene Ti contents, [CaTs], and Ca < 1 pfu are all explained in this space. The fourth linearly independent reaction is SiO(g):1/8 Di + ¼ Mg(g)→ ¾ SiO(g) + [Mg3/8Ca1/8Ti4+Ti3+-1Si-1/2](4). Silica reduction forms Ti4+, releasing SiO(g). (4) does not describe the oxidation of Ti3+ in WL rim pyroxene, but (1) - (4) results in En formation directly from the gas phase. This may explain WL rim analyses that have Si contents in excess

  14. Self propagating high temperature synthesis of metal oxides. Reactions in external magnetic fields

    CERN Document Server

    Aguas, M D

    2001-01-01

    The preparation of metal oxides by Self-Propagating High-Temperature Synthesis is reported. The reactions are started with a point source of ignition; typically a hot wire. A synthesis wave is observed moving out from the point source and reactions terminate in seconds. Products obtained can be classified into ferrites (magnetic applications) and stannates (gas sensing applications). Ferrites were synthesised under variable external magnetic fields. The synthesis wave is hotter in the presence of an external magnetic field for hard ferrite synthesis. For spinel ferrites the opposite was observed. Materials synthesised in the field show differences in their bulk magnetic properties (coercivity and saturation magnetisation), structures and microstructures. Combustion reactions in large fields revealed changes in unit cell volume (shrinkage was observed for hard ferrites while expansion was observed for spinel ferrites). SHS synthesised hard ferrites show two distinct components; one has large grain structure co...

  15. Solid-State Thermal Reaction of a Molecular Material and Solventless Synthesis of Iron Oxide

    Science.gov (United States)

    Roy, Debasis; Roy, Madhusudan; Zubko, Maciej; Kusz, Joachim; Bhattacharjee, Ashis

    2016-09-01

    Solid-state thermal decomposition reaction of a molecular material {As}({C}6{H}5)4[{Fe}^{II}{Fe}^{III} ({C}2{O}4)3]}n has been studied using non-isothermal thermogravimetry (TG) in an inert atmosphere. By analyzing the TG data collected at multiple heating rates in 300 K-1300 K range, the kinetic parameters (activation energy, most probable reaction mechanism function and frequency factor) are determined using different multi-heating rate analysis programs. Activation energy and the frequency factor are found to be strongly dependent on the extent of decomposition. The decomposed material has been characterized to be hematite using physical techniques (FT-IR and powder XRD). Particle morphology has been checked by TEM. A solid-state reaction pathway leading the molecular precursor to hematite has been proposed illustrating an example of solventless synthesis of iron oxides utilizing thermal decomposition as a technique using innocuous materials.

  16. Kinetics of phyllosemiquinone oxidation in the Photosystem I reaction centre of Acaryochloris marina.

    Science.gov (United States)

    Santabarbara, Stefano; Bailleul, Benjamin; Redding, Kevin; Barber, James; Rappaport, Fabrice; Telfer, Alison

    2012-02-01

    Light-induced electron transfer reactions in the chlorophyll a/d-binding Photosystem I reaction centre of Acaryochloris marina were investigated in whole cells by pump-probe optical spectroscopy with a temporal resolution of ~5ns at room temperature. It is shown that phyllosemiquinone, the secondary electron transfer acceptor anion, is oxidised with bi-phasic kinetics characterised by lifetimes of 88±6ns and 345±10ns. These lifetimes, particularly the former, are significantly slower than those reported for chlorophyll a-binding Photosystem I, which typically range in the 5-30ns and 200-300ns intervals. The possible mechanism of electron transfer reactions in the chlorophyll a/d-binding Photosystem I and the slower oxidation kinetics of the secondary acceptors are discussed. PMID:22037394

  17. Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst

    Science.gov (United States)

    Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi

    2015-04-01

    The electro-catalytic behavior of Pt-CoOx/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH4 as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoOx, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of COads on Pt active sites by the participation of CoOx. Compared to Pt/MWCNTs, Pt-CoOx/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoOx/MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups controls the total rate of MOR process.

  18. Rational Improvement of Simvastatin Synthase Solubility in Escherichia coli Leads to Higher Whole-cell Biocatalytic Activity

    OpenAIRE

    Xie, Xinkai; Pashkov, Inna; Gao, Xue; Guerrero, Jennifer L.; Yeates, Todd O; Tang, Yi

    2009-01-01

    Simvastatin is the active pharmaceutical ingredient of the blockbuster cholesterol lowering drug Zocor. We have previously developed an Escherichia coli based whole-cell biocatalytic platform towards the synthesis of simvastatin sodium salt (SS) starting from the precursor monacolin J sodium salt (MJSS). The centerpiece of the biocatalytic approach is the simvastatin synthase LovD, which is highly prone to misfolding and aggregation when overexpressed from E. coli. Increasing the solubility o...

  19. Theoretical study on the reaction mechanism and thermodynamics of tin oxidation by oxygen species and chlorine species

    Science.gov (United States)

    Li, Lai-Cai; Deng, Ping; Zhu, Yuan-Qiang; Zha, Dong; Tian, An-Min; Xu, Ming-Hou; Wong, Ning-Bew

    In this work ab initio molecular orbital methods were employed to study the coal combustion reaction mechanisms of tin oxidized by different oxidants, including HOCl, HCl, ClO, ClO2, NO3, CO2, and O2. Eleven reaction pathways were identified. The results show that Sn can react with HCl, ClOO, CO2, O2, and NO3 to form SnO and SnCl. SnO can be oxidized into SnCl by HOCl and HCl. SnCl can be further oxidized into a soluble compound, SnCl2.

  20. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya

    2015-06-11

    Fluidized catalytic cracking (FCC) units in refineries process heavy feedstock obtained from crude oil distillation. While cracking feed, catalysts get deactivated due to coke deposition. During catalyst regeneration by burning coke in air, nitrogen oxides (NOx) are formed. The increase in nitrogen content in feed over time has resulted in increased NOx emissions. To predict NOx concentration in flue gas, a reliable model for FCC regenerators is needed that requires comprehensive understanding and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics for the proposed pathways are evaluated using transition state theory. It is observed that the addition of O2 on coke is favored only when the free radical is present on the carbon atom instead of nitrogen atom. Thus, NOx formation during coke oxidation does not result from the direct attack by O2 on N atoms of coke, but from the transfer of an O atom to N from a neighboring site. The low activation energies required for NO formation indicate that it is more likely to form than NO2 during coke oxidation. The favorable pathways for NOx formation that can be used in FCC models are identified. Copyright © 2015 Taylor & Francis Group, LLC.

  1. Reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts revealed by an FeO(111)/Pt(111) inverse model catalyst.

    Science.gov (United States)

    Xu, Lingshun; Wu, Zongfang; Jin, Yuekang; Ma, Yunsheng; Huang, Weixin

    2013-08-01

    We have employed XPS and TDS to study the adsorption and surface reactions of H2O, CO and HCOOH on an FeO(111)/Pt(111) inverse model catalyst. The FeO(111)-Pt(111) interface of the FeO(111)/Pt(111) inverse model catalyst exposes coordination-unsaturated Fe(II) cations (Fe(II)CUS) and the Fe(II)CUS cations are capable of modifying the reactivity of neighbouring Pt sites. Water facilely dissociates on the Fe(II)CUS cations at the FeO(111)-Pt(111) interface to form hydroxyls that react to form both water and H2 upon heating. Hydroxyls on the Fe(II)CUS cations can react with CO(a) on the neighbouring Pt(111) sites to produce CO2 at low temperatures. Hydroxyls act as the co-catalyst in the CO oxidation by hydroxyls to CO2 (PROX reaction), while they act as one of the reactants in the CO oxidation by hydroxyls to CO2 and H2 (WGS reaction), and the recombinative reaction of hydroxyls to produce H2 is the rate-limiting step in the WGS reaction. A comparison of reaction behaviors between the interfacial CO(a) + OH reaction and the formate decomposition reaction suggest that formate is the likely surface intermediate of the CO(a) + OH reaction. These results provide some solid experimental evidence for the associative reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts. PMID:23576093

  2. Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Malkhandi, S; Trinh, P; Manohar, AK; Manivannan, A; Balasubramanian, M; Prakash, GKS; Narayanan, SR

    2015-04-16

    Rechargeable metal-air batteries and water electrolyzers based on aqueous alkaline electrolytes hold the potential to be sustainable solutions to address the challenge of storing large amounts of electrical energy generated from solar and wind resources. For these batteries and electrolyzers to be economically viable, it is essential to have efficient, durable, and inexpensive electrocatalysts for the oxygen evolution reaction. In this article, we describe new insights for predicting and tuning the activity of inexpensive transition metal oxides for designing efficient and inexpensive electrocatalysts. We have focused on understanding the factors determining the electrocatalytic activity for oxygen evolution in a strong alkaline medium. To this end, we have conducted a systematic investigation of nanophase calcium-doped lanthanum cobalt manganese oxide, an example of a mixed metal oxide that can be tuned for its electrocatalytic activity by varying the transition metal composition. Using X-ray absorption spectroscopy (XANES), X-ray photoelectron spectroscopy (XPS), electrochemical polarization experiments, and analysis of mechanisms, we have identified the key determinants of electrocatalytic activity. We have found that the Tafel slopes are determined by the oxidation states and the bond energy of the surface intermediates of Mn-OH and Co-OH bonds while the catalytic activity increased with the average d-electron occupancy of the sigma* orbital of the M-OH bond. We anticipate that such understanding will be very useful in predicting the behavior of other transition metal oxide catalysts.

  3. Gas-Phase and Aqueous Photocatalytic Oxidation of Methylamine: The Reaction Pathways

    Directory of Open Access Journals (Sweden)

    Anna Kachina

    2007-08-01

    Full Text Available Photocatalytic oxidation (PCO of methylamine (MA on titanium dioxide in aqueous and gaseous phases was studied. A simple batch glass reactor for aqueous PCO and an annular continuous flow reactor for the gas-phase PCO were used. Maximum aqueous PCO efficiency was achieved in alkaline media. Two mechanisms of aqueous PCO—decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite—lead ultimately to CO2, water, ammonia, and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. Volatile PCO products of MA included ammonia, nitrogen dioxide (NO2, nitrous oxide (N2O, carbon dioxide, and water. Thermal catalytic oxidation (TCO resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide, and water. The gas-phase PCO kinetics is described by the monomolecular Langmuir-Hinshelwood model. No deactivation of TiO2 catalyst was observed.

  4. Contribution to the study of the oxidation reaction of the carbon oxide in contact with catalysts issued from the decomposition of nickel hydro-aluminates at various temperatures

    International Nuclear Information System (INIS)

    Addressing the study of the oxidation reaction of carbon oxide which produces carbon dioxide, this research thesis reports the study of this reaction in presence of catalysts (2NiO + Al2O3, NiAl2O4 and NiO + NiAl2O4) issued from the decomposition of nickel hydro-aluminates at different temperatures. The first part describes experimental techniques and the nature of materials used in this study. The second part reports the study of the catalytic activity of the 2NiO+Al2O3 catalyst during the oxidation of CO. Preliminary studies are also reported: structure and texture of nickel hydro-aluminate which is the raw material used to produce catalysts, activation of this compound to develop the catalytic activity in CO oxidation, chemisorption of CO, O2 and CO2 on the 2NiO+Al2O3 solid, interaction of adsorbed gases at the solid surface, and kinetic study of the oxidation reaction. The third part reports the study of the catalytic activity in the oxidation reaction of CO of spinel catalysts (NiAl2O4 and NiO+NiAl2O4) obtained by calcination of nickel hydro-aluminates at high temperature. The formation of the spinel phase, the chemisorption of CO, O2 and CO2 on NiAl2O4, and the kinetic of the oxidation reaction are herein studied

  5. Fast oxidative reactions following irradiation in aqueous solutions of Cl-, Br-, and CNS-

    International Nuclear Information System (INIS)

    The reactions of sup(.)OH, the oxidizing species produced by radiation are well characterized for nanosecond times. Hamill suggested, however, that a normal competition scheme does not explain the observed results in concentrated solutions. Using the stroboscopic pulse radiolysis technique a study has been made of the initial reactions of scavengers such as Cl-, Br-and CNS- in concentrations from 1 to 5M. A fast component of the absorption signals has been observed with the time resolution as short as 18ps. In all of the concentrated solutions studied, the normal absorption spectra and yields of Cl2-, Br2- and (CNS)2- were found. A concentration of 1M NaOH greatly reduced the yield of Cl2-, but not the yields of Br2- and (CNS)2-. The best model that has been found is to assume two steps in the reaction; that is the reaction of the short-lived species, H2O+, with the scavenger X-, followed by a fast reaction between neighbouring molecules to produce the observed species, X2-. Recently, mixtures of Cl2- and scavengers such as dextrose and propanol were studied. The yield of Cl2- was reduced markedly. Since this observation cannot be accounted for by a normal competition scheme involving sup(.)OH, it is in support of the view that the initial positive ion, H2O+, is important in concentrated solutions. (author)

  6. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  7. Limonene ozonolysis in the presence of nitric oxide: Gas-phase reaction products and yields

    Science.gov (United States)

    Ham, Jason E.; Harrison, Joel C.; Jackson, Stephen R.; Wells, J. R.

    2016-05-01

    The reaction products from limonene ozonolysis were investigated using the new carbonyl derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX). With ozone (O3) as the limiting reagent, five carbonyl compounds were detected. The yields of the carbonyl compounds are discussed with and without the presence of a hydroxyl radical (OHrad) scavenger, giving insight into the influence secondary OH radicals have on limonene ozonolysis products. The observed reaction product yields for limonaketone (LimaKet), 7-hydroxyl-6-oxo-3-(prop-1-en-2-yl)heptanal (7H6O), and 2-acetyl-5-oxohexanal (2A5O) were unchanged suggesting OHrad generated by the limonene + O3 reaction does not contribute to their formation. The molar yields of 3-isopropenyl-6-oxo-heptanal (IPOH) and 3-acetyl-6-oxoheptanal (3A6O) decreased by 68% and >95%; respectively, when OHrad was removed. This suggests that OHrad radicals significantly impact the formation of these products. Nitric oxide (NO) did not significantly affect the molar yields of limonaketone or IPOH. However, NO (20 ppb) considerably decreased the molar reaction product yields of 7H6O (62%), 2A5O (63%), and 3A6O (47%), suggesting NO reacted with peroxyl intermediates, generated during limonene ozonolysis, to form other carbonyls (not detected) or organic nitrates. These studies give insight into the transformation of limonene and its reaction products that can lead to indoor exposures.

  8. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Won; Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr

    2014-05-01

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe{sup 0} foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H{sub 2}O{sub 2}, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe{sub 2}O{sub 3} on Fe{sup 0} metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na{sub 2}SO{sub 4} containing 0.5 wt% NH{sub 4}F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H{sub 2}O{sub 2}). In case of INT-40 V in the presence of H{sub 2}O{sub 2} 3%, the first-order rate constant was found to be 1.7 × 10{sup −2} min{sup −1}, and 1.2 × 10{sup −2} min{sup −1} with commercial hematite powder. Degradation of cyanide was much less with only H{sub 2}O{sub 2}. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  9. Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst

    International Nuclear Information System (INIS)

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoOx/MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoOx addition. • Bi-functional mechanism is facilitated in presence of CoOx. - Abstract: The electro-catalytic behavior of Pt-CoOx/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH4 as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoOx, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of COads on Pt active sites by the participation of CoOx. Compared to Pt/MWCNTs, Pt-CoOx/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoOx/MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups controls the

  10. Visible-light photoredox catalyzed synthesis of pyrroloisoquinolines via organocatalytic oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade with Rose Bengal

    Directory of Open Access Journals (Sweden)

    Carlos Vila

    2014-05-01

    Full Text Available Pyrrolo[2,1-a]isoquinoline alkaloids have been prepared via a visible light photoredox catalyzed oxidation/[3 + 2] cycloaddition/oxidative aromatization cascade using Rose Bengal as an organo-photocatalyst. A variety of pyrroloisoquinolines have been obtained in good yields under mild and metal-free reaction conditions.

  11. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Bruheim, I.; Haugsgjerd, B.O.; Jacobsen, Charlotte

    2014-01-01

    The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40°C) for 28 or 42 days. The oxidative stability of krill oil was...... firstly increased the lipid oxidation in krill oil and subsequently the non-enzymatic browning reactions. The occurrence of these reactions was most likely due to the reaction between α-dicarbonyl or carbonyl compounds with amino acids or ammonia. In addition to tocopherol and astaxanthin esters, the...... formation of pyrroles might help to protect the krill oil against lipid oxidation. © 2014 Elsevier Ltd. All rights reserved....

  12. Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron.

    Science.gov (United States)

    Li, Huanxuan; Wan, Jinquan; Ma, Yongwen; Wang, Yan

    2016-08-15

    This study investigated reaction pathway and oxidation mechanisms of dibutyl phthalate (DBP) by persulfate (PS) activated with zero-valent iron (ZVI). The DBP degradation was studied at three pH values (acidic, neutral and basic) in the presence of different organic scavengers. Using a chemical probe method, both sulfate radical (SO4(-)) and hydroxyl radical (·OH) were found to be primary oxidants at pH3.0 and pH7.0, respectively while ·OH was the major specie to oxidize DBP at pH11.0. A similar result was found in an experiment of Electron Spin Resonance spin-trapping where in addition to OH, superoxide radical (O2(-)) was detected at pH11.0. The transformation of degradation products including dimethyl phthalate (DMP), diethyl phthalate (DEP), phthalic anhydride, and acetophenone exhibited diverse variation during the reaction processes. The phthalic anhydride concentration appeared to be maximum at all pHs. Another eleven intermediate products were also found at pH3.0 by GC-MS and HPLC analysis, and their degradation mechanisms and pathways were proposed. It was suggested that dealkylation, hydroxylation, decarboxylation and hydrogen extraction were the dominant degradation mechanisms of DBP at pH3.0. PMID:27125682

  13. Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides.

    Science.gov (United States)

    Björkbacka, Åsa; Yang, Miao; Gasparrini, Claudia; Leygraf, Christofer; Jonsson, Mats

    2015-09-28

    One of the main challenges for the nuclear power industry today is the disposal of spent nuclear fuel. One of the most developed methods for its long term storage is the Swedish KBS-3 concept where the spent fuel is sealed inside copper canisters and placed 500 meters down in the bedrock. Gamma radiation will penetrate the canisters and be absorbed by groundwater thereby creating oxidative radiolysis products such as hydrogen peroxide (H2O2) and hydroxyl radicals (HO˙). Both H2O2 and HO˙ are able to initiate corrosion of the copper canisters. In this work the kinetics and mechanism of reactions between the stable radiolysis product, H2O2, and copper and copper oxides were studied. Also the dissolution of copper into solution after reaction with H2O2 was monitored by ICP-OES. The experiments show that both H2O2 and HO˙ are present in the systems with copper and copper oxides. Nevertheless, these species do not appear to influence the dissolution of copper to the same extent as observed in recent studies in irradiated systems. This strongly suggests that aqueous radiolysis can only account for a very minor part of the observed radiation induced corrosion of copper. PMID:26287519

  14. Metal-oxide interfacial reactions: encapsulation of Pd on TiO2 (110).

    Science.gov (United States)

    Fu, Qiang; Wagner, Thomas; Olliges, Sven; Carstanjen, Heinz-Dieter

    2005-01-20

    The model system Pd/TiO2 (110) was used to evaluate the correlation between metal encapsulation and electronic structure of TiO2 crystals. We observed encapsulation of Pd clusters supported on TiO2 crystals, which were heavily Ar+ sputtered, Nb-doped, or reduced by vacuum annealing. In contrast, encapsulation was not observed on unreduced, undoped, or slightly sputtered TiO2 crystals. Our results indicate a strong dependence of the encapsulation process on the electron density in the conduction band of TiO2 and on the space charge formed at Pd/TiO2 interfaces. This behavior is controlled by the initial position of the Fermi energy level (EF) of the metal and the oxide before contact is established. We proved that encapsulation reactions are favored by n-type doping of the oxide and a large work function of the metal. On the basis of this mechanism, we conclude on general trends controlling encapsulation reactions of oxide-supported metal clusters and the strong metal-support interaction (SMSI). PMID:16866463

  15. The analysis of magnesium oxide hydration in three-phase reaction system

    International Nuclear Information System (INIS)

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH)2 precipitation, Mg(OH)2 peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process

  16. Gold-TiO2-Nickel catalysts for low temperature-driven CO oxidation reaction

    Science.gov (United States)

    Hinojosa-Reyes, Mariana; Zanella, Rodolfo; Maturano-Rojas, Viridiana; Rodríguez-González, Vicente

    2016-04-01

    Nickel-doped-TiO2 catalysts were prepared by the sol-gel method and surface modified with gold nanoparticles (AuNPs) by the urea-deposition-precipitation technique. The as-synthesized catalysts were characterized by X-ray diffraction, Raman and XPS spectroscopies, N2 physisorption, STEM-HAADF microscopy and TPR hydrogen consumption. The Au/TiO2-Ni catalysts were evaluated catalytically performing CO oxidation reactions. The catalyst with nickel content of 1 wt. % (Au/TiO2-Ni 1) showed the highest CO conversion with respect to the high-nickel-content or bare/commercial TiO2 at 0 °C. In situ DRIFTS showed a strong participation of both nickel due to the presence of surface-nickel-metallic nanoparticles formed during the CO adsorption process at reaction temperatures above 200 °C, and surface-bridged-nickel-CO species. A minor deactivation rate was observed for the Au/TiO2-Ni 1 catalyst in comparison with the Au/TiO2 one. The oxygen vacancies that were created on the sol-gel-doped TiO2 improved the catalytic behavior during the performance of CO oxidation reactions, and inhibited the AuNP sintering.

  17. Palladium and Tin Alloyed Catalysts for the Ethanol Oxidation Reaction in an Alkaline Medium

    Energy Technology Data Exchange (ETDEWEB)

    Su D.; Du W.; Mackenzie K.E.; Milano D.F.; Deskins N.A.; Teng X.

    2012-02-01

    In this paper, we present a study of a series of carbon-supported Pd-Sn binary alloyed catalysts prepared through a modified Polyol method as anode electrocatalysts for direct ethanol fuel cell reactions in an alkaline medium. Transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy were used to characterize the Pd-Sn/C catalysts, where homogeneous Pd-Sn alloys were determined to be present with the surface Sn being partially oxidized. Among various Pd-Sn catalysts, Pd{sub 86}Sn{sub 14}/C catalysts showed much enhanced current densities in cyclic voltammetric and chronoamperometric measurements, compared to commercial Pd/C (Johnson Matthey). The overall rate law of ethanol oxidation reaction for both Pd{sub 86}Sn{sub 14}/C and commercial Pd/C were also determined, which clearly showed that Pd{sub 86}Sn{sub 14}/C was more favorable in high ethanol concentration and/or high pH environment. Density functional theory calculations also confirmed Pd-Sn alloy structures would result in lower reaction energies for the dehydrogenation of ethanol, compared to the pure Pd crystal.

  18. Abnormal Reactions of Free Radicals and Oxidative Damages in the Bodies of Patients With Chronic Glomerulonephritis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To study the abnormal reactions of a series of free radicals and the oxidative damages induced by free radical abnormal reactions in the bodies of patients with chronic glomerulonephritis. Methods Eighty chronic glomerulonephritis patients (CGNP) and eighty healthy adult volunteers (HAV) were enrolled in a random control study, in which concentrations of nitric oxide (NO) in plasma, lipoperoxides (LPO) in plasma and in erythrocytes, and vitamin C (VC),vitamin E (VE) and beta-carotene (β-CAR) in plasma as well as activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in erythrocytes were determined with spectrophotometric assays. Results Compared with the average values of the above biochemical parameters in the HAV group, the average values of NO in plasma, and LPO in plasma and erythrocytes in the CGNP group were significantly increased (P = 0.0001), while those of VC, VE and β-CAR in plasma as well as those of SOD, CAT and GPX in erythrocytes in the CGNP group were significantly decreased (P = 0.0001). Pearson product-moment correlation analysis showed that with increase of the concentration of blood creatinine as well as prolongation of the course of disease in the CGNP, the concentrations of NO in plasma, and LPO in plasma and erythrocytes in the CGNP increased gradually, while the concentrations of VC, VE and β-CAR in plasma as well as the activities of SOD, CAT and GPX in erythrocytes in the CGNP decreased gradually (P = 0.002454 - 0.000001).The relative risk ratio (RR) of the above biochemical parameters reflecting oxidative damages in the bodies of CGNP ranged from 6.061 to 72.429. The reliability coefficient (alpha) that the above biochemical parameters were used to reflect the oxidative damages of the CGNP was 0.8137,standardized item alpha = 0.9728, Hotelling's T-Squared = 1135680.191, F = 53274.6478, P =0.000001. Conclusions The findings irt this study show that in the bodies of CGNP a series of free

  19. Reaction of N-hydroxyguanidine with the ferrous-oxy state of a heme peroxidase cavity mutant: A model for the reactions of nitric oxide synthase†

    OpenAIRE

    Nigro, Alycen Pond; Goodin, David B.

    2010-01-01

    Yeast cytochrome c peroxidase was used to construct a model for the reactions catalyzed by the second cycle of nitric oxide synthase. The R48A/W191F mutant introduced a binding site for N-hydroxyguanidine near the distal heme face and removed the redox active Trp-191 radical site. Both the R48A and R48A/W191F mutants catalyzed the H2O2 dependent conversion of N-hydroxyguanidine to N-nitrosoguanidine. It is proposed that these reactions proceed by direct one-electron oxidation of NHG by the Fe...

  20. Uniform lab-scale biocatalytic nanoporous latex coatings for reactive microorganisms.

    Science.gov (United States)

    Gosse, Jimmy L; Flickinger, Michael C

    2011-01-01

    This chapter describes a method for generating uniform lab-scale biocatalytic nanoporous latex coatings. Nearly everything we come into contact with on a daily basis has been coated with some polymer material. High-speed waterborne polymer coating and ink-jet printing techniques are mature technologies. Methods for immobilizing microorganisms in lab-scale waterborne latex biocatalytic coatings draw on existing coating technologies for generating precision industrial paint and paper coatings and would therefore be amenable to scale up in future applications. An inherent problem for many lab-scale techniques is coating uniformity. The method described here has been developed to dramatically increase the uniformity of multiple individual small surface area coatings derived from a single coating template by minimizing edge effects due to emulsion drying adjacent to the edge of the mask. PMID:21553194

  1. Oxidative stress and damage induced by abnormal free radical reactions and IgA nephropathy

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-xi; ZHOU Jun-fu; SHEN Han-chao

    2005-01-01

    Objective: To estimate the oxidative stress and oxidative damage induced by abnormal free radical reactions in IgA nephropathy (IgAN) patients' bodies. Methods: Seventy-two IgA N patients (IgANP) and 72 healthy adult volunteers (HAV) were enrolled in a random control study design, in which the levels of nitric oxide (NO) in plasma, lipoperoxide (LPO) in plasma and in erythrocytes, and vitamin C (VC), vitamin E (VE) and β-carotene (β-CAR) in plasma as well as the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in erythrocytes were determined with spectrophotometric mothods. Results: Compared with the HAV group, the averages of NO in plasma, and LPO in plasma and in erythrocytes in the IgANP group were significantly increased (P<0.0001), while those ofVC, VE and β-CAR in plasma as well as those of SOD, CAT and GPX in erythrocytes in the IgANP group were significantly decreased (P<0.0001). Linear correlation analysis showed that with the increase of the values of NO, and LPO in plasma and in erythrocytes, and with the decrease of those ofVC, VE, β-CAR,SOD, CAT and GPX in the IgAN patients, the degree of histological damage of tubulointerstitial regions was increased gradually (P<0.0001); and that with the prolongation of the duration of disease the values of NO, and LPO in plasma and erythrocytes were increased gradually, while those of VC, VE, β-CAR, SOD, CAT and GPX were decreased gradually (P<0.005). The discriminatory correct rates of the above biochemical parameters reflecting oxidative damage of the IgAN patients were 73.8%-92.5%, and the correct rates for the HAV were 70.0%-91.3% when independent discriminant analysis was used; and the correct rate for the IgAN patients was increased to 98.8%, the correct rate for the HAV was increased to 100% when stepwise discriminant analysis was used. The above biochemical parameters' reliability coefficient (alpha) were used to estimate the oxidative damage of the Ig

  2. Synthesis and characterization of cobalt-nichel oxides for the oxygen formation reaction

    International Nuclear Information System (INIS)

    In this work the compounds of cobalt and nickel oxides and the mixtures of cobalt-nickel were prepared which were characterized and evaluated as electrocatalysts in the oxygen release reaction in alkaline media. The compounds were synthesised by the sol-gel method: heated at 400 and 500 Centigrade. The compounds characterization was realized by thermogravimetry, X-ray diffraction and Scanning electron microscopy. As the Co3O4 and the Ni O as the mixtures Ni O/Co3O4 were obtained as a porous material with a small particle size, characteristics which are presented by cause of the low temperature of synthesis. The electrocatalytic evaluation for the synthesised compounds for the oxygen release reaction was realized by cyclic volt amperometry in a 0.5M KOH solution. The oxides mixtures presented a well electrocatalytic activity to be used in the electrochemical release of oxygen. The current density and the electrochemically active area, in all the cases of mixtures is very higher to the Co3O4 and Ni O ones. Observing with greater clearness the synergic effects, in the obtained mixture at 400 C. The oxides mixtures heated at 400 C were stables for the oxygen formation reaction. Therefore it is be able to say that the Ni O/Co3O4 mixture counts on a great reactive area: electrocatalytic characteristic desirable to be a material used as anode in the electrolysis of water, which increases the oxygen release in the anode and so the hydrogen release in the cathode. (Author)

  3. Oxidation Reactions with Bioinspired Mononuclear Non-Heme Metal-Oxo Complexes.

    Science.gov (United States)

    Engelmann, Xenia; Monte-Pérez, Inés; Ray, Kallol

    2016-06-27

    The selective functionalization of strong C-H bonds and the oxidation of water by cheap and nontoxic metals are some of the key targets of chemical research today. It has been proposed that high-valent iron-, manganese-, and copper-oxo cores are involved as reactive intermediates in important oxidation reactions performed by biological systems, thus making them attractive targets for biomimetic synthetic studies. The generation and characterization of metal-oxo model complexes of iron, manganese, and copper together with detailed reactivity studies can help in understanding how the steric and electronic properties of the metal centers modulate the reactivity of the metalloenzymes. This Review provides a focused overview of the advances in the chemistry of biomimetic high-valent metal-oxo complexes from the last 5-10 years that can be related to our understanding of biological systems. PMID:27311082

  4. Oxidation of Annelated Diarylamines: Analysis of Reaction Pathways to Nitroxide Diradical and Spirocyclic Products

    Energy Technology Data Exchange (ETDEWEB)

    Rajca, Andrzej; Shiraishi, Kouichi; Boraty; #324; ski, Przemyslaw J.; Pink, Maren; Miyasaka, Makoto; Rajca, Suchada (UNL); (Indiana)

    2012-02-06

    Oxidation of diaryldiamine 2, a tetrahydrodiazapentacene derivative, provides diarylnitroxide diradical 1 accompanied by an intermediate nitroxide monoradical and a multitude of isolable diamagnetic products. DFT-computed tensors for EPR spectra and paramagnetic {sup 1}H NMR isotropic shifts for nitroxide diradical 1 show good agreement with the experimental EPR spectra in rigid matrices and paramagnetic {sup 1}H NMR spectra in solution, respectively. Examination of the diamagnetic products elucidates their formation via distinct pathways involving C-O bond-forming reactions, including Baeyer-Villiger-type oxidations. An unusual diiminoketone structure and two spirocyclic structures of the predominant diamagnetic products are confirmed by either X-ray crystallography or correlations between DFT-computed and experimental spectroscopic data such as {sup 1}H, {sup 13}C, and {sup 15}N NMR chemical shifts and electronic absorption spectra.

  5. Biocatalytic Synthesis of Chiral Alcohols and Amino Acids for Development of Pharmaceuticals

    OpenAIRE

    Patel, Ramesh N.

    2013-01-01

    Chirality is a key factor in the safety and efficacy of many drug products and thus the production of single enantiomers of drug intermediates and drugs has become increasingly important in the pharmaceutical industry. There has been an increasing awareness of the enormous potential of microorganisms and enzymes derived there from for the transformation of synthetic chemicals with high chemo-, regio- and enatioselectivities. In this article, biocatalytic processes are described for the synthe...

  6. Rate of reaction of the hydrogen atom with nitrous oxide in ambient water

    Science.gov (United States)

    Kazmierczak, Lukasz; Swiatla-Wojcik, Dorota; Szala-Bilnik, Joanna; Wolszczak, Marian

    2016-08-01

    The reaction of the hydrogen atom with nitrous oxide has been investigated by pulse radiolysis of N2O-saturated 0.1 M HCl solution at room temperature (24±1 °C). The value of (9±2)×104 M-1 s-1 obtained for the reaction rate constant is between the early estimates 1×104 M-1 s-1 by Czapski and Jortner (1960) and 4.3×105 M-1 s-1 by Thomas (1969), and is much lower than 2×106 M-1 s-1 used recently (Janik et al., 2007; Ismail et al., 2013; Liu et al., 2015; Meesungnoen et al., 2015).

