WorldWideScience

Sample records for biocatalytic desulfurization project

  1. The Biocatalytic Desulfurization Project

    Energy Technology Data Exchange (ETDEWEB)

    David Nunn; James Boltz; Philip M. DiGrazia; Larry Nace

    2006-03-03

    The material in this report summarizes the Diversa technical effort in development of a biocatalyst for the biodesulfurization of Petro Star diesel as well as an economic report of standalone and combined desulfurization options, prepared by Pelorus and Anvil, to support and inform the development of a commercially viable process. We will discuss goals of the projected as originally stated and their modification as guided by parallel efforts to evaluate commercialization economics and process parameters. We describe efforts to identify novel genes and hosts for the generation of an optimal biocatalyst, analysis of diesel fuels (untreated, chemically oxidized and hydrotreated) for organosulfur compound composition and directed evolution of enzymes central to the biodesulfurization pathway to optimize properties important for their use in a biocatalyst. Finally we will summarize the challenges and issues that are central to successful development of a viable biodesulfurization process.

  2. THE BIOCATALYTIC DESULFURIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Steven E. Bonde; David Nunn

    2003-01-01

    During the first quarter of the Biological Desulfurization project several activities were pursued. A project kickoff meeting was held at the Diversa facility in San Diego, CA. Activities that were in process before the meeting and begun afterwards by Diversa Corporation and Petro Star Inc. include: Technology transfer in the form of information generated by Enchira to Diversa, the purchase and installation of equipment by Diversa, development of synthetic methods and preparation of organo-sulfur substrates for use in determining enzyme activities, production of extract via Petro Star's CED process, detailed analysis of Petro Star Inc. diesel and CED extract, and several activities in molecular biology. Diversa Corporation, in the area of molecular biology, engaged in several activities in support of the task list of the contract. These included: construction of a genomic library; development and utilization of a sequence-based gene discovery effort; a parallel discovery approach based on functional expression of enzymes with the ability to oxidize organosulfur compounds. Biodesulfurization genes have already been identified and are being sequenced and subcloned for expression in heterologous biological hosts. Diversa has evaluated and adapted assays developed by Enchira used to assess the activities of DBT and DBTO{sub 2} monooxygenases. Finally, Diversa personnel have developed two novel selection/screen strategies for the improvement of biocatalyst strains by directed evolution.

  3. THE BIOCATALYTIC DESULFURIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Collins; David Nunn

    2003-10-01

    The analysis of Petro Star diesel sulfur species is complete and a report is attached. Further analytical efforts will concentrate on characterization of diesel fuel, hydrodesulfurized to varying degrees, in order to determine sulfur species that may be problematic to hydrogen treatment and represent potential target substrates for biodesulfurization in a combined HDS-BDS process. Quotes have been received and are being considered for the partial treatment of Petro Star Inc. marine diesel fuel. Direction of research is changing slightly; economic analysis of the hyphenated--BDSHDS, BDS-CED--has shown the highest probability of success to be with a BDS-HDS process where the biodesulfurization precedes hydrodesulfurization. Thus, the microorganisms will be tailored to focus on those compounds that tend to be recalcitrant to hydrodesulfurization and decrease the severity of the hydrodesulfurization step. A separate, detailed justification for this change is being prepared. Research activities have continued in the characterization of the desulfurization enzymes from multiple sources. Genes for all DszA, -B, -C and -D enzymes (and homologs) have been cloned and expressed. Activity determinations, on a variety of substituted benzothiophene and dibenzothiophene substrates, have been carried out and continue. In addition, chemical synthesis efforts have been carried out to generate additional substrates for analytical standards and activity determinations. The generation of a GSSM mutant library of the ''Rhodococcus IGTS8 dszA'' gene has been completed and development of protocols for a high throughput screen to expand substrate specificity are nearing completion. In an effort to obtain improved hosts as biocatalyst, one hundred-thirty ''Rhodococcus'' and related strains are being evaluated for growth characteristics and other criteria deemed important for an optimal biocatalyst strain. We have also begun an effort to generate

  4. Biocatalytic desulfurization (BDS) of petrodiesel fuels.

    Science.gov (United States)

    Mohebali, Ghasemali; Ball, Andrew S

    2008-08-01

    Oil refineries are facing many challenges, including heavier crude oils, increased fuel quality standards, and a need to reduce air pollution emissions. Global society is stepping on the road to zero-sulfur fuel, with only differences in the starting point of sulfur level and rate reduction of sulfur content between different countries. Hydrodesulfurization (HDS) is the most common technology used by refineries to remove sulfur from intermediate streams. However, HDS has several disadvantages, in that it is energy intensive, costly to install and to operate, and does not work well on refractory organosulfur compounds. Recent research has therefore focused on improving HDS catalysts and processes and also on the development of alternative technologies. Among the new technologies one possible approach is biocatalytic desulfurization (BDS). The advantage of BDS is that it can be operated in conditions that require less energy and hydrogen. BDS operates at ambient temperature and pressure with high selectivity, resulting in decreased energy costs, low emission, and no generation of undesirable side products. Over the last two decades several research groups have attempted to isolate bacteria capable of efficient desulfurization of oil fractions. This review examines the developments in our knowledge of the application of bacteria in BDS processes, assesses the technical viability of this technology and examines its future challenges.

  5. THE BIOCATALYTIC DESULFURIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Steven E. Bonde; David Nunn

    2003-04-01

    Research activities in the second quarter have largely been a continuation of efforts previously described in the first quarterly report as well as a degree of redirection of effort as a result of discussions during the first quarterly meeting held in San Diego. Chemical synthesis efforts have been refined and are currently being used to support generation of substrates for evaluation and evolution of enzymes for their oxidation. Analysis of the sulfur species in Petro Star diesel, CED extract and refinement of the speciation data is nearly complete. Molecular biology efforts continue with the cloning, expression and characterization of the DszA and DszC proteins as well as the flavin reductases to support regeneration of the essential FMN cofactors. In addition, we have initiated an evolution effort for the extension and improvement of DszA enzyme activity using Diversa's Gene Site Saturation Mutagenesis (GSSM{trademark}) technology. To support the evolution effort as well as of characterization of enzyme activities on a variety of substrates, a high-throughput mass spectroscopy-based assay has been developed. Two selection/screen strategies for the discovery and evolution of biocatalyst enzyme have been developed and are being evaluated for performance using gene libraries constructed from known biodesulfurization strains and environmental libraries.

  6. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria

    Directory of Open Access Journals (Sweden)

    Magdy El-Said Mohamed

    2015-02-01

    Full Text Available Microorganisms possess enormous highly specific metabolic activities, which enable them to utilize and transform nearly every known chemical class present in crude oil. In this context, one of the most studied biocatalytic processes is the biodesulfurization (BDS of thiophenic sulfur-containing compounds such as benzothiophene (BT and dibenzothiophene (DBT in crude oils and refinery streams. Three newly isolated bacterial strains, which were affiliated as Rhodococcus sp. strain SA11, Stenotrophomonas sp. strain SA21, and Rhodococcus sp. strain SA31, were enriched from oil contaminated soil in the presence of DBT as the sole S source. GC-FID analysis of DBT-grown cultures showed consumption of DBT, transient formation of DBT sulfone (DBTO2 and accumulation of 2-hydroxybiphenyl (2-HBP. Molecular detection of the plasmid-borne dsz operon, which codes for the DBT desulfurization activity, revealed the presence of dszA, dszB, and dszC genes. These results point to the operation of the known 4S pathway in the BDS of DBT. The maximum consumption rate of DBT was 11 µmol/g Dry Cell Weight (DCW/h and the maximum formation rate of 2-HBP formation was 4 µmol/g DCW/h. Inhibition of both cell growth and DBT consumption by 2-HBP was observed for all isolates but SA11 isolate was the least affected. The isolated biocatalysts desulfurized other model DBT alkylated homologs. SA11 isolate was capable of desulfurizing BT as well. Resting cells of SA11 exhibited 10% reduction in total sulfur present in heavy crude oil and 18% reduction in total sulfur present in the hexane-soluble fraction of the heavy crude oil. The capabilities of the isolated bacteria to survive and desulfurize a wide range of S compounds present in crude oil are desirable traits for the development of a robust BDS biocatalyst to upgrade crude oils and refinery streams.

  7. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-30

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  8. Pure Air`s advanced flue gas desulfurization clean coal project

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.R. [Pure Air Bailly Station, Chesterton, IN (United States)

    1998-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project successfully completed four and a half years of operation in December 1996 at Northern Indiana Public Service Company`s (NIPSCO) Bailly Generating Station. This project received a $60 million grant from the DOE Clean Coal II program. Included in this was a three year DOE demonstration period. The facility was designed, built and is owned and operated by Pure Air of Allentown, Pennsylvania, through its project company, Pure Air on the Lake, Limited Partnership. The project met or exceeded all performance criteria. It has averaged 95.3% SO{sub 2} removal, 99.9% availability and produced high quality commercial gypsum during this four and a half year period. It demonstrated many advanced technology features including a single, large absorber module serving two boilers, a wastewater evaporation system, an air rotary sparger for oxidation, and a new technology for agglomerating gypsum.

  9. Advanced fuel gas desulfurization (AFGD) demonstration project. Technical progress report No. 19, July 1, 1994--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.

  10. Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-08-31

    The AFGD process as demonstrated by Pure Air at the Bailly Station offers a reliable and cost-effective means of achieving a high degree of SO{sub 2} emissions reduction when burning high-sulfur coals. Many innovative features have been successfully incorporated in this process, and it is ready for widespread commercial use. The system uses a single-loop cocurrent scrubbing process with in-situ oxidation to produce wallboard-grade gypsum instead of wet sludge. A novel wastewater evaporation system minimizes effluents. The advanced scrubbing process uses a common absorber to serve multiple boilers, thereby saving on capital through economies of scale. Major results of the project are: (1) SO{sub 2} removal of over 94 percent was achieved over the three-year demonstration period, with a system availability exceeding 99.5 percent; (2) a large, single absorber handled the combined flue gas of boilers generating 528 MWe of power, and no spares were required; (3) direct injection of pulverized limestone into the absorber was successful; (4) Wastewater evaporation eliminated the need for liquid waste disposal; and (5) the gypsum by-product was used directly for wallboard manufacture, eliminating the need to dispose of waste sludge.

  11. Pure Air`s Advanced Flue Gas Desulfurization Clean Coal Project

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.R. [Pure Air Bailly Station, Chesterton, IN (United States)

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project successfully completed four and a half years of operation in December 1996 at Northern Indiana Public Service Company`s (NIPSCO) Bailly Generation Station. Included in this was a three year DOE demonstration period. The project was built by a joint venture company of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc., utilizing Mitsubishi`s wet limestone flue gas desulfurization technology. The project met or exceeded all performance criteria. It has averaged 95.3% SO{sub 2} removal, 99.9% availability and produced 936,000 metric tons of high quality commercial gypsum during this four and a half year period. It demonstrated many advanced technology features including a single, large absorber module serving two boilers, a wastewater evaporation system, an air rotary sparger for oxidation, and a new technology for agglomerating gypsum. The AFGD system was designed, built, owned and operated by Pure Air and will continue to serve NIPSCO`s Bailly Station for at least another 15{1/2} years under an Own and Operate contract. The project enabled NIPSCO to cost effectively achieve full system wide compliance with the Phase 2 emission requirements for SO{sub 2} of the Clean Air Act Amendments (CAAA) of 1990 almost eight years before the target date. The project was the recipient of the Outstanding Engineering Achievement Award from the National Society of Professional Engineers in 1993 and the 1993 Powerplant Award from Power magazine. The data presented in this paper are based on performance during the first three years of operation.

  12. New Reductive Desulfurization Technology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The project for the research of the pulse plasma reductive desulfurization technology undertaken by Huazhong University of Science and Technology recently passed the research achievement appraisal in Wuhan, Hubei province.

  13. Coal desulfurization through reverse micelle biocatalysis process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Yen, T.F.

    1988-01-01

    A novel bioprocess using micelle biocatalysis has been attempted to minimize several disadvantages of conventional microbial coal desulfurization scale-up processes. The reverse micelle biocatalysis process consists of a water-immiscible organic medium, a surfactant, an aqueous phase and sulfur-oxidizing bacteria or enzymes. This process has been successful for removing sulfur from bituminous coal (Illinois coal 5). The preliminary results showed that coal desulfurization through the use of cell-free enzyme extracts of Thiobacillus ferrooxidans ATCC 19859 was better than that of bacteria itself. The use of enzymes has shown potential for commercial coal desulfurization process as well. This same process is being applied to the thermophillic bacteria Sulfolobus acidocaldarius ATCC 33909. The implications of these experimental results are discussed, including a hypothetical mechanism using reverse micelle biocatalytical process for coal desulfurization.

  14. Biocatalytic conversion of epoxides

    NARCIS (Netherlands)

    de Vries, Erik; Janssen, DB

    2003-01-01

    Epoxides are attractive intermediates for producing chiral compounds. Important biocatalytic reactions involving epoxides include epoxide hydrolase mediated kinetic resolution, leading to the formation of diols and enantiopure remaining substrates, and enantioconvergent enzymatic hydrolysis, which g

  15. Biocatalytic removal of organic sulfur from coal

    Energy Technology Data Exchange (ETDEWEB)

    Webster, D.A. [Illinois Inst. of Tech., Chicago, IL (United States); Kilbane, J.J. II [Institute of Gas Technology, Chicadgo, IL (United States)

    1994-09-09

    The objective is to characterize more completely the biochemical ability of the bacterium, Rhodococcus rhodochrous IGTS8, to cleave carbon-sulfur bonds with emphasis on data that will allow the development of a practical coal biodesulfurization process. Another approach for increasing the desulfurization activity of the IGTS8 cultures is to produce strains genetically that have higher activity. The goal of this part of research is to achieve strain improvement by introducing a stronger promoter using genetic engineering techniques. The promoter regulates the transcription of the genes for the desulfurization enzymes, and a stronger promoter, would up-regulate the expression of these genes, resulting in cells with higher desulfurization activity. Promoter probe vectors are used to identify and isolate promoters from a DNA library of the experimental organism. The major accomplishments have been to obtain high biodesulfurization activity in nonaqueous, media, especially using freeze-dried cells, and to have isolated strong promoters from R. rhodochrous IGTS8 which will be used to engineer the organism to produce strains with higher biocatalytic activity.

  16. Pushing Forward Industrialization of Thermal Power Desulfuration

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper introduces present state of industrialization development in flue gas desulfuration, including technological selection, state of design and contracting capability, localization of equipment, etc. in China. It points out main problems currently existed and presents proposals on promotion of desulfuration technology with selfowned intellectual property right, perfection of demonstrative projects and pushing forward localization of desulfuration equipment.

  17. Advanced Flue Gas Desulfurization (AFGD) Demonstration Project. Technical progress report No. 15, July 1, 1993--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The goal of this project is to demonstrate that, by combining state-of-the-art technology, highly efficient plant operation and maintenance capabilities and by-product gypsum sales, significant reductions of SO{sub 2} emissions can be achieved at approximately one-half the life cycle cost of a conventional Flue Gas Desulfurization (FGD) system. Further, this emission reduction is achieved without generating solid waste and while minimizing liquid wastewater effluent. Basically, this project entails the design, construction and operation of a nominal 600 MWe AFGD facility to remove SO{sub 2} from coal-fired power plant flue gas at the Northern Indiana Public Service Company`s Bailly Generating Station.

  18. LIFAC sorbent injection desulfurization demonstration project. Final report, volume II: Project performance and economics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This publication discusses the demonstration of the LIFAC sorbent injection technology at Richmond Power and Light`s Whitewater Valley Unit No. 2, performed under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5 to 1. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North America (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Public Design Report Volume 2: Project Performance and Economics is to consolidate, for public use, the technical efficiency and economy of the LIFAC Process. The report has been prepared pursuant to the Cooperative Agreement No. DE-FC22-90PC90548 between LIFAC NA and the U.S. Department of Energy.

  19. Oxidase-based biocatalytic processes

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Woodley, John; Krühne, Ulrich

    solvent-resistant oxygen sensors as supporting technology for oxidase-basedreactions using a glucose oxidase reaction system as an example.iiImplementation of biocatalytic oxidation at scale still requires process knowledge which includes thelimitations of the system and the knowledge about the potential......Biocatalytic processes are gaining significant focus in frontiers where they offer unique advantages(selectivity and mild operating conditions) over chemical catalysts. It is therefore not surprising that therehave been many industrial biocatalytic processes implemented.Despite past successes......, the implementation of a new biocatalytic process still presents some challenges (demands placed on the biocatalyst) in terms of the requirements to make a viable industrial process. Inorder for a biocatalytic process to be economically successful, it is necessary that certain a set of targetmetrics (product titre...

  20. Biocatalytic portfolio of Basidiomycota.

    Science.gov (United States)

    Schmidt-Dannert, Claudia

    2016-04-01

    Basidiomycota fungi have received little attention for applications in biocatalysis and biotechnology and remain greatly understudied despite their importance for carbon recycling, ecosystem functioning and medicinal properties. The steady influx of genome data has facilitated detailed studies aimed at understanding the evolution and function of fungal lignocellulose degradation. These studies and recent explorations into the secondary metabolomes have uncovered large portfolios of enzymes useful for biocatalysis and biosynthesis. This review will provide an overview of the biocatalytic repertoires of Basidiomycota characterized to date with the hope of motivation more research into the chemical toolkits of this diverse group of fungi.

  1. Biocatalytic process development using microfluidic miniaturized systems

    DEFF Research Database (Denmark)

    Krühne, Ulrich; Heintz, Søren; Ringborg, Rolf Hoffmeyer

    2014-01-01

    The increasing interest in biocatalytic processes means there is a clear need for a new systematic development paradigm which encompasses both protein engineering and process engineering. This paper argues that through the use of a new microfluidic platform, data can be collected more rapidly...... and integrated with process modeling, can provide the basis for validating a reduced number of potential processes. The miniaturized platform should use a smaller reagent inventory and make better use of precious biocatalysts. The EC funded BIOINTENSE project will use ω-transaminase based synthesis of chiral...

  2. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  3. Desulfurization at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Panula-Nikkilae, E.; Kurkela, E.; Mojtahedi, W.

    1987-01-01

    Two high-temperature desulfurization methods, furnace injection and gasification-desulfurization are presented. In furnace injection, the efficiency of desulfurization is 50-60%, but this method is applied in energy production plants, where flue gas desulfurization cannot be used. Ca-based sorbents are used as desulfurization material. Factors affecting desulfurization and the effect of injection on the boiler and ash handling are discussed. In energy production based on gasification, very low sulfur emissions can be achieved by conventional low-temperature cleanup. However, high-temperature gas cleaning leads to higher efficiency and can be applied to smaller size classes. Ca-, Fe-, or Zn-based sorbents or mixed metals can be used for desulfurization. Most of the methods under development are based on the use of regenerative sorbents in a cleanup reactor located outside the gasifier. So far, only calcium compounds have been used for desulfurization inside the gasifier.

  4. Sustainable Biocatalytic Biodiesel Production

    DEFF Research Database (Denmark)

    Güzel, Günduz

    and chemical equilibria as part of his main sustainable biodiesel project. The transesterification reaction of vegetable oils or fats with an aliphatic alcohol – in most cases methanol or ethanol – yields biodiesel (long-chain fatty acid alkyl esters – FAAE) as the main product in the presence of alkaline....../acid catalysts or biocatalysts (free or immobilised lipase enzymes). The reaction by-product glycerol is immiscible with the ester products (FAAE and oils/fats) in addition to the partial miscibility problem of methanol or ethanol with oils/fats. The insoluble parts of alcohol feeds or by-products form emulsion...... droplets within the reaction media, where continuous stirring operations are applied to improve mass transfer and thus reaction rates. In all other cases, there is a heterogeneous alcohol phase in equilibrium with the ester phase under equilibrium conditions. The immiscibility and/or miscibility drawbacks...

  5. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-04-01

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  6. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-31

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  7. Model visualization for evaluation of biocatalytic processes

    DEFF Research Database (Denmark)

    Law, HEM; Lewis, DJ; McRobbie, I

    2008-01-01

    Biocatalysis offers great potential as an additional, and in some cases as an alternative, synthetic tool for organic chemists, especially as a route to introduce chirality. However, the implementation of scalable biocatalytic processes nearly always requires the introduction of process and/or bi...

  8. Engineering of Biocatalysts and Biocatalytic Processes

    DEFF Research Database (Denmark)

    Lima Ramos, Joana; Lima Afonso Neto, Watson; Woodley, John

    2014-01-01

    Discovering and developing new biocatalytic reactions and biocatalysts has been the major focus of the activities in the EC FP7 BIOTRAINS network. However, industrial implementation of these new reactions requires engineering of both the biocatalysts and the associated processes, to achieve the n...

  9. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  10. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, J.K. (Boston Univ., MA (United States). School of Medicine); Kitchell, J.P. (Holometrix, Inc., Cambridge, MA (United States))

    1988-12-15

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  11. Microbial desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Danzet, C.; Buonfiglio, V.; Polidoro, M.; Valenti, P. (Rome Univ. La Sapienza (Italy). Ist. di Microbiologia)

    This paper reviews the biochemical and economics aspects of coal desulfurization processes involving the use of thermophile microorganisms such as sulfolobus, currently believed to be the the only type of microorganism capable of degrading both inorganic (pyrite-containing) and organic sulfur compounds. Comments are also made on the feasibility of the development of an in-lab, microbial based method for the transformation of the lignin component, obtained in the processing, by anaerobic fermentation, of lignocellulosic biomass, into humic acid.

  12. Research report of FY 1997 on the environmentally acceptable coal utilization system introduction support project. Follow-up project on simplified desulfurizer introduction (Weifang Chemical Industry Works); 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system donyu shien jigyo (kan`i datsuryu setsubi ni kakawaru follow up jigyo (Weifang kakohei))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    To reduce SOx with coal utilization, demonstration projects including diffusion activities of desulfurizers have been conducted. To promote the results of projects, experts for simplified desulfurizers were dispatched, to guide and advise for the operation of facilities introduced in these projects. The purpose of these projects is to diffuse the clean coal technologies, and to support the promotion of environmental measures. The operation conditions of facilities introduced in these projects were surveyed, to provide some guidance and advice for the operation and maintenance. Through the guidance and advice for operation and maintenance, methods of inspection and repair of resin linings at absorbing tower and flue were guided, methods of disassembly/inspection and used part replacement of rotary machines were guided, and screening surveys of absorber, mist eliminator and piping tower were carried out. For the operation techniques, application operation at emergency was not skilled. For the maintenance techniques, understandings were not enough for the equipment configuration and machineries. Nevertheless, these projects are successfully conducted, and the conditions of demonstration operations are satisfied. 33 figs., 2 tabs.

  13. Preparation of microbial desulfurization catalysts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A Rhodococcus sp. 1awq, a bacterium isolated from the soil cleaving the C-S bond of dibenzothiophene (DBT) via specific pathway, was investigated for cell growth and for its role in desulfurization. Clearly, the end product, 2-hydroxybiphenyl, inhibited the growth of the strain, the synthesis of the desulfurization enzymes, and the activity of the enzymes. The effects of sulfate on the DBT degradation enzymes were examined in the Rhodococcus sp. 1awq growth system with DBT; the sulfate served, concurrently, as the sulfur source. The condition of the resting cells that were used in desulfurization, was also studied. The optimal concentration of the resting cells and the reaction conditions were determined. It was documented that there is no difference between desulfurization activity for resting cells cultured with sulfate as the sole sulfur source and that with the mixture of DBT and sulfate as the sulfur source.

  14. PSE opportunities in biocatalytic process design and development

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Krühne, Ulrich; Gernaey, Krist

    2012-01-01

    to pharmaceuticals and other chemical products, since enzymes usually work in an aqueous solution and under mild conditions. Nevertheless the implementation of a biocatalytic reaction and the integration of a biocatalytic reaction into an otherwise chemical catalytic sequence is a complex task where PSE tools have...... a particularly important role to play. In this paper we will present a variety of PSE tools including computational fluid dynamics (CFD), operating windows, kinetic modelling, economic analysis and environmental assessment to support the development of economically viable biocatalytic processes....

  15. Wet flue gas desulfurization processes

    Directory of Open Access Journals (Sweden)

    Hayrunnisa Çavuşoğlu

    2013-04-01

    Full Text Available The wet flue gas desulfurization process is widely used for the treatment of exhaust gases in power stations. Due to its high level of effectiveness over the already available processes, it has also been the mostly preferred method by industry. Its high SO2 removal efficiency, wide applicability of absorption chemicals and the ease of the chemical process handling which does not require comprehensive konowledge are among the main advantages of this process. In this article, various wet flue gas desulfurization processes such as lime/limestone have beendiscussed.

  16. Nanopropulsion by biocatalytic self-assembly.

    Science.gov (United States)

    Leckie, Joy; Hope, Alexander; Hughes, Meghan; Debnath, Sisir; Fleming, Scott; Wark, Alastair W; Ulijn, Rein V; Haw, Mark D

    2014-09-23

    A number of organisms and organelles are capable of self-propulsion at the micro- and nanoscales. Production of simple man-made mimics of biological transportation systems may prove relevant to achieving movement in artificial cells and nano/micronscale robotics that may be of biological and nanotechnological importance. We demonstrate the propulsion of particles based on catalytically controlled molecular self-assembly and fiber formation at the particle surface. Specifically, phosphatase enzymes (acting as the engine) are conjugated to a quantum dot (the vehicle), and are subsequently exposed to micellar aggregates (fuel) that upon biocatalytic dephosphorylation undergo fibrillar self-assembly, which in turn causes propulsion. The motion of individual enzyme/quantum dot conjugates is followed directly using fluorescence microscopy. While overall movement remains random, the enzyme-conjugates exhibit significantly faster transport in the presence of the fiber forming system, compared to controls without fuel, a non-self-assembling substrate, or a substrate which assembles into spherical, rather than fibrous structures upon enzymatic dephosphorylation. When increasing the concentration of the fiber-forming fuel, the speed of the conjugates increases compared to non-self-assembling substrate, although directionality remains random.

  17. Adsorptive desulfurization of diesel with mesoporous aluminosilicates

    Institute of Scientific and Technical Information of China (English)

    TANG Huang; LI Wang-Liang; LIU Qing-Fen; GUAN Li-Li; SONG Jia-Qing; XING dian-Min; LIU Hui-Zhou

    2009-01-01

    Mesoporous aluminosilicates (MAS) bearing microporous zeolite units and mesoporous structures were synthesized by the hydrothermal method. Adsorptive desulfurization ability of model oil and hy-drotreated diesel was studied. The effects of template concentration, crystalization time and calcination time were investigated. The desulfurization ability of adsorbents was improved by transitional metal ion-exchanging. The adsorptive desulfurization of diesel was carried out on a fixed-bed system. The results show that the adsorptive capacity is MASMCM-41NaY. The improvement of desulfurization ability of MAS by Cu+ is more significant than that of Ag+.

  18. Sustainable biocatalytic biodiesel production : A thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guezel, G.

    2012-09-15

    In the present thesis it was aimed at achieving thermodynamic analysis of reactions involved in enzymatic biodiesel production with specific focus on chemical and phase equilibria of reactive systems. Lipase-catalyzed biodiesel production (biocatalytic ethanolysis) presents significant advantages: Easy recovery of glycerol, no complex down-processing operations for elimination of catalyst and salt, and requires less organic solvent and lower energy consumption compared with conventional chemical methods. In overall, the major aims of this thesis were evaluating and subsequently finding feasible solutions to the questions emerged during the corresponding studies that have been performed worldwide. Some of the questions that were answered as appropriate as possible can be listed as follows: 1) What is the solubility of EtOH in vegetable oils and in FAEE blends and how does it change with temperature? 2) Is it possible to prevent denaturing impact of EtOH on biocatalysts? 3) What are the feedstock content (water and FFA) impacts on glycerol and EtOH miscibility with ester species? 4) Is it necessary removing glycerol by-product simultaneously? 5) Is it feasible providing monophasic or homogeneous reaction media that procure lower external mass transfer resistance? 6) What are the moisture absorption limits of FAAE species? 7) How are the interactions of reactive species in terms of miscibility/immiscibility phenomena? 8) Is it thermodynamically feasible providing monophasic reaction media? 9) How can LLE and VLE phase behaviors help to determine optimum reaction conditions? 10) How can the results of LLE and VLE studies be used so as to determine appropriate refining operations? (LN)

  19. Microbial desulfurization of fuel oil

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Culture conditions of desulfurization microbes were investigated with a bioreactor controlled by computer.Factors such as pH, choice of carbon source, optimal concentrations of carbon, nitrogen and sulfur sources were determined. The addition of carbon in a culture with a constant pH greatly improved the growth of Rhodococcus. Cells and cell debris from microbes rested using a sulfur- specific pathway were used to desulfurize diesel oil treated by hydrodesulfurization (acquired from the Research Institute of Fushun Petroleum with total sulfur level at 205 μg/mL).Strains 1awq, IG, X7B, ZT, ZCR, and a mixture of No. 5 and No. 6, were used in the biodesulfurization process. The reduction of total sulfur was between 10.6% and 90.3%.

  20. Experimental determination of thermodynamic equilibrium in biocatalytic transamination

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Jensen, Jacob Skibsted; Kroutil, Wolfgang;

    2012-01-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones...

  1. Biocatalytic Refining of Soybean Oil into Cosmeceutical Ingredients

    Science.gov (United States)

    Our mission is to develop new, value-added uses for commodity crops and oils. We chose to fulfill this mission while adhering as closely as possible to the tenants of “green” chemistry. We have developed patented, all-natural oils called Feruloyl Soy Glycerols (FSG) from the biocatalytic transester...

  2. Development of advanced hot-gas desulfurization sorbents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.; Adeyiga, A.A.; Gangwal, S.K.

    1997-10-01

    The objective of this project was to develop hot-gas desulfurization sorbent formulations for relatively lower temperature application, with emphasis on the temperature range from 343--538 C. The candidate sorbents include highly dispersed mixed metal oxides of zinc, iron, copper, cobalt, nickel and molybdenum. The specific objective was to develop suitable sorbents, that would have high and stable surface area and are sufficiently reactive and regenerable at the relatively lower temperatures of interest in this work. Stability of surface area during regeneration was achieved by adding stabilizers. To prevent sulfation, catalyst additives that promote the light-off of the regeneration reaction at lower temperature was considered. Another objective of this study was to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343 to 538 C and regenerability at lower temperatures than leading first generation sorbents.

  3. A Reusable Calcium-Based Sorbent for Desulfurizing Hot Coal Gas

    Energy Technology Data Exchange (ETDEWEB)

    Wheelock, T.D.; Hasler, D.J.L.

    2002-09-19

    The overall objective of this project has been to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas. The sorbent should be strong, durable, inexpensive to manufacture, and capable of being reused many times. To achieve these objectives the project has focused on the development of the very promising core-in-shell sorbent.

  4. Microscale technology and biocatalytic processes: Opportunities and challenges for synthesis

    DEFF Research Database (Denmark)

    Wohlgemuth, Roland; Plazl, Igor; Žnidaršič-Plazl, Polona

    2015-01-01

    Despite the expanding presence of microscale technology in chemical synthesis and energy production as well as in biomedical devices and analytical and diagnostic tools, its potential in biocatalytic processes for pharmaceutical and fine chemicals, as well as related industries, has not yet been ......, and the future outlook for the implementation of these key green engineering methods and the role of supporting tools such as mathematical models to establish sustainable production processes are discussed....

  5. Study on Desulfurization Efficiency and Products of Ce-Doped Nanosized ZnO Desulfurizer at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    Li Fen; Yan Bo; Zhang Jie; Jiang Anxi; Shao Chunhong; Kong Xiangji; Wang Xin

    2007-01-01

    Ce-doped nanosized ZnO desulfurizer was prepared by homogeneous precipitation, and its desulfurization efficiency at ambient temperature was investigated through dynamic experiments. The results showed that the desulfurization activity of nanosized Ce-ZnO had improved greatly, compared to nanosized ZnO desulfurizer. Nanosized Ce-ZnO desulfurizer was characterized by XRD, TPD-MS, XPS, and TEM. The research results indicated that doping Ce decreased the particle size of the nanosized ZnO desulfurizer and ZnS was the principal desulfurization product. There were adsorption complexes of HS and S on the surface of desulfurizer as well. Only a small amount of vapor appeared in the tail gas on the condition of meeting the precision of desulfurization.

  6. Desulfurizer desulphurization kinetics by the injection method

    Institute of Scientific and Technical Information of China (English)

    Zhijun Han; Yanbin Hu; Wei Wu

    2008-01-01

    To obtain a better desulphurization effect in hot metal, suitable desulfurizers should be selected first according to thermodynamics. However, the effect of desulphurization is also strongly affected by kinetics. The conditions of different desulfurizers (Mg, CaC2, and lime) penetrating into hot metal, the rising up velocity in iron melt, residence time, and dissolving time are theoretically calculated and analyzed. The results are helpful to select the desulphurization process and equipment and to improve the desulphurization effect.

  7. Oxidative desulfurization of tire pyrolysis oil

    Directory of Open Access Journals (Sweden)

    Ahmad Shahzad

    2016-01-01

    Full Text Available This paper presents a low cost method for the purification of oils obtained from the pyrolysis of used tires. Oxidative desulfurization is a promising route for purification of tire pyrolysis oils as hydro-desulfurization may not be affordable for small scale industries. Different additives and acids have been employed for the enhancement of properties of pyrolytic oils. The experimental conditions were kept identical throughout, i.e. atmospheric pressure and 50°C temperature for comparison of performance of various additives. The use of hydrogen peroxide-acetic acid mixture (10 wt.% was found more economical and effective in desulfurization and improvement of fuel properties of sample oils. The contribution of sulfuric acid in desulfurization and decreasing viscosity was also satisfactory but due to high price of concentrated sulfuric acid its use may not be economical. Calcium oxide and Fuller’s earth was not found to be effective in desulfurization. Results indicate that oxidative desulfurization could render tire pyrolysis oils suitable for blending as heating fuel.

  8. CONVERSION EXTRACTION DESULFURIZATION (CED) PHASE III

    Energy Technology Data Exchange (ETDEWEB)

    James Boltz

    2005-03-01

    This project was undertaken to refine the Conversion Extraction Desulfurization (CED) technology to efficiently and economically remove sulfur from diesel fuel to levels below 15-ppm. CED is considered a generic term covering all desulfurization processes that involve oxidation and extraction. The CED process first extracts a fraction of the sulfur from the diesel, then selectively oxidizes the remaining sulfur compounds, and finally extracts these oxidized materials. The Department of Energy (DOE) awarded Petro Star Inc. a contract to fund Phase III of the CED process development. Phase III consisted of testing a continuous-flow process, optimization of the process steps, design of a pilot plant, and completion of a market study for licensing the process. Petro Star and the Degussa Corporation in coordination with Koch Modular Process Systems (KMPS) tested six key process steps in a 7.6-centimeter (cm) (3.0-inch) inside diameter (ID) column at gas oil feed rates of 7.8 to 93.3 liters per hour (l/h) (2.1 to 24.6 gallons per hour). The team verified the technical feasibility with respect to hydraulics for each unit operation tested and successfully demonstrated pre-extraction and solvent recovery distillation. Test operations conducted at KMPS demonstrated that the oxidation reaction converted a maximum of 97% of the thiophenes. The CED Process Development Team demonstrated that CED technology is capable of reducing the sulfur content of light atmospheric gas oil from 5,000-ppm to less than 15-ppm within the laboratory scale. In continuous flow trials, the CED process consistently produced fuel with approximately 20-ppm of sulfur. The process economics study calculated an estimated process cost of $5.70 per product barrel. The Kline Company performed a marketing study to evaluate the possibility of licensing the CED technology. Kline concluded that only 13 refineries harbored opportunity for the CED process. The Kline study and the research team's discussions

  9. Smelting Oxidation Desulfurization of Copper Slags

    Institute of Scientific and Technical Information of China (English)

    LI Lei; HU Jian-hang; WANG Hua

    2012-01-01

    According to the mechanism of sulfur removal easily through oxidation, the process of smelting oxidation desulfurization of copper slags is studied, which supplies a new thinking for obtaining the molten iron of lower sulfur content by smelting reduction of copper slags. Special attention is given to the effects of the holding temperature, the holding time and CaF2, CaO addition amounts on the desulfurization rate of copper slags. The results indicate that the rate of copper slags smelting oxidation desulfurization depends on the matte mass transfer rate through the slag phase. After the oxidation treatment, sulfur of copper slags can be removed as SO2 efficiently. Amount of Ca2+ of copper slags affects the desulfurization rate greatly, and the slag desulfurization rate is reduced by adding a certain amount of CaF2 and CaO. Compared with CaF2, CaO is negative to slags sulfur removal with equal Ca2+ addition. Under the air flow of 0.3 U/min, the sulfur content of copper slags can be reduced to 0. 004 67% in the condition of the holding time of 3 min and the holding temperature of 1 500 ℃. The sulfur content of molten iron is reduced to 0. 000 8 % in the smelting reduction of treated slags, and the problem of high sulfur content of molten iron obtained by smelting reduction with copper slag has been successively solved.

  10. Desulfurization kinetics of coal combustion gases

    Directory of Open Access Journals (Sweden)

    S.R. Bragança

    2003-06-01

    Full Text Available Desulfurization of the gases from coal combustion was studied, using limestone (marble as the sorbent in a fluidized-bed reactor. The kinetic parameter, k, was measured by analyzing the reduction in SO2 emissions in relation to time when a batch of limestone was introduced directly into the combustor chamber. The influence of sorbent composition and particle size was also studied. The CaO content in the limestone was more important than the MgO content. Sorbent particle size showed a strong influence on the reaction time and efficiency of desulfurization. The results of this work prove that marble type is very important in the choice of sorbent for a desulfurization process. A magnesian limestone showed a better performance than a dolomite. Therefore, the magnesian limestone is more efficient for a shorter particle residence time, which is characteristic of the bubbling fluidized bed.

  11. Desulfurization kinetics of coal combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Braganca, S.R.; Jablonski, A.; Castellan, J.L. [Universidade Federal Rio Grande do Sul, Porto Alegre (Brazil)

    2003-06-01

    Desulfurization of the gases from coal combustion was studied, using limestone (marble) as the sorbent in a fluidized-bed reactor. The kinetic parameter, k, was measured by analyzing the reduction in SO{sub 2} emissions in relation to time when a batch of limestone was introduced directly into the combustor chamber. The influence of sorbent composition and particle size was also studied. The CaO content in the limestone was more important than the MgO content. Sorbent particle size showed a strong influence on the reaction time and efficiency of desulfurization. The results of this work prove that marble type is very important in the choice of sorbent for a desulfurization process. A magnesian limestone showed a better performance than a dolomite. Therefore, the magnesian limestone is more efficient for a shorter particle residence time, which is characteristic of the bubbling fluidized bed.

  12. A robust methodology for kinetic model parameter estimation for biocatalytic reactions

    DEFF Research Database (Denmark)

    Al-Haque, Naweed; Andrade Santacoloma, Paloma de Gracia; Lima Afonso Neto, Watson;

    2012-01-01

    Effective estimation of parameters in biocatalytic reaction kinetic expressions are very important when building process models to enable evaluation of process technology options and alternative biocatalysts. The kinetic models used to describe enzyme-catalyzed reactions generally include several...

  13. Microbial desulfurization of coal by thermophilic archaea

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Gunnel

    1994-04-01

    The investigation was focused on the removal of pyrite as well as organic sulfur. One major objective was to identify and outline difficulties associated with microbial desulfurization of coal. The work has particularly been concentrated on the desulfurization environment of the microorganisms, the reprecipitation of dissolved sulfate as jarosite, the effect of microbial treatment on the properties of the coal and the comparison of different thermophilic archaea suggested for coal desulfurization. The investigated microorganisms were the thermophilic archaea Acidianus brierleyi, Sulfolobus acidocaldarius and Sulfolobus solfataricus and for comparison the mesophilic bacterium Thiobacillus ferrooxidans. The major part of the work has been done with Acidianus brierleyi. Compounds leached from coal may seriously affect the growth of microorganisms suggested for coal desulfurization. Degradation of pyritic sulfur with the used strains of S. solfataricus and S. acidocaldarius, was observed to be impossible. However, both the thermophilic archaeon Acidianus brierleyi and the mesophilic bacterium Thiobacillus ferrooxidans, were capable of degrading pure pyrite as well as pyrite from low-sulfur coals. Up to 85% removal of pyritic sulfur was obtained for coals when staring with a pyrite sulfur content of 0.5-0.7%. From kinetic studies, it was shown that A. brierleyi and T. ferrooxidans remove sulfur from coal at roughly the same rate, at least for the coals investigated in this study. However, the rate for microbial oxidation of pure pyrite was seen to be much higher for A. brierleyi than for T. ferroxidans. 62 refs, 16 figs, 5 tabs

  14. Lipase-immobilized biocatalytic membranes for biodiesel production.

    Science.gov (United States)

    Kuo, Chia-Hung; Peng, Li-Ting; Kan, Shu-Chen; Liu, Yung-Chuan; Shieh, Chwen-Jen

    2013-10-01

    Microbial lipase from Candida rugosa (Amano AY-30) has good transesterification activity and can be used for biodiesel production. In this study, polyvinylidene fluoride (PVDF) membrane was grafted with 1,4-diaminobutane and activated by glutaraldehyde for C. rugosa lipase immobilization. After immobilization, the biocatalytic membrane was used for producing biodiesel from soybean oil and methanol via transesterification. Response Surface Methodology (RSM) in combination with a 5-level-5-factor central composite rotatable design (CCRD) was employed to evaluate the effects of reaction time, reaction temperature, enzyme amount, substrate molar ratio and water content on the yield of soybean oil methyl ester. By ridge max analysis, the predicted and experimental yields under the optimum synthesis conditions were 97% and 95%, respectively. The lipase-immobilized PVDF membrane showed good reuse ability for biodiesel production, enabling operation for at least 165 h during five reuses of the batch, without significant loss of activity.

  15. Microfluidic multi-input reactor for biocatalytic synthesis using transketolase☆

    Science.gov (United States)

    Lawrence, James; O'Sullivan, Brian; Lye, Gary J.; Wohlgemuth, Roland; Szita, Nicolas

    2013-01-01

    Biocatalytic synthesis in continuous-flow microreactors is of increasing interest for the production of specialty chemicals. However, the yield of production achievable in these reactors can be limited by the adverse effects of high substrate concentration on the biocatalyst, including inhibition and denaturation. Fed-batch reactors have been developed in order to overcome this problem, but no continuous-flow solution exists. We present the design of a novel multi-input microfluidic reactor, capable of substrate feeding at multiple points, as a first step towards overcoming these problems in a continuous-flow setting. Using the transketolase-(TK) catalysed reaction of lithium hydroxypyruvate (HPA) and glycolaldehyde (GA) to l-erythrulose (ERY), we demonstrate the transposition of a fed-batch substrate feeding strategy to our microfluidic reactor. We obtained a 4.5-fold increase in output concentration and a 5-fold increase in throughput compared with a single input reactor. PMID:24187515

  16. [Performance of desulfurizing absorbent of roasted navajoite].

    Science.gov (United States)

    Chen, Fang; Yang, Chun-ping; Gan, Hai-ming; Wu, Ting; Chen, Hai-lin; Chen, Hong; Xu, Ke-hui; Xie, Geng-xin

    2010-04-01

    An innovative flue gas desulfurization (FGD) coupling process was proposed in this study to overcome the problems in wet-type limestone/lime processes which include fouling, clogging, and difficulty of selling the by-products and the problems in traditional process for vanadium extraction from navajoite ore such as excessive consumption of sulfuric acid and emissions of pollutants. The performance of a jet bubbling reactor (JBR) at pilot-scale was evaluated using navajoite ore produced in the process of extracting vanadium pentoxide as desulfurization absorbent. Results showed that navajoite ore slurry achieved better desulfurization performance than limestone slurry. When the inlet flue gas pressure drop was 3.0 kPa, the gas flow was about 2350 m3 x h(-1) and the pH of the navajoite ore slurry was higher than 4.5, the desulfurization efficiency was stable about 90%. The SO2 removal efficiency appeared to increase along with the increasing of absorbent cycle-index. The efficiency of the second circulation was improved 3.5% compared to the first circulation. After an operating duration of 40 minutes, the leaching rate of vanadium pentoxide was about 20%, and reached 60% when the by-products were leached with 5% dilute sulfuric acid for 10 hours. The by-product from this process not only could be used to produce vanadium pentoxide which is a valuable industrial product, but also could significantly overcome the pollution problem existing in the traditional refining process of vanadium pentoxide when navajoite ore is used as the feed material. This FGD process using roasted navajoite slurry as absorbent is environmental sound and cost-effective, and shows the potential for application in the field of flue gas desulfurization as well as hydrometallurgy.

  17. Study on Kinetics for Desulfurization of Model Diesel

    Institute of Scientific and Technical Information of China (English)

    Qian Jianhua; Zhou Yuenan; Liu Lin; Wang Yue; Xing Jinjuan; Lü Hong

    2009-01-01

    In this study, by means of the experiments for desulfurization of model diesel through oxi-dative extraction, the changes associated with the rate of desulfurization of diesel and the mechanism for oxidation of sulfides in diesel were explored. Through studying the mechanism for oxidation of sulfides and the principle of solvent extraction, the kinetic equation of desulfurization via oxidative extraction were determined. By means of the evaluation of model parameters and curve fitting, the reaction order between organic sulfide and sulfone, the intrinsic oxidation rate constant of organic sulfide and sulfone, and the equilibrium constant between suifone in model diesel and extractive sol-vent were determined. The experimental values of the desulfurization rate and the theoretical values of the corresponding model equation had closely demonstrated that the desulfurization reaction rate had high accuracy. And the reaction kinetics could provide an important basis for diesel desulfurization process in the future.

  18. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  19. An advanced coal gasification desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Rehmat, A. (Institute of Gas Technology, Chicago, IL (USA)); Leppin, D. (Gas Research Inst., Chicago, IL (USA)); Banerjee, D.D. (Center for Research on Sulfur in Coal, Carterville, IL (USA))

    1990-01-01

    The Institute of Gas Technology (IGT) is in the process of developing an advanced coal gasification desulfurization process in which a calcium-based sorbent such as limestone or dolomite is injected into the fluidized-bed gasifier with coal to achieve in-bed desulfurization of coal as it is converted into clean fuel gas. The reactions involving calcium-based sorbents takes place in two steps. In the first step, the desulfurization reaction takes place between hydrogen sulfide and calcium oxide in the reducing zone of the reactor to produce calcium sulfide. The latter subsequently reacts with oxygen in the oxidizing zone of the reactor to produce calcium sulfate which can be safely disposed of along with the coal ash. This process will reduce the capital requirement for coal gasification plants and provide cost effective alternatives to scrubbers for industrial and utility use of high-sulfur coal. This paper addresses the basic research being conducted at IGT to confirm the viability of this process. 9 refs., 3 figs., 1 tab.

  20. {sup 29}Si-NMR study of the absorbent for flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Hideshi; Kanuka, Nariyasu; Kanai, Ryu-ichi [Hokkaido Univ., Sapporo (Japan)

    1995-12-31

    The flue gas from a coal fired boiler contains a high concentration of SO{sub 2} which should be removed before emitted from a chimney for protection of environment from pollution. A wet desulfurization system is commonly adopted for flue gas desulfurization (FGD), and exhibits a high utilization efficiency of Ca component in the absorbent, but needs a large amount of water. As dry FDD systems, a duct injection and a slurry spraying are adopted. The efficiency, however, is not so high as compared to a wet FGD system. Recently, the SO{sub 2} absorbent which exhibits a high utilization efficiency of Ca component in a dry FGD process was prepared from a coal fly-ash, Ca(OH){sub 2}, and CaSO{sub 4} by hydrothermal reaction. In this project, we studied the structural changes of the absorbent during the hydrothermal reation and sulfur dioxide absorption by silicon 29-MASNMR.

  1. Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Hensman, Carl, E., P.h.D; Baker, Trevor

    2008-06-16

    Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

  2. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  3. Biocatalytic nerve agent detoxification in fire fighting foams.

    Science.gov (United States)

    LeJeune, K E; Russell, A J

    1999-03-20

    Current events across the globe necessitate rapid technological advances to combat the epidemic of nerve agent chemical weapons. Biocatalysis has emerged as a viable tool in the detoxification of organophosphorus neurotoxins, such as the chemical weapons VX and sarin. Efficient detoxification of contaminated equipment, machinery, and soils are of principal concern. This study describes the incorporation of a biocatalyst (organophosphorus hydrolase, E.C. 3.1.8.1) into conventional formulations of fire fighting foam. The capacity of fire fighting foams to decrease volatilization of contained contaminants, increase surface wettability, and control the rate of enzyme delivery to large areas makes them useful vehicles for enzyme application at surfaces. The performance of enzyme containing foams has been shown to be not only reproducible but also predictable. An empirical model provides reasonable estimations for the amounts of achievable surface decontamination as a function of the important parameters of the system. Theoretical modeling illustrates that the enzyme-containing foam is capable of extracting agent from the surface and is catalytically active at the foam-surface interface and throughout the foam itself. Biocatalytic foam has proven to be an effective, "environmentally friendly" means of surface and soil decontamination.

  4. AN ADVANCED COAL DESULFURIZATION PROCESS——SELECTIVE FLOCCULATION

    Institute of Scientific and Technical Information of China (English)

    蔡璋; 刘红缨; 吴军; 陈彩茶

    1997-01-01

    Selective flocculation is an idea separation method to separate ultrafine pyrite from coal. A number of selective flocculation separation tests under different conditions have been done and the results are very encouraging. The results also show that desulfurization and deashing can be finished simultaneously in selective flocculation process. It is an advanced coal desulfurization process.

  5. Microstructure and Properties of Desulfurized Crumb Rubber Modified Bitumen

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The microstructures of general crumb rubber(CR), dynamic desulfurized crumb rubber(DDCR) and high speed agitation desulfurized crumb rubber(HSADCR) modified bitumens were investigated by a fluorescence microscope, and the physical properties of these three modified bitumens were studied.The results show that the dynamic desulfuration can improve the swelling capacity of crumb rubber in bitumen by destroying the sulfuratized bond of the crumb rubber,but the reunion of rubber particles during dynamic desulfuration also makes the swelling and the DDCR in bitumen difficult, so properties of the DDCR modified bitumen are not superior to the general crumb rubber modified bitumen.However,high speed agitation desulfuration can not only improve the swelling capacity of crumb rubber in bitumen,but also avoid the reunion of rubber particles,so some properties of bitumen can be improved by the modification of HSADCR.

  6. Desulfurization of coal: enhanced selectivity using phase transfer catalysts. Quarterly report, March 1 - May 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, S.R.; Hippo, E.J. [Southern Illinois Univ., Carbondale, IL (United States)

    1996-12-31

    Due to environmental problems related to the combustion of high sulfur Illinois coal, there continues to be interest in the development in viable pre-combustion desulfurization processes. Recent studies by the authors have obtained very good sulfur removals but the reagents that are used are too expensive. Use of cheaper reagents leads to a loss of desired coal properties. This study investigated the application phase transfer catalysts to the selective oxidation of sulfur in coal using air and oxygen as oxidants. The phase transfer catalyst is expected to function as a selectivity moderator by permitting the use of milder reaction conditions that otherwise necessary. This would enhance the sulfur selectivity and help retain the heating value of the coal. The use of certain coal combustion wastes for desulfurization, and the application of cerium (IV) catalyzed air oxidation for selective sulfur oxidation are also being studied. If successful, this project could lead to the rapid development of a commercially viable desulfurization process. This would significantly improve the marketability of Illinois coal.

  7. Selenium speciation in flue desulfurization residues.

    Science.gov (United States)

    Zhong, Liping; Cao, Yan; Li, Wenying; Xie, Kechang; Pan, Wei-Ping

    2011-01-01

    Flue gas from coal combustion contains significant amounts of volatile selenium (Se). The capture of Se in the flue gas desulfurization (FGD) scrubber unit has resulted in a generation of metal-laden residues. It is important to determine Se speciation to understand the environmental impact of its disposal. A simple method has been developed for selective inorganic Se(IV), Se(VI) and organic Se determination in the liquid-phase FGD residues by hydride generation atomic fluorescence spectrometry (AFS). It has been determined that Se(IV), Se(VI) and organic Se can be accurately determined with detection limits (DL) of 0.05, 0.06 and 0.06 microg/L, respectively. The accuracy of the proposed method was evaluated by analyzing the certified reference material, NIST CRM 1632c, and also by analyzing spiked tap-water samples. Analysis indicates that the concentration of Se is high in FGD liquid residues and primarily exists in a reduced state as selenite (Se(IV)). The toxicity of Se(IV) is the strongest of all Se species. Flue gas desulfurization residues pose a serious environmental risk.

  8. Selenium speciation in flue desulfurization residues

    Institute of Scientific and Technical Information of China (English)

    Liping Zhong; Yan Cao; Wenying Li; Kechang Xie; Wei-Ping Pan

    2011-01-01

    Flue gas from coal combustion contains significant amounts of volatile selenium (Se).The capture of Se in the flue gas desulfurization (FGD) scrubber unit has resulted in a generation of metal-laden residues.It is important to determine Se speciation to understand the environmental impact of its disposal.A simple method has been developed for selective inorganic Se(Ⅳ), Se(Ⅵ) and organic Se determination in the liquid-phase FGD residues by hydride generation atomic fluorescence spectrometry (AFS).It has been determined that Se(Ⅳ), Se(Ⅵ) and organic Se can be accurately determined with detection limits (DL) of 0.05, 0.06 and 0.06 μg/L, respectively.The accuracy of the proposed method was evaluated by analyzing the certified reference material, NIST CRM 1632c, and also by analyzing spiked tap-water samples.Analysis indicates that the concentration of Se is nigh in FGD liquid residues and primarily exists in a reduced state as selenite (Se(Ⅳ)).The toxicity of Se(Ⅳ) is the strongest of all Se species.Flue gas desulfurization residues pose a serious environmental risk.

  9. NID dry desulfurization system -- An update

    Energy Technology Data Exchange (ETDEWEB)

    Ahman, S.; Bengtsson, S.

    1998-07-01

    The development of ABB's low cost flue gas desulfurization (FGD) system has been reported in various papers during 1997. The system combines low cost and simple operation with very good performance and is targeted especially for the emerging markets in Asia and East Europe. This method is capable of achieving 90+% SO{sub 2} removal, irrespective of sulphur content in the fuel. The system is further easy to retrofit at existing sites; it has a minimum space requirement. An important feature of the dry FGD technology, sometimes not highlighted enough, is the fact that particulate collection of fly ash is facilitated by the FGD system at no extra capital charge. The flue gas temperature after a DFGD system also often allows the flue gas to be passed on to an existing stack without reheat. ``NID'' is an acronym for ``Novel Integrated Desulfurization'', indicative of the innovative nature of this FGD technology enabled by the integration of several subfunctionalities into one unit. The first two commercial plants were installed by the Polish power company Elektrownia Laziska. These full scale units were commissioned during 1996. A third unit at a diesel power station in Finland is at the time of writing in the commissioning stage.

  10. A NOVEL APPROACH TO CATALYTIC DESULFURIZATION OF COAL

    Energy Technology Data Exchange (ETDEWEB)

    John G. Verkade

    1998-08-31

    The nonionic superbase P(MeNCH{sub 2}CH{sub 2}){sub 3}N (A) efficiently desulfurizes trisulfides to disulfides and monosulfides, disulfides to monosulfides, and propylene sulfide to propene. S=P(MeNCH{sub 2}CH{sub 2}){sub 3}N (B) was formed as the sulfur acceptor. P(NMe{sub 2}){sub 3} was a much poorer desulfurizing agent than A under the same reaction conditions. Thiocyanates and triphenylphosphine sulfide were also desulfurized with A, but N-(phenylthio)phthalimide formed [A-SP]{sup +} phthalimide in quantitative yield.

  11. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    NARCIS (Netherlands)

    Tamayo Ramos, J.A.; Berkel, van W.J.H.; Graaff, de L.H.

    2012-01-01

    BACKGROUND: Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. RESULTS: The laccase-li

  12. Biocatalytic Resolution of para-Nitrostyrene Oxide by Resting Cells of Different Aspergillus niger Strains

    Institute of Scientific and Technical Information of China (English)

    金浩; 李祖义; 王清

    2001-01-01

    Biocatalytic resolution of racemic para-nitrostyrene oxide was accomplished by employing the epoxide hydrolases from the whole cells of several Aspergillus niger (A. niger) strains. In the cases investigated, excellent selectivity was achieved with such strains as A, niger 5450, A. niger 5320.

  13. Thermostabilization of desulfurization enzymes from Rhodococcos sp. IGTS8. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2000-12-15

    The objective of this project was to develop thermophilic cultures capable of expressing the desulfurization (dsz) operon of Rhodococcus sp. IGTS8. The approaches taken in this project included the development of plasmid and integrative expression vectors that function well in Thermus thermophilus, the cloning of Rhodococcus dsz genes in Thermus expression vectors, and the isolation of bacterial cultures that express the dsz operon at thermophilic temperatures. This project has resulted in the development of plasmid and integrative expression vectors for use in T. thermophilus. The dsz genes have been expressed at moderately thermophilic temperatures (52 C) in Mycobacterium phlei and at temperatures as high as 72 C in T. thermophilus. The tools and methods developed in this project will be generally useful for the expression of heterologous genes in Thermus. Key developments in the project have been the isolation of a Mycobacterium phlei culture capable of expressing the desulfurization operon at 52 C, development of plasmid and integrative expression vectors for Thermus thermophilus, and the development of a host-vector system based on the malate dehydrogenase gene that allows plasmids to be stably maintained in T. thermophilus and provides a convenient reporter gene for the accurate quantification of gene expression. Publications have been prepared regarding each of these topics; these preprints are included.

  14. Catalytic Desulfurization of Benzothiophene Using Keggin Type Polyoxometalates as Catalyst

    Directory of Open Access Journals (Sweden)

    Aldes Lesbani

    2015-01-01

    Full Text Available Performance of catalytic desulfurization of benzothiophen (BT was studied using polyoxometalates as catalyst. Polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40], have different heteroatom in Keggin structure and catalytic activities. Polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40] have high crystallinity with homogeneous distribution particles. Desulfurization of BT using polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40] resulted % conversion up to 99% for 3 h reaction time and at temperature 40 oC. Application of polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40] for crude oil desulfurization showed % conversion of 4-88%. The main functional groups of polyoxometalates still retained after catalytic desulfurization indicated the stability of polyoxometalate compounds

  15. Research report of FY 1997 on the environmentally acceptable coal utilization system introduction support project. Demonstration project on simplified desulfurizers; 1997 nendo seika hokokusho. Kankyo chowagata sekitan riyo system donyu shien jigyo (kan`i datsuryu setsubi ni kakawaru jissho jigyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    To reduce SOx with coal utilization, a desulfurizer is introduced in Thailand as diffusion activities in the demonstration program. The purpose is to reduce the environmental pollutants. For this desulfurizer, lime mud mainly composed of lime stone is used as an absorber. SO2 in the flue gas is absorbed by the slurry of lime mud, to form calcium sulfite. The calcium sulfite blown in the bottom of recycling tank is oxidized by oxygen in the air, to form gypsum. The gypsum is recovered as a by-product. In this fiscal year, a feeder of lime stone, spray nozzles, and various analysis apparatuses were supplied. Supervisors for electric instrumentation/control were also dispatched as well as for main body construction, to carry out the instrumentation setting works, check of sequences, and adjustment of apparatuses. After the test operation, supervisors for the demonstration operation were dispatched up to March 1998, to conduct the cooperation works between Japan and Thailand sides. Thus, successful and successive demonstration operation was confirmed. 21 figs., 6 tabs.