  7. Copper(II)–imida‐salen Complexes Encapsulated into NaY Zeolite for Oxidations Reactions

    DEFF Research Database (Denmark)

    Kuźniarska‐Biernacka, Iwona; Carvalho, M. Alice; Rasmussen, Søren Birk;

    2013-01-01

    heterogeneous catalysts were characterized by SEM, XRD, FTIR, EPR and Raman spectroscopy as well as by chemical analysis. The structures of the copper(II) complexes were proposed on the basis of theoretical studies (DFT). The catalytic activities of the encapsulated copper(II) complexes in NaY were compared......The oxidation of phenol, cychohexanol and hydroquinone has been screened in the presence of copper(II) complexes with the Schiff‐base salen ligand, 1,5‐bis[(E)‐5‐chloro‐2‐hydroxybenzylideneamino]‐1H‐imidazole‐4‐carbonitrile, and encapsulated into NaY zeolite by using two different methods. The new...... with their homogeneous counterparts. The results show higher or similar substrate conversion when compared with the free complex in all the reactions tested. After their use in catalytic reaction, these catalysts were found to be reusable without loss of activity....

  8. Enhancement Effect of Noble Metals on Manganese Oxide for the Oxygen Evolution Reaction.

    Science.gov (United States)

    Seitz, Linsey C; Hersbach, Thomas J P; Nordlund, Dennis; Jaramillo, Thomas F

    2015-10-15

    Developing improved catalysts for the oxygen evolution reaction (OER) is key to the advancement of a number of renewable energy technologies, including solar fuels production and metal air batteries. In this study, we employ electrochemical methods and synchrotron techniques to systematically investigate interactions between metal oxides and noble metals that lead to enhanced OER catalysis for water oxidation. In particular, we synthesize porous MnOx films together with nanoparticles of Au, Pd, Pt, or Ag and observe significant improvement in activity for the combined catalysts. Soft X-ray absorption spectroscopy (XAS) shows that increased activity correlates with increased Mn oxidation states to 4+ under OER conditions compared to bare MnOx, which exhibits minimal OER current and remains in a 3+ oxidation state. Thickness studies of bare MnOx films and of MnOx films deposited on Au nanoparticles reveal trends suggesting that the enhancement in activity arises from interfacial sites between Au and MnOx. PMID:26722794

  9. Hydrogen Production from the Water-Gas Shift Reaction on Iron Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    R. Bouarab

    2014-01-01

    Full Text Available Unsupported and supported iron oxide catalysts were prepared by incipient wetness impregnation method and studied in the water-gas shift reaction (WGSR in the temperature range 350–450°C. The techniques of characterization employed were BET, X-ray diffraction, acid-base measurements by microcalorimetry and in situ diffuse reflectance infrared Fourier transform spectroscopy. MgO, TiO2, or SiO2 was added in order to (i obtain a catalyst exempt of chromium oxide and (ii study the effect of their acid-base properties on catalytic activity of Fe2O3. X-ray diffraction studies, and calorimetric and diffuse reflectance infrared Fourier transform measurements reveal a complete change in the physicochemical properties of the iron oxide catalyst after MgO addition due to the formation of the spinel oxide phase. These results could indicate that the MgFe2O4 phase stabilizes the reduced iron phase, preventing its sintering under realistic WGSR conditions (high H2O partial pressures.

  10. Low-temperature oxidation of alkali overlayers: Ionic species and reaction kinetics

    International Nuclear Information System (INIS)

    Clean and oxidized alkali metal films have been studied using X-ray photoelectron spectroscopy (XPS). Thin films, typically 10 nm thick, of lithium, sodium, potassium, rubidium and cesium have been deposited on silicon substrates and oxidized at 120 K. Plasmon losses were found to dress the primary photo emission structures of the metals’ core lines which confirms the metallic, bulk like nature of the films. The emission from the O 1s core levels was used to determine the chemical composition and the reaction kinetics during the exposure to molecular oxygen at low pressures. Molecular oxide ions O2− and O22− as well as atomic oxygen ions O2− were detected in varying amounts depending on the alkali metal used. Diffusive transport of material in the film is shown to greatly determine the composition of the oxides. Especially, the growth of potassium superoxide is explained by the diffusion of potassium atoms to the surface and growth at the surface in a Deal–Grove like model.

  11. Benzyl alcohol oxidation in supercritical carbon dioxide: spectroscopic insight into phase behaviour and reaction mechanism.

    Science.gov (United States)

    Caravati, Matteo; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2005-01-21

    Selective oxidation of benzyl alcohol to benzaldehyde with molecular oxygen over an alumina-supported palladium catalyst was performed with high rate at about 95% selectivity in supercritical carbon dioxide. The experiments in a continuous flow fixed-bed reactor showed that the pressure has a strong influence on the reaction rate. A marked increase of the rate (turnover frequency) from 900 h(-1) to 1800 h(-1) was observed when increasing the pressure from 140 to 150 bar. Video monitoring of the bulk fluid phase behavior and the simultaneous investigation by transmission and attenuated total reflection (ATR) infrared spectroscopy at two positions of the view cell showed that the sharp increase in activity is correlated to a transition from a biphasic to a monophasic reaction mixture. In the single phase region, both oxygen and benzyl alcohol are dissolved in the supercritical CO2 phase, which leads to a reduction of the mass transport resistances (both in the external fluid film and in the catalyst pores) and thus to the high reaction rate measured in the catalytic experiments. The phase transition could be effectively and easily monitored by transmission and ATR-IR spectroscopy despite the small concentration of the dense liquid like phase. Deposition of the Pd/Al2O3 catalyst on the ATR-crystal at the bottom of the view cell allowed to gain insight into the chemical changes and mass transfer processes occurring in the solid/liquid interface region during reaction. Analyzing the shift of the upsilon2 bending mode of CO2 gave information on the fluid composition in and outside the catalyst pores. Moreover, the catalytic reaction could be investigated in situ in this spectroscopic batch reactor cell by monitoring simultaneously the reaction progress, the phase behaviour and the catalytic interface. PMID:19785149

  12. Innovative Catalysis in Organic Synthesis Oxidation, Hydrogenation, and C-X Bond Forming Reactions

    CERN Document Server

    Andersson, Pher G

    2012-01-01

    Authored by a European team of leaders in the field, this book compiles innovative approaches for C-X bond forming processes frequently applied in organic synthesis. It covers all key types of catalysis, including homogeneous, heterogeneous, and organocatalysis, as well as mechanistic and computational studies. Special attention is focused on the improvement of efficiency and sustainability of important catalytic processes, such as selective oxidations, hydrogenation and cross-coupling reactions.The result is a valuable resource for both advanced researchers in academia and industry, as well a

  13. Catalyst-controlled regioselectivity in the synthesis of branched conjugated dienes via aerobic oxidative Heck reactions.

    Science.gov (United States)

    Zheng, Changwu; Wang, Dian; Stahl, Shannon S

    2012-10-10

    Pd-catalyzed aerobic oxidative coupling of vinylboronic acids and electronically unbiased alkyl olefins provides regioselective access to 1,3-disubstituted conjugated dienes. Catalyst-controlled regioselectivity is achieved by using 2,9-dimethylphenanthroline as a ligand. The observed regioselectivity is opposite to that observed from a traditional (nonoxidative) Heck reaction between a vinyl bromide and an alkene. DFT computational studies reveal that steric effects of the 2,9-dimethylphenanthroline ligand promote C-C bond formation at the internal position of the alkene. PMID:22998540

  14. Platinum Nanoparticles Supported on Nitrobenzene-Functionalized Multiwalled Carbon Nanotube as Efficient Electrocatalysts for Methanol Oxidation Reaction

    International Nuclear Information System (INIS)

    Graphical abstract: Multiwalled carbon nanotube was functionalized with nitrobenzene as a promising support material for Pt-based electrocatalysts (Pt-NB-MWCNT) for methanol oxidation. The as-prepared catalysts have higher electrocatalytic activity in terms of both mass and specific activities, and improved durability for methanol oxidation reaction than as compared to the undoped materials. - Highlights: • Multiwalled carbon nanotube was functionalized with nitrobenzene as a support material for Pt-based electrocatalysts for methanol oxidation. • The electronic properties of carbon nanotubes were modified by the nitrobenzene functionalization. • Nitrobenzene-functionalized electrocatalysts revealing the improved electrocatalytic performance of Pt-NB-MWCNT catalyst for the methanol oxidation reaction. - Abstract: A novel method of molecular covalently functionalized multiwalled carbon nanotube using nitrobenzene group is prepared and used as a promising support material of Pt-based electrocatalysts (denoted as Pt-NB-MWCNT) for methanol oxidation reaction. The physical and chemical characteristics are performed by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric and X-ray photoelectron spectroscopy. The electrocatalytic are evaluated by cyclic voltammetry and chronoamperometry techniques. Compared with the un-functionalized Pt-MWCNT catalyst, Pt-NB-MWCNTs show more uniform particle dispersion, smaller particle size, improved activity and durability for methanol oxidation reaction. The nitrobenzene group is demonstrated to promote the electrocatalytic activity of Pt-MWCNT for methanol oxidation significantly. The results represent a novel approach to functionalize MWCNT in a simple and economic way to prepare efficient electrocatalysts for methanol oxidation

  15. Preparation of thin film gold based catalysts for oxidation reactions in liquid and gas phases

    International Nuclear Information System (INIS)

    This work deals with the preparation of gold on titania catalysts to make catalytic films in the less than 100 nm thickness area and its comparison with usual powder catalyst in catalytic oxidation reactions in gas and liquid phases. Titania was coated on glass plates with different thicknesses, but with ultra-low surface roughness (< 5 Å). Gold deposition was performed with usual chemical method for catalysts preparation, that is deposition–precipitation with urea. Transmission electron microscopy showed that planar samples are decorated with a high quantity (> 10 wt.% with respect to TiO2) of gold nanoparticles smaller than 2.5 nm, with a narrow size distribution. Activity in CO oxidation demonstrates the catalytic behavior of the planar samples, although they are less active than powder catalyst because of the different geometries of the reactors and catalysts. In contrast, their catalytic performances in liquid phase, benzyl alcohol oxidation, are comparable. These results validate the concept that gold planar catalysts prepared by chemical methods can present similar catalytic behavior as real powder gold catalysts. Such planar catalysts could be useful for bridging the material gap between real and model catalysts in advanced techniques, such as scanning tunnelling microscopy and spectroscopy or high-pressure photoelectron spectroscopy. - Highlights: ► Preparation of thin film of TiO2 (pure anatase) on glass with a low roughness (< 5 Å) ► High density of small gold nanoparticles on planar substrates by a chemical method ► Planar catalysts active in both gas and liquid phase oxidation reactions ► Bridging of the material gap between real and model catalysts

  16. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment.

    Science.gov (United States)

    Qu, Ruijuan; Feng, Mingbao; Wang, Xinghao; Huang, Qingguo; Lu, Junhe; Wang, Liansheng; Wang, Zunyao

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters. PMID:26430733

  17. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment.

    Directory of Open Access Journals (Sweden)

    Ruijuan Qu

    Full Text Available Tetrabromobisphenol A (TBBPA is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters.

  18. Copper(II)-salt-promoted oxidative ring-opening reactions of bicyclic cyclopropanol derivatives via radical pathways

    OpenAIRE

    Hasegawa, Eietsu; Tateyama, Minami; Nagumo, Ryosuke; Tayama, Eiji; Iwamoto, Hajime

    2013-01-01

    Copper(II)-salt-promoted oxidative ring-opening reactions of bicyclic cyclopropanol derivatives were investigated. The regioselectivities of these processes were found to be influenced by the structure of cyclopropanols as well as the counter anion of the copper(II) salts. A mechanism involving rearrangement reactions of radical intermediates and their competitive trapping by copper ions is proposed.

  19. Copper(II-salt-promoted oxidative ring-opening reactions of bicyclic cyclopropanol derivatives via radical pathways

    Directory of Open Access Journals (Sweden)

    Eietsu Hasegawa

    2013-07-01

    Full Text Available Copper(II-salt-promoted oxidative ring-opening reactions of bicyclic cyclopropanol derivatives were investigated. The regioselectivities of these processes were found to be influenced by the structure of cyclopropanols as well as the counter anion of the copper(II salts. A mechanism involving rearrangement reactions of radical intermediates and their competitive trapping by copper ions is proposed.

  20. pH-Controlled Oxidation of an Aromatic Ketone: Structural Elucidation of the Products of Two Green Chemical Reactions

    Science.gov (United States)

    Ballard, C. Eric

    2010-01-01

    A laboratory experiment emphasizing the structural elucidation of organic compounds has been developed as a discovery exercise. The "unknown" compounds are the products of the pH-controlled oxidation of 4'-methoxyacetophenone with bleach. The chemoselectivity of this reaction is highly dependent on the pH of the reaction media: under basic…

  1. LiOOt-Bu as a terminal oxidant in a titanium alkoxide-mediated [2+2+2] reaction cascade☆

    Science.gov (United States)

    Kim, Wan Shin; Aquino, Claudio; Mizoguchi, Haruki; Micalizio, Glenn C.

    2015-01-01

    LiOOt-Bu is an effective oxidant for converting the penultimate organometallic intermediate generated in a titanium alkoxide-mediated [2+2+2] reaction cascade to an allylic alcohol. Oxidation of the presumed allylic titanium species is highly regioselective, providing direct access to substituted hydroindanes containing a primary allylic alcohol. In addition to demonstrating the feasibility of this oxidation process, we document the ability to convert the primary allylic alcohol products to angularly substituted cis-fused hydroindanes. PMID:26097265

  2. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table.

    Science.gov (United States)

    Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin

    2015-11-16

    Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. PMID:26351175

  3. Hydrogen incorporation and radiation induced dynamics in metal-oxide-silicon structures. A study using nuclear reaction analysis

    International Nuclear Information System (INIS)

    Resonant nuclear reaction analysis, using the 1H(15N, αγ)12C reaction at 6.4 MeV, has been successfully applied to the investigation of hydrogen incorporation and radiation induced migration in metal-oxide-silicon structures. A preliminary study of the influence of processing parameters on the H content of thermal oxides, with and without gate material present, has been performed. It is found that the dominant source of hydrogen in Al gate devices and dry oxides is often contamination, likely in the form of adsorbed water vapor, formed upon exposure to room air after removal from the oxidation furnace. Concentrations of hydrogen in the bulk oxide as high as 3 1020 cm-3 (Al gate), and as low as 1 1018 cm-3 (poly Si-gate) have been observed. Hydrogen accumulation at the Si-SiO2 interface has been reproducibly demonstrated for as-oxidized samples, as well as for oxides exposed to H2 containing atmospheres during subsequent thermal processing. The migration of hydrogen, from the bulk oxide to the silicon-oxide interface during NRA, has been observed and intensively investigated. A direct correlation between the hydrogen content of the bulk oxide and the radiation generated oxide charges and interface states is presented. These data provide strong support for the important role of hydrogen in determining the radiation sensitivity of electronic devices. (orig.)

  4. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    Science.gov (United States)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  5. Heteropolymolybdate as a New Reaction-controlled Phase-transfer Catalyst for Efficient Alcohol Oxidation with Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    Zhi Huan WENG; Jin Yan WANG; Xi Gao JIAN

    2006-01-01

    A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H2O2 with high selectivity was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3{PO4[MoO(O2)2]4} was utilized as the reaction-controlled phase-transfer catalyst to catalyze oxidation of benzyl and aliphatic alcohols. The molar ratio of H2O2 and alcohol was 0.75, no other by-products were detected by gas chromatography, the results of oxidation reaction indicated that the catalyst has high activity and stability.

  6. The adsorption and reaction of halogenated volatile organic compounds (VOC's) on metal oxides. Annual progress report, September 1996 - October 1997

    International Nuclear Information System (INIS)

    'The interactions of carbon tetrachloride with strongly basic oxides and hydroxides have been studied by several techniques in order to understand the surface reactions and the subsequent bulk reactions that result in the destruction of the chlorinated hydrocarbon. Emphasis has been placed on understanding the surface phases, as well as the bulk phases, that are present during these transformations. As a result of the study with barium oxide, a reaction cycle has been demonstrated that may have practical significance in the removal of chlorinated hydrocarbons.'

  7. Type I allergic hypersensitivity reactions due to ethylene oxide sterilised leucocyte filters in patients with thalassaemia: report of four cases.

    Science.gov (United States)

    Belen, Burcu; Polat, Meltem

    2015-01-01

    Ethylene oxide (EO) is a highly reactive gas used in sterilisation of heat sensitive medical devices, such as infusion sets, cannulae, intubation materials, ventriculoperitoneal shunts, dialysis catheters and stents. Allergic reactions due to EO have been reported in haemodialysis patients, patients undergoing extracorporeal photopheresis and donors of plasmapheresis. Clinical manifestations vary considerably and generally do not allow differentiation between IgE-mediated anaphylaxis and anaphylactoid reactions. We report four patients with thalassaemia who experienced anaphylaxis during transfusion due to ethylene oxide sterilised leucocyte filters. The aim of this report is to highlight the fact that frequently transfused patients can have allergic reactions due to EO particles left in leucocyte filters. PMID:25725028

  8. Experimental determination of thermodynamic equilibrium in biocatalytic transamination

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Jensen, Jacob Skibsted; Kroutil, Wolfgang; Woodley, John M.

    2012-01-01

    this communication we suggest a simple experimental methodology which we hope will stimulate more accurate determination of thermodynamic equilibria when reporting the results of transaminase‐catalyzed reactions in order to increase understanding of the relationship between substrate and product...... molecular structure on reaction thermodynamics....

  9. Aerobic oxidation reactions catalyzed by vanadium complexes of bis(phenolate) ligands.

    Science.gov (United States)

    Zhang, Guoqi; Scott, Brian L; Wu, Ruilian; Silks, L A Pete; Hanson, Susan K

    2012-07-01

    Vanadium(V) complexes of the tridentate bis(phenolate)pyridine ligand H(2)BPP (H(2)BPP = 2,6-(HOC(6)H(2)-2,4-(t)Bu(2))(2)NC(5)H(3)) and the bis(phenolate)amine ligand H(2)BPA (H(2)BPA = N,N-bis(2-hydroxy-4,5-dimethylbenzyl)propylamine) have been synthesized and characterized. The ability of the complexes to mediate the oxidative C-C bond cleavage of pinacol was tested. Reaction of the complex (BPP)V(V)(O)(O(i)Pr) (4) with pinacol afforded the monomeric vanadium(IV) product (BPP)V(IV)(O)(HO(i)Pr) (6) and acetone. Vanadium(IV) complex 6 was oxidized rapidly by air at room temperature in the presence of NEt(3), yielding the vanadium(V) cis-dioxo complex [(BPP)V(V)(O)(2)]HNEt(3). Complex (BPA)V(V)(O)(O(i)Pr) (5) reacted with pinacol at room temperature, to afford acetone and the vanadium(IV) dimer [(BPA)V(IV)(O)(HO(i)Pr)](2). Complexes 4 and 5 were evaluated as catalysts for the aerobic oxidation of 4-methoxybenzyl alcohol and arylglycerol β-aryl ether lignin model compounds. Although both 4 and 5 catalyzed the aerobic oxidation of 4-methoxybenzyl alcohol, complex 4 was found to be a more active and robust catalyst for oxidation of the lignin model compounds. The catalytic activities and selectivities of the bis(phenolate) complexes are compared to previously reported catalysts. PMID:22708725

  10. Electrocatalytic Activity of Carbonized Nanostructured Polyanilines for Oxidation Reactions: Sensing of Nitrite Ions and Ascorbic Acid

    International Nuclear Information System (INIS)

    Highlights: • Carbonized PANIs prepared from various nanostructured PANI precursors • Electroanalytical performances of carbonized PANIs evaluated using voltammetry • Study of carbonized PANIs physico-chemical properties related to electroactivity • The lowest over-potential for NO2− oxidation at c-PANI (+0.87 V vs. SCE) • The lowest over-potential for ascorbic acid oxidation at both c-PANI and c-PANI-SSA - Abstract: A comparative study of the electrocatalytic activity of nitrogen-containing carbon nanomaterials, prepared by the carbonization of nanostructured polyaniline (PANI) salts, for the electrooxidation reactions is presented. Nanostructured PANI salts were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous solution in the presence of 5-sulfosalicylic acid (PANI-SSA), 3,5-dinitrosalicylic acid (PANI-DNSA) as well as without added acid (PANI), and subsequently carbonized to c-PANI-SSA, c-PANI-DNSA and c-PANI, respectively. Glassy carbon tip was modified with nanostructured c-PANIs and used for the investigation of sensing of nitrite and ascorbic acid in aqueous solutions as model analytes by linear sweep voltammetry. All three types of the investigated c-PANIs gave excellent response to the nitrite ions and ascorbic acid electrooxidation. The lowest peak potential for nitrite ion oxidation exhibited c-PANI (+0.87 V vs. SCE), and for ascorbic acid oxidation both c-PANI and c-PANI-SSA (ca. + 0.13 V vs. SCE). Electrochemical data were correlated with structural and textural data obtained by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental and nitrogen sorption analysis

  11. The analysis of magnesium oxide hydration in three-phase reaction system

    Science.gov (United States)

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas-liquid-solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid-solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH)2 precipitation, Mg(OH)2 peeling off from MgO particle and leaving behind fresh MgO surface.

  12. Comparison of automatically generated reaction mechanism for oxidation of simple hydrocarbons in IC engine

    Directory of Open Access Journals (Sweden)

    Muhammad Mansha

    2011-10-01

    Full Text Available In this work, a detailed kinetic reaction mechanism, consisting of 208 reactions and 79 species, has been developed todescribe the oxidation of simple hydrocarbon fuel (natural gas in IC engine. The performance of the proposed mechanismis tested using simulation, tool CHEMKIN 4.1.1, and experimental measurements. The simulation results of the proposedreaction scheme were compared with those of reference mechanisms (GRI v3.0 and Konnov 0.5 version as well as experimentaldata. Based upon simulation results, it can be concluded that the proposed mechanism shows good concordanceswith GR I3.0 mechanism especially in the prediction of temperature, pressure, and major product species (H2O, CO2 profilesat stoichiometric conditions (= 1.0. Although, there are some discrepancies among each predicted profile, the proposeddetailed mechanism is good to describe the oxidation of natural gas in IC engine. The experimental data also showed favorableresults for prediction of major product species (CO2, H2O & CO at various engine operating speeds in idle mode.

  13. Influence of ethanol on catalytic properties of vanadium (5) compounds in the reaction of hydrazine oxidation by cerium (4) sulfate

    International Nuclear Information System (INIS)

    A study was made of the effect of ethyl alcohol on the rate of oxidation of hydrazine by cerium sulphate in the presence and in the absence of vanadium compounds. The addition of ethyl alcohol accelerates the oxidation reaction. In the absence of the vanadium compounds acting as catalyst, the increase in the reaction rate is due to the formation of an intermediate complex between the oxidizing agent and the ethyl alcohol. The equilibrium constant for the reaction forming the intermediate complex with composition 1:1 is 0.70+-0.05, while the constant for the rate of decomposition of the intermediate product is 0.24 min-1. In the presence of the vanadium compounds an intermediate complex is formed between the catalyst and the ethyl alcohol. The equilibrium constant for the reaction forming this complex is 0.41+-0.03, and the constant for the rate of decomposition thereof is 0.44x105min-1. (author)

  14. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    Science.gov (United States)

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex

  15. About the reaction between uranium-americium mixed oxides and sodium

    International Nuclear Information System (INIS)

    The recycling and fission of the highly toxic minor actinides neptunium and americium is only possible in a liquid metal cooled fast breeder reactor, for nuclear physical reasons. The present work is part of a research program dealing with the fuel-coolant interaction. Fuel pellets with equal parts of americium and uranium and varying oxygen-metal ratio were investigated. A behaviour comparable to that of uranium-plutonium mixed oxides was suggested as a first approach. The reaction of sodium with (U0.5Am0.5)O2-x results in a complete desintegration of the sintered pellet whereas (U, Pu)O2-x pellets show a small increase in volume. A first explanation of the strong reaction of uranium-americium mixed oxides compared to (U, Pu)O2-x or (U, Np)O2-x could be provided by the less negative oxygen potential of the former. Ternary and polynary oxides which are possible products of the fuel-coolant reaction were prepared and characterised by X-ray diffraction. Their oxygen potentials were measured using a solid state e.m.f. cell. Neither Na2AmO3 nor Na3AmO4 can coexist with sodium metal. The measured ΔGO2 values of the Am(IV) and Am (V)-compounds are much higher than those of the sodium uranates(VI) or sodium neptunates(VI). Only Na2O seems to be likely as product of the fuel-coolant interactions. It could be determined in reacted samples by X-ray diffraction. The relatively high oxygen potentials of (U0.5Am0.5)O2-x that are responsible for the reaction could be explained by a binding model which is based on an americium valency state of + 3 and U5+. The existence of both valency states could be proved by XPS measurements. Due to the similar behaviour of neptunium and uranium the problems that are expected for the recycling of Np are much smaller than for americium

  16. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies

    Directory of Open Access Journals (Sweden)

    Frank eSchreiber

    2012-10-01

    Full Text Available Nitrous oxide (N2O is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH or the reduction of nitrite (NO2- to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO2- to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria. In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO2-, NH2OH and nitroxyl (HNO. Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser based absorption spectroscopy. In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build-up.

  17. High level of oxidized nucleosides in thyroid mitochondrial DNA; damaging effects of Fenton reaction substrates

    Directory of Open Access Journals (Sweden)

    Karbownik-Lewińska Małgorzata

    2012-12-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA lies in close proximity to the free radical-producing electron transport chain, thus, it is highly prone to oxidative damage. Oxyphilic type of follicular thyroid carcinoma consists of cells filled – almost exclusively – with aberrant mitochondria. In turn, bivalent iron (Fe2+ and hydrogen peroxide (H2O2 are indispensable for thyroid hormone synthesis, therefore being available in physiological conditions presumably at high concentrations. They participate in Fenton reaction (Fe2++H2O2→Fe3++·OH + OH-, resulting in the formation of the most harmful free radical – hydroxyl radical (·OH. The same substrates may be used to experimentally induce oxidative damage to macromolecules. The aim of the study was to evaluate the background level of oxidative damage to mtDNA and the damaging effects of Fenton reaction substrates. Methods Thyroid mtDNA was incubated in the presence of either H2O2 [100, 10, 1.0, 0.5, 0.1, 0.001, 0.00001 mM] or FeSO4 (Fe2+ [300, 150, 30, 15, 3.0, 1.5 μM], or in the presence of those two factors used together, namely, in the presence of Fe2+ [30 μM] plus H2O2 [100, 10, 1.0, 0.5, 0.1, 0.001, 0.00001 mM], or in the presence of H2O2 [0.5 mM] plus Fe2+ [300, 150, 30, 15, 3.0, 1.5 μM]. 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG concentration, as the index of DNA damage, was measured by HPLC. Results Both Fenton reaction substrates, used separately, increased 8-oxodG level for the highest H2O2 concentration of 100 mM and in Fe2+ concentration-dependent manner [300, 150, and 30 μM]. When Fe2+ and H2O2 were applied together, Fe2+ enhanced H2O2 damaging effect to a higher degree than did H2O2 on Fe2+ effect. Conclusions The level of oxidized nucleosides in thyroid mtDNA is relatively high, when compared to nuclear DNA. Both substrates of Fenton reaction, i.e. ferrous ion and hydrogen peroxide, increase oxidative damage to mtDNA, with stronger damaging effect exerted by

  18. Metallic oxides for desulphurization catalyst reaction; Oxidos metalicos mistos como catalisadores para reacoes de dessulfurizacao

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, R.L.B.A.; Melo, D.M.A.; Melo, M.A.F. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Souza, K.S.G.M. [Universidade Federal da Paraiba - Departamento de Engenharia Quimica, PB (Brazil); Barros, J.M.F. [Universidade Federal de Campina Grande - Campos Cuite, PB (Brazil)

    2010-07-01

    The mixed metal oxides constitute an important class of catalytic materials widely investigated in different fields of applications. Studies of rare earth nickelates have been carried by several researchers in order to investigate the structural stability afforded by oxide formed and the existence of catalytic properties at room temperature. So, this study aims synthesize the nano sized catalyst of nickelate of lanthanum doped with strontium (La(1- x)Sr{sub x}NiO4-{sigma}; x = 0,2 and 0,3), through the Pechini method and your characterization for subsequent application in the desulfurization of thiophene reaction. The precursor solutions were calcined at 300 degree C/2h for pyrolysis of polyester and later calcinations occurred at temperatures of 500 - 1000 degree C. The resulting powders were characterized by thermogravimetric analysis (TG / DTG), surface area for adsorption of N{sub 2} by BET method, Xray diffraction (XRD), scanning electron microscopy (HR{sub S}EM) and spectrometry dispersive energy (EDS). The results of XRD had show that the perovskites obtained consist of two phases (LSN and NiO) and from 700 degree C have crystalline structure. The results of SEM evidenced the obtainment of nano metric powders. The results of BET show that the powders have surface area within the range used in catalysis (5-50m{sup 2}/g). The characterization of active sites was performed by reaction of desulfurization of thiophene at room temperature and 200 degree C, the relation F/W equal to 0,7 mol h{sup -1}m{sub c}at {sup -1}. The products of the reaction were separated by gas chromatography and identified by the selective detection PFPD sulfur. All samples had presented conversion above 95%. (author)

  19. Ethanol Oxidation Reaction Using PtSn/C+Ce/C Electrocatalysts: Aspects of Ceria Contribution

    International Nuclear Information System (INIS)

    The ethanol oxidation reaction (EOR) was investigated using PtSn/C + Ce/C electrocatalysts in different mass ratios (58:42, 53:47, and 42:58) prepared using the polymeric precursor method. Transmission electron microscopy (TEM) experiments showed particles sizes in the range of 3 to 7 nm. Changes in the net parameters observed for Pt suggest the incorporation of Sn into the Pt crystalline network with the formation of an alloy mixture with the SnO2 phase. Among the PtSn/C + Ce/C catalysts investigated, the 53:47 composition showed the highest activity towards the EOR. In this case, the j versus t curves obtained in the presence of ethanol in acidic media exhibited a current density 90% higher than that observed with the commercial PtSn/C (ETEK). Correspondingly, during the experiments performed on single direct ethanol fuel cells, the maximum power density obtained using PtSn/C + Ce/C (53:47) as the anode was approximately 60% higher than that obtained using the commercial catalyst. FTIR data showed that the observed behavior for ethanol oxidation may be explained in terms of a synergic effect of bifunctional mechanism with electronic effects, in addition to a chemical effect of ceria that provides oxygen-containing species to oxidize acetaldehyde to acetic acid

  20. Influence of Adsorbed Water on the Oxygen Evolution Reaction on Oxides

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Vojvodic, Aleksandra

    2015-01-01

    We study the interface between adsorbed water and stoichiometric, defect-free (110) rutile oxide surfaces of TiO2, RuO2, and IrO2 in order to understand how water influences the stabilities of the intermediates of the oxygen evolution reaction (OER). In our model the water is treated as explicitly...... molecules binding to bridging oxygens. The third chain interacts weakly and predominantly with the H2O molecules of the second layer, resembling bulk water. We find that the stability of the water layer close to the oxide surface is almost the same as the one found on flat metal surfaces, such as the Pt(111...... adsorbed H2O molecules, which are found to form two-dimensional water chains (layers) on all investigated oxide surfaces. The first chain formed by the most strongly bound H2O molecules is adsorbed on the 5-fold coordinated surface metal atoms. The second chain is composed of less strongly bound H2O...

  1. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions

    Science.gov (United States)

    Pan, Huilin; Shao, Yuyan; Yan, Pengfei; Cheng, Yingwen; Han, Kee Sung; Nie, Zimin; Wang, Chongmin; Yang, Jihui; Li, Xiaolin; Bhattacharya, Priyanka; Mueller, Karl T.; Liu, Jun

    2016-05-01

    Rechargeable aqueous batteries such as alkaline zinc/manganese oxide batteries are highly desirable for large-scale energy storage owing to their low cost and high safety; however, cycling stability is a major issue for their applications. Here we demonstrate a highly reversible zinc/manganese oxide system in which optimal mild aqueous ZnSO4-based solution is used as the electrolyte, and nanofibres of a manganese oxide phase, α-MnO2, are used as the cathode. We show that a chemical conversion reaction mechanism between α-MnO2 and H+ is mainly responsible for the good performance of the system. This includes an operating voltage of 1.44 V, a capacity of 285 mAh g‑1 (MnO2), and capacity retention of 92% over 5,000 cycles. The Zn metal anode also shows high stability. This finding opens new opportunities for the development of low-cost, high-performance rechargeable aqueous batteries.

  2. Oxidation reactions of 1,3-diphenylpropane-1,3-dione

    Indian Academy of Sciences (India)

    Medha Rele; B S Patro; S Adhikari; G P Kalena; S Chattopadhyay; T Mukherjee

    2002-12-01

    The free radical scavenging properties and possible antioxidant activity of 1,3-diphenylpropane-1,3-dione (1) are reported. Pulse radiolysis technique was employed to study the one-electron oxidation of 1 with various radicals viz. CCl3O$_{2}^{\\bullet}$, N$_{3}^{\\bullet}$ and ${}^{\\bullet}$OH in homogeneous aqueous solution. All these radicals reacted with 1 under ambient conditions at almost diffusion controlled rates producing transient species with an absorption maximum around 420 nm that decayed at first order rates. The transient absorption peak was shifted in the case of CCl3OO$^{\\bullet}$ radical reaction with 1 due to change in the polarity of the medium. Formation of a stable product with a broad absorption band starting from 400 nm and cut off at 230 nm was observed in the oxidation of 1 with ${}^{\\bullet}$OH and ${}^{\\bullet}$N3 radicals. In a biological system also, 1 showed significant inhibitory activity against Fe2+-mediated lipid peroxidation. Based on these observations, a suitable mechanism for the oxidation of 1 has been proposed.

  3. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 15990C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10-4 to 10-18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)

  4. The borohydride oxidation reaction on La-Ni-based hydrogen-storage alloys.

    Science.gov (United States)

    Paschoalino, Waldemir J; Thompson, Stephen J; Russell, Andrea E; Ticianelli, Edson A

    2014-07-21

    This work provides insights into the processes involved in the borohydride oxidation reaction (BOR) in alkaline media on metal hydride alloys formed by LaNi(4.7)Sn(0.2)Cu(0.1) and LaNi(4.78)Al(0.22) with and without deposited Pt, Pd, and Au. The results confirm the occurrence of hydrolysis of the borohydride ions when the materials are exposed to BH(4)(-) and a continuous hydriding of the alloys during BH(4)(-) oxidation measurements at low current densities. The activity for the direct BOR is low in both bare metal hydride alloys, but the rate of the BH(4)(-) hydrolysis and the hydrogen-storage capacity are higher, while the rate of H diffusion is slower for bare LaNi(4.78) Al(0.22). The addition of Pt and Pd to both alloys results in an increase of the BH(4)(-) hydrolysis, but the H(2) formed is rapidly oxidized at the Pt-modified catalysts. In the case of Au modification, a small increase in the BH(4)(-) hydrolysis is observed as compared to the bare alloys. The presence of Au and Pd also leads to a reduction of the rates of alloy hydriding/de-hydriding. PMID:24700670

  5. Experimental and theoretical studies of the reaction between cationic vanadium oxide clusters and acetylene

    Institute of Scientific and Technical Information of China (English)

    YIN Shi; MA YanPing; DU Lin; HE ShengGui; GE MaoFa

    2008-01-01

    The time of flight mass spectrometer coupled with a laser ablation/supersonic expansion cluster source and a fast flow reactor was adopted to study the reactivity of cationic vanadium oxide clusters (VmO+n) toward acetylene (C2H2) molecules under gas phase (P, ~ 1.14 kPa), under near room temperature (T, ~ 350 K) conditions. Association products, VmOnC2H+2 (m,n = 2,4; 2,6; 3,7-8; 4,9-11; 5,12-13;6,13-16, and 7,17), are observed. The oxidation of C2H2 by (V2O5)+n, (n = 1-3) is experimentally identified.The reactivity of (V2O5)+n decreases as n increases. Density functional theory (DFT) calculations were carried out to interpret the reaction mechanisms. The DFT results indicate that a terminal oxygen atom from V2O+5 can transfer overall barrierlessly to C2H2 at room temperature, which is in agreement with the experimental observation. Other experimental results such as the observation of V2O6C2H+2 and nonobservation of V2O7,8C2H+2 in the experiments are also well interpreted based on the DFT calculations.The reactivity of vanadium oxide clusters toward acetylene and other hydrocarbons may be considered in identifying molecular level mechanisms for related heterogeneous catalysis.

  6. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: kinetics, reaction products and transformation mechanisms.

    Science.gov (United States)

    Ji, Yuefei; Dong, Changxun; Kong, Deyang; Lu, Junhe

    2015-03-21

    The widespread occurrence of atrazine in waters poses potential risk to ecosystem and human health. In this study, we investigated the underlying mechanisms and transformation pathways of atrazine degradation by cobalt catalyzed peroxymonosulfate (Co(II)/PMS). Co(II)/PMS was found to be more efficient for ATZ elimination in aqueous solution than Fe(II)/PMS process. ATZ oxidation by Co(II)/PMS followed pseudo-first-order kinetics, and the reaction rate constant (k(obs)) increased appreciably with increasing Co(II) concentration. Increasing initial PMS concentration favored the decomposition of ATZ, however, no linear relationship between k(obs) and PMS concentration was observed. Higher efficiency of ATZ oxidation was observed around neutral pH, implying the possibility of applying Co(II)/PMS process under environmental realistic conditions. Natural organic matter (NOM), chloride (Cl(-)) and bicarbonate (HCO3(-)) showed detrimental effects on ATZ degradation, particularly at higher concentrations. Eleven products were identified by applying solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC/MS) techniques. Major transformation pathways of ATZ included dealkylation, dechlorination-hydroxylation, and alkyl chain oxidation. Detailed mechanisms responsible for these transformation pathways were discussed. Our results reveal that Co(II)/PMS process might be an efficient technique for remediation of groundwater contaminated by ATZ and structurally related s-triazine herbicides. PMID:25544494

  7. Reaction dynamics of Si(001) oxidation at room temperature induced by supersonic O2 molecular beams

    International Nuclear Information System (INIS)

    Potential energy barriers for dissociative chemisorption of O2 molecules on clean and H2O-preadsorbed Si(001) surfaces were verified using supersonic O2 molecular beams and synchrotron radiation photoemission spectroscopy. The saturated oxygen amount on both kinds of Si(001) surfaces were measured as a function of incident energy of O2 molecules. The saturated oxygen amount was dependent in both cases on the incident energy. Especially, two energy thresholds appeared in the H2O-preadsorbed Si(001) surface oxidation. An Si-2p photoemission spectrum for the oxygen-saturated Si(001) surface formed by O2 gas possessing incident energy below the first threshold on the clean surface revealed the oxygen insertion into backbond sites of Si dimers. The dimer backbonds, however, were not oxidized by O2 irradiation without incident energy larger than 1.0 eV in the H2O-preadsorbed surface. These facts indicate that a chemisorption reaction path of the oxygen insertion into dimer backbonds through bridge and dangling bond sites is open for the clean surface oxidation, and the path is cut by termination of dangling bonds by H and OH radicals. (author)

  8. Reaction modelling of Iron Oxide Bromination in the UT-3 thermochemical cycle for Hydrogen production from water

    International Nuclear Information System (INIS)

    Analysis modelling of the iron oxide bromination had been carried out using experiment data from the iron oxide bromination in the UT-3 thermochemical cycle. Iron oxide in the form of pellets were made of the calcination of the mixture of iron oxide, silica, graphite and cellulose at 1473 K. Thermobalance reactor was used to study the kinetic reactions of the iron oxide bromination at a temperature of 473 K for 2 - 6 hours. The data collected from the experiments were used as input for the common models. However, none of these models could not explain the result of the experiments. A new model, a combination of two kinetic reactions : exposed particle and coated particle was created and worked successfully

  9. Effect of calcination temperature and reaction conditions on methane partial oxidation using lanthanum-based perovskite as oxygen donor

    Institute of Scientific and Technical Information of China (English)

    DAI Xiaoping; YU Changchun; LI Ranjia; WU Qiong; SHI Kaijiao; HAO Zhengping

    2008-01-01

    We investigated the effect of calcination temperature, reaction temperature, and different amounts of replenished lattice oxygen on the partial oxidation of methane (POM) to synthesis gas using perovskite-type LaFeO3 oxide as oxygen donor instead of gaseous oxygen, which was prepared by the sol-gel method, and the oxides were characterized by XRD, TG/DTA, and BET. The results indicated that the particle size increased with the calcination temperature increasing, while BET and CH4 conversion declined with the calcination temperature increasing using LaFeO3 oxide as oxygen donor in the absence of gaseous oxygen. CO selectivity remained at a high level such as above 92%, and increased slightly as the calcination temperature increased. Exposure of LaFeO3 oxides to methane atmosphere enhanced the oxygen migration of in the bulk with time online owing to the loss of lattice oxygen and reduction of the oxidative stated Fe ion simultaneously. The high reaction temperature was favorable to the migration of oxygen species from the bulk toward the surface for the synthesis gas production with high CO selectivity. The product distribution and evolution for POM by sequential redox reaction was determined by amounts of replenished lattice oxygen with gaseous oxygen. The optimal process should decline the total oxidation of methane, and increase the selectivity of partial oxidation of methane.

  10. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.

    2014-04-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn nanoparticle catalysts, we show that the addition of Sn to Pt provides distinctly different reaction sites and a more efficient reaction mechanism for CO oxidation compared to pure Pt catalysts. To probe the influence of Sn, we intentionally poisoned the Pt component of the nanoparticle catalysts using a CO-rich atmosphere. With a reaction environment comprised of 100 Torr CO and 40 Torr O2 and a temperature range between 200 and 300 C, Pt and PtSn catalysts exhibited activation barriers for CO2 formation of 133 kJ/mol and 35 kJ/mol, respectively. While pure Sn is readily oxidized and is not active for CO oxidation, the addition of Sn to Pt provides an active site for O2 adsorption that is important when Pt is covered with CO. Sn oxide was identified as the active Sn species under reaction conditions by in situ ambient pressure X-ray photoelectron spectroscopy measurements. While chemical signatures of Pt and Sn indicated intermixed metallic components under reducing conditions, Pt and Sn were found to reversibly separate into isolated domains of Pt and oxidic Sn on the nanoparticle surface under reaction conditions of 100 mTorr CO and 40 mTorr O2 between temperatures of 200-275 C. Under these conditions, PtSn catalysts exhibited apparent reaction orders in O2 for CO 2 production that were 0.5 and lower with increasing partial pressures. These reaction orders contrast the first-order dependence in O 2 known for pure Pt. The differences in activation barriers, non-first-order dependence in O2, and the presence of a partially oxidized Sn indicate that the enhanced activity is due to a reaction mechanism that occurs at a Pt/Sn oxide interface present at the nanoparticle surface. © 2014 Published by Elsevier Inc.

  11. An analytical model of hydrogen evolution and oxidation reactions on electrodes partially covered with a catalyst.

    Science.gov (United States)

    Kemppainen, Erno; Halme, Janne; Lund, Peter D

    2016-05-11

    Our previous theoretical study on the performance limits of the platinum (Pt) nanoparticle catalyst for the hydrogen evolution reaction (HER) had shown that the mass transport losses at a partially catalyst-covered planar electrode are independent of the catalyst loading. This suggests that the two-dimensional (2D) numerical model used could be simplified to a one-dimensional (1D) model to provide an easier but equally accurate description of the operation of these HER electrodes. In this article, we derive an analytical 1D model and show that it indeed gives results that are practically identical to the 2D numerical simulations. We discuss the general principles of the model and how it can be used to extend the applicability of existing electrochemical models of planar electrodes to low catalyst loadings suitable for operating photoelectrochemical devices under unconcentrated sunlight. Since the mass transport losses of the HER are often very sensitive to the H2 concentration, we also discuss the limiting current density of the hydrogen oxidation reaction (HOR) and how it is not necessarily independent of the reaction kinetics. The results give insight into the interplay of kinetic and mass-transport limitations at HER/HOR electrodes with implications for the design of kinetic experiments and the optimization of catalyst loadings in the photoelectrochemical cells. PMID:27137703

  12. Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes.

    Science.gov (United States)

    Jin, Xiaohui; Peldszus, Sigrid; Huck, Peter M

    2012-12-01

    Second-order reaction rate constants of micropollutants with ozone (k(O3)) and hydroxyl radicals (k(OH)) are essential for evaluating their removal efficiencies from water during ozonation and advanced oxidation processes. Kinetic data are unavailable for many of the emerging micropollutants. Twenty-four micropollutants with very diverse structures and applications including endocrine disrupting compounds, pharmaceuticals, and personal care products were selected, and their k(O3) and k(OH) values were determined using bench-scale reactors (at pH 7 and T = 20 °C). Reactions with molecular ozone are highly selective as indicated by their k(O3) values ranging from 10(-2)-10(7) M(-1) s(-1). The general trend of ozone reactivity can be explained by micropollutant structures in conjunction with the electrophilic nature of ozone reactions. All of the studied compounds are highly reactive with hydroxyl radicals as shown by their high k(OH) values (10(8)-10(10) M(-1) s(-1)) even though they are structurally very diverse. For compounds with a low reactivity toward ozone, hydroxyl radical based treatment such as O(3)/H(2)O(2) or UV/H(2)O(2) is a viable alternative. This study contributed to filling the data gap pertaining kinetic data of organic micropollutants while confirming results reported in the literature where available. PMID:23079129

  13. Biocatalytic potential of vanillin aminotransferase from Capsicum chinense

    OpenAIRE

    Weber, Nora; Ismail, Abdelrahman; Gorwa-Grauslund, Marie; Carlquist, Magnus

    2014-01-01

    Background The conversion of vanillin to vanillylamine is a key step in the biosynthetic route towards capsaicinoids in pungent cultivars of Capsicum sp. The reaction has previously been annotated to be catalysed by PAMT (putative aminotransferase; [GenBank: AAC78480.1, Swiss-Prot: O82521]), however, the enzyme has previously not been biochemically characterised in vitro. Results The biochemical activity of the transaminase was confirmed by direct measurement of the reaction with purified rec...

  14. A study on the effect of oxidation-reduction reaction on the corrosion of vitrified radioactive waste

    International Nuclear Information System (INIS)

    Although the glass materials have much better properties (e.g. leachability and mechanical strength) compared to the conventional immobilizing agents (e.g. cement, concrete, etc.), it is reported that the glass dissolution would take place through metal leaching. Therefore, it is necessary to assess the long-term safety of the vitrified LLW in the final geologic disposal repository. Lots of thermodynamic and kinetic glass dissolution models have been developed and proposed. However, most of them have some limitation and uncertainties. The conventional glass dissolution models have often overestimated the long-term dissolution phenomena which can be observed in natural systems. The major leaching mechanisms from original glass waste form are a few chemical reactions, such as ion exchange, hydrolysis reactions at nonbridging oxygen sites, network hydrolysis and network dissolution. To consider the effects of oxidation-reduction (Redox) reactions on the glass dissolution, the authors calculate the ΔG, one of important factors, of radionuclides and some metals which are elements of vitrified LLW and studied their mechanisms of the Redox reactions. The vitrified radioactive waste contains many radionuclides and alkali metals which give rise to Redox reactions. These reactions affect the leaching reactions from glass network. In the vitrified LLW, some metals and radionuclides give rise to Redox reactions. However, the previous dissolution models did not take into account these reactions. When the Redox reactions of radionuclides and some metals occur on the vitrified glass, they disrupt leaching by forming the oxides which are more stable than their ionic forms. The redox reactions decrease the rates of hydrolysis reactions at nonbridging oxygen sites. this reaction is very slow in nature compared to the other reactions and their effects would appear in the long term dissolution

  15. Effects of gas flow on oxidation reaction in liquid induced by He/O{sub 2} plasma-jet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Atsushi; Uchida, Giichiro, E-mail: uchida@jwri.osaka-u.ac.jp; Takenaka, Kosuke; Setsuhara, Yuichi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Kawasaki, Toshiyuki [Department of Mechanical and Electrical Engineering, Nippon Bunri University, Oita, Oita 870-0397 (Japan); Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka 819-0395 (Japan)

    2015-07-28

    We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much faster gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.

  16. Solvent-Dependent Reaction Pathways Operating in Copper(II) Tetrafluoroborate Promoted Oxidative Ring-Opening Reactions of Cyclopropyl Silyl Ethers.

    Science.gov (United States)

    Hasegawa, Eietsu; Nemoto, Kazuki; Nagumo, Ryosuke; Tayama, Eiji; Iwamoto, Hajime

    2016-04-01

    Oxidative ring-opening reactions of benzene-fused bicyclic cyclopropyl silyl ethers, promoted by copper(II) tetrafluoroborate, were investigated. The regioselectivity of cyclopropane ring-opening as well as product distributions were found to be highly dependent on the nature of the solvent. In alcohols, dimeric substances arising from external bond cleavage are major products. Radical rearrangement products are also formed in solvents such as ether and ethyl acetate. On the contrary, nucleophile addition to carbocation intermediates, generated by internal bond cleavage, occurs mainly in reactions taking place in acetonitrile. It is proposed that the observed solvent effects that govern the reaction pathways followed are a consequence of varying solvation of copper intermediates, which governs their reactivity and redox properties. In addition, the influence of counteranions of the copper salts, organonitriles, cyclic dienes, and substrate structures on the pathways followed in these reactions was also examined. PMID:26799089

  17. Implementation of steady state approximation for modelling of reaction kinetic of UV catalysed hydrogen peroxide oxidation of starch

    Science.gov (United States)

    Kumoro, Andri Cahyo; Retnowati, Diah Susetyo; Ratnawati, Budiyati, Catarina Sri

    2015-12-01

    With regard to its low viscosity, high stability, clarity, film forming and binding properties, oxidised starch has been widely used in various applications specifically in the food, paper, textile, laundry finishing and binding materials industries. A number of methods have been used to produce oxidised starch through reactions with various oxidizing agents, such as hydrogen peroxide, air oxygen, ozone, bromine, chromic acid, permanganate, nitrogen dioxide and hypochlorite. Unfortunately, most of previous works reported in the literatures were focused on the study of reaction mechanism and physicochemical properties characterization of the oxidised starches produced without investigation of the reaction kinetics of the oxidation process. This work aimed to develop a simple kinetic model for UV catalysed hydrogen peroxide oxidation of starch through implementation of steady state approximation for the radical reaction rates. The model was then verified using experimental data available in the literature. The model verification revealed that the proposed model shows its good agreement with the experimental data as indicated by an average absolute relative error of only 2.45%. The model also confirmed that carboxyl groups are oxidised further by hydroxyl radical. The carbonyl production rate was found to follow first order reaction with respect to carbonyl concentration. Similarly, carboxyl production rate also followed first order reaction with respect to carbonyl concentration. The apparent reaction rate constant for carbonyl formation and oxidation were 6.24 × 104 s-1 and 1.01 × 104 M-1.s-1, respectively. While apparent reaction rate constant for carboxyl oxidation was 4.86 × 104 M-1.s-1.

  18. Highly Active Iridium/Iridium Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Du W.; Su D.; Wang Q.; Saxner D.; Deskins N.A.; Krzanowski J.E.; Frenkel A.I.; Teng X.

    2011-08-03

    Ethanol is a promising fuel for low-temperature direct fuel cell reactions due to its low toxicity, ease of storage and transportation, high-energy density, and availability from biomass. However, the implementation of ethanol fuel cell technology has been hindered by the lack of low-cost, highly active anode catalysts. In this paper, we have studied Iridium (Ir)-based binary catalysts as low-cost alternative electrocatalysts replacing platinum (Pt)-based catalysts for the direct ethanol fuel cell (DEFC) reaction. We report the synthesis of carbon supported Ir{sub 71}Sn{sub 29} catalysts with an average diameter of 2.7 {+-} 0.6 nm through a 'surfactant-free' wet chemistry approach. The complementary characterization techniques, including aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, are used to identify the 'real' heterogeneous structure of Ir{sub 71}Sn{sub 29}/C particles as Ir/Ir-Sn/SnO{sub 2}, which consists of an Ir-rich core and an Ir-Sn alloy shell with SnO{sub 2} present on the surface. The Ir{sub 71}Sn{sub 29}/C heterogeneous catalyst exhibited high electrochemical activity toward the ethanol oxidation reaction compared to the commercial Pt/C (ETEK), PtRu/C (Johnson Matthey) as well as PtSn/C catalysts. Electrochemical measurements and density functional theory calculations demonstrate that the superior electro-activity is directly related to the high degree of Ir-Sn alloy formation as well as the existence of nonalloyed SnO{sub 2} on surface. Our cross-disciplinary work, from novel 'surfactant-free' synthesis of Ir-Sn catalysts, theoretical simulations, and catalytic measurements to the characterizations of 'real' heterogeneous nanostructures, will not only highlight the intriguing structure-property correlations in nanosized catalysts but also have a transformative

  19. Transport phenomena in solid oxide fuel cell electrodes focusing on heat transfer related to chemical reactions

    Science.gov (United States)

    Navasa, M.; Andersson, M.; Yuan, J.; Sundén, B.

    2012-11-01

    Solid oxide fuel cells (SOFCs) are widely studied for their advantages especially at high temperatures. However, operating at high temperatures represents a high cost due to the strict requirements the materials are expected to fulfill. Thus, the main goal in SOFC research has been to decrease the operating temperature so that the range of available materials is widened and hence, the operating cost can be reduced. In this paper, the different heat sources that contribute to the cell energy balance are presented with strong emphasis on the chemical reactions that take place in SOFCs. The knowledge of which heat sources or sinks taking place and their locations within the SOFC can provide useful information for further design and efficiency improvements.

  20. Ultrasmall PtSn alloy catalyst for ethanol electro-oxidation reaction

    Science.gov (United States)

    Kwak, Da-Hee; Lee, Young-Woo; Han, Sang-Beom; Hwang, Eui-Tak; Park, Han-Chul; Kim, Min-Cheol; Park, Kyung-Won

    2015-02-01

    To improve the electrocatalytic properties for an ethanol electro-oxidation reaction, modifications of Pt nanocrystallites have been used by alloying with other elements such as Ru, Sn, and Au. Here we demonstrate carbon supported Pt3Sn alloy electrocatalyst (Pt3Sn/C) synthesized using a thermal-decomposition method. The PtSn/C prepared by the present synthetic process shows a homogeneous distribution of ultrasmall alloy nanoparticles (∼2.5 nm) in the presence of Pt and Sn metallic states. At 0.45 V, the Pt3Sn/C (0.35 mA cm-2) exhibits much higher current density as compared with Pt/C (0.13 mA cm-2). In an electrochemical stability test, the Pt3Sn/C supported quite high current density and thus showed 3% current reduction after the stability test.

  1. Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base.

    Science.gov (United States)

    Alia, Shaun M; Pivovar, Bryan S; Yan, Yushan

    2013-09-11

    Platinum (Pt)-coated copper (Cu) nanowires (Pt/CuNWs) are synthesized by the partial galvanic displacement of CuNWs and have a 100 nm diameter and are 25-40 μm length. Pt/CuNWs are studied as a hydrogen oxidation reaction (HOR) catalyst in base along with Cu templated Pt nanotubes (PtNT (Cu)), a 5% Cu monolayer on a bulk polycrystalline Pt electrode (5% ML Cu/BPPt), BPPt, and carbon supported Pt (Pt/C). Comparison of these catalysts demonstrates that the inclusion of Cu benefited the HOR activity of Pt/CuNWs likely by providing compressive strain on Pt; surface Cu further aids in hydroxyl adsorption, thereby improving the HOR activity of Pt/CuNWs. Pt/CuNWs exceed the area and mass exchange current densities of carbon supported Pt by 3.5 times and 1.9 times. PMID:23952885

  2. Naringin Alleviates Diabetic Kidney Disease through Inhibiting Oxidative Stress and Inflammatory Reaction.

    Directory of Open Access Journals (Sweden)

    Fenqin Chen

    Full Text Available Naringin, a flavanone glycoside extracted from Citrus grandis Osbeck, has a wide range of pharmacological effects. In the present study we aimed at demonstrating the protective effect of naringin against diabetic kidney disease (DKD and elucidating its possible molecular mechanism underlying. The beneficial effect of naringin was assessed in rats with streptozotocin (STZ-induced diabetes and high glucose-induced HBZY-1 cells. According to our results, first we found that naringin relieved kidney injury, improved renal function and inhibited collagen formation and renal interstitial fibrosis. Second, we confirmed that naringin restrained oxidative stress by activating Nrf2 antioxidant pathway. Moreover, the results suggested that naringin significantly resisted inflammatory reaction by inhibiting NF- κ B signaling pathway. Taken together, our results demonstrate that naringin effectively alleviates DKD, which provide theoretical basis for naringin clinically used to treatment of DKD.

  3. The adsorption and reaction of halogenated volatile organic compounds (VOC's) on metal oxides. 1998 annual progress report

    International Nuclear Information System (INIS)

    'The goal of the research is to elucidate the properties of the materials responsible for the activation of halocarbons and the nature of the intermediates formed in the dissociative adsorption of this class of compounds. This information is essential for interpreting and predicting stoichiometric and catalytic pathways for the safe destruction of halocarbon pollutants. The specific objectives are: (1) to study the adsorption and reactivity of chloromethanes and chloroethanes on metal oxides; (2) to identify the reaction intermediates using spectroscopic methods; and (3) to develop kinetic models for the reaction of these halocarbons with oxide surfaces. This report summarizes work after 20 months of a 36-month project. Emphasis has been placed understanding the surfaces phases, as well as the bulk phases that are present during the reactions of chlorinated hydrocarbons with strongly basic metal oxides. Most of the research has been carried out with carbon tetrachloride.'

  4. Kinetics of solid-gas reactions characterized by scanning AC nano-calorimetry with application to Zr oxidation

    International Nuclear Information System (INIS)

    Scanning AC nano-calorimetry is a recently developed experimental technique capable of measuring the heat capacity of thin-film samples of a material over a wide range of temperatures and heating rates. Here, we describe how this technique can be used to study solid-gas phase reactions by measuring the change in heat capacity of a sample during reaction. We apply this approach to evaluate the oxidation kinetics of thin-film samples of zirconium in air. The results confirm parabolic oxidation kinetics with an activation energy of 0.59 ± 0.03 eV. The nano-calorimetry measurements were performed using a device that contains an array of micromachined nano-calorimeter sensors in an architecture designed for combinatorial studies. We demonstrate that the oxidation kinetics can be quantified using a single sample, thus enabling high-throughput mapping of the composition-dependence of the reaction rate.

  5. Contribution to the study of the oxidation reaction of Np(V) by nitric acid catalyzed par nitrous acid

    International Nuclear Information System (INIS)

    The oxidation reaction kinetics of Np(V) to Np(VI) by nitric acid catalyzed by nitrous acid was studied. In a first part, a detailed bibliographical survey was made of the oxidation-reduction reactions of U, Np, Pu, Am with nitrous and nitric acids (51 references). It is shown that only when both the organic and aqueous phases are mixed up, the extraction of a reaction product (NpVI) induces an equilibrium displacement. TBP was used as solvent. It is shown that the extraction of nitrous acid from the solvent enables the nitrous acid concentration to be kept constant and in the same order of magnitude than that of Np. This enables to show that Np(V) and nitrous acid have no simple orders. The temperature and nitric acid concentration dependence was studied. It is shown that tetravalent nitrogen must play a major part in the Np(V) oxidation

  6. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction

    International Nuclear Information System (INIS)

    Highlights: → ZnO-reduced graphene oxide composite is synthesized via microwave assisted reaction. → The method allows a facile, safe and rapid reaction in aqueous media. → A high dye degradation efficiency is achieved under UV light irradiation. - Abstract: A quick and facile microwave-assisted reaction is used to synthesize ZnO-reduced graphene oxide (RGO) hybrid composites by reducing graphite oxide dispersion with zinc nitrate using a microwave synthesis system. Their photocatalytic performance in degradation of methylene blue is investigated and the results show that the RGO plays an important role in the enhancement of photocatalytic performance and the ZnO-RGO composite with 1.1 wt. % RGO achieves a maximum degradation efficiency of 88% in a neutral solution under UV light irradiation for 260 min as compared with pure ZnO (68%) due to the increased light absorption, the reduced charge recombination with the introduction of RGO.

  7. Structurally Diverse Diazafluorene-Ligated Palladium(II) Complexes and Their Implications for Aerobic Oxidation Reactions.

    Science.gov (United States)

    White, Paul B; Jaworski, Jonathan N; Fry, Charles G; Dolinar, Brian S; Guzei, Ilia A; Stahl, Shannon S

    2016-04-13

    4,5-Diazafluoren-9-one (DAF) has been identified as a highly effective ligand in a number of Pd-catalyzed oxidation reactions, but the mechanistic basis for its utility has not been elucidated. Here, we present the complex coordination chemistry of DAF and palladium(II) carboxylate salts. Multiple complexes among an equilibrating mixture of species have been characterized by (1)H and (15)N NMR spectroscopy and X-ray crystallography. These complexes include monomeric and dimeric Pd(II) species, with monodentate (κ(1)), bidentate (κ(2)), and bridging (μ:κ(1):κ(1)) DAF coordination modes. Titration studies of DAF and Pd(OAc)2 reveal the formation of two dimeric DAF/Pd(OAc)2 complexes at low [DAF] and four monomeric species at higher [DAF]. The dimeric complexes feature two bridging acetate ligands together with either a bridging or nonbridging (κ(1)) DAF ligand coordinated to each Pd(II) center. The monomeric structures consist of three isomeric Pd(κ(1)-DAF)2(OAc)2 complexes, together with Pd(κ(2)-DAF)(OAc)2 in which the DAF exhibits a traditional bidentate coordination mode. Replacing DAF with the structurally related, but more-electron-rich derivative 9,9-dimethyl-4,5-diazafluorene (Me2DAF) simplifies the equilibrium mixture to two complexes: a dimeric species in which the Me2DAF bridges the two Pd centers and a monomeric species with a traditional κ(2)-Me2DAF coordination mode. The use of DAF in combination with other carboxylate ligands (CF3CO2(-) or tBuCO2(-)) also results in a simplified collection of equilibrating Pd(II)-DAF complexes. Collectively, the results highlight the ability of DAF to equilibrate rapidly among multiple coordination modes, and provide valuable insights into the utility of DAF as a ligand in Pd-catalyzed oxidation reactions. PMID:26967703

  8. Sucrose synthase: A unique glycosyltransferase for biocatalytic glycosylation process development.

    Science.gov (United States)

    Schmölzer, Katharina; Gutmann, Alexander; Diricks, Margo; Desmet, Tom; Nidetzky, Bernd

    2016-01-01

    Sucrose synthase (SuSy, EC 2.4.1.13) is a glycosyltransferase (GT) long known from plants and more recently discovered in bacteria. The enzyme catalyzes the reversible transfer of a glucosyl moiety between fructose and a nucleoside diphosphate (NDP) (sucrose+NDP↔NDP-glucose+fructose). The equilibrium for sucrose conversion is pH dependent, and pH values between 5.5 and 7.5 promote NDP-glucose formation. The conversion of a bulk chemical to high-priced NDP-glucose in a one-step reaction provides the key aspect for industrial interest. NDP-sugars are important as such and as key intermediates for glycosylation reactions by highly selective Leloir GTs. SuSy has gained renewed interest as industrially attractive biocatalyst, due to substantial scientific progresses achieved in the last few years. These include biochemical characterization of bacterial SuSys, overproduction of recombinant SuSys, structural information useful for design of tailor-made catalysts, and development of one-pot SuSy-GT cascade reactions for production of several relevant glycosides. These advances could pave the way for the application of Leloir GTs to be used in cost-effective processes. This review provides a framework for application requirements, focusing on catalytic properties, heterologous enzyme production and reaction engineering. The potential of SuSy biocatalysis will be presented based on various biotechnological applications: NDP-sugar synthesis; sucrose analog synthesis; glycoside synthesis by SuSy-GT cascade reactions. PMID:26657050

  9. Computerized pathway elucidation for hydroxyl radical-induced chain reaction mechanisms in aqueous phase advanced oxidation processes.