  16. Fractal desulfurization kinetics of high-sulfur coal

    Institute of Scientific and Technical Information of China (English)

    Xu Longjun; Peng Tiefeng; Zhang Dingyue; Zhang Fukai

    2012-01-01

    The pore structure characteristics of high-sulfur coal from Wansheng in Chongqing have been studied by a nitrogen adsorption method (BET).The effects of grinding and pre-treating with nitric acid on the inorganic sulfur content of coal have been investigated.Organic sulfur in coal pretreated with nitric acid was desulfurized by using propylene-glycol-KOH (PG-KOH).Fractal kinetic properties of these two desulfurization procedures were investigated by using fractal geometric theory.The results show that both the specific surface area and pore volume increased with the decrease in particle diameter.The microspore surface of coal had fractal characteristics; the fractal dimension was 2.48.The sulfur content decreased with the decrease in particle diameter by grinding.After pretreatment with nitric acid,the desulfurization ratio (DFR) of inorganic sulfur increased to over 99% and the DFR of total sulfur to over 70%.The desulfurization procedure of inorganic sulfur had fractal kinetic characteristics; its reactive fractal dimension was 2.94.The organic sulfur desulfurization procedure by PG-KOH was also tallied with fractal kinetic properties; the reactive fractal dimension was 2.57.The effect of temperature on the desulfurization ratio of organic sulfur can be described with an Arrhenius empirical equation.The rate constant,pre-exponential factor and the activation energy of the reaction increased with the decrease in particle diameter.

  17. Experimental Study on Deep Desulfurizer in LF Process

    Institute of Scientific and Technical Information of China (English)

    WU Long; PEI Fen; CHEN Yut; LI Shi-qi

    2012-01-01

    CaO-Al2O3-SiO2-CaF2-MgO was selected as the slag system for desulfurization in LF process.The reaction between steel and slag during desulfurization has been simulated by using Factsage software to study the influence of component on the sulfur distribution ratio.In order to research the influence of CaO content,aluminum powder content and its granularity on desulfurization,laboratory experiments have been carried out in a 200 kg inductive furnace.Results showed that the optimal composition of deep desulfurizer is wCaO=64% and aluminium powder 10% with a granularity of 30 μm.Industrial trials showed that the main composition range of final slag in LF process is wCaO=53.0%-57.0%,wAl2O3=23.4%-25.1%,wSiO2=8.1%-10.0%,and wCaF2=3.2%-4.7%.The sulfur mass percent in steel is lower than 0.0008% with a desulfurization rate above 89%.According to the result of industrial production,this desulfurizer could meet the production requirement for ultra-low sulfur steel,of which sulfur mass percent is under 0.0015%

  18. Economic assessment of advanced flue gas desulfurization processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  19. Optimisation of Experimental Conditions for Ex-Bed Desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J. M.; Ruiz, E.; Otero, J.

    2010-12-22

    This report compiles the results of the work conducted by CIEMAT for Task 6.3 Sulfur and Nitrogen Compounds Abatement of the FLEXGAS project Near Zero Emission Advanced Fluidized Bed Gasification, which has been carried out with financial support from the Research Fund for Coal and Steel, RFCR-CT-2007-00005. The assignment of CIEMAT in Task 6.3 has dealt with the experimental study of ex-bed desulfurization at high temperature and high pressure. Based on a review of the state of the art, a zinc oxide sorbent was chosen as a promising candidate for bulk sulfur removal in highly reducing gases such as those from coal and waste oxygen gasification or for a polishing stage in low sulfur content gases, which is typically the case in biomass gasification gases. The work accomplished has included the study of the sulfidation and regeneration stages in order to determine successful operating conditions and the assessment of the long term performance of the sorbent over subsequent sulfidation and regeneration cycles. (Author) 36 refs.

  20. DEVELOPMENT OF ADVANCED HOT-GAS DESULFURIZATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    K. Jothimurugesan; Santosh K. Gangwal

    2000-12-01

    The techniques employed in this project have successfully demonstrated the feasibility of preparing sorbents that achieve greater than 99% H{sub 2}S removal at temperatures 480 C and that retain their activity over 50 cycles. Fundamental understanding of phenomena leading to chemical deactivation and high regeneration light-off temperature has enabled us to successfully prepare and scale up a FHR-32 sorbent that showed no loss in reactivity and capacity over 50 cycles. This sorbent removed H{sub 2}S below 80 ppmv and lighted-off nicely at 480 C during regeneration. Overall the test is a success with potential for an optimized FHR-32 to be a candidate for Sierra-Pacific. An advanced attrition resistant hot-gas desulfurization sorbent that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur directly has been developed. Attrition resistant Zn-Fe sorbent (AHI-2) formulations have been prepared that can remove H{sub 2}S to below 20 ppmv from coal gas and can be regenerated using SO{sub 2} to produce elemental sulfur.

  1. Developing clean fuels: Novel techniques for desulfurization

    Science.gov (United States)

    Nehlsen, James P.

    The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this

  2. PRODUCTION OF CONSTRUCTION AGGREGATES FROM FLUE GAS DESULFURIZATION SLUDGE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Through a cooperative agreement with DOE, the Research and Development Department of CONSOL Inc. (CONSOL R and D) is teaming with SynAggs, Inc. and Duquesne Light to design, construct, and operate a 500 lb/h continuous pilot plant to produce road construction aggregate from a mixture of wet flue gas desulfurization (FGD) sludge, fly ash, and other components. The proposed project is divided into six tasks: (1) Project Management; (2) Mix Design Evaluation; (3) Process Design; (4) Construction; (5) Start-Up and Operation; and (6) Reporting. In this quarter, Tasks 1 and 2 were completed. A project management plan (Task 1) was issued to DOE on October 22, 1998 . The mix design evaluation (Task 2) with Duquesne Light Elrama Station FGD sludge and Allegheny Power Hatfields Ferry Station fly ash was completed. Eight semi-continuous bench-scale tests were conducted to examine the effects of mix formulation on aggregate properties. A suitable mix formulation was identified to produce aggregates that meet specifications of the American Association of State High Transport Officials (AASHTO) as Class A aggregate for use in highway construction. The mix formulation was used in designing the flow sheet of the pilot plant. The process design (Task 3) is approximately 80% completed. Equipment was evaluated to comply with design requirements. The design for the curing vessel was completed by an outside engineering firm. All major equipment items for the pilot plant, except the curing vessel, were ordered. Pilot plant construction (Task 4) was begun in October. The Hazardous Substance Plan was issued to DOE. The Allegheny County (PA) Heat Department determined that an air emission permit is not required for operation of the pilot plant.

  3. Application of environmental and economic metrics to guide the development of biocatalytic processes

    DEFF Research Database (Denmark)

    Lima Ramos, Joana; Tufvesson, Pär; Woodley, John

    2014-01-01

    The increasing industrial interest in biocatalytic processes is predominantly driven by the need for selective chemistry, with high reaction yield (Y-reaction) and few side reactions, as well as the need for optically pure chiral molecules (in particularly in the pharmaceutical industry). Interes......The increasing industrial interest in biocatalytic processes is predominantly driven by the need for selective chemistry, with high reaction yield (Y-reaction) and few side reactions, as well as the need for optically pure chiral molecules (in particularly in the pharmaceutical industry...... processes are not yet fully optimized. Hence, in this paper we propose the use of a range of tools which can be used to guide process development, research tasks and support decision-making. Three sets of metrics are identified, each for use at different stages of process development (route selection, early...

  4. Heterocycles 38. Biocatalytic Synthesis of New Heterocyclic Mannich Bases and Derivatives

    Directory of Open Access Journals (Sweden)

    Denisa Leonte

    2015-07-01

    Full Text Available This paper describes the biocatalytic synthesis of new Mannich bases containing various heterocyclic rings (thiazole, furane, thiophene, pyridine by applying the lipase catalyzed trimolecular condensation of the corresponding heterocyclic aldehydes with acetone and primary aromatic amines, in mild and eco-friendly reaction conditions. The obtained Mannich bases were acylated to their corresponding N-acetyl derivatives. All compounds were characterized by 1H-NMR, 13C-NMR and MS spectrometry.

  5. Biocatalytic anode for glucose oxidation utilizing carbon nanotubes for direct electron transfer with glucose oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Vaze, Abhay; Hussain, Nighat; Tang, Chi [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Leech, Donal [School of Chemistry, National University of Ireland, Galway (Ireland); Rusling, James [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032 (United States); School of Chemistry, National University of Ireland, Galway (Ireland)

    2009-10-15

    Covalently linked layers of glucose oxidase, single-wall carbon nanotubes and poly-L-lysine on pyrolytic graphite resulted in a stable biofuel cell anode featuring direct electron transfer from the enzyme. Catalytic response observed upon addition of glucose was due to electrochemical oxidation of FADH{sub 2} under aerobic conditions. The electrode potential depended on glucose concentration. This system has essential attributes of an anode in a mediator-free biocatalytic fuel cell. (author)

  6. ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    G. Blythe; B. Marsh; S. Miller; C. Richardson; M. Richardson

    2001-06-01

    The U.S. Department of Energy and EPRI have co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems and to future FGD installations. Field tests have been conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit has been used to test the activity of four different catalyst materials for a period of up to six months at each of three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998 and at the second test site, which fires a Powder River Basin subbituminous coal in the fall of 1999. Testing at the third site, which fires a medium- to high-sulfur bituminous coal, began in June 2000 and was completed at the end of January 2001. This Topical Reports includes results from Site 3; results from Sites 1 and 2 were reported previously. At Site 3, catalysts were tested in two forms, including powders dispersed in sand bed reactors and in a commercially available form as a coated honeycomb structure. Field testing has been supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results related to the Site 3 field effort are also included and discussed in this Topical Report.

  7. Adsorptive desulfurization over hierarchical beta zeolite by alkaline treatment

    Institute of Scientific and Technical Information of China (English)

    Fuping Tian; Xiaojian Yang; Yanchun Shi; Cuiying Jia; Yongying Chen

    2012-01-01

    Hierarchical beta zeolites with SiO2/Al2O3 molar ratios of 16 to 25 were obtained by alkaline treatment in NaOH solution.The effects of treatment temperature on crystallinity,textural properties and chemical composites were studied by XRD,N2 sorption,FT-IR and XRF techniques.The desulfurization performance of parent and alkaline-treated beta zeolites was investigated by static absorption in four model fuels,containing four sulfur compounds of different molecular sizes like thiophene (TP),3-methylthiophene (3-MT),benzothiophene (BT) and dibenzothiophene (DBT),respectively.The crystallinity was observed to be successfully maintained when the treatment temperature was below 50℃.Mesoporosity of beta zeolite was evidently developed with alkaline treatment.The formation of mesopore remarkably improved the desulfurization performance for TP,3-MT,BT and DBT,especially for DBT with larger molecular diameter.Though the addition of toluene in the model fuels resulted in a significant drop of the desulfurization performance of mesoporous beta zeolite,the introduction of cerium ions to some extent mitigated the effect of toluene,which means that both the adsorbents porous structure and the adsorption mode are responsible for the desulfurization performance.The adsorbent of cerium ion-exchanged mesoporous beta showed about 80% recovery of desulfurization after the first regeneration.

  8. Durable metal oxide-based sorbents for coal gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Wangerow, J.R.; Zarnegar, M.K. [Inst. of Gas Technology, Des Plaines, IL (United States); Cicero, D.C. [Dept. of Energy, Morgantown, WV (United States). Federal Energy Technology Center

    1998-12-31

    Development of high temperature desulfurization regenerable sorbents for the Integrated Gasification Combined Cycle (IGCC) process has been pursued over the last two decades, primarily using various combinations of transition metal oxides. The primary focus has been directed toward applications above 550 C, restricting the choice of metal oxides to those that possess favorable thermodynamic equilibria. These efforts led to the emergence of zinc-based sorbents, such as zinc titanate, as the leading candidates. Recent studies have indicated that desulfurization system components become prohibitively expensive with increasing operating temperature and that the overall process efficiency gains of conducting desulfurization above 550 C may not be sufficient to justify operation at such high temperatures. The optimum desulfurization temperature appears to be in the range of 350 to 550 C, where technical viability and process efficiency result in lower overall process cost. In addition, because of the more favorable thermodynamic equilibria in the lower temperature range, a large number of metal oxides can be considered for coal gas desulfurization, increasing the likelihood of developing suitable sorbents. This paper reports on the results obtained in an on-going study at the Institute of Gas Technology (IGT), for the development of durable mixed-metal oxide sorbents for fluidized-bed desulfurization of coal-derived fuel gases in the temperature range of 350 to 550 C. The sorbent formulations prepared, their sulfidation performance and regenerability, and the physical and chemical properties of a select group of sorbents are presented and discussed. The results from multi-cycle evaluation tests of a few sorbents in a bench-scale high-pressure high-temperature fluidized-bed reactor are also presented.

  9. Copper-based sorbents for hot coal gas desulfurization systems

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Zarnegar, M.K. [Inst. of Gas Technology, Des Plaines, IL (United States)] [and others

    1997-07-01

    High-temperature coal gas desulfurization has been recognized as essential in the development of emerging power generation technologies such as the Integrated Gasification Combined Cycle (IGCC), aiming to improve both the efficiency and environmental performance of power generation from coal. Hot gas desulfurization may be accomplished by using regenerable mixed metal oxides sorbents which can reduce the H{sub 2}S content of the coal gas to a few ppmv over many sulfidation/regeneration cycles. The focus of much of the current research on hot gas desulfurization has been on the use of zinc-based sorbents. Although these sorbents have been the subject of extensive pilot-scale and process development work, zinc-based sorbents have been shown to suffer from sulfate formation and zinc volatilization, leading to sorbent degradation over multicycle use, increasing sorbent replacement costs and the overall cost of hot gas desulfurization processes. A novel copper-chromite sorbent has been developed at IGT for hot coal gas desulfurization under the sponsorship of the Illinois Clean Coal Institute (ICCI). Results obtained so far indicate that this sorbent, in granular form (i.e., CuCr-29), has a much higher attrition resistance compared to the commercial granular zinc titanate sorbent, as well as excellent desulfurization efficiency. Furthermore, unlike most zinc titanate sorbents, the reactivity of IGT`s CuCr-29 sorbent gradually and consistently improved during the 20 cycles tested. The sorbent preparation techniques developed at IGT have been applied to produce highly reactive and attrition resistant sorbent pellets for moving-bed applications.

  10. Desulfurization of coal by an electrochemical-reduction flotation technique

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; XU Wen-juan; ZHONG Shi-teng; ZONG Zhi-min

    2008-01-01

    The optimum conditions for sulfur removal from coal by electrochemical reduction flotation in an aqueous NaCI solution were determined from orthogonal experiments. The effect of electrolytic conditions on the desulfurization ratio was also studied.The electrochemical-reduction processed coal was examined by X-ray diffraction, Fourier transform infrared spectroscopy and wet chemical analysis. The results show that electrochemical reduction converts hydrophobic pyrite in Nantong coal into hydrophilic FeS and S2 and leads to an increase in the concentration of hydroxyl groups and aliphatic moieties and a corresponding decrease in carboxyl and carbonyl groups, which enhances the flotation desulfurization of the coal.

  11. Experimental Study of Stabilized Soil Utilizing Circulating Fluidized Bed Combustion Desulfurization Ash with Carbide Slag and Desulfurization Gypsum

    OpenAIRE

    2015-01-01

    This paper discusses the feasibility of preparing soil stabilizer which is circulating fluidized bed combustion ash-based, supplemented with carbide slag and desulfurization gypsum, composed entirely of complete industrial wastes. The results show that CFBC ash has better pozzolanic activity than fly ash. When stabilizer total content is 10% and the ratio of CFBC ash : carbide slag : desulfurization gypsum is 7.2 : 1.8 : 1, compressive strength of stabilized soil can reach the maximum of 2.12...

  12. Flue gas desulfurization by rotating beds

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, N.; Keyvani, M.; Coskundeniz, A.

    1992-01-01

    The operating and mass transfer characteristics of rotating foam metal beds were studied to determine the potential for flue gas desulfurization. This is a final technical report on the work supported by DOE [number sign]FG22-87-PC79924. The report is divided into two sections, Part 1 deals primarily with the operating characteristics of rotating beds, and Part 2 covers the mass transfer characteristics of S0[sub 2] absorption in water-lime slurries. Rotating foam metal beds are in essence packed towers operated in high gravitational fields. The foam metal bed is in the form of a cylindrical donut, or torus, and is rotated to produced the high centrifugal forces. The liquid phase enters the bed at the inner surface of the torus and is pulled by the field through the bed. Gas flows countercurrent to the liquid. The bed packing can have a very large specific surface areas and not flood. Possible benefits include much smaller height of a transfer unit resulting in smaller equipment and supporting structures, reduced solvent inventory, faster response with improved process control, reduced pressure drop, and shorter startup and shut-down times. This work is concerned broadly with the operating characteristics of rotating beds, the objectives being to (1) determine the pressure drop through the rotating bed; (2) determine the power required to operate the beds, (3) investigate the residence time distribution of the liquid phase in the beds; and (4) determine the mass transfer coefficients of S0[sub 2] absorption. Three packings of differing specific surface areas were studied, with areas ranging from 656 to 2952 m[sub 2]/m[sub 3]. Liquid flow rates to 36 kg/s*m[sub 2], gas flow rate to 2.2 kg/s*m[sub 2], and gravitational fields to 300 g were covered in this study.

  13. Desulfurization of model aromatic molecules by Pedomicrobium sp.

    Energy Technology Data Exchange (ETDEWEB)

    Ercole, C.; Sulpizii, M.P.; Veglio, F.; Bartolini, S.; Toro, L.; Lepidi, A. [University of L`Alquila, L`Alquila (Italy). Dept. of Basic and Applied Biology

    1997-11-01

    A bacterial strain identified as Pedomicrobium sp., was isolated on the basis of the capability to remove volatile sulfur containing fragments including H{sub 2}S from carboxythiophene and the heterocyclic sulfurated molecules: benzothiolene, thianthrene, thiophene, thiophenecarboxyaldehyde and dibenzothiophene. The strain was selected for its desulfurizing capability on synthetic media in different culture conditions and atmosphere composition. 16 refs., 4 figs., 1 tab.

  14. Workshop on sulfur chemistry in flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, W.E. Jr.

    1980-05-01

    The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

  15. Optimizing the biocatalytic productivity of an engineered sialidase from Trypanosoma rangeli for 3′-sialyllactose production

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Luo, Jianquan; Nyffenegger, Christian

    2014-01-01

    -use methods were compared to optimize the biocatalytic productivity, i.e. 3′-sialyllactose formation per amount of Tr6 employed: (i) His-tag immobilization on magnetic Cu2+-iminodiacetic acid-functionalized nanoparticles (MNPs), (ii) membrane immobilization, (iii) calcium alginate encapsulation of cross......-linked Tr6, and (iv) Tr6 catalysis in a membrane reactor. Tr6 immobilized on MNPs gave a biocatalytic productivity of 84mg 3′-sialyllactose/mg Tr6 after seven consecutive reaction runs. Calcium-alginate and membrane immobilization were inefficient. Using free Tr6 in a 10kDa membrane reactor produced a 9...

  16. Biocatalytic Synthesis of Chiral Alcohols and Amino Acids for Development of Pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Ramesh N. Patel

    2013-10-01

    Full Text Available Chirality is a key factor in the safety and efficacy of many drug products and thus the production of single enantiomers of drug intermediates and drugs has become increasingly important in the pharmaceutical industry. There has been an increasing awareness of the enormous potential of microorganisms and enzymes derived there from for the transformation of synthetic chemicals with high chemo-, regio- and enatioselectivities. In this article, biocatalytic processes are described for the synthesis of chiral alcohols and unntural aminoacids for pharmaceuticals.

  17. Towards biochemical filters with a sigmoidal response to pH changes: buffered biocatalytic signal transduction.

    Science.gov (United States)

    Pita, Marcos; Privman, Vladimir; Arugula, Mary A; Melnikov, Dmitriy; Bocharova, Vera; Katz, Evgeny

    2011-03-14

    We realize a biochemical filtering process by introducing a buffer in a biocatalytic signal-transduction logic system based on the function of an enzyme, esterase. The input, ethyl butyrate, is converted into butyric acid--the output signal, which in turn is measured by the drop in the pH value. The developed approach offers a versatile "network element" for increasing the complexity of biochemical information processing systems. Evaluation of an optimal regime for quality filtering is accomplished in the framework of a kinetic rate-equation model.

  18. Towards biochemical filters with a sigmoidal response to pH changes: buffered biocatalytic signal transduction

    Science.gov (United States)

    Pita, Marcos; Privman, Vladimir; Arugula, Mary A.; Melnikov, Dmitriy; Bocharova, Vera; Katz, Evgeny

    We realize a biochemical filtering process by introducing a buffer in a biocatalytic signal-transduction logic system based on the function of an enzyme, esterase. The input, ethyl butyrate, is converted into butyric acid-the output signal, which in turn is measured by the drop in the pH value. The developed approach offers a versatile "network element" for increasing the complexity of biochemical information processing systems. Evaluation of an optimal regime for quality filtering is accomplished in the framework of a kinetic rate-equation model.

  19. Desulfurization ability of refining slag with medium basicity

    Institute of Scientific and Technical Information of China (English)

    Hui-xiang Yu; Xin-hua Wang; Mao Wang; Wan-jun Wang

    2014-01-01

    The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B=3.5−5.0;20wt%−25wt%Al2O3) was studied. Firstly, the component activities and sulfide capacity (CS) of the slag were calculated. Then slag−metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution (LS). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO−Al2O3−SiO2−MgO system with the basicity of about 3.5−5.0 and the Al2O3 content in the range of 20wt%−25wt%has high activity of CaO (aCaO), with no deterioration of CS compared with conventional desulfurization slag. The measured LS between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt%and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt%is 350 and 275, respectively. The new slag with a basicity of about 3.5−5.0 and an Al2O3 content of about 20wt%has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.

  20. Progress of the technique of coal microwave desulfurization

    Institute of Scientific and Technical Information of China (English)

    Xiuxiang Tao; Ning Xu; Maohua Xie; Longfei Tang

    2014-01-01

    With the advantages of its fast speed, effective and moderate controllable conditions, desulfurization of coal by microwave has become research focus in the field of clean coal technology. Coal is a homogeneous mixture which consists of various components with different dielectric properties, so their abilities to absorb microwaves are different, and the sulfur-containing components are better absorbers of microwave, which makes them can be selectively heated and reacted under microwave irradiation. There still remain controversies on the principle of microwave desulfurization at present, thermal effects or non-thermal effects. The point of thermal effects of microwave is mainly base on its characters of rapidly and selectly heating. While, in view of non-thermal effect, direct interactions between the microwave electromagnetic field and sulfur containing components are proposed. It is a fundamental problem to determine the dielectric properties of coal and the sulfur-containing components to reveal the interaction of microwave and sulfur-containing compounds. However, the test of dielectric property of coal is affected by many factors, which makes it difficult to measure dielectric properties accurately. In order to achieve better desulfurization effect, the researchers employ methods of adding chemical additives such as acid, alkali, oxidant, reductant, or changing the reaction atmosphere, or combining with other methods such as magnetic separation, ultrasonic and microorganism. Researchers in this field have also put forward several processes, and have obtained a number of patents. Obscurity of microwave desulfurization mechanism, uncertainties in qualitative and quantitative analysis of sulfur-containing functional groups in coal, and the lack of special microwave equipment have limited further development of microwave desulfurization technology.

  1. Development of high temperature coal gas desulfurization systems -- An overview

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Lau, F.S.; Wangergow, J.R.; Zarnegar, M.K. [Inst. of Gas Technology, Des Plaines, IL (United States)

    1997-12-31

    Integrated Gasification Combined-Cycle (IGCC) processes are among the leading contenders for generation of electricity from coal in the 21st century. Coal gas desulfurization to sufficiently low levels at temperatures above 350 C is now recognized as crucial to efficient and economical utilization of coal in advanced IGCC processes. The implementation of hot coal gas desulfurization heavily relies on the development of regenerable sorbent materials that can efficiently remove H{sub 2}S (from several thousand ppmv levels down to a few ppmv) over a very large number of sulfidation/regeneration cycles. Over the last two decades, development of high temperature desulfurization sorbents has been focused on using various combinations of transition metal oxides as regenerable sorbents. The selection of suitable metal oxides is generally based on a number of requirements imposed by the IGCC process, which include favorable thermodynamic equilibria during sulfidation and regeneration, relatively high sulfidation and regeneration reactivities, good mechanical strength and structural stability, and environmental friendliness, all at a reasonably low cost. The desulfurization reactor can have a fixed-bed, a moving-bed, a transport reactor, or a bubbling fluidized-bed reactor design. Depending on process conditions and the application intended, each of these reactor configurations offers advantages, but also has limitations. The parameters guiding the choice of a reactor system include reactivity of the sorbent, crush strength and/or attrition resistance of the sorbent, absorption capacity of the sorbent, temperature distribution inside the reactors, and SO{sub 2} concentration in the regeneration product gas. This paper provides an overview of high temperature fuel gas desulfurization within the context of IGCC processes. The paper focuses on the studies related to the development of regenerable sorbents and addresses thermodynamic considerations, sulfidation kinetics

  2. Desulfurization ability of refining slag with medium basicity

    Science.gov (United States)

    Yu, Hui-xiang; Wang, Xin-hua; Wang, Mao; Wang, Wan-jun

    2014-12-01

    The desulfurization ability of refining slag with relative lower basicity ( B) and Al2O3 content ( B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity ( C S) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution ( L S). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5-5.0 and the Al2O3 content in the range of 20wt%-25wt% has high activity of CaO ( a CaO), with no deterioration of C S compared with conventional desulfurization slag. The measured L S between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5-5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.

  3. Application of Thiobacillus ferroxidans to the bacterial desulfurization of coal; Application du Thiobacillus ferroxidans a la desulfuration bacterienne du charbon

    Energy Technology Data Exchange (ETDEWEB)

    Fecko, P. [Ostrava Universite Technique (Czech Republic); Sedlackova, V. [MUS Republique Tcheque (Czech Republic)

    2001-03-01

    The applicability of bacterial lixiviation of coal is tested on a sample from the Merkur basin (Northern Bohemia, Czech republic). Clean cultures of Thiobacillus ferroxidans can totally remove the pyrite sulfur after one month of treatment. With this process, the desulfurization can reach 48%. Abstract only. (J.S.)

  4. Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes.

    Science.gov (United States)

    Thomsen, Malene S; Nidetzky, Bernd

    2009-01-01

    Microstructured flow reactors are emerging tools for biocatalytic process development. A compelling design is that of the coated-wall reactor where enzyme is present as a surface layer attached to microchannel walls. However, preparation of a highly active wall biocatalyst remains a problem. Here, a stainless steel microreactor was developed where covalent immobilization of the enzyme in multiple linear flow channels of the reaction plate was supported by a macroporous wash-coat layer of gamma-aluminum oxide. Using surface functionalization with aminopropyl triethoxysilane followed by activation with glutardialdehyde, the thermophilic beta-glycosidase CelB from Pyrococcus furiosus was bound with retention of half of the specific activity of the free enzyme (800 U/mg), yielding a high catalyst loading of about 500 U/mL. This microreactor was employed for the continuous hydrolysis of lactose (100 mM) at 80 degrees C, providing a space-time yield of 500 mg glucose/(mL h) at a stable conversion of > or =70%. The immobilized enzyme displayed a half-life of 15 days under the operational conditions. Due to the absence of hydrophobic solute-material interactions, which limit the scope of microstructures fabricated from poly(dimethylsiloxane) for biocatalytic applications, the new microreactor was fully compatible with the alternate enzyme substrate 2-nitro-phenyl-beta-D-galactoside and the 2-nitro-phenol product resulting from its hydrolysis catalyzed by CelB.

  5. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Tamayo-Ramos Juan Antonio

    2012-12-01

    Full Text Available Abstract Background Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. Results The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory Aspergillus niger were homologously expressed, purified and analyzed for their biocatalytic potential. All three recombinant enzymes were monomers with apparent molecular masses ranging from 80 to 110 kDa. McoA and McoG resulted to be blue, whereas McoB was yellow. The newly obtained oxidases displayed strongly different activities towards aromatic compounds and synthetic dyes. McoB exhibited high catalytic efficiency with N,N-dimethyl-p-phenylenediamine (DMPPDA and 2,2-azino-di(3-ethylbenzthiazoline sulfonic acid (ABTS, and appeared to be a promising biocatalyst. Besides oxidizing a variety of phenolic compounds, McoB catalyzed successfully the decolorization and detoxification of the widely used textile dye malachite green. Conclusions The A. niger McoA, McoB, and McoG enzymes showed clearly different catalytic properties. Yellow McoB showed broad substrate specificity, catalyzing the oxidation of several phenolic compounds commonly present in different industrial effluents. It also harbored high decolorization and detoxification activity with the synthetic dye malachite green, showing to have an interesting potential as a new industrial biocatalyst.

  6. Biocatalytic carbon capture via reversible reaction cycle catalyzed by isocitrate dehydrogenase.

    Science.gov (United States)

    Xia, Shunxiang; Frigo-Vaz, Benjamin; Zhao, Xueyan; Kim, Jungbae; Wang, Ping

    2014-09-12

    The practice of carbon capture and storage (CCS) requires efficient capture and separation of carbon dioxide from its gaseous mixtures such as flue gas, followed by releasing it as a pure gas which can be subsequently compressed and injected into underground storage sites. This has been mostly achieved via reversible thermochemical reactions which are generally energy-intensive. The current work examines a biocatalytic approach for carbon capture using an NADP(H)-dependent isocitrate dehydrogenase (ICDH) which catalyzes reversibly carboxylation and decarboxylation reactions. Different from chemical carbon capture processes that rely on thermal energy to realize purification of carbon dioxide, the biocatalytic strategy utilizes pH to leverage the reaction equilibrium, thereby realizing energy-efficient carbon capture under ambient conditions. Results showed that over 25 mol of carbon dioxide could be captured and purified from its gas mixture for each gram of ICDH applied for each carboxylation/decarboxylation reaction cycle by varying pH between 6 and 9. This work demonstrates the promising potentials of pH-sensitive biocatalysis as a green-chemistry route for carbon capture.

  7. Recent advances on halohydrin dehalogenases-from enzyme identification to novel biocatalytic applications.

    Science.gov (United States)

    Schallmey, Anett; Schallmey, Marcus

    2016-09-01

    Halohydrin dehalogenases are industrially relevant enzymes that catalyze the reversible dehalogenation of vicinal haloalcohols with formation of the corresponding epoxides. In the reverse reaction, also other negatively charged nucleophiles such as azide, cyanide, or nitrite are accepted besides halides to open the epoxide ring. Thus, novel C-N, C-C, or C-O bonds can be formed by halohydrin dehalogenases, which makes them attractive biocatalysts for the production of various β-substituted alcohols. Despite the fact that only five individual halohydrin dehalogenase enzyme sequences have been known until recently enabling their heterologous production, a large number of different biocatalytic applications have been reported using these enzymes. The recent characterization of specific sequence motifs has facilitated the identification of novel halohydrin dehalogenase sequences available in public databases and has largely increased the number of recombinantly available enzymes. These will help to extend the biocatalytic repertoire of this enzyme family and to foster novel biotechnological applications and developments in the future. This review gives a general overview on the halohydrin dehalogenase enzyme family and their biochemical properties and further focuses on recent developments in halohydrin dehalogenase biocatalysis and protein engineering.

  8. Mechanistic and kinetic studies of high-temperature coal gas desulfurization sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Lew, S.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1991-10-01

    The overall objective of this project was to investigate the properties of and evaluate mixed oxides of zinc and titanium for hot fuel gas desulfurization. Uncombined ZnO was also investigated as a base case. Detailed investigation of the reduction and sulfidation reactions of Zn-Ti-O sorbents was performed. The intrinsic kinetics and the product layer diffusion rates in reduction and sulfidation were determined. Kinetic experiments with sorbents containing various Zn/Ti atomic ratios were performed. Chemical phase and structural transformations were followed by various methods. The results were compared to similar experiments performed with ZnO. The purpose of these experiments was to determine how the presence of titanium dioxide affects the reduction and sulfidation of ZnO. This information would be used to identify and select the sorbent composition that gives the best combination of low reduction rate and acceptable sulfidation performance at temperatures exceeding 600{degree}C. (VC)

  9. From waste to value - direct utilization of limonene from orange peel in a biocatalytic cascade reaction towards chiral carvolactone

    NARCIS (Netherlands)

    Oberleitner, N.; Ressmann, A. K.; Bica, K.; Gaertner, P.; Fraaije, M. W.; Bornscheuer, U. T.; Rudroff, F.; Mihovilovic, M. D.

    2017-01-01

    In this proof of concept study we demonstrate direct utilization of limonene containing waste product orange peel as starting material for a biocatalytic cascade reaction. The product of this cascade is chiral carvolactone, a promising building block for thermoplastic polymers. Four different concep

  10. Selection of adsorbents for in-situ coupling technology of adsorptive desulfurization and biodesulfurization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In-situ coupling of adsorptive desulfurization and biodesulfurization is a new desulfurization technology for fossil oil. It has the merits of high-selectivity of biodesulfurization and high-rate of adsorptive desulfurization. It is carried out by assembling nano-adsorbents onto surfaces of microbial cells. In this work, In-situ coupling desulfurization technology of widely used desulfurization adsorbents of γ-Al2O3, Na-Y molecular sieves, and active carbon with Pseudomonas delafieldii R-8 were studied. Results show that Na-Y molecular sieves restrain the activity of R-8 cells and active carbon cannot desorb the substrate dibenzothiophene (DBT). Thus, they are not applicable to in-situ coupling desulfurization technology. Gamma-Al2O3 can adsorb DBT from oil phase quickly, and then desorb it and transfer it to R-8 cells for biodegradation, thus increasing desulfurization rate. It is also found that nano-sized γ-Al2O3 increases desulfurization rate more than regular-sized γ-Al2O3. Therefore, nano-γ-Al2O3 is regarded as the better adsorbent for this in-situ coupling desulfurization technology.

  11. Selection of adsorbents for in-situ coupling technology of adsorptive desulfurization and biodesulfurization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In-situ coupling of adsorptive desulfurization and biodesulfurization is a new desulfurization technol- ogy for fossil oil. It has the merits of high-selectivity of biodesulfurization and high-rate of adsorptive desulfurization. It is carried out by assembling nano-adsorbents onto surfaces of microbial cells. In this work, In-situ coupling desulfurization technology of widely used desulfurization adsorbents of γ-Al2O3, Na-Y molecular sieves, and active carbon with Pseudomonas delafieldii R-8 were studied. Results show that Na-Y molecular sieves restrain the activity of R-8 cells and active carbon cannot desorb the sub- strate dibenzothiophene (DBT). Thus, they are not applicable to in-situ coupling desulfurization tech- nology. Gamma-Al2O3 can adsorb DBT from oil phase quickly, and then desorb it and transfer it to R-8 cells for biodegradation, thus increasing desulfurization rate. It is also found that nano-sized γ-Al2O3 increases desulfurization rate more than regular-sized γ-Al2O3. Therefore, nano- γ-Al2O3 is regarded as the better adsorbent for this in-situ coupling desulfurization technology.

  12. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, January 1--March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    At the start of the current project, the DSRP (Direct Sulfur Recovery Process) technology was at the bench-scale development stage with a skid-mounted system ready for field testing. The process had been extended to fluidized-bed operation in the Stage 1 reactor. A preliminary economic study for a 100 MW plant in which the two-stage DSRP was compared to conventional processes indicated the economic attractiveness of the DSRP. Through bench-scale development, both fluidized-bed zinc titanate and DSRP technologies have been shown to be technically and economically attractive. The demonstrations prior to the start of this project, however, had only been conducted using simulated (rather than real) coal gas and simulated regeneration off-gas. Thus, the effect of trace contaminants in real coal gases on the sorbent and DSRP catalyst was not known. Also, the zinc titanate desulfurization unit and DSRP had not been demonstrated in an integrated manner. The overall goal of this project is to continue further development of the zinc titanate desulfurization and DSRP technologies by scale-up and field testing (with actual coal gas) of the zinc titanate fluidized-bed reactor system, and the Direct Sulfur Recovery Process.

  13. Comparison of deep desulfurization methods in alumina production process

    Institute of Scientific and Technical Information of China (English)

    刘战伟; 李旺兴; 马文会; 尹中林; 武国宝

    2015-01-01

    Several methods of deep desulfurization in alumina production process were studied, and the costs of these methods were compared. It is found that most of the S2− in sodium aluminate solution can be removed by adding sodium nitrate or hydrogen peroxide in digestion process, and in this way the effect of S2− on alumina product quality is eliminated. However, the removal efficiency of2-23SOin sodium aluminate solution is very low by this method. Both S2− and2-23SO in sodium aluminate solution can be removed completely by wet oxidation method in digestion process. The cost of desulfurization by wet oxidation is lower than by adding sodium nitrate or hydrogen peroxide. The results of this research reveal that wet oxidation is an economical and feasible method for the removal of sulfur in alumina production process to improve alumina quality, and provide valuable guidelines for alumina production by high-sulfur bauxite.

  14. Microbial desulfurization of coal by Thiobacillus ferrooxidans and thermophilic archaea

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, G.; Pott, B.-M.; Larsson, L.; Holst, O.; Karlsson, H.T. (Univ. of Lund, Lund (Sweden). Dept. of Chemical Engineering II, Chemical Center)

    1994-11-01

    Several different microorganisms have been suggested for desulfurization. In the present investigation, the thermophilic archaea [ital Acidianus brierleyi] (DSM 1651), [ital Sulfolobus acidocaldarius] (DSM 639) and [ital Sulfolobus solfataricus] (DSM 1616) were compared with the mesophyilic bacterium [ital Thiobacillus ferrooxidans] (DSM 583) concerning their capability of removing sulfur from coal. The desulfurization rate as well as the amount of sulfur removed by the microorganisms was studied. Two of the investigated microorganisms [ital Thiobacillus ferrooxidans] and [ital Acidianus brierleyi], were capable of oxidizing pure pyrite as well as oxidizing sulfur in coal. A kinetic analysis was performed assuming first order reactions. The rate constant for oxidation of pure pyrite by [ital A. brierleyi] was observed to be higher than for [ital T. ferrooxidans]. The values of the rate constants for sulfur removal from coal were comparable for the two microorganisms, but were higher than for oxidation of pure pyrite. 18 refs., 2 figs., 1 tab.

  15. Unraveling heavy oil desulfurization chemistry: targeting clean fuels.

    Science.gov (United States)

    Choudhary, Tushar V; Parrott, Stephen; Johnson, Byron

    2008-03-15

    The sulfur removal chemistry of heavy oils has been unraveled by systematically investigating several heavy oils with an extremely wide range of properties. The heavy oil feed and product properties have been characterized by advanced analytical methods, and these properties have been related to the sulfur conversion data observed in pilot hydrotreating units. These studies coupled with kinetic treatment of the data have revealed that the desulfurization chemistry of heavy oils is essentially controlled by the strongly inhibiting three and larger ring aromatic hydrocarbon content and surprisingly not by the content of the "hard-to-remove" sulfur compounds. Such enhanced understanding of the heavy oil sulfur removal is expected to open new avenues for catalyst/process optimization for heavy oil desulfurization and thereby assist the efficent production of clean transporation fuels.

  16. Experimental and mechanism studies on seawater flue gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Seawater flue gas desulfurization (Seawater FGD) process has a number of advantages, but the study on mechanism of seawater FGD is little. The effects of absorbing efficiency of SO2 by the constant component and part of trace transition elements in seawater are studied by the experiment. The results indicate that the effect factors of absorption of SO2 by seawater are alkaline, ion intensity, catalysis of Cl- and transition metal ions Fe, Mn. The degree of effect is alkaline > the catalysis of Cl-, Fe2+ and Mn > ion intensity. The mechanisms of catalysis oxidation for S(IV) by Cl, Feand Mnare discussed. According to the results, some measures can be used to improved the capability of desulfurization.

  17. Mathematical Model of Hot Metal Desulfurization by Powder Injection

    Directory of Open Access Journals (Sweden)

    Yolanda Cepeda Rodríguez

    2012-01-01

    Full Text Available Although there have been a numerous number of studies on mathematical model of hot metal desulfurization by deep injection of calcium carbide, the research field as a whole is not well integrated. This paper presents a model that takes into account the kinetics, thermodynamics, and transport processes to predict the sulfur levels in the hot metal throughout a blow. The model could be utilized to assess the influence of the treatment temperature, rate of injection, gas flow rate, and initial concentration of sulfur on the desulfurization kinetics. In the second part of this paper an analysis of the industrial data for injection of calcium carbide using this model is described. From a mathematical model that describes the characteristics of a system, it is possible to predict the behavior of the variables involved in the process, resulting in savings of time and money. Discretization is realized through the finite difference method combined with interpolation in the border domain by Taylor series.

  18. A Novel Desulfurizer-Catalyst Combination for Logistic Fuel Reforming

    Science.gov (United States)

    2009-04-27

    dictate more efficient use of fuel resources and the synthesis of alternative fuels. In the light of eventual energy shortages, the ever-increasing... synthesis processes are based on the gasification of fossil fuels, which produce a variety of undesirable “green- house” gases. So even in the...Desulfurizers The first step was to find a suitable support material to host the sorbent. Diatomaceous earth and clinoptilolite (zeolitic clay) were

  19. Mass Transfer Model of Desulfurization in the Electroslag Remelting Process

    Science.gov (United States)

    Hou, Dong; Jiang, Zhou-Hua; Dong, Yan-Wu; Li, Yang; Gong, Wei; Liu, Fu-Bin

    2017-02-01

    Experimental and theoretical studies have been carried out to investigate the effects of the slag on desulfurization during the electroslag remelting (ESR) process with a focus of developing a mass transfer model to understand the mechanism of desulfurization. Stainless steel 1Cr21Ni5Ti was used as the electrode and remelted with two different kinds of slags using a 50-kg ESR furnace. The contents of sulfur along the axial direction of product ingots were analyzed. It was found that the sulfur content of 350 ppm in the electrode is reduced to 71 to 95 ppm in the ingot by remelting with the slag containing 5 wt pct of CaO, and lowered more to 47 to 59 ppm with another slag having 20 wt pct CaO. On the basis of the penetration and film theories, the theoretical model developed in this work well elucidates the kinetics of desulfurization revealing the mechanism of sulfur transfer during the ESR process. The calculation results obtained from the model agree well with the experimental results. The model indicates that when sulfur content in electrode is given, there is a corresponding minimum value of sulfur content in the ingot due to the kinetics limit. This lowest sulfur content cannot be further reduced even with increasing L S (sulfur distribution coefficient between metal and slag phases) or decreasing sulfur content in the slag. Constant addition of extra amount of CaO to the molten slag with the increase of sulfur content in the slag during the remelting process can improve the macrosegregation of sulfur distributed along the axial direction of ESR ingots. Since the rate-determining steps of the sulfur mass transfer lie in the metal phase, adding calcium as deoxidizer can change mass transfer of sulfur and thus promote desulfurization further during the ESR process.

  20. Mathematical Model of Natural Gas Desulfurization Based on Membrane Absorption

    Institute of Scientific and Technical Information of China (English)

    Wang Shuli; Ma Jun; Wang Ganyu; Zhou Heng

    2014-01-01

    Models of mass transfer kinetics combined with mass transfer differential equation and mass transfer resistance equation were established on the basis of double-iflm theory. Mass transfer process of H2S absorption by means of polypro-pylene hydrophobic microporous hollow ifber membrane contactor was simulated using MDEA (N-methyldiethanolamine) as the absorption liquid and corresponding experiments of natural gas desulfurization were performed. The simulation re-sults indicated that the removal rate of hydrogen sulifde showed positive dependence on the absorption liquid concentration and gas pressure. However, the desulfurization rate showed negative dependence on gas lfow. The simulated values were in good agreement with the experimental results. The in-tube concentration of hydrogen sulifde at the same point increased with increase in the gas velocity. Axial concentration of hydrogen sulifde decreased rapidly at the beginning, and the de-crease saw a slowdown during the latter half period. Hydrogen sulifde concentration dropped quickly in the radial direction, and the reduction in the radial direction was weakened with the increase of axial length due to the gradual reduction of hy-drogen sulifde concentration along the tube. The desulfurization rate under given operating conditions can be predicted by this model, and the theoretical basis for membrane module design can also be provided.

  1. Molecular biological enhancement of coal desulfurization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, S.

    1994-12-31

    During the period from 1986 through 1993 the prospect of bacterial desulfurization of fossil fuel was transformed from a theoretically appealing concept to a demonstrable laboratory phenomenon. Results from several laboratories confirmed that there was not one but, rather, several metabolic bases of selectively removing sulfur from the carbon frame of sulfur-containing organic compounds characteristic of fossil fuels. Results in this report relate solely to the so-called ``4S`` pathway (named for the four sulfur-containing compounds in the sequence: (l) dibenzothiophene [DBT] {yields} (2) dibenzothiophene sulfoxide [DBTO] {yields} (3) dibenzosulfone [DBTO{sup 2}] {yields} (4) dibenzosulfonate {yields} monohydroxybiphenyl [OH-BP] + SO{sub 4}{sup =}. [An additional desulfurized product, biphenyl, has been hypothesized and another, o,o{prime}-biphenyl, observed.]) The following subjects are discussed: isolating bacteria with a DbtS{sup +} phenotype; confirming the production of a desulfurized product; determining the identity of the isolates; determining the growth characteristics of the isolates in batch and continuous cultures; determining the kinetics and yields of product in batch and continuous cultures.

  2. [Flue gas desulfurization by a novel biomass activated carbon].

    Science.gov (United States)

    Liu, Jie-Ling; Tang, Zheng-Guang; Chen, Jie; Jiang, Wen-Ju; Jiang, Xia

    2013-04-01

    A novel biomass columnar activated carbon was prepared from walnut shell and pyrolusite was added as a catalyst. The activated carbon prepared was used for flue gas desulphurization in a fixed-bed reactor with 16 g of activated carbon. The impact of operating parameters such as SO2 inlet concentration, space velocity, bed temperature, moisture content and O2 concentration on the desulfurization efficiency of activated carbon was investigated. The results showed that both the breakthrough sulfur capacity and breakthrough time of activated carbon decreased with the increase of SO2 inlet concentration within the range of 0.1% -0.3%. The breakthrough sulfur capacity deceased with the increase of space velocity, with optimal space velocity of 600 h(-1). The optimal bed temperature was 80 degrees C, and the desulfurization efficiency can be reduced if the temperature continue to increase. The presence of moisture and oxygen greatly promoted the adsorption of SO2 onto the activated carbon. The best moisture content was 10%. When the oxygen concentrations were between 10% and 13%, the desulfurization performance of activated carbon was the highest. Under the optimal operating conditions, the sulfur capacity of activated carbon was 252 mg x g(-1), and the breakthrough time was up to 26 h when the SO2 inlet concentration was 0.2%.

  3. Development of advanced sorbents for hot gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Wangerow, J.R. [Inst. of Gas Technology, Des Plaines, IL (United States); Cicero, D.C. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

    1996-12-31

    Integrated Gasification Combined-Cycle (IGCC) processes are among the leading contenders for the production of electricity from coal. Coal gas desulfurization to sufficiently low levels at elevated temperatures (T > 350 C) is now recognized as crucial to efficient and economic coal utilization in advanced IGCC processes. The implementation of hot coal gas desulfurization relies heavily on the development of regenerable sorbent materials which can efficiently reduce H{sub 2}S from several thousand ppmv levels down to a few ppmv over many cycles of sulfidation/regeneration. Zinc-based sorbents, such as zinc titanate, are currently the leading candidate sorbents, however, they have been shown to suffer from zinc volatilization at elevated temperatures leading to sorbent deterioration, increasing sorbent replacement costs, and the overall cost of hot gas cleanup. This paper discusses the results obtained in an ongoing investigation geared towards developing advanced mixed-metal oxide sorbents for desulfurization of coal-derived fuel gases in the temperature range of 350 to 550 C. The paper focuses on the study related to the development of durable sorbents and addresses thermodynamic considerations, sulfidation kinetics, regenerability, and long term durability of a number of novel sorbents.

  4. Desulfurization of fuels with calcium-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Rehmat, A.; Leppin, D.; Banerjee, D.D. (Institute of Gas Technology, Chicago, IL (USA))

    1990-04-01

    Calcium-based sorbents, such as limestone and dolomite, are viable candidates for sulphur-capturing agents in an in-situ coal gasification/desulfurization process. The effect of limestone addition on the hydrodynamics of a fluidized-bed gasifier, desulfurization of the product gas, and stabilization of the solid wastes have been studied. The hydrodynamic characteristics of coal char/limestone mixtures, such as mixing and fines retention, have been studied in a 0.2 m diameter fluidization column. Kinetic data pertaining to the reaction between calcium oxide (which is obtained by calcination of limestone and dolomite) and hydrogen sulfide have been obtained by a gravimetric technique in the temperature range of 650 to 1050{degree}C. Kinetic data relating to the reaction between calcium sulfide (which is obtained by sulfidation of calcium-based sorbents) and oxygen have been obtained in the temperature range of 800 to 1050{degree}C and in the pressure range of 2 to 3.1 MPa. The operating conditions for these reactions have been chosen to be within the application range of a commercial coal gasification process that is accompanied by in situ desulfurization. 14 refs., 8 figs., 7 tabs.

  5. Experimental Study of Stabilized Soil Utilizing Circulating Fluidized Bed Combustion Desulfurization Ash with Carbide Slag and Desulfurization Gypsum

    Directory of Open Access Journals (Sweden)

    Dezhi Shao

    2015-01-01

    Full Text Available This paper discusses the feasibility of preparing soil stabilizer which is circulating fluidized bed combustion ash-based, supplemented with carbide slag and desulfurization gypsum, composed entirely of complete industrial wastes. The results show that CFBC ash has better pozzolanic activity than fly ash. When stabilizer total content is 10% and the ratio of CFBC ash : carbide slag : desulfurization gypsum is 7.2 : 1.8 : 1, compressive strength of stabilized soil can reach the maximum of 2.12 MPa at the age of 28 d of curing. Stabilizer can meet the strength requirements of cement-soil mixing pile composite foundation and cement-soil mixing pile waterproof curtain.

  6. Immobilized biocatalytic process development and potential application in membrane separation: a review.

    Science.gov (United States)

    Chakraborty, Sudip; Rusli, Handajaya; Nath, Arijit; Sikder, Jaya; Bhattacharjee, Chiranjib; Curcio, Stefano; Drioli, Enrico

    2016-01-01

    Biocatalytic membrane reactors have been widely used in different industries including food, fine chemicals, biological, biomedical, pharmaceuticals, environmental treatment and so on. This article gives an overview of the different immobilized enzymatic processes and their advantages over the conventional chemical catalysts. The application of a membrane bioreactor (MBR) reduces the energy consumption, and system size, in line with process intensification. The performances of MBR are considerably influenced by substrate concentration, immobilized matrix material, types of immobilization and the type of reactor. Advantages of a membrane associated bioreactor over a free-enzyme biochemical reaction, and a packed bed reactor are, large surface area of immobilization matrix, reuse of enzymes, better product recovery along with heterogeneous reactions, and continuous operation of the reactor. The present research work highlights immobilization techniques, reactor setup, enzyme stability under immobilized conditions, the hydrodynamics of MBR, and its application, particularly, in the field of sugar, starch, drinks, milk, pharmaceutical industries and energy generation.

  7. Biocatalytic Characterization of Human FMO5: Unearthing Baeyer-Villiger Reactions in Humans.

    Science.gov (United States)

    Fiorentini, Filippo; Geier, Martina; Binda, Claudia; Winkler, Margit; Faber, Kurt; Hall, Mélanie; Mattevi, Andrea

    2016-04-15

    Flavin-containing mono-oxygenases are known as potent drug-metabolizing enzymes, providing complementary functions to the well-investigated cytochrome P450 mono-oxygenases. While human FMO isoforms are typically involved in the oxidation of soft nucleophiles, the biocatalytic activity of human FMO5 (along its physiological role) has long remained unexplored. In this study, we demonstrate the atypical in vitro activity of human FMO5 as a Baeyer-Villiger mono-oxygenase on a broad range of substrates, revealing the first example to date of a human protein catalyzing such reactions. The isolated and purified protein was active on diverse carbonyl compounds, whereas soft nucleophiles were mostly non- or poorly reactive. The absence of the typical characteristic sequence motifs sets human FMO5 apart from all characterized Baeyer-Villiger mono-oxygenases so far. These findings open new perspectives in human oxidative metabolism.

  8. Application of Enzyme Coupling Reactions to Shift Thermodynamically Limited Biocatalytic Reactions

    DEFF Research Database (Denmark)

    Abu, Rohana; Woodley, John M.

    2015-01-01

    shift the equilibrium of otherwise thermodynamically unfavourable reactions to give a higher conversion of the target product. By coupling an energetically unfavourable reaction with a more favourable one, the multi-enzyme cascade mimics the approach taken in nature in metabolic pathways. Nevertheless......, it can be challenging to combine several engineered enzymes in vitro for the conversion of non-natural substrates. In this mini-review we focus on enzyme coupling reactions as a tool to alleviate thermodynamic constraints in synthetically useful biocatalytic reactions. The implications of thermodynamic...... parameters such as the equilibrium constant on the multienzyme cascades and the conventional methods of equilibrium shifting are also discussed in addition to methods used to estimate such values....

  9. Ternary System of Fe-based Ionic Liquid, Ethanol and Water for Wet Flue Gas Desulfurization

    Institute of Scientific and Technical Information of China (English)

    解美莹; 李沛沛; 郭惠锋; 高丽霞; 余江

    2012-01-01

    Fe-based ionic liquid (Fe-IL) was synthesized by mixing FeCl3·6H2O and 1-butyl-3-methylimidazolium chloride [Bmim]C1 in this paper. The phase diagram of a ternary Fe-IL, ethanol and water system was investigated to construct a ternary desulfurization solution for wet flue gas desulfurization. The effects of flow rate and concentration of SO2, reaction temperature, pH and Fe-IL fraction in aqueous desulfurization solution on the desulfiariza- tion efficiency were investigated. The results shows that the best composition of ternary desulfurization solution of Fe-IL, ethanol and water is 1 : 1.5 : 3 by volume ratio, and pH should be controlled at 2.0. Under such conditions, a desulfurization rate greater than 90% could be obtained. The product of sulfuric acid had inhibition effect on the wet desulfurization process. With applying this new ternary desulfurization solution, not only the catalyst Fe-IL can be recycled and reused, but also the product sulfuric acid can be separated directly from the ternary desulfurization system.

  10. Commercial Test of Multi-functional Desulfurizing Agent TS-01 for Gasoline in FCC Process

    Institute of Scientific and Technical Information of China (English)

    Cai Zhi; Wu Yingjian; Yu Weisheng

    2003-01-01

    Experimental use of multi-functional desulfurizing agent TS-01 for FCC gasoline in the FCC unitof SINOPEC Jiujiang Company shows that the multi-functional desulfurizing agent can effectivelyremove various kinds of sulfur in FCC gasoline and diesel fuel and fulfill passivation on heavy metals.

  11. Ni supported on activated carbon as catalyst for flue gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of Ni supported on activated carbon are prepared by excessive impregnation and the desulfurization activity is investigated. It has been shown that the activated carbon-supported Ni is an efficient solid catalyst for flue gas desulfurization. The activated carbon treated by HNO3 exhibits high desulfurization activity, and different amounts of loaded-Ni on activated carbon significantly influence the desulfurization activity. The catalysts are studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results of XRD and XPS indicate that the activated carbon treated by HNO3 can increase oxygen-containing functional groups. Ni on activated carbon after calcination at 800 °C shows major Ni phase and minor NiO phase, and with increasing Ni content on activated carbon, Ni phase increases and affects the desulfurization activity of the catalyst, which proves that Ni is the main active phase.

  12. The desulfurization behavior of mineral matter in ash during coal combustion at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tian-hua; Li, Run-dong; Li, Yan-ji; Zhou, Jun-huz; Cen, Ke-fa [Shenyang Institute of Aeronautical Engineering, Shenyang (China)

    2007-02-15

    In allusion to the desulfurization characteristic of coal ash, the desulfurization of the ash and CaO, Al{sub 2}O{sub 3} added to Changguang coal with different proportions at high temperature was studied. Sulphoaluminate as the main desulfurization product was analyzed by X-ray diffraction and SEM visualization. Experimental results indicate that higher proportion of ash added can improve the desulfurization efficiency. The sulphoaluminate content in residue increases with increasing the addition of ash. The desulfurization efficiency of the additive CaO and Al{sub 2}O{sub 3} is up to 24% at 1300{sup o}C, at the same time the sulphoaluminate is detected in the residue. 6 refs., 10 figs., 2 tabs.

  13. Ambient temperature desulfurizer of nano-ZnO modified with cerium

    Institute of Scientific and Technical Information of China (English)

    LI Fen; YAN Bo; ZHANG Jie; JIANG An-xi; SHAO Chun-hong; ZHANG Yan-ping

    2008-01-01

    The compound nano-ZnO modified with Ce was prepared by homogeneous precipitation. IR, XRD and dynamic experiments show that the crystal size of nano-ZnO desulfurizer is decreased after being modified with Ce and its desulfurization activities are improved greatly. When calcined at 270 ℃, Ce distributes evenly calcining temperature is 570℃, the crystal CeO2separates out and the amorphous structure of zinc oxide disap-pears, at the same time, the crystal is perfect and its size increases, but the desulfurization activities decrease. The desulfurization product of nano-ZnO modified with Ce was analyzed with XPS. The results show that the ad-sorption compound of HS, S and ZnS exists on the surface of the desulfurizer.

  14. Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Meyer, Anne S.; Jørgensen, Henning;

    2017-01-01

    Membrane separation of xylose and glucose can be accomplished via oxidation of glucose to gluconic acid by enzymatic glucose oxidase catalysis. Oxygen for this reaction can be supplied via decomposition of hydrogen peroxide by enzymatic catalase catalysis. In order to maximize the biocatalytic...... productivity of glucose oxidase and catalase (gluconic acid yield per total amount of enzyme) the following system set-ups were compared: immobilization of glucose oxidase alone; co-immobilization of glucose oxidase and catalase; glucose oxidase and catalase free in the membrane bioreactor. Fouling......-induced enzyme immobilization in the porous support of an ultrafiltration membrane was used as strategy for entrapment of glucose oxidase and catalase. The biocatalytic productivity of the membrane reactor was found to be highly related to the oxygen availability, which in turn depended on the reactor...

  15. Preparation of Biocatalytic Microparticles by Interfacial Self-Assembly of Enzyme-Nanoparticle Conjugates Around a Cross-Linkable Core.

    Science.gov (United States)

    Andler, S M; Wang, L-S; Goddard, J M; Rotello, V M

    2016-01-01

    Rational design of hierarchical interfacial assembly of reusable biocatalytic microparticles is described in this chapter. Specifically, purified enzymes and functionalized nanoparticles are electrostatically assembled at the interface of cross-linked microparticles which are formed through ring opening metathesis polymerization. The diameters of microparticle assemblies average 10μm, and they show enhanced kinetic efficiency as well as improved stability against heat, pH, and solvent denaturation when compared to stabilities of the corresponding native enzymes.

  16. Steam gasification of wood biomass in a fluidized biocatalytic system bed gasifier: A model development and validation using experiment and Boubaker Polynomials Expansion Scheme BPES

    Directory of Open Access Journals (Sweden)

    Luigi Vecchione

    2015-07-01

    Full Text Available One of the most important issues in biomass biocatalytic gasification is the correct prediction of gasification products, with particular attention to the Topping Atmosphere Residues (TARs. In this work, performedwithin the European 7FP UNIfHY project, we develops and validate experimentally a model which is able of predicting the outputs,including TARs, of a steam-fluidized bed biomass gasifier. Pine wood was chosen as biomass feedstock: the products obtained in pyrolysis tests are the relevant model input. Hydrodynamics and chemical properties of the reacting system are considered: the hydrodynamic approach is based on the two phase theory of fluidization, meanwhile the chemical model is based on the kinetic equations for the heterogeneous and homogenous reactions. The derived differentials equations for the gasifier at steady state were implemented MATLAB. Solution was consecutively carried out using the Boubaker Polynomials Expansion Scheme by varying steam/biomass ratio (0.5-1 and operating temperature (750-850°C.The comparison between models and experimental results showed that the model is able of predicting gas mole fractions and production rate including most of the representative TARs compounds

  17. Molecular biological enhancement of coal desulfurization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, S.

    1995-01-01

    Fresh isolates of bacteria presumptively identified as R. erythropolis unequivocally have a DbtS{sup +} phenotype. The production of OH-BP from either DBT or DBTO{sub 2} was confirmed by difference spectroscopy, HPLC, and mass spectrometry. The temperature, pH, and means of supplying the thiophenic or sulfonic sole source of sulfur were optimized. The maximal rate of growth of the organism, its affinity for sulfone, and the extent to which substrate was converted to product were determined by using batch, fed batch, and continuous cultures. For strain N1-36, the maximum specific growth rate was 0.235 hr{sup -1} which corresponds to a minimal generation time of 2.95 hr. The K{sub s} was estimated to be 0.39 {mu}M. With 100 {mu}M DBT as the sole sulfur source, approximately 40 {mu}M OH-BP are produced (after 40 hr of growth); with 100 {mu}M DBTO{sub 2} as the sole sulfur source, approximately 70 {mu}M OH-BP are produced (after 40 hr of growth). The desulfurization activity is repressed by SO{sub 4}{sup =} OH-BP does not serve as a carbon source. The DbtS{sup +} phenotype of the R. erythropolis isolates is stable and discrete. The isolates selectively remove sulfur from DBT, a compound which models a refractory form of organic sulfur in compounds characteristic of fossil fuels. The desulfurization occurs with no oxidation of carbon-carbon bonds. The stability and specificity (along with genetic regulation) indicate that microbial desulfurization in a real phenomenon in which a noxious element is removed without significantly affecting the calorific value of the substrate. Additional characterization (and optimization) would provide the basis of a very important form of fossil fuel beneficiation.