    Science.gov (United States)

    Li, Ke; Crittenden, John

    2009-04-15

    The radical reaction mechanism that is involved in advanced oxidation processes is complex. An increasing number of trace contaminants and stringent drinking water standards call for a rule-based model to provide insight to the mechanism of the processes. A model was developed to predict the pathway of contaminant degradation and byproduct formation during advanced oxidation. The model builds chemical molecules as graph objects, which enables mathematic abstraction of chemicals and preserves chemistry information. The model algorithm enumerates all possible reaction pathways according to the elementary reactions (built as reaction rules) established from experimental observation. The method can predict minor pathways that could lead to toxic byproducts so that measures can be taken to ensure drinking water treatment safety. The method can be of great assistance to water treatment engineers and chemists who appreciate the mechanism of treatment processes. PMID:19475958

  10. Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction

    Science.gov (United States)

    Xu, Guang-Rui; Hui, Jiao-Jiao; Huang, Tan; Chen, Yu; Lee, Jong-Min

    2015-07-01

    Active and stable electrocatalysts for the hydrogen evolution reaction (HER) are highly desirable for hydrogen production. Herein, the cuboid-like platinum nanocrystals (Pt-CNSs) are achieved through a facile L-lysine-assisted hydrothermal reduction method. Then, reduced graphene oxide (RGO) supported Pt-CNSs (Pt-CNSs/RGO) nanohybrids are obtained through the self-assemble of Pt-CNSs on graphene oxide (GO) and followed by NaBH4 reduction. The resulting Pt-CNSs/RGO nanohybrids are characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis and Raman, showing that the well-defined Pt-CNSs with 5.8 nm length and 3.0 nm width are uniformly and firmly attached on the RGO surface. Electrochemical tests demonstrate that Pt-CNSs/RGO nanohybrids have superior electrocatalytic activity and stability for the HER than pure Pt-CNSs, demonstrating RGO is an excellent cathode support materials for Pt-CNSs. Meanwhile, the present results indicate that the as-prepared Pt-CNSs/RGO nanohybrids have great potential application in HER.

  11. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke

    2013-01-01

    resistance increased both in the high and low frequency region, which indicates a strong poisoning of the water gas shift reaction and thus a lack of hydrogen fuel in addition to the poisoning of the electrochemical hydrogen oxidation. All poisoning effects are reversible under the applied operating......Investigation of fuels containing sulfur impurities is important regarding durability of solid oxide fuel cells (SOFC) because they are present in various potential fuels for SOFC applications. The effect of H2S in the ppm range on the performance of state-of-the-art anode supported SOFC at 850 and...... 750°C is evaluated in either hydrogen/steam or hydrogen/steam/CO fuel. It was found that the poisoning effect is more severe in H2/H2O/CO vs. H2/H2O fuel. Only ∼8 ppm H2S can be allowed in the CO containing fuel without risking damage to the anode, whereas 90 ppm (or even more) is possible in H2/H2O...

  12. The reaction of water on polycrystalline UO2: Pathways to surface and bulk oxidation

    International Nuclear Information System (INIS)

    The reaction of polycrystalline uranium dioxide with H2O is studied by in situ Raman spectroscopy, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). The difference between UO2 and U3O8 can be seen in the bulk by XRD and Raman and on the surface by both the core level and valence band regions. In the valence band region the U 5f line was far more pronounced for UO2 than for U3O8. It was possible to monitor the near surface oxidation of UO2 to U3O8 by H2O at 300 K using Raman spectroscopy while oxygen deposition was quantified using XPS. TPD of D2O on H2-reduced U3O8 (∼UO2) showed desorption of D2. D2 desorption occurred in two temperature domains (at ∼410 K and ∼570 K). Increasing the surface exposure to D2O affected the distribution of both D2 peaks. The first desorption-peak populated first while at relatively higher D2O exposure the second desorption peak increased considerably in intensity. The second desorption of D2 during D2O-TPD can be tracked down to oxidation of deeper layers

  13. Ring Walking/Oxidative Addition Reactions for the Controlled Synthesis of Conjugated Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bazan, Guillermo C

    2012-04-03

    Power conversion efficiencies of plastic solar cells depend strongly on the molecular weight characteristics of the semiconducting polymers used for their fabrication. The synthesis of these materials typically relies on transition metal mediated catalytic reactions. In many instances, the ideal structures cannot be attained because of deficiencies in these reactions, particularly when it comes to being able to achieve high number average molecular weights and narrow molecular weight distributions. Another important conjugated polymer structure of interest is one in which a single functional group is attached at the end group of the chain. Such systems would be ideal for modifying surface properties at interfaces and for labeling biomolecular probes used in fluorescent biosensors. To respond to the challenges above, our efforts have centered on the design of homogenous transition metal complexes that are easy to prepare and effective in carrying out living, or quasi-living, condensative chain polymerization reactions. The key mechanistic challenge for the success of this reaction is to force the insertion of one monomer unit at a time via a process that involves migration of the transition metal-containing fragment to one terminus of the polymer chain. Chain growth characteristics are therefore favored when the metal does not dissociate from the newly formed reductive elimination product. We have proposed that dissociation is disfavored by the formation of a -complex, in which the metal can sample various locations of the electronically delocalized framework, a process that we term ring-walking , and find the functionality where oxidative addition takes place. Success has been achieved in the nickel-mediated cross coupling reaction of Grignard reagents with aromatic halides by using bromo[1,2-bis(diphenylphosphino)ethane]phenylnickel. This reagent can yield poly(thiophene)s (one of the most widely used type of polymer in plastic solar cells) with excellent

  14. Redox regulation and pro-oxidant reactions in the physiology of circadian systems.

    Science.gov (United States)

    Méndez, Isabel; Vázquez-Martínez, Olivia; Hernández-Muñoz, Rolando; Valente-Godínez, Héctor; Díaz-Muñoz, Mauricio

    2016-05-01

    Rhythms of approximately 24 h are pervasive in most organisms and are known as circadian. There is a molecular circadian clock in each cell sustained by a feedback system of interconnected "clock" genes and transcription factors. In mammals, the timing system is formed by a central pacemaker, the suprachiasmatic nucleus, in coordination with a collection of peripheral oscillators. Recently, an extensive interconnection has been recognized between the molecular circadian clock and the set of biochemical pathways that underlie the bioenergetics of the cell. A principle regulator of metabolic networks is the flow of electrons between electron donors and acceptors. The concomitant reduction and oxidation (redox) reactions directly influence the balance between anabolic and catabolic processes. This review summarizes and discusses recent findings concerning the mutual and dynamic interactions between the molecular circadian clock, redox reactions, and redox signaling. The scope includes the regulatory role played by redox coenzymes (NAD(P)+/NAD(P)H, GSH/GSSG), reactive oxygen species (superoxide anion, hydrogen peroxide), antioxidants (melatonin), and physiological events that modulate the redox state (feeding condition, circadian rhythms) in determining the timing capacity of the molecular circadian clock. In addition, we discuss a purely metabolic circadian clock, which is based on the redox enzymes known as peroxiredoxins and is present in mammalian red blood cells and in other biological systems. Both the timing system and the metabolic network are key to a better understanding of widespread pathological conditions such as the metabolic syndrome, obesity, and diabetes. PMID:25926044

  15. Insulin and leptin enhance human sperm motility, acrosome reaction and nitric oxide production

    Institute of Scientific and Technical Information of China (English)

    Fanuel Lampiao; Stefan S. du Plessis

    2008-01-01

    Aim: To investigate the in vitro effects of insulin and leptin on human sperm motility, viability, acrosome reaction and nitric oxide (NO) production. Methods: Washed human spermatozoa from normozoospermic donors were treated with insulin (10 μIU) and leptin (10 nmol). Insulin and leptin effects were blocked by inhibition of their intracellular effector, phosphotidylinositol 3-kinase (PI3K), by wortmannin (10 μmol) 30 min prior to insulin and leptin being given. Computer-assisted semen analysis was used to assess motility after 1, 2 and 3 h of incubation. Viability was assessed by fluorescence-activated cell sorting using propidium iodide as a fluorescent probe. Acrosome-reacted cells were observed under a fluorescent microscope using fluorescein-isothiocyanate-Pisum sativum agglutinin as a probe. NO was measured after treating the sperm with 4,5-diaminofluorescein-2/diacetate (DAF-2/DA) and analyzed by fluorescence-activated cell sorting. Results: Insulin and leptin significantly increased total motility, progressive motility and acrosome reaction, as well as NO production. Conclusion: This study showed the in vitro beneficial effects of insulin and leptin on human sperm function. These hormones could play a role in enhancing the fertilization capacity of human spermatozoa.

  16. Solvent 1H/2H isotopic effects in the reaction of the L-Tyrosine oxidation catalyzed by Tyrosinase

    International Nuclear Information System (INIS)

    Tyrosinase is well known catalyst in the oxidation of L-Tyrosine to L-DOPA and following oxidation of L-DOPA to dopachinone. The aim of communication is to present the results of studies on the solvent isotopic effects (SIE) in the above reactions for the 1H/2H in the 3',5' and 2',6' substituted tyrosine. Obtained dependence of the reaction rate on the substrate concentration were applied for optimization of the kinetic parameters, kcat and kcat/Km, in the Michaelis-Menten equation. As a result - better understanding of the L-DOPA creation can be achieved

  17. The oxygen evolution reaction on passive oxide covered transition metal electrodes in alkaline solution. Part 2-Cobalt.

    OpenAIRE

    LYONS, MICHAEL EDWARD

    2008-01-01

    Details are outlined of an electrochemical investigation of the oxygen evolution reaction (OER) at passive oxide covered polycrystalline Co electrodes in aqueous alkaline solution. Kinetic studies on electrodes subjected to different pre-treatment routines, yielded different values of the Tafel slope and the reaction order with respect to OH- activity. Only one mechanistic pathway could account for all observed values of these kinetic parameters. This pathway is similar, although ...

  18. One-step preparation of optically transparent Ni-Fe oxide film electrocatalyst for oxygen evolution reaction

    OpenAIRE

    Doudou Zhang; Lijian Meng; Jingying Shi; Nan Wang; Shengzhong (Frank) Liu; Can Li

    2015-01-01

    Optically transparent cocatalyst film materials is very desirable for improved photoelectrochemical (PEC) oxygen evolution reaction (OER) over light harvesting photoelectrodes which require the exciting light to irradiate through the cocatalyst side, i.e., front-side illumination. In view of the reaction overpotential at electrode/electrolyte interface, the OER electrocatalysts have been extensively used as cocatalysts for PEC water oxidation on photoanode. In this work, the feasi...

  19. The oxygen evolution reaction on passive oxide covered transition metal electrodes in aqueous alkaline solution. Part 1 - Nickel

    OpenAIRE

    LYONS, MICHAEL EDWARD

    2008-01-01

    Various aspects of the oxygen evolution reaction (OER) at passive oxide covered polycrystalline Ni electrodes in aqueous alkaline solution were investigated using electrochemical techniques. Steady state polarisation and electrochemical impedance spectroscopy (EIS) were used to measure kinetically significant parameters including the Tafel slope and the reaction order with respect to OH- activity. While reproducible values of the Tafel slope were readily observed, the recorded cur...

  20. Epoxidation and oxidation reactions using 1,4-butanediol dimethacrylate crosslinked polystyrene-supported tertiary butyl hydroperoxide

    Indian Academy of Sciences (India)

    M S Sheela; K Sreekumar

    2004-11-01

    1,4-Butanediol dimethacrylate (1,4-BDDMA) crosslinked polystyrene-supported -butyl hydroperoxide was employed in the epoxidation of olefins and oxidation of alcohols to carbonyl compounds. The reagent proved to be successful as a recyclable solid phase organic reagent with as much or more efficiency when compared to its monomeric counterpart. The extent of reaction was found to be dependent on various reaction parameters like solvent, temperature, molar concentration and presence of catalyst.

  1. Water oxidation catalysis: an amorphous quaternary Ba-Sr-Co-Fe oxide as a promising electrocatalyst for the oxygen-evolution reaction.

    Science.gov (United States)

    Zhang, Cuijuan; Berlinguette, Curtis P; Trudel, Simon

    2016-01-25

    We present an amorphous quaternary Ba-Sr-Co-Fe oxide (a-BSCF) with a specific stoichiometry, readily fabricated via a photochemical decomposition method. a-BSCF demonstrates high catalytic activity towards the oxygen-evolution reaction (OER). PMID:26659269

  2. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    International Nuclear Information System (INIS)

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer. The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO2, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram

  3. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Soshi, E-mail: sato.soshi@cies.tohoku.ac.jp; Honjo, Hiroaki; Niwa, Masaaki [Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); JST-ACCEL, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); Ikeda, Shoji [Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); JST-ACCEL, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Ohno, Hideo [Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Endoh, Tetsuo [Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); JST-ACCEL, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Graduate School of Engineering, Tohoku University, 6-6 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer. The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.

  4. Scale-up synthesis of zinc borate from the reaction of zinc oxide and boric acid in aqueous medium

    Science.gov (United States)

    Kılınç, Mert; Çakal, Gaye Ö.; Yeşil, Sertan; Bayram, Göknur; Eroğlu, İnci; Özkar, Saim

    2010-11-01

    Synthesis of zinc borate was conducted in a laboratory and a pilot scale batch reactor to see the influence of process variables on the reaction parameters and the final product, 2ZnO·3B 2O 3·3.5H 2O. Effects of stirring speed, presence of baffles, amount of seed, particle size and purity of zinc oxide, and mole ratio of H 3BO 3:ZnO on the zinc borate formation reaction were examined at a constant temperature of 85 °C in a laboratory (4 L) and a pilot scale (85 L) reactor. Products obtained from the reaction in both reactors were characterized by chemical analysis, X-ray diffraction, particle size distribution analysis, thermal gravimetric analysis and scanning electron microscopy. The kinetic data for the zinc borate production reaction was fit by using the logistic model. The results revealed that the specific reaction rate, a model parameter, decreases with increase in particle size of zinc oxide and the presence of baffles, but increases with increase in stirring speed and purity of zinc oxide; however, it is unaffected with the changes in the amount of seed and reactants ratio. The reaction completion time is unaffected by scaling-up.

  5. Biocatalytic functionalization of hydroxyalkyl acrylates and phenoxyethanol via phosphorylation.

    Science.gov (United States)

    Tasnádi, Gábor; Hall, Mélanie; Baldenius, Kai; Ditrich, Klaus; Faber, Kurt

    2016-09-10

    The enzymatic phosphorylation of phenoxyethanol, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate catalyzed by acid phosphatases PhoN-Sf and PiACP at the expense of inorganic di-, tri-, hexameta- or polyphosphate was applied to the preparative-scale synthesis of phosphorylated compounds. The reaction conditions were optimized with respect to enzyme immobilization, substrate concentration, pH and type of phosphate donor. The mild reaction conditions prevented undesired polymerization and hydrolysis of the acrylate ester moiety. Application of a continuous flow system allowed facile scale-up and mono-phosphates were obtained in up to 26% isolated yield with space-time yields of 0.89kgL(-1)h(-1). PMID:27422352

  6. Biocatalytic reductions by plant tissue - Green alternative to alcohol production

    OpenAIRE

    Gašo-Sokač, Dajana; Nujić, Marija; Bušić, Valentina; Habuda-Stanić, Mirna

    2014-01-01

    The use of biocatalysts for the industrial synthesis of chemicals has been attracting much attention as an environmental friendly synthetic method. Various plants, such as apple (Malus pumila), carrot (Daucus carota), cucumber (Cucumis sativus), onion (Allium cepa), potato (Solanum tuberosum), radish (Raphanus sativus) and sweet potato (Ipomoea batatas) were used as biocatalysts. Enzymes that plants produce are able to perform reactions under mild conditions (pH and temperature), with remarka...

  7. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions.

    Science.gov (United States)

    Szekrenyi, Anna; Garrabou, Xavier; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2015-09-01

    The preparation of multifunctional chiral molecules can be greatly simplified by adopting a route via the sequential catalytic assembly of achiral building blocks. The catalytic aldol assembly of prebiotic compounds into stereodefined pentoses and hexoses is an as yet unmet challenge. Such a process would be of remarkable synthetic utility and highly significant with regard to the origin of life. Pursuing an expedient enzymatic approach, here we use engineered D-fructose-6-phosphate aldolase from Escherichia coli to prepare a series of three- to six-carbon aldoses by sequential one-pot additions of glycolaldehyde. Notably, the pertinent selection of the aldolase variant provides control of the sugar size. The stereochemical outcome of the addition was also altered to allow the synthesis of L-glucose and related derivatives. Such engineered biocatalysts may offer new routes for the straightforward synthesis of natural molecules and their analogues that circumvent the intricate enzymatic pathways forged by evolution. PMID:26291944

  8. Reaction Engineering of Biocatalytic Enantioselective Reduction: A Case Study for Aliphatic Ketones

    DEFF Research Database (Denmark)

    Leuchs, Susanne; Lima-Ramos, Joana; Greiner, Lasse;

    2013-01-01

    IL K5) used as solubiliser and the buffer. The overall cost of chemicals was €148/kgproduct. To assess the environmental impact of the process, the E-factor (kgwaste/kgproduct) 132 and the process mass intensity 133 (PMI, kgsubstrate/kgproduct) were calculated. A process model based on initial rate...... experiments was elaborated and used to improve the process under cost and environmental aspects. Applying several measures to enhance the cofactor utilisation, the cost base could be reduced by 65% and the E-factor (PMI) to 17 (18)....

  9. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions

    Science.gov (United States)

    Szekrenyi, Anna; Garrabou, Xavier; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2015-09-01

    The preparation of multifunctional chiral molecules can be greatly simplified by adopting a route via the sequential catalytic assembly of achiral building blocks. The catalytic aldol assembly of prebiotic compounds into stereodefined pentoses and hexoses is an as yet unmet challenge. Such a process would be of remarkable synthetic utility and highly significant with regard to the origin of life. Pursuing an expedient enzymatic approach, here we use engineered D-fructose-6-phosphate aldolase from Escherichia coli to prepare a series of three- to six-carbon aldoses by sequential one-pot additions of glycolaldehyde. Notably, the pertinent selection of the aldolase variant provides control of the sugar size. The stereochemical outcome of the addition was also altered to allow the synthesis of L-glucose and related derivatives. Such engineered biocatalysts may offer new routes for the straightforward synthesis of natural molecules and their analogues that circumvent the intricate enzymatic pathways forged by evolution.

  10. A robust methodology for kinetic model parameter estimation for biocatalytic reactions

    DEFF Research Database (Denmark)

    Al-Haque, Naweed; Andrade Santacoloma, Paloma de Gracia; Lima Afonso Neto, Watson;

    2012-01-01

    correlation of the parameters. The final model with the fitted parameters is able to describe both initial rate and dynamic experiments. Application of the methodology is illustrated with a case study using the x-transaminase catalyzed synthesis of 1-phenylethylamine from acetophenone and 2-propylamine....

  11. Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Nitrogen doped graphene oxide (Nr-GO) with properties suitable for electrocatalysts is easily synthesized using phenylhydrazine as a reductant at relatively low temperature. The reducing agent removes various oxygen functional groups bonded to graphene oxide and simultaneously dope the nitrogen atoms bonded with phenyl group all over the basal planes and edge sites of the graphene. The Nr-GO exhibits remarkable electrocatalytic activities for oxygen reduction reaction compared to the commercial carbon black and graphene oxide due to the electronic modification of the graphene structure. In addition, Nr-GO shows excellent dispersibility in various solvent due to the dopant molecules

  12. Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones.

    Science.gov (United States)

    Nikolantonaki, Maria; Magiatis, Prokopios; Waterhouse, Andrew L

    2014-11-15

    Quinones are central intermediates in wine oxidation that can degrade the quality of wine by reactions with varietal thiols, such as 3-sulfanylhexanol, decreasing desirable aroma. Protection by wine preservatives (sulphur dioxide, glutathione, ascorbic acid and model tannin, phloroglucinol) was assessed by competitive sacrificial reactions with 4-methyl-1,2-benzoquinone, quantifying products and ratios by HPLC-UV-MS. Regioselectivity was assessed by product isolation and identification by NMR spectroscopy. Nucleophilic addition reactions compete with two electron reduction of quinones by sulphur dioxide or ascorbic acid, and both routes serve as effective quenching pathways, but minor secondary products from coupled redox reactions between the products and reactants are also observed. The wine preservatives were all highly reactive and thus all very protective against 3-sulfanylhexanol loss to the quinone, but showed only additive antioxidant effects. Confirmation of these reaction rates and pathways in wine is needed to assess the actual protective action of each tested preservative. PMID:24912696

  13. Nitric oxide formation from the reaction of nitrite with carp and rabbit hemoglobin at intermediate oxygen saturations

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2008-01-01

    The nitrite reductase activity of deoxyhemoglobin has received much recent interest because the nitric oxide produced in this reaction may participate in blood flow regulation during hypoxia. The present study used spectral deconvolution to characterize the reaction of nitrite with carp and rabbit...... hemoglobin at different constant oxygen tensions that generate the full range of physiological relevant oxygen saturations. Carp is a hypoxia-tolerant species with very high hemoglobin oxygen affinity, and the high R-state character and low redox potential of the hemoglobin is hypothesized to promote NO...... generation from nitrite. The reaction of nitrite with deoxyhemoglobin leads to a 1 : 1 formation of nitrosylhemoglobin and methemoglobin in both species. At intermediate oxygen saturations, the reaction with deoxyhemoglobin is clearly favored over that with oxyhemoglobin, and the oxyhemoglobin reaction and...

  14. Surface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts

    Directory of Open Access Journals (Sweden)

    Karla Herrera Delgado

    2015-05-01

    Full Text Available An experimental and kinetic modeling study on the Ni-catalyzed conversion of methane under oxidative and reforming conditions is presented. The numerical model is based on a surface reaction mechanism consisting of 52 elementary-step like reactions with 14 surface and six gas-phase species. Reactions for the conversion of methane with oxygen, steam, and CO2 as well as methanation, water-gas shift reaction and carbon formation via Boudouard reaction are included. The mechanism is implemented in a one-dimensional flow field description of a fixed bed reactor. The model is evaluated by comparison of numerical simulations with data derived from isothermal experiments in a flow reactor over a powdered nickel-based catalyst using varying inlet gas compositions and operating temperatures. Furthermore, the influence of hydrogen and water as co-feed on methane dry reforming with CO2 is also investigated.

  15. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell.

    Science.gov (United States)

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-01-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol. PMID:27185089

  16. Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2012-02-01

    Full Text Available High molecular weight (300–650 Da naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night during spring and summer in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C10H16 oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC. The ions were identified as clusters of the nitrate ion (NO3 and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7–1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO4 (Hyytiälä and C3F5O2 (JPAC. The most abundant products in the ion spectra were identified as C105H14O7, C10H14O9, C10H16O9, and C10H14O11. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C9 compounds which were not observed in Hyytiälä, where β-pinene on average is 4–5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1–1 ppt (~10

  17. Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2012-06-01

    Full Text Available High molecular weight (300–650 Da naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night between spring and autumn in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C10H16 oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC. The ions were identified as clusters of the nitrate ion (NO3 and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7–1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO4 (Hyytiälä and C3F5O2 (JPAC. The most abundant products in the ion spectra were identified as C10H14O7, C10H14O9, C10H16O9, and C10H14O11. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C9 compounds which were not observed in Hyytiälä, where β-pinene on average is 4–5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1–1 ppt (~10

  18. Reaction of low-molecular-mass organoselenium compounds (and their sulphur analogues) with inflammation-associated oxidants

    DEFF Research Database (Denmark)

    Carroll, L.; Davies, Michael J.; Pattison, D. I.

    2015-01-01

    the chemistry of low-molecular-mass organoselenium compounds (e.g. selenoethers, diselenides and selenols) with inflammatory oxidants, with a particular focus on the reaction kinetics and product studies, with the differences in reactivity between selenium and sulphur analogues described in the...

  19. Synthesis gas production by zinc oxide reaction with methane: elimination of greenhouse gas emission from a metallurgical plant

    International Nuclear Information System (INIS)

    Most natural gas based petrochemical processes consist of catalytic reforming or partial oxidation units for producing synthesis gas. This research shows that it is possible to replace these units by the reaction of zinc oxide with methane, which produces metallic zinc and synthesis gas (CO + 2H2) simultaneously. Therefore, by combination of the metallurgical and petrochemical units, it is possible to eliminate the greenhouse gas emission from a conventional zinc production plant. On the other hand, synthesis gas from the ZnO + CH4 reaction can be used for making petrochemical products. In this work, the reaction of zinc oxide with methane was studied by thermogravimetry and online gas analysis with a mass spectrometer. The main goal of this article is the study on the nature of gaseous products and H2/CO ratio of produced synthesis gas. Therefore, a basic method for quantitative gas analysis by mass spectrometer was introduced, and its accuracy was checked with the decomposition products of a standard material. Mass spectrometer results of the ZnO + CH4 reaction showed that synthesis gas with a H2/CO ratio of about two is produced, which is very suitable for methanol production plants. Finally, the necessary kinetic parameters of this reaction for design of industrial plants were presented

  20. Functionalized Carbon Nanomaterial Supported Palladium Nano-Catalysts for Electrocatalytic Glucose Oxidation Reaction

    International Nuclear Information System (INIS)

    Highlights: • Glucose oxidation reaction (GOR) catalyzed by Pd on carbon nano-supports. • Polyol reduction used for nano-size Pd catalyst synthesis. • Effect of carbon support’s functionality on nano-Pd GOR catalysis disclosed. • Carboxylated MWCNT found to be the best carbon nano-support. • Peak current density of 5.5 mA cm−2 attained for alkaline GOR. - Abstract: Palladium nanoparticles (nPd) are grown on six carbon nanomaterials with different functionalities by one-pot, high-pH polyol reduction of PdCl2. The nanomaterials include pristine multi-walled carbon nanotubes (pMWCNT), carboxylated MWCNT (cMWCNT), amine-modified MWCNT (nMWCNT), hydroxyl-modified MWCNT (oMWCNT), XC72 carbon black (XC72), and carboxylated graphene (cGraphene). The effects of the carbon functionality on Pd-catalyzed glucose oxidation reaction (GOR) in an alkaline medium are studied. From the experimental data of X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM), it reveals that nPds with a particle size ranging from 4.5 nm to 7.4 nm are grown on carbon nanomaterials with a weight loading percentage from 11.1% to 18.6%. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), Tafel analysis, and chronoamperomtry (CA) are used to compare the electrochemical active surface area (ECSA), GOR onset potential, GOR peak current density, Tafel slope, poisoning rate, and cycling stability between the six nPd/C electrocatalysts for GOR. It is found that nPd grown on a functionalized carbon nano-support had better GOR performance than that grown on pMWCNT. Compared to nPd/pMWCNT, nPd/cMWCNT shows a 6.2-fold higher peak current density (5.6 mA cm−2) and a 100 mV lower over-potential (-0.55 V vs. Hg/HgO) for GOR. Besides, the data are among the best for nPd-catalyzed GOR reported to date

  1. Thermal and Photochemical Reactions of NO2 on a Chromium (III) Oxide Surface

    Science.gov (United States)

    Nishino, N.; Finlayson-Pitts, B. J.

    2011-12-01

    Chromium oxide (Cr2O3) is a major component of the oxide layer on stainless steel surfaces. It is also widely used as pigment in paints and roofs and as a protective coating on various surfaces. While many studies have focused on the catalytic activity of Cr2O3 surfaces for selective catalytic reduction (SCR), less attention has been paid to its surface chemistry involving atmospherically important species such as NO2 under atmospheric conditions. In this study, we have investigated thermal and photochemical reactions of NO2 in the presence and the absence of water vapor, using a thin layer of Cr2O3 as a model for the surface of stainless steel as well as other similarly coated surfaces in the boundary layer. A 30 nm thick Cr2O3 film was deposited on a germanium attenuated total reflectance (ATR) crystal, and the changes in the surface species were monitored by Fourier Transform Infrared (FTIR) spectroscopy. Upon NO2 adsorption, nitrate (NO3-) ions appeared likely coordinated to Cr3+ ion(s). The NO3- peaks reversibly shifted when water vapor was added, suggesting that NO3- become solvated. Irradiation at 311 nm led to a decrease in NO3- ions under both dry and humid conditions. The major gas-phase species formed by the irradiation was NO under dry conditions, while NO2 was mainly formed in the presence of H2O. Possible mechanisms and the implications for heterogeneous NO2 chemistry in the boundary layer will be discussed. The results will also be compared to similar chemistry on other surfaces.

  2. Triblock polymer mediated synthesis of Ir-Sn oxide electrocatalysts for oxygen evolution reaction

    Science.gov (United States)

    Li, Guangfu; Yu, Hongmei; Wang, Xunying; Yang, Donglei; Li, Yongkun; Shao, Zhigang; Yi, Baolian

    2014-03-01

    Over the past several decades, tremendous effort has been put into developing cost-effective, highly active and durable electrocatalysts for oxygen evolution reaction (OER) in the proton exchange membrane water electrolyzer. This report explores an advanced and effective "soft" material-assistant method to fabricate Ir0.6Sn0.4O2 electrocatalysts with a 0.6/0.4 ratio of Ir/Sn in precursors. Adopting a series of characterization methods, the collective results suggest that the surfactant-material F127 content, as an important factor, can efficiently control the formation of Ir-Sn oxides with varying surface properties and morphologies, such as the grainy and rod-shaped structures. Associating with the half-cell and single electrolyzer, it is affirmed that the optimal ratio of (Ir + Sn)/F127 is 100 for the preparation of S100-Ir0.6Sn0.4O2 with obviously enhanced activity and sufficient durability under the electrolysis circumstances. The lowest cell voltages obtained at 80 °C are 1.631 V at 1000 mA cm-2, and 1.820 V at 2000 mA cm-2, when applying S100-Ir0.6Sn0.4O2 OER catalyst and Ti-material diffusion layer on the anode side and Nafion® 115 membrane. Furthermore, the noble-metal Ir loading in the same cell decreases to 0.77 mg cm-2. These results highlight that Ir-Sn oxide synthesized by the soft-material method is a promising OER electrocatalyst.

  3. Toluene removal by oxidation reaction in spray wet scrubber: experimental, modeling and optimization

    Directory of Open Access Journals (Sweden)

    Roumporn Nikom

    2006-11-01

    Full Text Available Toluene, an important volatile organic compound (VOC, is used in many kinds of industries, such as painting, printing, coating, and petrochemical industries. The emission of toluene causes serious air pollution, odor problem, flammability problem and affects human health. This paper proposes the removal of toluene from waste air using a spray wet scrubber combining the absorption and oxidation reaction. Aqueous sodium hypochlorite (NaOCl solution was used as the scrubbing liquid in the system. NaOCl, the strongest oxidative agent, presents an effective toluene removal. As the scrubbed toluene is reacted, recirculation of the scrubbing liquid could be operated with a constant removal efficiency throughout the operting time. The investigated variables affecting the removal efficiency were air flow rate, inlet toluene concentration, NaOCl concentration, scrubbing liquid flow rate and size of spray nozzle. Influence of the scrubbing parameters was experimentally studied to develop a mathematical model of the toluene removal efficiency. The removal model reveals that the increase of scrubbing liquid flow rate, toluene concentration, and NaOCl concentration together with the decrease of air flow rate and size of spray nozzle can increase the toluene removal efficiency. Optimization problem with an objective function and constraints was set to provide the maximum toluene removal efficiency and solved by Matlab optimization toolbox. The optimization constraints were formed from the mathematical model and process limitation. The solution of the optimization was an air flow rate of 100 m3/h, toluene concentration of 1500 ppm, NaOCl concentration of 0.02 mol/l, NaOCl solution feed rate of 0.8 m3/h, and spray nozzle size of 0.5 mm. Solution of the optimization gave the highest toluene removal efficiency of 91.7%.

  4. HCOOH oxidation on thin Pd layers on Au: Self-poisoning by the subsequent reaction of the reaction product

    International Nuclear Information System (INIS)

    Highlights: ► Thin layers of Pd@Au are more active for HCOOH oxidation than pure Pd. ► Pd@Au surfaces are poisoned more rapidly than Pd black. ► Poisoning is caused by COads formed in CO2 electroreduction. -- Abstract: The oxidation of HCOOH has been investigated on thin Pd layers ranging from 1 to 17 ML equivalents electrodeposited on polycrystalline Au substrate (Pd@Au). The results are compared to those on Pd black. Potentiodynamic polarization curves suggest that on both types of catalyst HCOOH oxidizes through dehydrogenation path. The high current densities achieved on 4–17 ML Pd@Au surpass more than three times the activity of Pd black. Chronoamperometric test reveals that the Pd@Au electrodes lose their activity faster than Pd black. In the stripping experiment performed after the chronoamperometry COads is detected on all the surfaces. On the 4 ML Pd@Au, which exhibits the highest deactivation rate, the COads coverage is the largest. After the chronoamperometric test repeated in the CO2 saturated supporting electrolyte, the anodic stripping shows that COads is present on all the electrodes, again with the highest coverage on 4 ML Pd@Au. It is concluded that deactivation of Pd surfaces is caused by the COads formed in the electrochemical reduction of CO2, which is the product of HCOOH oxidation. Electronic modification of Pd by Au substrate causes stronger interactions of Pd with HCOOH and CO, which increases HCOOH oxidation rate, but also accelerates the poisoning by COads

  5. Biochemical properties of Paracoccus denitrificans FnrP: reactions with molecular oxygen and nitric oxide.

    Science.gov (United States)

    Crack, Jason C; Hutchings, Matthew I; Thomson, Andrew J; Le Brun, Nick E

    2016-03-01

    In Paracoccus denitrificans, three CRP/FNR family regulatory proteins, NarR, NnrR and FnrP, control the switch between aerobic and anaerobic (denitrification) respiration. FnrP is a [4Fe-4S] cluster-containing homologue of the archetypal O2 sensor FNR from E. coli and accordingly regulates genes encoding aerobic and anaerobic respiratory enzymes in response to O2, and also NO, availability. Here we show that FnrP undergoes O2-driven [4Fe-4S] to [2Fe-2S] cluster conversion that involves up to 2 O2 per cluster, with significant oxidation of released cluster sulfide to sulfane observed at higher O2 concentrations. The rate of the cluster reaction was found to be ~sixfold lower than that of E. coli FNR, suggesting that FnrP can remain transcriptionally active under microaerobic conditions. This is consistent with a role for FnrP in activating expression of the high O2 affinity cytochrome c oxidase under microaerobic conditions. Cluster conversion resulted in dissociation of the transcriptionally active FnrP dimer into monomers. Therefore, along with E. coli FNR, FnrP belongs to the subset of FNR proteins in which cluster type is correlated with association state. Interestingly, two key charged residues, Arg140 and Asp154, that have been shown to play key roles in the monomer-dimer equilibrium in E. coli FNR are not conserved in FnrP, indicating that different protomer interactions are important for this equilibrium. Finally, the FnrP [4Fe-4S] cluster is shown to undergo reaction with multiple NO molecules, resulting in iron nitrosyl species and dissociation into monomers. PMID:26790880

  6. Antioxidative Mechanisms of Sulfite and Protein-Derived Thiols during Early Stages of Metal Induced Oxidative Reactions in Beer.