  18. Coal desulfurization in a rotary kiln combustor

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  19. Efficiency Analysis and Mechanism Insight of that Whole-Cell Biocatalytic Production of Melibiose from Raffinose with Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Yingbiao; Zhu, Yueming; Dai, Longhai; Men, Yan; Wu, Jinhai; Zhang, Juankun; Sun, Yuanxia

    2017-01-01

    Melibiose is widely used as a functional carbohydrate. Whole-cell biocatalytic production of melibiose from raffinose could reduce its cost. However, characteristics of strains for whole-cell biocatalysis and mechanism of such process are unclear. We compared three different Saccharomyces cerevisiae strains (liquor, wine, and baker's yeasts) in terms of concentration variations of substrate (raffinose), target product (melibiose), and by-products (fructose and galactose) in whole-cell biocatalysis process. Distinct difference was observed in whole-cell catalytic efficiency among three strains. Furthermore, activities of key enzymes (invertase, α-galactosidase, and fructose transporter) involved in process and expression levels of their coding genes (suc2, mel1, and fsy1) were investigated. Conservation of key genes in S. cerevisiae strains was also evaluated. Results show that whole-cell catalytic efficiency of S. cerevisiae in the raffinose substrate was closely related to activity of key enzymes and expression of their coding genes. Finally, we summarized characteristics of producing strain that offered advantages, as well as contributions of key genes to excellent strains. Furthermore, we presented a dynamic mechanism model to achieve some mechanism insight for this whole-cell biocatalytic process. This pioneering study should contribute to improvement of whole-cell biocatalytic production of melibiose from raffinose.

  20. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  1. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  2. DEVELOPMENT OF SMOVEN PROCESS FOR HOT GAS DESULFURIZATION

    Institute of Scientific and Technical Information of China (English)

    彭万旺; 步学朋; 王乃计; 戢绪国; 谢可玉

    1997-01-01

    The Beijing Research Institute of Coal Chemistry (BRICC) is developing the SMOVEN process for hot gas desulfurization. The SMOVEN process features sulfidation in an entrained bed, regeneration in a low velocity fluid bed or a moving bed with oxygen and sorbent circulation controlled by gas stream. A series of tests on the bench scale unit and the continuous process development unit were carried out. The regenerable metal oxide sorbents were adopted for the sulfurrelated components removing from coal gas at the temperature of 550~650℃. A fluidized bed gasifier of 100mm (id) generated coal gas for tests. The principle of SMOVEN process has been positively verified.

  3. Confined zone dispersion flue gas desulfurization demonstration

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-15

    This is the sixth quarterly report for this project and it covers work performed on Phase 3a of the project from February 1, 1992 through April 30, 1992. Extension of the parametric test period through June 1992 provides an opportunity to regain most of the schedule slippage, but only if the modifications needed for continuous operation of the CZD system are installed concurrent with the extended test period. These modifications include automation of the lime preparation and transfer system, automatic injection control, and related instrumentation and controls as necessary to integrate the operation of the CZD system with Seward Station Boiler No. 15. Early installation of these modifications would permit testing, debugging and adjustment of the automatic control system during the parametric test period. Results of current testing indicate that considerable testing and adjustment will be required to optimize operation of the CZD system after it is automated for continuous operation. Therefore, we intend to incorporate in Phase 3a(parametric testing) the system modifications needed for continuous automatic operation that were originally included in Phase 3b. Phase 3b would then be limited only to the one-year continuous demonstration.

  4. Study on Desulfurization of Gasoline by Electrochemical Oxidation and Extraction

    Institute of Scientific and Technical Information of China (English)

    Wang Wenbo; Wang Shujun; Liu Hongyan; Wang Zhenxin

    2006-01-01

    In order to further reduce the sulfur content in gasoline, a new desulfurization process was proposed by using catalytic oxidation and extraction realized in an electrochemical fluidized reactor. The fluidized layer of loaded catalyst particles consisted of lead dioxide (PbO2) supported on activated carbon particles (PbO2/C) and the electrolyte was aqueous NaOH solution. The PbO2/C particle anodes could remarkably accelerate the electrochemical reaction rate and promote the electrochemical catalysis of sulfur compounds. The sulfur compounds were at first oxidized to sulfones or sulfoxides, which were then removed after extraction. The experimental results indicated that the optimal desulfurization conditions were as follows: The cell voltage was 3.2 V, the concentration of hydroxyl ions in electrolyte was 0.12 mol/L, and the feed rate was 300 mL/min. Under these conditions the concentration of sulfur in gasoline was reduced from 310 ppm to 70 ppm. Based on these experimental results, a mechanism of indirect electrochemically catalytic oxidation was proposed.

  5. Preparation of activated ceria and its desulfurization performance

    Institute of Scientific and Technical Information of China (English)

    Qing-chun Yu; Yong Deng; Fei Wang; Yue-bin Feng; Xiu-min Chen; Bin Yang; Da-chun Liu

    2015-01-01

    Activated ceria (CeO2/γ-Al2O3) prepared by impregnation was characterized by X-ray diffraction (XRD), scanning electron mi-croscopy (SEM), and hydrogen temperature-programmed reduction (TPR). The desulfurization of the activated ceria was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TG). The results showed that ceria could be highly dispersed or crystallized on the surface ofγ-alumina. The reduction temperatures of 0.1CeO2/γ-Al2O3, 0.45CeO2/γ-Al2O3, and CeO2 ranged from 250°C to 470°C, 330°C to 550°C, and 350°C to 550°C, respectively. The reduction peak tem-perature of 0.45CeO2/γ-Al2O3 was higher than that of 0.1CeO2/γ-Al2O3, which was consistent with the reduction temperature of CeO2. O2 participated in the reaction between ceria and sulfur dioxide. The desulfurization product was cerium(III) sulfate. The intensity of the hy-droxyl band decreased with the formation of sulfate species.

  6. Research on optimal domestication of thiobacillus ferooxidans and desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Gong, G.; Tao, X.; Zhang, X.; ??? Luo, Z. [China University of Mining and Technology, Xuzhou (China)

    2006-07-15

    In order to increase the efficiency of biodesulfurization and reduce the reaction time, based on the high selectivity adsorption and oxidation characteristic of thiobacillus ferooxidans (T.f.) for pyrite (FeS{sub 2}) in coal, the strain of T.f. was acclimatized by changing concentration of Fe{sup 2+}, H{sup +} and NH{sub 4}{sup +} and adding FeS{sub 2} and glucose in the 9 K medium. The optimal conditions of growth were investigated and used in the biodesulfurization experiments. The results show that the normal growth of T.f. was achieved after two turns of acclimatization. The desulfurization efficiency is the best under the conditions of 10% inoculation, 1.85 pH value and 27{sup o}C. The smaller the size of coal particle is, the effective the biodesulfurization is. The maximum sulphur removal from coal of 76.2% was obtained after reaction time of 7 days. The mechanisms of desulfurization with T.f. can be explained by the cooperation reaction of dissolved oxygen, bacteria and Fe{sup 3+}. 9 refs., 6 figs.

  7. Application of Microwave Technology for Desulfurization of Diesel Fuel

    Institute of Scientific and Technical Information of China (English)

    Li Ping; Zhao Shanlin; Kong Lingzhao; Li Jiandong; Zhai Yuchun

    2004-01-01

    The microwave technology was introduced for the desulfurization of diesel fuel. The atmosphericsecond side-cut diesel fraction, which was supplied by Liaohe Petrochemical Company, was desulfurized by anoxidation process under microwave irradiation. Hydrogen peroxide (H2O2), can oxidize the sulfur compounds indiesel fuel selectively and convert them into sulfones. Based on the rule of dissolution by similar substances,these sulfones are removed from diesel fuel because they could be dissolved in solvent phase. So the sulfurcontent of diesel fuel is decreased. The influence of the concentration of oxidizing reagent, solvent phase to oilphase volume ratio (S/O), irradiation pressure, irradiation time, and the irradiation power have been investigated.The optimum conditions for the refining process was determined. The sulfur removal rate was 59.7% under theoptimum conditions of 8%H2O2, S/O=0.25, 0.05MPa, 6 min, and 375W, respectively. When no microwave irradia-tion was applied, the removal rate was 11.5% only.

  8. Highly attrition resistant sorbents for desulfurization of hot coal gases

    Energy Technology Data Exchange (ETDEWEB)

    Slimane, R.B.; Abbasian, J.; Zarnegar, M.K. [Institute of Gas Technology, Des Plaines, IL (United States)] [and others

    1998-04-01

    One of the main obstacles in the commercialization of high-temperature desulfurization systems for Integrated Gasification Combined Cycle (IGCC) power generation processes is the development of regenerable sulfur sorbents with suitable physical and chemical characteristics. The focus of much of the current research on sorbent development has been on the use of zinc-based sorbents. These sorbents have been the subject of extensive pilot-scale and process development work; however, they have been shown to suffer from sulfate formation and zinc volatilization, leading to sorbent degradation over multi-cycle use. Therefore, investigation of non-zinc based sorbents is a logical approach to develop an effective alternative. An effective alternative to zinc-based sorbents could be manganese-based sorbents which have recently been shown to withstand high temperature ({ge} 750{degrees}C) operation and also maintain structural and reactive integrity over many cycles. However, because of process equipment limitations and other process variables such as fuel gas alkali content, a number of investigators have recently argued that the benefit to be gained by lower temperature application may outweigh the slight loss of efficiency, resulting in lower overall cost of electricity. Desulfurization temperatures {le} 538{degrees}C have been recommended to provide the best compromise between process equipment limitations and higher temperature operation.

  9. Study of fluidized-bed desulfurization with zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Grindley, T

    1991-01-01

    Previous work established the technical feasibility of desulfurizing the hot product gases of coal gasification with fixed beds of a regenerable zinc ferrite sorbent. This process, intended for integration with coal gasifiers and gas turbines, has been tested and studied in considerable detail in a process development unit. Though possessing the advantages of high-sulfur absorption at low-sulfur breakthrough and the lack of sorbent attrition characteristic of a stationary bed, fixed beds also have inherent disadvantages: susceptibility to plugging by particles and a large diluent requirement during regeneration to control the reaction zone temperature. Therefore, METC conducted a scoping laboratory test program to determine the desulfurizing capability of fluid beds of zinc ferrite. Results from this program are presented. The results generally demonstrated that fluid beds of zinc ferrite have the potential to lower the H{sub 2}S level in hot gas from 10,000 to 10 ppmv. To achieve this at a high-sorbent sulfur loading would require two fluid-bed stages. Sorbent attrition appears to be acceptably low. Planned future activities include tests at high pressure with both simulated gas and in a gasifier sidestream.

  10. Thermodynamic Analysis of Desulfurization of Fine Coal by Electrochemical Reduction Flotation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; ZHU Hong; ZHANG Yu

    2003-01-01

    Problems in desulfurization of coal by electrochemical reduction is analyzed and calculated. The result shows that 1) the △rGm function of the reaction of pyrite into FeS and the modifying reaction decreasing the oxygenous functions on coal surface is smaller than zero in a spontaneous reaction, and greater than zero in a nonspontaneous reaction; 2) the △rGm value can be adjusted by pH and the dosage of electrolyte to make it be greater than zero , which is favorable for the modifying reaction and useful for desulfurization of coal. The research has provided a theoretical foundation for determining reasonable technical parameters of desulfurization

  11. Flue gas desulfurization gypsum and fly ash

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.

  12. Research report of FY 1997 on the environmentally acceptable coal utilization system feasibility survey. Clean coal technology model project seminar held in Thailand; 1997 nendo seika hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa (Tai ni okeru clean coal technology model jigyo seminar no kaisai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    To reduce SOx with coal utilization, the desulfurization seminar diffusing the demonstration project of simplified desulfurizer introduction was held at the site in Thailand. The purpose is to reduce the environmental pollutants and contribute to the effective utilization of energy with coal utilization in Thailand. Invitation letters were sent to users of coal and heavy oil boilers through the Department of Factories, Ministry of Industry, Thailand, to call participation in the seminar. Inspection of the desulfurizer introduced in the factory of Thai Union Paper Public was included in the seminar for diffusing the project. The inspection site is in the demonstration project site of simplified desulfurizer introduction. There were a lot of participants from Thai users and from Japan. The seminar included the presentations from NEDO, JETRO, FTI, and MOSTE, introduction of general technology for processes of ENAA desulfurizer, introduction of demonstration unit plan by IHI, and introduction of operation of demonstration unit by TUP. 31 figs., 6 tabs.

  13. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.

    Science.gov (United States)

    Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere

    2015-02-16

    The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the α-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology.

  14. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    Science.gov (United States)

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  15. Building Bridges: Biocatalytic C-C-Bond Formation toward Multifunctional Products.

    Science.gov (United States)

    Schmidt, Nina G; Eger, Elisabeth; Kroutil, Wolfgang

    2016-07-01

    Carbon-carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C-C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C-C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C-C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand.

  16. Building Bridges: Biocatalytic C–C-Bond Formation toward Multifunctional Products

    Science.gov (United States)

    2016-01-01

    Carbon–carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C–C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C–C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C–C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand. PMID:27398261

  17. Ionic Liquid-assisted Synthesis of Polyaniline/Gold Nanocomposite and Its Biocatalytic Application

    Directory of Open Access Journals (Sweden)

    Liu Jingquan

    2008-01-01

    Full Text Available Abstract In this report, a novel chemical synthesis of polyaniline/gold nanocomposite is explored using ionic liquid (IL 1-Butyl-3-methylimidazolium hexafluorophosphate. The direct chemical synthesis of polyaniline/gold nanocomposite was initiated via the spontaneous oxidation of aniline by AuCl4 −in IL. A nearly uniform dispersion of polyaniline/Au particles with a diameter of 450 ± 80 nm was produced by this method, which indicates that this method is more suitable for controlling particle dimensions. It was also found that the electrical conductivity of the polyaniline/gold nanocomposite was more than 100 times higher than that of the pure polyaniline nanoparticles. The polyaniline/gold nanocomposite displays superior function in the biocatalytic activation of microperoxidase-11 because of the high surface area of the assembly and the enhanced charge transport properties of the composite material. We also report the possible application of polyaniline/gold nanocomposite as a H2O2biosensor.

  18. Two-Input Enzymatic Logic Gates Made Sigmoid by Modifications of the Biocatalytic Reaction Cascades

    CERN Document Server

    Zavalov, Oleksandr; Halamek, Jan; Halamkova, Lenka; Korkmaz, Sevim; Arugula, Mary A; Chinnapareddy, Soujanya; Katz, Evgeny; Privman, Vladimir

    2013-01-01

    Computing based on biochemical processes is a newest rapidly developing field of unconventional information and signal processing. In this paper we present results of our research in the field of biochemical computing and summarize the obtained numerical and experimental data for implementations of the standard two-input OR and AND gates with double-sigmoid shape of the output signal. This form of response was obtained as a function of the two inputs in each of the realized biochemical systems. The enzymatic gate processes in the first system were activated with two chemical inputs and resulted in optically detected chromogen oxidation, which happens when either one or both of the inputs are present. In this case, the biochemical system is functioning as the OR gate. We demonstrate that the addition of a "filtering" biocatalytic process leads to a considerable reduction of the noise transmission factor and the resulting gate response has sigmoid shape in both inputs. The second system was developed for functi...

  19. Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system.

    Science.gov (United States)

    Burkhardt, M; Koschack, T; Busch, G

    2015-02-01

    A new type of anaerobic trickle-bed reactor was used for biocatalytic methanation of hydrogen and carbon dioxide under mesophilic temperatures and ambient pressure in a continuous process. The conversion of gaseous substrates through immobilized hydrogenotrophic methanogenic archaea in a biofilm is a unique feature of this type of reactor. Due to the formation of a three-phase system on the carrier surface and operation as a plug flow reactor without gas recirculation, a complete reaction could be observed. With a methane concentration higher than c(CH4) = 98%, the product gas exhibits a very high quality. A specific methane production of P(CH4) = 1.49 Nm(3)/(m(3)(SV) d) was achieved at a hydraulic loading rate of LR(H2) = 6.0 Nm(3)/(m(3)(SV) d). The relation between trickle flow through the reactor and productivity could be shown. An application for methane enrichment in combination with biogas facilities as a source of carbon dioxide has also been positively proven.

  20. Characterisation of a Recombinant Patchoulol Synthase Variant for Biocatalytic Production of Terpenes.

    Science.gov (United States)

    Frister, Thore; Hartwig, Steffen; Alemdar, Semra; Schnatz, Katharina; Thöns, Laura; Scheper, Thomas; Beutel, Sascha

    2015-08-01

    The patchoulol synthase (PTS) is a multi-product sesquiterpene synthases which is the central enzyme for biosynthesis of patchouli essential oil in the patchouli plant. Sesquiterpene synthases catalyse the formation of various complex carbon backbones difficult to approach by organic synthesis. Here, we report the characterisation of a recombinant patchoulol synthase complementary DNA (cDNA) variant (PTS var. 1), exhibiting significant amino acid exchanges compared to the native PTS. The product spectrum using the natural substrate E,E-farnesyl diphosphate (FDP) as well as terpenoid products resulting from conversions employing alternative substrates was analysed by GC-MS. In respect to a potential use as a biocatalyst, important enzymatic parameters such as the optimal reaction conditions, kinetic behaviour and the product selectivity were studied as well. Adjusting the reaction conditions, an increased patchoulol ratio in the recombinant essential oil was achieved. Nevertheless, the ratio remained lower than in plant-derived patchouli oil. As alternative substrates, several prenyl diposphates were accepted and converted in numerous compounds by the PTS var. 1, revealing its great biocatalytic potential.

  1. Land application uses for dry flue gas desulfurization by-products. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    Flue gas desulfurization (FGD) scrubbing technologies create several types of by-products. This project focused primarily on by-product materials obtained from what are commonly called ''dry scrubbers'' which produce a dry, solid material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Prior to this project, dry FGD by-products were generally treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing; The major objective of this project was to develop beneficial uses, via recycling, capable of providing economic benefits to both the producer and the end user of the FGD by-product. It is equally important, however, that the environmental impacts be carefully assessed so that the new uses developed are not only technically feasible but socially acceptable. Specific objectives developed for this project were derived over an 18-month period during extensive discussions with personnel from industry, regulatory agencies and research institutions. These were stated as follows: Objective 1: To characterize the material generated by dry FGD processes. Objective 2: To demonstrate the utilization of dry FGD by-product as a soil amendment on agricultural lands and on abandoned and active surface coal mines in Ohio. Objective 3: To demonstrate the use of dry FGD by-product as an engineering material for soil stabilization. Objective 4: To determine the quantities of dry FGD by-product that can be utilized in each of these applications. Objective 5. To determine the environmental and economic impacts of utilizing the material. Objective 6. To calibrate environmental, engineering, and economic models that can be used to determine the applicability and costs of utilizing these processes at other sites.

  2. Characteristics of dibenzothiophene desulfurization by Rhodococcus erythropolis R1 and its Dsz-negative mutant

    Directory of Open Access Journals (Sweden)

    Zahra Etemadifar

    2014-01-01

    Full Text Available Introduction: Biodesulfurization is used as a selective method for lowering the sulfur content of petroleum products. Materials and methods: A sulfur-oxidation bacterial strain named Rhodococcus erythropolis R1 (NCBI GenBank Accession No. GU570564 was used in this study for desulfurization of dibenzothiophene (DBT. Results: The induced culture of strain R1 was able to produce 2-hydroxybiphenyl (2- HBP from DBT followed 4S pathway without further degrading carbon backbone. This process confirmed by gas chromatography (GC analysis. The specific activity of DBT desulfurization by R1 was 45 µM (g dry wt-1 h-1. The addition of Tween 80 as surfactant and glycerol as carbon source determines a 100% rate of DBT-desulfurization during 3 days. The heavy plasmid detected in R1 strain carries dsz genes responsible for biodesulfurization of DBT that was shown by PCR reaction. The mutant strains which had lost this plasmid also had lost desulfurization phenotype. Both mutant and wild strain were sensitive to high concentration of 2-HBP and some antibiotics. Discussion and conclusion: Strain R1 desulfurize DBT through the sulfur-specific degradation pathway or 4S pathway with the selective cleavage of carbon-sulfur (C-S bonds without reducing the energy content. Addition of surfactant enhanced the desulfurization of DBT by increasing its bioavailability and also could improve the growth and desulfurization rate. The location of desulfurization genes was on a heavy plasmid in strain R1. Based on the results of this study, R. erythropolis R1 could serve as a model system for efficient biodesulfurization of petroleum oil without reducing the energy value.

  3. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Material Science, Northwest University, Xi’an 710069, Shaanxi (China); Composites Research Institute, Weinan Normal University, Weinan 714000 (China); Gao, Ruimin [Research Institute of Shaanxi Yanchang Petroleum Group Corp. Ltd., Xi’an 710075 (China); Composites Research Institute, Weinan Normal University, Weinan 714000 (China); Zhao, Jianshe, E-mail: jszhao@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Material Science, Northwest University, Xi’an 710069, Shaanxi (China); Composites Research Institute, Weinan Normal University, Weinan 714000 (China); Wang, Junlong [Research Institute of Shaanxi Yanchang Petroleum Group Corp. Ltd., Xi’an 710075 (China); Composites Research Institute, Weinan Normal University, Weinan 714000 (China)

    2015-05-15

    M{sub 2}(PcAN){sub 2} (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M{sub 2}(PcAN){sub 2}–W-HZSM-5) or the M{sub 2}(PcTN){sub 2} doping W-HZSM-5 (M{sub 2}(PcTN){sub 2}/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 and Cu{sub 2}(PcTN){sub 2}/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV–Vis and calcination temperature was obtained by TG-DSC for Cu{sub 2}(PcTN){sub 2}/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N{sub 2} adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. - Graphical abstract: The ODS reaction schematic shows the reaction mechanism of ultra-deep desulfurization. The sulfur compounds are oxidized to their corresponding sulfoxides or sulfones through the use of oxygen and catalysts. The reaction process of ultra-deep desulfurization. - Highlights: • A kind of novel catalyst for deep desulfurization was synthesized. • Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 exhibits excellent catalytic performance for desulfurization. • The reaction conditions that affect desulfurization efficiency are investigated. • The reaction process of model sulfur compounds is proposed.

  4. Desulfurization of coal and petroleum. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The bibliography contains citations concerning the desulfurization of coal, coal liquids, and crude oil. Flotation heap leaching, oxydesulfurization, metal oxide, microwave process, and chlorination are among the pre-combustion processes discussed. Coal liquefaction and gasification are only included if sulfur removal is stressed. Flue gas desulfurization and other post-combustion sulfur control processes are excluded. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, March 11, 1993--June 11, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1993-11-01

    There are two basic approaches to addressing the problem of SO{sub 2} and NO{sub x} emissions: (1) desulfurize (and denitrogenate) the feedstock prior to or during combustion; or (2) scrub the resultant SO{sub 2} and oxides of nitrogen from the boiler flue gases. The flue gas processing alternative has been addressed in this project via microbial reduction of SO{sub 2} and NO{sub x} by sulfate-reducing bacteria

  6. Mechanistic and kinetic studies of high-temperature coal gas desulfurization sorbents. Final report, July 1988--July 1991

    Energy Technology Data Exchange (ETDEWEB)

    Lew, S.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1991-10-01

    The overall objective of this project was to investigate the properties of and evaluate mixed oxides of zinc and titanium for hot fuel gas desulfurization. Uncombined ZnO was also investigated as a base case. Detailed investigation of the reduction and sulfidation reactions of Zn-Ti-O sorbents was performed. The intrinsic kinetics and the product layer diffusion rates in reduction and sulfidation were determined. Kinetic experiments with sorbents containing various Zn/Ti atomic ratios were performed. Chemical phase and structural transformations were followed by various methods. The results were compared to similar experiments performed with ZnO. The purpose of these experiments was to determine how the presence of titanium dioxide affects the reduction and sulfidation of ZnO. This information would be used to identify and select the sorbent composition that gives the best combination of low reduction rate and acceptable sulfidation performance at temperatures exceeding 600{degree}C. (VC)

  7. Low-temperature desulfurizing reaction with Cu-containing sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Kwang Bok; Choi, Eun Mi; Song, Yi Keun; Rhee, Young Woo [Department of Chemical Engineering, Chungnam National University, Taejeon (Korea)

    1999-10-01

    The sorbents containing Cu O as an active material were prepared and their effectiveness in desulfurization was investigated at low temperatures(350-550 degree C). M.I.5 and MnO{sub 2} were chosen as additives and SiO{sub 2} was chosen as support material. In the low temperature regeneration reaction, sulfate was formed, which could not be decomposed until regeneration temperature reached 650 degree C. Sulfidation reaction rate decreased as calcination temperature increased. Promoting effect of MoO{sub 3} was not observed throughout the sulfidation/regeneration reaction. When SiO{sub 2} content was below 25% of sorbents composition, sulfur loading of above 10% could be obtained. Mass transfer inhibition by sulfiding gas was observed for the sorbents containing no SiO{sub 2}. 9 refs., 9 figs., 4 tabs.

  8. GRANULATION AND BRIQUETTING OF SOLID PRODUCTS FROM FLUE GAS DESULFURIZATION

    Directory of Open Access Journals (Sweden)

    Jan J. Hycnar

    2015-11-01

    Full Text Available Most flue gas desulfurization products can be characterized by significant solubility in water and dusting in dry state. These characteristics can cause a considerable pollution of air, water, and soil. Among many approaches to utilization of this waste, the process of agglomeration using granulation or briquetting has proved very effective. Using desulfurization products a new material of aggregate characteristics has been acquired, and this material is resistant to water and wind erosion as well as to the conditions of transportation and storage. The paper presents the results of industrial trials granulation and briquetting of calcium desulphurization products. The granulation of a mixture of phosphogypsum used with fly ash (in the share 1:5. The resulting granules characterized by a compressive strength of 41.6 MPa, the damping resistance of 70% and 14.2% abrasion. The granulate was used for the production of cement mix. The produced concrete mortar have a longer setting and hardening time, as compared to the traditional ash and gypsum mortar, and have a higher or comparable flexural and compressive strength during hardening. Briquetting trials made of a product called synthetic gypsum or rea-gypsum both in pure form and with the addition of 5% and 10% of the limestone dust. Briquettes have a high initial strength and resistance to abrasion. The values ​​of these parameters increased after 72 hours of seasoning. It was found that higher hardiness of briquettes with rea-gypsum was obtained with the impact of atmospheric conditions and higher resistance to elution of water-soluble components in comparison to ash briquettes.

  9. Applying ACF to Desulfurization Process from Flue Gas

    Institute of Scientific and Technical Information of China (English)

    刘义; 张智刚; 唐强; 曹子栋

    2004-01-01

    Inasmuch as the status of environmental pollution caused by SO2 is more and more serious and the policy of environmental protection is executed more and more strictly, desulfurization from flue gas (FGD) is introduced to a wide-spread field of national economy. By a comparison with lime-limestone method, the application of adsorption method in FGD is more effective in desulfurization and more adapted to the situation of our country in respect of its more valuable byproduct. However, the technique of adsorption method is limited by the large amount of adsorbent used. In this paper, activated carbon fiber (ACF) is proposed as a new type of adsorbent to apply in FGD. A series of experiments have been made in order to compare the performances between ACF and granular activated carbon (GAC) which has been mostly used.Experiments show that under the same working conditions ACF's adsorption capacity is 16.6 times as high as that of GAC, mass loss rate is 1/12 of GAC's, desorption efficiency of ACF can reach 99.9%. The theory of micropore adsorption dynamics is adopted to analyze the characteristics of both adsorbents. It is indicated that adsorbability and perfectibility of desorption are tightly related to the distribution of pores and the surface micromechanism of adsorbent surface. The accessibility of pores for specified adsorptive and the effects of capillary condensation are crucial factors to influence the process of FGD. According to the research of different adsorbents, conclusion can be drawn that ACF is a kind of good material with a strong selectivity for SO2. Compared with the traditional methods of FGD, the use of ACF can greatly economize the consumption of adsorbent and obviously reduce the introduction of new adsorbent, and at the same time keep down the equipment investment and operating cost.

  10. Biocatalytic Synthesis of Novel Partial Esters of a Bioactive Dihydroxy 4-Methylcoumarin by Rhizopus oryzae Lipase (ROL

    Directory of Open Access Journals (Sweden)

    Vinod Kumar

    2016-11-01

    Full Text Available Highly regioselective acylation has been observed in 7,8-dihydroxy-4-methylcoumarin (DHMC by the lipase from Rhizopus oryzae suspended in tetrahydrofuran (THF at 45 °C using six different acid anhydrides as acylating agents. The acylation occurred regioselectively at one of the two hydroxy groups of the coumarin moiety resulting in the formation of 8-acyloxy-7-hydroxy-4-methylcoumarins, which are important bioactive molecules for studying biotansformations in animals, and are otherwise very difficult to obtain by only chemical steps. Six monoacylated, monohydroxy 4-methylcoumarins have been biocatalytically synthesised and identified on the basis of their spectral data and X-ray crystal analysis.

  11. Engineering Design of Flue Gas Desulfurization in Thermal Power Plant%火电厂烟气脱硫工程设计

    Institute of Scientific and Technical Information of China (English)

    吴锦宝

    2012-01-01

    在石灰石/石膏湿法脱硫工程实际应用中,影响脱硫效率的因素很多,主要问题包括结垢堵塞、设备和管道的腐蚀等正确处理这些问题是保证烟气脱硫(FGD)系统长期稳定可靠运行的关键。相应的技术措施需综合考虑技术上的可行性和经济上的合理性等诸多因素,设计、设备选型、营运等各个阶段各个因素之间互相影响。如何优化设方案,降低投资和运行检修费用,需要综合加以考虑。提出的方案是根据已运行项目的工程实际结果得出的结论,具有一定的实用和参考价值。%In practical application of limestone/gypsum wet flue gas desulfurization project, there are many influencing factors affecting desulfurization efficiency including scaling and clogging, equipment and pipeline corrosion and so on. properly treatments to these problems are key points to ensure years of stable and reliable run of flue gas desulfurization (FGD) system. The appropriate technical measures should take technical feasibility and economic ration',dity into account. Design, equipment selection, operation stages and other factors are interactional, so it should take all factors into consideration to optimize design, reduce investment and operation and maintenance cost. The scheme proposed in this paper is based on the conclusion draw from running project, and it has certain practical and referential value.

  12. Branched zinc oxide nanorods arrays modified paper electrode for electrochemical immunosensing by combining biocatalytic precipitation reaction and competitive immunoassay mode.

    Science.gov (United States)

    Sun, Guoqiang; Yang, Hongmei; Zhang, Yan; Yu, Jinghua; Ge, Shenguang; Yan, Mei; Song, Xianrang

    2015-12-15

    Branched zinc oxide nanorods (BZR) arrays, an array with high charge carries collection efficiency and specific surface area, are grown on the reduced graphene oxide-paper working electrode for the first time to construct a paper-based electrochemical (EC) immunosensor. Typically, the BZR are fabricated via a simple hydrothermal process, which can provide abundant sites for antibodies loading. By combining the large surface area of porous zinc oxide (PZS) and good biocompatibility of gold nanoparticles (AuNPs), PZS-AuNPs (PZS@Au) nanocomposites are designed to label horseradish peroxide (HRP) and antigens. After a competitive reaction between antigens and PZS@Au nanocomposites labeled antigens, the signal labels are introduced into the immunosensor, in which, HRP participate in biocatalytic precipitation process. The produced precipitate reduces the electrode surface area and hinders the electron transfer. With the increase of concentration of antigens, the signal labels introduced into the sensor decrease, thus, a signal-on immunoassay for α-fetoprotein detection is constructed. The proposed paper-based EC immunosensor combines enzymatic biocatalytic precipitation reaction and competitive immunoassay mode for the first time, and possesses a wide linear range from 0.2 pg mL(-1) to 500 ng mL(-1) with a detection limit of 0.08 pg mL(-1). In addition, the proposed method is simple, sensitive and specific and can be a promising platform for other protein detection.

  13. Exploring the biocatalytic potential of a DyP-type peroxidase by profiling the substrate acceptance of Thermobifida fusca DyP peroxidase

    NARCIS (Netherlands)

    Loncar, Nikola; Colpa, Dana I.; Fraaije, Marco W.

    2016-01-01

    Dye-decolorizing peroxidases (DyPs) represent a new class of oxidative enzymes for which the natural substrates are largely unknown. To explore the biocatalytic potential of a DyP, we have studied the substrate acceptance profile of a robust DyP peroxidase, a DyP from Thermobifida fusca (TfuDyP). Wh

  14. Highly attrition resistant sorbents for desulfurization of hot coal gases

    Energy Technology Data Exchange (ETDEWEB)

    Slimane, R.B.; Abbasian, J.; Zarnegar, M.K.; Wangerow, J.R.; Carty, R.H.

    1998-07-01

    One of the main obstacles in the commercialization of high-temperature desulfurization systems for Integrated Gasification Combined Cycle (IGCC) power generation processes is the development of regenerable sulfur sorbents with suitable physical and chemical characteristics. The focus of much of the current research on sorbent development has been on the use of zinc-based sorbents. These sorbents have been the subject of extensive pilot-scale and process development work; however, they have been shown to suffer from sulfate formation and zinc volatilization, leading to sorbent degradation over multi-cycle use. Therefore, investigation of non-zinc based sorbents is a logical approach to develop an effective alternative. An effective alternative to zinc-based sorbents could be manganese-based sorbents which have recently been shown to withstand high temperature ({gt} 750 C) operation and also maintain structural and reactive integrity over many cycles. However, because of process equipment limitations and other process variables such as fuel gas alkali content, a number of investigators have recently argued that the benefit to be gained by lower temperature application may outweigh the slight loss of efficiency, resulting in lower overall cost of electricity. Desulfurization temperatures {lt} 538 C have been recommended to provide the best compromise between process equipment limitations and higher temperature operation. This paper reports on an on-going research program to develop novel, highly reactive, attrition-resistant, and regenerable manganese-based sorbents for the removal of hydrogen sulfide (H{sub 2}S) from coal-derived fuel gases at temperatures of 316 to 538 C and pressures up to 300 psig. The primary focus of this study is placed on the preparation (method and composition), characterization, and evaluation of a number of sorbent formulations to identify the most suitable manganese-based sorbent. The manganese-based sorbent formulations prepared to

  15. Roles of Electrolyte Characterization on Bauxite Electrolysis Desulfurization with Regeneration and Recycling

    Science.gov (United States)

    Gong, Xuzhong; Wang, Zhi; Zhuang, Siyuan; Wang, Dong; Wang, Yuhua; Wang, Mingyong

    2016-10-01

    The recycling of NaCl used as supporting electrolyte for bauxite electrolysis was carried out in this study. The electrolyte was regenerated by adding anhydrous CaCl2 into the solution after filtration, and effects of electrolyte characterization on bauxite electrolysis were examined by observing the change in desulfurization ratio and cell voltage. The results indicated that the desulfurization ratio increased with increasing recycling times of electrolyte. In the meantime, the increase in recycling times has led to the decrease in pH value as well as the increase in Fe ion concentration in the electrolyte, which were the main reasons for the increase in the desulfurization ratio with increasing recycling of electrolyte. The pH value of electrolyte after second electrolysis was lower than 1.5, and the desulfurization ratio increased obviously due to the increase in Fe3+ concentration and suppression of jarosite formation. The increase in Ca2+ concentration did not apparently change desulfurization ratio and anode surface activity. However, with Ca2+ addition, the cathode surface was covered by CaSO4·nH2O, thus resulting in the increase of cell voltage.

  16. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization.

    Science.gov (United States)

    Zhang, Jie; You, Changfu; Zhao, Suwei; Chen, Changhe; Qi, Haiying

    2008-03-01

    Semidry flue gas desulfurization with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH)2 content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH)2 particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH)2 particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH)2 particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray.

  17. Adhesive carrier particles for rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization.

    Science.gov (United States)

    Li, Yuan; You, Changfu; Song, Chenxing

    2010-06-15

    A rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization was prepared by rapidly hydrating adhesive carrier particles and lime. The circulation ash from a circulating fluidized bed boiler and chain boiler ash, both of which have rough surfaces with large specific surface areas and specific pore volumes, can improve the adhesion, abrasion resistance, and desulfurization characteristics of rapidly hydrated sorbent when used as the adhesive carrier particles. The adhesion ability of sorbent made from circulation ash is 67.4% higher than that of the existing rapidly hydrated sorbent made from fly ash, the abrasion ratio is 76.2% lower, and desulfurization ability is 14.1% higher. For sorbent made from chain boiler ash, the adhesion ability is increased by 74.7%, the desulfurization ability is increased by 30.3%, and abrasion ratio is decreased by 52.4%. The abrasion ratios of the sorbent made from circulation ash having various average diameters were all about 9%, and their desulfurization abilities were similar (approximately 150 mg/g).

  18. Roles of Electrolyte Characterization on Bauxite Electrolysis Desulfurization with Regeneration and Recycling

    Science.gov (United States)

    Gong, Xuzhong; Wang, Zhi; Zhuang, Siyuan; Wang, Dong; Wang, Yuhua; Wang, Mingyong

    2017-02-01

    The recycling of NaCl used as supporting electrolyte for bauxite electrolysis was carried out in this study. The electrolyte was regenerated by adding anhydrous CaCl2 into the solution after filtration, and effects of electrolyte characterization on bauxite electrolysis were examined by observing the change in desulfurization ratio and cell voltage. The results indicated that the desulfurization ratio increased with increasing recycling times of electrolyte. In the meantime, the increase in recycling times has led to the decrease in pH value as well as the increase in Fe ion concentration in the electrolyte, which were the main reasons for the increase in the desulfurization ratio with increasing recycling of electrolyte. The pH value of electrolyte after second electrolysis was lower than 1.5, and the desulfurization ratio increased obviously due to the increase in Fe3+ concentration and suppression of jarosite formation. The increase in Ca2+ concentration did not apparently change desulfurization ratio and anode surface activity. However, with Ca2+ addition, the cathode surface was covered by CaSO4·nH2O, thus resulting in the increase of cell voltage.

  19. Deep desulfurization of full range and low boiling diesel streams from Kuwait Lower Fars heavy crude

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, A.; Al-Hindi, A.; Stanislaus, A. [Petroleum and Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research (Kuwait)

    2007-09-15

    Information on feed quality and, in particular, various types of sulfur compounds present in the diesel (gas oil) fractions produced form different crudes and their HDS reactivities under different operating conditions are of a great value for the optimization and economics of the deep HDS process. This paper deals with deep desulfurization of gas oils obtained from a new heavy Kuwaiti crude, namely, Lower Fars (LF) which will be processed in the future at Kuwaiti refineries. Comparative studies were carried out to examine the extent of deep HDS, and the quality of diesel product using two gas oil feeds with different boiling ranges. The results revealed that the full range diesel feed stream produced from the LF crude was very difficult to desulfurize due to its low quality caused by high aromatics content (low feed saturation) together with the presence of high concentrations of organic nitrogen compounds and sterically hindered alkyl DBTs. The low-boiling range gas oil showed better desulfurization compared with the full range gas oil, however, deep desulfurization to 50 ppm sulfur was not achieved even at a temperature as high as 380 C for both feeds. The desulfurized diesel product from the low-boiling gas-oil feed was better in quality with respect to the S, N and PNA contents and cetane index than the full-range gas-oil feed. (author)

  20. Hot coal gas desulfurization with manganese-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, D.; Hepworth, M.T.

    1993-09-01

    The focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}/O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or zinc titanate. This presentation gives the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work which has been in progress for nine months is limited at this stage to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and induration to produce reactive pellets.

  1. Desulfurization of petroleum induced by ionization radiation: benzothiophene behavior

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luana S.; Calvo, Wilson A.P.; Duarte, Celina L., E-mail: lsandrade@ipen.br, E-mail: wapcalvo@ipen.br, E-mail: clduarte@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrodesulfurization (HDS) is currently the most common method used by refineries; this removes significantly sulfur compounds from petroleum fractions, however, is not highly effective for removing thiophene compounds such as benzothiophene, and generates high costs for the oil industry. Another factor, are the environmental laws, which over the years has become increasingly strict, especially regarding the sulfur content. This compound cause incalculable damage both to the industry and to the environment. Therefore new methods for petroleum desulfurization should be studied in order to minimize the impacts that these compounds cause. In the present study it was used ionizing radiation, a promising method of advanced oxidation in reducing sulfur compounds. The analysis were performed after purge and trap concentration of samples, followed by gas chromatography-mass spectrometry (GC-MS). Then benzothiophene samples with the same concentration from 27 mg.L{sup -1} to 139 mg.L{sup -1} were irradiated with different absorbed doses of radiation ranging from 1 kGy to 20 kGy in gamma irradiator Cobalt-60, Gammacell. These samples were analyzed by the same procedure used for the calibration curve, and the removals of benzothiophene after ionizing radiation treatment were calculated. It was observed that at higher doses there was a greater degradation of this compound and the formation of fragments, such as 1,2-dimethylbenzene and toluene, which may be removed by simple processes. (author)

  2. Deep desulfurization of diesel fuels by catalytic oxidation

    Institute of Scientific and Technical Information of China (English)

    YU Guoxian; CHEN Hui; LU Shanxiang; ZHU Zhongnan

    2007-01-01

    Reaction feed was prepared by dissolving dibenzothiophene (DBT),which was selected as a model organosulfur compound in diesel fuels,in n-octane.The oxidant was a 30 wt-% aqueous solution of hydrogen peroxide.Catalytic performance of the activated carbons with saturation adsorption of DBT was investigated in the presence of formic acid.In addition,the effects of activated carbon dosage,formic acid concentration,initial concentration of hydrogen peroxide,initial concentration of DBT and reaction temperature on the oxidation of DBT were investigated.Experimental results indicated that performic acid and the hydroxyl radicals produced are coupled to oxidize DBT with a conversion ratio of 100%.Catalytic performance of the combination of activated carbon and formic acid is higher than that ofouly formic acid.The concentration of formic acid,activated carbon dosage,initial concentration of hydrogen peroxide and reaction temperature affect the oxidative removal of DBT.The higher the initial concentration of DBT in the n-octane solution,the more difficult the deep desulfurization by oxidation is.

  3. Microbial communities associated with wet flue gas desulfurization systems

    Directory of Open Access Journals (Sweden)

    Bryan P. Brown

    2012-11-01

    Full Text Available Flue gas desulfurization (FGD systems are employed to remove SOx gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal fired electricity generation facilities were evaluated using culture-dependent and –independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems.

  4. KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Kwon

    2003-02-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of EX-SO3 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 110 {micro}m particles are reacted with 18000-ppm hydrogen sulfide at 350-550 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

  5. KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Kwon

    2002-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 130 mm particles are reacted with 18000-ppm hydrogen sulfide at 350-525 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

  6. Oxidative desulfurization of synthetic diesel using supported catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Caero, Luis Cedeno; Hernandez, Emiliano [UNICAT, Departamento de Ingenieria Quimica, Facultad de Quimica, UNAM. Cd. Universitaria, 04510 Mexico D.F. (Mexico); Pedraza, Francisco; Murrieta, Florentino [Programa de Tratamiento en Crudo Maya, Instituto Mexicano del Petroleo, Eje Central 152, 07730 Mexico D.F. (Mexico)

    2005-10-30

    In this work, an experimental study was carried out to obtain the reactivity of different organic sulfur compounds and to examine the effect of various parameters, such as temperature, solvent and the amount of oxidant reagent in oxidative desulfurization (ODS) reaction. The oxidation was performed through a vanadium based catalyst in the presence of hydrogen peroxide under mild reaction conditions, atmospheric pressure and temperature range of 303-343K. The sulfur compounds studied were: 2-methylthiophene (2-MT), 2,5-dimethylthiophene (2,5-DMT), benzothiophene (BT), dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). All of them are typical thiophenic sulfur compounds present in diesel fuels. A synthetic diesel was prepared with these compounds in hexadecane. The experimental results showed that oxidation reactivities decreased according to the following order: DBT>BT>4-MDBT>2-MT>2,5-DMT>4,6-DMDBT. A fraction of the S compounds removed from the diesel phase, was not transformed to its corresponding sulfone, under these experimental conditions. It is only removed as sulfur compound by extraction, without ODS reaction. The surplus amount of oxidant promoted the equilibrium reaction, but the thermal decomposition of oxidant and oxidation reactions produces water, which inhibits the ODS reactions. Therefore, the controlled addition of H{sub 2}O{sub 2} improves ODS reactivity of sulfur compounds.

  7. Evaluation of sulfur-reducing microorganisms for organic desulfurization. [Pyrococcus furiosus

    Energy Technology Data Exchange (ETDEWEB)

    Miller, K.W.

    1991-01-01

    Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

  8. Determination of Salt Impurities in MDEA Solution Used in Desulfurization of Highly Sulphurous Natural Gas

    Institute of Scientific and Technical Information of China (English)

    Liu Yucheng; Zhang Bo; Chen Mingyan; Wu Danni; Zhou Zheng

    2015-01-01

    The foaming phenomenon of N-methyldiethanolamine (MDEA) solution used in desulfurization process occurs frequently in the natural-gas puriifcation plant. The foaming phenomenon has a strong impact on operation of the process unit. The salt impurities are the main reason for causing the foaming of MDEA solution, so the full analysis of salt impuri-ties is necessary. A method for comprehensive analysis of salt impurities in MDEA solution used in desulfurization process was established. Anions and non-metallic cations of MDEA solution were determined by different conditions of ion chro-matograph, respectively. Metallic cations of the solution were detected by atomic absorption spectrophotometer with the N2O-C2H2 lfame absorption. The analytical results of salt impurities in the desulfurization solution can provide a theoretical basis for an accurate analysis of the factors affecting the foaming of MDEA to unveil further control measures.

  9. Oxidative Desulfurization of Diesel Fuel with Hydrogen Peroxide Using Na2WO4 s Catalyst

    Institute of Scientific and Technical Information of China (English)

    Sun Xin; Long Jun; Xu Benjing; Xie Chaogang

    2009-01-01

    Oxidative desulfurization was performed on Na2WO4 catalyst in the presence of hydrogen peroxide and acetic acid under mild reaction conditions (atmospheric pressure and temperature range of 293-343 K). Different organic com-pounds including benzothiophene (BT), dibenzothiophene (DBT), 4, 6-dimethyl dibenzothiophene (4, 6-DMDBT) were used to investigate the reactivity of this catalyst, and the effect of various parameters, such as temperature, solvents and the amount of oxidant reagent used in oxidative desulfurization reaction, was also examined. The results showed that the Na2WO4-H2O2 system was very effective for oxidative desulfurization, and the oxidation of BT, DBT and 4, 6-DMDBT was influ-enced by different parameters.

  10. Application of Pt/CdS for the Photocatalytic Flue Gas Desulfurization

    Directory of Open Access Journals (Sweden)

    Xiulan Song

    2012-01-01

    Full Text Available A photocatalytic flue gas desulfurization technology was designed to control emissions of SO2 from the combustion of fossil fuels. With the photocatalytic technology, we cannot only achieve the purpose of solving the problem of SO2 emissions but also realize the desire of hydrogen production from water. CdS loaded with Pt were selected as the model photocatalyst for the photocatalytic flue gas desulfurization. The factors influencing the rate of hydrogen production and ammonia sulfite solution oxidation were detected.

  11. Effect of Slag Chemistry on the Desulfurization Kinetics in Secondary Refining Processes

    Science.gov (United States)

    Kang, Jin Gyu; Shin, Jae Hong; Chung, Yongsug; Park, Joo Hyun

    2017-03-01

    Desulfurization behavior was investigated based on a wide slag composition and working temperature range. Moreover, the rate-controlling step (RCS) for desulfurization with regard to the ladle-refining conditions and the transition of the RCS by changing the slag composition was systematically discussed. The desulfurization ratio reached an equilibrium value within approximately 15 minutes irrespective of the CaO/Al2O3 (=C/A = 1.3 to 1.9) and CaO/SiO2 (=C/S = 3.8 to 6.3) ratios. However, the desulfurization behavior of less basic slags (C/A = 1.1 or C/S = 1.9) exhibited a relatively sluggish [S]-decreasing rate as a function of time. The equilibrium S partition ratio increased with an increase in slag basicity (C/A and C/S ratio), not only due to an increase in sulfide capacity but also due to a decrease in oxygen activity in the molten steel. There was a good correlation between the calculated and measured S partition ratios at various slag compositions. However, the measured S partition ratio increased by adding 5 pct CaF2, followed by a constant value. Multiphase slag exhibited a relatively slow desulfurization rate compared to that of fully liquid slag, possibly due to a decrease in the effective liquid slag volume, interfacial reaction area, and a relatively slow slag initial melting rate due to a high melting point. The activation energy of the desulfurization process was estimated to be 58.7 kJ/mol, from which it was proposed that the desulfurization reaction of molten steel via CaO-Al2O3-SiO2-MgO-CaF2 ladle slag was generally controlled by the mass transfer of sulfur in the metal phase. However, there was a transitional period associated with the rate-controlling mechanism due to a change in the physicochemical properties of the slag. For slag with a viscosity greater than about 1.1 dPa·s and an equilibrium S partition ratio lower than about 400, the overall mass-transfer coefficient was affected by the slag properties. Hence, it was theoretically and

  12. A biocatalytic approach to capuramycin analogues by exploiting a substrate permissive N-transacylase CapW.

    Science.gov (United States)

    Liu, Xiaodong; Jin, Yuanyuan; Cai, Wenlong; Green, Keith D; Goswami, Anwesha; Garneau-Tsodikova, Sylvie; Nonaka, Koichi; Baba, Satoshi; Funabashi, Masanori; Yang, Zhaoyong; Van Lanen, Steven G

    2016-04-28

    Using the ATP-independent transacylase CapW required for the biosynthesis of capuramycin-type antibiotics, we developed a biocatalytic approach for the synthesis of 43 analogues via a one-step aminolysis reaction from a methyl ester precursor as an acyl donor and various nonnative amines as acyl acceptors. Further examination of the donor substrate scope for CapW revealed that this enzyme can also catalyze a direct transamidation reaction using the major capuramycin congener as a semisynthetic precursor. Biological activity tests revealed that a few of the new capuramycin analogues have significantly improved antibiotic activity against Mycobacterium smegmatis MC2 155 and Mycobacterium tuberculosis H37Rv. Furthermore, most of the analogues are able to be covalently modified by the phosphotransferase CapP/Cpr17 involved in self resistance, providing critical insight for future studies regarding clinical development of the capuramycin antimycobacterial antibiotics.

  13. Enhancing the biocatalytic manufacture of the key intermediate of atorvastatin by focused directed evolution of halohydrin dehalogenase

    Science.gov (United States)

    Luo, Yu; Chen, Yangzi; Ma, Hongmin; Tian, ZhenHua; Zhang, Yeqi; Zhang, Jian

    2017-01-01

    Halohydrin dehalogenases (HHDHs) are biocatalytically interesting enzymes due to their ability to form C-C, C-N, C-O, and C-S bonds. One of most important application of HHDH was the protein engineering of HheC (halohydrin dehalogenase from Agrobacterium radiobacter AD1) for the industrial manufacturing of ethyl (R)-4-cyano-3-hydroxybutanoate (HN), a key chiral synthon of a cholesterol-lowering drug of atorvastatin. During our development of an alternative, more efficient and economic route for chemo-enzymatic preparation of the intermediate of atorvastatin, we found that the HheC2360 previously reported for HN manufacture, had insufficient activity for the cyanolysis production of tert-butyl (3 R,5 S)-6-cyano-3,5-dihydroxyhexanoate (A7). Herein, we present the focused directed evolution of HheC2360 with higher activity and enhanced biocatalytic performance using active site mutagenesis. Through docking of the product, A7, into the crystal structure of HheC2360, 6 residues was selected for combined active sites testing (CASTing). After library screening, the variant V84G/W86F was identified to have a 15- fold increase in activity. Time course analysis of the cyanolysis reaction catalyzed by this variant, showed 2- fold increase in space time productivity compared with HheC2360. These results demonstrate the applicability of the variant V84G/W86F as a biocatalyst for the efficient and practical production of atorvastatin intermediate. PMID:28165015

  14. Chemical and physical properties of dry flue gas desulfurization products.

    Science.gov (United States)

    Kost, David A; Bigham, Jerry M; Stehouwer, Richard C; Beeghly, Joel H; Fowler, Randy; Traina, Samuel J; Wolfe, William E; Dick, Warren A

    2005-01-01

    Beneficial and environmentally safe recycling of flue gas desulfurization (FGD) products requires detailed knowledge of their chemical and physical properties. We analyzed 59 dry FGD samples collected from 13 locations representing four major FGD scrubbing technologies. The chemistry of all samples was dominated by Ca, S, Al, Fe, and Si and strong preferential partitioning into the acid insoluble residue (i.e., coal ash residue) was observed for Al, Ba, Be, Cr, Fe, Li, K, Pb, Si, and V. Sulfur, Ca, and Mg occurred primarily in water- or acid-soluble forms associated with the sorbents or scrubber reaction products. Deionized water leachates (American Society for Testing and Materials [ASTM] method) and dilute acetic acid leachates (toxicity characteristic leaching procedure [TCLP] method) had mean pH values of >11.2 and high mean concentrations of S primarily as SO(2-)4 and Ca. Concentrations of Ag, As, Ba, Cd, Cr, Hg, Pb, and Se (except for ASTM Se in two samples) were below drinking water standards in both ASTM and TCLP leachates. Total toxicity equivalents (TEQ) of dioxins, for two FGD products used for mine reclamation, were 0.48 and 0.53 ng kg(-1). This was similar to the background level of the mine spoil (0.57 ng kg(-1)). The FGD materials were mostly uniform in particle size. Specific surface area (m2 g(-1)) was related to particle size and varied from 1.3 for bed ash to 9.5 for spray dryer material. Many of the chemical and physical properties of these FGD samples were associated with the quality of the coal rather than the combustion and SO2 scrubbing processes used.

  15. Bio-regeneration of π-complexation desulfurization adsorbents

    Institute of Scientific and Technical Information of China (English)

    LI; Wangliang; XING; Jianmin; XIONG; Xiaochao; SHAN; Guob

    2005-01-01

    The coupling of adsorption desulfurization and biodesulfurization is a new approach to produce clean fuels. Sulfur compounds are firstly adsorbed on adsorbents, and then the adsorbents are regenerated by microbial conversion. π-Complexation adsorbent, Cu(Ⅰ)-Y, was obtained by ion exchanging Y-type zeolite with Cu2+ and then by auto-reduction in helium at 450℃ for 3 h. Dibenzothiophene (DBT) was used as a model compound. The effects of cell concentration, volume of oil phase, the ratio of aqueous phase to adsorbent on DBT desorption by a bacterium were studied. The amounts of DBT desorbed and 2-HBP produced can be apparently increased with addition of n-octane. BDS activity can be improved by increasing cell concentration and the ratio of water-to-adsorbent. 89% of DBT desorbed from the adsorbents can be converted to 2-HBP within 6 h and almost 100% within 24 h, when the volume ratio of oil-to-water was 1/5 mL/mL, the cell concentration was 60 g·L-1, and the ratio of adsorbent-to-oil was 0.03 g·mL-1. The amount of 2-HBP produced was strongly dependent on the volume ratio of oil-to- water, cell concentration and amount of adsorbent. Adsorption capacity of the regenerated adsorbent is 95% that of the fresh one after being desorbed with Pseudomonas delafieldii R-8, washed with n-octane, dried at 100℃ for 24 h and auto-reduced in He.

  16. Adsorptive desulfurization and denitrogenation using metal-organic frameworks.

    Science.gov (United States)

    Ahmed, Imteaz; Jhung, Sung Hwa

    2016-01-15

    With the increasing worldwide demand for energy, utilization of fossil fuels is increasing proportionally. Additionally, new and unconventional energy sources are also being utilized at an increasing rate day-by-day. These sources, along with some industrial processes, result in the exposal of several sulfur- and nitrogen-containing compounds (SCCs and NCCs, respectively) to the environment, and the exposure is one of the greatest environmental threats in the recent years. Although, several methods were established for the removal of these pollutants during the last few decades, recent advancements in adsorptive desulfurization and denitrogenation (ADS and ADN, respectively) with metal-organic frameworks (MOFs) make this the most promising and remarkable method. Therefore, many research groups are currently involved with ADS and ADN with MOFs, and the results are improving gradually by modifying the MOF adsorbents according to several specific adsorption mechanisms. In this review, ADS and ADN studies are thoroughly discussed for both liquid-phase and gas-phase adsorption. The MOF modification procedures, which are important for improved adsorption, are also described. To improve the knowledge among the scientific community, it is very important to understand the detailed chemistry and mechanism involved in a chemical process, which also creates the possibility and pathway for further developments in research and applications. Therefore, the mechanisms related to the adsorption procedures are also discussed in detail. From this review, it can be expected that the scientific community will obtain an understanding of the current state of ADS and ADN, their importance, and some encouragement and insight to take the research knowledge base to a higher level.

  17. ENGINEERING EVALUATION OF HOT-GAS DESULFURIZATION WITH SULFUR RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    G.W. ROBERTS; J.W. PORTZER; S.C. KOZUP; S.K. GANGWAL

    1998-05-31

    Engineering evaluations and economic comparisons of two hot-gas desulfurization (HGD) processes with elemental sulfur recovery, being developed by Research Triangle Institute, are presented. In the first process, known as the Direct Sulfur Recovery Process (DSRP), the SO{sub 2} tail gas from air regeneration of zinc-based HGD sorbent is catalytically reduced to elemental sulfur with high selectivity using a small slipstream of coal gas. DSRP is a highly efficient first-generation process, promising sulfur recoveries as high as 99% in a single reaction stage. In the second process, known as the Advanced Hot Gas Process (AHGP), the zinc-based HGD sorbent is modified with iron so that the iron portion of the sorbent can be regenerated using SO{sub 2} . This is followed by air regeneration to fully regenerate the sorbent and provide the required SO{sub 2} for iron regeneration. This second-generation process uses less coal gas than DSRP. Commercial embodiments of both processes were developed. Process simulations with mass and energy balances were conducted using ASPEN Plus. Results show that AHGP is a more complex process to operate and may require more labor cost than the DSRP. Also capital costs for the AHGP are higher than those for the DSRP. However, annual operating costs for the AHGP appear to be considerably less than those for the DSRP with a potential break-even point between the two processes after just 2 years of operation for an integrated gasification combined cycle (IGCC) power plant using 3 to 5 wt% sulfur coal. Thus, despite its complexity, the potential savings with the AHGP encourage further development and scaleup of this advanced process.

  18. Flue gas desulfurization by rotating beds. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, N.; Keyvani, M.; Coskundeniz, A.

    1992-12-01

    The operating and mass transfer characteristics of rotating foam metal beds were studied to determine the potential for flue gas desulfurization. This is a final technical report on the work supported by DOE {number_sign}FG22-87-PC79924. The report is divided into two sections, Part 1 deals primarily with the operating characteristics of rotating beds, and Part 2 covers the mass transfer characteristics of S0{sub 2} absorption in water-lime slurries. Rotating foam metal beds are in essence packed towers operated in high gravitational fields. The foam metal bed is in the form of a cylindrical donut, or torus, and is rotated to produced the high centrifugal forces. The liquid phase enters the bed at the inner surface of the torus and is pulled by the field through the bed. Gas flows countercurrent to the liquid. The bed packing can have a very large specific surface areas and not flood. Possible benefits include much smaller height of a transfer unit resulting in smaller equipment and supporting structures, reduced solvent inventory, faster response with improved process control, reduced pressure drop, and shorter startup and shut-down times. This work is concerned broadly with the operating characteristics of rotating beds, the objectives being to (1) determine the pressure drop through the rotating bed; (2) determine the power required to operate the beds, (3) investigate the residence time distribution of the liquid phase in the beds; and (4) determine the mass transfer coefficients of S0{sub 2} absorption. Three packings of differing specific surface areas were studied, with areas ranging from 656 to 2952 m{sub 2}/m{sub 3}. Liquid flow rates to 36 kg/s*m{sub 2}, gas flow rate to 2.2 kg/s*m{sub 2}, and gravitational fields to 300 g were covered in this study.

  19. Desulfurization of dibenzothiophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil

    Institute of Scientific and Technical Information of China (English)

    Ashutosh Bahuguna; Madhuri K. Lily; Ashok Munjal; Ravindra N. Singh; Koushalya Dangwal

    2011-01-01

    A new bacterial strain DMT-7 capable of selectively desulfurizing dibenzothiophene (DBT) was isolated from diesel contaminated soil.The DMT-7 was characterized and identified as Lysinibacillus sphaericus DMT-7 (NCBI GenBank Accession No.GQ496620) using 16S rDNA gene sequence analysis.The desulfurized product of DBT, 2-hydroxybiphenyl (2HBP), was identified and confirmed by high performance liquid chromatography analysis and gas chromatography-mass spectroscopy analysis respectively.The desulfurization kinetics revealed that DMT-7 started desulfurization of DBT into 2HBP after the lag phase of 24 hr, exponentially increasing the accumulation of 2HBP up to 15 days leading to approximately 60% desulfurization of the DBT.However, further growth resulted into DBT degradation.The induced culture of DMT-7 showed shorter lag phase of 6 hr and early onset of stationary phase within 10 days for desulfurization as compared to that of non-induced culture clearly indicating the inducibility of the desulfurization pathway of DMT-7.In addition, Lysinibacillus sphaericus DMT-7 also possess the ability to utilize broad range of substrates as sole source of sulfur such as benzothiophene, 3,4-benzo DBT, 4,6-dimethyl DBT, and 4,6-dibutyl DBT.Therefore, Lysinibacillus sphaericus DMT-7 could serve as model system for efficient biodesulfurization of diesel and petrol.

  20. Desulfurization of dibenzothiophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil.

    Science.gov (United States)

    Bahuguna, Ashutosh; Lily, Madhuri K; Munjal, Ashok; Singh, Ravindra N; Dangwal, Koushalya

    2011-01-01

    A new bacterial strain DMT-7 capable of selectively desulfurizing dibenzothiophene (DBT) was isolated from diesel contaminated soil. The DMT-7 was characterized and identified as Lysinibacillus sphaericus DMT-7 (NCBI GenBank Accession No. GQ496620) using 16S rDNA gene sequence analysis. The desulfurized product of DBT, 2-hydroxybiphenyl (2HBP), was identified and confirmed by high performance liquid chromatography analysis and gas chromatography-mass spectroscopy analysis respectively. The desulfurization kinetics revealed that DMT-7 started desulfurization of DBT into 2HBP after the lag phase of 24 hr, exponentially increasing the accumulation of 2HBP up to 15 days leading to approximately 60% desulfurization of the DBT. However, further growth resulted into DBT degradation. The induced culture of DMT-7 showed shorter lag phase of 6 hr and early onset of stationary phase within 10 days for desulfurization as compared to that of non-induced culture clearly indicating the inducibility of the desulfurization pathway of DMT-7. In addition, Lysinibacillus sphaericus DMT-7 also possess the ability to utilize broad range of substrates as sole source of sulfur such as benzothiophene, 3,4-benzo DBT, 4,6-dimethyl DBT, and 4,6-dibutyl DBT. Therefore, Lysinibacillus sphaericus DMT-7 could serve as model system for efficient biodesulfurization of diesel and petrol.

  1. Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel

    Directory of Open Access Journals (Sweden)

    Swapnil A. Dharaskar

    2016-07-01

    Full Text Available In the present paper the experimental data of extractive desulfurization of liquid fuel using 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]BF4 have been presented. The data of FTIR, 1H NMR and 13C NMR have been discussed for the molecular confirmation of synthesized [BMIM]BF4. Further, the thermal properties, conductivity, solubility, and viscosity analysis of the [BMIM]BF4 were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of ionic liquid without regeneration on dibenzothiophene removal of liquid fuel were presented. In extractive desulfurization process, the removal of dibenzothiophene in n-dodecane was 73.02% for mass ratio of 1:1 in 30 min at 30 °C under the mild reaction conditions. The ionic liquids could be reused four times without a significant decrease in activity. Also, the desulfurizations of real fuels, multistage extraction were presented. The data and results provided in the present paper explore the significant insights of imidazoled ILs for extractive desulfurization of liquid fuels.

  2. Extractive Deep Desulfurization of Liquid Fuels Using Lewis-Based Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Swapnil A. Dharaskar

    2013-01-01

    Full Text Available A new class of green solvents, known as ionic liquids (ILs, has recently been the subject of intensive research on the extractive desulfurization of liquid fuels because of the limitation of traditional hydrodesulfurization method. In present work, eleven Lewis acid ionic liquids were synthesized and employed as promising extractants for deep desulfurization of the liquid fuel containing dibenzothiophene (DBT to test the desulfurization efficiency. [Bmim]Cl/FeCl3 was the most promising ionic liquid and performed the best among studied ionic liquids under the same operating conditions. It can remove dibenzothiophene from the model liquid fuel in the single-stage extraction process with the maximum desulfurization efficiency of 75.6%. It was also found that [Bmim]Cl/FeCl3 may be reused without regeneration with considerable extraction efficiency of 47.3%. Huge saving on energy can be achieved if we make use of this ionic liquids behavior in process design, instead of regenerating ionic liquids after every time of extraction.

  3. Synthesis, characterization, and application of 1-butyl-3-methylimidazolium thiocyanate for extractive desulfurization of liquid fuel.

    Science.gov (United States)

    Dharaskar, Swapnil A; Wasewar, Kailas L; Varma, Mahesh N; Shende, Diwakar Z

    2016-05-01

    1-Butyl-3-methylimidazolium thiocyanate [BMIM]SCN has been presented on extractive desulfurization of liquid fuel. The FTIR, (1)H-NMR, and C-NMR have been discussed for the molecular confirmation of synthesized [BMIM]SCN. Further, thermal, conductivity, moisture content, viscosity, and solubility analyses of [BMIM]SCN were carried out. The effects of time, temperature, sulfur compounds, ultrasonication, and recycling of [BMIM]SCN on removal of dibenzothiophene from liquid fuel were also investigated. In extractive desulfurization, removal of dibenzothiophene in n-dodecane was 86.5 % for mass ratio of 1:1 in 30 min at 30 °C under the mild process conditions. [BMIM]SCN could be reused five times without a significant decrease in activity. Also, in the desulfurization of real fuels, multistage extraction was examined. The data and results provided in the present paper explore the significant insights of imidazolium-based ionic liquids as novel extractant for extractive desulfurization of liquid fuels.

  4. Decreasing phosphorus loss in tile-drained landscapes using flue gas desulfurization gypsum

    Science.gov (United States)

    Elevated phosphorus (P) loading from agricultural non-point source pollution continues to impair inland waterbodies throughout the world. The application of flue gas desulfurization (FGD) gypsum to agricultural fields has been suggested to decrease P loading because of its high calcium content and P...

  5. Ultra-deep Desulfurization of Diesel Highlighted as 2004 Major Advance in Green Chemistry

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The sulfur levels in diesel have been increasingly restricted in the world out of environmental considerations. Environmental regulations to be applied by 2006 in Europe, the US and other countries, for instance, limit the level to less than 15 ppm. To meet these stringent conditions, novel desulfurization processes are needed to ensure sustainable and economically acceptable technology.

  6. A Novel Biomass Supported Na2CO3 System for Flue Gas Desulfurization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The breakthrough and stoichiometric SO2 adsorption efficiencies of a biomass supported Na2CO3 system (80 wt %Na2CO3/straw) have reached 48.9 % and 80.6 % respectively at a desulfurization temperature of 80(C.

  7. High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, P.A.; Ho, K.K.; Abbasian, J.; Lau, F.S.

    2002-09-20

    The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.

  8. Adsorptive Desulfurization of JP-8 Fuel Using Ag+/Silica Based Adsorbents at Room Temperature

    Science.gov (United States)

    2012-09-01

    cell-quality hydrogen is liquid phase desulfurization (figure 1). Any organic sulfur compounds in the fuel are converted into hydrogen sulfide in...the fuel processing reformer, resulting in poisoning the reformation catalysts as well as poisoning downstream operations. Therefore, it is essential...the reformation catalysts from potential poisoning (1). Figure 1. Schematic diagram of logistic fuel processing. Adsorbents with a high

  9. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  10. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    Science.gov (United States)

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  11. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    1999-10-14

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas The effort during the reporting period has been devoted to development of an advanced hot-gas process that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur

  12. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    2000-04-17

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to testing the FHR-32 sorbent. FHR-32 sorbent was tested for 50 cycles of sulfidation in a laboratory scale reactor.

  13. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    1999-04-26

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3% of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to development of optimized low-cost zinc-oxide-based sorbents for Sierra-Pacific. The sorbent surface were modified to prevent

  14. Results of testing various natural gas desulfurization adsorbents

    Science.gov (United States)

    Israelson, Gordon

    2004-06-01

    This article presents the results of testing many commercially available and some experimental sulfur adsorbents. The desired result of our testing was to find an effective method to reduce the quantity of sulfur in natural gas to less than 100 ppb volume (0.1 ppm volume). An amount of 100 ppb sulfur is the maximum limit permitted for Siemens Westinghouse solid oxide fuel cells (SOFCs). The tested adsorbents include some that rely only on physical adsorption such as activated carbon, some that rely on chemisorption such as heated zinc oxide, and some that may use both processes. The testing was performed on an engineering scale with beds larger than those used for typical laboratory tests. All tests were done at about 3.45 barg (50 psig). The natural gas used for testing was from the local pipeline in Pittsburgh and averaged 6 ppm volume total sulfur. The primary sulfur species were dimethyl sulfide (DMS), isopropyl mercaptan, tertiary butyl mercaptan, and tetrahydrothiophene. Some tests required several months to achieve a sulfur breakthrough of the bed. It was found that DMS always came through a desulfurizer bed first, independent of adsorption process. Since the breakthrough of DMS always exceeds the 100 ppb SOFC sulfur limit before other sulfurs were detected, an index was created to rate the adsorbents in units of ppm DMS × absorbent bed volume. This index is useful for calculating the expected adsorbent bed lifetime before sulfur breakthrough when the inlet natural gas DMS content is known. The adsorbents that are included in these reports were obtained from suppliers in the United States, the Netherlands, Japan, and England. Three activated carbons from different suppliers were found to have identical performance in removing DMS. One of these activated carbons was operated at four different space velocities and again showed the same performance. When using activated carbon as the basis of comparison for other adsorbents, three high-performance adsorbents

  15. Selection of Chelated Fe (III)/Fe (II) Catalytic Oxidation Agents for Desulfurization Based on Iron Complexation Method

    Institute of Scientific and Technical Information of China (English)

    Luo Ying; Liu Youzhi; Qi Guisheng; Guo Huidong; Zhu Zhengfeng

    2014-01-01

    Optimization of factors inlfuencing the experiments on reactions involving 8 different chelating agents and sol-uble Fe (III)/Fe (II) salts was carried out to yield chelated iron complexes. A combination of optimized inlfuencing factors has resulted in a Fe chelating capacity of the iron-based desulfurization solution to be equal to 6.83-13.56 g/L at a redox potential of 0.185-0.3. The desulfurization performance of Fe (III)/Fe (II) chelating agents was investigated on a simulated sulfur-containing industrial gas composed of H2S and N2 in a cross-lfow rotating packed bed. Test results have revealed that the proposed iron-based desulfurization solution showed a sulfur removal efifciency of over 99%along with a Fe chelating capacity exceeding 1.35 g/L. This desulfurization technology which has practical application prospect is currently in the phase of commercial scale-up study.

  16. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. [Institute of Gas Technology, Chicago, IL (United States); Gidaspow, D.; Gupta, R.; Wasan, D.T. [Illinois Inst. of Tech., Chicago, IL (United States); Pfister, R.M.: Krieger, E.J. [Ohio State Univ., Columbus, OH (United States)

    1992-05-01

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  17. Development of Desulfurization Process Technology in Combinative Methanol Process%联醇工艺中脱硫工艺技术的发展

    Institute of Scientific and Technical Information of China (English)

    颜鑫

    2012-01-01

    Author has discussed and compared the technical principle and process feature for tannin extract dcsulfurization method, ADA desulfuriza- tion process, PDS desulfurization process, Zinc oxide desulfurization process,iron-oxide desulfurization process, active carbon desulfurization process, Fe-Mo hydrogenation reformation method desulfurization process, organic sulfur hydrolysis desulfurization process, which were adopted during process of raw material gas desulfurization in combinative methanol process ; has presented that making the wet desulfurization process and dry desulfurization process was reasonably combined, and in combination with selecting idea for desulfurization process of organic sulfur hydrolysis unit; has summarized the important role in combinative methanol production process for desulfurization process of "desulfurization in 3 times and reformation in 2 times".%论述和对比了联醇工艺中原料气脱硫所采用的栲胶脱硫工艺、ADA脱硫工艺、PDS脱硫工艺、氧化锌脱硫工艺、氧化铁脱硫工艺、活性炭脱硫工艺、铁钼加氢转化法脱硫工艺、有机硫水解脱硫工艺的技术原理和工艺特点;提出了将湿法脱硫与干法脱硫工艺进行合理组合,并结合有机硫水解装置的脱硫工艺选择理念;总结了“3次脱硫2次转化”脱硫工艺在联醇生产中的重要作用。

  18. Economic assessment of advanced flue gas desulfurization processes. Final report. Volume 2. Appendices G, H, and I

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final report, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluation, was completed in October 1980. A slightly modified and condensed version of that report appears as Appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  19. A complementary and synergistic effect of Fe-Zn binary metal oxide in the process of high-temperature fuel gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    翁斯灏; 吴幼青

    1996-01-01

    57Fe Mossbauer spectroscopy was used to investigate the evolution of Fe-Zn binary metal oxide sorbent in the process of high-temperature fuel gas desulfurization. The results of phase analyses show that Fe-Zn binary metal oxide sorbent is rapidly reduced in hot fuel gas and decomposed to new phases of highly dispersed microcrystalline elemental iron and zinc oxide, both of which become the active desulfurization constituents. A complementary and synergistic effect between active iron acting as a high sulfur capacity constituent and active zinc oxide acting as a deep refining desulfurization constituent exists in this type of sorbent for hot fuel gas desulfurization.

  20. Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems.

    Science.gov (United States)

    Petschacher, Barbara; Nidetzky, Bernd

    2016-10-10

    Human milk oligosaccharides (HMOs) constitute a class of complex carbohydrates unique to mother's milk and are strongly correlated to the health benefits of breastfeeding in infants. HMOs are important as functional ingredients of advanced infant formula and have attracted broad interest for use in health-related human nutrition. About 50% of the HMOs structures contain l-fucosyl residues, which are introduced into nascent oligosaccharides by enzymatic transfer from GDP-l-fucose. To overcome limitation in the current availability of fucosylated HMOs, biotechnological approaches for their production have been developed. Functional expression of the fucosyltransferase(s) and effective supply of GDP-l-fucose, respectively, are both bottlenecks of the biocatalytic routes of synthesis. Strategies of in vitro and in vivo production of fucosylated HMOs are reviewed here. Besides metabolic engineering for enhanced HMO production in whole cells, the focus is on the characteristics and the heterologous overexpression of prokaryotic α1,2- and α1,3/4-fucosyltransferases. Up to 20g/L of fucosylated HMOs were obtained in optimized production systems. Optimized expression enabled recovery of purified fucosyltransferases in a yield of up to 45mg/L culture for α1,2-fucosyltransferases and of up to 200mg protein/L culture for α1,3/4-fucosyltransferases.

  1. Ultrasensitive photoelectrochemical immunoassay of antibody against tumor-associated carbohydrate antigen amplified by functionalized graphene derivates and enzymatic biocatalytic precipitation.

    Science.gov (United States)

    Zhang, Xiaoru; Liu, Mingshuai; Mao, Yaning; Xu, Yunpeng; Niu, Shuyan

    2014-09-15

    Tumor-associated carbohydrate antigens (TACAs) are often found on the surface of cancer cells. The determination of the carbohydrate components of glycoconjugates is challenging because of the chemical complexity of glycan chains. Through monitoring corresponding antibody, we can get a good solution for clinical diagnosis. Here breast tumor-associated carbohydrate antigens Tn were used as a model and a new photoelectrochemical biosensor for ultrasensitive detection of antibody against Tn was developed. To enhance the sensitivity, both graphene oxide and graphene were used during the construction of biosensor. Through the formation of immunocomplex and the insoluble biocatalytic precipitation (BCP) product, photocurrent intensity was decreased greatly and the antibody could be detected from 0.5 to 500 pg/mL with a detection limit of 1.0×10(-13) g/mL. At the same time, the developed biosensor showed acceptable selectivity and could be used in the complex matrix. Compared with the traditional glycoarray method, this PEC method is more sensitive (5 orders of magnitude), and thus provides another platform to monitor the immune response to carbohydrate epitopes at different stages during differentiation, metastasis, or treatment.

  2. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Energy Technology Data Exchange (ETDEWEB)

    Braganca, S.R.; Castellan, J.L. [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2009-04-15

    A metamorphic limestone and a dolomite were employed as SO{sub 2} sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidized bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O{sub 2} level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (similar to 60%) for Ca/S = 2 was obtained.

  3. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Braganca; J.L. Castellan [Federal University of Rio Grande do Sul, Porto Alegre (Brazil)

    2009-07-01

    A metamorphic limestone and a dolomite were employed as SO{sub 2} sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidised bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O{sub 2} level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (about 60%) for Ca/S = 2 was obtained. 25 refs., 5 figs.

  4. Low sulfur content hot reducing gas production using calcium oxide desulfurization with water recycle

    Energy Technology Data Exchange (ETDEWEB)

    Feinman, J.; Mcgreal, J.E.

    1982-03-23

    A process and apparatus are claimed for producing a low sulfur content, hot reducing gas by desulfurizing hot reducing gas. This is done in the following manner; by contacting the sulfur-bearing hot reducing gas with a bed of a particulate calcium oxide desulfurizing agent to thereby produce a product gas stream and a byproduct calcium sulfide compositions recovering sulfur from the calcium sulfide composition by contacting the calcium sulfide composition with hot liquid water at a temperature and corresponding pressure sufficient to maintain steam in the system and to thereby convert the sulfide to calcium hydroxide and hydrogen sulfide and to produce a liquid water stream containing sulfur; combining the sulfur containing water stream with a fresh water stream and recycling this water stream for contacting the calcium sulfide composition. Preferably water vapor produced in the contacting step is condensed and returned to the system in the final stage of contacting the calcium sulfide composition with hot liquid water.

  5. Hydrogen sulfide removal from livestock biogas by a farm-scale bio-filter desulfurization system.

    Science.gov (United States)

    Su, J-J; Chang, Y-C; Chen, Y-J; Chang, K-C; Lee, S-Y

    2013-01-01

    A farm-scale biogas desulfurization system was designed and tested for H2S removal efficiency from livestock biogas. This work assesses the H2S removal efficiency of a novel farm-scale biogas bio-desulfurization system (BBS) operated for 350 days on a 1,000-head pig farm. Experimental data demonstrated that suitable humidity and temperature can help sulfur-oxidizing bacteria to form active bio-films on the bio-carriers. The daily average removal rate increased to 879.16 from 337.75 g-H2S/d with an average inlet H2S concentration of 4,691 ± 1,532 mg/m(3) in biogas. Thus, the overall (0-350 days) average H2S removal efficiency exceeded 93%. The proposed BBS overcomes limitations of H2S in biogas when utilizing pig farm biogas for power generation and other applications.

  6. Feasibility of an innovative integrated process of simultaneous desulfurization and denitrification for high strength wastewater

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-jie; LIU Chun-shuang; REN Nan-qi; DENG Xu-liang; WAN Chun-li; YU Zhen-guo; XU Xin

    2008-01-01

    An anaerobic expanding-bed reactor was adopted to investigate the feasibility of an innovative inte-grated process of simultaneous desulfurization and denitrification (SDD) for high strength wastewater. In the re-actor, beterotrophic bacteria (including sulfate reducing bacterium and denitrifying bacteria) and autotrophic bacteria (including Thiobacillus denitrificans) cooperated together by incubating and enriching functional bac-teria on different carriers in the anaerobic activated sludge. Synthetic wastewater with high concentrations of sul-fate and nitrate was employed. The experimental results showed that the removal efficiency of sulfate and nitrate was above 85%, elemental sulfur was observed while nitrate was absent in effluent. The balance of sulfur, ni-trogen and electron was discussed respectively, which indicated that the integrated SDD process could be actual-ized. These results might provide a guidance to further investigate the key factors affecting the integrated SDD process and to improve the efficiency of desulfurization and denitrification in wastewater treatment.

  7. Deep Extractive Desulfurization of Gasoline with Ionic Liquids Based on Metal Halide

    Institute of Scientific and Technical Information of China (English)

    Wang Haojie; He Jianxun; Yang Cairong; Zhang Hang

    2014-01-01

    Ionic liquid [Et3NH]Cl-FeCl3/CuCl was synthesized by mixing [Et3NH]Cl, anhydrous FeCl3 and anhydrous CuCl, and the desulfurization activity of this ionic liquid was tested. It exhibited remarkable ability in effective desulfurization of model gasoline (thiophene in n-octane) and lfuid catalytic cracking (FCC) gasoline, and the sulfur removal of thiophene in model oil (V(IL):V(oil)=0.08) could reach 93.9%in 50 min at 50℃. Low-sulfur (﹤10μg/g) FCC gasoline could be obtained after three extraction runs at an ionic liquid/oil volume ratio of 0.1, with the yield of FCC gasoline reaching 94.3%. The ionic liquid could be recycled 5 times with merely a slight decrease in activity.

  8. Fuel gas desulfurization at elevated temperatures with copper-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Lau, F.S. [Inst. of Gas Technology, Des Plaines, IL (United States); Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States); Honea, F.I. [Illinois Clean Coal Inst., Carbondale, IL (United States)

    1995-12-31

    Zinc-based sorbents, the leading candidates for hot gas cleanup, have been shown to suffer from zinc volatilization at elevated temperatures, leading to sorbent deterioration, increasing sorbent replacement costs. Copper-based sorbents, because of the high melting point of the metal, do not suffer from this problem. However, bulk copper oxide is generally reduced to metallic copper in reducing fuel gas environments leading to thermodynamic limitations, resulting in insufficient level of desulfurization. The reduction stability and therefore the desulfurization performance of copper oxide sorbents can be significantly improved by combining copper oxide with other oxides in a supported form or as bulk mixed metal oxides. This paper addresses the results of a systematic study of several novel copper-based sorbents for hot gas cleanup application. The evaluation criteria included reduction stability, sulfidation reactivity and regenerability at elevated temperatures. The performance of the most promising sorbent in long duration cycle sulfidation-regeneration tests is also presented.

  9. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Directory of Open Access Journals (Sweden)

    S. R. Bragança

    2009-06-01

    Full Text Available A metamorphic limestone and a dolomite were employed as SO2 sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidized bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O2 level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (~60% for Ca/S = 2 was obtained.

  10. Enzymatic desulfurization of coal. Second quarterly report, October 1--December 15, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, J.K. [Boston Univ., MA (United States). School of Medicine; Kitchell, J.P. [Holometrix, Inc., Cambridge, MA (United States)

    1988-12-15

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of ``model`` organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  11. Experimental Study on Demercurization Performance of Wet Flue Gas Desulfurization System

    Institute of Scientific and Technical Information of China (English)

    BAO, Jingjing; YANG, Linjun; YAN, Jinpei

    2009-01-01

    The demercurization performance of wet flue gas desulfurization (WFGD) system was investigated by measuring mercury concentrations at the inlet and outlet of WFGD system with a QM201H mercury analyzer. The selected desulfurizer included NH_3·H_2O, NaOH, Na_2CO_3, Ca(OH)_2 and CaCO_3. The influences of adding oxidant and coagulant such as KMnO_4, Fenton reagent, K_2S_2O_8/CuSO_4 and Na_2S into desulfurization solutions were also studied.The results show that elemental mercury is the main component of gaseous mercury in coal-fired flue gas, and the proportion of oxidized mercury is less than 36%. Oxidized mercury could be removed by WFGD system efficiently,and the removal efficiency could amount to 81.1%-92.6%. However, the concentration of elemental mercury slightly increased at the outlet of WFGD as a result of its insolubility and re-emission. Therefore, the removal efficiency of gaseous mercury is only 13.3%-18.3%. The mercury removal efficiency of WFGD system increased with increasing the liquid-gas ratio. In addition, adding KMnO_4, Fenton reagent, K_2S_2O_8/CuSO_4 and Na_2S into desulfurization solutions could increase the mercury removal efficiency obviously. Various additives have different effects, and Na_2S is demonstrated to be the most efficient, in which a mercury removal efficiency of 67.2% can be reached.

  12. Development of regenerable copper-based sorbents for hot gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Hill, A.H. [Inst. of Gas Technology, Des Plaines, IL (United States); Honea, F.I. [Illinois Clean Coal Inst., Carbondale, IL (United States)

    1996-12-31

    The implementation of hot gas cleanup systems heavily depends on the development of regenerable sorbents for removal of sulfur-containing species (mainly H{sub 2}S) from the fuel gas stream at elevated temperatures (i.e., >350 C) from levels of several thousand ppm down to a few ppm, over many sulfidation/regeneration cycles. In addition, these sorbents must have high sulfur capacity, good sulfidation kinetics, good mechanical strength, and good chemical and structural stability over multicycle testing. Zinc-based sorbents, such as zinc titanates, are the leading contenders for hot gas desulfurization. However, these sorbents have been shown to suffer from zinc volatilization at elevated temperatures, resulting in sorbent deterioration and losses through attrition, loss of reactivity, leading to increasing sorbent replacement costs and overall cost of electricity. Copper-based sorbents do not suffer from volatilization problems due to the high melting point of the metal. However, bulk copper oxide is easily reduced to elemental copper in a reducing fuel gas environment, which in turn results in insufficient level of desulfurization. Fortunately, the sorbent desulfurization performance can be greatly enhanced by combining copper oxide with other oxides to minimize or prevent sorbent reduction during the sulfidation stage. This paper reports on research conducted to-date on the development of copper-based sorbents for hot coal gas desulfurization. The results of packed-bed experiments carried out for the determination of optimum operating conditions and for the evaluation of the long-term durability and regenerability of selected copper chromite sorbents are presented and discussed.

  13. Desulfurization of Hydrocarbon Fuels at Ambient Conditions Using Supported Silver Oxide-Titania Sorbents

    Science.gov (United States)

    2010-12-13

    reaction pathways for hydrotreating [3]. Adsorptive desulfurizing units can provide low sulfur fuel for sulfur intolerant systems such as fuel...considered to be an alternative to process intensification of hydrotreating processes to cope with tightening sulfur regulations which calls for higher...remove the sulfur species that represent the hardest species to hydrotreat may be operated in tandem to traditional hydrotreating units. Large scale

  14. Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jun Cheng; Junhu Zhou; Jianzhong Liu; Xinyu Cao; Kefa Cen [Zhejiang University, Hangzhou (China). State Key Laboratory of Clean Energy Utilization

    2009-05-15

    To recycle industrial wastes and reduce SO{sub 2} pollutant emission in coal combustion, the mineralogical compositions, porosity structures, surface morphologies, and desulfurization properties of three calcium and sodium industrial wastes were investigated via X-ray diffraction (XRD), porosimeter, scanning electron microscopy (SEM), and a fixed-bed reactor. (1) White lime mud (WLM) mainly composed of CaCO{sub 3} with Na{sub 2}O and K{sub 2}O impurities has smaller CaCO{sub 3} particles and a higher surface area than limestone. But calcined WLM has larger CaO particles and a lower surface area than limestone calcined at 1200{sup o}C for 300 s. (2) Calcium carbide residue (CCR) mainly composed of Ca(OH)2, has the highest surface area and smaller Ca(OH){sub 2} particles than the CaCO{sub 3} particles in WLM. Its surface area monotonously and dramatically decreases at 1200{sup o}C for 300 s, but the sintered CaO particles are still smaller than those in the limestone. (3) When brine sludge (BS), mainly composed of NaCl and CaCO{sub 3}, is heated at 1200{sup o}C for 300 s, the NaCl/CaO eutectic solvent facilitates the aggregation of some complex composites to form many larger particles. (4) WLM gives the highest desulfurization efficiency of 80.4% at 1000{sup o}C and 65.0% at 1100{sup o}C in coal combustion. Combined CCR and limestone give a synergistic desulfurization efficiency of 45.8% at 1200{sup o}C. BS with a molar ratio of Na/Ca at 1:15 effectively promotes the synergistic desulfurization efficiency of combined CCR and limestone to a peak of 54.9% at 1200{sup o}C. 23 refs., 10 figs., 3 tabs.

  15. Oxidative Desulfurization of kerosene in the presence of iron chlorideionic liquid catalyst and ultrasound waves

    Directory of Open Access Journals (Sweden)

    Maryam Sadat Seyedi

    2015-12-01

    Full Text Available Oxidative Desulfurization of kerosene refinery in Tehran with sulfur content of 0/293% with iron chloride - hydrogen peroxide and ultrasonic liquid catalysts in the presence of acetic acid - formic acid and an oxidizinghydrogen peroxide has been studied. The effects of operating parameters such as temperature, reaction time, mole ratio of moles of sulfur oxidation (no/ ns,mole ratio of moles of acid per mol of sulfur (nacid/ ns (on the desulfurization of kerosene checked(the molar ratio of oxidant to 15-40 and 20-80 mole ratio of sulfur to sulfur acidThe results showed that the optimal conditions for the removal of sulfur from iron chloride catalyst system kerosene by 93% and sulfur content of residual 128 ppm is obtained. The effect of ultrasonic waves on system performance oxidationwas studied, the results showed that the percentage of desulfurization systems, oxidation of acetic acid- hydrogen peroxide in combination with ultrasound (96% and without ultrasound was 93%, which indicates improved performance oxidation The presence of ultrasound.

  16. Desulfurization of chemical waste gases and flue gases with economic utilization of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1983-09-01

    The technological state of recovery of sulfur dioxide from waste and flue gases in the GDR is discussed. Two examples of plants are presented: a pyrosulfuric acid plant in Coswig, recovering sulfur dioxide from gases by absorption with sodium hydroxide, followed by catalytic oxidation to sulfur trioxide, and a plant for waste sulfuric acid recovery from paraffin refining, where the diluted waste acid is sprayed into a furnace and recovered by an ammonium-sulfite-bisulfite solution from the combustion gas (with 4 to 10% sulfur dioxide content). Investment and operation costs as well as profits of both plants are given. Methods employed for power plant flue gas desulfurization in major industrial countries are further assessed: about 90% of these methods uses wet flue gas scrubbing with lime. In the USA flue gas from 25,000 MW of power plant capacity is desulfurized. In the USSR, a 35,000 m/sup 3//h trial plant at Severo-Donetzk is operating using lime, alkali and magnesite. At the 150 MW Dorogobush power plant in the USSR a desulfurization plant using a cyclic ammonia process is under construction.

  17. Preparation of Ag/TiO2-zeolite adsorbents, their desulfurization performance, and benzothiophene adsorption isotherms

    Science.gov (United States)

    Song, Hua; Yang, Gang; Song, Hua-Lin; Wang, Deng; Wang, Xue-Qin

    2017-02-01

    A series of Ag/TiO2-NaY (TY) composite adsorbents were successfully prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, BET, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) techniques. The effects of TiO2 and Ag contents on the structure and desulfurization performance of NaY zeolite were studied. The results show that anatase phase is the main form of TiO2 in AgTY adsorbent, and the Y-zeolite framework remained unchanged. AgTY with 6 wt % of Ag and 50 wt % of TiO2 exhibited the best desulfurization performance with the effluent volume of 63.2 mL/g at 10 mg/L sulfur breakthrough level (desulfurization rate of 95%). The benzothiophene (BT) removal performance of the various adsorbents follows the order: NaY < TiO2 < TY-50 < AgTY-50-6. The equilibrium data were modeled by Langmuir and Freundlich equations. The Langmuir model can describe well the adsorption isotherms of BT over AgTY.

  18. Preliminary evaluation of a process using plasma reactions to desulfurize heavy oils. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, P.W.; Miknis, F.P.

    1997-09-01

    Western Research Institute (WRI) has conducted exploratory experiments on the use of microwave-induced plasmas to desulfurize heavy oils. Batch mode experiments were conducted in a quartz reactor system using various reactive and nonreactive plasmas. In these experiments a high-sulfur asphalt was exposed to various plasmas, and the degree of conversion to distillate, gas, and solids was recorded. Products from selected experiments were analyzed to determine if the plasma exposure had resulted in a significant reduction in sulfur content. Exploratory experiments were conducted using reactive plasmas generated from hydrogen and methane and nonreactive plasmas generated from nitrogen. The effects of varying exposure duration, sample temperature, and location of the sample with respect to the plasma discharge were investigated. For comparative purposes two experiments were conducted in which the sample was heated under nitrogen with no plasma exposure. Distillates containing approximately 28% less sulfur than the feedstock represented the maximum desulfurization attained in the plasma experiments. It does not appear that plasma reactions using the simple configurations employed in this study represent a viable method for the desulfurization of heavy oils.

  19. Competitive adsorption desulfurization performance over K - Doped NiY zeolite.

    Science.gov (United States)

    Li, Haizheng; Han, Xiaona; Huang, Haokai; Wang, Yuxian; Zhao, Liang; Cao, Liyuan; Shen, Baojian; Gao, Jinsen; Xu, Chunming

    2016-12-01

    NiY and KNiY were successfully prepared by impregnation method and characterized by X-ray diffraction (XRD), N2 sorption (BET), scanning electron microscope (SEM), infrared spectrum (IR) and X-ray Photoelectron Spectroscopy (XPS). The competitive adsorption mechanisms of adsorbents were studied by in situ FTIR to explain different desulfurization performance which was evaluated in a miniature fixed-bed flow by gasoline model compounds with 1-hexene or toluene. NiY and KNiY adsorbents showed better desulfurization performance than HY zeolite due to the high selectivity of loaded active metals. Especially, KNiY adsorbent showed its advantages in desulfurization performance with 5vol% olefins or 5vol% aromatics involvement. It could be assigned that introduced K cation enhanced dispersion and content of active Ni species on the surface which made Ni species reduce easily. On the other hand, adsorption mechanisms showed that the protonation reactions of thiophene and 1-hexene occurred on the Brönsted acid sites of NiY, which resulted in pore blockage and the coverage of adsorption active centers. By doping K cation on NiY, the amount of the Brönsted acid sites of NiY was decreased and protonation reactions were weaken. Therefore, the negative effects of Brönsted acid sites were reduced.

  20. Ionic Liquid Catalyst Used in Deep Desulfuration of the Coking Benzene for Producing Sulfurless Benzene

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xia-Ping; WANG Yan-Liang; MENG Fan-Wei; FAN Xing-Ming; QIN Song-Bo

    2008-01-01

    For the widening need of benzene used in organic synthesis, ionic liquid catalyst was prepared to study the process of deep desulfuration in the coking benzene. The result shows that the effect of de-thiophene by the ionic liquid catalyst (N-methyl imidazolium hydrogen sulfate [Hmim][HSO4]) is related to its acid function value.Hammett indicator was used to determine the acid function value H0 of the ionic liquid. It can be concluded that while the acid function value is in the range from -4 to -12, the ionic liquid catalyst can make the concentration certain acid quantity and strength, the ionic liquid catalyst helps to form alkyl thiophene through Friedel-Crafts reaction, which differs from the character of benzene and it is absolutely necessary for the separation and refinement of benzene. But overabundant quantity and higher acid value of [Hmim][HSO4] are more suitable for the side copolymerization of benzene, thiophene and alkene, thereby affecting repeated use of the ionic liquid catalyst([Hmim][HSO4]). In our research, thiophene derivant produced by desulfurization in the coking benzene was used as the polymer to provide the passing channel of the charges. The ionic liquid composition in poor performance after repeated use was made to prepare conductive material (resisting to static electricity) as an "electron-receiving" and "electron-giving" doping agent. The result shows that thiophene derivant after desulfuration in the coking benzene can be used to prepare doping conductive materials.

  1. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed

    Science.gov (United States)

    Zhang, Qi; Gui, Keting; Wang, Xiaobo

    2016-02-01

    The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.

  2. Bioprocessing of crude oils and desulfurization using electro-spray reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, E.N.; Borole, A.P.

    1998-07-01

    Biological removal of organic sulfur from petroleum feedstocks offers an attractive alternative to conventional thermochemical treatment due to the mild operating conditions afforded by the biocatalyst. Electro-spray bioreactors were investigated for use in desulfurization due to their reported operational cost savings relative to mechanically agitated reactors and their capability of forming emulsions < 5 {micro}m. Here, the rates dibenzothiophene (DBT) oxidation to 2-hydroxybiphenyl (2-HBP) in hexadecane, by Rhodococcus sp. IGTS8 are compared in the two reactor systems. Desulfurization rates ranged from 1.0 and 5.0 mg 2-HBP/(dry g cells-h), independent of the reactor employed. The batch stirred reactor was capable of forming a very fine emulsion in the presence of the biocatalyst IGTS8, similar to that formed in the electro-spray reactors, presumably due to the fact that the biocatalyst produces its own surfactant. While electro-spray reactors did not prove to be advantageous for the IGTS8 desulfurization system, it may prove advantageous for systems which do not produce surface-active bioagents in addition to being mass transport limited.

  3. Desulfurization of jet fuel for fuel cell-based APU systems in aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Pasel, J.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    To prevent the catalysts in fuel cell systems from poisoning by sulfur containing substances the fuel to be used must be desulfurized to a maximum of 10 ppmw of sulfur. Since the conventional hydrodesulfurization process employed in the refinery industry is not suitable for mobile fuel cell applications (e.g. auxiliary power units, APUs), the present study aims at developing an alternative process and determining its technical feasibility. A large number of processes were assessed with respect to their application in fuel cell APUs. The results revealed that a two-step process combining pervaporation and adsorption is a suitable process for the on-board desulfurization of jet fuel. The investigations to evaluate this process are presented in this paper. Seven different membrane materials and ten sorbent materials were screened to choose the most suitable candidates. Further laboratory experiments were conducted to optimize the operating conditions and to collect data for a pilot plant design. Different jet fuel qualities with up to 1650 ppmw of sulfur can be desulfurized to a level of 10 ppmw. (orig.)

  4. Desulfurization of dibenzothiophene by a newly isolated Corynebacterium sp.ZD-1 in aqueous phase

    Institute of Scientific and Technical Information of China (English)

    WANG Miao-dong; LI Wei; WANG Da-hui; SHI Yao

    2004-01-01

    Sulfur emission through fuel combustion is a global problem because it is a major cause of acid rain. Crud oil contains many heterocyclic organic sulfur compounds, among which dibenzothiophene(DBT) and DBTs bearing alkyl substitutions usually are representative compounds. A strain was isolated from refinery sludge and identified as Corynebacterium ZD-1. The behavior of DBT degradation by ZD-1 in aqueous phase was investigated. Corynebacterium ZD-1 could metabolize DBT to 2-hydroxybiphenyl(2-HBP) as the dead-end metabolite through a sulfur-specific pathway. In shake flask culture, ZD-1 had its maximal desulfurization activity in the late exponential growth phase and the specific production rate of 2-HBP was about 0.14(mmol·kg dry cell-1·min-1, mmol·KDC-1·min-1). Active resting cells for desulfurization should be prepared only in this period. 2-HBP inhibited the growth of strain ZD-1, the production of DBT degradation enzymes, and the activity of enzymes. Sulfate inhibited the production of dibenzothiophene(DBT) degradation enzymes but had no effect on the enzymes' activity. The production rates of 2-HBP at lower cell densities were higher and the maximum amount conversion of DBT to 2-HBP(0.067 mmol/L) after 8 h was gained at 9.2(g dry cell/L) rather higher cell density. The results indicated that this newly isolated strain could be a promising biocatalyst for DBT desulfurization.

  5. Desulfurization of Model Oil via Adsorption by Copper(II) Modified Bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Dezhi; Huang, Huan; Shi, Li [East China Univ. of Science and Technology, Shanghai (China)

    2013-03-15

    In order to further reduce the sulfur content in liquid hydrocarbon fuels, a desulfurization process by adsorption for removing dimethyl sulfide (DMS) and propylmercaptan (PM) was investigated. Bentonite adsorbents modified by CuCl{sub 2} for the desulfurization of model oil was investigated. The results indicated that the modified bentonite adsorbents were effective for adsorption of DMS and PM. The bentonite adsorbents were characterized by X-ray diffraction (XRD) and thermal analysis (TGA). The acidity was measured by FT-IR spectroscopy. Several factors that influence the desulfurization capability, including loading and calcination temperature, were studied. The maximum sulfur adsorption capacity was obtained at a Cu(II) loading of 15 wt %, and the optimum calcination temperature was 150 .deg. C. Spectral shifts of the v(C-S) and v(Cu-S) vibrations of the complex compound obtained by the reaction of CuCl{sub 2} and DMS were measured with the Raman spectrum. On the basis of complex adsorption reaction and hybrid orbital theory, the adsorption on modified bentonite occurred via multilayer intermolecular forces and S-M (σ) bonds.

  6. Study on Reactive Adsorption Desulfurization of Model Gasoline on Ni/ZnO-HY Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Huang Huan; Salissou M. Nour; Yi Dezhi; Meng Xuan; Shi Li

    2013-01-01

    The reactive adsorption desulfurization of model gasoline was carried out on Ni/ZnO-HY adsorbent. The Ni/ZnO-HY adsorbent was characterized by N2 adsorption-desorption test (BET), X-ray diffractometry (XRD), and tempera-ture-programmed reduction (TPR) analysis. The test results have demonstrated that HY-zeolite is a feasible support for Ni/ZnO components used in reactive adsorption desulfurization. The results of XRD and TPR analyses showed that most of nickel element was present as Ni2+species with only a small part existing as Ni3+species, and the Ni2+species had interac-tions with HY-zeolite. Under the conditions of this study, which speciifed a 50%ratio of HY-zeolite in the adsorbent, a Zn/Ni molar ratio of 10, and a reduction temperature of 400℃, the Ni/ZnO-HY adsorbent showed the best desulfurization per-formance. The sulfur capacity of Ni/ZnO-HY adsorbent could be recovered to 92.19%of the fresh one after being subjected to regeneration at 500℃, and could be maintained at 82.17%of the fresh one after 5 regeneration cycles.

  7. Development of economical and high efficient desulfurization process using low rank coal; Teitankadotan wo mochiita ankana kokoritsu datsuryuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takarada, Y.; Kato, K.; Kuroda, M.; Nakagawa, N. [Gunma University, Gunma (Japan). Faculty of Engineering; Roman, M. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    Experiment reveals the characteristics of low rank coal serving as a desulfurizing material in fluidized coal bed reactor with oxygen-containing functional groups exchanged with Ca ions. This effort aims at identifying inexpensive Ca materials and determining the desulfurizing characteristics of Ca-carrying brown coal. A slurry of cement sludge serving as a Ca source and low rank coal is agitated for the exchange of functional groups and Ca ions, and the desulfurizing characteristics of the Ca-carrying brown coal is determined. The Ca-carrying brown coal and high-sulfur coal char is mixed and incinerated in a fluidized bed reactor, and it is found that a desulfurization rate of 75% is achieved when the Ca/S ratio is 1 in the desulfurization of SO2. This rate is far higher than the rate obtained when limestone or cement sludge without preliminary treatment is used as a desulfurizer. Next, Ca-carrying brown coal and H2S are caused to react upon each other in a fixed bed reactor, and then it is found that desulfurization characteristics are not dependent on the diameter of the Ca-carrying brown coal grain, that the coal is different from limestone in that it stays quite active against H2S for long 40 minutes after the start of the reaction, and that CaO small in crystal diameter is dispersed in quantities into the char upon thermal disintegration of Ca-carrying brown coal to cause the coal to say quite active. 5 figs.

  8. Effect of Fe2O3 Addition in MgO-CaO Refractory on Desulfurization of Liquid Iron

    Institute of Scientific and Technical Information of China (English)

    WEI Yao-wu; LI Nan; CHEN Fang-yu

    2003-01-01

    The effects of Fe2O3 addition in MgO-CaO refractory on desulfurization of liquid iron were studied by SEM, EDA and chemical analysis. Fe2O3 of 1 % and 4 % were added to MgO-CaO refractory as the lining of graphite crucible in which 150 g iron powder with sulfur of 0.15 % was charged. It is found that when the sample is heated at 1 600 ℃ for 40 min, 60 min and 90 min, the addition with Fe2O3 of 1 % improves desulfurization greatly. However, the desulfurization ratio of the refractory with Fe2O3 addition of 4 % is less than that with Fe2O3 addition of 1 %. For the soaking time of 90 min, the desulfurization ratio is less than those of 40 min and 60 min. These phenomena were explained by the contrary roles of O2- and Fe2+ formed by reaction between liquid iron and Fe2O3 on desulfurization.

  9. Electrochemical behavior of biocatalytical composite based on heme-proteins, didodecyldimethylammonium bromide and room-temperature ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yanxia, E-mail: xuyanxiatv@yahoo.com.cn [Department of Chemistry and Environmental Engineering, Wuhan Bioengineering Institute, Wuhan 430415 (China); College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100080 (China); Hu Chengguo [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100080 (China); Hu Shengshui, E-mail: sshu@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100080 (China)

    2010-03-17

    A novel biocompatible composite film based on a water-insoluble surfactant, didodecyldimethylammonium bromide (DDAB), and a hydrophobic room-temperature ionic liquid (RTIL), 1-hexyl-3-methyl-imidazolium hexafluorophosphate (HIMIMPF{sub 6}), for the immobilization of biocatalytical proteins was reported. Differential scanning calorimetry (DSC) showed that the DDAB-HIMIMPF{sub 6} composite film has higher thermal stability than the DDAB film alone. SEM images indicated that different microstructures existed between the DDAB film and the composite film, indicating the interaction between DDAB and RTILs. This composite can be used as the immobilization matrix of proteins and other biomacromolecules. Heme-proteins, including hemoglobin (Hb), myoglobin (Mb) and horseradish peroxidase (HRP), were used as model proteins for studying the electrochemical behaviors of the resulting biocatalytical composite films. In the case of Hb, a pair of well-defined quasi-reversible redox peaks was obtained when the composite film containing Hb was modified on a glassy carbon electrode. The formal potential (E{sup o}'), the surface coverage ({Gamma}{sup *}) and the electron transfer rate constant (k{sub s}) were calculated as -0.308 V, 1.32 x 10{sup -11} mol cm{sup -2} and 11.642 s{sup -1}, respectively. While, these parameters for Hb on DDAB films alone were -0.309 V, 7.20 x 10{sup -12} mol cm{sup -2} and 2.748 s{sup -1}, respectively. Therefore, the composite are more suitable for the direct electron transfer between Hb than DDAB alone. The native conformation and bioactivity of Hb adsorbed on the composite film was proved to be maintained, reflected by the unchanged ultraviolet-visible (UV-vis) as well as the catalytic activity toward hydrogen peroxide (H{sub 2}O{sub 2}) and nitric oxide (NO) compared with the free Hb molecules. Furthermore, Hb on the composite film are more sensitive for the detection of hydrogen peroxide (H{sub 2}O{sub 2}) and nitric oxide (NO) than that on

  10. Tyramine-based enzymatic conjugate repeats for ultrasensitive immunoassay accompanying tyramine signal amplification with enzymatic biocatalytic precipitation.

    Science.gov (United States)

    Hou, Li; Tang, Yun; Xu, Mingdi; Gao, Zhuangqiang; Tang, Dianping

    2014-08-19

    A new impedimetric immunoassay protocol based on enzyme-triggered formation of tyramine-enzyme repeats on gold nanoparticle (AuNP) was designed for highly sensitive detection of carcinoembryonic antigen (CEA, as a model) by virtue of utilizing enzymatic biocatalytic precipitation toward 4-chloro-1-naphthol (4-CN) on anti-CEA antibody (Ab1)-modified immunosensor. Initially, AuNP was functionalized with horseradish peroxidase and detection antibody (HRP-AuNP-Ab2), and then HRP-tyramine conjugate was utilized for the formation of tyramine-HRP repeats through the triggering of the immobilized HRP on the AuNP with the aid of H2O2. In the presence of target CEA, the carried HRP-tyramine repeats accompanying the sandwiched immunocomplex catalyzed the 4-CN oxidation to produce an insoluble precipitation on the immunosensor, thus causing a local alteration of the conductivity. Three signal-transduction tags including HRP-Ab2, HRP-AuNP-Ab2, and HRP-AuNP-Ab2 with HRP-tyramine repeats were employed for target CEA evaluation, and improved analytical properties were achieved by HRP-AuNP-Ab2 with HRP-tyramine repeats. Using the unique signal-transduction tag, the analytical performance of the impedimetric immunoassay was studied in detail. Under the optimal conditions, the impedimetric immunosensor displayed a wide dynamic working range of between 0.5 pg mL(-1) and 40 ng mL(-1) with a detection limit (LOD) of 0.38 pg mL(-1) relative to target CEA. The coefficients of variation (CVs) were ≤9.3% and 13.3% for the intra-assay and interassay, respectively. The levels of CEA in eight clinical serum specimens were measured by using the developed impedimetric immunosensor. The obtained results correlated well with those from the electrochemiluminescent (ECL)-based immunoassay with a correlation coefficient of 0.998.

  11. Ultrasonic coal-wash for de-ashing and de-sulfurization. Experimental investigation and mechanistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ambedkar, B. [Indian Institute of Technology Madras, Chennai (India). Dept. of Chemical Engineering

    2012-07-01

    This study focuses on the physical aspects of ultrasonic de-ashing and de-sulfurization, such as cavitation, streaming and their combined effects. Ambedkar Balraj proposes an ultrasound-assisted coal particle breakage mechanism and explores aqueous and solvent-based ultrasonic techniques for de-ashing and de-sulfurization. Ambedkar designs a Taguchi L-27 fractional-factorial matrix to assess the individual effects of key process variables. In this volume he also describes process optimization and scale-up strategies. The author provides a mechanism-based model for ultrasonic reagent-based coal de-sulfurization, proposes a flow diagram for ultrasonic methods of high-throughput coal-wash and discusses the benefits of ultrasonic coal-wash. Coal will continue to be a major fuel source for the foreseeable future and this study helps improve its use by minimising ash and sulfur impurities.

  12. Evaluation of sulfur-reducing microorganisms for organic desulfurization. Final technical report, September 1, 1990--August 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Miller, K.W.

    1991-12-31

    Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

  13. Study on the reaction activity of CuO/y-Al2O3 for dry flue gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    WANG Yan; ZHANG Chao; ZHENG Ying; ZHENG Chu-guang

    2004-01-01

    The copper oxide bed regenerable adsorber process can efficiently remove sulfur dioxide (SO2) and sulfur trioxide (SO3) and reduce nitrogen oxides (NOx) from flue gas with no solid or liquid byproducts. This paper investigates the dry flue gas desulfurization activities of the CuO/γ-Al2O3 under different operation conditions finding that the dispersion degree of copper oxide can achieve a threshold value, which is 0.47mg/m2 carriers. The conclusion confirms that the sulfur capacity of desulfurizer is associated with flue gas' space velocity, reaction temperature, copper content and the structure of sorbent pellet, etc. And with the condition of the desulfurization reaction temperature 673 K, the space velocity 11 200 h-1 and the S/Cu mole ratio under 1, the sulfur removal efficiency can go upwards to 95%.

  14. Effects of foaming and antifoaming agents on the performance of a wet flue gas desulfurization pilot plant

    DEFF Research Database (Denmark)

    Qin, Siqiang; Hansen, Brian Brun; Kiil, Søren

    2014-01-01

    Foaming is a common phenomenon in industrial processes, including wet flue gas desulfurization (FGD) plants. A systemic investigation of the influence of two foaming agents, sodium dodecyl sulphate (SDS) and egg white albumin (protein), and two commercial antifoams on a wet FGD pilot plant...... operation has been carried out. Foaming caused by 0.03 g SDS/(L slurry) reduced the desulfurization degree from 84 to 74% and the solids and limestone concentrations of the slurry from 58 to 48 g/(L slurry) and from 1.4 to 1.0 g/(L slurry), respectively. These effects were attributed to the foaming...... transferring small particles to the foam layer present on top of the slurry in the holding tank. The addition of 0.03 g antifoams/(L slurry) to SDS foam eliminated the foam, but the desulfurization degree remained low. Potential mechanisms for the observed behavior are analyzed. (c) 2014 American Institute...

  15. Interaction between Ni and HZSM-5 in aromatization-enhanced reactive adsorption desulfurization catalysts for FCC gasoline upgrading.

    Science.gov (United States)

    Zhao, Jinchong; Zhang, Lulu; She, Nannan; Liu, Yunqi; Chai, Yongming; Liu, Chenguang

    A compound catalyst (RA) consisted of Ni, ZnO and HZSM-5 with functions of reactive adsorption desulfurization (RADS) and olefin aromatization for fluid catalytic cracking (FCC) gasoline upgrading was prepared. X-ray powder diffraction (XRD), temperature-programmed reduction and low-temperature N2 adsorption were used to characterize the properties of the catalysts. Performance evaluation by FCC gasoline was carried out, and the result showed that the catalyst RA performed well in desulfurization and aromatization. For comparison, RADS catalyst (represented by DS) consisted of Ni and ZnO and aromatization catalyst (represented by Ar) consisted of HZSM-5 were prepared, respectively. They were combined in different ways to help investigating interaction between Ni and HZSM-5. Performance evaluated by FCC gasoline showed that catalyst RA performed best in desulfurization with a slight octane number loss. Interaction between Ni and HZSM-5 is a significant factor which influences the performance of the catalyst.

  16. Purification of CYP2B-like protein from feral leaping mullet (Liza saliens) liver microsomes and its biocatalytic, molecular, and immunological characterization.

    Science.gov (United States)

    Bozcaarmutlu, Azra; Arinç, Emel

    2008-01-01

    In this study, CYP2B-immunoreactive protein was purified to electrophoretic homogeneity from the liver microsomes of leaping mullet. The purified cytochrome P450 (CYP) gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis having a M(r) of 49,300 Da. Absolute absorption spectrum of the purified CYP showed a maximum at 417 nm and CO-difference spectrum of dithionite-reduced cytochrome P450 gave a peak at 450 nm. The purified CYP was found to be active in N-demethylation of benzphetamine, erythromycin, and ethylmorphine, and O-dealkylation of pentoxyresorufin in the reconstituted system. However, it was unable to catalyze O-dealkylation of ethoxyresorufin, methoxyresorufin, benzyloxyresorufin, and hydroxylation of lauric acid and aniline. The purified CYP showed strong cross-reactivity with anti-sheep lung CYP2B, a homologue of CYP2B4. N-terminal amino acid sequence of the mullet P450 had the highest degree of homology with CYP2Bs among the known CYPs. Spectral, electrophoretic, immunochemical, N-terminal amino acid sequence, and biocatalytic properties of the purified CYP are most similar to those of mammalian cytochrome P4502B. All these data indicate that the purified CYP is certainly 2B-like. In this study, we not only purified biocatalytically active CYP2B-like protein from fish, but also demonstrated detailed functional properties of CYP2B-like protein for the first time.

  17. Reduction of industrial waste by the employment of simultaneous desulfurization/graphite spheroidization method using magnesium; Maguneshiumu wo mochiita datsuryu/kokuen kyujoka doji shoriho no saiyo ni yoru sangyo haikibutsu no teigen

    Energy Technology Data Exchange (ETDEWEB)

    Toriyama, T.; Yamamuro, S.; Yoshida, A.; Ono, S. [Kurimoto Ltd., Osaka (Japan)

    1996-10-25

    The Sakai Factory of KURIMOTO LTD. employed a continuous porous plug desulfurization method in 1992. In this desulfurization method, the molten iron from a cupola is desulfurized with a desulfurizing agent in which calcium carbide and lime are mixed. This paper reports the details of the development of a simultaneous desulfurization/graphite spheroidization method using Mg, which aims at disusing the operation in a high-temperature environment and reducing the quantity of slag which is an industrial waste. The main results obtained are as follows. The quantity of desulfurized slag in a porous plug ladle could be reduced to zero. A total quantity of slag produced was reduced by about 70%, which was better than the target reduction. Owing to the employment of this simultaneous desulfurization/graphite spheroidization method using Mg, the operations of mixing the desulfurizing agent and removing desulfurized slag in a high-temperature environment were omitted. The S-value after the simultaneous desulfurization/graphite spheroidization became lower than 0.010%. It could be ascertained that the graphite spheroidization rate and mechanical properties of the product did not differ from those of the product obtained by a conventional desulfurization and fully satisfied the standard values of the product. 8 figs., 4 tabs.

  18. Influence of Fe loadings on desulfurization performance of activated carbon treated by nitric acid.

    Science.gov (United States)

    Guo, Jia-Xiu; Shu, Song; Liu, Xiao-Li; Wang, Xue-Jiao; Yin, Hua-Qiang; Chu, Ying-Hao

    2017-02-01

    A series of Fe supported on activated carbon treated by nitric acid are prepared by incipient wetness impregnation with ultrasonic assistance and characterized by N2 adsorption-desorption, X-ray diffraction, Fourier transform infrared spectrum and X-ray photoelectron spectroscopy. It has shown that Fe loadings significantly influence the desulfurization activity. Fe/NAC5 exhibits an excellent removal ability of SO2, corresponding to breakthrough sulfur capacity of 323 mg/g. With the increasing Fe loadings, the generated Fe3O4 and Fe2SiO4 increase, but Fe2(SO4)3 is observed after desulfurization. Fe/NAC1 has a Brunauer-Emmett-Teller (BET) surface area of 925 m(2)/g with micropore surface area of 843 m(2)/g and total pore volume of 0.562 cm(3)/g including a micropore volume of 0.300 cm(3)/g. With the increasing Fe loadings, BET surface area and micropore volume decrease, and those of Fe/NAC10 decrease to 706 m(2)/g and 0.249 cm(3)/g. The Fe loadings influence the pore-size distribution, and SO2 adsorption mainly reacts in micropores at about 0.70 nm. C=O and C-O are observed for all samples before SO2 removal. After desulfurization, the C-O stretching is still detected, but the C=O stretching vibration of carbonyl groups disappears. The stretching of S-O or S=O in sulfate is observed at 592 cm(-1) for the used sample, proving that the existence of [Formula: see text].

  19. Mechanism of flue gas simultaneous desulfurization and denitrification using the highly reactive absorbent

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi; SUN Xiaojun; XU Peiyao; MA Shuangchen; WANG Lidong; LIU Feng

    2005-01-01

    Fly ash, industry-grade lime and a few oxidizing manganese compound additive were used to prepare the "Oxygen-riched" highly reactive absorbent for simultaneous desulfurization and denitrification. Experiments of simultaneous desulfurization and denitrification were carried out using the highly reactive absorbent in the flue gas circulating fluidized bed (CFB) system. Removal efficiencies of 94.5% for SO2 and 64.2% for NO were obtained respectively. The scanning electron microscope (SEM) and accessory X-ray energy spectrometer were used to observe micro-properties of the samples, including fly ash, common highly reactive absorbent, "Oxygen-riched" highly reactive absorbent and spent absorbent. The white flake layers were observed in the SEM images about surfaces of the common highly reactive absorbent and "Oxygen- riched" one, and the particle surfaces of the spent absorbent were porous. The content of calcium on surface was higher than that of the average in the highly reactive absorbent. The manganese compound additive dispersed uniformly on the surfaces of the "Oxygen- riched" highly reactive absorbent. There was a sulfur peak in the energy spectra pictures of the spent absorbent. The component of the spent absorbent was analyzed with chemical analysis methods, and the results indicated that more nitrogen species appeared in the absorbent except sulfur species, and SO2 and NO were removed by chemical absorption according to the experimental results of X-ray energy spectrometer and the chemical analysis. Sulfate being the main desulfurization products, nitrite was the main denitrification ones during the process, in which NO was oxidized rapidly to NO2 and absorbed by the chemical reaction.