    Science.gov (United States)

    Lund, Marianne N; Krämer, Anna C; Andersen, Mogens L

    2015-09-23

    The radical-mediated reactions occurring during the early stages of beer storage were studied by following the rate of oxygen consumption, radical formation as detected by electron spin resonance spectroscopy, and concentrations of the antioxidant compounds sulfite and thiols. Addition of either Fe(III) or Fe(II) had similar effects, indicating that a fast redox equilibrium is obtained between the two species in beer. Addition of iron in combination with hydrogen peroxide gave the most pronounced levels of oxidation due to a direct initiation of ethanol oxidation through generation of hydroxyl radicals by the Fenton reaction. The concentration of sulfite decreased more than the thiol concentration, suggesting that thiols play a secondary role as antioxidants by mainly quenching 1-hydroxyethyl radicals that are intermediates in the oxidation of ethanol. Increasing the temperature had a minor effect on the rate of oxygen consumption. PMID:26325117

  7. Studies of the Catalytic Activity and Deactivation of Calcined Layered Double Hydroxides in the Reaction of Ethanol with Propylene Oxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The reaction of ethanol with propylene oxide over calcined layered double hydroxides(CLDH) was investigated. The results show that CLDH has a good activity and a good selectivity, but the activity and the selectivity of CLDH decrease when CLDH reforms LDH- the so called "memory effect". The influence of the "memory effect" on the CLDH returning to LDH was studied by the hydration reaction. It is shown that the "memory effect" is not complete, and the decreases of the Mg/Al molar ratio of LDH and the crystallite size due to the increase of the hydration reaction time result in the drop of the activity and the selectivity.Keyworcds Ethanol, Propylene oxide, Calcined layered double hydroxide, "Memory effect", Hydration

  8. Dynamics of activity free radical oxidation reactions in students with cerebral palsy results over the course of the educational process

    Directory of Open Access Journals (Sweden)

    Makarova E.V.

    2012-12-01

    Full Text Available The dynamics of changes activity of reactions is studied freely radical oxidize for students with the consequences of child's cerebral paralysis. 20 students took part in an experiment. Found that the course of study they have more active free radical oxidation reactions and decreases the activity of antiradical protection. Given the use of additional physical activity in aerobic training indicators intracellular antioxidant defense system increased, decreased content of reaction products of lipid peroxidation. However, increased rates of maximum oxygen consumption and increased tolerance of students with cerebral palsy to the consequences of physical activity. It is set that the pathological changes of metabolism for students ground the necessity of application of the differentiated physical loadings. The optimum forms of physical rehabilitation of the aerobic training is the dosed walking, medical swimming, dosed after distance, sometimes and by the corner of getting up pedestrian ascents. Loading is increased due to a volume, but not intensity of exercises.

  9. Analysis of Absorption and Reaction Kinetics in the Oxidation of Organics in Effluents Using a Porous Electrode Ozonator

    Institute of Scientific and Technical Information of China (English)

    Alexander P. Mathews; ishora K. Panda

    2012-01-01

    A novel electrode design for the in situ generation of ozone in the reaction zone of a tubular reactor is described in this work. The ozone generator uses a porous inner electrode tube in the corona discharge assembly, and the ozone generated around the outer periphery of the porous tube diffuses into the tubular reactor and reacts with the contaminants in the fluid that is being treated. A mathematical model that includes absorption and second order reaction in the film is developed to describe ozonation kinetics of a contaminant dye in the tubular reactor. The model describes the experimental data for dye decolorization, oxidation byproducts, dissolved ozone, and ozone gas concentrations well. Model analysis indicates that the fast dye decolorization reaction occurs partly in the liquid film and partly in the bulk fluid. The model can be used in the selection of appropriate gas-liquid contactors for efficient oxidation of contaminants in effluents.

  10. Guidelines and cost analysis for catalyst production in biocatalytic processes

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Lima Ramos, Joana; Nordblad, Mathias;

    2011-01-01

    be a powerful tool to guide research and development activities in order to achieve commercial potential. This study discusses the cost contribution of the biocatalyst in processes that use isolated enzymes, immobilized enzymes, or whole cells to catalyze reactions leading to the production of chemicals...... as well as the production scale are crucial for decreasing the total cost contribution of the biocatalyst. Moreover, it is clear that, based on initial process performance, the potential to reduce production costs by several orders of magnitude is possible. Guideline minimum productivities for a feasible...... process are suggested for different types of processes and products, based on typical values of biocatalyst and product costs. Such guidelines are dependent on the format of the biocatalyst (whole-cell, soluble enzyme, immobilized enzyme), as well as product market size and value. For example commodity...

  11. Kinetic Studies of Oxidative Coupling of Methane Reaction on Model Catalysts

    KAUST Repository

    Khan, Abdulaziz M.

    2016-04-26

    With the increasing production of natural gas as a result of the advancement in the technology, methane conversion to more valuable products has become a must. One of the most attractive processes which allow the utilization of the world’s most abundant hydrocarbon is the oxidative coupling. The main advantage of this process is the ability of converting methane into higher paraffins and olefins (primarily C2) in a direct way using a single reactor. Nevertheless, low C2+ yields have prevented the process to be commercialized despite the fact that great number of attempts to prepare catalysts were conducted so that it can be economically viable. Due to these limitations, understanding the mechanism and kinetics of the reaction can be utilized in improving the catalysts’ performance. The reaction involves the formation of methyl radicals that undergo gas-phase radical reactions. CH4 activation is believed to be done the surface oxygen species. However, recent studies showed that, in addition to the surface oxygen mediated pathway, an OH radical mediated pathway have a large contribution on the CH4 activation. The experiments of Li/MgO, Sr/La2O3 and NaWO4/SiO2 catalysts revealed variation of behavior in activity and selectivity. In addition, water effect analysis showed that Li/MgO deactivate at the presence of water due to sintering phenomena and the loss of active sites. On the other hand, negative effect on the C2 yield and CH4 conversion rate was observed with Sr/La2O3 with increasing the water partial pressure. Na2WO4/SiO2 showed a positive behavior with water in terms of CH4 conversion and C2 yield. In addition, the increment in CH4 conversion rate was found to be proportional with PO2 ¼ PH2O ½ which is consistent with the formation of OH radicals and the OH-mediated pathway. Experiments of using ring-dye laser, which is used to detect OH in combustion experiments, were tried in order to detect OH radicals in the gas-phase of the catalyst. Nevertheless

  12. Kinetics and Reaction Mechanisms of High-Temperature Flash Oxidation of Molybdenite

    Science.gov (United States)

    Wilkomirsky, Igor; Otero, Alfonso; Balladares, Eduardo

    2010-02-01

    The kinetics and reaction mechanism of the flash oxidation of +35/-53 μm molybdenite particles in air, as well as in 25, 50, and 100 pct oxygen higher than 800 K, has been investigated using a stagnant gas reactor and a laminar flow reactor coupled to a fast-response, two-wavelength pyrometer. The changes in the morphology and in the chemical composition of partially reacted particles were also investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential thermal analysis (DTA), and electron microprobe. High-speed photography was also used to characterize the particle combustion phenomena. The effects of oxygen concentration and gas temperature on ignition and peak combustion temperatures were studied. The experimental results indicate that MoS2 goes through a process of ignition/combustion with the formation of gaseous MoO3 and SO2 with no evidence of formation of a molten phase, although the reacting molybdenite particles reach temperatures much higher than their melting temperature. This effect may be a result of the combustion of gaseous sulfur from partial decomposition of molybdenite to Mo2S3 under a high gas temperature and 100 pct oxygen. In some cases, the partial fragmentation and distortion of particles also takes place. The transformation can be approximated to the unreacted core model with chemical control and with activation energy of 104.0 ± 4 kJ/mol at the actual temperature of the reacting particles. The reaction was found to be first order with respect to the oxygen concentration. The rate constant calculated at the actual temperatures of the reacting particles shows a good agreement with kinetic data obtained at lower temperatures. The ignition temperature of molybdenite shows an inverse relationship with the gas temperature and oxygen content, with the lowest ignition temperature of 1120 K for 100 pct oxygen. Increasing the oxygen content from 21 to 100 pct increases the particle combustion temperature from 1600 K

  13. Influence of various metallic oxides on the kinetic of the oxygen evolution reaction on platinum electrodes

    Directory of Open Access Journals (Sweden)

    Kambire Ollo

    2015-08-01

    Full Text Available Pt, 50Pt-50RuO2 and 50Pt-50IrO2 electrodes were prepared on titanium (Ti substrate by thermal decomposition techniques. The micrographs of 50Pt-50RuO2 and 50Pt-50IrO2 have revealed that their surfaces are rough with cracked structures. That of platinum was smooth, compact and homogeneous. The richer the electrode ‘surface in platinum, thinner is the crack size and also more compact is the electrode’surface. The electrodes have also been characterized electrochemically by cyclic voltammetry in acid (HClO4 and in alkaline (KOH electrolytes. These characterizations showed that the surface of the 50Pt-50RuO2 and 50Pt-50IrO2 electrodes were composed by platinum and metal dioxide active sites. The Tafel slope obtained on Pt, 50Pt-50RuO2 and 50Pt-50IrO2 for the oxygen evolution reaction (OER were respectively 120, 90 and 44 mV/dec in acid electrolyte. In the alkaline electrolyte, they were 119, 87 and 42 mV/dec respectively on Pt, 50Pt-50RuO2 and 50Pt-50IrO2 electrodes indicating that for the prepared electrodes, Tafel slopes are the same in acid and in alkaline media. Moreover, in acid and in alkaline media, the kinetic of the oxygen evolution reaction was rapid on 50Pt-50RuO2 and 50Pt-50IrO2 than Pt owing to a synergetic effect of Pt and the oxides. That additional effect of the surface component 50Pt-50RuO2 and 50Pt-50IrO2 electrodes let them possess high electrocatalytic activity towards OER than Pt in the two media. Though the kinetic of the oxygen evolution reaction is practically the same in acidic and alkaline media for all the electrodes, OER occurred at lower overpotential in alkaline electrolyte than in acidic electrolyte on the prepared electrodes.

  14. Elementary reaction schemes for physical and chemical vapor deposition of transition metal oxides on silicon for high-k gate dielectric applications

    Science.gov (United States)

    Niu, D.; Ashcraft, R. W.; Kelly, M. J.; Chambers, J. J.; Klein, T. M.; Parsons, G. N.

    2002-05-01

    This article describes the kinetics of reactions that result in substrate consumption during formation of ultrathin transition metal oxides on silicon. Yttrium silicate films (˜40 Å) with an equivalent silicon dioxide thickness of ˜11 Å are demonstrated by physical vapor deposition (PVD) routes. Interface reactions that occur during deposition and during postdeposition treatment are observed and compared for PVD and chemical vapor deposition (CVD) yttrium oxides and CVD aluminum-oxide systems. Silicon diffusion, metal-silicon bond formation, and reactions involving hydroxides are proposed as critical processes in interface layer formation. For PVD of yttrium silicate, oxidation is thermally activated with an effective barrier of 0.3 eV, consistent with the oxidation of silicide being the rate-limited step. For CVD aluminum oxide, interface oxidation is consistent with a process limited by silicon diffusion into the deposited oxide layer.

  15. Effect of doping rare earth oxide on performance of copper-manganese catalysts for water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    何润霞; 姜浩强; 武芳; 智科端; 王娜; 周晨亮; 刘全生

    2014-01-01

    Rare earth-doped copper-manganese mixed oxide catalysts were prepared by coprecipitation and mechanical mixing using copper sulfate, manganese sulfate, and rare-earth oxides REO (REO indicates La2O3, CeO2, Y2O3, or Pr6O11) as raw materials. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), temperature-programmed reduc-tion of oxidized surfaces (s-TPR), and temperature-programmed desorption (TPD). Catalytic activities were tested for a water-gas shift reaction. Doping rare earth oxides did not alter the crystal structure of the original copper-manganese mixed oxides but changed the interplanar spacing, adsorption performance and reaction performance. Doping with La2O3 enhanced the activity and stability of Cu-Mn mixed oxides because of high copper distribution and fine reduction. Doping with CeO2 and Y2O3 also decreased the reduc-tion temperatures of the samples to different degrees while improving the dispersion of Cu on the surface, thus, catalytic activity was better than that of undoped Cu-Mn sample. The Pr6O11-doped sample was difficult to reduce, the dispersion of surface coppers was lowered, resulting in poor activity.

  16. Reaction products and mechanisms for the reaction of n-butyl vinyl ether with the oxidants OH and Cl: Atmospheric implications

    Science.gov (United States)

    Colmenar, Inmaculada; Martín, Pilar; Cabañas, Beatriz; Salgado, Sagrario; Tapia, Araceli; Martínez, Ernesto

    2015-12-01

    A reaction product study for the degradation of butyl vinyl ether (CH3(CH2)3OCHdbnd CH2) by reaction with chlorine atoms (Cl) and hydroxyl radicals (OH) has been carried out using Fourier Transform Infrared absorption spectroscopy (FTIR) and/or Gas Chromatography-Mass Spectrometry with a Time of Flight analyzer (GC-TOFMS). The rate coefficient for the reaction of butyl vinyl ether (BVE) with chlorine atoms has also been evaluated for the first time at room temperature (298 ± 2) K and atmospheric pressure (708 ± 8) Torr. The rate coefficient obtained was (9.9 ± 1.5) × 10-10 cm3 molecule-1 s-1 and this indicates the high reactivity of butyl vinyl ether with Cl atoms. However, this value may be affected by the dark reaction of BVE with Cl2. The results of a qualitative study of the Cl reaction show that the main oxidation products are butyl formate (CH3(CH2)3OC(O)H), butyl chloroacetate (CH3(CH2)3OC(O)CH2Cl and formyl chloride (HCOCl). Individual yields in the ranges ∼16-40% and 30-70% in the absence and presence of NOx, respectively, have been estimated for these products. In the OH reaction, butyl formate and formic acid were identified as the main products, with yields of around 50 and 20%, respectively. Based on the results of this work and a literature survey, the addition of OH radicals and Cl atoms at the terminal C atom of the double bond in CH3(CH2)3OCHdbnd CH2 has been proposed as the first step in the reaction mechanism for both of the studied oxidants. The tropospheric lifetime of butyl vinyl ether is very short and, as a consequence, it will be rapidly degraded and will only be involved in tropospheric chemistry at a local level. The degradation products of these reactions should be considered when evaluating the atmospheric impact.

  17. The coupling of ω-transaminase and Oppenauer oxidation reactions via intra-membrane multicomponent diffusion – A process model for the synthesis of chiral amines

    DEFF Research Database (Denmark)

    Esparza-Isunza, T.; González-Brambila, M.; Gani, Rafiqul; Woodley, John; Lopez-Isunza, Felipe

    2015-01-01

    In this study we consider the theoretical coupling of an otherwise thermodynamically limited ω-transaminase reaction to an Oppenauer oxidation, in order to shift the equilibria of both reactions, with the aim of achieving a significant (and important) increase in the yield of the desired chiral...... amine product. Using 2-propylamine as the amine donor of the ω-transaminase reaction, gives acetone as a by-product, which in turn allows the coupling of the ω-transaminase reaction with the Oppenauer oxidation. The Oppenauer reaction converts secondary alcohols into ketones, and these can subsequently...... be fed to the ω-transaminase reaction. In this way, one of the products of the ω-transaminase reaction becomes the reactant of the Oppenauer reaction, and vice versa, creating a cycle which shifts the equilibria of both reactions. Such coupled reactions are frequently found in nature. The purpose of...

  18. Surface and interfacial reaction study of InAs(100)-crystalline oxide interface

    International Nuclear Information System (INIS)

    A crystalline oxide film on InAs(100) is investigated with in situ monochromatic x-ray photoelectron spectroscopy and low energy electron diffraction before and after in situ deposition of Al2O3 by atomic layer deposition (ALD) as well as upon air exposure. The oxidation process leads to arsenic and indium trivalent oxidation state formation. The grown epitaxial oxide-InAs interface is stable upon ALD reactor exposure; however, trimethyl aluminum decreases oxidation states resulting in an unreconstructed surface. An increase in oxide concentration is also observed upon air exposure suggesting the crystalline oxide surface is unstable.

  19. Electrochemical deposition of silver on manganese dioxide coated reduced graphene oxide for enhanced oxygen reduction reaction

    Science.gov (United States)

    Lee, Kyungmi; Ahmed, Mohammad Shamsuddin; Jeon, Seungwon

    2015-08-01

    We have prepared a reduced graphene oxide (rGO)-supported silver (Ag) and manganese dioxide (MnO2) deposited porous-like catalyst (denoted as rGO/MnO2/Ag) through a facile electrochemical deposition route and have been used as a cathode catalyst for oxygen reduction reaction (ORR) in alkaline fuel cells. The physical properties of rGO/MnO2/Ag have been investigated via several instrumental methods. This material exhibits a polycrystalline structure characterized by Ag/MnO2 microsphere formation as a result of Ostwald ripening. The X-ray diffraction and X-ray photoelectron spectroscopy data reveal that the MnO2 and Ag have been slightly alloyed and Mn presents with the dioxide form on rGO. The electrochemical properties of the electrocatalyst have been studied via several voltammetric methods. The results demonstrated that the rGO/MnO2/Ag has an excellent catalytic activity for ORR in alkaline media compared to the other tested electrodes. Particularly, it shows 1.2 times higher current density and better electron transfer rate at 0.3 V per O2 than that of 20 wt% Pt/C. The other kinetic analysis reveals that the O2 has reduced directly to H2O through a nearly four-electron pathway with better anodic fuel tolerance and duration performance than that of 20% Pt/C.

  20. OH-initiated oxidation of DMS/DMSO: reaction products at high NOx levels

    International Nuclear Information System (INIS)

    Dimethylsulphide (DMS) gas phase oxidation with OH radicals was investigated by long path FT-IR spectroscopy and by ion chromatography (IC) and HPLC-MS2 to quantify the reaction products and evaluate heterogeneous processes. The experiments were performed considering two different NOx (NO2+NO) levels. The initial concentration of NO2 was varied from 24 ppbV (NOx=1 ppmV) to 953 ppbV (NOx=10 ppmV). Photolysis of H2O2 was used as the OH-radical source. SO2, dimethylsulphoxide (DMSO), dimethylsulphone (DMSO2), methanesulphonic acid (MSA), methanesulphinic acid (MSIA) and methane sulphonyl peroxynitrate (MSPN) were identified as the main sulphur-containing products. The results indicate that higher NOx levels play a significant role in the chemistry of CH3S(O)x radical, influencing both the SO2/MSPN ratio and the amount of the sulphur species in the condensed phase, and that the NO2/NO ratio could influence the trends in the molar yields of the different products. For this reason the NOx content results a limiting parameter when on measure DMS in atmospheric environment. - High NOx levels play a significant role in the atmospheric chemistry DMS/DMSO

  1. Adsorption of Zn2+ from solutions on manganese oxide obtained via ozone precipitation reaction

    Directory of Open Access Journals (Sweden)

    Contreras-Bustos Roberto

    2016-03-01

    Full Text Available Synthesis via ozone precipitation reaction was used to obtain manganese dioxide (OMD and it was probed as an adsorbent for zinc ions. Adsorption was followed along shaking time and increasing ratio [NO3−] / [Zn2+], and isotherms were obtained at different pH values and in the presence of several anions (chloride, nitrate, sulphate, and acetate. It was found that adsorption equilibrium is fast and follows the pseudo-second order model (qe = 34 ±1 mg/g and K = 0.07 ±0.01 g/mg h. Isotherms were fitted to Langmuir, Freundlich, and Langmuir-Freundlich models, and the best fitting was found with the last one. The process is dependent on pH and the efficiency increases from pH 1 to 4. The ratio [NO3−] / [Zn2+] up to 3 does not seem to change the behaviour of the process. Regarding the anions, the efficiency of Zn(II adsorption occurs according to: acetate > nitrate and sulphate > chloride. Manganese oxide obtained via ozonization is an excellent adsorbent for zinc ions.

  2. Kinetic and isotopic studies of the oxidative half-reaction of phenol hydroxylase.

    Science.gov (United States)

    Taylor, M G; Massey, V

    1991-05-01

    Phenol hydroxylase, an FAD-containing monooxygenase, catalyzes the conversion of substituted phenols to the corresponding catechol. Use of metapyrocatechase, capable of dioxygenation of several catechols to give highly absorbing products, permitted determination of the time course of product release from phenol hydroxylase. Product dissociated prior to complete reoxidation of the enzyme, most likely concomitant with formation of the 4a-hydroxyflavin species (intermediate III). Deuterated phenol and thiophenol exhibited no kinetic isotope effect during the oxidative half-reaction. Isotope effects of 1.7 to 3.7 were found with resorcinol for the conversion of the second intermediate to intermediate III. These effects limited the possible models for phenol hydroxylation. An attempt was made to distinguish whether the spectrum of intermediate II is due entirely to that of the flavin moiety of phenol hydroxylase or whether some radical intermediate form involved in the formation of catechol makes a significant visible contribution. Reduced native and 6-hydroxy-FAD phenol hydroxylase were reacted with oxygen and resorcinol in order to provide evidence for the identity of intermediate II. PMID:2022646

  3. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    Science.gov (United States)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-02-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology.

  4. Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell

    Science.gov (United States)

    Alesker, Maria; Page, Miles; Shviro, Meital; Paska, Yair; Gershinsky, Gregory; Dekel, Dario R.; Zitoun, David

    2016-02-01

    Investigation of the hydrogen oxidation reaction (HOR) in alkaline media has been pursued in the past few years side by side with the development of alkaline membrane fuel cells (AMFCs), also called anion exchange membrane fuel cells (AEM-FCs). In this communication, we present the synthesis, electrochemistry and AMFC test of a platinum-free HOR catalyst. The anode catalyst is prepared by growing palladium nanoparticles onto nanoparticles of an oxophilic metal (nickel), resulting in nano-dispersed, interconnected crystalline phases of Ni and Pd. When used in the anode of a hydrogen/air AMFC, such Pd/Ni catalyst exhibits high HOR activity, resulting in record high performance for a platinum-free AMFC (0.4 A cm-2 at 0.6 V vs RHE). The enhancement of HOR catalytic activity vs. that observed at Pd (or Ni) alone is revealed directly in rotating disc electrode tests of this Pd/Ni catalyst that shows a significant negative shift (200 mV) of the onset potential for the HOR current vs. the case of Pd.

  5. Reactions of metal oxides with molten NaPO3 + NaCl mixtures

    International Nuclear Information System (INIS)

    We consider the dissolution mechanism for iron (III), europium(III), and tin(IV) oxides in molten NaPO3 + NaCl that are responsible for the peak solubilities. We chose Fe2O3 as the basic material since this occurs in large amounts around damaged metal structures in rock salt mines in a proposed zone for storing vitrified radioactive wastes. Solubility measurement and paper chromatography show that Fe2O3 dissolves in molten NaPO3 + NaCl in air by reaction with the solvent to give double iron and sodium diphosphates and monophosphates in accordance with the initial solution-in-the-melt composition, the degree of equilibration, and the temperature. The elevated solubilities for initial NaCl contents close to 30 mole % are due to sodium triphosphates and tricyclophosphates present in these melts. Moessbauer spectroscopy confirms that double iron, europium and tin diphosphates and monophosphates containing sodium occur in these chloride-polyphosphate melts

  6. In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles

    OpenAIRE

    Kim, Jin Yeong; Jin, Mingshi; Lee, Kyung Joo; Cheon, Jae Yeong; Joo, Sang Hoon; Kim, Ji Man; Moon, Hoi Ri

    2012-01-01

    The preparation of redox-active metal-organic framework (ra-MOF)-supported Pd nanoparticles (NPs) via the redox couple-driven method is reported, which can yield unprotected metallic NPs at room temperature within 10 min without the use of reducing agents. The Pd@ra-MOF has been exploited as a precursor of an active catalyst for CO oxidation. Under the CO oxidation reaction condition, Pd@ra-MOF is transformed into a PdO x -NiO y /C nanocomposite to generate catalytically active species in sit...

  7. A New Reaction for Kinetic Spetrophotometric Determination of Trace Ruthenium--Catalytic Oxidation of Methyl Green by Bromate

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-rong; XU Qiong; XIONG Yan; WEI Jia-wen

    2006-01-01

    A sensitive catalytic spectrophotometric method for the determination of ruthenium (Ⅲ) has been developed, based on its catalytic effect on the oxidation reaction of methyl green with potassium bromate in acid solution medium at 100 ℃. The above reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 625 nm for the catalytic reaction of methyl green. The calibration curve for the recommended reaction-rate method was linear in the concentration range over 0.00-0.80 μg/L and the detection limit of the method for Ru (Ⅲ) is 0.006μg/L. Almost no foreign ions interfered in the determination at less than 25-fold concentration of Ru (Ⅲ). The method is highly sensitive, more selective and very stable, and has been successfully applied for the determination of trace ruthenium in some ores and metallurgy products.

  8. Biocatalytic CO2 sequestration based on shell regeneration

    Science.gov (United States)

    Lee, S.

    2012-04-01

    Carbon dioxide, CO2, is one of the green gases, being uniformly distributed over the earth's surface. Recently, a variety of methods exists or has been proposed for pre- or post-emission capture and sequestration of CO2. However, CCS (carbon capture & storage) do not quarntee permanent treatment of CO2 and could ingenerate environment risks. Some organisms convert CO2 into exoskeleton (e.g., mollusks) or energy sources (e.g., plants) during metabolism under atmospheric conditions. One of representative biomaterials in ocean is bivalve shell to be composed of CaCO3. Calcium carbonate is not only abundant material in the world but also thermodynamically stable mineral in the capture of CO2. Bivalve has produced CaCO3 under seawater condition, in other word, near atmospheric conditions (1 atm. and around 20-25 oC). At the inorganic point, the synthesis of CaCO3 is as followed. Ca2+ + CO32- -> CaCO3 The bivalve shell plays an important role to protect bivalve's internal organs from prodetor. What will be happened if the shell is damaged and a hole is made? Bivalve must cover the hole to prevent the oxidation of internal organs as fast as possible. From in vitro crystallization test of a notched shell, rapid CaCO3 production was identified at the damaged area. The biocatalyst related to shell regeneration was purified and named as SPSR (Soluble Protein related to Shell Regeneration) that is obtained from the oyster, Crassostrea gigas. And in vitro CaCO3 crystallization test was used to calculate the crystal growth rate of SPSR on CaCO3 crystallization. The characteristics of SPRR are discussed at the point of CO2 hydration and rapid CaCO3 synthesis. To develop the bioinspired process based on shell regeneration concept, the analysis of protein structure has been studied and the immobilization has been carried out for easy recovery of SPSR.

  9. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David Adams [The University of Alabama

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  10. Microcalorimetric Adsorption of Alumina Oxide Catalysts for Combination of Ethylbenzene dehydrogenation and carbon Dioxide Shift-reaction

    Institute of Scientific and Technical Information of China (English)

    GE Xin; SHEN Jian-yi

    2004-01-01

    Styrene (STY) is now produced industrially in fairly large quantities by the dehydrogenation of ethylbenzene (EB) using promoted iron oxide catalyst with superheated steam.In this case, small amount of carbon dioxide formed as a by-product was known to inhibit the catalytic activity of commercial catalyst. Recently, there have been some reports which carbon dioxide showed positive effects to promote catalytic activities on the reaction over several catalysts.In this study, we attempted to combine the dehydrogenation of EB to STY with the carbon dioxide shift-reaction. The combine reaction (EB + CO2 → STY + H2O + CO) can be considered as one of the ways of using CO2 resources and can yield simultaneously STY and Carbon oxide.Alumina oxide catalysts such as Al2O3, Na2O/Al2O3 and K2O/Al2O3 were prepared by the usual impregnation method with an aqueous solution of NaNO3 and KNO3, and then calcined at 650℃ for 5 h in a stream of air. The reaction condition is 600℃, flow of CO2 38ml/mon and space velocity (EB) 1.28h-1.

  11. Reaction of oxygen with γ, δ-ethylenic phenylhydrazones. Model reaction of end-group behavior in phenylhydrazine-accelerated oxidation of natural rubber

    International Nuclear Information System (INIS)

    An accurate definition of terminal groups of chains in the liquid polymers obtained by the phenylhydrazine-accelerated oxidation of natural rubber is needed. The object of the work was to use model molecules to explore the behavior of γ,δ-ethylenic methylketone phenylhydrazone end-groups in oxidation conditions. We have investigated the synthesis and characterization of models of these hypothetical end-groups, methylketones and phenones 1, their phenylhydrazones 2, the α-(phenyldiazenyl)hydroperoxides 3 resulting from reaction of 2 with oxygen, and the α-(phenyldiazenyl)alcohols 4 as characteristic derivatives of 3 or as models of possible reduced structures in oxidized liquid natural rubber. Three original syntheses of γ,δ-ethylenic ketones were carried out. In the case of γ,δ-ethylenic phenylhydrazones, the oxidation led to the expected α-(phenyldiazenyl)hydroperoxides and to epoxide derivatives of α-(phenyldiazenyl)alcohols 5 and ketones 6. An intramolecular mechanism is proposed. The results are used to predict the possibilities of identification of the corresponding end-groups in liquid rubbers produced in this way. (authors). 16 refs., 12 figs., 3 tabs

  12. Mechanochemical reactions and strengthening in epoxy-cast aluminum iron-oxide mixtures

    Science.gov (United States)

    Ferranti, Louis, Jr.

    2007-12-01

    -viscoplastic deformation and brittle fracture behaviors. Significant elastic and plastic deformation during both loading and unloading stages is observed, with approximately 50% elastic recovery of total axial strain occurring rapidly (tens of microseconds) after impact. Coupling high-speed camera images and velocity interferometry measurements shows that the elastic recovery coincides with peak axial strain and the elastic and plastic wave interaction. The incorporation of nano-scale aluminum particles enhances the dynamic stress-strain response and significantly improves the composites' resilience to impact as compared to pure epoxy, and with the use of micron-scale aluminum particles. Post-mortem analysis of recovered Taylor impacted specimens indicates evidence of early stages of strain-induced reactions occurring at select stress, strain, and strain rates. The observed reaction products correlate with results of thermal analysis, which include DTA and in situ high temperature x-ray diffraction (HTXRD). Central to this study was the interaction of metal-oxide powder mixtures with the epoxy matrix and how their chemical and mechanical properties balance to form a structural energetic material system. The study focuses on describing the underlying principles governing the deformation and fracture behavior, processing characteristics of epoxy-cast Al+Fe2O3 powder mixtures, mechanochemical sensitivity, and reaction response. In order to accomplish this, the effects of size, morphology, and distribution of particles were evaluated based on mechanical and chemical response to high pressures and combined stress-strain states using time-resolved measurements.

  13. Biocatalytic Synthesis of Flavor Ester “Pentyl Valerate” Using Candida rugosa Lipase Immobilized in Microemulsion Based Organogels: Effect of Parameters and Reusability

    Directory of Open Access Journals (Sweden)

    Tripti Raghavendra

    2014-01-01

    Full Text Available Pentyl valerate was synthesized biocatalytically using Candida rugosa lipase (CRL immobilized in microemulsion based organogels (MBGs. The optimum conditions were found to be pH 7.0, temperature of 37°C, ratio of concentration of water to surfactant (Wo of 60, and the surfactant sodium bis-2-(ethylhexylsulfosuccinate (AOT for MBG preparation. Although kinetic studies revealed that the enzyme in free form had high affinity towards substrates (Km = 23.2 mM for pentanol and 76.92 mM for valeric acid whereas, after immobilization, the Km values increased considerably (74.07 mM for pentanol and 83.3 mM for valeric acid resulting in a slower reaction rate, the maximum conversion was much higher in case of immobilized enzyme (~99% as compared to free enzyme (~19%. Simultaneous effects of important parameters were studied using response surface methodology (RSM conjugated with Box-Behnken design (BBD with five variables (process parameters, namely, enzyme concentration, initial water content (Wo, solvent used for MBG preparation, substrate ratio and time, and response as the final product formation, that is, pentyl valerate (%. The MBGs were reused for 10 consecutive cycles for ester synthesis. Efficacy of AOT/isooctane as dehydrating agent for extracting excess water from MBGs was found to exert a positive effect on the esterification reaction.