  20. Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product.

    Science.gov (United States)

    Zheng, L; White, R H; Cash, V L; Dean, D R

    1994-04-19

    The nifS gene product (NIFS) is a pyridoxal phosphate binding enzyme that catalyzes the desulfurization of L-cysteine to yield L-alanine and sulfur. In Azotobacter vinelandii this activity is required for the full activation of the nitrogenase component proteins. Because the nitrogenase component proteins, Fe protein and MoFe protein, both contain metalloclusters which are required for their respective activities, it is suggested that NIFS participates in the biosynthesis of the nitrogenase metalloclusters by providing the inorganic sulfur required for Fe-S core formation [Zheng, L., White, R. H., Cash, V. L. Jack, R. F., & Dean, D. R. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 2754-2758]. In the present study the mechanism for the desulfurization of L-cysteine catalyzed by NIFS was determined in the following ways. First, the substrate analogs, L-allylglycine and vinylglycine, were shown to irreversibly inactivate NIFS by formation of a gamma-methylcystathionyl or cystathionyl residue, respectively, through nucleophilic attack by an active site cysteinyl residue on the corresponding analog-pyridoxal phosphate adduct. Second, this reactive cysteinyl residue, which is required for L-cysteine desulfurization activity, was identified as Cys325 by the specific alkylation of that residue and by site-directed mutagenesis experiments. Third, the formation of an enzyme-bound cysteinyl persulfide was identified as an intermediate in the NIFS-catalyzed reaction. Fourth, evidence was obtained for an enamine intermediate in the formation of L-alanine.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. 31P NMR study of the desulfurization of oligonucleoside phosphorothioates effected by "aged" trichloroacetic acid solutions.

    Science.gov (United States)

    Cieślak, Jacek; Ausín, Cristina; Chmielewski, Marcin K; Kauffman, Jon S; Snyder, John; Del-Grosso, Alfred; Beaucage, Serge L

    2005-04-15

    When employing phosphoramidites 1a-d in the solid-phase synthesis of oligonucleoside phosphorothioates, the thermolytic 2-[N-methyl-N-(2-pyridyl)]aminoethyl thiophosphate protecting group is lost to a large extent during the course of the synthesis. The resulting phosphorothioate diesters are then substantially desulfurized upon recurring exposure to a commercial solution of deblocking reagent during chain assembly. This problem is caused by the secondary decomposition product(s) of the reagent and is alleviated by using a fresh solution of the deblocking reagent prepared from solid trichloroacetic acid.

  2. THE APPLICATION OF REVERSE FLOCCULATION METHOD IN HIGH SULFUR COAL DESULFURIZATION

    Institute of Scientific and Technical Information of China (English)

    王力; 陈鹏; 张素清

    1999-01-01

    The reverse flocculation method for removing pyritic sulfur from high sulfur coals has been conceptually developed and investigated. The tentative tests on China high sulfur coals have shown that this advanced physical separation technique can be very efficient in coal desulfurization, provided the process parameters are properly optimized. Under the circumstances of acquiring high coal recovery, the total sulfur rejection with four kinds of coal samples normally falls in the range 5?% to 71% by one-step reverse flocculation, and within the range 40% to 59% by one-step normal flocculation process.

  3. OH radicals generated by DC corona discharge for improving the pulsed discharge desulfuration efficiency

    Institute of Scientific and Technical Information of China (English)

    LI Jie; LI Guo-feng; WU Yan; WANG Ning-hui; HUANG Qiu-nan

    2004-01-01

    Positive DC corona discharge is formed with needle-plate electrode configuration, in which the water vapor is ejected though the needle points. The purpose is to increase the numbers of the water-based radicals, ionize the water molecule and improve the desulfuration efficiency of pulsed corona reactor. The water ions were determined by four stages molecular beam mass spectrometer and diagnose the water-based radicals by emission spectrograph. A conclusion on formation of ions and radicals with DC corona discharges can be drawn.

  4. Routine Analysis of Zero Emissions Desulfurization Wastewater Concentration and Evaporation Technology in Coal-Fired Plant%燃煤电厂脱硫废水浓缩蒸干零排放技术路线分析

    Institute of Scientific and Technical Information of China (English)

    刘欣颖

    2016-01-01

    It discusses zero emissions of wastewater membrane treatment technology of the wet desulphurization in coal-fired power, in connection with evaporated and concentrated desulfurization wastewater process contained 4 units of pretreatment, concentrated reduction, crystallization, solid crystalline material disposal and equipment selected were carried out with technical and economic comparative analysis, combined with a 2 × 350 MW supercritical air-cooling unit project parameters power plant, capital cost was estimate for two typical desulfurization wastewater zero discharge system process, and analyzed their impact on the cost of electricity.%本文对燃煤电厂脱硫废水零排放处理技术进行了分析,针对脱硫废水浓缩蒸干工艺中预处理、浓缩减量、结晶、固体结晶物处置4个单元的处理工艺和选用设备分别进行了技术经济性比对分析,结合某电厂2×350 MW超临界空冷机组工程数据,对2种典型脱硫废水零排放处理工艺投资费用进行了估算,并分析了其对发电成本的影响。

  5. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1994-03-01

    The main objective of this research was to investigate microorganisms capable of fossil fuel flue gas desulfurization and denitrification. The study used municipal sewage sludge as a carbon and energy source for SO{sub 2}-reducing cultures. The individual tasks developed a consortium of sulfate-reducing bacteria, investigated the design parameters for a continuous process, preformed a cost analysis, and screened sulfate-reducing bacteria. In the investigation of microbial reduction of NO{sub x} to nitrogen, tasks included screening denitrifying bacteria for NO and NO{sub 2} activity, developing optimum NO-reducing cultures, and investigating design parameters for a continuous system. This final report reviews the work previous to the current project, describes project objectives and the specific work plan, and reports results from the work completed during the previous reporting periods.

  6. 铝酸钡与氢氧化钡脱硫过程比较%Comparison of Barium Aluminate and Barium Hydroxide Desulfurization Process

    Institute of Scientific and Technical Information of China (English)

    张念炳; 黎志英; 丁彤

    2012-01-01

    The seed precipitation liquor was desulfurized with barium aluminate and barium hydroxide respectively. The desulfurization slag was characterized by XRD analysis, and the desulfurization process was compared. The results show that barium hydroxide exceeds barium aluminate with better desulfurization in terms of effect, speed and duration. In the desulfurization process with barium aluminate, 2BaO · Al2O3 · 5H2O is firstly produced in the reaction of barium aluminate with alkali, and then it reacts with sodium sulfate and sodium carbonate. To compare, Ba(OH)2 · 8H2O directly reacts with sodium sulfate and sodium carbonate in the desulfurization process with barium hydroxide. Both of desulfurization reaction processes can be described with "shrinking core model".%用铝酸钡和氢氧化钡对种分母液进行脱硫试验,对脱硫渣进行XRD分析,并比较脱硫过程.结果表明,氢氧化钡的脱硫效果更好,脱硫完成时间更短,速率更快;铝酸钡先与碱液反应生成2BaO·Al2O3·5H2O,再与硫碱和碳碱反应,而氢氧化钡直接与硫碱和碳碱反应,脱硫过程均可用未反应核模型描述.

  7. Alcohol Selectivity in a Synthetic Thermophilic n-Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes

    Science.gov (United States)

    Loder, Andrew J.; Zeldes, Benjamin M.; Garrison, G. Dale; Lipscomb, Gina L.; Adams, Michael W. W.

    2015-01-01

    n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures. PMID:26253677

  8. Numerical Simulation of Desulfurization Behavior in Gas-Stirred Systems Based on Computation Fluid Dynamics-Simultaneous Reaction Model (CFD-SRM) Coupled Model

    Science.gov (United States)

    Lou, Wentao; Zhu, Miaoyong

    2014-10-01

    A computation fluid dynamics-simultaneous reaction model (CFD-SRM) coupled model has been proposed to describe the desulfurization behavior in a gas-stirred ladle. For the desulfurization thermodynamics, different models were investigated to determine sulfide capacity and oxygen activity. For the desulfurization kinetic, the effect of bubbly plume flow, as well as oxygen absorption and oxidation reactions in slag eyes are considered. The thermodynamic and kinetic modification coefficients are proposed to fit the measured data, respectively. Finally, the effects of slag basicity and gas flow rate on the desulfurization efficiency are investigated. The results show that as the interfacial reactions (Al2O3)-(FeO)-(SiO2)-(MnO)-[S]-[O] simultaneous kinetic equilibrium is adopted to determine the oxygen activity, and the Young's model with the modification coefficient R th of 1.5 is adopted to determine slag sulfide capacity, the predicted sulfur distribution ratio LS agrees well with the measured data. With an increase of the gas blowing time, the predicted desulfurization rate gradually decreased, and when the modification parameter R k is 0.8, the predicted sulfur content changing with time in ladle agrees well with the measured data. If the oxygen absorption and oxidation reactions in slag eyes are not considered in this model, then the sulfur removal rate in the ladle would be overestimated, and this trend would become more obvious with an increase of the gas flow rate and decrease of the slag layer height. With the slag basicity increasing, the total desulfurization ratio increases; however, the total desulfurization ratio changes weakly as the slag basicity exceeds 7. With the increase of the gas flow rate, the desulfurization ratio first increases and then decreases. When the gas flow rate is 200 NL/min, the desulfurization ratio reaches a maximum value in an 80-ton gas-stirred ladle.

  9. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO{sub 2} in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenshuai; Xu, Yehai; Li, Huaming; Dai, Bilian; Xu, Hui; Wang, Chao; Chao, Yanhong; Liu, Hui [Jiangsu University, Zhenjiang (China)

    2014-02-15

    Three types of TiO{sub 2} were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO{sub 2} was successfully obtained at 100 .deg. C. The results indicated that amorphous TiO{sub 2} achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 .deg. C) with three catalysts. The system contained amorphous TiO{sub 2}, H{sub 2}O{sub 2}, and [Bmim]BF{sub 4} ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H{sub 2}O{sub 2} and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO{sub 2} could reach 96.6%, which was apparently superior to a system with anatase TiO{sub 2} (23.6%) or with anatase - rutile TiO{sub 2} (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity.

  10. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuna, E-mail: zhangshujuan@tust.edu.cn [College of Textile Engineering, Zhejiang Industry Polytechnic College, Shaoxing 312000 (China); Zhang, Shujuan [College of Science, Tianjin University of Science and Technology, Tianjin 300457 (China); Song, Limin, E-mail: tjpu2012@sohu.com [College of Environment and Chemical Engineering and State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Wu, Xiaoqing [Institute of Composite Materials and Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin 300387 (China); Fang, Sheng, E-mail: songlmnk@sohu.com [College of Environment and Chemical Engineering and State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387 (China)

    2014-05-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni{sub 2}P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni{sub 2}P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni{sub 2}P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni{sub 2}P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni{sub 2}P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni{sub 2}P was postulated and discussed in detail. To investigate its catalytic properties, SiO{sub 2} supported three-dimensional Ni{sub 2}P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni{sub 2}P/SiO{sub 2}.

  11. Characteristics of fly ash from the dry flue gas desulfurization system for iron ore sintering plants.

    Science.gov (United States)

    Sheng, Guanghong; Huang, Peng; Mou, Yaqin; Zhou, Chenhui

    2012-01-01

    The characteristics of fly ash from the flue gas desulfurization (FGD) system are important for its reuse and are mainly depend on the desulfurization process. The physical and chemical properties of DSF ash, which refers to fly ash from the dry FGD system for the iron ore sintering process, were investigated. Its mineralogical contents were determined by X-ray diffraction and thermogravimetry analysis, and its micro-morphology was studied by scanning electric micrograph analysis. The results show that DSF ash has a higher CaO and SO3 content, and the main sulfur form is sulfite, with only a part of it oxidized to sulfate. The major minerals present in DSF ash are hannebachite, anhydrite, calcite and portlandite; a minor constituent is calcium chloride. The particles of DSF ash are irregular, fragmentary and small, and hannebachite grows on their surfaces. Particle size is affected by the FGD process, and the ash size from the maximized emission reduction of the sintering-FGD process is lower than that from the circulating fluidized bed-FGD process. The particle size distribution of DSF ash follows the Rosin--Rammler-Bennet equation.

  12. Ultrasound-assisted oxidative desulfurization of liquid fuels and its industrial application.

    Science.gov (United States)

    Wu, Zhilin; Ondruschka, Bernd

    2010-08-01

    Latest environmental regulations require a very deep desulfurization to meet the ultra-low sulfur diesel (ULSD, 15 ppm sulfur) specifications. Due to the disadvantages of hydrotreating technology on the slashing production conditions, costs and safety as well as environmental protection, the ultrasound-assisted oxidative desulfurization (UAOD) as an alternative technology has been developed. UAOD process selectively oxidizes sulfur in common thiophenes in diesel to sulfoxides and sulfones which can be removed via selective adsorption or extractant. SulphCo has successfully used a 5000 barrel/day mobile "Sonocracking" unit to duplicate on a commercial scale its proprietary process that applies ultrasonics at relatively low temperatures and pressures. The UAOD technology estimate capital costs less than half the cost of a new high-pressure hydrotreater. The physical and chemical mechanisms of UAOD process are illustrated, and the effective factors, such as ultrasonic frequency and power, oxidants, catalysts, phase-transfer agent, extractant and adsorbent, on reaction kinetics and product recovery are discussed in this review.

  13. Synthesis of Multiwalled Carbon Nanotubes-Titania Nanomaterial for Desulfurization of Model Fuel

    Directory of Open Access Journals (Sweden)

    Tawfik A. Saleh

    2014-01-01

    Full Text Available This work reported on the development of novel nanomaterials of multiwalled carbon nanotubes doped with titania (CNT/TiO2 for the adsorptive desulfurization of model fuel oils. Various analytical techniques such as field emission scanning electron microscope (FESEM, energy dispersive X-ray spectroscopy (EDX, and Fourier transform infrared spectroscopy (FTIR were used for the characterization of the nanomaterials. The initial results indicated the effectiveness of the prepared CNT/TiO2 nanomaterials in removing sulfur compounds from model fuel oil. The adsorption of DBT, BT, and thiophene from model fuel onto the derived sorbents was performed using batch mode system. These CNT/TiO2 nanomaterials initially afforded approximately 45% removal of DBT, 55% BT, and more than 65% thiophene compounds from model fuels. The CNT/TiO2 nanomaterials provided an excellent activity towards interaction with organosulfur compounds. More experiments are underway to optimize the parameters for the adsorptive desulfurization processes. We believe that these nanomaterials as adsorbents will find useful applications in petroleum industry because of their operational simplicity, high efficiency, and high capacity.

  14. Desulfurization of diesel by oxidation/extraction scheme. Influence of the extraction solvent

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Verduzco, L.F.; Torres-Garcia, E.; Gomez-Quintana, R.; Gonzalez-Pena, V.; Murrieta-Guevara, F. [Programa de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, CP 07730 Mexico, DF (Mexico)

    2004-11-24

    Due to the future specifications for sulfur content in middle distillate like diesel, a lot of research work has been done to develop alternative methods for desulfurization. This work presents the results for the desulfurization of diesel by an oxidation and extraction (O/E) scheme. This process can be considered like a post-treatment to the traditional hydrodesulfurization. A diesel with 320ppmw of total sulfur was employed to evaluate the elimination of sulfur compounds. The oxidation reaction was carried out with hydrogen peroxide at 30wt.%, in a heterogeneous system with a WO{sub x}/ZrO{sub 2} catalyst at 15wt.% of W; the extraction was performed with four polar solvents. The experiments were done in a batch reactor at 333K and atmospheric pressure. As an average, the sulfur content in the diesel after treatment was 90ppmw. A speciation of the sulfur compounds before and after O/E scheme was also included. Additionally, solubility data of dibenzothiophene sulfone in the polar solvents as a function of temperature were obtained.

  15. Land application uses for dry flue gas desulfurization by-products: Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  16. Performance and characterization of a newly developed self-agitated anaerobic reactor with biological desulfurization.

    Science.gov (United States)

    Kobayashi, Takuro; Li, Yu-You

    2011-05-01

    The continuous operation of a newly developed methane fermentation reactor, which requires no electricity for the agitation of the fermentation liquid was investigated, and the extent of the biological desulfurization was monitored. Inside the reactor, the continual change in the liquid level and the self-agitation, occurring between 5 and 16 times every day, distributed the organic load near the inlet port of the reactor, as well as providing a nutrient supply to the hydrogen sulfide oxidizing bacteria. At different COD(Cr) loading rates (5, 7, 10 kg m(3)d(-1)), the reactor achieved a biogas production yield of 0.72-0.82 m(3)g(-1)-TS, a COD(Cr) reduction of 79.4-85.5% and an average of 99% hydrogen sulfide removal. This investigation demonstrated that the self-agitated reactor is comparable in digestion performance to the completely stirred tank reactor (CSTR) investigated in a previous study, and that the desulfurization performance was significantly enhanced compared to the CSTR.

  17. Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    DeSutter, T.M.; Cihacek, L.J. [North Dakota State University, Fargo, ND (United States). Department of Soil Science

    2009-07-15

    Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

  18. Development of secondary salt recovery technology from desulfurization waste water%脱硫废液中副盐回收技术进展

    Institute of Scientific and Technical Information of China (English)

    张建孝; 杨建杰

    2014-01-01

    This paper makes a conclusion for dry desulfurization and wet desulfurization ,introduces the principle and methods of desulfurization waste water treatment such as partial conversion ,com-plete conversion , multistep crystallization and diaphragm separation , and analyzes the problems of each method .%对干法脱硫和湿法脱硫方法进行归纳总结,介绍了部分转化、全部转化、分步结晶、膜分离等方法处理脱硫废液的原理及方法,并对其存在的问题进行分析。

  19. Desulfurization in Reducing Atomosphere and Ammonia Injection Denitrification in a Coal—Fired Fluidized Bed COmbustor with FLy—Ash Recycle

    Institute of Scientific and Technical Information of China (English)

    ZhongZhaoping; ZhengHaiyun

    1997-01-01

    With the rising of IGCC and the second generation PFBC-CC,and with the development of tech-nology of staged combustion to lower emission of NOx,the desulfurization efficiency under reducing atmosphere is raised.In this paper,with the application of the fly-ash recycle and two-stage combustion technologies in a fluidized bed combustor,the desulfurization test under reducing atmosphere is described.Meanwhile,ammonia injection test was also conducted.Results show that desulfurization under reducing atmosphere has higher efficiency,and amoonia injection denitrification effect is very perfect.

  20. Photocatalytic Oxidative Desulfurization of Gasoline by TiO2 in [BMIm]Cu2CI3 Ionic Liguid

    Institute of Scientific and Technical Information of China (English)

    Li Fatang; Liu Ruihong; Sun Zhimin

    2008-01-01

    Photocatalytic oxidative desulfurization of gasoline in [BMIm]Cu2C13 ionic liquid was studied.A 500-W high-pressure mercury lamp was used as the light source for irradiation,nano-TiO2 was used as the photocatalyst and air was introduced by a gas pump to supply 02 as the oxidant.Influence of the ratio of V(ionic liquid) to V(oil) and the TiO2 addition on the desulfurization rate of gasoline was investigated.An oxidative kinetics equation was founded.The results showed that the [BMIm]CuaCI3 ionic liquid was an effective extractant for the desulfurization of gasoline.The appropriate TiO2 addition was 0.05 g in 50 mL of reaction mixture.The yield of desulfurized gasoline could reach 98.2% after being subjected to reaction for 2 h under the conditions of adopting a ratio of V(ionic liquid): V(oil)=1:4,an air flow of 100 mL/min and a TiO2 addition dosage of 0.05 g.The kinetics reaction for photo-oxidation of gasoline was a first-order reaction with an apparent rate constant of 1.9664 h-1 and a half-time of 0.3525 h.

  1. The influence of process parameters on desulfurization of Mezino coal by HNO{sub 3}/HCl leaching

    Energy Technology Data Exchange (ETDEWEB)

    Alam, H.G.; Moghaddam, A.Z.; Omidkhah, M.R. [Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran)

    2009-01-15

    Coal desulfurization prior to usage is a preprocessing in order to achieve clean fuel and reduce environmental impacts such as acid rain. Desulfurization of Tabas Mezino coal was conducted with two consecutive steps of froth flotation at ambient temperature followed by leaching at various conditions. Reducing the ash content of Mezino coal by 35.7 wt.% and its total sulfur content by 36.9% using froth flotation process was successful. HCl and HNO{sub 3} were used, separately, to leach the floated coal, and the effectiveness of each acid on Mezino coal desulfurization was investigated. Nitric acid was found to be much more effective than HCl and the effects of reaction time, acid concentration and temperatures as well as stirring speed were studied as major parameters in the nitric leaching process. Taguchi orthogonal experiment with the above mentioned parameter elements; one at three levels was used to optimize the experiment parameters by the analysis of variances. Applying of the Taguchi technique significantly reduced the time and cost required for the experimental investigation. The findings indicated that acid concentration, with a high contribution, had the most dominant effect on desulfurization performance, followed by temperature, stirring speed and time. Accordingly, the optimum condition was obtained as, temperature: 90 C., acid concentration: 30%., and stirring rate: 1000 rpm. The total sulfur and ash removal after flotation and leaching at optimum condition reached to 75.4 and 53.2% respectively that is a remarkable result compared to the previous works. (author)

  2. Synthesis, Characterization and Application of 1-Butyl-3 Methylimidazolium Chloride as Green Material for Extractive Desulfurization of Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Swapnil A. Dharaskar

    2013-01-01

    Full Text Available The possible application of imidazolium ionic liquids as energy-efficient green material for extractive deep desulfurization of liquid fuel has been investigated. 1-Butyl-3-methylimidazolium chloride [BMIM]Cl was synthesized by nucleophilic substitution reaction of n-methylimidazolium and 1-chlorobutane. Molecular structures of the ILs were confirmed by FTIR, 1H-NMR, and 13C-NMR. The thermal properties, conductivity, solubility, water content and viscosity analysis of [BMIM]Cl were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of IL without regeneration on dibenzothiophene removal of liquid fuel were presented. In the extractive desulfurization process, the removal of dibenzothiophene in n-dodecane using [BMIM]Cl was 81% with mass ratio of 1 : 1, in 30 min at 30°C under the mild reaction conditions. Also, desulfurization of real fuels with IL and multistage extraction were studied. The results of this work might offer significant insights in the perceptive use of imidazoled ILs as energy-efficient green material for extractive deep desulfurization of liquid fuels as it can be reused without regeneration with considerable extraction efficiency.

  3. Synthesis, characterization and application of 1-butyl-3 methylimidazolium chloride as green material for extractive desulfurization of liquid fuel.

    Science.gov (United States)

    Dharaskar, Swapnil A; Varma, Mahesh N; Shende, Diwakar Z; Yoo, Chang Kyoo; Wasewar, Kailas L

    2013-01-01

    The possible application of imidazolium ionic liquids as energy-efficient green material for extractive deep desulfurization of liquid fuel has been investigated. 1-Butyl-3-methylimidazolium chloride [BMIM]Cl was synthesized by nucleophilic substitution reaction of n-methylimidazolium and 1-chlorobutane. Molecular structures of the ILs were confirmed by FTIR, (1)H-NMR, and (13)C-NMR. The thermal properties, conductivity, solubility, water content and viscosity analysis of [BMIM]Cl were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of IL without regeneration on dibenzothiophene removal of liquid fuel were presented. In the extractive desulfurization process, the removal of dibenzothiophene in n-dodecane using [BMIM]Cl was 81% with mass ratio of 1 : 1, in 30 min at 30°C under the mild reaction conditions. Also, desulfurization of real fuels with IL and multistage extraction were studied. The results of this work might offer significant insights in the perceptive use of imidazoled ILs as energy-efficient green material for extractive deep desulfurization of liquid fuels as it can be reused without regeneration with considerable extraction efficiency.

  4. Desulfurization characteristics of rapidly hydrated sorbents with various adhesive carrier particles for a semidry CFB-FGD system.

    Science.gov (United States)

    You, Changfu; Li, Yuan

    2013-03-19

    Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment.

  5. Experimental study on the reuse of spent rapidly hydrated sorbent for circulating fluidized bed flue gas desulfurization.

    Science.gov (United States)

    Li, Yuan; Zheng, Kai; You, Changfu

    2011-11-01

    Rapidly hydrated sorbent, prepared by rapidly hydrating adhesive carrier particles and lime, is a highly effective sorbent for moderate temperature circulating fluidized bed flue gas desulfurization (CFB-FGD) process. The residence time of fine calcium-containing particles in CFB reactors increases by adhering on the surface of larger adhesive carrier particles, which contributes to higher sorbent calcium conversion ratio. The circulation ash of CFB boilers (α-adhesive carrier particles) and the spent sorbent (β and γ-adhesive carrier particles) were used as adhesive carrier particles for producing the rapidly hydrated sorbent. Particle physical characteristic analysis, abrasion characteristics in fluidized bed and desulfurization characteristics in TGA and CFB-FGD systems were investigated for various types of rapidly hydrated sorbent (α, β, and γ-sorbent). The adhesion ability of γ-sorbent was 50.1% higher than that of α-sorbent. The abrasion ratio of β and γ-sorbent was 16.7% lower than that of α-sorbent. The desulfurization abilities of the three sorbent in TGA were almost same. The desulfurization efficiency in the CFB-FGD system was up to 95% at the bed temperature of 750 °C for the β-sorbent.

  6. Structural Elucidation of DNA-Protein Crosslinks Using Reductive Desulfurization and Liquid Chromatography-Tandem Mass Spectrometry

    OpenAIRE

    Wickramaratne, Susith; Tretyakova, Natalia Y.

    2014-01-01

    Structural characterization of DNA-protein crosslinks involving cysteine using reductive desulfurization in combination with liquid chromatography-tandem mass spectrometry is highlighted. The novel approach was used to identify hydrolytically stable DNA-protein lesions involving alkylguanine DNA alkyltransferase (AGT).

  7. Selection of Chelated Fe (III)/Fe (II) Catalytic Oxidation Agents for Desulfurization Based on Iron Complexation Method

    Institute of Scientific and Technical Information of China (English)

    Luo Ying; Liu Youzhi; Qi Guisheng; Guo Huidong; Zhu Zhengfeng

    2014-01-01

    Optimization of factors inlfuencing the experiments on reactions involving 8 different chelating agents and sol-uble Fe (III)/Fe (II) salts was carried out to yield chelated iron complexes. A combination of optimized inlfuencing factors has resulted in a Fe chelating capacity of the iron-based desulfurization solution to be equal to 6.83—13.56 g/L at a redox potential of 0.185—0.3. The desulfurization performance of Fe (III)/Fe (II) chelating agents was investigated on a simulated sulfur-containing industrial gas composed of H2S and N2 in a cross-lfow rotating packed bed. Test results have revealed that the proposed iron-based desulfurization solution showed a sulfur removal efifciency of over 99%along with a Fe chelating capacity exceeding 1.35 g/L. This desulfurization technology which has practical application prospect is currently in the phase of commercial scale-up study.

  8. Synthesis of rare earth metal-organic frameworks (Ln-MOFs) and their properties of adsorption desulfurization

    Institute of Scientific and Technical Information of China (English)

    刘想; 王景艳; 李庆远; 蒋赛; 张天浩; 季生福

    2014-01-01

    The rare earth metal-organic frameworks (Ln-MOFs) materials, Ln(BTC)(H2O)·(DMF), were synthesized using the rare earth metal (Ln=Sm, Eu, Tb, Y) and 1,3,5-trimesic acid (BTC) as a metal ion center and ligand, respectively. X-ray diffraction (XRD) and infrared spectroscopy (FT-IR) were employed to characterize the Ln-MOFs structural features. The property of adsorption desul-furization of Ln-MOFs materials was evaluated with thiophene/n-octane as model oil. The results showed that Ln-MOFs with rare earth metals Sm, Eu, Tb and Y had perfect crystalline and good adsorption desulfurization ability. Y(BTC)(H2O)·(DMF) material had a comparatively better activity for the adsorption desulfurization with desulfurization rate up to 80.7%and the sulfur adsorption ca-pacity was found 30.7 mgS/g(Y-MOFs). The Ln-MOFs materials had excellent reusability.

  9. Preparing an SbSn intermetallic compound by melt-annealing and application to electric desulfurization of crude oil

    Institute of Scientific and Technical Information of China (English)

    WANG Yong; YUN Zhi

    2008-01-01

    We prepared an SbSn intermetallic compound powder with a mixture of equal molar amounts of antimony (Sb) and tin (Sn) by melt-annealing and high-energy ball milling, and characterized the obtained substance with XRD (X-ray diffraction), DSC (differential scanning calorimetry), SEM (scanning electron microscopy), and XPS (X-ray photoelectron spectroscopy). The prepared SbSn has a hexagonal structure with a melting point of 425 °C. The particles have a dendritic appearance in micromorphology images. More Sb atoms are enriched on the surface than Sn atoms. A desulfurization efficiency of up to 33.92% can be obtained when applying this powder as a medium in the electric desulfurization of crude oil under the following conditions: an emulsion with a volumetric ratio of water to oil at 20:80, a surfactant mass fraction in the emulsion of 0.18%, a processing time of 17 h, and a voltage of 9.68 V. SbSn could be a promising catalyst for desulfurizing crude oil. The desulfurization performance is ascribed to the electron cavities formed by current induction.

  10. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    Science.gov (United States)

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements in the three potential mitigation pathways, i.e., emission to ambient air, uptake by surface vegetation (i.e., grass), and rainfall infiltration, after flue gas desulfurization (FGD) material ...

  11. Three annual flue gas desulfurization gypsum applications on macronutrient and micronutrient losses in runoff from bermudagrass fertilized with poultry litter

    Science.gov (United States)

    Considerable amounts of flue gas desulfurization (FGD) gypsum are being produced as a by-product of generating electricity. As a result, beneficial reuse of this by-product is being sought to reduce landfilling and its associated cost. The use of this byproduct as a low-cost soil amendment for suppl...

  12. 我国石油产品非加氢脱硫技术研究进展%Research Progress in Non-hydrogenation Desulfurization Technology for Petroleum Products in China

    Institute of Scientific and Technical Information of China (English)

    张世强; 李晓鸥; 李东胜; 何新发; 吴冰阳; 姜岩

    2014-01-01

    综述了脱除石油产品中硫的重要性,主要的脱硫的手段,加氢脱硫的一些缺点和非加氢脱硫的一些优势。重点综述了石油产品的非加氢脱硫方法,包括:烷基化脱硫、生物脱硫、氧化脱硫、吸附脱硫、膜分离脱硫、萃取脱硫的原理及其这些技术在我国的最新研究状况,并对我国未来的非加氢脱硫技术进行了展望。%The importance of removing sulfur in petroleum products was summarized as well as main means of desulfurization, some shortcomings of hydrodesulfurization and some advantages of non-hydrogenation desulfurization. The non-hydrogenation desulfurization methods of petroleum products were introduced, such as alkylation desulfurization, biological desulfurization, oxidation desulfurization, adsorption desulfurization, membrane separation desulfurization, extraction desulfurization. At last, development trend of the non-hydrogenation desulfurization techniques were discussed.

  13. Coal desulfurization by bacterial treatment and column flotation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K. [Michigan Technological Univ., Houghton, MI (United States)

    1994-06-01

    A review of the literature showed that bacterial leaching, using the microorganism Thiobacillus ferrooxidans, was a very effective technique for removing pyrite from coal, as it could dissolve even the finest pyrite particles without the need for expensive reagents or extreme processing conditions. Unfortunately, bacterial leaching is also rather slow, and so the initial goal of this research was to decrease the leaching time as much as possible. However, this still left the bacteria needing approximately a week to remove half of the pyritic sulfur, and so a faster technique was sought. Since it had been reported in the literature that T. ferrooxidans could be used to depress the flotation of pyrite during froth flotation of coal, this was investigated further. By studying the recovery mechanisms of coal-pyrite in froth flotation, it was found that pyrite was being recovered by entrainment and by locking to coal particles, not by true flotation of hydrophobic pyrite. Therefore, no pyrite depressant could be of any significant benefit for keeping pyrite out of the coal froth product, and it was much more important to prevent entrainment from occurring. Countercurrent flotation columns were invented to essentially eliminate entrainment effects, by washing the froth and reducing mixing of the froth and tailings products. Existing flotation columns tend to be quite simple, and in order to give reasonable product quality they must be very tall (typically 30--45 feet). As a result, they have difficulty in handling the high froth volumes which occur in coal flotation, and are awkward to install in existing plants. The bulk of this project therefore concentrated on developing an improved coal flotation column, and testing it under actual plant conditions.

  14. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  15. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 {mu}m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871{degrees}C. Bench-scale testing variables included sorbent type, temperature (550 to 750{degrees}C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750{degrees}C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  16. Impact of impregnation pressure on desulfurization performance of Zn-based sorbents supported on semi-coke

    Institute of Scientific and Technical Information of China (English)

    Xianrong Zheng; Weiren Bao; Qingmai Jin; Ruiyuan He; Liping Chang; Kechang Xie

    2012-01-01

    High-pressure impregnation,a new preparation method for sorbents to remove H2S from hot coal gas,is introduced in this paper.Semi-coke (SC) and ZnO is selected as the support and active component of sorbent,respectively.The sorbent preparation process includes high-pressure impregnation,filtration,ovendry and calcination.The aim of this research is to primarily study the effects of the impregnation pressure on physical properties and desulfurization ability of the sorbent.The desulfurization experiment was carried out in a fixed-bed reactor at 500 ℃ and a simulated coal gas used in this work was composed of CO (33 vol%),H2 (39 vol%),H2S (300 ppm in volume),and N2 (balance).Experimental results show that the pore structure of the SC support can be improved effectively and ZnO active component can be uniformly dispersed on the support,with the small particle size of 10-500 nm.Sorbents prepared using high-pressure impregnation have better desulfurization capacity and their active components have higher utilization rate.P20-ZnSC sorbent,obtained by high-pressure impregnation at 20 atm,has the best desulfurization ability with a sulfur capacity of 7.54 g S/100g sorbent and a breakthrough time of 44 h.Its desulfurization precision and efficiency of removing H2S from the middle temperature gases can reach < 1 ppm and >99.7%,respectively,before sorbent breakthrough.

  17. Biocatalytic preparation and absolute configuration of enantiomerically pure fungistatic anti-2-benzylindane derivatives. Study of the detoxification mechanism by Botrytis cinerea.

    Science.gov (United States)

    Pinedo-Rivilla, Cristina; Aleu, Josefina; Grande Benito, Manuel; Collado, Isidro G

    2010-08-21

    Enantiomerically pure 2-benzylindane derivatives were prepared using biocatalytic methods and their absolute configuration determined. (1R,2S)-2-Benzylindan-1-ol ((1R,2S)-2) and (S)-2-benzylindan-1-one ((S)-3) were produced by fermenting baker's yeast. Lipase-mediated esterifications and hydrolysis of the corresponding racemic substrates gave rise to the enantiopure compounds (1S,2R)-2-benzylindan-1-ol ((1S,2R)-2) and (1R,2S)-2-benzylindan-1-ol ((1R,2S)-2), respectively. The antifungal activity of these products against two strains of the plant pathogen Botrytis cinerea was tested. The metabolism of anti-(+/-)-2-benzylindan-1-ol (anti-(+/-)-2) by B. cinerea as part of the fungal detoxification mechanism is also described and revealed interesting differences in the genome of both strains.

  18. Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic nad+/nadh co-factors and [cp*rh(bpy)h]+ for selective organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Jochen; Hollman, Frank; Ho, The Vinh; Schnyder, Adrian; Fish, Richard H.; Schmid, Andreas

    2004-03-09

    The biocatalytic, regioselective hydroxylation of 2-hydroxybiphenyl to the corresponding catechol was accomplished utilizing the monooxygenase 2-hydroxybiphenyl 3-monooxygenase (HbpA). The necessary natural nicotinamide adenine dinucleotide (NAD{sup +}) co-factor for this biocatalytic process was replaced by a biomimetic co-factor, N-benzylnicotinamide bromide, 1a. The interaction between the flavin (FAD) containing HbpA enzyme and the corresponding biomimetic NADH compound, N-benzyl-1,4-dihdronicotinamide, 1b, for hydride transfers, was shown to readily occur. The in situ recycling of the reduced NADH biomimic 1b from 1a was accomplished with [Cp*Rh(bpy)H](Cl); however, productive coupling of this regeneration reaction to the enzymatic hydroxylation reaction was not totally successful, due to a deactivation process concerning the HbpA enzyme peripheral groups; i.e., -SH or -NH{sub 2} possibly reacting with the precatalyst, [Cp*Rh(bpy)(H{sub 2}O)](Cl){sub 2}, and thus inhibiting the co-factor regeneration process. The deactivation mechanism was studied, and a promising strategy of derivatizing these peripheral -SH or -NH{sub 2} groups with a polymer containing epoxide was successful in circumventing the undesired interaction between HbpA and the precatalyst. This latter strategy allowed tandem co-factor regeneration using 1a or 2a, [Cp*Rh(bpy)(H2O)](Cl){sub 2}, and formate ion, in conjunction with the polymer bound, FAD containing HbpA enzyme to provide the catechol product.

  19. Effectiveness Analysis of Flue Gas Desulfurization by Alumina Red Mud%氧化铝赤泥进行烟气脱硫有效性分析

    Institute of Scientific and Technical Information of China (English)

    贾帅动; 董继业; 王博

    2013-01-01

    Based on desulfurization test platform, use Bayer-sintered joint red mud as raw material, and the mechanism and wet flue gas desulfurization desulfurization effect of red mud was analyzed, we got the idea that the flue gas desulfurization by red mud combined method was feasibility and superiority.%  在搭建的脱硫试验平台上采用拜耳-烧结联合法赤泥为原料,以电厂工业废气为脱硫对象,对赤泥进行湿法烟气脱硫的机理和脱硫的效果进行分析研究,认为使用联合法赤泥进行烟气脱硫具有可行性和优越性。

  20. THERMODYNAMIC AND KINETIC PARAMETERS OF MIXTURES DESULFURIZING THE MADE WITH CaO, MgO, SiO2 AND CaF2

    Directory of Open Access Journals (Sweden)

    Felipe Nylo de Aguiar

    2012-09-01

    Full Text Available This paper presents an analysis of the kinetics and thermodynamics of marble residue mixtures utilisation on desulfurization of pig iron. The desulfurization was carried out using lime, marble residue, fluorite and pig iron. Different mixtures of these materials were added into a bath of pig iron at 1,450°C. Metal samples were collected via vacuum samplers at times of 5, 10, 15, 20 and 30 minutes, in order to check the variation of sulfur content. Based on the results of chemical analysis of the metal and the desulfurizer mixture, the sulfide capacity of mixtures, the sulfur partition coefficient and the sulfur mass transport coefficient values were calculated.The results show the technical feasibility of using marble waste as desulfurizer agent.

  1. Aerobic desulfurization of biogas by acidic biotrickling filtration in a randomly packed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Montebello, Andrea M.; Mora, Mabel; López, Luis R.; Bezerra, Tercia [Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Gamisans, Xavier [Department of Mining Engineering and Natural Resources, Universitat Politècnica de Catalunya, Bases de Manresa 61-73, 08240 Manresa (Spain); Lafuente, Javier [Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Baeza, Mireia [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Gabriel, David, E-mail: david.gabriel@uab.cat [Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2014-09-15

    Highlights: • Desulfurization of high loads of H{sub 2}S is feasible by acidic biotrickling filtration. • Robustness of the process is demonstrated in the long-term (550 d). • Biosulfur to sulfate oxidation under H{sub 2}S starvation was successfully performed. • Lower sulfate production found at acidic pH compared to that at neutral pH. • Plastic material is recommended for long-term acidic biotrickling filtration. - Abstract: Biotrickling filters for biogas desulfurization still must prove their stability and robustness in the long run under extreme conditions. Long-term desulfurization of high loads of H{sub 2}S under acidic pH was studied in a lab-scale aerobic biotrickling filter packed with metallic Pall rings. Reference operating conditions at steady-state corresponded to an empty bed residence time (EBRT) of 130 s, H{sub 2}S loading rate of 52 g S–H{sub 2}S m{sup −3} h{sup −1} and pH 2.50–2.75. The EBRT reduction showed that the critical EBRT was 75 s and the maximum EC 100 g S–H{sub 2}S m{sup −3} h{sup −1}. Stepwise increases of the inlet H{sub 2}S concentration up to 10,000 ppm{sub v} lead to a maximum EC of 220 g S–H{sub 2}S m{sup −3} h{sup −1}. The H{sub 2}S removal profile along the filter bed indicated that the first third of the filter bed was responsible for 70–80% of the total H{sub 2}S removal. The oxidation rate of solid sulfur accumulated inside the bioreactor during periodical H{sub 2}S starvation episodes was verified under acidic operating conditions. The performance under acidic pH was comparable to that under neutral pH in terms of H{sub 2}S removal capacity. However, bioleaching of the metallic packing used as support and chemical precipitation of sulfide/sulfur salts occurred.

  2. Experimental study and mechanism analysis of modified limestone by red mud for improving desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongtao; Han, Kuihua; Niu, Shengli; Lu, Chunmei; Liu, Mengqi; Li, Hui [Shandong Univ., Jinan (China). School of Energy and Power Engineering

    2013-07-01

    Red mud is a type of solid waste generated during alumina production from bauxite, and how to dispose and utilize red mud in a large scale is yet a question with no satisfied answer. This paper attempts to use red mud as a kind of additive to modify the limestone. The enhancement of the sulfation reaction of limestone by red mud (two kinds of Bayer process red mud and one kind of sintering process red mud) are studied by a tube furnace reactor. The calcination and sulfation process and kinetics are investigated in a thermogravimetric (TG) analyzer. The results show that red mud can effectively improve the desulfurization performance of limestone in the whole temperature range (1,073-1,373K). Sulfur capacity of limestone (means quality of SO{sub 2} which can be retained by 100mg of limestone) can be increased by 25.73, 7.17 and 15.31% while the utilization of calcium can be increased from 39.68 to 64.13%, 60.61 and 61.16% after modified by three kinds of red mud under calcium/metallic element (metallic element described here means all metallic elements which can play a catalytic effect on the sulfation process, including the Na, K, Fe, Ti) ratio being 15, at the temperature of 1,173K. The structure of limestone modified by red mud is interlaced and tridimensional which is conducive to the sulfation reaction. The phase composition analysis measured by XRD of modified limestone sulfated at high temperature shows that there are correspondingly more sulphates for silicate and aluminate complexes of calcium existing in the products. Temperature, calcium/metallic element ratio and particle diameter are important factors as for the sulfation reaction. The optimum results can be obtained as calcium/metallic element ratio being 15. Calcination characteristic of limestone modified by red mud shows a migration to lower temperature direction. The enhancement of sulfation by doping red mud is more pronounced once the product layer has been formed and consequently the promoting

  3. Experimental Research on Desulfurization of Fine Coal Using an Enhanced Centrifugal Gravity Separator

    Institute of Scientific and Technical Information of China (English)

    TAO You-jun; LUO Zhen-fu; ZHAO Yue-min; TAO Daniel

    2006-01-01

    A desulphurization experimental study under the effects of compounding physical force fields has been described for < 0.5 mm fine particles of high sulfur coal. A statistical test using the Box-Behnken Design of experiments was conducted to evaluate the effects of individual operating variables and their interactions on desulfurization of fine coal using an enhanced centrifugal gravity separator. A model describing the relation between desulphurization efficiency of pyrite sulfur and different operating variables has been designed. The interactions between different factors on the pyrite sulfur desulphurization efficiency have been analysed. The optimal test conditions for desulfarization are extracted from the Design-Expert 6.0 software. Finally, the advantage of centrifugal gravity separation for fine coal is pointed out.

  4. EXPERIMENTAL STUDY OF DESULFURIZATION OF ZHONG LIANG SHAN HIGH SULFUR COAL BY FLOTATION

    Institute of Scientific and Technical Information of China (English)

    姜志伟; 黄波; 曹炅

    1994-01-01

    Emission of large amount of SO2 from combustion of high sulfur coal causes serious envjsonmental pollution. Pre-combustion desulfurization of bigh sulfur coal has become a necessity. This paper reports test results of fine coal desuifurtzation with different flotation technology and the effect of pyrite depressant. Test work showed that when the coal sample from Zhong Liang Shah was processed with a Free Jet Flotation Column its pyritic sultur content was reduced from 3.08% to 0. 84%, with 72.22% recovery ofcombustible matter in clean coal. The concept of Desulfurlzatlon Efficiency Index Eofor comprehensive evaluation of dcsuifurlzation process is proposed, which is defined as the product of the ratio of sulfur content reduction of clean coal and the recovery of combustible matters.

  5. Tentative Study on a New Way of Simultaneous Desulfurization and Denitrification

    Institute of Scientific and Technical Information of China (English)

    王爱杰; 杜大仲; 任南琪; 程翔; 刘春爽

    2005-01-01

    Thiobacillus denitrificans, a kind of autotrophic facultative bacteria, can oxidize sulfide into elemental sulfur or sulfate when nitrate was adopted as its electron accepter and carbon dioxide as its carbon resource under anoxic or anaerobic environment. In this way, nitrate is converted into nitrogen. In addition, Thiobacillus denitrificans can accumulate sulfur extracellularly. In this study, in a process of simultaneous desulfurization and denitrification, a strain of Thiobacillus denitrificans is employed as sulfur-producer in the treatment of wastewater containing sulfide and nitrate. The key factors affecting this process are investigated through batch tests. The experimental results indicate that the sulfide concentration and the ratio of sulfide to nitrate (S2-/NO3-) in the influent are the key factors, and their suitable values are suggested to be 5/3 and no more than 300mg·L-1, respectively, in order to achieve high conversion of sulfur.

  6. Material Properties of Marine Hydrogenous Ferromanganese Crust and Its Performance in Desulfurization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Marine hydrogenous ferromanganese crust, an important metal resource in the future, has significant potential in various applications as a type of natural nano-structured material. By employing scanning electronic microscopy, nitrogen adsorption-desorption isotherm measurement, Xray fluorescence spectrometer and X-ray diffraction methods, the micro-structure, surface properties and chemical composition of several plate-like ferromanganese crusts sampled from the northwestern Pacific were investigated comprehensively. Although obvious differences were observed from different layers, the crust is a typical porous material with high specific surface area, unique pore structure and abundant transition elements. Furthermore, the performance of natural crust in desulfurization process was preliminarily tested in laboratory experiments. The sulfur capacities of the crust are 13.1%and 18.1% at room temperature and 350 ℃, respectively. The crust can be used not only as a metal resource, but also as an environmental material.

  7. Integrated Mg/TiO{sub 2}-ionic liquid system for deep desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yee Cia, E-mail: gabrielle.ciayin@gmail.com [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Kait, Chong Fai, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my; Fatimah, Hayyiratul, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my; Wilfred, Cecilia, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    A series of Mg/TiO{sub 2} photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  8. Transport—Reaction Process in the Reaction of Flue Gas Desulfurization

    Institute of Scientific and Technical Information of China (English)

    YanYan; DuuJongLee; 等

    2000-01-01

    A theoreticasl investigation was conducted to study the transport-reaction process in the spray-drying flue gas desulfurization.A transport-reaction model of single particle was proposed,which considered the water evaporation from the surface of droplet and the reaction at the same time.BHased on this model,the reaction rate and t6he absorbent utilization can be calculated.The most appropriate particle radius and the initial absorbent concentration can be deduced through comparing the wet lifetime with the residence time,the result shows in the case that the partial pressure of vapor in the bulk flue gas is 2000Pa,the optimum initial radius and absorent concentration are 210-310μm and 23% respectively.The model can supply the optimum parameters for semi-dry FGD system designed.

  9. Influence of Basicity and MgO on Fluidity and Desulfurization Ability of High Aluminum Slag

    Science.gov (United States)

    Wang, Ping; Meng, Qing-min; Long, Hong-ming; Li, Jia-xin

    2016-08-01

    The viscosity of experimental slag, which was mixed based on the composition of a practical blast furnace slag, was measured in this paper. The influence of Al2O3 and MgO content, basicity R2 = w(CaO)/w(SiO2) on the fluidity of slag was studied. The stepwise regression analysis in SPSS was used to reveal the relationship between sulfur distribution coefficient LS and slag composition as well as furnace temperature. The results show that increasing of MgO up to 12% can decrease the slag viscosity. The w(MgO) should be controlled below 8% when there is 20% Al2O3 in the slag. Temperature of hot metal and content of CaO in slag are the two dominant factors on the desulfurization capacity of slag.

  10. The study of high-temperature stable phase sulphoaluminate for desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T.; Zhou, J.; Ma, Y. (and others) [Zhejiang University, Hangzhou (China). National Key Lab. of MOE Clean Energy and Environment Engineering

    2003-07-01

    Sulphoaluminate (3CaO{center_dot}3Al{sub 2}O{sub 3}) {center_dot}CaSO{sub 4} is produced when coal is calcined to about 1200{sup o}C. This article studies the forming mechanisms of high-temperature stable phase sulphoaluminate systematically. The influence laws of such factors as the combustion temperature, retention period, the mixed proportion of compound and additives to desulfurization have been obtained, and the forming mechanism was analyzed later. The result of experiment indicates that the most sulphoaluminate is produced at 1300{sup o}C when the molar ratio of the compounds calcium oxide, aluminium oxide and calcium sulfate is 3:3:1. 6 refs., 8 figs.

  11. Experimental approach and techniques for the evaluation of wet flue gas desulfurization scrubber fluid mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Strock, T.W. [Babcock and Wilcox Co., Alliance, OH (United States). Research and Development Div.; Gohara, W.F. [Babcock and Wilcox Co., Barberton, OH (United States)

    1994-12-01

    The fluid mechanics within wet flue desulfurization (FGD) scrubbers involve several complex two-phase gas/liquid interactions. The fluid flow directly affects scrubber pressure drop, mist eliminator water removal, and the SO{sub 2} mass transfer/chemical reaction process. Current industrial efforts to develop cost-effective high-efficiency wet FGD scrubbers are focusing, in part, on optimizing the fluid mechanics. The development of an experimental approach and test facility for understanding and optimizing wet scrubber flow characteristics is discussed in this paper. Specifically, scaling procedures for downsizing a wet scrubber for the laboratory environment with field data comparisons are summarized. Furthermore, experimental techniques for the measurement of wet scrubber flow distribution, pressure drop, spray nozzle droplet size characteristics and wet scrubber liquid-to-gas ratio are discussed. Finally, the characteristics and capabilities of a new hydraulic test facility for wet FGD scrubbers are presented. (author)

  12. Hot particulate removal and desulfurization results from the METC integrated gasification and hot gas cleanup facility

    Energy Technology Data Exchange (ETDEWEB)

    Rockey, J.M.

    1995-06-01

    The Morgantown Energy Technology Center (METC) is conducting experimental testing using a 10-inch diameter fluid-bed gasifier (FBG) and modular hot gas cleanup rig (MGCR) to develop advanced methods for removing contaminants in hot coal gasifier gas streams for commercial development of integrated gasification combined-cycle (IGCC) power systems. The program focus is on hot gas particulate removal and desulfurization technologies that match the temperatures and pressures of the gasifier, cleanup system, and power generator. The purpose of this poster is to present the program objectives and results of the work conducted in cooperation with industrial users and vendors to meet the vision for IGCC of reducing the capital cost per kilowatt to $1050 and increasing the plant efficiency to 52% by the year 2010.

  13. Performance of a Wet Flue Gas Desulfurization Pilot Plant under Oxy-Fuel Conditions

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Fogh, Folmer; Knudsen, Niels Ole

    2011-01-01

    vol % CO2, at a holding tank pH 5.4, reduced the limestone dissolution rate significantly and thereby increased the residual, particulate limestone concentration in the gypsum slurry from 3.2 to 5.0 g/L slurry relative to a base-case (air-firing) experiment with a flue gas CO2 concentration around 7......, but an additional increase in desulfurization degree, from 94 to 97%, was obtained. Using a holding tank pH 5.0 (no adipic acid) returned both parameters to the levels observed in the base-case experiment.......Oxy-fuel firing is a promising technology that should enable the capture and storage of anthropogenic CO2 emissions from large stationary sources such as power plants and heavy industry. However, this new technology has a high energy demand for air separation and CO2 compression and storage...

  14. Controllability analysis and decentralized control of a wet limestone flue gas desulfurization plant

    Energy Technology Data Exchange (ETDEWEB)

    Perales, A.L.V.; Ortiz, F.J.G.; Ollero, P.; Gil, F.M. [University of Seville, Seville (Spain)

    2008-12-15

    Presently, decentralized feedback control is the only control strategy used in wet limestone flue gas desulfurization (WLFGD) plants. Proper tuning of this control strategy is becoming an important issue in WLFGD plants because more stringent SO{sub 2} regulations have come into force recently. Controllability analysis is a highly valuable tool for proper design of control systems, but it has not been applied to WLFGD plants so far. In this paper a decentralized control strategy is designed and applied to a WLFGD pilot plant taking into account the conclusions of a controllability analysis. The results reveal that good SO{sub 2} control in WLFGD plants can be achieved mainly because the main disturbance of the process is well-aligned with the plant and interactions between control loops are beneficial to SO{sub 2} control.

  15. Integrated Mg/TiO2-ionic liquid system for deep desulfurization

    Science.gov (United States)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2014-10-01

    A series of Mg/TiO2 photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  16. Finned tubes in purified gas heat exchangers of flue gas desulfurization plant

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, J. Jr.; Meyer, T.H.

    1985-01-01

    The use of helical rolled, corrosion resistant finned tubes in the purified gas heat exchangers of flue gas desulfurization plant has considerable economic advantages over conventional heat exchangers with smooth tubes. As a result of a threefold larger external surface and hence improved heat transfer properties, heat exchangers with finned tubes can be made considerably smaller. The weight and space requirements are reduced and the pressure drop also falls owing to the smaller diameter. Thus piping, pumps, and fittings can all be made smaller. Moreover, deposition on the finned tubes is considerably lower. It is found that finned tubes can be recommended in all cases where the difference in heat transfer coefficients between the inside and the outside of the tube is considerable. (orig.).

  17. MOSSBAUER ANALYSIS ON THE MICROWAVE—MAGNETIC DESULFURIZATION OF RAW COAL

    Institute of Scientific and Technical Information of China (English)

    翁斯灏

    1994-01-01

    The selective dielectric heating of microwave energy to convert a portion of each pyrite particle to moderately magnetic pyrrhotite has been suggested to enhance the magnetic separation of inorganic sulfur from coal.The results for Mossbauer analyses show that the considerable amount of pyrrhotite produced during microwave irradiation,carrying with it some of non-magnetic pyrite(unconverted),ferrous sulfate,and troilite,is completely removed from coal after magnetic separation.The optimum desulfurization efficiency can be attained by appropriately controlling the irradiation time to maximize the amount of pyrrhotite formed pyrite decomposition.Excessive irradiation would be ddisadvantageous for improving magnetic separation due to the further decomposition of pyrrhotite to antiferromagnetic troilite.

  18. Modification of Bitumen with Desulfurized Crumb Rubber in the Present of Reactive Additives

    Institute of Scientific and Technical Information of China (English)

    YE Zhigang; ZHANG Yuzhen; KONG Xianming

    2005-01-01

    Bitumen was modified with desulfurized crumb rubber (DCR) in the present of reactive additives. The effect of the kinds and content of the reactive additive on properties of DCR modified bitumen (DCRMB) was investigated. The morphology of DCRMB was characterized by SEM and the changes of the chemical structure of DCRMB without and with the addition of the reactive additive were analyzed by FTIR. The experimented results show that the softening point,the elasticity recovery and the storage stability of DCRMB were improved significantly by the addition of the reactive additive. This is because that a network structure of rubber in DCRMB was formed and the chemical reaction between C=C double bonds in bitumen and DCR has happened after the reactive additive was added into DCRMB.

  19. Surface characterization of adsorbents in ultrasound-assisted oxidative desulfurization process of fossil fuels.

    Science.gov (United States)

    Etemadi, Omid; Yen, Teh Fu

    2007-09-01

    Surface properties of two different phases of alumina were studied through SEM images. Characterization of amorphous acidic alumina and crystalline boehmite by XRD explains the differences in adsorption capacities of each sample. Data from small angle neutron scattering (SANS) provide further results regarding the ordering in amorphous and crystalline samples of alumina. Quantitative measurements from SANS are used for pore size calculations. Higher disorder provides more topological traps, irregularities, and hidden grooves for higher adsorption capacity. An isotherm model was derived for adsorption of dibenzothiophene sulfone (DBTO) by amorphous acidic alumina to predict and calculate the adsorption of sulfur compounds. The Langmuir-Freundlich model covers a wide range of sulfur concentrations. Experiments prove that amorphous acidic alumina is the adsorbent of choice for selective adsorption in the ultrasound-assisted oxidative desulfurization (UAOD) process to produce ultra-low-sulfur fuel (ULSF).

  20. 90`s for the 90`s: High efficiency dry flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, T.E.; Buschmann, J.C. [ABB Environmental Systems, Knoxville, TN (United States)

    1995-12-31

    The promulgation of the Clean Air Act Amendments with additional State regulation have pushed the requirements for SO{sub 2} reduction on coal fired boiler emissions to 90% and above. The development and application of spray dryer reactors in the 1990`s to meet these increasingly difficult requirements has continued. This paper describes two spray dryer absorption processes which are capable of high efficiency. A cost benefit comparison between the two is included. Specific design features at several plants are presented. Full scale application and operation of spray dryer reactors with fabric filters on coal fired boilers has demonstrated that the dry flue gas desulfurization (DFGD) process is a proven technology for high SO{sub 2} removal. Low capital cost coupled with high SO{sub 2} removal makes the DFGD process attractive, competitive and proven for meeting the performance requirements in the 1990`s.

  1. A DFT study of the extractive desulfurization mechanism by [BMIM](+)[AlCl4](-) ionic liquid.

    Science.gov (United States)

    Li, Hongping; Chang, Yonghui; Zhu, Wenshuai; Jiang, Wei; Zhang, Ming; Xia, Jiexiang; Yin, Sheng; Li, Huaming

    2015-05-14

    In this work, the interaction nature between [BMIM](+)[AlCl4](-) ionic liquid (IL) and aromatic sulfur compounds (thiophene, benzothiophene, and dibenzothiophene) has been studied by means of density functional theory (M06-2X functional) combined with an implicit solvation model. Although [BMIM](+)[AlCl4](-) is a metal-containing IL, its extractive desulfurization mechanism is different from other metal-containing ILs but similar to non-metal-containing ILs. Important reactions involved in extractive desulfurization (EDS) were systematically studied. Our results have demonstrated that both the cation and the anion play important roles in EDS. On the basis of the structure analysis, reduced density gradient analaysis (RDG), and energy decomposition analysis, [BMIM](+) cation affords a π-π interaction while [AlCl4](-) anion provides a hydrogen bonding interaction. Electrostatic potential analysis implies the dominant π-π interaction and hydrogen bonding interaction are driven by electrostatic interaction between IL and aromatic sulfur compounds. Interaction energy between [BMIM](+)[AlCl4](-) and thiophene (TH), benzothiophene (BT), and dibenzothiophene (DBT) follows the order TH < BT < DBT. Moreover, Al-containing IL with a high molar ratio of AlCl3 ([BMIMCl]/2[AlCl3]) has also been studied. Results show that [Al2Cl7](-) species will be formed with excess AlCl3. However, the [Al2Cl7](-)-based IL cannot improve the EDS performance. Improvement of EDS performance with a high molar ratio of AlCl3 is credited to the Lewis acidity of AlCl3. Charge analysis reveals that there is no obvious charge transfer during the reaction, which is different from Fe-containing ILs as well as solid sorbents. In addition, CH-π interaction is not important for the current system.

  2. Desulfurization of hot coal gas in fluidized bed with regenerable zinc titanate sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Salo, K.; Abbasian, J. (Enviropower Inc., Espoo (Finland))

    1994-01-01

    Integrated gasification combined cycle (IGCC) power generation processes are considered to be among the most attractive technologies for the 21st century. In such processes, solid fuels such as coal are gasified at pressure and the fuel gas is cleaned and combusted in the gas turbine. The gas cleanup is necessary not only for the protection of the gas turbine hardware, but also to comply with environmental regulations. In the so-called 'simplified' IGCC process, the fuel gas is cleaned at high temperature and pressure to improve the overall cycle efficiency. The hot gas cleanup system includes a high-temperature, high-pressure desulfurization unit and particulate removal system. The former comprises two fluidized bed reactors utilizing regenerable zinc titanate sorbents capable of removing the sulfur gases (primarily H[sub 2]S) to below 50 ppmv. The latter employs rigid ceramic filter elements operating at up to 700[degree]C and 20 bar and is capable of reducing the 'fines' concentration to an acceptable level for a gas turbine. Novel regenerable zinc titanate sorbents suitable for fluidized-bed application have been tested. The sulfur capture and attrition characteristics of these sorbents have been evaluated in extensive testing in a bench-scale fluidized-bed reactor operating at high pressure and temperature conditions expected in IGCC operation. Two different gas mixtures representing air-blown gasifier exit gas with and without in-situ desulfurization with Ca-based sorbents have been used. H[sub 2]S removal efficiencies of higher than 99% at acceptable levels of sorbent conversion have been achieved in all these experiments with minimal sorbent deterioration. 4 refs., 7 figs., 1 tab.

  3. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    Science.gov (United States)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  4. Advanced sulfur control concepts in hot-gas desulfurization technology: Phase 2. Exploratory studies on the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.; Huang, W.; White, J. [and others

    1997-07-01

    The topical report describes the results of Phase 2 research to determine the feasibility of the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Many of the contaminants present in coal emerge from the gasification process in the product gas. Much effort has gone into the development of high temperature metal oxide sorbents for removal of H{sub 2}S from coal gas. The oxides of zinc, iron, manganese, and others have been studied. In order for high temperature desulfurization to be economical it is necessary that the sorbents be regenerated to permit multicycle operation. Current methods of sorbent regeneration involve oxidation of the metal sulfide to reform the metal oxide and free the sulfur as SO{sub 2}. An alternate regeneration process in which the sulfur is liberated in elemental form is desired. Elemental sulfur, which is the typical feed to sulfuric acid plants, may be easily separated, stored, and transported. Although research to convert SO{sub 2} produced during sorbent regeneration to elemental sulfur is on-going, additional processing steps are required and the overall process will be more complex. Clearly, the direct production of elemental sulfur is preferred. Desulfurization utilizing a cerium oxide based sorbent is discussed.

  5. Preparation of AAO-CeO2 nanotubes and their application in electrochemical oxidation desulfurization of diesel

    Science.gov (United States)

    Du, Xiaoqing; Yang, Yumeng; Yi, Chenxi; Chen, Yu; Cai, Chao; Zhang, Zhao

    2017-02-01

    The coaxial arrays of AAO-CeO2 NTs have been successfully galvanostatically deposited on an anode, characterized and adopted as a catalyst for removing organic sulfurs from diesel. The influence of the main electrochemical oxidation factors on the efficiency of desulfurization have also been investigated. The results show that the fabrication process of AAO-CeO2 NTs is accompanied by the formation of a new phase, namely Al3Ce, and the main oxidation products of the diesel are soluble inorganic sulphides, especially Ce2(SO4)3. When compared with dibenzothiophene and 4, 6-dimethyldibenzothiophene, benzothiophene is much more easily removed, with a removal efficiency that reaches 87.2%. Finally, a possible electrochemical oxidation desulfurization pathway for diesel is proposed.

  6. Experimental and mechanism studies on simultaneous desulfurization and denitrification from flue gas using a flue gas circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi; XU PeiYao; SUN XiaoJun; WANG LiDong

    2007-01-01

    The oxidizing highly reactive absorbent was prepared from fly ash, industry lime, and an oxidizing additive M. Experiments of simultaneous desulfurization and denitrification were carried out in a flue gas circulating fluidized bed (CFB). The effects of influencing factors and calcium availability were also investigated on the removal efficiencies of desulfurization and denitrification. Removal efficiencies of 95.5% for SO2 and 64.8% for NO were obtained respectively under the optimal experimental conditions. The component of the spent absorbent was analyzed with chemical analysis methods. The results indicated that more nitrogen species appeared in the spent absorbent except sulfur species. A scanning electron microscope (SEM) and an accessory X-ray energy spectrometer were used to observe micro-properties of the samples, including fly ash, oxidizing highly reactive absorbent and spent absorbent. The simultaneous removal mechanism of SO2 and NO based on this absorbent was proposed according to the experimental results.

  7. Enhancement of gas desulfurization with hydrated lime at low temperature by the presence of NO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bausach, M.; Pera-Titus, M.; Fite, C.; Cunill, F.; Izquierdo, J.F.; Tejero, J.; Iborra, M. [University of Barcelona, Barcelona (Spain). Dept. of Chemical Engineering

    2005-11-01

    The effect of NO{sub 2} on the desulfurization reaction of simulated flue gas by Ca(OH){sub 2} was investigated in a fixed-bed reactor at 333-353 K and at relative humidities (RHs) in the range of 30%-70%. NO{sub 2} was determined to be a promoter for SO{sub 2} uptake, because its retention can be increased up to 200%. The effect of NO{sub 2} and O{sub 2} concentration on the kinetics of the desulfurization reaction was surveyed and successfully simulated by means of a deactivation model implemented with an inverse shrinking-core model (DM-ISCM). Solid analyses were also performed to identify the reaction products and provide insight into the chemistry of the process.

  8. A novel metabolite (1,3-benzenediol, 5-hexyl) production by Exophiala spinifera strain FM through dibenzothiophene desulfurization.

    Science.gov (United States)

    Elmi, Fatemeh; Etemadifar, Zahra; Emtiazi, Giti

    2015-05-01

    Sulfur dioxide which is released from petroleum oil combustion causes pollution over the atmosphere and the soil. Biodesulfurization can be used as a complementary method of hydrodesulfurization, the common method of petroleum desulfurization in refineries. Many studies have been carried out to develop biological desulfurization of dibenzothiophene (DBT) with bacterial biocatalysts. However, fungi are capable to metabolize a wide range of aromatic hydrocarbons through cytochrome P450 and their extracellular enzymes. The aim of the present work was isolation and identification of fungi biocatalysts capable for DBT utilization as sulfur source and production of novel metabolites. DBT consumption and the related produced metabolites were analyzed by HPLC and GC-MS respectively. One of the isolated fungi that could utilize DBT as sole sulfur source was identified by both traditional and molecular experiments and registered in NCBI as Exophiala spinifera FM strain (accession no. KC952672). This strain could desulfurize 99 % of DBT (0.3 mM) as sulfur source by co-metabolism reaction with other carbon sources through the same pathway as 4S and produced 2-hydroxy biphenyl (2-HBP) during 7 days of incubation at 30 °C and 180 rpm shaking. However, the isolate was able to transform 2-HBP to 1,3-benzenediol, 5-hexyl. While biphenyl compounds are toxic to leaving cells, biotransformation of them can reduce their toxicity and the fungi will be more tolerant to the final product. These data are the first report about the desulfurization of DBT comparable to 4S-pathway and production of innovative metabolite by E. spinifera FM strain.

  9. Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation.

    Science.gov (United States)

    Pentelute, Brad L; Kent, Stephen B H

    2007-02-15

    Increased versatility for the synthesis of proteins and peptides by native chemical ligation requires the ability to ligate at positions other than Cys. Here, we report that Raney nickel can be used under standard conditions for the selective desulfurization of Cys in the presence of Cys(Acm). This simple and practical tactic enables the more common Xaa-Ala junctions to be used as ligation sites for the chemical synthesis of Cys-containing peptides and proteins. [reaction: see text].

  10. A fiber optics system for monitoring utilization of ZnO adsorbent beds during desulfurization for logistic fuel cell applications

    Science.gov (United States)

    Sujan, Achintya; Yang, Hongyun; Dimick, Paul; Tatarchuk, Bruce J.

    2016-05-01

    An in-situ fiber optic based technique for direct measurement of capacity utilization of ZnO adsorbent beds by monitoring bed color changes during desulfurization for fuel cell systems is presented. Adsorbents composed of bulk metal oxides (ZnO) and supported metal oxides (ZnO/SiO2 and Cusbnd ZnO/SiO2) for H2S removal at 22 °C are examined. Adsorbent bed utilization at breakthrough is determined by the optical sensor as the maximum derivative of area under UV-vis spectrum from 250 to 800 nm observed as a function of service time. Since the response time of the sensor due to bed color change is close to bed breakthrough time, a series of probes along the bed predicts utilization of the portion of bed prior to H2S breakthrough. The efficacy of the optical sensor is evaluated as a function of inlet H2S concentration, H2S flow rate and desulfurization in presence of CO, CO2 and moisture in feed. A 6 mm optical probe is employed to measure utilization of a 3/16 inch ZnO extrudate bed for H2S removal. It is envisioned that with the application of the optical sensor, desulfurization can be carried out at high adsorbent utilization and low operational costs during on-board miniaturized fuel processing for logistic fuel cell power systems.

  11. Evaluation of Synthetic Gypsum Recovered via Wet Flue-Gas Desulfurization from Electric Power Plants for Use in Foundries

    Directory of Open Access Journals (Sweden)

    R. Biernacki

    2012-09-01

    Full Text Available This article investigates possible use of waste gypsum (synthetic, recovered via flue-gas desulfurization from coal-fired electric powerplants, in foundries. Energy sector, which in Eastern Europe is mostly composed from coal-fired electric power plants, is one of the largestproducers of sulfur dioxide (SO2.In order to protect the environment and reduce the amount of pollution flue-gas desulfurization (FGD is used to remove SO2 fromexhaust flue gases of fossil-fuel power plants. As a result of this process gypsum waste is produced that can be used in practicalapplications.Strength and permeability tests have been made and also in-depth analysis of energy consumption of production process to investigateways of preparing the synthetic gypsum for casting moulds application. This paper also assesses the chemical composition, strength andpermeability of moulds made with synthetic gypsum, in comparison with moulds made with traditional GoldStar XL gypsum and withceramic molds. Moreover examination of structure of synthetic gypsum, the investigations on derivatograph and calculations of energyconsumption during production process of synthetic gypsum in wet flue-gas desulfurization were made.After analysis of gathered data it’s possible to conclude that synthetic gypsum can be used as a material for casting mould. There is nosignificant decrease in key properties, and on the other hand there is many additional benefits including low energy consumption,decreased cost, and decreased environmental impact.

  12. Investigation on Modification of NaY Zeolite and Its Behaviors in Selective Adsorptive Desulfurization of FCC gasoline

    Institute of Scientific and Technical Information of China (English)

    Zhu Heli; Song Lijuan; Gao Xiang; Wang Hongguo; Zhang Xiaotong; Sun Zhaolin

    2009-01-01

    NaY zeolite was modified with oxalic acid, and Ce(Ⅳ)Y(1) zeolite was obtained via liquid phase ion exchange between the modified NaY zeolite and cerium nitrate. The Ce(Ⅳ)Y(2) zeolite was obtained via liquid phase ion exchange between NaY zeolite and cerium nitrate. The performance of two Y zeolites ICe(Ⅳ)Y(1) and Ce(Ⅳ)Y(2)] was compared through static selective adsorptive desulfurization of FCC gasoline at room tem-perature and normal pressure. The sulfur compounds and contents of the FCC gasoline were analyzed by microcoulometry and GC-SCD chromatogram. The results showed that the effect of adsorptive desulfurization of FCC gasoline achieved by Ce(Ⅳ)Y(1) zeolite was better than that of Ce(Ⅳ)Y(2) zeolite. The rate for adsorp-tive desulfurization of FCC gasoline by Ce(Ⅳ)Y(1) zeolite and Ce(Ⅳ)Y(2) zeolite was 85.0% and 62.4%, respectively. The Ce(Ⅳ)Y(1) zeolite could adsorb DMTs, which could not be adsorbed by Ce(Ⅳ)Y(2) zeolite. The rate of regeneration of extruded Ce(Ⅳ)Y(1)zeolite was 95.5%.

  13. 吸附脱硫工艺技术的研究进展%Research Development of Adsorption Desulfurization Technology

    Institute of Scientific and Technical Information of China (English)

    焦林宏; 韩维亮

    2014-01-01

    Adsorption desulfurization technique had golden prospect because of its advantages , such as mild conditions and less investment.The technology of industrialized adsorption desulfurization at home and abroad was reviewed.At last, research development of different adsorbent was introduced.The carriers of adsorbent were zeolite , activated carbon , clay and metallic oxide , respectively.Although adsorption desulfurization had promising prospect , there were several disadvantages , for example, the low sulfur content , the poor selective ability and regeneration.Thus, the future trend of research should be focused on preparation of adsorbents.%吸附脱硫的优点是反应条件温和,投资成本低,在油品脱硫中具有很大的发展潜力。综述了目前国内外已经工业化的吸附脱硫技术,并介绍了分别以分子筛、活性炭、黏土、金属氧化物为载体的吸附剂的研究进展及其优缺点。认为吸附脱硫虽具广阔前景,但仍需解决硫容量低、选择性差和再生等问题。因此未来的研究方向应集中在吸附剂的制备上。

  14. An oxidative desulfurization method using ultrasound/Fenton's reagent for obtaining low and/or ultra-low sulfur diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yongchuan; Qi, Yutai [Department of Applied Chemistry, School of Science, Harbin Institute of Technology, Harbin 115001 (China); Zhao, Dezhi [Department of Petroleum Chemical Engineering, Liaoning Shihua University, Fushun 113001 (China); Zhang, Huicheng [Fushun Research Institute of Petroleum and Petrochemicals of SINOPEC Corp., Fushun 113001 (China)

    2008-10-15

    The total development trend in the world is towards continuously lower of sulfur content as a quality standard of diesel fuels. Integrating of an oxidative desulfurization unit with a conventional hydrotreating unit can bring benefits to producing low and/or ultra-low sulfur diesel fuels. Using the hydrotreated Middle East diesel fuel as a feedstock, four processes of the oxidative desulfurization have been studied: a hydrogen peroxide-acetic acid system and a Fenton's reagent system both without/with ultrasound. Results showed that the oxidative desulfurization reaction mechanics fitted apparent first-order kinetics. The addition of Fenton's reagent could enhance the oxidative desulfurization efficiency for diesel fuels and sono-oxidation treatment in combination with Fenton's reagent shows a good synergistic effect. Under our best operating condition for the oxidative desulfurization: temperature 313 K, ultrasonic power 200 W, ultrasonic frequency 28 kHz, Fe{sup 2+}/H{sub 2}O{sub 2} 0.05 mol/mol, pH 2.10 in aqueous phase and reaction time 15 min, the sulfur content in the diesel fuels was decreased from 568.75 {mu}g/g to 9.50 {mu}g/g. (author)

  15. Bio desulfurization of a system containing synthetic fuel by rhodococcus erythropolis ATCC 4277; Remocao de compostos sulfurosos de sitema bifasico contendo combustivel sintetico por Rhodococcus erythropolis ATCC 4277

    Energy Technology Data Exchange (ETDEWEB)

    Maass, Danielle; Souza, Antonio Augusto Ulson de; Souza, Selene Maria de Arruda Guelli Ulson de [Universidade Federal de Santa Catarina (UFSC), SC (Brazil)

    2012-07-01

    For decades the burning of fossil fuels released a lot of pollutants in the atmosphere. Among the most harmful is sulfur dioxide (SO{sub 2}), which reacts with the moisture in the air and turns into sulfuric acid, being the main cause of acid rain. Acid rain is very harmful to animal and plant kingdoms; accelerates the corrosion's processes of buildings and monuments, and causes serious health problems for humans. As a result, many countries have reformed their legislation to require the sale of fuels with very low sulfur content. The existing processes of desulfurization are not capable of removing sulfur so low. Therefore, there has developed a new process called bio desulfurization. In this process, the degradation of sulfur occurs through the action of microorganisms that act as catalysts. The bacterium Rhodococcus erythropolis has emerged as one of the most promising for bio desulfurization because it removes the sulfur without breaking the benzene rings, thereby maintaining the potential energy of the same. Using dibenzothiophene as a model of sulfur compounds, the products of the bio desulfurization process are 2- hydroxybiphenyl and sulfate. In this study we sought to examine the desulfurizing capacity of national Rhodococcus erythropolis strain ATCC4277 in a batch reactor using concentrations of organic phase (n-dodecane) of 20 and 80% (v/v). Rhodococcus erythropolis ATCC4277 was capable of degrading DBT in 93.3 and 98.0% in the presence of 20 and 80% (v/v) of synthetic fuel, respectively. (author)

  16. Overview on Microbial Desulfurization for Pyrite Cinder%硫铁矿烧渣的微生物脱硫概况

    Institute of Scientific and Technical Information of China (English)

    周文博; 邹平; 孙珮石

    2013-01-01

    对硫酸渣微生物氧化脱硫研究进行了综述,主要包括硫酸渣的特性、脱硫工艺、脱硫微生物种类、细菌氧化机理、微生物脱硫影响因素、硫酸渣生物氧化脱硫现状和存在问题等,展望了该技术未来的研究方向及应用前景.%The research on microbial oxidation desulfurization for pyrite cinder is summarized in this paper, which mainly includes the characteristics of pyrite cinder, desulfuration process, desulfurization microbial species, bacterial oxidation mechanism, the influence factors of microbial desulfurization, the present situation and the existing problems of pyrite cinder's biological oxidation desulfurization, and so on, the future direction of the research and the application prospect are also forecasted in this paper.

  17. BIOCATALYTIC POLYESTER SYNTHESIS: ANALYSIS OF THE EVOLUTION OF MOLECULAR WEIGHT AND END-GROUP FUNCTIONALITY. (R825338)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell

    Science.gov (United States)

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-05-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol.

  19. Biocatalytic Behaviour of Immobilized Rhizopus oryzae Lipase in the 1,3-Selective Ethanolysis of Sunflower Oil to Obtain a Biofuel Similar to Biodiesel

    Directory of Open Access Journals (Sweden)

    Carlos Luna

    2014-08-01

    Full Text Available A new biofuel similar to biodiesel was obtained in the 1,3-selective transesterification reaction of sunflower oil with ethanol using as biocatalyst a Rhizopus oryzae lipase (ROL immobilized on Sepiolite, an inorganic support. The studied lipase was a low cost powdered enzyme preparation, Biolipase-R, from Biocon-Spain, a multipurpose additive used in food industry. In this respect, it is developed a study to optimize the immobilization procedure of these lipases on Sepiolite. Covalent immobilization was achieved by the development of an inorganic-organic hybrid linker formed by a functionalized hydrocarbon chain with a pendant benzaldehyde, bonded to the AlPO4 support surface. Thus, the covalent immobilization of lipases on amorphous AlPO4/sepiolite (20/80 wt % support was evaluated by using two different linkers (p-hydroxybenzaldehyde and benzylamine-terephthalic aldehyde, respectively. Besides, the catalytic behavior of lipases after physical adsorption on the demineralized sepiolite  was also evaluated. Obtained results indicated that covalent immobilization with the p-hydroxybenzaldehyde linker gave the best biocatalytic behavior. Thus, this covalently immobilized lipase showed a remarkable stability as well as an excellent capacity of reutilization (more than five successive reuses without a significant loss of its initial catalytic activity. This could allow a more efficient fabrication of biodiesel minimizing the glycerol waste production.

  20. Biocatalytic behaviour of immobilized Rhizopus oryzae lipase in the 1,3-selective ethanolysis of sunflower oil to obtain a biofuel similar to biodiesel.

    Science.gov (United States)

    Luna, Carlos; Verdugo, Cristóbal; Sancho, Enrique D; Luna, Diego; Calero, Juan; Posadillo, Alejandro; Bautista, Felipa M; Romero, Antonio A

    2014-08-04

    A new biofuel similar to biodiesel was obtained in the 1,3-selective transesterification reaction of sunflower oil with ethanol using as biocatalyst a Rhizopus oryzae lipase (ROL) immobilized on Sepiolite, an inorganic support. The studied lipase was a low cost powdered enzyme preparation, Biolipase-R, from Biocon-Spain, a multipurpose additive used in food industry. In this respect, it is developed a study to optimize the immobilization procedure of these lipases on Sepiolite. Covalent immobilization was achieved by the development of an inorganic-organic hybrid linker formed by a functionalized hydrocarbon chain with a pendant benzaldehyde, bonded to the AlPO4 support surface. Thus, the covalent immobilization of lipases on amorphous AlPO4/sepiolite (20/80 wt %) support was evaluated by using two different linkers (p-hydroxybenzaldehyde and benzylamine-terephthalic aldehyde, respectively). Besides, the catalytic behavior of lipases after physical adsorption on the demineralized sepiolite  was also evaluated. Obtained results indicated that covalent immobilization with the p-hydroxybenzaldehyde linker gave the best biocatalytic behavior. Thus, this covalently immobilized lipase showed a remarkable stability as well as an excellent capacity of reutilization (more than five successive reuses) without a significant loss of its initial catalytic activity. This could allow a more efficient fabrication of biodiesel minimizing the glycerol waste production.

  1. Biocatalytic Synthesis of Flavor Ester “Pentyl Valerate” Using Candida rugosa Lipase Immobilized in Microemulsion Based Organogels: Effect of Parameters and Reusability

    Science.gov (United States)

    Raghavendra, Tripti; Panchal, Nilam; Divecha, Jyoti; Shah, Amita; Madamwar, Datta

    2014-01-01

    Pentyl valerate was synthesized biocatalytically using Candida rugosa lipase (CRL) immobilized in microemulsion based organogels (MBGs). The optimum conditions were found to be pH 7.0, temperature of 37°C, ratio of concentration of water to surfactant (Wo) of 60, and the surfactant sodium bis-2-(ethylhexyl)sulfosuccinate (AOT) for MBG preparation. Although kinetic studies revealed that the enzyme in free form had high affinity towards substrates (Km = 23.2 mM for pentanol and 76.92 mM for valeric acid) whereas, after immobilization, the Km values increased considerably (74.07 mM for pentanol and 83.3 mM for valeric acid) resulting in a slower reaction rate, the maximum conversion was much higher in case of immobilized enzyme (~99%) as compared to free enzyme (~19%). Simultaneous effects of important parameters were studied using response surface methodology (RSM) conjugated with Box-Behnken design (BBD) with five variables (process parameters), namely, enzyme concentration, initial water content (Wo), solvent used for MBG preparation, substrate ratio and time, and response as the final product formation, that is, pentyl valerate (%). The MBGs were reused for 10 consecutive cycles for ester synthesis. Efficacy of AOT/isooctane as dehydrating agent for extracting excess water from MBGs was found to exert a positive effect on the esterification reaction. PMID:25093166

  2. Immobilization of the α-amylase of Bacillus amyloliquifaciens TSWK1-1 for the improved biocatalytic properties and solvent tolerance.

    Science.gov (United States)

    Kikani, B A; Pandey, S; Singh, S P

    2013-05-01

    The α-amylase of Bacillus amyloliquifaciens TSWK1-1 (GenBank Number, GQ121033) was immobilized by various methods, including ionic binding with DEAE cellulose, covalent coupling with gelatin and entrapment in polyacrylamide and agar. The immobilization of the purified enzyme was most effective with the DEAE cellulose followed by gelatin, agar and polyacrylamide. The K m increased, while V max decreased upon immobilization on various supports. The temperature and pH profiles broadened, while thermostability and pH stability enhanced after immobilization. The immobilized enzyme exhibited greater activity in various non-ionic surfactants, such as Tween-20, Tween-80 and Triton X-100 and ionic surfactant, SDS. Similarly, the enhanced stability of the immobilized α-amylase in various organic solvents was among the attractive features of the study. The reusability of the immobilized enzyme in terms of operational stability was assessed. The DEAE cellulose immobilized α-amylase retained its initial activity even after 20 consequent cycles. The DEAE cellulose immobilized enzyme hydrolyzed starch with 27 % of efficiency. In summary, the immobilization of B. amyloliquifaciens TSWK1-1 α-amylase with DEAE cellulose appeared most suitable for the improved biocatalytic properties and stability.

  3. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell.

    Science.gov (United States)

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-01-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol.

  4. Biocatalytic Synthesis of Flavor Ester “Pentyl Valerate” Using Candida rugosa Lipase Immobilized in Microemulsion Based Organogels: Effect of Parameters and Reusability

    Directory of Open Access Journals (Sweden)

    Tripti Raghavendra

    2014-01-01

    Full Text Available Pentyl valerate was synthesized biocatalytically using Candida rugosa lipase (CRL immobilized in microemulsion based organogels (MBGs. The optimum conditions were found to be pH 7.0, temperature of 37°C, ratio of concentration of water to surfactant (Wo of 60, and the surfactant sodium bis-2-(ethylhexylsulfosuccinate (AOT for MBG preparation. Although kinetic studies revealed that the enzyme in free form had high affinity towards substrates (Km = 23.2 mM for pentanol and 76.92 mM for valeric acid whereas, after immobilization, the Km values increased considerably (74.07 mM for pentanol and 83.3 mM for valeric acid resulting in a slower reaction rate, the maximum conversion was much higher in case of immobilized enzyme (~99% as compared to free enzyme (~19%. Simultaneous effects of important parameters were studied using response surface methodology (RSM conjugated with Box-Behnken design (BBD with five variables (process parameters, namely, enzyme concentration, initial water content (Wo, solvent used for MBG preparation, substrate ratio and time, and response as the final product formation, that is, pentyl valerate (%. The MBGs were reused for 10 consecutive cycles for ester synthesis. Efficacy of AOT/isooctane as dehydrating agent for extracting excess water from MBGs was found to exert a positive effect on the esterification reaction.

  5. Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq

    2017-02-01

    Full Text Available The present research work focuses on a novel ultraclean desulfurization process of model oil by the adsorption method using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent. The parameters investigated are effect of contact time, adsorbent dose, initial dibenzothiophene (DBT concentration and temperature. Experimental tests were conducted in batch process. Pseudo first and second order kinetic equations were used to examine the experimental data. It was found that pseudo second order kinetic equation described the data of the DBT adsorption onto all types of adsorbents very well. The isotherm data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir isotherm model fits the data very well for the adsorption of DBT onto all three forms of adsorbents. The adsorption of DBT was also investigated at different adsorbent doses and was found that the percentage adsorption of DBT was increased with increasing the adsorbent dose, while the adsorption in mg/g was decreased with increasing the adsorbent dose. The prepared adsorbents were analyzed by scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDX and X-ray diffraction (XRD.

  6. Flue gas desulfurization by-products additions to acid soil: alfalfa productivity and environmental quality

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Dick, W.A.; Nelson, S.

    2001-07-01

    Flue gas desulfurization (FGD) by-products are often alkaline and contain many plant nutrients. Land application of FGD by-products is encouraged but little information is available related to plant responses and environmental impacts concerning such use. Agricultural lime (ag-lime) and several new types of FGD by-products which contain either vermiculite or perlite were applied at 0, 0.5, 1.0, and 2.0 times the soil's lime requirement (LR) rate to an acidic soil (Wooster silt loam). The highest FGD by-products application rate was equivalent to 75.2 Mg ha{sup -1}. Growth of alfalfa (Medicago sativa L.) was significantly increased compared to the untreated control in the second year after treatment with yields for the 1 x LR rate of FGD approximately 7-8 times greater compared to the untreated control and 30% greater than for the commercial ag-lime. Concentrations of Mo in alfalfa were significantly increased by FGD by-products application, compared to the untreated control, while compared to the ag-lime treatment, concentrations of B increased and Ba decreased. No soil contamination problems were observed, even at the 2xLR rate, indicating these materials can be safely applied to agricultural soils.

  7. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Farzin Nejad, N., E-mail: Farzinnejadn@ripi.ir [Petroleum Refining Technology Development Division, Research Institute of Petroleum Industry, Tehran 14857-33111 (Iran, Islamic Republic of); Shams, E.; Amini, M.K. [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2015-09-15

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption–desorption isotherm and transmission electron microscopy. Nitrogen adsorption–desorption measurement revealed the high surface area (810 m{sup 2} g{sup −1}), maxima pore size of 3.3 nm and large pore volume (1.01 cm{sup 3} g{sup −1}) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g{sup −1} of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles. - Highlights: • Adsorptive desulfurization of model oil with magnetic ordered mesoporous carbon adsorbent, Fe-OMC, was studied. • Maximum adsorption capacity (q{sub max}) of Fe-OMC for DBT was found to be 111.1 mg g{sup −1}. • Freundlich isotherm best represents the equilibrium adsorption data. • Rate of DBT adsorption process onto Fe-OMC is controlled by at least two steps.

  8. Simultaneous desulfurization and denitrification from flue gas by Ferrate(VI).

    Science.gov (United States)

    Zhao, Yi; Han, Yinghui; Ma, Tianzhong; Guo, Tianxiang

    2011-05-01

    An innovative semidry process has been developed to simultaneously remove NO and SO₂ from flue gas. According to the conditions of the flue gas circulating fluidized bed (CFB) system, ferrate(VI) absorbent was prepared and added to humidified water, and the effects of the various influencing factors, such as ferrate(VI) concentration, humidified water pH, inlet flue gas temperature, residence time, molar ratio of Ca/(S+N), and concentrations of SO₂ and NO on removal efficiencies of SO₂ and NO were studied experimentally. Removal efficiencies of 96.1% for SO₂ and 67.2% for NO were obtained, respectively, under the optimal experimental conditions, in which the concentration of ferrate(VI) was 0.03 M, the humidified water pH was 9.32, the inlet flue gas temperature was 130 °C, the residence time was 2.2 s, and the molar ratio of Ca/(S+N) was 1.2. In addition, the reaction mechanism of simultaneous desulfurization and denitrification using ferrate(VI) was proposed.

  9. Preparation of manganese dioxide loaded activated carbon adsorbents and their desulfurization performance

    Science.gov (United States)

    Zhang, Jiaojing; Wang, Guojian; Wang, Wenyi; Song, Hua; Wang, Lu

    2016-12-01

    Manganese dioxide loaded activated carbon adsorbents (MnO2/AC) were prepared and characterized by N2 adsorption-desorption, BET method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy (SEM). Effects of preparation conditions and adsorption conditions on desulfurization performance of the adsorbents were studied in a fixed-bed adsorption apparatus. Experimental results show that the surface area and pore volume of MnO2/AC decreased compared with the unmodified activated carbon, but the adsorption capacity to H2S was improved greatly. A suitable H2S removal activity was obtained with manganese dioxide to activated carbon ratio of 1.1: 1 and the calcination temperature of 250°C. At the adsorption temperature of 40°C and gas flow rate of 20 mL/min, the H2S saturation capacity and H2S removal rate reached up to 713.25 mg/g and 89.9%, respectively.

  10. Sodic soil properties and sunflower growth as affected by byproducts of flue gas desulfurization.

    Directory of Open Access Journals (Sweden)

    Jinman Wang

    Full Text Available The main component of the byproducts of flue gas desulfurization (BFGD is CaSO(4, which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha(-1 and two leaching levels (750 and 1200 m(3 ha(-1. The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP, pH and total dissolved salts (TDS in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha(-1 and water was supplied at 1200 m(3·ha(-1. Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage.

  11. Iron blast furnace slag/hydrated lime sorbents for flue gas desulfurization.

    Science.gov (United States)

    Liu, Chiung-Fang; Shih, Shin-Min

    2004-08-15

    Sorbents prepared from iron blast furnace slag (BFS) and hydrated lime (HL) through the hydration process have been studied with the aim to evaluate their reactivities toward SO2 under the conditions prevailing in dry or semidry flue gas desulfurization processes. The BFS/HL sorbents, having large surface areas and pore volumes due to the formation of products of hydration, were highly reactive toward SO2, as compared with hydrated lime alone (0.24 in Ca utilization). The sorbent reactivity increased as the slurrying temperature and time increased and as the particle size of BFS decreased; the effects of the liquid/solid ratio and the sorbent drying conditions were negligible. The structural properties and the reactivity of sorbent were markedly affected by the BFS/HL ratio; the sorbent with 30/70 ratio had the highest 1 h utilization of Ca, 0.70, and SO2 capture, 0.45 g SO2/g sorbent. The reactivity of a sorbent was related to its initial specific surface area (Sg0) and molar content of Ca (M(-1)); the 1 h utilization of Ca increased almost linearly with increasing Sg0/M. The results of this study are useful to the preparation of BFS/HL sorbents with high reactivity for use in the dry and semidry processes to remove SO2 from the flue gas.

  12. Industrial-scale experiments of desulfuration of coal flue gas using a pulsed corona discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Wu, Y.; Wang, N.H.; Li, G.F.; Huang, Q.N. [Dalian University of Technology, Dalian (China). Inst. of Electrostatics

    2003-06-01

    The flow rate of flue gas in the industrial experiments was 3000 Nm{sup 3}/h. The flue gas from the boiler burning coal was used. The influences of operating parameters on the efficiency of desulfurization (DeSO{sub 2}) were studied, which include the retention period of flue gas in the reactor, the initial concentration of SO{sub 2} in flue gas, a mole ratio of NH{sub 3} to SO{sub 2} in the gas, the temperature of the gas, as well as the power consumption of pulsed corona discharges. The experimental results shown that the efficiency of DeSO{sub 2} was above 80%, when the initial concentration of SO{sub 2} was 1000 -2000 ppm, the gas temperature was 60 - 75 {degree}C, the retention period was more than 5.8 s, a mole ratio of NH{sub 3} to SO{sub 2} was 2:1, the water content in flue gas was above 6%, and the consumption was 2.5-3.5 Wh/Nm{sup 3}.

  13. Growth of forage legumes and grasses in acidic soil amended with flue gas desulfurization products

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.B.; Baligar, V.C. [USDA ARS, Beltsville, MD (USA)

    2003-07-01

    Large amounts of flue gas desulfurization products (FGDs) are produced when SO{sub 2} emissions are trapped in the coal burning process for generation of electricity. FGDs are normally discarded instead of being reused, and reuse on soils could be important in overall management of these products. Glasshouse experiments were conducted to determine effects of various levels of three FGDs (a FGD gypsum, an oxidized FGD + Mg, and a stabilized FGD) and the control compounds CaCO{sub 3}, CaSO{sub 3}, and CaSO{sub 4} on growth of alfalfa (Medicago sativa), white clover (Trifolium repens), orchardgrass (Dactylis glomerata), tall fescue (Festuca arundinacea), switchgrass (Panicum virgatum), and eastern gamagrass (Tripsacum dactyloides) in acidic (pH 4) soil (Typic Hapludult). The FGDs enhanced growth of each plant species, with alfalfa, white clover, and tall fescue receiving greater increases than the other species, especially when grown in soil amended with FGD + Mg. FGD gypsum did not often enhance growth unless high amounts were added. FGDs containing high B and low levels of CaSO{sub 3} were detrimental to growth. Overall, FGDs improved growth responses of these forage plants grown in an infertile low pH soil.

  14. Adsorptive desulfurization on a heteroatoms Y zeolite prepared by secondary synthesis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Gallium atoms have been introduced into the framework of Y zeolite by treating the zeolite with an aqueous solution of ammonium hexafluoro gallate.Desulfurization of various model fuels containing about 500 μg/g sulfur has been studied over the synthesized Y zeolite(GaAlY).The sulfur adsorption capacity is 7.0,17.4,14.5,16.9,6.9 and 5.8 mg(S)/g adsorbent for thiophene,tetrahydrothiophene(THT),4,6-dimethyldibenzothiophene(4,6-DMDBT),dibenzophiophene(DBT),benzothiophene(BT) and 4-methyldibenzothiophene(4-MDBT),respectively.The charges on the S atom in thiophene,THT,4,6DMDBT,DBT,BT and 4-MDBT,calculated using the density functional theory(DFT),are-0.159,-0.298,-0.214,-0.211,-0.193 and-0.188,respectively,implying that the S-M bond between the adsorption sites and thiophene is much weaker than that between the adsorption sites and THT,4,6-DMDBT or DBT.The sulfur removal of FCC gasoline on GaAlY is 68%.

  15. LIFAC flue gas desulfurization process an alternative SO{sub 2} control strategy

    Energy Technology Data Exchange (ETDEWEB)

    Patel, J.G. [Tampella Power Corp., Atlanta, GA (United States); Vilala, J. [Tampella Power Inc., Tampere (Finland)

    1995-12-01

    This paper discusses the results from two recently completed LIFAC flue gas desulfurization plants - 300 MW Shand lignite powered station owned by Saskatchewan Power Corporation and 60 MW Whitewater Valley high sulfur coal fired station owned by Richmond Powerand Light. LIFACis a dry FGD process in which limestone is injected into the upper regions of the boiler furnace and an activation reactor is used to humidify the unreacted limestone to achieve additional sulfur capture. The performance in both plants indicates that 70 to 80% sulfur is removed at a Ca/S ratio of 2. Cost performance data from these plants has shown that LI FAC both on construction cost and $/ton SO{sub 2} removed basis is very cost competitive compared to other SO{sub 2} control technologies. The Richmond plant has been realized under the auspices of the U.S. Department of Energy`s Clean Coal Technology program. The Shand plant is the first commercial installation in North America. The paper also discusses highlights of operating and maintenance experience, availability and handling of the solid waste product.

  16. Attapulgite-CeO2/MoS2 ternary nanocomposite for photocatalytic oxidative desulfurization

    Science.gov (United States)

    Li, Xiazhang; Zhang, Zuosong; Yao, Chao; Lu, Xiaowang; Zhao, Xiaobing; Ni, Chaoying

    2016-02-01

    Novel attapulgite(ATP)-CeO2/MoS2 ternary nanocomposites were synthesized by microwave assisted assembly method. The structures of the nanocomposites were characterized by XRD, FT-IR, UV-vis, XPS and in situ TEM. The photocatalytic activities of ATP-CeO2/MoS2 composites were investigated by degradating dibenzothiophene (DBT) in gasoline under visible light irradiation. The effect of the mass ratio of CeO2 to MoS2 on photocatalytic activity was investigated. The results indicate that the three-dimensional network structure is firmly constructed by ATP skeleton, CeO2 particles and MoS2 nanosheet which effectively increase the surface area of the composites and promote the separation of electrons and holes by resulting electronic transmission channels of multi-channel in space. The degradation rate of DBT can reach 95% under 3 h irradiation when the mass ratio of CeO2/MoS2 is 4/10. A plausible mechanism for the photocatalytic oxidative desulfurization of this nanocomposite is put forward.

  17. Silica-gel Supported V Complexes:Preparation, Characterization and Catalytic Oxidative Desulfurization

    Institute of Scientific and Technical Information of China (English)

    黎俊波; 刘习文; 曹灿灿; 郭嘉; 潘志权

    2013-01-01

    In this manuscript, a series of catalyst SGn-[VVO2-PAMAM-MSA] (SG=silica gel, PAMAM=poly-amidoamine, MSA=5-methyl salicylaldehyde, n=0, 1, 2, 3) was prepared and their structures were fully charac-terized by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelec-tron spectroscopy (XPS) and inductive coupled plasma emission spectrometer (ICP) etc. XPS revealed that the metal V and SGn-PAMAM-MSA combined more closely after the formation of Schiff base derivatives. Their cata-lytic activities for oxidation of dibenzothiophene were evaluated using tert-butyl hydroperoxide as oxidant. The results showed that the catalyst SG2.0-[VVO2-PAMAM-MSA] presented good catalytic activity and recycling time. Mean-while, the optimal condition for the catalytic oxidation of SG2.0-[VVO2-PAMAM-MSA] was also investigated, which showed that when the oxidation temperature was 90 °C, time was 60 min, the O/S was 3︰1, and the mass content of catalyst was 1%, the rate of desulfurization could reach 85.2%. Moreover, the catalyst can be recycled several times without significant decline in catalytic activity.

  18. Effect of pH Value on the Desulfurization Process in Flue Gas Desulfurization%烟气脱硫中pH值对脱硫过程的影响

    Institute of Scientific and Technical Information of China (English)

    王振华

    2014-01-01

    Wet Limestone - gypsum flue gas desulfurization system (FGD system) is currently dominant in the domestic coal-fired power plant FGD system. FGD is designed to chemically remove sulfur dioxide in the flue gas leaving the flue gas will be purified. pH value as a measure of gypsum slurry pH, is an important technical parameters of the desulfurization process, at the same time as an environmental indicators relate with chemical reaction. Utilization of limestone, desulfurization efficiency and quality of gypsum slurry are closely related with the control of pH value. We usually control the pH value by controlling the mixing amount of limestone (CaCO3). Increasing the pH value can increase the amount of limestone, and vice versa reduction. On operation, the stability of pH value must be maintained. Increasing the pH value will increase the alkalinity of system and desulfurization efficiency, but the utilization of limestone will be reduced, and accelerate the formation of scale, ultimately affect the quality of gypsum. Reducing the pH value will increase the acidity of the system, improve the utilization of limestone, accelerate precipitation of gypsum crystals, but it will also accelerate the corrosion of the system, make the system is unstable, and the desulfurization efficiency will be greatly reduced. Therefore, the control of slurry pH value should seek the best value to meet the requirements under the premise of the desulfurization rate and generally the pH is controlled in the best range of 5.0-5.8.%湿法石灰石-石膏烟气脱硫系统(即FGD系统)目前在国内外燃煤电站FGD系统中占绝对优势。FGD的目的是用化学方法除去烟气中的二氧化硫而使烟气得以净化。pH值作为石膏浆液酸碱度的度量,是脱硫工序中一项重要的技术参数,同时可作为一项与化学反应相关的环境指标。石灰石利用率、脱硫效率和石膏浆液品质等与pH值的控制密切相关。通常我们

  19. Theoretical investigation of the interaction between aromatic sulfur compounds and [BMIM](+)[FeCl4](-) ionic liquid in desulfurization: A novel charge transfer mechanism.

    Science.gov (United States)

    Li, Hongping; Zhu, Wenshuai; Chang, Yonghui; Jiang, Wei; Zhang, Ming; Yin, Sheng; Xia, Jiexiang; Li, Huaming

    2015-06-01

    In this work, interaction nature between a group of aromatic sulfur compounds and [BMIM](+)[FeCl4](-) have been investigated by density functional theory (DFT). A coordination structure is found to be critical to the mechanism of extractive desulfurization. Interaction energy and extractive selectivity follow the order: thiophene (TH)ionic liquid, but steric hindrance effects of some alkylic derivatives (e.g. 2,7-dimethylbenzothiophene) lead to a weaker interaction with ionic liquid. The mechanism of extractive desulfurization is attributed to the charge transfer effect. During extractive desulfurization, electrons on aromatic sulfur compounds transfer into the Lewis part of ionic liquid, namely, [FeCl4](-). Furthermore, it is better to consider the Lewis acidity of Fe-containing ionic liquid by the whole unit (such as [FeCl4](-) and aromatic sulfur compounds (X)) rather than only Fe or S atom.

  20. 活性焦烟气脱硫技术及其应用前景%Desulfurization Technology for Flue Gas by Active Coke and Its Application Prospect

    Institute of Scientific and Technical Information of China (English)

    汪家铭

    2012-01-01

    Desulfurization technology for flue gas by active coke was using its inherent functions of adsorption, catalysis and filtration,it was a dry purification treatment for the sulfur contained flue gas, in same one of reactor the three functions of desulfurization, de-nitride and de-dust were finished. Author hasintroduced the basic principle,process flow,technical feature,studying and developing situation taking coal as mainraw material to produce the active coke ; has compared the desulfurization hy active coke with the other some kinds of conventional desulfurization processes. Result indicates that the desulfurization technology of flue gas by active coke has an obvious superiority in the aspects of desulfurization rate,utilization of by-product,investment of plant and operating cost etc.%活性焦烟气脱硫技术利用活性焦特有的吸附、催化和过滤功能,对含硫烟气进行干法净化处理,在同1个反应器内完成脱硫、脱硝、除尘3种功能。介绍了以煤为主要原料生产活性焦的基本原理、工艺流程、技术特点和研发概况;将活性焦脱硫工艺与其他几种常用的脱硫工艺进行了对比,结果表明,活性焦烟气脱硫技术在脱硫率、副产品利用、装置投资及运行费用等方面均具有明显优势。

  1. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO{sub 4}), calcium sulfite (CaSO{sub 3}), calcium carbonate (CaCO{sub 3}), calcium hydroxide [Ca(OH){sub 2}], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO{sub 4}2H{sub 2}O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments.

  2. Kinetics of pozzolanic reaction for preparation of flue gas desulfurizer from fly ash and Ca(OH)2

    Institute of Scientific and Technical Information of China (English)

    WANG Jingang; HU Jinbang; WANG Daobin; DUAN Zhenya

    2007-01-01

    A kinetic model of the pozzolanic reaction for the preparation of flue gas desulfurizers from fly ash and Ca(OH)2 was deduced on the basis of solid phase reaction kinetic theory.Kinetic expressions and parameters were obtained and verified by experiment.A comparison of calculated results with experimental results showed that precision in kinetic expressions was good.The apparent reaction rate constants of the pozzolanic reaction could be raised by increasing the specific surface area of fly ash and the hydration temperature,and by using a suitable additive.

  3. Foaming in wet flue gas desulfurization plants: Laboratory‐scale investigation of long‐term performance of antifoaming agents

    DEFF Research Database (Denmark)

    Qin, Siqiang; Hansen, Brian Brun; Kiil, Søren

    2013-01-01

    Spontaneous foaming can cause a range of operational problems in industrial processes such as wet flue gas desulfurization (FGD). This work investigates the performance of selected antifoaming agents (Nalco FM‐37, Foamtrol 2290, and rapeseed oil) on foams generated by egg white albumin (protein......), sodium dodecyl sulfate, and adipic acid at conditions of relevance for wet FGD plants. The addition of antifoaming agents breaks any existing foam and causes an induction period without foaming, after which the foam gradually will begin to reappear. Foaming by egg white albumin (2 g/L) at 0.014 m/s could...

  4. Flue gas desulfurization products as sulfur sources for alfalfa and soybean

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.M.; Dick, W.A.; Nelson, S. [Ohio State University, Wooster, OH (US). School of Natural Resources

    2005-02-01

    Sulfur deficiencies in soil are expected to increase due to growth of high-yielding crop varieties, use of S-free fertilizers, and removal of S from industrial emissions. Flue gas desulfurization (FGD) products, created when coal is burned and SO{sub 2} is removed from the flue gases, may serve as efficient S sources. However, there are few reports on their use for the enhancement of crop growth. Agricultural gypsum and two types of FGD products, that contain either vermiculite or perlite, were applied at 0, 16, and 67 kg S ha{sup -1} to an agricultural soil (Wooster silt loam, Typic Fragiudalf). Dry weight of a new planting of alfalfa (Medicago sativa L.) was increased up to 40% by the treatments of FGD products or gypsum compared with the untreated control. Gypsum and FGD products were also applied at 0, 8,16, and 24 kg S ha{sup -1} to five established alfalfa stands in different Ohio regions. Mean alfalfa yield was significantly (P {le} 0.05) increased by approximately 5.0% in 2001 and 6.0% in 2002 with the S treatments of FGD products or gypsum compared with the untreated control. Alfalfa yields for FGD products and gypsum treatments were similar. A slight positive yield response was observed for soybean (Glycine max L.) when soils were treated with S-containing materials. Soil and plant analyses were made to assess potential adverse environmental impacts and none were observed. Thus, these FGD products can be safely applied to agricultural soils as S sources and can improve alfalfa yields in S-deficient soils.

  5. Regenerable copper-based sorbents for high temperature flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, P.; Abbasian, J.; Slimane, R.B.; Williams, B.E.; Khalili, N.R.; Ho, K.K.

    2000-07-01

    During conventional combustion process the sulfur in the coal is converted to sulfur dioxide (SO{sub 2}). This hazardous air pollutant combines with the moisture in the atmosphere and creates what is commonly known as acid rain. Thus the removal of this pollutant from flue gas prior to its discharge is very important. Government regulations have been introduced and have become progressively more stringent. In the Clean Air Act Amendments (CAAA) of 1990, for example, legislation was introduced requiring electric utilities to adopt available technology for removal of pollutant gases and particulates from coal combustion flue gases so that the increased use of coal is done in an environmentally acceptable manner. A number of processes have been developed for flue gas desulfurization (FGD). The moving bed copper oxide process has been regarded as one of the most promising emerging technologies for SO{sub 2} and NO{sub x} removal from flue gases at elevated temperatures. This process is based on the utilization of a dry, regenerable sorbent, that consists of copper oxide (CuO) supported on gamma alumina ({gamma}-Al{sub 2}O{sub 3}), in a cross flow moving-bed reactor. This study has been directed toward evaluation of the commercially available alumina-supported copper-based (ALCOA) sorbent to establish the baseline for development of new and improved sorbents for the copper oxide process. Evaluation of the baseline sorbent included determination of effective sulfur capacity and sulfur removal efficiency of the sorbent, the effects of operating parameters on the performance of the sorbent, as well as long term durability of the sorbent. Physical and chemical properties of the baseline sorbent were also determined.

  6. Copper-based sorbents for coal gas desulfurization at moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Slimane, R.B.; Abbasian, J.

    2000-05-01

    In a previous paper, the authors reported on the development of a regenerable copper chromite sorbent, designated as CuCr-29, that is capable of achieving less than 5 ppmv H{sub 2}S concentration in the cleaned fuel gas at about 600 C. This paper reports on recent research carried out to develop a new class of copper-based sorbents for hot fuel gas desulfurization applications in the moderate temperature range of 350--550 C that is currently of industrial interest. A reproducible sorbent preparation technique has been extended to the formulation of highly reactive and attrition-resistant sulfur sorbents based on reagent-grade oxides of copper, manganese, and alumina. The results of packed-bed experiments carried out for the evaluation of the performance of several copper-based sorbents at 350 and 450 C as well as the assessment of the long-term durability and regenerability of one selected formulation are presented and discussed. Three copper-based sorbents were shown to exhibit excellent sulfur removal efficiency and effective capacity, with one formulation (IGTSS-145) being particularly effective in the range of 450--600 C and two formulations (IGTSS-179 and IGTSS-326A) for the range of 350--450 C. The IGTSS-326A formulation maintained excellent sulfur removal efficiency (<1 ppmv H{sub 2}S in the cleaned fuel gas) as well as excellent effective sulfur capacity throughout extended durability testing. This sorbent was also shown to have significantly high attrition resistance, as determined in accordance with the ASTM D5757-95 procedure. These results strongly suggest the suitability of this formulation as a candidate sorbent for demonstration in the Sierra Pacific (Pinon Pine) Clean Coal Technology IGCC Demonstration Program.

  7. Application of recovered magnesium hydroxide from a flue gas desulfurization system for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, P.L.; Wu, Q.; Keener, T.; Zhuang, L.A.; Gurusamy, R.; Pehkonen, S.

    1999-07-01

    Magnesium hydroxide, reclaimed from the flue gas desulfurization system (FGD) at the Zimmer Power Plant, Cincinnati, Ohio, is a weak base, in the form of either a slurry or powder. It has many potential applications for wastewater treatment. The objectives of this research are (1) to characterize the reclaimed magnesium hydroxide, e.g., purity, particle size distribution, dissolution kinetics; (2) to evaluate neutralization capacity and buffering intensity of the reclaimed magnesium hydroxide; (3) to study the efficacy of the reclaimed magnesium hydroxide for nutrient removal in wastewater treatment processes; (4) to investigate whether and how the magnesium hydroxide influences the characteristics of the activated sludge floc; (5) to determine whether magnesium hydroxide improves the anaerobic sludge digestion process and associated mechanisms; and (6) to conduct a cost-benefit analysis for the application of the reclaimed magnesium hydroxide in wastewater treatment and the possibility of marketing this product. Research results to date show that the purity of the reclaimed magnesium hydroxide depends largely on the recovery hydroxide slurry. This product proved to be very effective for wastewater neutralization, compared with other commonly used chemicals, both for its neutralization capacity and its buffering intensity. Due to its relatively low solubility in water and its particle size distribution characteristics, magnesium hydroxide behaves like a weak base, which will be very beneficial for process control. The authors also found that nitrogen and phosphorus could be removed from the wastewater using magnesium hydroxide due to their complexation and precipitation as magnesium ammonium phosphate (struvite). Magnesium hydroxide also greatly enhanced the settleability of the activated sludge. Intensive research on the mechanisms associated with these phenomena reveals that sweep flocculation and magnesium ion bridging between exopolymeric substances (EPS) of

  8. A NOVEL VAPOR-PHASE PROCESS FOR DEEP DESULFURIZATION OF NAPHTHA/DIESEL

    Energy Technology Data Exchange (ETDEWEB)

    B.S. Turk; R.P. Gupta; S.K. Gangwal

    2003-06-30

    Tier 2 regulations issued by the U.S. Environmental Protection Agency (EPA) require a substantial reduction in the sulfur content of gasoline. Similar regulations have been enacted for the sulfur level in on-road diesel and recently off-road diesel. The removal of this sulfur with existing and installed technology faces technical and economic challenges. These challenges created the opportunity for new emerging technologies. Research Triangle Institute (RTI) with subcontract support from Kellogg Brown & Root, Inc., (KBR) used this opportunity to develop RTI's transport reactor naphtha desulfurization (TReND) process. Starting with a simple conceptual process design and some laboratory results that showed promise, RTI initiated an accelerated research program for sorbent development, process development, and marketing and commercialization. Sorbent development has resulted in the identification of an active and attrition resistant sorbent that has been prepared in commercial equipment in 100 lb batches. Process development has demonstrated both the sulfur removal performance and regeneration potential of this sorbent. Process development has scaled up testing from small laboratory to pilot plant transport reactor testing. Testing in the transport reactor pilot plant has demonstrated the attrition resistance, selective sulfur removal activity, and regeneration activity of this sorbent material. Marketing and commercialization activities have shown with the existing information that the process has significant capital and operating cost benefits over existing and other emerging technologies. The market assessment and analysis provided valuable feedback about the testing and performance requirements for the technical development program. This market analysis also provided a list of potential candidates for hosting a demonstration unit. Although the narrow window of opportunity generated by the new sulfur regulations and the conservative nature of the refining

  9. Preparation of flexible zinc oxide/carbon nanofiber webs for mid-temperature desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soojung; Bajaj, Bharat [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Byun, Chang Ki; Kwon, Soon-Jin [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Joh, Han-Ik [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Yi, Kwang Bok, E-mail: cosy32@cnu.ac.kr [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Lee, Sungho, E-mail: sunghol@kist.re.kr [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Department of Nano Material Engineering, University of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-11-30

    Graphical abstract: - Highlights: • Polyacrylonitrile (PAN) and zinc precursor were electrospun and heat-treated for preparing zinc oxide (ZnO) modified carbon nanofibers (CNF). • A facile synthesis of composite webs resulted in uniformly loaded ZnO on the surface of CNFs. • The composites showed significant hydrogen sulfide adsorption efficiency at 300 °C. • The flexible webs can be applied for mid-temperature desulfurization. - Abstract: Polyacrylonitrile (PAN) derived carbon nanofiber (CNF) webs loaded with zinc oxide (ZnO) were synthesized using electrospinning and heat treatment at 600 °C. Uniformly dispersed ZnO nanoparticles, clarified by X-ray diffraction and scanning electron microscopy, were observed on the surface of the nanofiber composites containing 13.6–29.5 wt% of ZnO. The further addition of ZnO up to 34.2 wt% caused agglomeration with a size of 50–80 nm. Higher ZnO contents led the concentrated ZnO nanoparticles on the surface of the nanofibers rather than uniform dispersion along the cross-section of the fiber. The flexible composite webs were crushed and tested for hydrogen sulfide (H{sub 2}S) adsorption at 300 °C. Breakthrough experiments with the ZnO/CNF composite containing 25.7 wt% of ZnO for H{sub 2}S adsorption showed three times higher ZnO utilization efficiency compared to pure ZnO nano powders, attributed to chemisorption of the larger surface area of well dispersed ZnO particles on nanofibers and physical adsorption of CNF.

  10. Biocatalytic synthesis of flavones and hydroxyl-small molecules by recombinant Escherichia coli cells expressing the cyanobacterial CYP110E1 gene

    Directory of Open Access Journals (Sweden)

    Makino Takuya

    2012-07-01

    Full Text Available Abstract Background Cyanobacteria possess several cytochrome P450s, but very little is known about their catalytic functions. CYP110 genes unique to cyanaobacteria are widely distributed in heterocyst-forming cyanobacteria including nitrogen-fixing genera Nostoc and Anabaena. We screened the biocatalytic functions of all P450s from three cyanobacterial strains of genus Nostoc or Anabaena using a series of small molecules that contain flavonoids, sesquiterpenes, low-molecular-weight drugs, and other aromatic compounds. Results Escherichia coli cells carrying each P450 gene that was inserted into the pRED vector, containing the RhFRed reductase domain sequence from Rhodococcus sp. NCIMB 9784 P450RhF (CYP116B2, were co-cultured with substrates and products were identified when bioconversion reactions proceeded. Consequently, CYP110E1 of Nostoc sp. strain PCC 7120, located in close proximity to the first branch point in the phylogenetic tree of the CYP110 family, was found to be promiscuous for the substrate range mediating the biotransformation of various small molecules. Naringenin and (hydroxyl flavanones were respectively converted to apigenin and (hydroxyl flavones, by functioning as a flavone synthase. Such an activity is reported for the first time in prokaryotic P450s. Additionally, CYP110E1 biotransformed the notable sesquiterpene zerumbone, anti-inflammatory drugs ibuprofen and flurbiprofen (methylester forms, and some aryl compounds such as 1-methoxy and 1-ethoxy naphthalene to produce hydroxylated compounds that are difficult to synthesize chemically, including novel compounds. Conclusion We elucidated that the CYP110E1 gene, C-terminally fused to the P450RhF RhFRed reductase domain sequence, is functionally expressed in E. coli to synthesize a robust monooxygenase, which shows promiscuous substrate specificity (affinity for various small molecules, allowing the biosynthesis of not only flavones (from flavanones but also a variety of

  11. Immobilisation and characterisation of biocatalytic co-factor recycling enzymes, glucose dehydrogenase and NADH oxidase, on aldehyde functional ReSyn™ polymer microspheres.

    Science.gov (United States)

    Twala, Busisiwe V; Sewell, B Trevor; Jordaan, Justin

    2012-05-10

    The use of enzymes in industrial applications is limited by their instability, cost and difficulty in their recovery and re-use. Immobilisation is a technique which has been shown to alleviate these limitations in biocatalysis. Here we describe the immobilisation of two biocatalytically relevant co-factor recycling enzymes, glucose dehydrogenase (GDH) and NADH oxidase (NOD) on aldehyde functional ReSyn™ polymer microspheres with varying functional group densities. The successful immobilisation of the enzymes on this new high capacity microsphere technology resulted in the maintenance of activity of ∼40% for GDH and a maximum of 15.4% for NOD. The microsphere variant with highest functional group density of ∼3500 μmol g⁻¹ displayed the highest specific activity for the immobilisation of both enzymes at 33.22 U mg⁻¹ and 6.75 U mg⁻¹ for GDH and NOD with respective loading capacities of 51% (0.51 mg mg⁻¹) and 129% (1.29 mg mg⁻¹). The immobilised GDH further displayed improved activity in the acidic pH range. Both enzymes displayed improved pH and thermal stability with the most pronounced thermal stability for GDH displayed on ReSyn™ A during temperature incubation at 65 °C with a 13.59 fold increase, and NOD with a 2.25-fold improvement at 45 °C on the same microsphere variant. An important finding is the suitability of the microspheres for stabilisation of the multimeric protein GDH.

  12. Leloir Glycosyltransferases and Natural Product Glycosylation: Biocatalytic Synthesis of the C-Glucoside Nothofagin, a Major Antioxidant of Redbush Herbal Tea.