  14. Coverage dependent reaction of yttrium on silicon and the oxidation of yttrium silicide investigated by x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    The reaction of yttrium (Y) on (001) silicon (Si) with low temperature annealing is investigated for different coverages of Y using in situ x-ray photoelectron spectroscopy. The authors have also performed oxidation studies for Y on Si in the formation of yttrium silicate by a two-step process. This consists of an ex situ oxidation of Y-Si film, which is formed from low temperature annealing in vacuum. These films were then probed with depth profiling x-ray photoelectron spectroscopy. They report on three general reaction phases of Y on Si that are coverage dependent. Different coverages show differences in Si mixing and selective ultrahigh vacuum oxidation. They also report on the self-limiting formation of yttrium silicate at room temperature and low annealing temperature, which is insensitive to the annealing ambient. They also highlight the importance of oxygen partial pressure in both initial silicate formation and the extent of oxidation at different annealing temperatures. Finally, the authors also show that a high oxygen diffusion barrier prevents the oxidation of the entire Y-Si film

  15. PtSnNi/C nanoparticle electrocatalysts for the ethanol oxidation reaction: Ni stability study

    International Nuclear Information System (INIS)

    Highlights: ► The addition of Sn and Ni to Pt significantly improves the electrocatalytic activities for EOR. ► PtSnNi/C retain the structure of Pt at values similar to that of pure Pt. ► PtSnNi/C exhibited a lower dissolution of Ni than the binary alloy after accelerated stress tests. ► A change in the product formation pathways before and after accelerated stress tests was observed. -- Abstract: This work describes the use of Pt3Sn/C, Pt3Ni/C and Pt3SnNi/C nanoparticle electrocatalysts with a 20% metal loading on carbon prepared using the polymeric precursor method for the ethanol oxidation reaction (EOR). XRD measurements revealed the presence of segregated Pt and NiO phases in the Pt3Ni/C electrocatalysts, whereas for Pt3SnNi/C, there was some evidence that Ni and Sn atoms are incorporated into the Pt structure with the presence of segregated SnO2 and NiO phases. The mean crystallite sizes were 3.6, 5.7 and 7.2 nm for Pt3Sn/C, Pt3Ni/C, and Pt3SnNi/C, respectively. The onset oxidation potential obtained for the EOR using Pt3SnNi/C was close to 0.22 V. Chronoamperometric measurements revealed that the highest current densities for the EOR were obtained using the Pt3SnNi/C nanoparticle electrocatalysts (16 mA mgPt−1). Based on the Ni accelerated stress tests, this element was more stable in the ternary material. In contrast, there was a change in the product formation pathways before (acetaldehyde and acetic acid were the primary products) and after the accelerated stress tests (acetaldehyde was the primary product) for the Pt3SnNi/C catalyst. The experimental results indicate that the Pt3SnNi/C electrocatalysts exhibited better electrocatalytic activity compared to the other electrocatalysts for the EOR. It is suggested that this activity is related to the presence of Ni, which can modify the electronic structure of Pt and combine with Sn to facilitate the removal of adsorbed CO on the surface of the Pt, thereby promoting the EOR

  16. Preparation, Characterization and NO-CO Redox Reaction Studies over Palladium and Rhodium Oxides Supported on Manganese Dioxide

    Directory of Open Access Journals (Sweden)

    M.S. Fal Desai

    2015-03-01

    Full Text Available The catalytic activity of PdO/MnO2 and Rh2O3/MnO2 is investigated for NO-CO redox reaction. Supported catalysts are prepared by wet impregnation method. Among the tested catalysts, PdO/MnO2 shows higher activity for this reaction. Active metal dispersion on MnO2 enhances the selectivity for N2 over N2O in this reaction. The XRD substantiate the formation of MnO2 monophasic phase. SEM images show the formation of elongated particles. TEM images indicate nano-size rod-like morphologies. An increase in the catalytic activity is observed on supported Pd and Rh oxides on MnO2. Temperature programed desorption studies with NO and CO are undertaken to investigate the catalytic surface studies. © 2015 BCREC UNDIP. All rights reservedReceived: 22nd November 2014; Revised: 31st December 2014; Accepted: 2nd January 2015How to Cite: Fal Desai, M.S., Kunkalekar, R.K., Salker, A.V. (2015. Preparation, Characterization and NO-CO Redox Reaction Studies over Palladium and Rhodium Oxides Supported on Manganese Dioxide. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 98-103. (doi:10.9767/bcrec.10.1.7802.98-103Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7802.98-103 

  17. Activity and Stability of Rare Earth-Based Hydride Alloys as Catalysts of Hydrogen Absorption-Oxidation Reactions

    Institute of Scientific and Technical Information of China (English)

    Ying Taokai(应桃开); Gao Xueping(高学平); Hu Weikang(胡伟康); Noréus Dag

    2004-01-01

    Rare earth-based AB5-type hydrogen storage alloys as catalysts of hydrogen-diffusion electrodes for hydrogen absorption and oxidation reactions in alkaline fuel cells were investigated. It is demonstrated that the meta-hydride hydrogen-diffusion electrodes could be charged by hydrogen gas and electrochemically discharged at the same time to retain a stable oxidation potential for a long period. The catalytic activities and stability are almost comparable with a Pt catalyst on the active carbon. Further improvement of performances is expected via reduction of catalyst size into nanometers.

  18. Rapid Synthesis of Lead Oxide Nanorods by One-step Solid-state Chemical Reaction at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    CAO, Ya-Li(曹亚丽); JIA, Dian-Zeng(贾殿赠); LIU, Lang(刘浪); LUO, Jian-Min(骆建敏)

    2004-01-01

    A simple and facile method was reported to synthesize lead oxide nanorods. Nanorods of lead oxide were obtained directly from grinding solid metal salt and sodium hydroxide in agate mortar with the assistance of a suitable nonionic surfactant in only one step, which is different from the result of hydroxide in solution. The product has been characterized by XRD, TEM and SEM. The formation mechanism of rod-like morphology is discussed and the surfactant plays an important soft-template role in modifying the interface of solid-state reaction and according process of rod-formation.

  19. Assessment of nitric oxide (NO) redox reactions contribution to nitrous oxide (N2 O) formation during nitrification using a multispecies metabolic network model.

    Science.gov (United States)

    Perez-Garcia, Octavio; Chandran, Kartik; Villas-Boas, Silas G; Singhal, Naresh

    2016-05-01

    Over the coming decades nitrous oxide (N2O) is expected to become a dominant greenhouse gas and atmospheric ozone depleting substance. In wastewater treatment systems, N2O is majorly produced by nitrifying microbes through biochemical reduction of nitrite (NO2(-)) and nitric oxide (NO). However it is unknown if the amount of N2O formed is affected by alternative NO redox reactions catalyzed by oxidative nitrite oxidoreductase (NirK), cytochromes (i.e., P460 [CytP460] and 554 [Cyt554 ]) and flavohemoglobins (Hmp) in ammonia- and nitrite-oxidizing bacteria (AOB and NOB, respectively). In this study, a mathematical model is developed to assess how N2O formation is affected by such alternative nitrogen redox transformations. The developed multispecies metabolic network model captures the nitrogen respiratory pathways inferred from genomes of eight AOB and NOB species. The performance of model variants, obtained as different combinations of active NO redox reactions, was assessed against nine experimental datasets for nitrifying cultures producing N2O at different concentration of electron donor and acceptor. Model predicted metabolic fluxes show that only variants that included NO oxidation to NO2(-) by CytP460 and Hmp in AOB gave statistically similar estimates to observed production rates of N2O, NO, NO2(-) and nitrate (NO3(-)), together with fractions of AOB and NOB species in biomass. Simulations showed that NO oxidation to NO2(-) decreased N2O formation by 60% without changing culture's NO2(-) production rate. Model variants including NO reduction to N2O by Cyt554 and cNor in NOB did not improve the accuracy of experimental datasets estimates, suggesting null N2O production by NOB during nitrification. Finally, the analysis shows that in nitrifying cultures transitioning from dissolved oxygen levels above 3.8 ± 0.38 to <1.5 ± 0.8 mg/L, NOB cells can oxidize the NO produced by AOB through reactions catalyzed by oxidative NirK. PMID:26551878

  20. The physical chemistry of nucleation of sub-micrometer non-oxide ceramic powders via sub-oxide vapor-phase reduction reaction

    International Nuclear Information System (INIS)

    Fine ceramic powders (< 500 nm) exhibit exceptional physical and mechanical properties in engineered structural ceramics. The production of fine powders, in particular the non-oxide ceramics, via a cheaper route than the organic solvent route has been rather elusive. This paper examines the physical chemistry of sub-oxide vapor-phase reduction reaction for the nucleation of non-oxide ceramic phase. Well known vapor species eg SiO and BO in the production of technical ceramic powders (SiC, BN) are particularly discussed for understanding the nucleation process of SiC and BN ceramic phases respectively. The regimes of partial pressures and temperatures are particularly identified. The calculated nucleation rate as a function of the temperature is compared with the experimental results on powder morphology. The production of amorphous and nanocrystalline h-BN powders is discussed in the context of substrate structure and thermodynamic parameters

  1. Deactivation of a mixed oxide catalyst of Mo-V-Te-Nb-O composition in the reaction of oxidative ethane dehydrogenation

    Science.gov (United States)

    Mishanin, I. I.; Kalenchuk, A. N.; Maslakov, K. I.; Lunin, V. V.; Koklin, A. E.; Finashina, E. D.; Bogdan, V. I.

    2016-06-01

    The operational stability of a mixed oxide catalyst of Mo-V-Te-Nb-O composition in the oxidative dehydrogenation of ethane (ratio of C2H6: O2 = 3: 1) is studied in a flow reactor at temperatures of 340-400°C, a pressure of 1 atm, and a WHSV of the feed mixture of 800 h-1. It is found that the selectivity toward ethylene is 98% at 340°C, but the conversion of ethane at this temperature is only 6%; when the temperature is raised to 400°C, the conversion of ethane is increased to 37%, while the selectivity toward ethylene is reduced to 85%. Using physical and chemical means (XPS, SEM), it is found that the lack of oxidant in the reaction mixture leads to irreversible changes in the catalyst, i.e., reduced selectivity and activity. Raising the reaction temperature to 400°C allows the reduction of tellurium by ethane, from the +6 oxidation state to the zerovalent state, with its subsequent sublimation and the destruction of the catalytically active and selective phase; in its characteristics, the catalyst becomes similar to the Mo-V-Nb-O system containing no tellurium.

  2. Manganese reduction/oxidation reaction on graphene composites as a reversible process for storing enormous energy at a fast rate

    OpenAIRE

    Chen, Yanyi; Xu, Chengjun; Shi, Shan; Li, Jia; Kang, Feiyu; Wei, Chunguang

    2014-01-01

    Oxygen reduction/evolution reaction (ORR/OER) is a basic process for fuel cells or metal air batteries. However, ORR/OER generally requires noble metal catalysts and suffers from low solubility (10-3 molar per liter) of O2, low kinetics rate (10-6 cm2/s) and low reversibility. We report a manganese reduction/oxidation reaction (MRR/MOR) on graphene/MnO2 composites, delivering a high capacity (4200 mAh/g), fast kinetics (0.0024 cm2/s, three orders higher than ORR/OER), high solubility (three o...

  3. The detection for hypochlorite by UV-Vis and fluorescent spectra based on oxidized ring opening and successive hydrolysis reaction

    Science.gov (United States)

    Xiong, Kangming; Yin, Caixia; Chao, Jianbin; Zhang, Yongbin; Huo, Fangjun

    2016-09-01

    In this work, two high selective and sensitive fluorescent probes for ClO-, 7-Hydroxycoumarin and 4-Hydroxycoumarin were designed. The reaction mechanism that we speculated was the oxidized ring opening reaction and hydrolysis. The detection could be realized in quasi-aqueous phase and the detection limits of probe [7] and probe [4] for ClO- were found to be 56.8 nM and 70.5 nM. Furthermore, the probes can be used to cell imagings.

  4. Development of New Oxidation Reactions and Their Application to Natural Product Synthesis

    Institute of Scientific and Technical Information of China (English)

    Jun-ichi Matsuo

    2005-01-01

    @@ 1Introduction In recent years, the structures of target molecules in organic synthesis are becoming more complicated, so betterfunctional compatibility and higher selectivity are required for the efficient oxidation. In this regard,conventional oxidants do not always satisfy such requirements; therefore, exploration of new oxidizing agents is worth challenging.

  5. Reaction Kinetics and Oxidation Mechanisms of the Conversion of Pyrite to Ferrous Sulphate: A Moessbauer Spectroscopy Study

    International Nuclear Information System (INIS)

    Pyrite undergoes a series of exothermic reactions during mine roasting to porous hematite. At low temperatures, the first non-refractive phase to form is ferrous sulphate and could be a cheaper alternative to hematite roasting for the mining industry. In this study, pyrite powder is heated in air at temperatures between 200 and 370 deg. C for 1 to 256 h in a temperature and time series. The rate of oxidation of pyrite to ferrous sulphate is modelled by combining the Arrhenius equation with the Weibull function to extract reliable thermodynamic data, including the energy of activation, the frequency factor and the overall order of reaction. From the thermodynamic data obtained, two possible oxidation mechanisms are recognized, depending on the bond dissociation energies of the S-S and Fe-S bonds in pyrite.

  6. Reaction Kinetics and Oxidation Mechanisms of the Conversion of Pyrite to Ferrous Sulphate: A Moessbauer Spectroscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Ferrow, Embaie A., E-mail: embaie.ferrow@geol.lu.se; Mannerstrand, Maria [Lund University, GeoBiosphere Science Centre, Department of Geology, Lithosphere Biosphere Science (Sweden); Sjoeberg, Bosse [Swedish Museum of Natural History (Sweden)

    2005-06-15

    Pyrite undergoes a series of exothermic reactions during mine roasting to porous hematite. At low temperatures, the first non-refractive phase to form is ferrous sulphate and could be a cheaper alternative to hematite roasting for the mining industry. In this study, pyrite powder is heated in air at temperatures between 200 and 370 deg. C for 1 to 256 h in a temperature and time series. The rate of oxidation of pyrite to ferrous sulphate is modelled by combining the Arrhenius equation with the Weibull function to extract reliable thermodynamic data, including the energy of activation, the frequency factor and the overall order of reaction. From the thermodynamic data obtained, two possible oxidation mechanisms are recognized, depending on the bond dissociation energies of the S-S and Fe-S bonds in pyrite.

  7. Mass Transfer and Reaction Kinetics in the Carbonization of Magnesium Oxide from Light Calcined Magnesia with Mechanical Force Enhancement

    Institute of Scientific and Technical Information of China (English)

    张焕军; 朱国才

    2004-01-01

    The carbonization of magnesium oxide particles by CO2 was investigated using a stirring mill reactor.The effects of the system temperature, stirring rotation speed, influx rate of CO2 and initial diameter of the magnesium oxide particles on the carbonization process were determined. The results show that the system temperature and the stirring rotation speed are the most significant influencing factors on the carbonization rate. The determination of critical decomposition temperature (CDT) gives the maximum carbonization rate with other conditions fixed. A theoretical model involving mass transfer and reaction kinetics was presented for the carbonization process.The apparent activation energy was calculated to be 32.8kJ·mo1-1. The carbonization process is co-controlled by diffusive mass transfer and chemical reaction. The model fits well with the experimental results.

  8. Palladium/Zirconium Oxide Nanocomposite as a Highly Recyclable Catalyst for C-C Coupling Reactions in Water

    Directory of Open Access Journals (Sweden)

    Antonio Monopoli

    2010-06-01

    Full Text Available Palladium nanoparticles have been electrochemically supported on zirconium oxide nanostructured powders and all the nanomaterials have been characterized by several analytical techniques. The Pd/ZrO2 nanocatalyst is demonstrated to be a very efficient catalyst in Heck, Ullmann, and Suzuki reactions of aryl halides in water. The catalyst efficiency is attributed to the stabilization of Pd nanophases provided by tetra(alkyl- ammonium hydroxide, which behaves both as base and PTC (phase transfer catalyst agent.

  9. Palladium/Zirconium Oxide Nanocomposite as a Highly Recyclable Catalyst for C-C Coupling Reactions in Water

    OpenAIRE

    Antonio Monopoli; Angelo Nacci; Vincenzo Calò; Francesco Ciminale; Pietro Cotugno; Annarosa Mangone; Lorena Carla Giannossa; Pietro Azzone; Nicola Cioffi

    2010-01-01

    Palladium nanoparticles have been electrochemically supported on zirconium oxide nanostructured powders and all the nanomaterials have been characterized by several analytical techniques. The Pd/ZrO2 nanocatalyst is demonstrated to be a very efficient catalyst in Heck, Ullmann, and Suzuki reactions of aryl halides in water. The catalyst efficiency is attributed to the stabilization of Pd nanophases provided by tetra(alkyl)- ammonium hydroxide, which behaves both as base and PTC (phase transfe...

  10. The oxygen evolution reaction on passive oxide covered transition metal electrodes in alkaline solution. Part III - Iron.

    OpenAIRE

    LYONS, MICHAEL EDWARD

    2008-01-01

    The kinetics of the oxygen evolution reaction (OER) at passive oxide covered polycrystalline Fe electrodes in aqueous alkaline solution were examined using both dc steady state polarisation and ac impedance techniques. It proved difficult to obtain reproducible polarisation data for bright anodes, and so an electrochemical pre-treatment routine was devised. Upon ageing of a given electrode specimen, and with application of the pre-treatment regime before each experiment, it was po...

  11. Discovery of New Oxygen Evolution Reaction Electrocatalysts by Combinatorial Investigation of the Ni–La–Co–Ce Oxide Composition Space

    OpenAIRE

    Haber, Joel A.; Guevarra, Dan; Jung, Suho; Jin, Jian; Gregoire, John M.

    2014-01-01

    We report a new family of earth-abundant electrocatalysts for the oxygen evolution reaction (OER) discovered via high-throughput screening of 1771 discrete metal oxide compositions covering the nickel–lanthanum–cobalt–cerium composition space. The catalytic performance of each of these compositions was measured under conditions applicable to distributed solar fuel generation using a three-electrode scanning-drop electrochemical cell. These high-throughput measurements show enhanced activity f...

  12. Magnetic isotope effect and oxygen enrichment by 17O isotope in chain oxidation reactions. Communication 1. Theory

    International Nuclear Information System (INIS)

    The theory of magnetic isotope effect and enrichment of molecular oxygen by 17O isotope in chain oxidation reactions of organic compounds is presented. Recombination probabilities of perioxide radicals differing by isotope composition by oxygen are calculated; the magnetic isotope effect and its dependence on diffusion and viscosity coefficients are determined. Some geochemical and space-chemical consequences of the magnetic isotope effect are discussed

  13. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    OpenAIRE

    Wan Azelee Wan Abu Bakar; Rusmidah Ali; Nurul Shafeeqa Mohammad

    2015-01-01

    Carbon dioxide (CO2) in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4) gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. T...

  14. One-step preparation of optically transparent Ni-Fe oxide film electrocatalyst for oxygen evolution reaction

    International Nuclear Information System (INIS)

    Graphical abstract: The optically transparent Ni-Fe oxide films are deposited on FTO substrates by one-step reactive magnetron co-sputtering. The optimal electrocatalytic activity for oxygen evolution reaction is achieved at an atomic ratio of Fe/Ni = 3:7, which is a very promising cocatalyst for photoelectrochemical water splitting owing to its optical transparency and high electrochemical activity. Display Omitted -- Abstract: Optically transparent cocatalyst film materials is very desirable for improved photoelectrochemical (PEC) oxygen evolution reaction (OER) over light harvesting photoelectrodes which require the exciting light to irradiate through the cocatalyst side, i.e., front-side illumination. In view of the reaction overpotential at electrode/electrolyte interface, the OER electrocatalysts have been extensively used as cocatalysts for PEC water oxidation on photoanode. In this work, the feasibility of a one-step fabrication of the transparent thin film catalyst for efficient electrochemical OER is investigated. The Ni-Fe bimetal oxide films, ∼ 200 nm in thickness, are used for study. Using a reactive magnetron co-sputtering technique, transparent (> 50% in wavelength range 500-2000 nm) Ni-Fe oxide films with high electrocatalytic activities were successfully prepared at room temperature. Upon optimization, the as-prepared bimetal oxide film with atomic ratio of Fe/Ni = 3:7 demonstrates the lowest overpotential for the OER in aqueous KOH solution, as low as 329 mV at current density of 2 mA cm−2, which is 135 and 108 mV lower than that of as-sputtered FeOx and NiOx thin films, respectively. It appears that this fabrication strategy is very promising to deposit optically transparent cocatalyst films on photoabsorbers for efficient PEC water splitting

  15. Reaction Chemistry of W-Mn/SiO2 Catalyst for the Oxidative Coupling of Methane

    Institute of Scientific and Technical Information of China (English)

    Shuben Li

    2003-01-01

    Reaction chemistry of the OCM reaction on W-Mn/SiO2 catalyst has been reviewed in thisaccount. Initial activity and selectivity, stability in a long-term reaction, reaction at elevated pressures anda modelling test in a stainless-steel fluidized-bed reactor show that W-Mn/SiO2 has promising performancefor the development of an OCM process that directly produces ethylene from natural gas. A study onsurface catalytic reaction kinetics and used catalyst structure characterization revealed a possible reasonwhy C2 and COx selectivity changed during the long-term reaction. Further improvement of the catalystcomposition and preparation method should be a future direction of study on OCM reaction over W-Mn/SiO2 catalyst.

  16. A process optimization for bio-catalytic production of substituted catechols (3-nitrocatechol and 3-methylcatechol

    Directory of Open Access Journals (Sweden)

    Tiwary Bhupendra N

    2010-06-01

    Full Text Available Abstract Background Substituted catechols are important precursors for large-scale synthesis of pharmaceuticals and other industrial products. Most of the reported chemical synthesis methods are expensive and insufficient at industrial level. However, biological processes for production of substituted catechols could be highly selective and suitable for industrial purposes. Results We have optimized a process for bio-catalytic production of 3-substituted catechols viz. 3-nitrocatechol (3-NC and 3-methylcatechol (3-MC at pilot scale. Amongst the screened strains, two strains viz. Pseudomonas putida strain (F1 and recombinant Escherichia coli expression clone (pDTG602 harboring first two genes of toluene degradation pathway were found to accumulate 3-NC and 3-MC respectively. Various parameters such as amount of nutrients, pH, temperature, substrate concentration, aeration, inoculums size, culture volume, toxicity of substrate and product, down stream extraction, single step and two-step biotransformation were optimized at laboratory scale to obtain high yields of 3-substituted catechols. Subsequently, pilot scale studies were performed in 2.5 liter bioreactor. The rate of product accumulation at pilot scale significantly increased up to ~90-95% with time and high yields of 3-NC (10 mM and 3-MC (12 mM were obtained. Conclusion The biocatalytic production of 3-substituted catechols viz. 3-NC and 3-MC depend on some crucial parameters to obtain maximum yields of the product at pilot scale. The process optimized for production of 3-substituted catechols by using the organisms P. putida (F1 and recombinant E. coli expression clone (pDTG602 may be useful for industrial application.

  17. Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.; Nath, M.; Ghosh, A.; Tripathi, H.S., E-mail: hstripathi@cgcri.res.in

    2015-03-15

    Mullite–zirconia composites containing 20 wt.% zirconia were prepared by reaction sintering of zircon flour, sillimanite beach sand and calcined alumina. 0 to 8 mol% of La{sub 2}O{sub 3} with respect to zirconia was used as sintering aid. The effect of additive on the various physical, microstructures, mechanical and thermo-mechanical properties was studied. Quantitative phase analysis shows the change in tetragonal zirconia content with incorporation of lanthanum oxide. La{sub 2}O{sub 3} addition has significantly improved the thermal shock resistance of the samples. Samples without additive retained only 20% of initial flexural strength after 5 cycles, whereas samples containing 5 mol% La{sub 2}O{sub 3} retained almost 78% of its initial flexural strength even after 15 thermal shock cycles. - Highlights: • Mullite–zirconia composites were prepared by reaction sintering route utilizing zircon and sillimanite beach sand. • Lanthanum oxide was used as sintering aid. • The presence of lanthanum oxide decreased the densification temperature. • Lanthanum oxide significantly improved the thermal shock resistance of the composites.

  18. Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide

    International Nuclear Information System (INIS)

    Mullite–zirconia composites containing 20 wt.% zirconia were prepared by reaction sintering of zircon flour, sillimanite beach sand and calcined alumina. 0 to 8 mol% of La2O3 with respect to zirconia was used as sintering aid. The effect of additive on the various physical, microstructures, mechanical and thermo-mechanical properties was studied. Quantitative phase analysis shows the change in tetragonal zirconia content with incorporation of lanthanum oxide. La2O3 addition has significantly improved the thermal shock resistance of the samples. Samples without additive retained only 20% of initial flexural strength after 5 cycles, whereas samples containing 5 mol% La2O3 retained almost 78% of its initial flexural strength even after 15 thermal shock cycles. - Highlights: • Mullite–zirconia composites were prepared by reaction sintering route utilizing zircon and sillimanite beach sand. • Lanthanum oxide was used as sintering aid. • The presence of lanthanum oxide decreased the densification temperature. • Lanthanum oxide significantly improved the thermal shock resistance of the composites

  19. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products.

    Science.gov (United States)

    Ji, Yuefei; Kong, Deyang; Lu, Junhe; Jin, Hao; Kang, Fuxing; Yin, Xiaoming; Zhou, Quansuo

    2016-08-01

    Degradation of tetrabromobisphenol A (TBBPA), a flame retardant widely spread in the environment, in Co(II) catalyzed peroxymonosulfate (PMS) oxidation process was systematically explored. The second-order-rate constant for reaction of sulfate radical (SO4(-)) with TBBPA was determined to be 5.27×10(10)M(-1)s(-1). Apparently, degradation of TBBPA showed first-order kinetics to the concentrations of both Co(II) and PMS. The presence of humic acid (HA) and bicarbonate inhibited TBBPA degradation, most likely due to their competition for SO4(-). Degradation of TBBPA was initiated by an electron abstraction from one of the phenolic rings. Detailed transformation pathways were proposed, including β-scission of isopropyl bridge, phenolic ring oxidation, debromination and coupling reactions. Further oxidative degradation of intermediates in Co(II)/PMS process yielded brominated disinfection by-products (Br-DBPs) such as bromoform and brominated acetic acids. Evolution profile of Br-DBPs showed an initially increasing and then decreasing pattern with maximum concentrations occurring around 6-10h. The presence of HA enhanced the formation of Br-DBPs significantly. These findings reveal potentially important, but previously unrecognized, formation of Br-DBPs during sulfate radical-based oxidation of bromide-containing organic compounds that may pose toxicological risks to human health. PMID:27107323

  20. The gas chromatographic analysis of the reaction products of the partial isobutane oxidation as a two phase process.

    Science.gov (United States)

    Willms, Thomas; Kryk, Holger; Hampel, Uwe

    2016-08-01

    The partial oxidation of isobutane to t-butyl hydroperoxide (TBHP) has been studied analytically for the first time as a two-phase process in a capillary micro reactor. In order to obtain detailed information on products, yields, selectivities and reaction pathways, the products have been investigated by GC/MS. An Rxi-5ms column and a PTV-injector have been used to analyze the liquid products. TBHP, di-t-butyl peroxide (DTBP), t-butanol (TBA), and propanone as main products as well as further by-products e.g. methanal, isopropanol, isobutanol and isobutanal in minor quantities have been identified by MS. The liquid products have been obtained by quenching the reaction and vaporizing the isobutane afterwards by pressure reduction using a mass flow controller allowing a constant mass flow. For all liquid reaction products calibrations, a validation of the method including limits of quantification and detection as well as calculation of uncertainties has been performed. The results have been applied successfully for the investigation of the selectivities of the main products (TBHP, DTBP, TBA, propanone) of the isobutane oxidation. In the frame of the analytical investigation of this reaction a correlation coefficient of r(2)>0.999 for TBHP and DTBP, which is necessary to perform a validation, has been obtained for the first time. The gaseous phase has been analyzed using a GASPRO column, a DEANS switch, a mole sieve column and a TCD detector. Apart from the gaseous reactants, isobutene has been found. PMID:27378248

  1. The selective catalytic reduction (SCR) of NO with NH3 at vanadium oxide catalysts: Adsorption, diffusion, reaction

    International Nuclear Information System (INIS)

    The selective catalytic reduction (SCR) of NOx with NH3 over vanadium based metal-oxide (VOx) catalysts has been proven to be one of the most effective NOx reduction processes. Even though it is widely used in commercial applications details of the reaction mechanism are still under debate. Experiments show that adsorption, diffusion, and reactions with NO and (de)hydrogenation processes at the VOx surface contribute elementary steps. These processes are examined in theoretical studies employing density-functional theory together with gradient corrected functionals. The VOx substrate is modeled by clusters cut out from the ideal V2O5(010) surface where peripheral oxygen bonds are saturated by hydrogen. Apart from the perfect oxide surface also differently reduced surfaces are considered by introducing oxygen vacancies. NH3 is found to interact only weakly with the perfect V2O5(010) surface. In the presence of OH groups (Broensted acid sites) NH3 can form a surface NH4+ species. NH3 can also interact with the surface near oxygen vacancies, adsorbing at vanadium centers of lower coordination (Lewis acid sites). In contrast, NO interacts much more weakly with the surface. Further, simultaneous NO, NH3 adsorption and SCR reaction scenarios at Broensted and Lewis acid sites are examined. They result in different reaction paths and intermediates as will be discussed in detail.

  2. Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling

    DEFF Research Database (Denmark)

    Dale, A.W.; Regnier, P.; Knab, N.J.;

    2008-01-01

    A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction...... network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for...... limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby...

  3. Calculated ionisation potentials to determine the oxidation of vanillin precursors by lignin peroxidase.

    NARCIS (Netherlands)

    ten Have, R.; Rietjens, I.M.C.M.; Hartmans, S.; Swarts, H.J.; Field, J.A.

    1998-01-01

    In view of the biocatalytic production of vanillin, this research focused on the lignin peroxidase (LiP) catalysed oxidation of naturally occurring phenolic derivatives: O-methyl ethers, O-acetyl esters, and O-glucosyl ethers. The ionisation potential (IP) of a series of model compounds was calculat

  4. Platinum Deactivation: In Situ EXAFS Study During Aqueous Alcohol Oxidation Reaction

    OpenAIRE

    Koningsberger, D.C.; Ruitenbeek, M.; B.F.M. Kuster; Marin, G. B.

    1998-01-01

    With a new setup for in situ EXAFS spectroscopy the state of a carbonsupported platinum catalyst during aqueous alcohol oxidation has been observed. The catalyst deactivation during platinumcatalysed cyclohexanol oxidation is caused by platinum surface oxide formation. The detected Pt–O coordination at 2.10 Å during exposure to nitrogensaturated cyclohexanol solution is different from what is observed for the pure oxidised platinum surface (2.06 Å). platinum - EXAFS - catalysis - catalyst dea...

  5. Electrocatalysis of oxygen electrode reactions by some perovskite oxides based on lanthanum manganate

    International Nuclear Information System (INIS)

    In recent years, several electrocatalyst materials based on platinum, silver, tungsten bronzes, spinels, metal chelates, etc., have been studied for use as oxygen diffusion electrodes in alkaline fuel cells, secondary metal-air batteries, and water electrolyzers. However, virtually all catalysts of commercial importance are semiconducting transition metal oxides. The various oxide catalysts that have been studied can be grouped under mixed oxides, spinels, and perovskites

  6. The carbonyl oxide-aldehyde complex: a new intermediate of the ozonolysis reaction

    Science.gov (United States)

    Cremer, Dieter; Kraka, Elfi; McKee, M. L.; Radharkrishnan, T. P.

    1991-12-01

    MP4(SDQ)/6-31G (d,p) calculations suggest that the ozonolysis of alkenes in solution phase does not proceed via carbonyl oxide, but via a dipole complex between aldehyde and carbonyl oxide, which is 9 kcal/mol more stable than the separated molecules. The dipole complex is probably formed in the solvent cage upon decomposition of primary ozonide to aldehyde and carbonyl oxide. Rotation of either aldehyde or carbonyl oxide in the solvent cage leads to an antiparallel alignment of molecular dipole moments and dipole-dipole attraction.