    Science.gov (United States)

    Bungaruang, Linda; Gutmann, Alexander; Nidetzky, Bernd

    2013-10-11

    Nothofagin is a major antioxidant of redbush herbal tea and represents a class of bioactive flavonoid-like C-glycosidic natural products. We developed an efficient enzymatic synthesis of nothofagin based on a one-pot coupled glycosyltransferase-catalyzed transformation that involves perfectly selective 3'-C-β-d-glucosylation of naturally abundant phloretin and applies sucrose as expedient glucosyl donor. C-Glucosyltransferase from Oryza sativa (rice) was used for phloretin C-glucosylation from uridine 5'-diphosphate (UDP)-glucose, which was supplied continuously in situ through conversion of sucrose and UDP catalyzed by sucrose synthase from Glycine max (soybean). In an evaluation of thermodynamic, kinetic, and stability parameters of the coupled enzymatic reactions, poor water solubility of the phloretin acceptor substrate was revealed as a major bottleneck of conversion efficiency. Using periodic feed of phloretin controlled by reaction progress, nothofagin concentrations (45 mM; 20 g l(-1)) were obtained that vastly exceed the phloretin solubility limit (5-10 mM). The intermediate UDP-glucose was produced from catalytic amounts of UDP (1.0 mM) and was thus recycled 45 times in the process. Benchmarked against comparable glycosyltransferase-catalyzed transformations (e.g., on quercetin), the synthesis of nothofagin has achieved intensification in glycosidic product formation by up to three orders of magnitude (μM→mM range). It thus makes a strong case for the application of Leloir glycosyltransferases in biocatalytic syntheses of glycosylated natural products as fine chemicals.

  13. Experimental and mechanism studies on simultaneous desulfurization and denitrification from flue gas using a flue gas circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The oxidizing highly reactive absorbent was prepared from fly ash,industry lime,and an oxidizing additive M.Experiments of simultaneous desulfurization and denitrification were carried out in a flue gas circulating fluidized bed(CFB).The effects of influencing factors and calcium availability were also investigated on the removal efficiencies of desulfurization and denitrification.Removal efficiencies of 95.5%for SO2 and 64.8%for NO were obtained respectively under the optimal experimental conditions. The component of the spent absorbent was analyzed with chemical analysis methods.The results in- dicated that more nitrogen species appeared in the spent absorbent except sulfur species.A scanning electron microscope(SEM)and an accessory X-ray energy spectrometer were used to observe micro-properties of the samples,including fly ash,oxidizing highly reactive absorbent and spent absorbent.The simultaneous removal mechanism of SO2 and NO based on this absorbent was pro- posed according to the experimental results.

  14. Novel dry-desulfurization process using Ca(OH)2/fly ash sorbent in a circulating fluidized bed.

    Science.gov (United States)

    Matsushima, Norihiko; Li, Yan; Nishioka, Masateru; Sadakata, Masayoshi; Qi, Haiying; Xu, Xuchang

    2004-12-15

    A dry-desulfurization process using Ca(OH)2/fly ash sorbent and a circulating fluidized bed (CFB) was developed. Its aim was to achieve high SO2 removal efficiency without humidification and production of CaSO4 as the main byproduct. The CaSO4 produced could be used to treat alkalized soil. An 83% SO2 removal rate was demonstrated, and a byproduct with a high CaSO4 content was produced through baghouse ash. These results indicated that this process could remove SO2 in flue gas with a high efficiency under dry conditions and simultaneously produce soil amendment. It was shown that NO and NO2 enhanced the SO2 removal rate markedly and that NO2 increased the amount of CaSO4 in the final product more than NO. These results confirmed that the significant effects of NO and NO2 on the SO2 removal rate were due to chain reactions that occurred under favorable conditions. The amount of baghouse ash produced increased as the reaction progressed, indicating that discharge of unreacted Ca(OH)2 from the reactor was suppressed. Hence, unreacted Ca(OH)2 had a long residence time in the CFB, resulting in a high SO2 removal rate. It was also found that 350 degrees C is the optimum reaction temperature for dry desulfurization in the range tested (320-380 degrees C).

  15. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process.

    Science.gov (United States)

    Zhou, Qiying; Jiang, Xia; Li, Xi; Jiang, Wenju

    2016-09-01

    In this study, five kinds of iron ores, limonite, hematite, manganese ore, magnetite and lava rock, were used as the in situ desulfurizers in the anaerobic digestion reactors to investigate their effects on controlling H2S in biogas. The results show that the addition of the five iron ores could significantly control the content of H2S in biogas, with the best performance for limonite. As limonite dosages increase (10-60 g/L), the contents of H2S in biogas were evidently decreased in the digesters with different initial sulfate concentrations (0-1000 mg/L). After the anaerobic digestion, the removed sulfur was mostly deposited on the surface of limonite. A possible mechanism of H2S control in biogas by limonite was proposed preliminarily, including adsorption, FeS precipitation, and Fe (III) oxidation. The results demonstrated that limonite was a promising in situ desulfurizer for controlling H2S in biogas with low cost and high efficiency.

  16. Analysis on the Oversize Blast Furnace Desulfurization and a Sulfide Capacity Prediction Model Based on Congregated Electron Phase

    Science.gov (United States)

    Zhenyang, Wang; Jianliang, Zhang; Gang, An; Zhengjian, Liu; Zhengming, Cheng; Junjie, Huang; Jingwei, Zhang

    2016-02-01

    Through analyzed and regressed the actual productive desulfurization data from the oversize blast furnace (5500 m3) in north China, the relationship between the sulfur distribution parameters and the slag composition in actual production situation was investigated. As the slag and hot metal phases have their own balance sulfur content or sulfur partial pressure in gas phase, respectively, the non-equilibrium of sulfur among gas, slag, and metal phases leads to the transmission and distribution of sulfur. Combined with sulfur transmission reactions between gas, slag and metal phases, C/CO pairs equilibrium, and Wagner model, the measured sulfide capacity can be acquired using sulfur distribution ratio, sulfur activity coefficient, and oxygen activity in hot metal. Based on the theory of congregated electron phase, a new sulfide capacity prediction model (CEPM) has been developed, which has a good liner relationship with the measured sulfide capacity. Thus, using the burden structure for BF, the ironmaking slag composition can be obtained simply and can be used to reliably predict the ironmaking slag desulfurization ability a few hours later after charging under a certain temperature by CEPM.

  17. Synthesis of Mesoporous Silica-zirconia Supported Phosphotungstic Acid and Its Catalytic Performance for Oxidative Desulfurization of Fuel

    Institute of Scientific and Technical Information of China (English)

    YAN Xuemin; DAI Kai; MEI Ping

    2015-01-01

    Mesoporous silica-zirconia supported phosphotungstic acid was synthesized by evaporation induced self-assembly method and used as oxidative desulfurization catalysts. The structural properties of as-prepared catalysts were characterized using various analytical techniques including X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption desorption. The experimental results showed that HPW was highly dispersed on mesoporous framework. The surface acidity of catalysts was analyzed by FTIR measurement of adsorbed pyridine.The surface Lewis acidity was improved with increasing the content of zirconium in the samples. The mesoporous composites were used as catalysts with H2O2 as oxidant for oxidative desulfurization of model fuel. The catalytic activity results showed that the surface Lewis acid sites acted as selective adsorption active sites for dibenzothiophene, which facilitated the sulfur removal from model fuel in the presence of arene. A slight decrease in activity of the recovered catalyst used in the proceeding rounds indicated the reusability of the catalyst.

  18. Kinetic model of hot-metal desulfurization by deep injection of synthetic powder mixtures - Part II; Modelo cinetico da dessulfuracao do gusa na panela atraves de injecao de misturas sinteticas - parte II

    Energy Technology Data Exchange (ETDEWEB)

    Sesshadri, V. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Metalurgia; Silva, C.A. da; Silva, I.A. da [Ouro Preto Univ., MG (Brazil). Dept. de Metalurgia

    1995-12-31

    The model developed in Part I of this study was used to analyze a series of industrial trials of hot metal hot desulfurization by deep injection of Ca O base synthetic mixtures, using N{sub 2} as carrier gas. The model allows the simulation of the industrial practice and, under the examined conditions it was observed that the major contribution for the process desulfurization come from the top slag. However, since the values range covered by some other parameters were not extensive enough to affect the desulfurization, further experiments are required to fully assess the the influence of these variables 28 refs., 10 figs., 7 tabs.

  19. 电厂脱硫废水曝气装置设计优化%Power Plant Desulfurization Wastewater Aeration Device Design Optimization

    Institute of Scientific and Technical Information of China (English)

    陈守超

    2015-01-01

    介绍了电厂常见脱硫废水处理系统的工作流程和流程优化部分,总结了多个电厂脱硫废水处理系统曝气装置的设计经验,提出了脱硫废水处理系统曝气装置设计优化的关键细节。该方案已经在多个电厂投入运行,且运行稳定、效果明显,可为相关单位的火电厂脱硫废水处理系统设计提供参考。%The power plant desulfurization wastewater treatment system common workflow and process optimization section summarizes a number of power plant desulfurization wastewater treatment system design experience aerator proposed key details desulfurization wastewater treatment system aeration device design optimization. The program has invested in a number of plant operations and stable operation, the effect is obvious, can desulfurization wastewater treatment system designed for the relevant units of thermal power plants to provide a reference.

  20. 麻石水膜法在烟气脱硫除尘中的应用%The Application of Granite Water Method in Desulfurization and Dust Removal

    Institute of Scientific and Technical Information of China (English)

    肖耀; 任芸芸

    2012-01-01

    烟气脱硫除尘的技术方法有许多种,每种技术的应用要充分考虑经济、技术、环境方面的因素,因地制宜。文章介绍了几种烟气脱硫技术,根据公司实际情况介绍了用于中小燃煤锅炉烟气脱硫的技术-麻石水膜法烟气脱硫,并成功的应用于公司的中小型燃煤改造。适合对有条件的老厂进行技术改造。%There are many technologies for desulfurization of flue gas dusting,factors on economy,technology and environment must be considered for the application of technology.The paper introduces several flue gas desulfurization technology,according to the practical situation is introduced in this small and medium-sized coal boiler flue gas desulfurization technology-the granite water film flue gas desulfurization,and successful application in the company of small and medium-sized coal-fired transformation.This technology is suitable for some old factory technical to reform.

  1. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems. Phase 2, Process optimization: Volume 1, Program summary and PDU operations

    Energy Technology Data Exchange (ETDEWEB)

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  2. Design of Oxidation Regenerator for Coal-bed Methane Desulfurization%煤层气脱硫氧化再生槽的设计

    Institute of Scientific and Technical Information of China (English)

    文娟

    2013-01-01

    Before the use of the coal-bed methane, H2 S content in it must be lowered down to the demand with the desulfurizing system. This paper described the oxidation regeneration method for coal-bed methane desulfurization, and expounded the principle and technological process of the presently-used PDS wet oxidation regeneration method for coal-bed methane desulfurization, discussed the influence of some factors such as the regenerating time, temperature and the alkalinity of desulfurizing solution on the oxidation regeneration method, and based on these conditions, the structure of the oxidation regenerator and the injector were designed.%煤层气在利用之前,需要通过脱硫系统将其中的H2 S脱除至要求浓度以下。介绍了煤层气脱硫氧化再生技术,阐述了目前常用的PDS法湿式脱硫氧化再生技术的原理和工艺过程;讨论了再生时间、温度、脱硫液碱度等因素对氧化再生工艺的影响,基于这些条件,对氧化再生槽的结构、喷射器进行了设计。

  3. Influences of operating conditions on biocatalytic activity and reusability of Novozym 435 for esterification of free fatty acids with short-chain alcohols:A case study of palm fatty acid distillate

    Institute of Scientific and Technical Information of China (English)

    Sawittree Mulalee; Pongrumpa Srisuwan; Muenduen Phisalaphong

    2015-01-01

    In the present study, the effects of operating conditions on biocatalytic activity and stability of Novozym 435 for repeated-batch biodiesel production from free fatty acid (FFA) were investigated. Thermal deactivation caused by increased operating temperature from 45 to 50 °C could seriously affect the reusability of Novozym 435. The deactivation of Novozym 435 during the esterification of oleic acid with ethanol tended to be stronger than that in the system with methanol. Under the optimal conditions, considering both biocatalytic activity and stability of the enzyme, Novozym 435 could be reused for 13 cycles for biodiesel productions from oleic acid and absolute alcohols (methanol and ethanol) with FFA conversions of at least 90%. The presence of 4%–5%water in ethanol significantly affected the reusability of Novozym 435. Changes in the surface morphology of Novozym 435 during the esterification with various conditions were observed. It was revealed that the reduc-tion in catalytic activity was related to the swel ing degree of the catalyst surface. Additionally, biodiesel produc-tion from low cost renewable feedstocks, such as palm fatty acid distillate (PFAD) and 95%ethanol was examined. The esterification of PFAD with 95%ethanol catalyzed by Novozym 435 in 10-repeated batch operation showed the similar results in FFA conversion as compared to those using oleic acid. Novozym 435 remained active and could maintain 97.6%of its initial conversion after being used for 10 batches.

  4. Preparation of crude oil desulfurizer and its performance%原油脱硫剂的研制及其效果评价

    Institute of Scientific and Technical Information of China (English)

    王宏; 张俊晟; 田永宏; 戚建平; 周保平

    2014-01-01

    A novel oil-soluble/water-dispersed crude oil desulfurizer was developed. The composition of the desulfurizer was alkali metal nitrite of 36%-38%, organic aliphatic amine of 43%-47%, methanol of 15% and OP-7 of 1.5% by mass. The performance of the desulfurizer for different crude oils was evaluated by using iodometry and ultraviolet fluorescence sulfur analyzer. The results showed that the hydrogen sulfide removal rate reached up to 98% and the organic sulfur removal rate was higher than 20%. Meanwhile, the desulfurization conditions, effect and cost were compared with other commercially available desulfurizers.%研制了一种新型的油溶性-水中分散的原油脱硫剂,该剂组成为:碱金属亚硝酸盐36%~38%、有机脂族胺43%~47%、甲醇15%、OP-71.5%。利用碘量法测定了其对伊朗原油、塔里木原油和模拟原油中硫化氢的脱除效果,脱除率可达98%;利用紫外荧光定硫仪测定了其对有机硫的脱除效果,脱除率为20%以上。同时,将该剂与市售脱硫剂的脱硫条件、脱硫效果及成本进行了比较。

  5. Analysis of Influence Factors on Coal Desulfurization with Dielectric Barrier Discharge%煤介质阻挡放电脱硫的影响因素分析

    Institute of Scientific and Technical Information of China (English)

    许允之; 李国欣; 曹海洋

    2011-01-01

    依据介质阻挡放电理论,对原煤进行煤介质阻挡放电脱硫实验.实验结果表明,煤介质阻挡放电脱硫的影响因素与电极结构、介质成分和气隙距离等因素有关,如将介质放到放电间隙中间时脱硫的效果没有将介质直接放在放电极板上的脱硫效果好,加煤的情况下微放电的强度明显大于不加煤的微放电过程强度;脱硫效果呈"U"字型变化,由此推论,在一定的外界条件下,煤介质阻挡放电除硫有一个最佳的施加电压;随着电压的增加,放电脉冲的相位范围逐渐扩展.%According to the theory of dielectric barrier discharge, coal desulfurization experiment of dielectric barrier discharge was done.The experiment result showed that influence factors of coal desulfurization with dielectric barrier discharge are electrode structure, medium composition and air-gap distance, for example, desulfurization effect of putting medium on discharge board is better than the one of putting medium in air-gap, the intensity of microdischarge of adding coal is stronger than that the one of unadding coal; the desulfurization effect changes in "U" type, so it can be deduced that desulfurization has a best applied voltage in certain external conditions with dielectric barrier discharge; the phase scope of discharge pulse expands gradually with increase of the voltage.

  6. Effect of heavy metals on the stabilization of mercury(II) by DTCR in desulfurization solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jiaai; Lu, Rongjie; Sun, Mingyang; Baig, Shams Ali; Tang, Tingmei; Cheng, Lihua [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Xu, Xinhua, E-mail: xuxinhua@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer The interference of heavy metals on Hg{sup 2+} removal by DTCR was first investigated. Black-Right-Pointing-Pointer Mechanism of the decrease in the participating performance over Hg{sup 2+} was analyzed. Black-Right-Pointing-Pointer Optimal DTCR dosage was determined in the coexistence of Cu{sup 2+} or Pb{sup 2+} with Hg{sup 2+}. Black-Right-Pointing-Pointer Effect of pH value on the interference of Hg{sup 2+} removal rate was studied. Black-Right-Pointing-Pointer The equilibrium constant of Cu{sup 2+} and Hg{sup 2+} with DTCR was obtained. - Abstract: Several heavy metals, including Cu{sup 2+}, Ni{sup 2+}, Pb{sup 2+}, and Zn{sup 2+}, were investigated in simulated desulfurization solutions to evaluate their interferences with Hg{sup 2+} during the reaction with dithiocarbamate type chelating resin (DTCR). Appropriate DTCR dosage and the effect of pH were also explored with respect to restoration of high Hg{sup 2+} precipitation efficiency and reduction of mercury concentrations. The experimental results suggested that increasing heavy metal concentration inhibited Hg{sup 2+} precipitation efficiency to a considerable extent and the inhibition order of the four heavy metals was Cu{sup 2+} > Ni{sup 2+} > Pb{sup 2+} > Zn{sup 2+}. However, the coordination ability was closely related to the configuration and the orbital hybridization of each metal. In the cases of Cu{sup 2+} and Pb{sup 2+}, increased DTCR dosage was beneficial to Hg{sup 2+} precipitation, which could lay the foundation of practical applications of DTCR dosage for industrial wastewater treatment. The enhanced Hg{sup 2+} precipitation performance seen for increasing pH might have come from the deprotonation of sulfur atoms on the DTCR functional groups and the formation of metal hydroxides (M(OH){sub 2}, M = Cu, Pb, Hg).

  7. Harvesting microalgae cultures with superabsorbent polymers: desulfurization of Chlamydomonas reinhardtii for hydrogen production.

    Science.gov (United States)

    Martín del Campo, Julia S; Patiño, Rodrigo

    2013-12-01

    It is presented in this work a new methodology to harvest fresh water microalgae cultures by extracting the culture medium with superabsorbent polymers (SAPs). The microalgae Chlamydomonas reinhardtii were grown in the Sueoka culture medium, harvested with polyacrylic SAPs and re-suspended in the culture medium tris-acetate-potassium without sulfur (TAP-S) to generate hydrogen (H2 ) under anoxic conditions. The H2 production as an alternative fuel is relevant since this gas has high-energy recovery without involving carbon. Before microalgae harvesting, a number of range diameters (1-7 mm) for SAPs spherical particles were tested, and the initial rate (V0 ) and the maximal capacity (Qmax ) were determined for the Sueoka medium absorption. The SAP particles with the diameter range 2.0-2.5 mm performed the best and these were employed for the rest of the experiments. The Sueoka medium has a high salt content and the effect of the ionic strength was also studied for different medium concentrations (0-400%). The SAPs were reused in consecutive absorption/desorption cycles, maintaining their absorption capacity. Although the Sueoka medium reduces the SAPs absorption capacity to 40% compared with deionized water, the use of SAPs was very significant for the desulfurization process of C. reihardtii. The presence of C. reinhardtii at different concentrations does not affect the absorption capacity of the Sueoka culture medium by the SAPs. In order to reduce the time of the process, an increase of the SAPs concentration was tested, being 20 g of SAP per liter of medium, a condition to harvest the microalgae culture in 4 h. There were no evident cell ruptures during the harvesting process and the cells remained alive. Finally, the harvested biomass was re-suspended in TAP-S medium and kept under anaerobic conditions and illumination to produce H2 that was monitored by a PEM fuel cell. The use of SAPs for microalgae harvesting is a feasible non-invasive procedure to obtain

  8. 燃煤电厂脱硫烟囱防腐技术创新和应用探讨%Discussion on technology innovation of coal -fired power plant desulfurization chimney corrosion and its application

    Institute of Scientific and Technical Information of China (English)

    张庆虎; 吴金土

    2015-01-01

    Through the analysis of the existing coal-fired power plant desulfurization chimney corrosion technolo-gy, summed up the basic reason desulfurization chimney corrosion failures, technological innovation ideas pro-posed chimney desulfurization corrosion.And briefly describes the use of self-vulcanized butyl rubber anti-corrosion lining for coal-fired power plant desulfurization chimney antiseptic feasibility and success stories.%通过对现行燃煤电厂脱硫烟囱防腐技术分析,总结了脱硫烟囱防腐失效的原因,提出了脱硫烟囱防腐的技术创新思路。简要介绍了采用自硫化丁基橡胶防腐衬里对燃煤电厂脱硫烟囱进行防腐的可行性和成功案例。

  9. Studies involving high temperature desulfurization/regeneration reactions of metal oxides for fuel cell development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jalan, V.

    1983-10-01

    Research conducted at Giner, Inc. during 1981 to 1983 under the present contract has been a continuation of the investigation of a high temperature regenerable desulfurization process capable of reducing the sulfur content in coal gases from 200 ppM to 1 ppM. The overall objective has been the integration of a coal gasifier with a molten carbonate fuel cell, which requires that the sulfur content be below 1 ppM. Commercially available low temperature processes incur an excessive energy penalty. Results obtained with packed-bed and fluidized bed reactors have demonstrated that a CuO/ZnO mixed oxide sorbent is regenerable and capable of lowering the sulfur content (as H/sub 2/S and COS) from 200 ppM in simulated hot coal-derived gases to below 1 ppM level at 600 to 650/sup 0/C. Four potential sorbents (copper, tungsten oxide, vanadium oxide and zinc oxide) were initially selected for experimental use in hot regenerable desulfurization in the temperature range 500 to 650/sup 0/C. Based on engineering considerations, such as desulfurization capacity in per weight or volume of sorbents, a coprecipitated CuO/ZnO was selected for further study. A structural reorganization mechanism, unique to mixed oxides, was identified: the creation of relatively fine crystallites of the sulfided components (Cu/sub 2/S and ZnS) to counteract the loss of surface area due to sintering during regeneration. Studies with 9 to 26% water vapor in simulated coal gases show that sulfur levels below 1 ppM can be achieved in the temperature range of 500/sup 0/ to 650/sup 0/C. The ability of CuO/ZnO to remove COS, CS/sub 2/ and CH/sub 3/SH at these conditions has been demonstrated in this study. Also a previously proposed pore-plugging model was further developed with good success for data treatment of both packed bed and fluidized-bed reactors. 96 references, 42 figures, 21 tables.

  10. Manufacture of ammonium sulfate fertilizer from gypsum-rich byproduct of flue gas desulfurization - A prefeasibility cost estimate

    Science.gov (United States)

    Chou, I.-Ming; Rostam-Abadi, M.; Lytle, J.M.; Achorn, F.P.

    1996-01-01

    Costs for constructing and operating a conceptual plant based on a proposed process that converts flue gas desulfurization (FGD)-gypsum to ammonium sulfate fertilizer has been calculated and used to estimate a market price for the product. The average market price of granular ammonium sulfate ($138/ton) exceeds the rough estimated cost of ammonium sulfate from the proposed process ($111/ ton), by 25 percent, if granular size ammonium sulfate crystals of 1.2 to 3.3 millimeters in diameters can be produced by the proposed process. However, there was at least ??30% margin in the cost estimate calculations. The additional costs for compaction, if needed to create granules of the required size, would make the process uneconomical unless considerable efficiency gains are achieved to balance the additional costs. This study suggests the need both to refine the crystallization process and to find potential markets for the calcium carbonate produced by the process.

  11. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Dutta, D.; Esling, S. [and others

    1995-10-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

  12. Desulfurization of fuel oils using an advanced oxidation method; Desulfuracion de combustibles usando un metodo de oxidacion avanzada

    Energy Technology Data Exchange (ETDEWEB)

    Flores Velazquez, Roberto; Rodas Grapain, Arturo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2008-07-01

    In the present work, the oxidative desulfurization of fuel oils assisted by ultrasound was analyzed. It was studied the effect of hydrogen peroxide concentration, the fuel oil to aqueous solution volumetric ratio, and type of catalyst. The Fenton-like catalysts studied were ferric chloride and copper sulfate. [Spanish] En esta investigacion se analiza la desulfuracion oxidativa de combustoleo asistida con ultrasonido. Tambien se estudia el efecto de la concentracion de peroxido de hidrogeno (H{sub 2}O{sub 2}), la relacion volumetrica combustoleo/solucion acuosa y el tipo de catalizador. Los catalizadores tipo Fenton que se estudiaron fueron el cloruro ferrico (FeCl{sub 3}) y el sulfato de cobre (CuSO{sub 4}).

  13. MTBE蒸馏脱硫工艺模拟%The simulation of MTBE desulfurization process by distillation

    Institute of Scientific and Technical Information of China (English)

    武文钊; 韩志忠; 张玉东

    2011-01-01

    为使中国汽油达到欧V汽油的含硫标准,研究蒸馏脱硫工艺的可行性有实际意义.以甲基叔丁基硫醚为关键含硫组分,使用Aspen Hysys v 7.0模拟其与MTBE分离过程.按MTBE单塔蒸馏、双塔能量集成蒸馏和与分馏塔能量集成3种方案脱除硫化物,进料硫化物含量100 μg/g的条件下,塔顶MTBE含硫化合物1μg/g,3种方案吨产品蒸汽消耗分别为0.233 t、0.13t和0.08 t.MTBE中含硫化合物与MTBE容易分离,简单精馏可以实现深度脱硫.双塔能量集成方案比单塔直接分离方案节水50%,节约蒸汽45%.MTBE脱硫塔与MTBE分馏塔或催化蒸馏塔进行能量集成,不增加冷却水,蒸汽消耗每吨MTBE增加小于0.1 t.辅助塔可以使硫化物浓缩到99%(m/m),MTBE含硫化物30μg/g,可以混兑低硫产品中或循环回分离系统,MTBE几乎无损失.%To reach the Euro V fuel standard in terms of sulfur content, the study of the feasibility of desulfurization process by distillation was of practical value in China. MTBE desulfurization by distillation was simulated by Aspen Hysys v 7.0, with tert-butyl methyl sulfide as the key sulfur containing compound. Three cases were simulated with regard to one-column simple distillation, two columns at different pressure with energy integration configuration, and high pressure distillation integrating energy with MTBE separation column or with catalytic distillation column. The heating steam consumptions of the three cases were 0.233 ton, 0.131 ton and 0.08 ton for 1 ton of MTBE. Sulfide contents in MTBE could be lowered from 100 ug/g to 1 ug/g. Deep desulfurization could be achieved with simple distillation. The two-column energy integration method saved 50% water and 45% steam compared with one-column direct distillation. The amount of steam required for MTBE per ton increasing by less than 0.1 ton, the energy integration of MTBE desulfurization column with MTBE separation column or with the catalytic distillation

  14. Integrated photooxidative extractive deep desulfurization using metal doped TiO2 and eutectic based ionic liquid

    Science.gov (United States)

    Zaid, Hayyiratul Fatimah Mohd; Kait, Chong Fai; Mutalib, Mohamed Ibrahim Abdul

    2016-11-01

    A series of metal doped TiO2 namely Fe/TiO2, Cu/TiO2 and Cu-Fe/TiO2 were synthesized and characterized, to be used as a photocatalyst in the integrated photooxidative extractive deep desulfurization for model oil (dodecane) and diesel fuel. The order of the photocatalytic activity was Cu-Fe/TiO2 followed by Cu/TiO2 and then Fe/TiO2. Cu-Fe/TiO2 was an effective photocatalyst for sulfur conversion at ambient atmospheric pressure. Hydrogen peroxide was used as the source of oxidant and eutectic-based ionic liquid as the extractant. Sulfur conversion in model oil reached 100%. Removal of sulfur from model oil was done by two times extraction with a removal of 97.06% in the first run and 2.94% in the second run.

  15. Project 2010 Project Management

    CERN Document Server

    Happy, Robert

    2010-01-01

    The ideal on-the-job reference guide for project managers who use Microsoft Project 2010. This must-have guide to using Microsoft Project 2010 is written from a real project manager's perspective and is packed with information you can use on the job. The book explores using Project 2010 during phases of project management, reveals best practices, and walks you through project flow from planning through tracking to closure. This valuable book follows the processes defined in the PMBOK Guide, Fourth Edition , and also provides exam prep for Microsoft's MCTS: Project 2010 certification.: Explains

  16. Experimental study on SO2 recovery using a sodium-zinc sorbent based flue gas desulfurization technology

    Institute of Scientific and Technical Information of China (English)

    Yang Zhang; Tao Wang; Hairui Yang; Hai Zhang; Xuyi Zhang

    2015-01-01

    A sodium–zinc sorbent based flue gas desulfurization technology (Na–Zn-FGD) was proposed based on the experiments and analyses of the thermal decomposition characteristics of CaSO3 and ZnSO3·2.5H2O, the waste products of calcium-based semi-dry and zinc-based flue gas desulfurization (Ca–SD-FGD and Zn–SD-FGD) tech-nologies, respectively. It was found that ZnSO3·2.5H2O first lost crystal H2O at 100 °C and then decomposed into SO2 and solid ZnO at 260 °C in the air, while CaSO3 is oxidized at 450 °C before it decomposed in the air. The ex-perimental results confirm that Zn–SD-FGD technology is good for SO2 removal and recycling, but with problem in clogging and high operational cost. The proposed Na–Zn-FGD is clogging proof, and more cost-effective. In the new process, Na2CO3 is used to generate Na2SO3 for SO2 absorption, and the intermediate product NaHSO3 reacts with ZnO powders, producing ZnSO3·2.5H2O precipitate and Na2SO3 solution. The Na2SO3 solution is clogging proof, which is re-used for SO2 absorption. By thermal decomposition of ZnSO3·2.5H2O, ZnO is re-generated and SO2 with high purity is co-produced as well. The cycle consumes some amount of raw material Na2CO3 and a small amount of ZnO only. The newly proposed FGD technology could be a substitute of the traditional semi-dry FGD technologies.

  17. Research Progress in Flue Gas Desulfurization Technologies%烟气脱硫处理技术研究进展

    Institute of Scientific and Technical Information of China (English)

    邵鲁华; 黄冲; 潘一; 杨双春

    2013-01-01

      烟气脱硫是从废气中去除含硫物质如 SO2,SO3,H2S 的一种工艺,怎样脱除烟气中的含硫物质,减少含硫物质排放已逐步成为全球关注的热点。笔者主要介绍了国内外烟气脱硫处理技术研究现状及进展,包括醇胺类离子液体法、石灰石(石灰)/石膏法、双碱法、金属氧化物法、生物膜法、非生物膜法等,对各种方法进行了评价和比较,并对今后烟气脱硫处理技术的发展提出了建议。%The flue gas desulfurization is to remove sulfur substances from exhaust gas,such as SO2,SO3,H2S. It has gradually become the focus of global attention to remove sulfur containing materials in flue gas and reduce sulfur material discharge. In this paper,flue gas desulfurization treatment technologies at home and abroad were introduced, such as alcohol amine ion liquid method,lime method,dual alkali method,metal oxide method,biofilm process, non biofilm process,and so on. At last, above methods were compared and the future research suggestions were presented.

  18. Technical description of parameters influencing the pH value of suspension absorbent used in flue gas desulfurization systems.

    Science.gov (United States)

    Głomba, Michał

    2010-08-01

    As a result of the large limestone deposits available in Poland, the low cost of reagent acquisition for the largescale technological use and relatively well-documented processes of flue gas desulfurization (FGD) technologies based on limestone sorbent slurry, wet scrubbing desulfurization is a method of choice in Poland for flue gas treatment in energy production facilities, including power plants and industrial systems. The efficiency of FGD using the above method depends on several technological and kinetic parameters, particularly on the pH value of the sorbent (i.e., ground limestone suspended in water). Consequently, many studies in Poland and abroad address the impact of various parameters on the pH value of the sorbent suspension, such as the average diameter of sorbent particles (related to the limestone pulverization degree), sorbent quality (in terms of pure calcium carbonate [CaCO3] content of the sorbent material), stoichiometric surfeit of CaCO3 in relation to sulfur dioxide (SO2) absorbed from flue gas circulating in the absorption node, time of absorption slurry retention in the absorber tank, chlorine ion concentration in sorbent slurry, and concentration of dissolved metal salts (Na, K, Mg, Fe, Al, and others). This study discusses the results of laboratory-scale tests conducted to establish the effect of the above parameters on the pH value of limestone slurry circulating in the SO2 absorption node. On the basis of the test results, a correlation equation was postulated to help maintain the desirable pH value at the design phase of the wet FGD process. The postulated equation displays good coincidence between calculated pH values and those obtained using laboratory measurements.

  19. The effect of oxygen supply on the dual growth kinetics of Acidithiobacillus thiooxidans under acidic conditions for biogas desulfurization.

    Science.gov (United States)

    Namgung, Hyeong-Kyu; Song, JiHyeon

    2015-02-01

    In this study, to simulate a biogas desulfurization process, a modified Monod-Gompertz kinetic model incorporating a dissolved oxygen (DO) effect was proposed for a sulfur-oxidizing bacterial (SOB) strain, Acidithiobacillus thiooxidans, under extremely acidic conditions of pH 2. The kinetic model was calibrated and validated using experimental data obtained from a bubble-column bioreactor. The SOB strain was effective for H2S degradation, but the H2S removal efficiency dropped rapidly at DO concentrations less than 2.0 mg/L. A low H2S loading was effectively treated with oxygen supplied in a range of 2%-6%, but a H2S guideline of 10 ppm could not be met, even with an oxygen supply greater than 6%, when the H2S loading was high at a short gas retention time of 1 min and a H2S inlet concentration of 5000 ppm. The oxygen supply should be increased in the aerobic desulfurization to meet the H2S guideline; however, the excess oxygen above the optimum was not effective because of the decline in oxygen efficiency. The model estimation indicated that the maximum H2S removal rate was approximately 400 ppm/%-O2 at the influent oxygen concentration of 4.9% under the given condition. The kinetic model with a low DO threshold for the interacting substrates was a useful tool to simulate the effect of the oxygen supply on the H2S removal and to determine the optimal oxygen concentration.

  20. The Effect of Oxygen Supply on the Dual Growth Kinetics of Acidithiobacillus thiooxidans under Acidic Conditions for Biogas Desulfurization

    Directory of Open Access Journals (Sweden)

    Hyeong-Kyu Namgung

    2015-01-01

    Full Text Available In this study, to simulate a biogas desulfurization process, a modified Monod-Gompertz kinetic model incorporating a dissolved oxygen (DO effect was proposed for a sulfur-oxidizing bacterial (SOB strain, Acidithiobacillus thiooxidans, under extremely acidic conditions of pH 2. The kinetic model was calibrated and validated using experimental data obtained from a bubble-column bioreactor. The SOB strain was effective for H2S degradation, but the H2S removal efficiency dropped rapidly at DO concentrations less than 2.0 mg/L. A low H2S loading was effectively treated with oxygen supplied in a range of 2%–6%, but a H2S guideline of 10 ppm could not be met, even with an oxygen supply greater than 6%, when the H2S loading was high at a short gas retention time of 1 min and a H2S inlet concentration of 5000 ppm. The oxygen supply should be increased in the aerobic desulfurization to meet the H2S guideline; however, the excess oxygen above the optimum was not effective because of the decline in oxygen efficiency. The model estimation indicated that the maximum H2S removal rate was approximately 400 ppm/%-O2 at the influent oxygen concentration of 4.9% under the given condition. The kinetic model with a low DO threshold for the interacting substrates was a useful tool to simulate the effect of the oxygen supply on the H2S removal and to determine the optimal oxygen concentration.

  1. Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization.

    Science.gov (United States)

    Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang

    2014-11-01

    An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO2 from by-products was summarized. Results showed that the SO2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900-1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO2 as well as MgO, a temperature range of 900-927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries.

  2. Preparation of WO3/g-C3N4 composites and their application in oxidative desulfurization

    Science.gov (United States)

    Zhao, Rongxiang; Li, Xiuping; Su, Jianxun; Gao, Xiaohan

    2017-01-01

    WO3/graphitic carbon nitride (g-C3N4) composites were successfully synthesized through direct calcining of a mixture of WO3 and g-C3N4 at 400 °C for 2 h. The WO3 was prepared by calcination of phosphotungstic acid at 550 °C for 4 h, and the g-C3N4 was obtained by calcination of melamine at 520 °C for 4 h. The WO3/g-C3N4 composites were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and Brunner-Emmett-Teller analysis (BET). The WO3/g-C3N4 composites exhibited stronger XRD peaks of WO3 and g-C3N4 than the WO3 and pure g-C3N4. In addition, two WO3 peaks at 25.7° and 26.6° emerged for the 36% -WO3/g-C3N4 composite. This finding indicated that WO3 was highly dispersed on the surface of the g-C3N4 nanosheets and interacted with the nanosheets, which resulted in the appearance of (012) and (022) planes of WO3. The WO3/g-C3N4 composite also exhibited a larger specific surface area and higher degree of crystallization than WO3 or pure g-C3N4, which resulted in high catalytic activity of the catalyst. Desulfurization experiments demonstrated that the desulfurization rate of dibenzothiophene (DBT) in model oil reached 91.2% under optimal conditions. Moreover, the activity of the catalyst was not significantly decreased after five recycles.

  3. Suitability assessment of a continuous process combining thermo-mechano-chemical and bio-catalytic action in a single pilot-scale twin-screw extruder for six different biomass sources.

    Science.gov (United States)

    Vandenbossche, Virginie; Brault, Julien; Hernandez-Melendez, Oscar; Evon, Philippe; Barzana, Eduardo; Vilarem, Gérard; Rigal, Luc

    2016-07-01

    A process has been validated for the deconstruction of lignocellulose on a pilot scale installation using six types of biomass selected for their sustainability, accessibility, worldwide availability, and differences of chemical composition and physical structure. The process combines thermo-mechano-chemical and bio-catalytic action in a single twin-screw extruder. Three treatment phases were sequentially performed: an alkaline pretreatment, a neutralization step coupled with an extraction-separation phase and a bioextrusion treatment. Alkaline pretreatment destructured the wall polymers after just a few minutes and allowed the initial extraction of 18-54% of the hemicelluloses and 9-41% of the lignin. The bioextrusion step induced the start of enzymatic hydrolysis and increased the proportion of soluble organic matter. Extension of saccharification for 24h at high consistency (20%) and without the addition of new enzyme resulted in the production of 39-84% of the potential glucose.

  4. The effects of the soil improvement by the desulfurization gypsum on the agricultural production and the Tianjin economy - the case study of China's Tianjin City

    Energy Technology Data Exchange (ETDEWEB)

    Asahi, S. [Yokkaichi University, Yokkaichi (Japan). Faculty of Environmental and Information Sciences

    2001-07-01

    This study examined the utilization of the desulfurization gypsum (by-product) as an inducement in installation the desulfurization equipment. In particular, this allocated the focus for increased yield of agricultural products by the by-product. The following conclusions can be drawn from this analysis. In the case where the soil was improved on a quarter of the arable land of the corn, the rate of the increase in 1995 was 1.85% of the total output for corn in Tianjin city. A year later, in 1996, the rate increased by 4.25% of total output for corn. Increased production by the soil improvement in the first year is equal to about 22000 persons, when increased production is evaluated at the consumption rate per farming village in China, and the repercussion effect of the increased yield of agricultural products benefits mostly the industrial sector. 6 refs., 1 fig., 2 tabs.

  5. Identification of a new operon involved in desulfurization of dibenzothiophenes using a metagenomic study and cloning and functional analysis of the genes.

    Science.gov (United States)

    Abbasian, Firouz; Lockington, Robin; Megharaj, Mallavarapu; Naidu, Ravi

    2016-06-01

    The presence of sulphur-substituted hydrocarbons in fossil fuels are one of main reasons for the release of sulfur oxides into the environment. Dibenzothiophenes (DBT) are organic sulfur-containing molecules in crude oil, which have the potential for biological oxidation, with the sulphur being removed through an enzymatic cleavage of the CS bonds. Therefore, finding new strains that can desulfurize this compound has recently become a point of interest. In this study, three new genes involved in the bacterial desulfurization of Dibenzothiophene, which were sequenced in the course of a metagenomic study, were isolated by PCR amplification in the laboratory. The activities of these genes were then analysed following insertion into an expression vector and cloning in Escherichia coli DH5α cells. Based on the results, all three genes were actively expressed and their products could act on their corresponding substrates.

  6. Research on Method of Coke oven Gas Desulfurization Process%焦炉煤气脱硫效率分析及工艺选择

    Institute of Scientific and Technical Information of China (English)

    辛辉; 马强

    2012-01-01

    煤气中所含的硫会造成环境污染、催化剂中毒和设备腐蚀等不良影响。文章探讨了脱除焦炉煤气中硫化氢常用工艺方法的原理及利弊,总结出提高脱硫效率的方法,为选择合理、高效的脱硫工艺提供了帮助。%The sulfur contained in the gas will cause the adverse effects of environmental pollution,catalyst poisoning and equipment corrosion.The paper discussed the principle and the pros and cons of the removal of hydrogen sulfide in the coke oven gas commonly used process,summed up to improve the desulfurization efficiency for the selection of a reasonable,efficient desulfurization process has helped.

  7. 以氨为碱源的焦炉煤气脱硫工艺%Coke oven gas desulfurization technology taking ammonia as alkali source

    Institute of Scientific and Technical Information of China (English)

    管福征; 陈夏; 朱建梅

    2014-01-01

    介绍了以煤气中氨为碱源,OMC-对苯二酚为催化剂的湿法脱硫工艺。生产实践表明,该工艺不但脱硫脱氰效率高,而且无废液产生,是一种清洁生产工艺。%This paper describes the wet desulfurization technology taking ammonia,which is contained in the gas,as alkali source and OMC-hydroquinone as catalyst.Production practice shows that this technology is very effective in desulfurization,and produces no wastewater.It is a clean production technology.

  8. Experimental Study on Microbial Desulfurization of Pyrite Cinder%硫铁矿烧渣微生物脱硫试验研究

    Institute of Scientific and Technical Information of China (English)

    周文博; 邹平; 孙珮石

    2013-01-01

    The mixed culture of acidophilic bacteria was used to remove sulfur from pyrite cinder .The effects of different culture mediums ,solid-liquid ratio ,pH ,inoculum volume ,surfactant usage , temperature and particle size on the desulfurization rate were examined by shake flask experiments . The results indicated that the optimal conditions of desulfurization were solid-liquid ratio of 3∶10 , inoculation amount of 3% ,pH of 1 .5 ,rotation speed of 180 r/min and temperature of 25 ℃ .After 72 hours leaching ,the total sulfur content in the pyrite cinder was reduced significantly from 1 .78% to 0 .28% with a desulfurization rate of 86 .02% ,and iron content was enriched effectively from 53 .78%to 59 .56% .The desulfurization slag meet the requirements of ore concentrate for steelmaking .%  研究了从高硫硫铁矿烧渣中微生物脱硫,考察了培养基种类、矿浆固液质量体积比、pH、细菌接种量、表面活性剂、温度及粒度等因素对微生物脱硫的影响。试验结果表明:在菌种接种量3%、矿浆pH=1.5、温度30℃条件下对固液质量体积比3∶10的硫酸渣矿浆进行脱硫,72 h内,烧渣的硫质量分数由1.78%降至0.28%,脱硫率达86.02%,铁品位由53.78%提高到59.56%;脱硫后的烧渣符合铁精矿要求。

  9. 半水煤气脱硫技改运行总结%Sum-Up of Operation of Updated Technology for Desulfurization of Semi-Water Gas

    Institute of Scientific and Technical Information of China (English)

    曹学斌; 徐勤永

    2013-01-01

    A detailed description is given of the technological renovation of desulfurization of semi-water gas over the years and operation parameters,and an analysis is done of the existing problems.After the renovation the desulfurization efficiency reaches over 99.50%,after desulfurization the H2S mass concentration in the gas is essentially controlled at below 0.010 g/m3,the soda consumption per ton of ammonia decreases from 6.0 kg to about 2.5 kg,and the resistance in the system drops from 6.0 ~ 8.0 kPa to 1.8 ~ 2.1 kPa.%介绍了历年半水煤气脱硫技改的详细过程、运行参数,并对存在的问题进行了分析.改造后,脱硫效率达到99.50%以上,脱硫后气体中H2S质量浓度基本控制在0.010 g/m3以下,吨氨纯碱消耗由6.0 kg降至2.5 kg左右,系统阻力由6.0~8.0 kPa降至1.8~2.1kPa.

  10. The Spray Drying Desulfurization Process of Precise Control of the Spray to the Influence of Output%喷雾干燥脱硫过程中喷雾的精确控制对产量的影响

    Institute of Scientific and Technical Information of China (English)

    孙艳萍; 袁亚

    2013-01-01

    为研究脱硫塔内不同喷雾的精确对脱硫效率的影响,提出了基于反馈平衡方程的喷雾干燥脱硫方程和相应的数学模型,并采用仿真软件对脱硫塔内流场进行了数值模拟计算.选用精度反馈信息来调节喷雾的精度,根据统计分析法实现脱硫塔内的喷雾精度仿真,通过建立硫吸收模型,根据脱硫效果的实时信息完成喷雾调节.结果表明,数值模拟结果与实验台测量值基本相符,精确的喷雾控制有利于物料与烟气充分混合,提高脱硫效率.%For the research of desulfurization tower in different spray accurate to desulfurizing efficiency influence,proposed based on feedback balance equation of the spray drying desulfurization equation and the corresponding mathematical model,and the simulation software for desulfurization tower internalflow field is studied with the numerical simulation method.Choose precision feedback information to control the precision of the spray,according to statistics analysis method to realize desulfurization tower in the spray accuracy simulation,through the establishment of sulfur absorption model,according to the desulfurization effect of real-time information complete spray regulation.The results show that the numerical simulation results and experiment table measured value are consistent,precise spray control to material and flue gas fully mix,improve the desulfurization efficiency.

  11. Biocatalytic induction of supramolecular order

    Science.gov (United States)

    Hirst, Andrew R.; Roy, Sangita; Arora, Meenakshi; Das, Apurba K.; Hodson, Nigel; Murray, Paul; Marshall, Stephen; Javid, Nadeem; Sefcik, Jan; Boekhoven, Job; van Esch, Jan H.; Santabarbara, Stefano; Hunt, Neil T.; Ulijn, Rein V.

    2010-12-01

    Supramolecular gels, which demonstrate tunable functionalities, have attracted much interest in a range of areas, including healthcare, environmental protection and energy-related technologies. Preparing these materials in a reliable manner is challenging, with an increased level of kinetic defects observed at higher self-assembly rates. Here, by combining biocatalysis and molecular self-assembly, we have shown the ability to more quickly access higher-ordered structures. By simply increasing enzyme concentration, supramolecular order expressed at molecular, nano- and micro-levels is dramatically enhanced, and, importantly, the gelator concentrations remain identical. Amphiphile molecules were prepared by attaching an aromatic moiety to a dipeptide backbone capped with a methyl ester. Their self-assembly was induced by an enzyme that hydrolysed the ester. Different enzyme concentrations altered the catalytic activity and size of the enzyme clusters, affecting their mobility. This allowed structurally diverse materials that represent local minima in the free energy landscape to be accessed based on a single gelator structure.

  12. Biocatalytic reduction of carboxylic acids.

    Science.gov (United States)

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Winkler, Margit

    2014-06-01

    An increasing demand for non-petroleum-based products is envisaged in the near future. Carboxylic acids such as citric acid, succinic acid, fatty acids, and many others are available in abundance from renewable resources and they could serve as economic precursors for bio-based products such as polymers, aldehyde building blocks, and alcohols. However, we are confronted with the problem that carboxylic acid reduction requires a high level of energy for activation due to the carboxylate's thermodynamic stability. Catalytic processes are scarce and often their chemoselectivity is insufficient. This review points at bio-alternatives: currently known enzyme classes and organisms that catalyze the reduction of carboxylic acids are summarized. Two totally distinct biocatalyst lines have evolved to catalyze the same reaction: aldehyde oxidoreductases from anaerobic bacteria and archea, and carboxylate reductases from aerobic sources such as bacteria, fungi, and plants. The majority of these enzymes remain to be identified and isolated from their natural background in order to evaluate their potential as industrial biocatalysts.

  13. Biocatalytic trifluoromethylation of unprotected phenols

    Science.gov (United States)

    Simon, Robert C.; Busto, Eduardo; Richter, Nina; Resch, Verena; Houk, Kendall N.; Kroutil, Wolfgang

    2016-11-01

    Organofluorine compounds have become important building blocks for a broad range of advanced materials, polymers, agrochemicals, and increasingly for pharmaceuticals. Despite tremendous progress within the area of fluorination chemistry, methods for the direct introduction of fluoroalkyl-groups into organic molecules without prefunctionalization are still highly desired. Here we present a concept for the introduction of the trifluoromethyl group into unprotected phenols by employing a biocatalyst (laccase), tBuOOH, and either the Langlois' reagent or Baran's zinc sulfinate. The method relies on the recombination of two radical species, namely, the phenol radical cation generated directly by the laccase and the CF3-radical. Various functional groups such as ketone, ester, aldehyde, ether and nitrile are tolerated. This laccase-catalysed trifluoromethylation proceeds under mild conditions and allows accessing trifluoromethyl-substituted phenols that were not available by classical methods.

  14. Biocatalytic synthesis of silicone polyesters.

    Science.gov (United States)

    Frampton, Mark B; Subczynska, Izabela; Zelisko, Paul M

    2010-07-12

    The immobilized lipase B from Candida antarctica (CALB) was used to synthesize silicone polyesters. CALB routinely generated between 74-95% polytransesterification depending on the monomers that were used. Low molecular weight diols resulted in the highest rates of esterification. Rate constants were determined for the CALB catalyzed polytransesterifications at various reaction temperatures. The temperature dependence of the CALB-mediated polytransesterifications was examined. A lipase from C. rugosa was only successful in performing esterifications using carboxy-modified silicones that possessed alkyl chains greater than three methylene units between the carbonyl and the dimethylsiloxy groups. The proteases alpha-chymotrypsin and papain were not suitable enzymes for catalyzing any polytransesterification reactions.

  15. Effects of pore sizes and oxygen-containing functional groups on desulfurization activity of Fe/NAC prepared by ultrasonic-assisted impregnation

    Science.gov (United States)

    Shu, Song; Guo, Jia-Xiu; Liu, Xiao-Li; Wang, Xue-Jiao; Yin, Hua-Qiang; Luo, De-Ming

    2016-01-01

    A series of Fe-loaded activated carbons treated by HNO3 (Fe/NAC) were prepared by incipient impregnation method with or without ultrasonic assistance and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy disperse spectroscope (SEM-EDS), transmission electron microscopy (TEM) and N2 adsorption/desorption. The desulfurization activities were evaluated at a fixed bed reactor under a mixed gas simulated from flue gas. The results showed that desulfurization activity from excellent to poor is as follows: Fe/NAC-60 > Fe/NAC-80 > Fe/NAC-30 > Fe/NAC-15 > Fe/NAC-0 > Fe/NAC-100 > NAC. Fe/NAC-60 exhibits the best desulfurization activity and has breakthrough sulfur capacity of 319 mg/g and breakthrough time of 540 min. The introduction of ultrasonic oscillation does not change the form of Fe oxides on activated carbon but can change the dispersion and relative contents of Fe3O4. The types of oxygen-containing functional groups have no obvious change for all samples but the texture properties show some differences when they are oscillated for different times. The fresh Fe/NAC-60 has a surface area of 1045 m2/g and total pore volume of 0.961 cm3/g with micropore volume of 0.437 cm3/g and is larger than Fe/NAC-0 (823 m2/g, 0.733 and 0.342 cm3/g). After desulfurization, surface area and pore volume of all samples decrease significantly, and those of the exhausted Fe/NAC-60 decrease to 233 m2/g and 0.481 cm3/g, indicating that some byproducts deposit on surface to cover pores. Pore size distribution influences SO2 adsorption, and fresh Fe/NAC-60 has more pore widths centralized at about 0.7 nm and 1.0-2.0 nm and corresponds to an excellent desulfurization activity, showing that micropore is conducive to the removal of SO2.

  16. Desulfurization and oxidation behavior of ultra-fine CaO particles prepared from brown coal; Kattan wo mochiite choseishita CaO chobiryushi no datsuryu tokusei to sanka tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, G.; Roman, M.; Yamazaki, Y.; Abe, H.; Harano, Y.; Takarada, Y. [Gunma University, Gunma (Japan). Faculty of Engineering

    1996-10-28

    The effect of reaction temperature and oxygen concentration on the desulfurization and oxidation behavior of ion-exchanged brown coal by Ca as new desulfurizing agent was studied. In experiment, Yallourn coal was used for ion- exchange, and limestone produced in Tochigi prefecture was also used for comparative study. Ca-exchanged brown coal was prepared by agitating coal in Ca(OH)2 slurry for 24 hours. The desulfurization behavior of a desulfurizing agent was obtained by measuring H2S and sulfur compounds in outlet gas of a reactor, and the oxidation behavior by measuring SO2 emission in outlet gas after oxidation reaction. As the experimental result, CaO produced from Ca-exchanged brown coal offered the extremely high activity to desulfurization reaction in a temperature range of 850-950{degree}C as compared with limestone. Although the oxidation behavior was dependent on oxidation temperature and oxygen concentration, CaS obtained from Ca-exchanged brown coal was more rapidly converted to CaSO4 than limestone. 3 refs., 8 figs., 2 tabs.

  17. Modeling and process optimization for microbial desulfurization of coal by using a two-level full factorial design

    Institute of Scientific and Technical Information of China (English)

    Golshani T.; Jorjani E.; Chelgani S.Chehreh; Shafaei S.Z.; Nafechi Y.Heidari

    2013-01-01

    The microbial sulfur removal was investigated on high sulfur content (1.9%) coal concentrate from Tabas coal preparation plant.A mixed culture of ferrooxidans microorganisms was isolated from the tailing dam of the plant.Full factorial method was used to design laboratory test and to evaluate the effects of pH,particle size,iron sulfate concentration,pulp density,and bioleaching time on sulfur reduction.Statistical analyses of experimental data were considered and showed increases of pH and particle size had negative effects on sulfur reduction,whereas increases of pulp density and bioleaching time raised microbial desulfurization rate.According to results of designing,and regarding statistical factors,the optimum values for maximum sulfur reduction were obtained; pH (1.5),particle size (-180μm),iron sulfate concentration (2.7 mmol/L),pulp density (10%) and bioleaching time (14d),which leaded to 51.5% reduction from the total sulfur of sample.

  18. Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Underkoffler, V.S.

    1986-12-01

    The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Optimum operating parameters for zinc ferrite such as temperatures, gas compositions, and space velocities are discussed. From the test results, salient features of zinc ferrite were derived and discussed in regard to system implications, issues raised, and technical requirements. 47 refs., 53 figs., 41 tabs.

  19. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

    1995-01-01

    On September 30, 1993, the US Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative agreement entitled ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` (DE-FC21-93MC30252). Under the agreement, Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. The major event during the quarter was the demonstration of the SEEC, Inc. technology for loading and transporting coal combustion residues in the SEEC developed Collapsible Intermodal Containers (CIC). The demonstration was held on November 17, 1994, at the Illinois Power Company Baldwin power plant, and was attended by about eighty (80) invited guest. Also during the quarter meetings were held with Peabody Coal Company officials to finalize the area in the Peabody No. 10 mine to be used for the placement of coal combustion residues. Work under the Materials Handling and Systems Economics area continued, particularly in refining the costs and systems configuration and in economic evaluation of various systems using equipment leasing rather than equipment purchases. Likewise, work progressed on residues characterization, with some preparations being made for long-term testing.

  20. Mineral concentrations of forage legumes and grasses grown in acidic soil amended with flue gas desulfurization products

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.B.; Baligar, V.C. [USDA ARS, Beltsville, MD (USA). Beltsville Agricultural Research Center West

    2003-07-01

    Considerable quantities of flue gas desulfurization products (FGDs) are generated when coal is burned for production of electricity, and these products have the potential to be reused rather than discarded. Use of FGDs as soil amendments could be important in overall management of these products, especially on acidic soils. Glasshouse studies were conducted to determine shoot concentrations of calcium (Ca), sulfur (S), potassium (K), magnesium (Mg), phosphorus (P), boron (B), zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), aluminum (Al), sodium (Na), molybdenum (Mo), nickel (Ni), cadmium (Cd), chromium (Cr), and lead (Pb) in alfalfa (Medicago sativa), white clover (Trifolium repens), orchardgrass (Dacrylis glomerata), tall fescue (Festuca arundinacea), switchgrass (Panicum virgatum), and eastern gamagrass (Tripsacum dactyloides) grown in acidic (pH 4) soil (Typic Hapludult) amended with various levels of three FGDs and the control compounds CaCO{sub 3}, CaSO{sub 3}, and CaSO{sub 4}. Shoot concentrations of Ca, S, Mg, and B generally increased as levels of soil applied FGD increased. Concentrations of Mn, Fe, Zn, Cu were lower in shoots, especially when soil pH was high ({gt}7). Shoot concentrations of the trace elements Mo, Ni, Cd, Cr, and Pb were not above those reported as normal for foliage. Overall concentrations of most minerals remained near normal for shoots when plants were grown in FGD amended acidic soil.

  1. Extractive oxidative desulfurization of model oil/crude oil using KSF montmorillonite-supported 12-tungstophosphoric acid

    Directory of Open Access Journals (Sweden)

    Ezzat Rafiee

    2016-10-01

    Full Text Available Abstract 12-Tungstophosphoric acid (PW supported on KSF montmorillonite, PW/KSF, was used as catalyst for deep oxidative desulfurization (ODS of mixed thiophenic compounds in model oil and crude oil under mild conditions using hydrogen peroxide (H2O2 as an oxidizing agent. A one-factor-at-a-time method was applied for optimizing the parameters such as temperature, reaction time, amount of catalyst, type of extractant and oxidant-to-sulfur compounds (S-compounds molar ratio. The corresponding products can be easily removed from the model oil by using ethanol as the best extractant. The results showed high catalytic activity of PW/KSF in the oxidative removal of dibenzothiophene (DBT and mixed thiophenic model oil under atmospheric pressure at 75 °C in a biphasic system. To investigate the oxidation and adsorption effects of crude oil composition on ODS, the effects of cyclohexene, 1,7-octadiene and o-xylene with different concentrations were studied.

  2. Hot-gas desulfurization. II. Use of gasifier ash in a fluidized-bed process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schrodt, J.T.

    1981-02-01

    Three gasifier coal ashes were used as reactant/sorbents in batch fluidized-beds to remove hydrogen sulfide from hot, made-up fuel gases. It is predominantly the iron oxide in the ash that reacts with and removes the hydrogen sulfide; the sulfur reappears in ferrous sulfide. Sulfided ashes were regenerated by hot, fluidizing streams of oxygen in air; the sulfur is recovered as sulfur dioxide, exclusively. Ash sorption efficiency and sulfur capacity increase and stabilize after several cycles of use. These two parameters vary directly with the iron oxide content of the ash and process temperature, but are independent of particle size in the range 0.01 - 0.02 cm. A western Kentucky No. 9 ash containing 22 weight percent iron as iron oxide sorbed 4.3 weight percent sulfur at 1200/sup 0/F with an ash sorption efficiency of 0.83 at ten percent breakthrough. A global, fluidized-bed, reaction rate model was fitted to the data and it was concluded that chemical kinetics is the controlling mechanism with a predicted activation energy of 19,600 Btu/lb mol. Iron oxide reduction and the water-gas-shift reaction were two side reactions that occurred during desulfurization. The regeneration reaction occurred very rapidly in the fluid-bed regime, and it is suspected that mass transfer is the controlling phenomenon.

  3. Flue gas desulfurization technology of thermal power plant%热电厂烟气脱硫技术浅析

    Institute of Scientific and Technical Information of China (English)

    李斌

    2013-01-01

    当今社会,环境污染问题越来越严重,特别是火电厂排放的二氧化硫,使人类的生存环境受到很大的危害,因此,国家重新修订了《火电厂大气污染物排放标准》,利用法律来对火电厂排放的烟气采取强制措施,要求必须安装烟气脱硫装置来净化排放的烟气。%In modern society,the increasingly serious problem of environmental pollution,particularly sulfur dioxide emissions from thermal power plants,have greatly harmed the survival environment of human beings,therefore,Thermal Power Plant Air Pollutant E-mission Standards was revised to require thermal power plants to install flue gas desulfurization device in law,by which flue gas of thermal power plant will be purified before emission into the atmosphere.