  7. Gas-Phase Photocatalytic Oxidation of Dimethylamine: The Reaction Pathway and Kinetics

    Directory of Open Access Journals (Sweden)

    Anna Kachina

    2007-01-01

    Full Text Available Gas-phase photocatalytic oxidation (PCO and thermal catalytic oxidation (TCO of dimethylamine (DMA on titanium dioxide was studied in a continuous flow simple tubular reactor. Volatile PCO products of DMA included ammonia, formamide, carbon dioxide, and water. Ammonia was further oxidized in minor amounts to nitrous oxide and nitrogen dioxide. Effective at 573 K, TCO resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide, and water. The PCO kinetic data fit well to the monomolecular Langmuir-Hinshelwood model, whereas TCO kinetic behaviour matched the first-order process. No deactivation of the photocatalyst during the multiple long-run experiments was observed.

  8. Study of reactions between uranium-plutonium mixed oxide and uranium nitride and between uranium oxide and uranium nitride; Etude des reactions entre l`oxyde mixte d`uranium-plutonium et le nitrure d`uranium et entre l`oxyde d`uranium et le nitrure d`uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lecraz, C.

    1993-06-11

    A new type of combustible elements which is a mixture of uranium nitride and uranium-plutonium oxide could be used for Quick Neutrons Reactors. Three different studies have been made on the one hand on the reactions between uranium nitride (UN) and uranium-plutonium mixed oxide (U,Pu)O{sub 2}, on the other hand on these between UN and uranium oxide UO{sub 2}. They show a sizeable reaction between nitride and oxide for the studied temperatures range (1573 K to 1973 K). This reaction forms a oxynitride compound, MO{sub x} N{sub y} with M=U or M=(U,Pu), whose crystalline structure is similar to oxide`s. Solubility of nitride in both oxides is studied, as the reaction kinetics. (TEC). 32 refs., 48 figs., 22 tabs.

  9. Solid 7Li-NMR and in situ XRD studies of the insertion reaction of lithium with tin oxide and tin-based amorphous composite oxide

    International Nuclear Information System (INIS)

    The lithium insertion reactions with tin (II) oxide (SnO) and tin-based composite oxide (abbreviated as TBCO) are studied by solid 7Li-NMR Knight shift, T1 and T1ρ relaxation rate, TEM and in situ XRD methods. By the insertion reaction for SnO, the lithium oxide and β-tin are produced first at Li/Sn = 2; at Li/Sn = 3 to 6 the products are not simple and a mixture of LiSn2, LiSn, Li5Sn2 and Li7Sn2 alloys is detected during the insertion. For the TBCO, which is revealed as amorphous, mainly constituted by randomly distributed very short-range (order of 10-9 m) regions by TEM observation, it is found that electrochemically inserted lithium forms Li2O and produces metallic tin (Sn) in the first step (Li/Sn 7Sn2 (and Li7Si2), are produced in the second step (Li/Sn >2). During the second step, the Li/Sn ratio of formed lithium-tin alloy is kept at almost 4. By the analyses of 7Li NMR Knight shifts, line shape and in situ XRD, the lithium-inserted TBCOs are characterized as almost amorphous and mixtures of highly ionic components. (author)

  10. Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.M.; Han, C.J.

    1997-12-31

    Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.

  11. Nitrogen and Sulfur Dual-Doped Reduced Graphene Oxide: Synergistic Effect of Dopants Towards Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    Highlights: • Non-hydrothermal single-step dual doping of reduced graphene oxide with N and S. • Simultaneous reduction of graphene oxide and dual doping using single doping agent. • Synergistic effect of N and S in oxygen reduction reaction. • Highly active, durable and methanol tolerant. - Abstract: We describe a facile single-step non-hydrothermal chemical route for the synthesis of N and S dual-doped reduced graphene oxide (SN-rGO) and the synergistic effect of N and S in oxygen reduction reaction (ORR). The reduction of graphene oxide (GO) and dual doping of rGO are achieved in one-step with a single doping agent in ethylene glycol. SN-rGO has pyridinic and pyrrolic nitrogen and thiophenic sulphur and it has N/C and S/C atomic ratio of 0.12 and 0.08, respectively. The atomic percentage of pyridinic N (66%) is significantly higher than pyrrolic N (34%). The electrocatalytic performance of SN-rGO towards ORR is examined in terms of onset potential, kinetic current density, number of electrons transferred, durability and methanol tolerance in alkaline solution. SN-rGO shows excellent electrocatalytic activity with an onset potential of −15 mV (Hg/HgO) and it tends promotes the four electron pathway. The activity of SN-rGO is superior to that of rGO doped only with N and S (N-rGO and S-rGO) and undoped rGO. The comparison of the ORR activity of SN-rGO with N-rGO and S-rGO indicates the synergistic effect of heteroatoms of SN-rGO in the electrocatalytic reaction. SN-rGO is highly durable and completely silent towards the anode fuel methanol

  12. Pt-Pd nanoelectrocatalyst of ultralow Pt content for the oxidation of formic acid: Towards tuning the reaction pathway

    Indian Academy of Sciences (India)

    Sourov Ghosh; C Retna Raj

    2015-05-01

    Synthesis of highly efficient functional electrocatalyst that favours the electrochemical oxidation of formic acid via CO-free dehydrogenation pathway is required for direct formic acid fuel cells. Traditional catalysts favour the dehydration pathway involving the generation of poisonous CO. Herein we demonstrate the superior electrocatalytic performance of Pt-Pd bimetallic nanoelectrocatalyst of ultralow Pt content and tuning the reaction pathway by controlling the Pt content. Bimetallic nanoparticles of Pt4Pd96, Pt7Pd93 and Pt47Pd53 compositions are synthesized by electrochemical co-deposition method in aqueous solution. The nanoparticles of ultralow Pt content, Pt4Pd96, favour the CO-free dehydrogenation pathway for formic acid oxidation with an onset potential of 0 V (SHE) whereas the Pt47Pd53 nanoparticles favour the dehydration pathway involving the formation of CO at high positive potential. The Pt content of the bimetallic nanoparticles actually controls the oxidation peak potential and catalytic activity. Significant negative shift (∼350 mV) in the oxidation peak potential and remarkable enhancement in the current density (2.6 times) are observed for Pt4Pd96 nanoparticles with respect to Pt47Pd53. The absence of three adjacent Pt and Pd atoms could be the reason for the suppression of CO pathway. The electrochemical impedance measurements indirectly support the CO-free pathway for the formic acid oxidation on Pt4Pd96 nanoparticles.

  13. Anomalous reaction of oxide radical ion (O) with 1, 3, 5-triazine analogue of cytosine

    International Nuclear Information System (INIS)

    The reaction of O with 1, 3, 5-triazine analogue of cytosine viz. 5-azacytosine has been studied using the pulse radiolysis technique. On addition (k2 = 1.9x109 dm3 mol-1 s-1) of O followed by the protonation of the adduct system has been proposed, and this anomalous reaction is supported by quantum chemical calculations. (author)

  14. Kinetics of the oxidation-reduction reactions of uranium, neptunium, plutonium, and americium in aqueous solutions

    International Nuclear Information System (INIS)

    This is a review with about 250 references. Data for 240 reactions are cataloged and quantitative activation parameters are tabulated for 79 of these. Some empirical correlations are given. Twelve typical reactions are discussed in detail, along with the effects of self-irradiation and ionic strength. (U.S.)

  15. Oxidative removal of acetaminophen using zero valent aluminum-acid system:Efficacy, influencing factors, and reaction mechanism

    Institute of Scientific and Technical Information of China (English)

    Honghua Zhang; Beipei Cao; Wanpeng Liu; Kunde Lin; Jun Feng

    2012-01-01

    Commercial available zero valent aluminum under air-equilibrated acidic conditions (ZVA1/H+/air system) demonstrated an excellent capacity to remove aqueous organic compounds.Acetaminophen (ACTM),the active ingredient of the over-the-counter drug Tylenol(R),is widely present in the aquatic environment and therefore the treatment of ACTM-contaminated water calls for further research.Herein we investigated the oxidative removal of ACTM by ZVAl/H+/air system and the reaction mechanism.In acidic solutions (pH < 3.5),ZVAl displayed an excellent capacity to remove ACTM.More than 99% of ACTM was eliminated within 16 hr in pH 1.5 reaction solutions initially containing 2.0 g/L aluminum and 2.0 mg/L ACTM at 25 ± 1℃.Higher temperature and lower pH facilitated ACTM removal.The addition of different iron species Fe0,Fe2+ and Fe3+ into ZVAl/H+/air system dramatically accelerated the reaction likely due to the enhancing transformation of H2O2 to HO·via Fenton's reaction.Furthermore,the primary intermediate h.ydroquinone and the anions formate,acetate and nitrate,were identified and a possible reaction scheme was proposed.This work suggested that ZVA1/H+/air system may be potentially employed to treat ACTM-contaminated water.

  16. Contribution to the study of isotopic exchange of oxygen between nickel oxide and the gases arising from the oxidation reaction of carbon monoxide

    International Nuclear Information System (INIS)

    The 3 isotopic reactions of oxygen: C18O + Ni16O ↔ C16O + Ni18O, 16O18O + Ni16O ↔ 16O2 + Ni18O, and C16O18O + Ni16O ↔ C16O2 + Ni18O between CO, CO2, O2 and NiO are studied using a mass spectrometer. The isotopic gaseous mixtures are prepared from oxygen-18 enriched water. A first order kinetic law has been found for these reactions in the gaseous phase, and the activation energies have been determined. Only CO and CO2 exchange oxygen, at room temperature, but only with part of the oxide surface. Gaseous O2 reacts with the whole surface at 250 C, the slow step of the exchange process, in the gaseous phase, being certainly the mobility of oxygen ions on the surface of NiO. (author)

  17. Enhanced methanol electro-oxidation reaction on Pt-CoO{sub x}/MWCNTs hybrid electro-catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nouralishahi, Amideddin, E-mail: Nouralishahi@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Caspian Faculty of Engineering, University of Tehran, P.O. Box 43841-119, Rezvanshahr (Iran, Islamic Republic of); Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rashidi, Ali Morad, E-mail: Rashidiam@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: Mortazav@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Khodadadi, Abbas Ali, E-mail: Khodadad@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Choolaei, Mohammadmehdi, E-mail: Choolaeimm@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2015-04-30

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO{sub x}/MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO{sub x} addition. • Bi-functional mechanism is facilitated in presence of CoO{sub x}. - Abstract: The electro-catalytic behavior of Pt-CoO{sub x}/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH{sub 4} as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO{sub x}, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO{sub ads} on Pt active sites by the participation of CoO{sub x}. Compared to Pt/MWCNTs, Pt-CoO{sub x}/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO{sub x}/MWCNTs, at small overpotentials. However, at higher overpotentials, the

  18. Geometric and electronic structure of Au on Au/CeO2 catalysts during the CO oxidation: Deactivation by reaction induced particle growth

    Science.gov (United States)

    Abdel-Mageed, Ali M.; Kučerová, Gabriela; Abd El-Moemen, Ayman; Bansmann, Joachim; Widmann, Daniel; Jürgen Behm, R.

    2016-05-01

    Changes of the geometric and electronic structure of gold on Au/CeO2 catalysts induced by different pre-treatments (oxidative and reductive) and by the CO oxidation reaction at 80°C were followed by operando XANES / EXAFS measurements. The results showed that i) oxidative pre-treatment (O2) leads to larger Au nanoparticles than reductive pre-treatment (CO), that ii) Au is predominantly metallic during CO oxidation, irrespective of the preceding pre-treatment, and that iii) there is a reaction induced Au particle growth. Correlations with the activity of the respective catalysts and its temporal evolution give insights into the origin of deactivation of these catalysts under reaction conditions, in particular on reaction induced changes in the Au particle size.

  19. Preparation of porous paper composites with ruthenium hydroxide and catalytic alcohol oxidation in a multiphase gas–liquid–solid reaction

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Taichi [Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, and Biotron Application Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Processing Development Research Laboratory, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497 (Japan); Kitaoka, Takuya, E-mail: tkitaoka@agr.kyushu-u.ac.jp [Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, and Biotron Application Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2014-05-01

    Highlights: • Flexible and porous paper-structured Ru(OH){sub x} catalysts were prepared successfully. • Ru(OH){sub x} catalysts were dispersed on the ceramic fiber networks of paper composites. • Catalytic oxidation of benzyl alcohol proceeded efficiently in three-phase reactions. • Paper catalysts exhibited much higher performance than conventional solid catalysts. - Abstract: In situ synthesis of ruthenium hydroxide catalysts on a microporous fiber-network structure of ceramic paper composites was achieved. The efficient catalytic oxidation of alcohol was investigated in a heterogeneous, multiphase gas–liquid–solid reaction. A simple papermaking technique and subsequent immersion in a ruthenium chloride solution allowed us to fabricate novel-concept microstructured catalysts. The paper-structured catalysts possess micropores ca. 30 μm in diameter with high porosity of ca. 90%. They exhibited much higher catalytic efficiency in the O{sub 2}-mediated oxidation in toluene of benzyl alcohol to benzaldehyde in a fixed bed external loop reactor, as compared with conventional pellet- and bead-type solid catalysts. This excellent catalytic effect is possibly attributed to the porous paper composite microstructure like microreactors.

  20. Preparation of porous paper composites with ruthenium hydroxide and catalytic alcohol oxidation in a multiphase gas–liquid–solid reaction

    International Nuclear Information System (INIS)

    Highlights: • Flexible and porous paper-structured Ru(OH)x catalysts were prepared successfully. • Ru(OH)x catalysts were dispersed on the ceramic fiber networks of paper composites. • Catalytic oxidation of benzyl alcohol proceeded efficiently in three-phase reactions. • Paper catalysts exhibited much higher performance than conventional solid catalysts. - Abstract: In situ synthesis of ruthenium hydroxide catalysts on a microporous fiber-network structure of ceramic paper composites was achieved. The efficient catalytic oxidation of alcohol was investigated in a heterogeneous, multiphase gas–liquid–solid reaction. A simple papermaking technique and subsequent immersion in a ruthenium chloride solution allowed us to fabricate novel-concept microstructured catalysts. The paper-structured catalysts possess micropores ca. 30 μm in diameter with high porosity of ca. 90%. They exhibited much higher catalytic efficiency in the O2-mediated oxidation in toluene of benzyl alcohol to benzaldehyde in a fixed bed external loop reactor, as compared with conventional pellet- and bead-type solid catalysts. This excellent catalytic effect is possibly attributed to the porous paper composite microstructure like microreactors

  1. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production

    International Nuclear Information System (INIS)

    Central events of the ultrasonic action are the cavitation bubbles that can be considered as microreactors. Adiabatic collapse of cavitation bubbles leads to the formation of reactive species such as hydroxyl radicals (·OH), hydrogen peroxide (H2O2) and hydroperoxyl radicals (HOO·). Several chemical methods were used to detect the production of these reactive moieties in sonochemistry. In this work, the influence of several operational parameters on the sonochemistry dosimetries namely KI oxidation, Fricke reaction and H2O2 production using 300 kHz ultrasound was investigated. The main experimental parameters showing significant effect in KI oxidation dosimetry were initial KI concentration, acoustic power and pH. The solution temperature showed restricted influence on KI oxidation. The acoustic power and liquid temperature highly affected Fricke reaction dosimetry. Operational conditions having important influence on H2O2 formation were acoustic power, solution temperature and pH. For the three tested dosimetries, the sonochemical efficiency was independent of liquid volume.

  2. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid; Saoudi, Fethi; Chiha, Mahdi

    2010-06-15

    Central events of the ultrasonic action are the cavitation bubbles that can be considered as microreactors. Adiabatic collapse of cavitation bubbles leads to the formation of reactive species such as hydroxyl radicals (*OH), hydrogen peroxide (H(2)O(2)) and hydroperoxyl radicals (HOO*). Several chemical methods were used to detect the production of these reactive moieties in sonochemistry. In this work, the influence of several operational parameters on the sonochemistry dosimetries namely KI oxidation, Fricke reaction and H(2)O(2) production using 300 kHz ultrasound was investigated. The main experimental parameters showing significant effect in KI oxidation dosimetry were initial KI concentration, acoustic power and pH. The solution temperature showed restricted influence on KI oxidation. The acoustic power and liquid temperature highly affected Fricke reaction dosimetry. Operational conditions having important influence on H(2)O(2) formation were acoustic power, solution temperature and pH. For the three tested dosimetries, the sonochemical efficiency was independent of liquid volume. PMID:20211524

  3. Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

    International Nuclear Information System (INIS)

    TiO2 composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of H2 production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher H2 production as compared to bare TiO2. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of TiO2 are discussed in terms of physicochemical properties of carbon materials, coupling states of TiO2/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors

  4. Mechanistic study on the activity of manganese oxide catalysts for oxygen reduction reaction in an aprotic electrolyte

    International Nuclear Information System (INIS)

    Despite a large effort in catalyst research over the past decade, the benefit of electrocatalysts for the oxygen evolution reaction (OER) and especially the oxygen reduction reaction (ORR) in the aprotic Li/air battery system has not yet been clarified. Here, three nanostructured manganese oxide catalysts – namely Mn3O4, Mn5O8 and α-Mn2O3 – are investigated with regard to their activity for the ORR in a LiTFSI/DMSO electrolyte. In cyclic voltammetry (CV) measurements an overall decrease of potential gaps and an increase of re-oxidation efficiencies on carbon powder-based electrodes in comparison to glassy carbon (GC) was observed, which is attributed to the presence of more active centers, e.g. edges and kinks. Increased ORR potentials and the kinetic evaluation of the rate-determining step, namely the one-electron reduction of oxygen, point to a significantly enhanced activity of α-Mn2O3/C compared to pure carbon powder, Mn3O4/C and Mn5O8/C electrodes. This is discussed in terms of the electrocatalytic effect of α-Mn2O3 for aprotic ORR processes. The ORR activity is proposed to originate from a different reaction pathway due to coordinatively unsaturated Mn3+ ions on the surface of α-Mn2O3, which act as active centers for associative adsorption and reduction of molecular O2

  5. Sol–gel synthesis of palladium nanoparticles supported on reduced graphene oxide: an active electrocatalyst for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    Fereshteh Chekin

    2015-08-01

    In this work, the synthesis and characterization of palladium nanoparticle-reduced graphene oxide hybrid (Pd–rGO) material is reported. Techniques of X-ray diffraction, transmission electron microscope (TEM), energy-dispersive X-ray, FT-IR spectroscopy, thermogravimetric analysis and cyclic voltammetry were used to characterize the structure and properties of the Pd–rGO. Results demonstrate the effect of Pd on the reduced GO. The average particle size of the Pd nanoparticles supported on rGO obtained from TEM is about 12–18 nm. Moreover, glassy carbon electrode (GCE) modified with palladium nanoparticle–graphene oxide hybrid (Pd–rGO/GCE) was prepared by casting of the Pd–rGO solution on GCE. The electrochemical and catalytic activity of the Pd–rGO/GCE was studied in 0.1 M H2SO4 solution. The Pd–rGO/GCE electrode exhibited remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). At potential more negative than −0.4 V vs. Ag|AgCl|KCl3M, the current is mainly due to hydrogen evolution reaction. Finally, the kinetic parameters of hydrogen evolution reaction are also discussed on the Pd–rGO/GCE.

  6. Oxygen exchange reaction kinetics for cerium(IV) oxide at 1000 °C

    International Nuclear Information System (INIS)

    Bulk oxygen exchange rate kinetics on CeO2 at 1000 °C were observed to have a first order dependence on the fraction of reaction remaining and to be independent of oxygen partial pressure, total pressure, particle size, and specific surface area. This suggests that the exchange reaction is dominated by an internal chemical reaction that is occurring throughout the bulk of the material, and not at the material surface. Oxygen exchange rates were limited by this internal chemical reaction for all CeO2 powders studied (15 nm to −325 mesh), and had a rate constant of 1.19×10−2 s−1 with a time to completion of 617 s. These results are similar to the exchange rates observed previously on PuO2, suggesting that oxygen exchange on PuO2 may also be dominated by an internal chemical reaction under similar conditions. This work will help guide future experiments on 238PuO2 oxygen exchange reactions. - Graphical abstract: Oxygen exchange kinetics on CeO2 at 1000 °C are independent of a wide range of experimental conditions and exhibit first-order chemical reaction kinetics. - Highlights: • Stable oxygen exchange rates obtained on a variety of CeO2 powders at 1000 °C. • Exchange rates are independent of atmospheric composition and specific surface area. • Exchange rates are limited by an internal chemical reaction, not a surface reaction. • CeO2 exchange rates appear similar to the rates observed on PuO2 at 1000 °C

  7. Oxidation of rhodium (3) by periodate in alkali medium and chemiluminescent catalytic reaction of luminol with periodate in the presence of rhodium (3)

    International Nuclear Information System (INIS)

    A new reaction of oxidation of Rh (3) chloride by a periodate to Rh (5) has been found to take place in an alkaline medium. Oxidation of luminol by the compound Rh (5) is chemiluminescent. These reactions proceed at a considerable rate. Catalytic action of Rh (3) in the chemiluminescent reaction of luminol with the periodate includes the above reactions with the redox cycle Rh (3) reversible Rh (5). The reaction of oxidation of Rh (3) by the periodate can be used for photometric determination of 20-100 μkg of rhodium in 5 ml of a finite volume as a violent colour compound Rh (5) with the absorption maximum at lambda 600 nm. Time of full colour development is 8-10 min without heating the solutions; colour stability is 16 hrs

  8. Degradation of Corn Oil Wastes by Fenton Reaction and Under Mildly Basic Media in the Presence of Oxidants Assisted with Sun Light

    OpenAIRE

    Josefina V.  Sanchez; Susana S.  Martinez; Maria D.F.T.  Hernandez

    2008-01-01

    The degradation of water soluble corn oil wastes was carried out by Fenton reaction and also under mildly basic media in the presence of oxidants, such as hydrogen peroxide and persulfate, assisted with solar light. The degradation efficiency was obtained by analysis of chemical oxygen demand, carbon dioxide and gas chromatography. Over 90% of both chemical oxygen demand abatement and carbon dioxide recovery was accomplished by Fenton reaction. The presence of oxidants during the photodegrada...

  9. Surface functionalization of mesoporous antimony doped tin oxide by metalorganic reaction

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Haase, F.; Rathouský, Jiří; Fattakhova-Rohlfing, D.

    2012-01-01

    Roč. 137, č. 1 (2012), s. 207-212. ISSN 0254-0584 Institutional support: RVO:61388955 Keywords : oxides * organometallic compounds * chemical synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.072, year: 2012

  10. Syntheses and Reactions of Novel Oxidized Variants of Sterically-Crowded Chalcogenocarbonyl Compounds

    Institute of Scientific and Technical Information of China (English)

    Kazuaki Shimada

    2005-01-01

    @@ 1Introduction d-Camphor and their derivatives have been widely used as chiral auxiliaries and synthons for organic synthesis, and our attempts are focused onto the new functionalization of these skeletons through the generation of oxidized variants of thiones and selones through in situ generation of novel oxidized variants of bornane-2-thiones and selones. In this paper, a novel generation and chemical conversion of these reactive intermediates are presented.

  11. Environmental Factors Affecting Chromium-Manganese Oxidation-Reduction Reactions in Soil

    Institute of Scientific and Technical Information of China (English)

    D.O.P.TREBIEN; L.BORTOLON; M.J.TEDESCO; C.A.BISSANI; F.A.O.CAMARGO

    2011-01-01

    Disposal of chromium (Cr) hexavalent form, Cr(Ⅵ), in soils as additions in organic fertilizers, liming materials or plant nutrient sources can be dangerous since Cr(Ⅵ) can be highly toxic to plants, animals, and humans. In order to explore soil conditions that lead to Cr(Ⅵ) generation, this study were performed using a Paleudult (Dystic Nitosol) from a region that has a high concentration of tannery operations in the Rio Grande do Sul State, southern Brazil. Three laboratory incubation experiments were carried out to examine the influences of soil moisture content and concentration of cobalt and organic matter additions on soil Cr(Ⅵ) formation and release and manganese (Mn) oxide reduction with a salt of chromium chloride (CrCl3) and tannery sludge as inorganic and organic sources of Cr(Ⅲ), respectively. The amount of Cr(Ⅲ) oxidation depended on the concentration of easily reducible Mn oxides and the oxidation was more intense at the soil water contents in which Mn(Ⅲ/Ⅳ) oxides were more stable. Soluble organic compounds in soil decreased Cr(Ⅵ) formation due to Cr(Ⅲ) complexation. This mechanism also resulted in the decrease in the oxidation of Cr(Ⅲ) due to the tannery sludge additions. Chromium(Ⅲ) oxidation to Cr(Ⅵ) at the solid/solution interface involved the following mechanisms:the formation of a precursor complex on manganese (Mn) oxide surfaces, followed by electron transfer from Cr(Ⅲ) to Mn(Ⅲ or Ⅳ),the formation of a successor complex with Mn(Ⅱ) and Cr(Ⅵ), and the breakdown of the successor complex and release of Mn(Ⅱ) and Cr(Ⅵ) into the soil solution.

  12. Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions

    OpenAIRE

    Mehdi, Hasan; Bodor, Andrea; Lantos, Diana; Horváth, István T; De Vos, Dirk; Binnemans, Koen

    2007-01-01

    Use of imidazolium ionic liquids as solvents for organic transformations with tetravalent cerium salts as oxidizing agents was evaluated. Good solubility was found for ammonium hexanitratocerate(IV) (ceric ammonium nitrate, CAN) and cerium(IV) triflate in 1-alkyl-3-methylimidazolium triflate ionic liquids. Oxidation of benzyl alcohol to benzaldehyde in 1-ethyl-3-methylimidazolium triflate was studied by in-situ FTIR spectroscopy and 13C NMR spectroscopy on carbon-13-labeled benzyl alcohol. Ca...

  13. Amination of ω-Functionalized Aliphatic Primary Alcohols by a Biocatalytic Oxidation–Transamination Cascade

    Science.gov (United States)

    Pickl, Mathias; Fuchs, Michael; Glueck, Silvia M; Faber, Kurt

    2015-01-01

    Amination of non-activated aliphatic fatty alcohols to the corresponding primary amines was achieved through a five-enzyme cascade reaction by coupling a long-chain alcohol oxidase from Aspergillus fumigatus (LCAO_Af) with a ω-transaminase from Chromobacterium violaceum (ω-TA_Cv). The alcohol was oxidized at the expense of molecular oxygen to yield the corresponding aldehyde, which was subsequently aminated by the PLP-dependent ω-TA to yield the final primary amine product. The overall cascade was optimized with respect to pH, O2 pressure, substrate concentration, decomposition of H2O2 (derived from alcohol oxidation), NADH regeneration, and biocatalyst ratio. The substrate scope of this concept was investigated under optimized conditions by using terminally functionalized C4–C11 fatty primary alcohols bearing halogen, alkyne, amino, hydroxy, thiol, and nitrile groups. PMID:26583050

  14. A DFT Study Toward the Reaction Mechanisms of TNT With Hydroxyl Radicals for Advanced Oxidation Processes.

    Science.gov (United States)

    He, Xi; Zeng, Qun; Zhou, Yang; Zeng, Qingxuan; Wei, Xianfeng; Zhang, Chaoyang

    2016-05-26

    The degradation pathway of environmental contaminant 2,4,6-trinitrotoluene (TNT) was investigated computationally at the SMD(Pauling)/M06-2X/6-311+G(d,p) level of theory. The dominant decomposition pathway of TNT → 4,6-dinitro-o-cresol → 4,6-dinitro-2-hydroxybenzylalcohol → 4,6-dinitro-2-hydroxybenzaldehyde was provided, and the corresponding predicted products and their distributions are in a good agreement with available experimental data on TNT degradation by Fenton reaction. It was shown that the mechanism of addition-elimination is crucial for this stage of the reaction. The reaction of H atom abstraction is a minor competing pathway. The details on transition states, intermediate radicals, and free energy surfaces for all proposed reactions are given and make up for a lack of experimental knowledge. PMID:27135259

  15. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide

    KAUST Repository

    Nurlaela, Ela

    2016-01-25

    The present work compares oxygen evolution reaction (OER) in electrocatalysis and photocatalysis in aqueous solutions using nanostructured NiFeOx as catalysts. The impacts of pH and reaction temperature on the electrocatalytic and photocatalytic OER kinetics were investigated. For electrocatalysis, a NiFeOx catalyst was hydrothermally decorated on Ni foam. In 1 M KOH solution, the NiFeOx electrocatalyst achieved 10 mA cm-2 at an overpotential of 260 mV. The same catalyst was decorated on the surface of Ta3N5 photocatalyst powder. The reaction was conducted in the presence of 0.1 M Na2S2O8 as a strong electron scavenger, thus likely leading to the OER being kinetically relevant. When compared with the bare Ta3N5, NiFeOx/Ta3N5 demonstrated a 5-fold improvement in photocatalytic activity in the OER under visible light irradiation, achieving a quantum efficiency of 24 % at 480 nm. Under the conditions investigated, a strong correlation between the electrocatalytic and photocatalytic performances was identified: an improvement in electrocatalysis corresponded with an improvement in photocatalysis without altering the identity of the materials. The rate change at different pH was likely associated with electrocatalytic kinetics that accordingly influenced the photocatalytic rates. The sensitivity of the reaction rates with respective to the reaction temperature resulted in an apparent activation energy of 25 kJ mol-1 in electrocatalysis, whereas that in photocatalysis was 16 kJ mol-1. The origin of the difference in these activation energy values is likely attributed to the possible effects of temperature on the individual thermodynamic and kinetic parameters of the reaction process. The work described herein demonstrates a method of “transferring the knowledge of electrocatalysis to photocatalysis” as a strong tool to rationally and quantitatively understand the complex reaction schemes involved in photocatalytic reactions.

  16. Pd(II/HPMoV-Catalyzed Direct Oxidative Coupling Reaction of Benzenes with Olefins

    Directory of Open Access Journals (Sweden)

    Yasutaka Ishii

    2010-03-01

    Full Text Available The direct aerobic coupling reaction of arenes with olefins was successfully achieved by the use of Pd(OAc2/molybdovanadophosphoric acid (HPMoV as a key catalyst under 1 atm of dioxygen. This catalytic system could be extended to the coupling reaction of various substituted benzenes with olefins such as acrylates, aclrolein, and ethylene through the direct aromatic C-H bond activation.

  17. Amination of ω-Functionalized Aliphatic Primary Alcohols by a Biocatalytic Oxidation–Transamination Cascade

    OpenAIRE

    Pickl, Mathias; Fuchs, Michael; Glueck, Silvia. M.; Faber, Kurt

    2015-01-01

    Amination of non-activated aliphatic fatty alcohols to the corresponding primary amines was achieved through a five-enzyme cascade reaction by coupling a long-chain alcohol oxidase from Aspergillus fumigatus (LCAO_Af) with a ω-transaminase from Chromobacterium violaceum (ω-TA_Cv). The alcohol was oxidized at the expense of molecular oxygen to yield the corresponding aldehyde, which was subsequently aminated by the PLP-dependent ω-TA to yield the final primary amine product. The overall cascad...

  18. Effects of aluminum additions to gas atomized reaction synthesis produced oxide dispersion strengthened alloys

    Science.gov (United States)

    Spicher, Alexander Lee

    The production of an aluminum containing ferritic oxide dispersion strengthened (ODS) alloy was investigated. The production method used in this study was gas atomization reaction synthesis (GARS). GARS was chosen over the previously commercial method of mechanical alloying (MA) process due to complications from this process. The alloy compositions was determined from three main components; corrosion resistance, dispersoid formation, and additional elements. A combination of Cr and Al were necessary in order to create a protective oxide in the steam atmosphere that the boiler tubing in the next generation of coal-fired power plants would be exposed to. Hf and Y were chosen as dispersoid forming elements due to their increased thermal stability and potential to avoid decreased strength caused by additions of Al to traditional ODS materials. W was used as an additive due to benefits as a strengthener as well as its benefits for creep rupture time. The final composition chosen for the alloy was Fe-16Cr-12Al-0.9W-0.25Hf-0.2Y at%. The aforementioned alloy, GA-1-198, was created through gas atomization with atomization gas of Ar-300ppm O2. The actual composition created was found to be Fe-15Cr-12.3Al-0.9W-0.24Hf-0.19Y at%. An additional alloy that was nominally the same without the inclusion of aluminum was created as a comparison for the effects on mechanical and corrosion properties. The actual composition of the comparison alloy, GA-1-204, was Fe-16Cr-0Al-0.9W-0.25Hf-0.24Y at%. An investigation on the processing parameters for these alloys was conducted on the GA-1-198 alloy. In order to predict the necessary amount of time for heat treatment, a diffusion study was used to find the diffusion rate of oxygen in cast alloys with similar composition. The diffusion rate was found to be similar to that of other GARS compositions that have been created without the inclusion of aluminum. The effect of heat treatment time was investigated with temperatures of 950°C, 1000

  19. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler

    Directory of Open Access Journals (Sweden)

    Jun-Xia Zhang

    2016-03-01

    Full Text Available Because the air-staged combustion technology is one of the key technologies with low investment running costs and high emission reduction efficiency for the pulverized boiler, it is important to reveal the chemical reaction kinetics mechanism for developing various technologies of nitrogen oxide reduction emissions. At the present work, a three-dimensional mesh model of the large-scale four corner tangentially fired boiler furnace is established with the GAMBIT pre-processing of the FLUENT software. The partial turbulent premixed and diffusion flame was simulated for the air-staged combustion processing. Parameters distributions for the air-staged and no the air-staged were obtained, including in-furnace flow field, temperature field and nitrogen oxide concentration field. The results show that the air-staged has more regular velocity field, higher velocity of flue gas, higher turbulence intensity and more uniform temperature of flue gas. In addition, a lower negative pressure zone and lower O2 concentration zone is formed in the main combustion zone, which is conducive to the NO of fuel type reduced to N2, enhanced the effect of NOx reduction. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th November 2015; Revised: 14th January 2016; Accepted: 16th January 2016  How to Cite: Zhang, J.X., Zhang, J.F. (2016. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 100-108. (doi:10.9767/bcrec.11.1.431.100-108 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.431.100-108

  20. Atmospheric Oxidation Mechanism and Kinetic Studies for OH and NO3 Radical-Initiated Reaction of Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Rui Gao

    2014-03-01

    Full Text Available The mechanism for OH and NO3 radical-initiated oxidation reactions of methyl methacrylate (MMA was investigated by using density functional theory (DFT molecular orbital theory. Geometrical parameters of the reactants, intermediates, transition states, and products were fully optimized at the B3LYP/6-31G(d,p level. Detailed oxidation pathways were presented and discussed. The rate constants were deduced by the canonical variational transition-state (CVT theory with the small-curvature tunneling (SCT correction and the multichannel Rice-Ramspergere-Kassele-Marcus (RRKM theory, based on the potential energy surface profiles over the general atmospheric temperature range of 180–370 K. The calculated results were in reasonable agreement with experimental measurement.

  1. In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions.

    Science.gov (United States)

    Liu, Xiang; Cui, Shengsheng; Qian, Manman; Sun, Zijun; Du, Pingwu

    2016-04-25

    Developing efficient water oxidation catalysts made up of earth-abundant elements has attracted much attention as a step toward for future clean energy production. Herein we report a simple one-step method to generate a low cost copper oxide catalyst film in situ from a copper(ii) ethylenediamine complex. The resulting catalyst has excellent activity toward the oxygen evolution reaction in alkaline solutions. A catalytic current density of 1.0 mA cm(-2) and 10 mA cm(-2) for the catalyst film requires the overpotentials of only ∼370 mV and ∼475 mV in 1.0 M KOH, respectively. This catalytic performance shows that the new catalyst is one of the best Cu-based heterogeneous OER catalysts to date. PMID:27020763

  2. Acidity control of the oxidation reactions induced by non-thermal plasma treatment of aqueous effluents in pollutant abatement processes

    International Nuclear Information System (INIS)

    The acid properties of a non-thermal plasma in humid air (e.g., a gliding arc device) induced in an aqueous solution may deeply affect the efficiency of the matching oxidising properties, especially when the aqueous targets involve organic solutes. Hence, their oxidation rate may be strongly modified. A series of buffers is proposed to control the pH of aqueous target for at least one-hour treatments. The selected acid-base systems were selected for their inertia towards oxidation reaction, to cover a very large range of acidity. The reported results are essential from both fundamental and applied points of view. They first allow the acute controlling of the degradation rate of organic compounds. They also enable estimating the efficiency of the gliding arc treatments in environmental applications. Besides, they allow getting reliable data on the bactericidal effect on the plasma treatments, which are a merging application of the electric discharges. (author)

  3. Composite polymer/oxide hollow fiber contactors: versatile and scalable flow reactors for heterogeneous catalytic reactions in organic synthesis.

    Science.gov (United States)

    Moschetta, Eric G; Negretti, Solymar; Chepiga, Kathryn M; Brunelli, Nicholas A; Labreche, Ying; Feng, Yan; Rezaei, Fateme; Lively, Ryan P; Koros, William J; Davies, Huw M L; Jones, Christopher W

    2015-05-26

    Flexible composite polymer/oxide hollow fibers are used as flow reactors for heterogeneously catalyzed reactions in organic synthesis. The fiber synthesis allows for a variety of supported catalysts to be embedded in the walls of the fibers, thus leading to a diverse set of reactions that can be catalyzed in flow. Additionally, the fiber synthesis is scalable (e.g. several reactor beds containing many fibers in a module may be used) and thus they could potentially be used for the large-scale production of organic compounds. Incorporating heterogeneous catalysts in the walls of the fibers presents an alternative to a traditional packed-bed reactor and avoids large pressure drops, which is a crucial challenge when employing microreactors. PMID:25865826

  4. Characterization of selected wild Mediterranean fruits and comparative efficacy as inhibitors of oxidative reactions in emulsified raw pork burger patties.

    Science.gov (United States)

    Ganhão, Rui; Estévez, Mario; Kylli, Petri; Heinonen, Marina; Morcuende, David

    2010-08-11

    In the present study, water, ethanolic, and methanolic extracts from seven selected wild fruits originally from the Mediterranean area, namely, strawberry tree ( Arbutus unedo L., AU), azarole ( Crataegus azarolus L., CA), common hawthorn ( Crataegus monogyna L., CM), blackthorn ( Prunus spinosa L., PS), dog rose ( Rosa canina L., RC), elm-leaf blackberry ( Rubus ulmifolius Schott, RU), and rowan ( Sorbus aucuparia L., SA), were analyzed for the total amount and profile of phenolic compounds and for the in vitro antioxidant activity against the DPPH and ABTS radicals (study 1). The seven fruits showed different chemical compositions, which consequently led to different antioxidant potentials. Among the seven fruits initially analyzed, AU, CM, RC, and RU had the highest amount of phenolic compounds and displayed the greatest antioxidant activity in vitro. Extracts from these four fruits were tested as inhibitors of lipid oxidation in raw pork burger patties subjected to refrigerated storage at 2 degrees C for 12 days (study 2). The quantitative measurements of thiobarbituric acid reactive substances (TBA-RS), hexanal content, and color stability were used as indicators of oxidative reactions. The four selected fruits displayed intense antioxidant activity against lipid oxidation, which highlights the potential usage of these fruits as ingredients for the manufacture of healthy meat products. Among them, RC and AU were particularly efficient as their protective effect against lipid oxidation was more intense than that displayed by quercetin (230 mg/kg of burger patty). PMID:20681673

  5. Oxidation half-reaction of aqueous nucleosides and nucleotides via photoelectron spectroscopy augmented by ab initio calculations.

    Science.gov (United States)

    Schroeder, Christi A; Pluhařová, Eva; Seidel, Robert; Schroeder, William P; Faubel, Manfred; Slavíček, Petr; Winter, Bernd; Jungwirth, Pavel; Bradforth, Stephen E

    2015-01-14

    Oxidative damage to DNA and hole transport between nucleobases in oxidized DNA are important processes in lesion formation for which surprisingly poor thermodynamic data exist, the relative ease of oxidizing the four nucleobases being one such example. Theoretical simulations of radiation damage and charge transport in DNA depend on accurate values for vertical ionization energies (VIEs), reorganization energies, and standard reduction potentials. Liquid-jet photoelectron spectroscopy can be used to directly study the oxidation half-reaction. The VIEs of nucleic acid building blocks are measured in their native buffered aqueous environment. The experimental investigation of purine and pyrimidine nucleotides, nucleosides, pentose sugars, and inorganic phosphate demonstrates that photoelectron spectra of nucleotides arise as a spectral sum over their individual chemical components; that is, the electronic interactions between each component are effectively screened from one another by water. Electronic structure theory affords the assignment of the lowest energy photoelectron band in all investigated nucleosides and nucleotides to a single ionizing transition centered solely on the nucleobase. Thus, combining the measured VIEs with theoretically determined reorganization energies allows for the spectroscopic determination of the one-electron redox potentials that have been difficult to establish via electrochemistry. PMID:25551179

  6. Staining of wool using the reaction products of ABTS oxidation by Laccase : synergetic effects of ultrasound and cyclic voltammetry

    OpenAIRE

    Munteanu, Florentina-Daniela; Basto, Carlos; Gübitz, Georg M.; Paulo, Artur Cavaco

    2007-01-01

    The effects of ultrasound on 2,2′-Azinobis(3-ethylbenzothiazoline-6-sulfonate) enzymatic oxidation by laccase (Trametes villosa) has been studied by means of cyclic voltammetry. The reaction was allowed to proceed in the presence of a piece of wool and the coloration depth of the wool fabric was measured by means of K/S. It was observed that cyclic voltammetry is influenced the dyeing process and higher K/S values were obtained when the cyclic voltammetry was combined with the ultrasonic irra...

  7. Pulse radiolysis and steady-state analyses of the reaction between hydroethidine and superoxide and other oxidants

    OpenAIRE

    Zielonka, Jacek; Sarna, Tadeusz; Roberts, Joan E.; Wishart, James F.; Kalyanaraman, B.

    2006-01-01

    Hydroethidine (HE) is a cell-permeable probe used for the intracellular detection of superoxide. Here we report the direct measurement of the rate constant between hydroethidine and superoxide radical anion using the pulse radiolysis technique. This reaction rate constant was calculated to be ca. 2·106 M-1s-1 in water:ethanol (1:1) mixture. The spectral characteristics of the intermediates indicated that the one-electron oxidation product of HE was different from the one-electron reduction pr...

  8. Comparison of Sol Gel and Dehydration Magnesium Oxide (MgO) as a Catalyst in Michael Addition Reaction

    OpenAIRE

    Hanis Mohd Yusoff; Nuur Ul Hazwani; Norhafiefa Hassan; Fatin Izwani

    2015-01-01

    Magnesium oxide (MgO) was prepared by dehydration of magnesium carbonate method and sol gel method. The prepared MgO powders were calcined at the temperature of 200, 400, 600, and 800 ºC for two hours. Then, the samples were characterized by using fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). In order to investigate the prepared MgO, the samples were applied in Michael addition reaction to produce diethyl 2-(3-oxo-1,3-dipehnyl...

  9. A novel platinum-based nanocatalyst at a niobia-doped titania support for the hydrogen oxidation reaction

    OpenAIRE

    NEVENKA R. ELEZOVIĆ; BILJANA M. BABIĆ; VELIMIR RADMILOVIĆ; LJILJANA M. GAJIĆ-KRSTAJIĆ; NEDELJKO V. KRSTAJIĆ; LJILJANA M. VRAČAR

    2011-01-01

    The kinetics of the hydrogen oxidation reaction (HOR) was studied at Pt nanoparticles supported on niobia-doped titania (Pt/N–T). The catalyst support, with the composition of 0.05NbO2.5-δ -–0.995TiO2 (0 < δ < 1), was synthesized by a modified sol–gel procedure and characterized by the BET and X-ray diffraction (XRD) techniques. The specific surface area of the support was found to be 70 m2g-1. The XRD analysis revealed the presence of the anatase TiO2 phase in the support powder. No peaks in...

  10. Kinetics of reactions of oxidation of carbon by carbon dioxide and water steam at high temperatures and low pressures

    International Nuclear Information System (INIS)

    The first objective of this research thesis was to obtain new and reliable experimental results about the reaction kinetics of the oxidation of carbon by carbon dioxide and water steam, and to avoid some disturbing phenomena, for example and more particularly the appearance of electric discharges beyond 1900 K initiated by the filament thermoelectric emission. The author tried to identify the mechanism of the accelerating effect. It appears that previous experiments had been performed only in these disturbed conditions. At the lowest temperatures, the author highlighted the existence of a surface contamination by the desorption products from the apparatus

  11. Concerted effects in the reaction of ·OH radicals with aromatics: radiolytic oxidation of salicylic acid

    International Nuclear Information System (INIS)

    Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, ·OH radicals preferentially add to the positions ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition at the para position. Because ·OH radical is a strong electrophile this difference suggests that the electron population at the ortho position in the salicylate anion is enhanced as a result of the hydrogen bonding in salicylic acid

  12. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions

    DEFF Research Database (Denmark)

    Hansen, Thomas S.; Sádaba, Irantzu; Garcia, Eduardo;

    2013-01-01

    The renewable chemical building block 5-hydroxymethylfurfural (HMF) was oxidized to 2,5-diformylfuran by an oxidation system consisting of the radical 2,2,6,6-tetramethyl-piperidin-1-oxyl (TEMPO) and CuCl. The system was optimized by exploring several reaction conditions and by employing nitrogen...

  13. Long-term bone tissue reaction to polyethylene oxide/polybutylene terephthalate copolymer (Polyactive) in metacarpophalangeal joint reconstruction.

    Science.gov (United States)

    Waris, Eero; Ashammakhi, Nureddin; Lehtimäki, Mauri; Tulamo, Riitta-Mari; Törmälä, Pertti; Kellomäki, Minna; Konttinen, Yrjö T

    2008-06-01

    The poly-L/D-lactide 96/4 joint scaffolds are used to engineer fibrous tissue joints in situ for the reconstruction of metacarpophalangeal joints. In this experimental study, a supplementary elastomeric stem made of Polyactive 1000PEO70PBT30 (a segmented block copolymer of polyethylene oxide and polybutylene terephtalate with 70/30 PEO/PBT ratio) was used to anchor the joint scaffold in the arthroplasty space. Eleven resected fifth metacarpophalangeal joints of minipig were reconstructed and evaluated radiologically and histologically for 3 years. Plain joint scaffold and Swanson silicone implant arthroplasties (11 of each) in metacarpophalangeal joints of minipig served as controls. Altogether fore limbs of eighteen minipigs were operated for the study. Deleterious tissue reaction with dramatic signs of osteolysis and inflammatory foreign-body reaction was observed around the Polyactive stems. The mean maximum diameter of the osteolytic stem cavity was statistically wider when compared to the mean maximum diameter of Swanson implant group during the first postoperative year. Numerous osteoclasts were found at the margins of the osteolytic areas. No direct bone contact could be seen. At 1 year osteoblastic regeneration and formation of new trabecular bone followed. Finally the foreign-body reaction settled, but the adjoining bones were at this stage highly sclerotic and composed of coarse trabeculae. In contrary to previous in vivo studies suggesting biocompatibility, osteoconductivity and capability to bond to bone, Polyactive 1000PEO70PBT30 stem in this setting caused massive osteolytic lesions and foreign-body reactions. PMID:18336902

  14. Glass Matrix Facilitated Thermal Reduction: A Tool for Probing Reactions of Met Hemoglobin with Nitrite and Nitric Oxide

    Science.gov (United States)

    Navati, Mahantesh S.; Friedman, Joel M.

    2010-01-01

    Isolating elemental steps that comprise a protein reaction in solution is a difficult process. In this study, the use of sugar-derived glass matrices is evaluated as a biophysical tool to help dissect out elemental steps and isolate intermediates. Two features of the glass are utilized in this endeavor: i) the capacity of trehalose glass matrices to support thermal reduction over macroscopic distances; and ii) the ability of glass matrices to significantly damp large amplitude protein dynamics. The focus of the study is on the reaction of nitric oxide (NO) with a nitrite ion coordinated to the heme iron of hemoglobin (Hb). The thermal reduction property of the glass is used to generate NO from nitrite within the glass and the damping of protein dynamics is used to control entry of NO into the distal heme pocket of Hb where it can either interact with bound nitrite or bind to the heme iron. The results not only relate to earlier controversial studies addressing the reactions of Hb with NO and nitrite but also raise the prospect that these properties of sugar-derived glassy matrices can be exploited as a new biophysical tool to modulate and probe reactions of NO with hemeproteins as well as a wide range of other metalloproteins. PMID:20146537

  15. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo; Javandel, Iraj

    2008-03-15

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  16. The Effect of Temperature and Ionic Strength on the Oxidation of Iodide by Iron(III): A Clock Reaction Kinetic Study

    Science.gov (United States)

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2012-01-01

    A laboratory exercise has recently been reported in which the students use the initial rates method based on the clock reaction approach to deduce the rate law and propose a reaction mechanism for the oxidation of iodide by iron(III) ions. The same approach is used in the exercise proposed herein; the students determine the dependence of the…

  17. The Effect of Temperature and Ionic Strength on the Oxidation of Iodide by Iron(III) : A Clock Reaction Kinetic Study

    NARCIS (Netherlands)

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2012-01-01

    A laboratory exercise has recently been reported in which the students use the initial rates method based on the clock reaction approach to deduce the rate law and propose a reaction mechanism for the oxidation of iodide by iron(III) ions. The same approach is used in the exercise proposed herein; t

  18. TiO2-sludge carbon enhanced catalytic oxidative reaction in environmental wastewaters applications.

    Science.gov (United States)

    Athalathil, Sunil; Erjavec, Boštjan; Kaplan, Renata; Stüber, Frank; Bengoa, Christophe; Font, Josep; Fortuny, Agusti; Pintar, Albin; Fabregat, Azael

    2015-12-30

    The enhanced oxidative potential of sludge carbon/TiO2 nano composites (SNCs), applied as heterogeneous catalysts in advanced oxidation processes (AOPs), was studied. Fabrification of efficient SNCs using different methods and successful evaluation of their catalytic oxidative activity is reported for the first time. Surface modification processes of hydrothermal deposition, chemical treatment and sol-gel solution resulted in improved catalytic activity and good surface chemistry of the SNCs. The solids obtained after chemical treatment and hydrothermal deposition processes exhibit excellent crystallinity and photocatalytic activity. The highest photocatalytic rate was obtained for the material prepared using hydrothermal deposition technique, compared to other nanocomposites. Further, improved removal of bisphenol A (BPA) from aqueous phase by means of catalytic ozonation and catalytic wet air oxidation processes is achieved over the solid synthesized using chemical treatment method. The present results demonstrate that the addition of TiO2 on the surface of sludge carbon (SC) increases catalytic oxidative activity of SNCs. The latter produced from harmful sludge materials can be therefore used as cost-effective and efficient sludge derived catalysts for the removal of hazardous pollutants. PMID:26223014

  19. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraju, D.H., E-mail: dhnagu@gmail.com [Department of Mechanical Engineering, 117 576 (Singapore); Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Saudi Arabia); Devaraj, S. [Department of Mechanical Engineering, 117 576 (Singapore); School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401 (India); Balaya, P., E-mail: mpepb@nus.edu.sg [Department of Mechanical Engineering, 117 576 (Singapore); Engineering Science Program, National University of Singapore, 117 576 (Singapore)

    2014-12-15

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd{sup 2+} ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl{sub 2}. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells.

  20. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    International Nuclear Information System (INIS)

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd2+ ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl2. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells

  1. Ruthenium(IV) and osmium(II) tetraphenylporphine complexes: synthesis and oxidation reactions

    International Nuclear Information System (INIS)

    By means of interaction between tetraphenylporphine (H2TPP) and K2RuO4 (molar ratio 1:30) in the medium of boiling phenol with the yield of 56% ruthenium(IV) complex, featuring the composition (PhO)2RuTPP (Ph-phenyl), was prepared. The product was characterized by the methods of 1H NMR, IR spectroscopy and electron absorption spectroscopy. Kinetic of the complex oxidation by the air oxygen in solutions of acetic and sulfuric acids was studied using spectrophotometry. It was ascertained that in aerated mixture of the acids at a temperature above 340 K ruthenium(IV) complex is oxidated by macrocycle to π-cation-radical (PhO)2RuTPP .+. Ruthenium(IV) complex oxidation proceeds according to activation mechanism

  2. Three dimensional nickel oxides/nickel structure by in situ electro-oxidation of nickel foam as robust electrocatalyst for oxygen evolution reaction

    Science.gov (United States)

    Han, Guan-Qun; Liu, Yan-Ru; Hu, Wen-Hui; Dong, Bin; Li, Xiao; Shang, Xiao; Chai, Yong-Ming; Liu, Yun-Qi; Liu, Chen-Guang

    2015-12-01

    Three dimensional (3D) nickel oxide/nickel (NiOx/Ni) structure has been synthesized through a facile in situ electro-oxidation method. The formation of NiOx through the electro-oxidation process has been proved by SEM and EDX, with some dense black dots appearing on the surface of Ni foam and the molar ratio of O/Ni increasing, which is nearly 7 times larger than the pure Ni foam. The increase in O content indicates the formatted black particles on the surface of Ni foam are composed of NiOx. The electrocatalytic property of the obtained 3D NiOx/Ni structure has been measured and it can be used as a highly active electrocatalyst for oxygen evolution reaction (OER). The overpotential to reach j = 10 mA cm-2 is 0.39 V. And after the long-term I-t measurement, extremely high electrochemical and physical stability are exhibited in the 3D structure, keeping electrochemical activity and morphology the same. The excellent OER properties may be attributed to the 3D structure and the interface effect of NiOx/Ni.

  3. Approach to equilibrium of the water-gas shift reaction on a Ni/zirconia anode under solid oxide fuel-cell conditions

    Science.gov (United States)

    Ahmed, K.; Föger, K.

    The reverse water-gas shift reaction is carried out in a solid oxide fuel-cell at a range of fuel utilization levels and the approach of this reaction to thermodynamic equilibrium is calculated from the experimental data. It is found that the water-gas shift reaction is close to equilibrium only at high levels of fuel utilization. This is an important finding for modeling and simulation of fuel-cells.

  4. O2-enhanced methanol oxidation reaction at novel Pt-Ru-C co-sputtered electrodes

    International Nuclear Information System (INIS)

    Highlights: ► Novel Pt-Ru-C electrodes were prepared by a co-sputtering technique. ► Co-sputtered electrodes with C result in highly efficient O2-enhanced methanol oxidation. ► Pt–Ru-alloy-based co-sputtered electrode induces a negative onset potential of methanol oxidation. ► The Pt-Ru-C electrodes allow a negative onset potential of O2-enhanced methanol oxidation. ► The optimum atomic ratios of Pt-Ru-C are Pt: 0.24–0.80, Ru: 0.14–0.61, C: 0.06–0.37. -- Abstract: A Pt-Ru-C electrode has been developed using a co-sputtering technique for use as the anode catalyst of a mixed-reactant fuel cell. The physical and electrochemical characteristics of the electrodes demonstrate that co-sputtered Pt and Ru form a Pt–Ru alloy. The crystallite sizes of the catalysts investigated in this study are reduced by the addition of C to the Pt–Ru alloy. Cu stripping voltammograms suggest that the sputtering of C and the formation of the Pt–Ru alloy synergically increase the electrochemical surface area of the electrodes. The methanol oxidation performances of the prepared electrodes were evaluated in N2 and O2 atmospheres; the Pt-Ru-C electrodes achieve an O2-induced negative shift in the onset potential of the methanol oxidation (Eonset) and enhance the methanol oxidation current density in the O2 atmosphere. The mechanism of O2-enhanced methanol oxidation with a negative Eonset at the Pt-Ru-C electrodes is attributed to a change in the electronic structure of Pt due to the formation of Pt–Ru alloy and the generation of O-based adsorption species by the reduction of O2. Finally, the composition of the Pt-Ru-C electrode for the O2-enhanced methanol oxidation with a negative Eonset was found to be optimal at an atomic ratio of Pt: 0.24–0.80, Ru: 0.14–0.61, and C: 0.06–0.37

  5. Optimizing the oxygen evolution reaction for electrochemical water oxidation by tuning solvent properties

    Science.gov (United States)

    Fortunelli, Alessandro; Goddard, William A., III; Sementa, Luca; Barcaro, Giovanni

    2015-02-01

    Electrochemical water-based energy cycles provide a most promising alternative to fossil-fuel sources of energy. However, current electrocatalysts are not adequate (high overpotential, lack of selectivity toward O2 production, catalyst degradation). We propose here mechanistic guidelines for experimental examination of modified catalysts based on the dependence of kinetic rates on the solvent dielectric constant. To illustrate the procedure we consider the fcc(111) platinum surface and show that the individual steps for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) change systematically with the polarizability of the medium. Thus changing this environmental variable can be used to tune the rate determining steps and the barriers, providing a means for screening and validating new systems to optimize the rate determining steps for the ORR and OER reaction pathways.

  6. Highly-active copper oxide/copper electrocatalysts induced from hierarchical copper oxide nanospheres for carbon dioxide reduction reaction

    International Nuclear Information System (INIS)

    Novel hierarchical copper oxide (CuXO) nanosphere particles are synthesized, and then coated onto gas diffusion layer (carbon) to form a working electrode for catalyzing CO2 electroreduction. When applying a negative voltage to the working electrode, the metal Cu nanoparticles which are induced by the CuXO nanospheres appear. CuXO and metal Cu together form the CuXO/Cu nanocatalysts which show high catalytic activity for CO2 electroreduction. The morphology, composition, crystal structure and surface area of the CuXO/Cu electrocatalysts are characterized using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuXO/Cu nanoparticles are tested as the catalysts for CO2 electroreduction using cyclic voltammetry and linear sweep voltammetry in CO2-saturated 0.5 M KHCO3 aqueous electrolyte. It is found that the CO2 electroreduction activity is highly improved using this CuXO/Cu nanocatalyst, which remains stable during 20 h of electrolysis, along with the high selectivity with a ∼62% of Faradaic efficiency for formate production. Detailed kinetic information relevant to the catalysis is also discussed

  7. A comparative study between Pt and Rh for the electro-oxidation of aqueous SO₂ and other model electrochemical reactions / Marcelle Potgieter

    OpenAIRE

    Potgieter, Marcelle

    2014-01-01

    The ever increasing demand for a clean and renewable energy source has stimulated research for alternatives for the use of fossil fuels, which contribute significantly to global warming. The SO2 oxidation reaction was studied for production of hydrogen as a clean and renewable energy carrier. This reaction occurs at a lower standard electrode potential (0.158 V vs. SHE) than normal water electrolysis (1.23 V vs. SHE). This is a theoretical indication that the SO2 oxidation reaction has possib...

  8. Cascade enzymatic reactions for efficient carbon sequestration.

    Science.gov (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. PMID:25708541

  9. Oxidative Conversion of Hexane to Olefins-Influence of Plasma and Catalyst on Reaction Pathways

    NARCIS (Netherlands)

    Boyadjian, C.; Agiral, A.; Gardeniers, J.G.E.; Lefferts, L.; Seshan, K.

    2011-01-01

    An integrated plasma-Li/MgO system is efficient for the oxidative conversion of hexane. In comparison to the Li/MgO catalytic system, it brings considerable improvements in the yields of light olefins (C 2 = –C 5 = ) at relatively low temperatures indicating synergy from combination of plasma and ca

  10. Synthesis of a Fluorescent Acridone Using a Grignard Addition, Oxidation, and Nucleophilic Aromatic Substitution Reaction Sequence

    Science.gov (United States)

    Goodrich, Samuel; Patel, Miloni; Woydziak, Zachary R.

    2015-01-01

    A three-pot synthesis oriented for an undergraduate organic chemistry laboratory was developed to construct a fluorescent acridone molecule. This laboratory experiment utilizes Grignard addition to an aldehyde, alcohol oxidation, and iterative nucleophilic aromatic substitution steps to produce the final product. Each of the intermediates and the…

  11. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    KAUST Repository

    Nagaraju, Doddahalli H.

    2014-12-01

    Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd2+ ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl2. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells. © 2014 Elsevier Ltd.

  12. Aspects of reaction of N-oxide radical with ethers in 13C NMR spectrum

    International Nuclear Information System (INIS)

    The stable radical N-oxide 2,2,6,6-tetramethylpiperidine was dissolved in ethers. The 13C NMR spectra were recorded in the temperature 313K at the frequency 22,625 MHz on the spectrometers with Fourier transformation. The dissolution of the radical in ether caused the contact shifts in NMR spectra. The shifts were measured. (A.S.)

  13. Reaction products and corrosion of molybdenum electrode in glass melt containing antimony oxides and sodium sulfate

    Czech Academy of Sciences Publication Activity Database

    Matěj, J.; Langrová, Anna

    2012-01-01

    Roč. 56, č. 3 (2012), s. 280-285. ISSN 0862-5468 Institutional support: RVO:67985831 Keywords : antimony oxides * corrosion * glass melt * Molybdenum electrode * sulfate Subject RIV: DD - Geochemistry Impact factor: 0.418, year: 2012 http://www.ceramics-silikaty.cz/2012/pdf/2012_03_280.pdf

  14. Study of the emission oxidative reactions of ruthenium (II) complex by cationic compounds in anionic micelles

    International Nuclear Information System (INIS)

    The oxidative quenching of the emission of the tetraanionic complex tris (4,4' dicarboxylate - 2,2' - bipyridine ruthenium (II) in aqueous solution, by both organic and inorganic compounds in presence of anionic detergents, above and below the critical micelle concentration is studied. The organic cations, the inorganic ion and detergents used are shown. (M.J.C.)

  15. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural.

    Science.gov (United States)

    Pacheco, Joshua J; Davis, Mark E

    2014-06-10

    Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder reactions with ethylene and avoid the hydrogenation of HMF to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with high pressure ethylene over a pure-silica molecular sieve containing framework tin (Sn-Beta) to produce the Diels-Alder dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with 31% selectivity at 61% HMFA conversion after 6 h at 190 °C. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of Sn-Beta for 2 h to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 46% selectivity at 28% MMFC conversion or in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) for 6 h to produce MMBC with 81% selectivity at 26% MMFC conversion. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder dehydration product is observed. PMID:24912153

  16. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 2: Iron- and Copper-Catalyzed Oxidation.

    Science.gov (United States)

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors arising during wine production are frequently removed by Cu(II) fining. In part 1 of this study ( 10.1021/acs.jafc.6b00641 ), the reaction of H2S and thiols with Cu(II) was examined; however, the interaction of iron and copper is also known to play an important synergistic role in mediating non-enzymatic wine oxidation. The interaction of these two metals in the oxidation of H2S and thiols (cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol) was therefore examined under wine-like conditions. H2S and thiols (300 μM) were reacted with Fe(III) (100 or 200 μM) alone and in combination with Cu(II) (25 or 50 μM), and concentrations of H2S and thiols, oxygen, and acetaldehyde were monitored over time. H2S and thiols were shown to be slowly oxidized in the presence of Fe(III) alone and were not bound to Fe(III) under model wine conditions. However, Cu(II) added to model wine containing Fe(III) was quickly reduced by H2S and thiols to form Cu(I) complexes, which then rapidly reduced Fe(III) to Fe(II). Oxidation of Fe(II) in the presence of oxygen regenerated Fe(III) and completed the iron redox cycle. In addition, sulfur-derived oxidation products were observed, and the formation of organic polysulfanes was demonstrated. PMID:27133088

  17. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method

    Directory of Open Access Journals (Sweden)

    Kelly Pemartin-Biernath

    2016-06-01

    Full Text Available Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD, below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO2. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM. Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO2 to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications.

  18. Metallic Sn spheres and SnO2@C core-shells by anaerobic and aerobic catalytic ethanol and CO oxidation reactions over SnO2 nanoparticles

    Science.gov (United States)

    Kim, Won Joo; Lee, Sung Woo; Sohn, Youngku

    2015-08-01

    SnO2 has been studied intensely for applications to sensors, Li-ion batteries and solar cells. Despite this, comparatively little attention has been paid to the changes in morphology and crystal phase that occur on the metal oxide surface during chemical reactions. This paper reports anaerobic and aerobic ethanol and CO oxidation reactions over SnO2 nanoparticles (NPs), as well as the subsequent changes in the nature of the NPs. Uniform SnO2@C core-shells (10 nm) were formed by an aerobic ethanol oxidation reaction over SnO2 NPs. On the other hand, metallic Sn spheres were produced by an anaerobic ethanol oxidation reaction at 450 °C, which is significantly lower than that (1200 °C) used in industrial Sn production. Anaerobic and aerobic CO oxidation reactions were also examined. The novelty of the methods for the production of metallic Sn and SnO2@C core-shells including other anaerobic and aerobic reactions will contribute significantly to Sn and SnO2-based applications.

  19. Reproducible nuclear reactions during interaction of deuterium with oxide tungsten bronze

    International Nuclear Information System (INIS)

    The possibility of essential increase of rate of carrying out nuclear reactions with participance of deuterium in solids representing solid electrolytes with cation-electronic conductivity has been shown in the paper. It is found out that strict maintenance of experiment parameters leads to completely qualitatively reproduced results: generation of neutrons and heat at introduction of deuterium into the system. (author)

  20. Investigation of lipid oxidation and non-enzymatic browning reactions in marine PL emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.;

    of amino acids (leucine, methionine and lysine) from 2 authentic standards (PC and PE) and 2 purified marine PL (LC and MPL) through sonication method. Emulsions were incubated at 60 ºC for 0, 2, 4 and 6 days. Non-enzymatic browning reactions were investigated through measurement of i) Strecker aldehydes...