  4. 油田用小型脱硫罐设计%Design of Minitype Desulfurization Tank of Oil Field

    Institute of Scientific and Technical Information of China (English)

    毕建成

    2014-01-01

    针对目前我国含硫化氢天然气和高含硫化氢天然气的开采情况,介绍了一种新型油田用小型脱硫罐的设计,对其工作原理、结构及材料进行了阐述。采用该脱硫罐解决了油田分散采油区块天然气硫化氢污染问题,保护了采油区块周边的环境和操作人员的人身安全。%In view of the situation of natural gas in our country natural gas containing hydrogen sulfide and high H2 S content mining ,the design of a kind of new minitype desulfurization tank used in oil fields is introduced ,the working principle ,structure and material are described .The technology is used to solve the oil dispersed oil block natural gas hydrogen sulfide pollution ,and protect the oil block surrounding environment and personal safety of operators .

  5. An asymmetric membrane of polyimide 6FDA-BDAF and its pervaporation desulfurization for n-heptane/thiophene mixtures

    Institute of Scientific and Technical Information of China (English)

    YANG Xiang-dong; YE Hong; LI Yan-ting; LI Juan; LI Ji-ding; ZHAO Bing-qiang; LIN Yang-zheng

    2015-01-01

    Polyimide (PI) is a type of important membrane material. A soluble polymer was synthesized from 4,4´-(hexalfuoroisopro-pylidene) diphthalic anhydride (6FDA) and 2,2-bis[4-(4-aminophenoxy) phenyl] hexalfuoropropane (BDAF) by the two-step polymerization method. The polymer was proved to be polyimide 6FDA-BDAF by the Fourier transform infrared (FT-IR), the1H-NMR and19F-NMR spectra. An asymmetric membrane was prepared with the synthesized polyimide 6FDA-BDAF, it was porous in the 50 μm height bulk and dense in a 3–5 μm height surface. The membrane was used to separate n-hep-tane/thiophene mixtures by pervaporation with sulfur (S) contents from 50 to 900 μg g–1. The total lfux was enlarged from 7.96 to 37.61 kg m–2 h–1 with temperature increasing from 50 to 90°C. The membrane’s enrichments factor for thiophene were about 3.13 and dependent on the experimental conditions. The experimental results demonstrated that polyimide 6FDA-BDAF would be a potential membrane material for desulfurization and controled release of the S-containing fertilizer.

  6. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J. [and others

    1998-12-31

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  7. Utilization of desulfurization gypsum to producing SO{sub 2} and CaO in multi-stage fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhu; Wang, Tao; Yang, Hairui; Zhang, Hai; Zhang, Zuyi [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    With emission control becomes more and more stringent, flue gas desulphurization (FGD) is commonly employed for desulfurization. However, the product of FGD, gypsum, causes the unexpected environmental problems. How to utilize the byproduct of FGD effectively and economically is a challenging task. This paper proposed the new technical process to produce SO{sub 2} and CaO by reducing the gypsum in multi-stage fluidized bed reactor with different atmosphere. In addition, some preliminary experiments were carried out in PTGA. The results show that CO concentration has little effect on the initial decomposing temperature, but affect the decomposing rate of phosphogypsum obviously. The decomposing product composed of CaS and CaO simultaneously. The ratio of the two products was determined by CO concentration. Lower CO content benefits to produce more CO product and more SO{sub 2}. The decomposition reaction of phosphogypsum in reducing atmosphere is parallel competition reaction. Therefore, it is necessary to eliminate the effect of CaS and other byproduct efficiently by the new technology, which utilize multi-atmosphere in multistage fluidized bed reactors.

  8. A Discussion on Advanced Wastewater Treatment Process for Sintering Flue Gas Desulfurization Wastewater%烧结湿法烟气脱硫废水深度处理流程探讨

    Institute of Scientific and Technical Information of China (English)

    潘莉; 陈亮; 董进

    2016-01-01

    钢铁企业烧结湿法烟气脱硫废水成分复杂,废水处理典型的工艺流程废水经处理后不能完全达标外排,也不能作为烟气脱硫系统的回用水,探讨烧结湿法烟气脱硫废水深度处理流程,势在必行.%As the composition of sintering wet flue gas desulfurization wastewater in steel enterprises is complicated, the treated wastewater by typical treatment processes cannot fully meet discharge standard, nor can it be used as reuse water in the flue gas desulfuriza-tion system. The necessity of advanced treatment process for sintering flue gas desulfurization wastewater is discussed.

  9. 旋转喷雾干燥脱硫工艺在烧结机上的应用%Application of rotating spray drying desulfurization process in the sintering machine

    Institute of Scientific and Technical Information of China (English)

    王爱国

    2012-01-01

    328m2烧结机脱硫系统处理烟气量为198万m3/h,采用旋转喷雾干燥脱硫工艺进行全烟气脱硫.系统运行后SO2排放≤100mg/m3,脱硫效率≥90%,粉尘排放≤30mg/m3,完全满足国家环保要求.%The 328m2 sintering machine, flue gas handling capacity of the system is 1980000 mVh , using rotating spray drying desulfurization process for full flue gas desulfurization. After the system running fully, the SO2 emission^100mg/m , desulfurization efficiency ^90% and dust emission^30mg/ m3 , meet the environmental requirements of the nation.

  10. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.; Hedenhag, J.G. [AirPol Inc., Teterboro, NJ (United States); Marchant, S.K.; Pukanic, G.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Norwood, V.M.; Burnett, T.A. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  11. 馏分切割在 FCC 汽油吸附脱硫中的应用%APPLICATION OF FRACTION CUTTING METHODS IN FCC GASOLINE ADSORPTION DESULFURIZATION

    Institute of Scientific and Technical Information of China (English)

    祖运; 范跃超; 秦玉才; 宋丽娟

    2016-01-01

    采用轻重馏分切割、温度点切割及等体积切割方法对 FCC 汽油进行切割,运用改性 Y 分子筛[NiY,Cu(Ⅰ)Y,CeY]吸附剂对汽油馏分进行吸附脱硫性能考察,并联合微库仑技术和色谱-硫化物发光检测(GC-SCD)偶联技术分析切割后各馏分中硫化物的脱除情况。结果表明:NiY,Cu(Ⅰ)Y,CeY 中 B 酸和 L 酸的类型和强度决定催化剂对不同馏分的脱硫性能;NiY 中的弱 B 酸和弱 L 酸中心对芳烃含量低的馏分有较好的脱硫性能,CeY 中的强 B 酸和弱 L 酸中心对烯烃少的馏分有较好的脱硫性能,而 Cu(Ⅰ)Y 中的强 B 酸和强 L酸中心对各馏分的脱硫性能均较差;在等体积切割方法中,采用 NiY 对前段馏分、CeY 对后段馏分进行吸附脱硫,可以将 FCC 汽油的脱硫率较单一吸附剂提高47.54百分点和22.40百分点。%The performances of modified Y zeolites(Cu(Ⅰ)Y,CeY,NiY)for selective adsorption desulfurization of FCC gasoline were investigated. The FCC gasoline was cut into different fractions ac-cording to three methods:two fractions of light and heavy,temperature point cutting and constant vol-ume cutting. At the same time,the sulfur content in each fraction before and after adsorption was ana-lyzed by microcoulometry and GC-SCD techniques. The results indicate that the type and intensity of Brönsted acid on Lewis acid on the NiY,Cu(Ⅰ)Y and CeY zeolites determine the desulfurization extent of the cutting fractions. The weak Brönsted acid and the weak Lewis acid on the NiY have a higher des-ulfurization performance for low aromatic fractions;the strong Brönsted acid and the weak Lewis acid in the CeY have a better desulfurization performance for low olefin fractions. However,the strong Brönsted acid and strong acid Lewis in the Cu(Ⅰ)Y has a poorer desulfurization performance for all cut-ting fractions. In equivoluminal cutting method,the combination use of NiY for

  12. 电厂脱硫废水正渗透膜浓缩零排放技术的应用%Application of MBC zero liquid discharge technology to desulfurization wastewater treatment in a power plant

    Institute of Scientific and Technical Information of China (English)

    邵国华; 方棣

    2016-01-01

    介绍了膜浓缩(MBC)零排放技术在长兴电厂脱硫废水深度处理项目中的应用情况。系统可将22 m3/h含盐水浓缩至1.5~2 m3/h,盐分浓缩至200 g/L左右后进入蒸发结晶系统,最终生成结晶盐,经过浓缩处理后的清洁产水作为电厂锅炉补给水回用。运行结果表明,MBC零排放系统运行良好,有效地保证了电厂的稳定运行,带来良好的社会和经济效益。%The application of membrane brine concentrator(MBC) zero liquid discharge technology to the advanced treatment project for desulfurization wastewater in Changxing Power Plant is introduced. 22 m3/h of wastewater containing salt is concentrated to 1.5-2 m3/h. After the salinity is concentrated to about 200 g/L ,it goes to evaporative crystal system,and finally forms crystal salt. After the concentration treatment,the produced clean water can be reused as boiler make-up water for the power plant. The results show that the MBC zero discharge system runs well,and guarentees stable running of Changxing Power Plant,bringing good social and economic benefits.

  13. Ultra-Deep Adsorptive Desulfurization of Light-Irradiated Diesel Fuel over Supported TiO2-CeO2 Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jing; Wang, Xiaoxing; Chen, Yongsheng; Fujii, Mamoru; Song, Chunshan [SCUT-China; (Penn)

    2014-02-13

    This study investigates ultra-deep adsorptive desulfurization (ADS) from light-irradiated diesel fuel over supported TiO2–CeO2 adsorbents. A 30-fold higher desulfurization capacity of 95 mL of fuel per gram of adsorbent (mL-F/g-sorb) or 1.143 mg of sulfur per gram of adsorbent (mg-S/g-sorb) was achieved from light-irradiated fuel over the original low-sulfur fuel containing about 15 ppm by weight (ppmw) of sulfur. The sulfur species on spent TiO2–CeO2/MCM-48 adsorbent was identified by sulfur K-edge XANES as sulfones and the adsorption selectivity to different compounds tested in a model fuel decreases in the order of indole > dibenzothiophenesulfone → dibenzothiophene > 4-methyldibenzothiophene > benzothiophene > 4,6-dimethyldibenzothiophene > phenanthrene > 2-methylnaphthalene ~ fluorene > naphthalene. The results suggest that during ADS of light-irradiated fuel, the original sulfur species were chemically transformed to sulfones, resulting in the significant increase in desulfurization capacity. For different supports for TiO2–CeO2 oxides, the ADS capacity increases with a decrease in the point of zero charge (PZC) value; for silica-supported TiO2–CeO2 oxides (the lowest PZC value of 2–4) with different surface areas, the ADS capacity increases monotonically with increasing surface area. The supported TiO2–CeO2/MCM-48 adsorbent can be regenerated using oxidative air treatment. The present study provides an attractive new path to achieve ultraclean fuel more effectively.

  14. Synthesis of mesoporous TS-1 using a hybrid SiO{sub 2}–TiO{sub 2} xerogel for catalytic oxidative desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung-Tae [Department of Chemical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Jeong, Kwang-Eun; Jeong, Soon-Yong [Research Center for Green Catalysis, Division of Green Chemistry and Engineering Research, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong, Daejeon 305-600 (Korea, Republic of); Ahn, Wha-Seung, E-mail: whasahn@inha.ac.kr [Department of Chemical Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Meso-TS-1 catalyst was synthesized using a SiO{sub 2}–TiO{sub 2} xerogel with an organosilane precursor. ► Hierarchical pore structure was confirmed by characterization of the materials. ► Catalytic activity was tested using oxidative desulfurization of the model sulfur compounds. ► Meso-TS-1 demonstrated significantly improved catalytic activity than TS-1. -- Abstract: Mesoporous TS-1 (M-TS-1) was synthesized using a hybrid SiO{sub 2}–TiO{sub 2} xerogel combined with an organosilane precursor. Prepared samples were characterized by XRD, UV–vis spectroscopy, SEM, and N{sub 2} adsorption–desorption measurement. M-TS-1, prepared in 2 days, showed high crystallinity and the best textural properties among the samples. The N{sub 2} adsorption–desorption isotherms of M-TS-1 exhibited a hysteresis loop at pressure higher than P/P{sub 0} = 0.4, clearly indicating the existence of mesopores. M-TS-1 has significantly larger mesopore volume (0.48 cm{sup 3}/g) than that of conventional TS-1 (0.07 cm{sup 3}/g), and showed a narrow peak centered at ca. 6.3 nm. In the oxidative desulfurization reaction, M-TS-1 was more active than conventional TS-1 at the same Ti-loading; M-TS-1 produced a dibenzothiophene (DBT) conversion of 96%, whereas conventional TS-1 produced a final DBT conversion of 5.6% after a reaction time of 180 min. Oxidative desulfurization over TS-1 was influenced both by electron density and steric hindrance in the sulfur compounds tested.

  15. {sup 18}O{sub 2} label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.S., E-mail: bingsiliu@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Wan, Z.Y.; Wang, F.; Zhan, Y.P. [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Tian, M.; Cheung, A.S.C. [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2014-02-01

    Graphical abstract: - Highlights: • Formation of sulfur originated from catalytic action of samarium oxysulfide. • Mechanism of sulfur desorption was first confirmed via time of flight MS. • Utilization of mesoporous Sm-based sorbents was favorable for diffusion of H{sub 2}S. • Stability of Sm-based sorbent correlated with reasonable regeneration procedure. - Abstract: Using a sol–gel method, SmMeO{sub x}/MCM-41 or SBA-15 (Me = Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H{sub 2}S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO{sub 3}/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm{sub 2}O{sub 2}S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol{sup 18}O{sub 2}/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N{sub 2}-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H{sub 2} (H{sub 2}-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques.

  16. Research on Recovery of Sulfur From Hydroxyl Iron Oxide Desulfurizer%脱硫剂羟基氧化铁中硫磺的回收研究

    Institute of Scientific and Technical Information of China (English)

    吕诗淇; 赖君玲; 罗根祥

    2015-01-01

    以四氯乙烯为溶剂,采用溶剂法从脱硫剂羟基氧化铁中回收硫磺。考察了浸取温度、浸取时间、液-固比和溶剂重复使用等因素对硫磺回收率的影响,并对羟基氧化铁和产物硫磺进行了 XRD 表征。结果表明:在羟基氧化铁20 g、浸取温度为80℃、浸取时间60 min、液-固比8:1的条件下,硫磺的回收率为97.5%;XRD表征结果证实了该产物为硫磺。%Sulfur was recovered from hydroxyl iron oxide desulfurizer containing 25.0% sulfur by solvent method in tetrachloroethylene solvent. The influence of reaction temperature,reaction time,liquid-solid ratio and reusing times of organic solution on sulfur recovery was investigated. The hydroxyl iron oxide desulfurizer and the product were characterized by X-ray diffraction (XRD) technology. The results show that, when the liquid-solid ratio of tetrachloroethylene to desulfurizer hydroxyl iron oxide containing 25.0% sulfur is 8:1, leaching temperature is 80 ℃, leaching time is 60 min, hydroxyl iron oxide is 20 g, the recovery of sulfur can be over 97.5%. The XRD characterization result has proved that recovered product is sulfur.

  17. 烟气同时脱硫脱硝工艺的研究进展%Research Process in Simultaneous Desulfurization and Denitrification of Flue Gas

    Institute of Scientific and Technical Information of China (English)

    王立坤

    2014-01-01

    煤的燃烧会释放大量的 SO2和 NOx,它们是导致酸雨和光化学烟雾等污染现象的主要污染物。燃煤电厂是我国煤消耗的主要场所,因此,控制硫、氮的排放应从燃煤电厂烟气脱硫脱硝的研究开始。对目前存在的几种烟气同时脱硫脱硝工艺进行了简要概述,主要包括等离子体法、氧化法、吸收及吸附法三类,并为脱硫脱硝工艺未来的发展提出了几点建议,以期为相关研究提供参考。%SO2 and NOx , products of the coal combustion, are the main wastes which lead to acid rain and photo-chemical smog. Coal-fired power plants are the principal places of China's coal consumption, therefore, study on desulfurization and denitrification of coal-fired power plant flue gas is the key to control sulfur and nitrogen emission. In this paper, several simultaneous denitrification and desulfurization processes of flue gas were introduced, such as plasma method, oxidation method, and adsorption method. Finally, some suggestions on the future development of simultaneous desulfurization and denitrification process were put forward in order to provide reference for the related researches.

  18. Advanced development of fine coal desulfurization and recovery technology. Quarterly technical progress report, October 1, 1976--December 31, 1976. [53 references

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.W.; Wheelock, T.D.

    1977-02-01

    The improvement and technical development of promising methods for desulfurizing and recovering fine coal underway includes froth flotation, selective oil agglomeration, pelletization, and a chemical desulfurization process which involves leaching fine coal with a hot dilute solution of sodium carbonate containing dissolved oxygen under pressure. A preliminary assessment of the state of the art and review of the technical literature has been made. Equipment and apparatus have been assembled for small-scale laboratory experiments in froth flotation, oil agglomeration and chemical desulfurization. Preliminary froth flotation tests have been carried out on an Iowa coal to establish baseline data. Quite unexpectedly these tests indicated that aluminum nitrate may be an activator for coal because it served to increase the recovery of coal. Several potential flotation depressants for pyrite have been screened by measurement at the zeta potential and floatability of pyrite or coal in aqueous suspensions containing the potential depressants. The following reagents show some promise as pyrite depressants: ferric chloride, sodium cyanide, ammonium thiocyanate, and the disodium salt of ethylenediaminetetraacetic acid. Preliminary plans have been prepared for a continuous flow bench-scale system to demonstrate the process. This system will include equipment for grinding and pretreating the coal as well as equipment for demonstrating froth flotation, selective oil agglomeration and pelletization. An investigation of coal microstructure as it relates to coal beneficiation methods has also been initiated. The distribution of various forms of pyrite by size and crystal structure has been determined for two cannel samples of coal through application of scanning electron microscope techniques.

  19. 超声波技术在柴油氧化脱硫中的应用%Application of ultrasound technologies in diesel fuels oxidative desulfurization

    Institute of Scientific and Technical Information of China (English)

    刘先军; 王宝辉; 刘淑芝; 崔宝臣

    2011-01-01

    介绍了超声波在H2O2-无机酸、H2O2-有机酸" H2O2-固体酸、Fenton试剂氧化柴油脱硫技术中的应用,其中超声波-Fenton试剂氧化脱硫效果较好,极有可能获得更广阔的工业化前景.SulphCo已成功的应用超声波在相当低的温度和压力条件下使用一套5000桶/d的可移动的超声裂化装置对柴油进行脱硫处理,该装置造价比新的高压加氢装置低50%,在柴油精制中应用该技术总成本也非常低.同时,对柴油超声波氧化脱硫技术的应用前景进行了展望.%Several ultrasound-assisted oxidative desulfurization(UAOD)technologies were reviewed,including H2O2- inorganic acid systems and H2O2- organic acid systems and Fenton' s reagent systems.The UAOD technologies in combination with Fenton' s reagent showed a good desulfurization effect.SulphCo has successfully used a 5000 barrel/d mobile Sonocracking unit to duplicate on a commercial scale its proprietary process that applies ultrasonics at relatively low temperatures and pressures.The UAOD technology estimate capital costs less than half the cost of a new high-pressure hydrotreater.The total costs of the Sonocracking technology in many diesel finishing applications are much cheaper.The opinions with respect to the future application trend of ultrasound-assisted oxidative desulfurization technologies of diesel fuels are proposed.

  20. Coal desulfurization in a rotary kiln combustor. Final report, March 15, 1990--July 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  1. 脱硫海水膜法曝气恢复试验研究%EXPERIMENTAL INVESTIGATION ON RECOVERY CAPABILITY OF DESULFURIZED SEAWATER BY MEMBRANE AERATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    陈颖; 郭春刚; 刘国昌; 张召才; 关毅鹏; 李晓明

    2013-01-01

    分别以空气和纯氧为曝气气源,采用自制聚丙烯中空纤维膜接触器为核心的曝气工艺装置,系统地考察脱硫海水初始pH、稀释体积比、曝气时间及纯氧曝气等因素对脱硫海水恢复效果的影响.结果表明,以空气为曝气气源,处理pH在2.70~5.20的脱硫海水,在曝气气水体积比为1/2~1/1、稀释体积比为3/1~5/1的工艺条件下,曝气时间为20 s,即可使脱硫海水水质指标迅速恢复,达标排放;应用纯氧曝气,相同工艺条件下,脱硫海水恢复效果优于空气曝气.研究结果初步证实了膜法曝气工艺用于处理沿海电厂海水烟气脱硫系统排放海水的可行性.%In the present study, the air and the oxygen were used as the aeration sources separately and the hydrophobic polypropylene hollow fiber membrane contactor was used as the core of the aeration equipment. Several important impact factors such as initial pH of desulfurized seawater, diluted ration, aeration time and oxygen aeration were investigated systematically. As the gas water ratio and the diluted ratio were kept between 1/2-1/1 and 3/l~5/l, respectively, the desulfurized seawater with pH 2.70~5.20 could be recovered rapidly at an aeration time of 20 s. The recovery of desulfurized seawater could be more efficient when the oxygen is used as the aeration source in the same processing conditions. The preliminary results showed that recovery of desulfurized seawater by membrane aeration process is feasible in coastal area.

  2. Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment

    Science.gov (United States)

    Park, S. A.; Kim, J. G.; He, Y. S.; Shin, K. S.; Yoon, J. B.

    2014-12-01

    The correlation between the corrosion and microstructual characteristics of cold rolled and hot rolled low-alloy steels containing copper and antimony was established. The corrosion behavior of the specimens used in flue gas desulfurization systems was examined by electrochemical and weight loss measurements in an aggressive solution of 16.9 vol % H2SO4 + 0.35 vol % HCl at 60°C, pH 0.3. It has been shown that the corrosion rate of hot rolled steel is lower than that of cold rolled steel. The corrosion rate of cold rolled steel was increased by grain refinement, inclusion formation, and preferred grain orientation.

  3. Research on use of high calcium desulfurization ash in autoclaved brick%利用高钙固硫灰生产蒸压砖的研究

    Institute of Scientific and Technical Information of China (English)

    陈滨; 刘恒波; 万军

    2012-01-01

      The paper researches on the process of high calcium desulfurization ash autoclaved brick, and puts forward the ways to use the high calcium, high sulfur and low silicon of fly ash from the circulating fluidized bed boiler.%  对高钙固硫灰生产蒸压砖的生产工艺进行了研究,提出了重点解决循环流化床锅炉粉煤灰的高钙、高硫、低硅难题的有效途径

  4. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dismukes, E.B.

    1994-10-20

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  5. Project Notes

    Science.gov (United States)

    School Science Review, 1978

    1978-01-01

    Presents sixteen project notes developed by pupils of Chipping Norton School and Bristol Grammar School, in the United Kingdom. These Projects include eight biology A-level projects and eight Chemistry A-level projects. (HM)

  6. Effect of byproducts of flue gas desulfurization on the soluble salts composition and chemical properties of sodic soils.

    Directory of Open Access Journals (Sweden)

    Jinman Wang

    Full Text Available The byproducts of flue gas desulfurization (BFGD are a useful external source of Ca(2+ for the reclamation of sodic soils because they are comparatively cheap, generally available and have high gypsum content. The ion solution composition of sodic soils also plays an important role in the reclamation process. The effect of BFGD on the soluble salts composition and chemical properties of sodic soils were studied in a soil column experiment. The experiment consisted of four treatments using two different sodic soils (sodic soil I and sodic soil II and two BFGD rates. After the application of BFGD and leaching, the soil soluble salts were transformed from sodic salts containing Na2CO3 and NaHCO3 to neutral salts containing NaCl and Na2SO4. The sodium adsorption ratio (SAR, pH and electrical conductivity (EC decreased at all soil depths, and more significantly in the top soil depth. At a depth of 0-40 cm in both sodic soil I and sodic soil II, the SAR, EC and pH were less than 13, 4 dS m(-1 and 8.5, respectively. The changes in the chemical properties of the sodic soils reflected the changes in the ion composition of soluble salts. Leaching played a key role in the reclamation process and the reclamation effect was positively associated with the amount of leaching. The soil salts did not accumulate in the top soil layer, but there was a slight increase in the middle and bottom soil depths. The results demonstrate that the reclamation of sodic soils using BFGD is promising.

  7. Continuous desulfurization and bacterial community structure of an integrated bioreactor developed to treat SO2 from a gas stream.

    Science.gov (United States)

    Lin, Jian; Li, Lin; Ding, Wenjie; Zhang, Jingying; Liu, Junxin

    2015-11-01

    Sulfide dioxide (SO2) is often released during the combustion processes of fossil fuels. An integrated bioreactor with two sections, namely, a suspended zone (SZ) and immobilized zone (IZ), was applied to treat SO2 for 6months. Sampling ports were set in both sections to investigate the performance and microbial characteristics of the integrated bioreactor. SO2 was effectively removed by the synergistic effect of the SZ and IZ, and more than 85% removal efficiency was achieved at steady state. The average elimination capacity of SO2 in the bioreactor was 2.80g/(m(3)·hr) for the SZ and 1.50g/(m(3)·hr) for the IZ. Most SO2 was eliminated in the SZ. The liquid level of the SZ and the water content ratio of the packing material in the IZ affected SO2 removal efficiency. The SZ served a key function not only in SO2 elimination, but also in moisture maintenance for the IZ. The desired water content in IZ could be feasibly maintained without any additional pre-humidification facilities. Clone libraries of 16S rDNA directly amplified from the DNA of each sample were constructed and sequenced to analyze the community composition and diversity in the individual zones. The desulfurization bacteria dominated both zones. Paenibacillus sp. was present in both zones, whereas Ralstonia sp. existed only in the SZ. The transfer of SO2 to the SZ involved dissolution in the nutrient solution and biodegradation by the sulfur-oxidizing bacteria. This work presents a potential biological treatment method for waste gases containing hydrophilic compounds.

  8. Effect of byproducts of flue gas desulfurization on the soluble salts composition and chemical properties of sodic soils.

    Science.gov (United States)

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2013-01-01

    The byproducts of flue gas desulfurization (BFGD) are a useful external source of Ca(2+) for the reclamation of sodic soils because they are comparatively cheap, generally available and have high gypsum content. The ion solution composition of sodic soils also plays an important role in the reclamation process. The effect of BFGD on the soluble salts composition and chemical properties of sodic soils were studied in a soil column experiment. The experiment consisted of four treatments using two different sodic soils (sodic soil I and sodic soil II) and two BFGD rates. After the application of BFGD and leaching, the soil soluble salts were transformed from sodic salts containing Na2CO3 and NaHCO3 to neutral salts containing NaCl and Na2SO4. The sodium adsorption ratio (SAR), pH and electrical conductivity (EC) decreased at all soil depths, and more significantly in the top soil depth. At a depth of 0-40 cm in both sodic soil I and sodic soil II, the SAR, EC and pH were less than 13, 4 dS m(-1) and 8.5, respectively. The changes in the chemical properties of the sodic soils reflected the changes in the ion composition of soluble salts. Leaching played a key role in the reclamation process and the reclamation effect was positively associated with the amount of leaching. The soil salts did not accumulate in the top soil layer, but there was a slight increase in the middle and bottom soil depths. The results demonstrate that the reclamation of sodic soils using BFGD is promising.

  9. Possible utilization of flue-gas desulfurization gypsum and fly ash for citrus production: Evaluation of crop growth response

    Energy Technology Data Exchange (ETDEWEB)

    Alva, A.K. (Univ. of Florida, Lake Alfred, FL (United States). Citrus Research and Education Center)

    1994-01-01

    The application of industrial by-products to agricultural land has been a topic of considerable interest during recent years. For the industries, this is an attractive avenue to utilize the by-products rather than land filling. Agriculturists/horticulturists are faced with a new challenge to evaluate the potential advantages of this practice in terms of crop growth, production, and quality as well as effects of such practices on environmental quality. Fly ash and flue-gas desulfurization (FGD) gypsum are by-products produced from coal-fired electric power generation plants. There is a growing interest in evaluation of potential benefits of land application of coal combustion by products mixed with organic by-products. The objective of this study was to investigate the effects of application of FGD gypsum, fly ash or chicken manure,, or application of the former two in combination with the latter, on soil properties as well as on growth and mineral nutrition of Cleopatra mandarin and Swingle citrumelo rootstock seedlings grown on a Myakka sand. The growth of seedlings of either rootstock improved significantly in soils amended with either FGD gypsum, fly ash, or chicken manure, individually or in combination of either by-product with chicken manure. However, the ranking of various amendments in relation to growth response differed between the two rootstocks. The combined application of all three amendments decreased the growth of both rootstock seedlings significantly as compared to that of seedlings in unamended soil. The application of either FGD gypsum, fly ash, or chicken manure each at 2 g/kg soil increased the concentration of Ca, Ca and K, and Ca and P in the leaves of seedlings, respectively.

  10. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  11. Deep Oxidative Desulfurization of Dibenzothiophene in Simulated Oil and Real Diesel Using Heteropolyanion-Substituted Hydrotalcite-Like Compounds as Catalysts

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2013-11-01

    Full Text Available Three heteropolyanion substituted hydrotalcite-like compounds (HPA-HTLcs including Mg9Al3(OH24[PW12O40](MgAl-PW12, Mg9Al3(OH24[PMo12O40] (MgAl-PMo12 and Mg12Al4(OH32[SiW12O40] (MgAl-SiW12, were synthesized, characterized and used as catalysts for the oxidative desulfurization of simulated oil (dibenzothiophene, DBT, in n-octane. MgAl-PMo12 was identified as an effective catalyst for the oxidative removal of DBT under very mild conditions of atmospheric pressure and 60 °C in a biphasic system using hydrogen peroxide as oxidant and acetonitrile as extractant. The conversion of DBT was nearly 100%. As a result, because of the influence of the electron density and the space steric hindrance, the oxidation reactivity of the different sulfur compounds in simulated oil followed the order DBT > 4,6-dimethyldibenzothiophene (4,6-DMDBT > benzothiophene (BT > thiophene (TH. When the reaction is finished, the catalysts can be recovered from the acetonitrile phase by filtration. The recovered MgAl-PMo12 retains nearly the same catalytic activity as the fresh material. Moreover, MgAl-PMo12 was found to exhibit an ideal catalytic activity in the oxidative desulfurization of real diesel resulting in a total remaining sulfur content of 9.12 ppm(w.

  12. Deep oxidative desulfurization of dibenzothiophene in simulated oil and real diesel using heteropolyanion-substituted hydrotalcite-like compounds as catalysts.

    Science.gov (United States)

    Yu, Fengli; Wang, Rui

    2013-11-05

    Three heteropolyanion substituted hydrotalcite-like compounds (HPA-HTLcs) including Mg₉Al₃(OH)₂₄[PW₁₂O₄₀](MgAl-PW₁₂), Mg₉Al₃(OH)₂₄[PMo₁₂O₄₀] (MgAl-PMo₁₂) and Mg₁₂Al₄(OH)₃₂[SiW₁₂O₄₀] (MgAl-SiW₁₂), were synthesized, characterized and used as catalysts for the oxidative desulfurization of simulated oil (dibenzothiophene, DBT, in n-octane). MgAl-PMo₁₂ was identified as an effective catalyst for the oxidative removal of DBT under very mild conditions of atmospheric pressure and 60 °C in a biphasic system using hydrogen peroxide as oxidant and acetonitrile as extractant. The conversion of DBT was nearly 100%. As a result, because of the influence of the electron density and the space steric hindrance, the oxidation reactivity of the different sulfur compounds in simulated oil followed the order DBT > 4,6-dimethyldibenzothiophene (4,6-DMDBT) > benzothiophene (BT) > thiophene (TH). When the reaction is finished, the catalysts can be recovered from the acetonitrile phase by filtration. The recovered MgAl-PMo₁₂ retains nearly the same catalytic activity as the fresh material. Moreover, MgAl-PMo₁₂ was found to exhibit an ideal catalytic activity in the oxidative desulfurization of real diesel resulting in a total remaining sulfur content of 9.12 ppm(w).

  13. Progress of Hydrogenation Desulfurization Technologies for Clean Diesel%清洁柴油加氢脱硫技术进展

    Institute of Scientific and Technical Information of China (English)

    杨英; 肖立桢

    2015-01-01

    综述了国内外各大公司生产清洁柴油的加氢脱硫(HDS)催化剂及工艺技术进展,指出了我国HDS 技术的发展方向:开发高效稳定的 HDS 催化剂和对现有加氢工艺的改造升级,从载体、助剂以及活性金属组分等方面入手,进一步提高 HDS 催化剂的各种性能,开发基于 HDS 技术与其他分离技术的组合脱硫技术。%The technique progress of hydrogenation desulfurization(HDS)catalysts and processes for producing clean diesel of companies both at home and abroad were reviewed,and the development direction of HDS technologies in China were prospected.The main research direction were developing highly efficient and stable catalysts and upgrading existing hydrogenation process.The properties of HDS catalysts should further improved from carrier,additives and active metal components,etal.Desulfurization technology based on HDS technology combined with other separation technology has good prospects for development.

  14. 干法同时脱硫脱硝技术的研究进展%The Research Progress of Methods of Dry Simultaneous Desulfurization and Denitrification

    Institute of Scientific and Technical Information of China (English)

    朱振峰; 张建权; 李军奇; 杨冬; 孙洪军; 郭丽英

    2009-01-01

    According to severe air pollution and NOX, SOX emission exceeding standard in thermal power plants, coal-fired boiler, automobile exhaust. The background of technology of desulfurization and denitrification was reviewed. Some technologies of dry desulfurizarion and denitrifieation and their respective principle and feature were introduced, including LILAC process, NOXSO process, active carbon method, technology of circulating fluidized-bed and plasma method. The development tendency of the technology of desulfurization and denitrification combined with the characters of technologies was also prospected.%日前大气污染日益严重,一些火电厂、燃煤锅炉及汽车尾气的NOX和SOX排放量严重超标,针对这一严峻形式,综述了干法同时脱硫脱硝技术的研究背景,介绍了包括LILAC法、NOXSO法、活性炭法、循环流化床法、等离子法等在内的几种f:式脱硫脱硝技术,并简单阐述了各自的原理和特点,最后结合其技术特点对脱硫脱硝技术的发展趋势进行展望.

  15. A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production conceptual process application to coal gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, W.J.W.; Kapteijn, F.; Moulijn, J.A. [Delft University of Technology, Delft (Netherlands)

    2003-12-15

    A high capacity, monolith or particle shaped, regenerable sorbent has been developed for the desulfurization of a dry type coal gas. It consists of crystalline MnAl{sub 2}O{sub 4}, a small amount of disperse MnO, and an amorphous Mn-Al-O phase. Elemental sulfur is the only observed regeneration product during regeneration with SO{sub 2}. The sorbent can be used in the temperature range between 673 and 1273 K but the optimum capacity is utilized between 1100 and 1200 K. For regeneration with SO{sub 2} the regeneration temperature should be > 873 K to avoid sulfate formation. The sulfur uptake capacity is high and amounts up to 20 wt.% S and the sorbent performance appears to be stable during at least 110 sulfiding and regeneration cycles at 1123 K. For temperatures above 1100 K thermodynamic calculations are in accordance with the observed (solid) phases after sulfiding and regeneration, indicating the predictive potential for high temperatures. The performance of the surface sites that play an important role during desulfurization can, however, not be predicted. The regenerative removal of H{sub 2}S, COS, HCl and HF can possibly take place simultaneously with the same sorbent. A new conceptual process configuration for high temperature coal gas cleaning and sorbent regeneration is proposed. Compared to other processes, less heat exchange equipment is required and no Claus unit is necessary to convert the regeneration product to sulfur.

  16. 脱硫特许经营无功补偿节能改造的研究%Discussion on Reactance Compensation and Energy Saving Reform in Desulfurization License Management

    Institute of Scientific and Technical Information of China (English)

    董力

    2015-01-01

    电费是脱硫特许经营一项重要的日常运营费用,对脱硫电气系统进行无功补偿节能改造,可降低供电损耗以节约电费。根据某发电厂脱硫工程设计数据和脱硫特许经营实际运营数据,对在不同地点进行无功补偿改造的效益进行计算,得到在脱硫380V电动机就地安装无功补偿装置进行节能改造较合理的结论。%The electrical charge is an important daily operation charge, the electrical system of desulfurization which is carried through reactance compensation and energy saving reform, can decrease power supply consumption and save electri-cal charges. Based on the designing data of desulfurization engineering in a certain power plant and the actual operation data of desulfurization license management as wel as beneifts of reactance compensation reform counted in different sites, the rational conclusion is gained when energy saving and reform are conducted in the desulfurization 380V electromotor which instals reactance compensation device on the spot.

  17. Research Progress of Simultaneous Desulfurization and Denitrification Technologies of Flue Gas%燃煤烟气联合脱硫脱硝技术的研究进展

    Institute of Scientific and Technical Information of China (English)

    高续春; 代宏哲; 马亚军

    2015-01-01

    燃煤尾气进行脱硫脱硝处理是一种有效地控制大气污染的方法。联合脱硫脱硝技术因其具有明显的经济性而成为当前环保领域的研究热点。主要综述了相关的联合脱硫脱硝技术的研究进展,着重介绍了固体吸附催化法、等离子体法和化学湿法,简要说明了各种技术的特点。并对联合脱硫脱硝技术的发展进行了展望。%Desulfurization and denitrification technology of flue gas is an effective method to control tmospheric pollution. Simultaneous desulfurization and denitrification technology has become a research hotspot in environmental protection area because of its economy. In this paper, research progress of simultaneous desulfurization and denitrification technologies was reviewed.And solid adsorption catalytic method, PPCP and chemical wet method were introduced emphatically. Characteristics of various technologies were discussed. At last, development trend of simultaneous desulfurization and denitrification technologies was prospected.

  18. Application of oxygenation in active carbon desulfurizer technology in methanol production%活性炭脱硫剂加氧技术在甲醇生产中的应用

    Institute of Scientific and Technical Information of China (English)

    王文胜; 马玉梅

    2012-01-01

    In producing methanol, through the use of active carbon desulfurizer and the research of desulfurization principle, by introducing air purified gas in the desulfurization tower was removaled sulfur, in order to make sulfur content after the desulfurization tower to meet the design requirments, eliminating the serious consequences of catalyst poisoning effecting methanol quality because of the sulfur content of methanol gas of raw materials is out of limits.%在甲醇生产过程中,通过对活性炭脱硫剂的使用及脱硫原理的研究,采用在脱硫塔中加入空气的方法来进行净煤气的脱硫,以达到脱硫塔后的硫含量达到设计要求,消除由于甲醇原料气中硫含量超标而导致催化剂中毒影响甲醇质量的严重后果.

  19. 直馏柴油催化氧化脱硫均相催化剂的制备与评价%Preparation and evaluation of desulfurization catalysts for homogeneous catalytic oxidation of straight-run diesel

    Institute of Scientific and Technical Information of China (English)

    唐晓东; 刘亮; 税蕾蕾

    2005-01-01

    Large investment, high operating cost and severe operation condition exist in the technology of diesel hydrodesulfurization, and the technology of H2O2 oxidative desulfurization of diesel has such problems as high oxidizer cost, oxidizer not regenerable, and treatment of sour water. A new catalytic oxidative desulfurization method for straight-run diesel is presented in this paper. In order to produce lowsulfur diesel, the sulfide in diesel oil was oxidized and converted into sulfone-polar sulfide with homogeneous catalysts and air oxidizer, and then removed by extractant. The homogenous catalysts were prepared by compound decomposition. The catalysts selected could dissolve in diesel at a given temperature and separate out at a lower temperature. The effects of catalytic oxidation of zinc benzoate, manganese benzoate and manganese phthalate were tested. The desulfurization effect of zinc benzoate and manganese benzoate was much better and the sulfur content of the desulfurized diesel met the standard of Eu Ⅱ diesel (<300μg·g-1 ).

  20. Developments of advanced hot-gas desulfurization sorbents. Quarterly technical progress report, April--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.; Adeyiga, A.A.; Gangwal, S.K.

    1995-07-01

    The objectives of this project are to develop hot-gas cleanup sorbents for relatively lower temperature application, with emphasis on the temperature range from 343-538{degrees}C. The candidate sorbents include highly dispersed mixed metal oxides of zinc, iron, copper, cobalt and molybdenum. The specific objective in the successful preparation of H{sub 2}S absorbents will be to generate as high and as stable a surface area as possible, in order to develop suitable sorbent, that are sufficiently reactive and regenerable at the relatively lower temperatures of interest in this work. A number of formulations will be prepared and screened for testing in a 1/2-inch fixed bed reactor at high pressure (1 to 20 atm) and high temperatures using simulated coal-derived fuel-gases. Screening criteria will include, chemical reactivity, stability, and regenerability over the temperature range of 343{degrees}C (650{degrees}F) to 538{degrees}C (1000{degrees}F). Each formulation will be tested for up to 5 cycles of absorption and regeneration. To prevent sulfation, catalyst additives will be investigated, which would promote a lower ignition of the regeneration. Selected superior formulation will be tested for long term (up to least 30 cycles) durability and chemical reactivity in the reactor.

  1. Management of dry flue gas desulfurization by-products in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Sevim, H.

    1997-06-01

    Disposal of coal combustion by-products (CCBs) in an environmentally sound manner is a major issue facing the coal and utility industries in the US today. Disposal into abandoned sections of underground coal mines may overcome many of the surface disposal problems along with added benefits such as mitigation of subsidence and acid mine drainage. However, many of the abandoned underground coal mines are located far from power plants, requiring long distance hauling of by-products which will significantly contribute to the cost of disposal. For underground disposal to be economically competitive, the transportation and handling cost must be minimized. This requires careful selection of the system and optimal design for efficient operation. The materials handling and system economics research addresses these issues. Transportation and handling technologies for CCBs were investigated from technical, environmental and economic points of view. Five technologies were found promising: (1) Pneumatic Trucks, (2) Pressure Differential Rail Cars, (3) Collapsible Intermodal Containers, (4) Cylindrical Intermodal Tanks, and (5) Coal Hopper Cars with Automatic Retractable Tarping. The first two technologies are currently being utilized in transporting by-products from power plants to disposal sites, whereas the next three are either in development or in conceptualization phases. In this research project, engineering design and cost models were developed for the first four technologies. The engineering design models are in the form of spreadsheets and serve the purpose of determining efficient operating schedules and sizing of system components.

  2. 磷石膏脱硫钙渣制备轻质碳酸钙%Preparation of light calcium carbonate from phosphorus gypsum desulfurization slag

    Institute of Scientific and Technical Information of China (English)

    时婷; 王新刚; 巫建锋; 杨秀山; 杨林; 王辛龙

    2015-01-01

    To recycle desulfurization slag from phosphorous gypsum,spherical calcium carbonate was prepared from calcium-containing phosphorus gypsum desulfurization slag. The composition of raw materials were analyzed by XRD and SEM. The main substance was calcium oxide and the main impurity was silica. It also contained a small amount of iron,aluminum and magnesium. A new process leaching desulfurization slag by ammonium chloride and subsequent carbonization was firstly proposed. The affecting factors , such as amount of ammonium chloride , ratio of water and desulfurization slag(mass ratio),and temperature on the performance of leaching were investigated. The optimal conditions were: Amount of ammonium chloride 50% of the total weight of the solid, ratio of water and desulfurization slag 9∶1,temperature 40℃. Conversion of calcium was about 67.98% and removal of silica was 97.80% under the optimal conditions. The purity of the obtained calcium carbonate was 97.90%,sedimentation volume was 3.5mL/g and whiteness was 94.2, meeting the norm of first grade product in(HG/T 2226—2010). Main polymorph of calcium carbonate crystals was vaterite.%为了有效利用磷石膏脱硫钙渣资源,以磷石膏脱硫钙渣为原料合成了球形轻质碳酸钙。本文首先利用XRD 和 SEM 等测试手段分析了磷石膏脱硫钙渣的主要组成是氧化钙,主要杂质为二氧化硅以及少量铁铝镁。在此基础上首次提出了氯化铵浸取磷石膏脱硫钙渣,而后碳化合成轻质碳酸钙的新工艺。探讨了浸取过程中氯化铵的添加量,水与钙渣的液固比(质量比),温度工艺参数对钙浸取率和硅脱除率的影响,确定了较优工艺条件为:氯化铵添加量为总固体质量的50%,水与钙渣的液固比为9∶1,温度为40℃。在该工艺条件下,钙的浸取率可达67.98%,硅的脱除率可达97.80%。对上述浸取液经碳化制备出的轻质碳酸钙,其纯度为97.90%,白度为94.2

  3. Intending Projects

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Project name: 90,000t/a BR device and auxiliary projects Construction unit: Sinopec Beijing Yanshan Petrochemical Company Total investment: 2.257 billion yuan Project description: It will cover an area of 14. lha.

  4. Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades: application to the synthesis of chiral α-substituted carboxylic acids from α-substituted α,β-unsaturated aldehydes.

    Science.gov (United States)

    Knaus, Tanja; Mutti, Francesco G; Humphreys, Luke D; Turner, Nicholas J; Scrutton, Nigel S

    2015-01-07

    Ene-reductases (ERs) are flavin dependent enzymes that catalyze the asymmetric reduction of activated carbon-carbon double bonds. In particular, α,β-unsaturated carbonyl compounds (e.g. enals and enones) as well as nitroalkenes are rapidly reduced. Conversely, α,β-unsaturated esters are poorly accepted substrates whereas free carboxylic acids are not converted at all. The only exceptions are α,β-unsaturated diacids, diesters as well as esters bearing an electron-withdrawing group in α- or β-position. Here, we present an alternative approach that has a general applicability for directly obtaining diverse chiral α-substituted carboxylic acids. This approach combines two enzyme classes, namely ERs and aldehyde dehydrogenases (Ald-DHs), in a concurrent reductive-oxidative biocatalytic cascade. This strategy has several advantages as the starting material is an α-substituted α,β-unsaturated aldehyde, a class of compounds extremely reactive for the reduction of the alkene moiety. Furthermore no external hydride source from a sacrificial substrate (e.g. glucose, formate) is required since the hydride for the first reductive step is liberated in the second oxidative step. Such a process is defined as a hydrogen-borrowing cascade. This methodology has wide applicability as it was successfully applied to the synthesis of chiral substituted hydrocinnamic acids, aliphatic acids, heterocycles and even acetylated amino acids with elevated yield, chemo- and stereo-selectivity. A systematic methodology for optimizing the hydrogen-borrowing two-enzyme synthesis of α-chiral substituted carboxylic acids was developed. This systematic methodology has general applicability for the development of diverse hydrogen-borrowing processes that possess the highest atom efficiency and the lowest environmental impact.

  5. 吸附法脱除柴油中噻吩类含硫化合物的研究进展%Advances on adsorptive desulfurization of diesel for thiophenic sulfur compounds

    Institute of Scientific and Technical Information of China (English)

    王广建; 仙保震; 刘影; 付信涛; 张路平

    2014-01-01

    This paper reviewed the latest developments of commonly used adsorbents,mechanisms of adsorptive desulfurization and adsorption kinetics studies from diesel fuel. Molecular sieve,activated carbon and metal organic frameworks (MOFs) materials have been widely studied. Although HDS can be used to produce low-sulfur diesel that meets the sulfur regulations,this process operates at high temperature and high hydrogen pressure,high cost and low removal rate of dibenzothiophene. The adsorption desulfurization technology has become a research hotpot of diesel desulfurization because of its low cost,moderate operating conditions. easy removal of tough sulfide,and little impact on oil quality. Adsorption desulfurization consists of reactive adsorption desulfurization and non-reactive adsorption desulfurization. The key factor in the adsorption desulfurization reaction is breaking the old bond while generating the new bond. Non-reactive adsorption desulfurization applies dispersion force between the sulfur atoms and sulfur sorbent interactions,to achieve the effect of adsorption desulfurization.%综述了吸附法脱除柴油中噻吩类含硫化合物的常用吸附剂、吸附脱硫的机理及吸附脱硫过程动力学研究的最新进展。阐述了近来研究较多的吸附剂主要有分子筛、活性炭和金属有机骨架(MOFs)材料。目前传统的加氢脱硫(HDS)技术虽然可以满足当前柴油中硫含量的国家标准,但是其需要高温高压、成本高且对二苯并噻吩类硫化物脱硫率低,而吸附脱硫技术由于成本低、操作条件温和、易脱除加氢脱硫难以脱除的硫化物、对油品品质影响小等优点成为当前柴油脱硫的研究热点。吸附脱硫主要包括反应型吸附脱硫和非反应型吸附脱硫,反应吸附脱硫关键是有旧键的断裂与新键的生成,而非反应吸附脱硫则是通过分散力使硫化物上的硫原子与吸附剂之间相互作用,从而达到吸

  6. Project Management

    DEFF Research Database (Denmark)

    Project Management Theory Meets Practice contains the proceedings from the 1st Danish Project Management Research Conference (DAPMARC 2015), held in Copenhagen, Denmark, on May 21st, 2015.......Project Management Theory Meets Practice contains the proceedings from the 1st Danish Project Management Research Conference (DAPMARC 2015), held in Copenhagen, Denmark, on May 21st, 2015....

  7. Define Project

    DEFF Research Database (Denmark)

    Munk-Madsen, Andreas

    2005-01-01

    "Project" is a key concept in IS management. The word is frequently used in textbooks and standards. Yet we seldom find a precise definition of the concept. This paper discusses how to define the concept of a project. The proposed definition covers both heavily formalized projects and informally...... organized, agile projects. Based on the proposed definition popular existing definitions are discussed....

  8. Project Management

    DEFF Research Database (Denmark)

    Pilkington, Alan; Chai, Kah-Hin; Le, Yang

    2015-01-01

    This paper identifies the true coverage of PM theory through a bibliometric analysis of the International Journal of Project Management from 1996-2012. We identify six persistent research themes: project time management, project risk management, programme management, large-scale project management......, project success/failure and practitioner development. These differ from those presented in review and editorial articles in the literature. In addition, topics missing from the PM BOK: knowledge management project-based organization and project portfolio management have become more popular topics...

  9. Review on desulfurization and denitration technologies for ship exhaust gas treatment%船舶尾气脱硫脱硝技术研究进展

    Institute of Scientific and Technical Information of China (English)

    张欢; 钟鹭斌; 陈进生; 郑煜铭

    2016-01-01

    NOx and SOx,which account for high proportions in the exhaust gas of ocean ships burning low quality heavy oil,result in threats to the marine ecological environment and the health of residents in the coastal area. In this paper,various types of post-treatment technologies for purification of marine exhaust were introduced,and their main advantages and disadvantages were analyzed. The techniques of desulfurization,denitration,and desulfurization-denitration integrated technology for the control of ship exhaust gas pollutants emission,were reviewed. It is concluded that,in practice,the current post-treatment technologies which can only treat a single pollutant was not suitable for effective marine exhaust emission reduction,while the desulfurization-denitration integrated technology would be the main direction which can achieve the comprehensive treatment of ship exhaust gas currently. The future direction of marine exhaust post-treatment technology development is still being explored. There are two main bottlenecks of the desulfurization-denitration integrated technology. First,although low temperature plasma and photocatalysis which were developed in recent years show great potentials,thehigh cost and security concerns still hinder their applications in ships. On the other hand,sea water modification method which shows high treatment efficiency,small foot print and lower cost,may become one of the most promising methods in the effective treatment of ship exhaust gas in the future.%远洋船舶燃烧低品质重油所释放的尾气中,NOx与SOx等有害成分比例高,严重威胁海洋的生态环境和沿海居民健康。本文介绍了现有国内外船舶尾气后处理技术的分类、原理及优缺点,综述了船舶尾气脱硫、脱硝和脱硫脱硝一体化处理技术的研究进展,认为现有的大部分船舶尾气后处理技术去除污染物成分单一,不能高效地实现船舶尾气污染物的减排,研究脱

  10. Characterization of Thioether-Linked Protein Adducts of DNA Using a Raney-Ni Mediated Desulfurization Method and Liquid Chromatography-Electrospray-Tandem Mass Spectrometry

    Science.gov (United States)

    Chowdhury, Goutam; Guengerich, F. Peter

    2015-01-01

    This unit contains a complete procedure for the detection and structural characterization of DNA protein crosslinks (DPCs). The procedure also describes an approach for the quantitation of the various structurally distinct DPCs. Although various methods have been described in the literature for labile DPCs, characterization of non-labile adducts remain a challenge. Here we present a novel approach for characterization of both labile and non-labile adducts by the use of a combination of chemical, enzymatic, and mass spectrometric approaches. A Raney Ni-catalyzed reductive desulfurization method was used for removal of the bulky peptide adducts, enzymatic digestion was used to digest the protein to smaller peptides and DNA to nucleosides, and finally LC-ESI-tandem mass spectrometry (MS) was utilized for detection and characterization of nucleoside adducts. PMID:25754888

  11. Dynamics of Aerosol Condensational Removal in Ammonia Desulfurization Process%氨法脱硫烟气中气溶胶凝结脱除动力学

    Institute of Scientific and Technical Information of China (English)

    颜金培; 杨林军; 沈湘林

    2011-01-01

    针对氨法脱硫烟气中气溶胶的排放特性,建立氨法脱硫后细颗粒凝结长大脱除动力学模型,对细颗粒的凝结长大及脱除规律进行数值预测,并将其与实验结果进行比较。结果表明:细颗粒在过饱和蒸汽条件下迅速长大成液滴,在相同条件下,细颗粒初始数浓度越高,完成凝结长大的时间越短,液滴的最终粒径也越小;细颗粒脱除效率随停留时间增大迅速提高,在50~100ms内达到稳定,与理论计算值比,实验停留时间滞后,约在1.5s后脱除效率趋于稳定;脱硫后细颗粒凝结长大脱除效率与细颗粒物化性质有关,水洗涤时,当过饱和度高于1.4,细颗粒的脱除效率才随过饱和度的增大而迅速提高;氨法脱硫后,细颗粒可在较低的过饱和条件下凝结长大,因而脱除效率随过饱和度增大而提高。%A numerical model for the simulation of the aerosol condensational removal dynamics after ammonia desulfurization was proposed to predict the growth property of fine particles and removal efficiency. The simulation model was applicable for the aerosols discharge property of ammonia desulfurization. The results show that fine particles growth into droplets is very fast in a supersaturation vapor condition. Droplets complete growth time decrease and the final diameters of droplets are smaller at a higher initial particles number concentration. The removal efficiency of fine particles increases rapidly with the residence time, and achieves stability after 50-100 ms. Compared with the simulated values, experimental residence time appeares delate, which tend to stabilize at 1.5 s. Fine particles removal efficiency improved by condensational enlargement is dominated by the particles physicochemical characteristics after desulfurization. Removal efficiency increases with initial supersaturation degree rapidly only when the supersaturation degree higher than 1.4 with water

  12. Desulfurization characteristics by seawater with stereoscopic and swirl parallel flow tray%立体旋液式并流塔板的海水脱硫特性

    Institute of Scientific and Technical Information of China (English)

    荆瑞静; 王晋刚; 张少峰

    2012-01-01

    The absorption efficiency of stereoscopic and swirl parallel flow trays with different turning angles of blade (30°, 45°, and 60°) were measured for single tray, double trays with co-rotating, and double trays with counter-rotating under different operating conditions in SO2 -seawater testing system. The effects of turning angle of blade, liquid flux and liquid gas ratio on absorption efficiency were analyzed. The result showed that under the best operating condition for the seawater flue gas desulfurization, turning angle of blade 60°, liquid-gas ratio of 19. 07 L· m-3 and double trays with counter-rotating, the absorption efficiency was 85%. The stereoscopic and swirl parallel flow tray presents good characteristics in a relatively wide range of operating condition because of its distinctive structure and concurrent flow in whole tower.

  13. Both FMNH2 and FADH2 can be utilized by the dibenzothiophene monooxygenase from a desulfurizing bacterium Mycobacterium goodii X7B.

    Science.gov (United States)

    Li, Jingchen; Feng, Jinhui; Li, Qian; Ma, Cuiqing; Yu, Bo; Gao, Chao; Wu, Geng; Xu, Ping

    2009-05-01

    To investigate the flavin utilization by dibenzothiophene monooxygenase (DszC), DszC of a desulfurizing bacterium Mycobacterium goodii X7B was purified from the recombinant Escherichia coli. It was shown to be able to utilize either FMNH(2) or FADH(2) when coupled with a flavin reductase that reduces either FMN or FAD. Sequence analysis indicated that DszC was similar to the C(2) component of p-hydroxyphenylacetate hydroxylase from Acinetobacter baumannii, which can use both FADH(2) and FMNH(2) as substrates. Both flavins at high concentrations could inhibit the activity of DszC due to autocatalytic oxidation of reduced flavins. The results suggest that DszC should be reclassified as an FMNH(2) and FADH(2) both-utilizing monooxygenase component and the flavins should be controlled at properly reduced levels to obtain optimal biodesulfurization results.

  14. Study on method and mechanism for simultaneous desulfurization and denitrification of flue gas based on the TiO2 photocatalysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the TiO2 photocatalysis mechanism, a new method of simultaneous desulfurization and denitrification from flue gas was proposed. Preparation of TiO2 photocatalyst, design of photocatalysis reactor and influencing factors for simul- taneous removal of SO2 and NO, and removal mechanism of SO2 and NO were studied. After the optimal values of concentration of O2 in flue gas, the relative humidity of flue gas and the irradiation time in the photocatalysis reactor were used, the efficiencies of removal for SO2 and NO can be achieved above 98% and about 67%, respectively. According to the results of removal products analysis, the re- moval mechanism of SO2 and NO based on TiO2 photocatlysis can be put forward, namely, SO2 was oxidized to SO3 partly, the bulk of NO was oxidized to NO2, and both were removed by resorbing finally.

  15. 富钙生物油煅烧及脱硫特性研究%The investigation on calcination and desulfurization characteristics of calcium-enriched bio-oil

    Institute of Scientific and Technical Information of China (English)

    张谋; 陈汉平; 王贤华; 杨海平; 张世红

    2012-01-01

    As a novel desulfurizer, the decomposition mechanism and desulfurization characteristics of Calcium-Enriched Bio-oil (CEB) are still in the research stage. In this paper, thermal decomposition of CEB was investigated by thermogravimetric analysis. The results showed that there were three reaction stages: CO2 and H2O precipitation from part component of bio-oil, decomposition of organic carboxylic acid calcium salt, decomposition of calcium carbonate. The main reason that solid products CaO obtained from CEB is better than those from limestone was the cavitation effect of large amounts release during the second stage. Desulfurization experimental results showed that the desulfurization performance of CEB was far superior to limestone. Under the same conditions the desulfurization reaction time of CEB was 2 times that of the limestone and ultimate calcium conversion rate was much higher than the limestone. The optimum desulfurization reaction temperature for limestone was 850 ℃ while CEB was 900 ℃.%富钙生物油作为一种新型的脱硫剂,其煅烧分解机理及脱硫特性还处在研究阶段.文章采用热重分析仪对富钙生物油煅烧试验进行了研究,结果表明:富钙生物油的煅烧分为3个阶段,分别是部分生物油组分的分解阶段、有机羧酸钙盐快速分解阶段、碳酸钙分解阶段.有机酸钙盐分解阶段大量气体析出的气蚀作用是固体产物CaO孔隙特性明显优于石灰石煅烧产物的主要原因.热重分析仪及小型固定床反应器上脱硫试验表明,富钙生物油脱硫性能远优于石灰石,相同反应条件下,富钙生物油脱硫反应时间是石灰石的两倍,最终钙转化率也远高于石灰石.石灰石最佳脱硫反应温度为850℃,而富钙生物油最佳脱硫反应温度为900℃.

  16. Fe基离子液体中Schiff碱Co络合物催化氧化燃油脱硫%Oxidative desulfurization of fuels catalyzed by Schiff-base cobalt complex in Fe-based ionic liquid

    Institute of Scientific and Technical Information of China (English)

    高丽霞; 戴子林; 李桂英

    2014-01-01

    The oxidative desulfurization performance on model oil with thiophene was investigated with ionic liquid FeCl3/BmimCl and Schiff-base cobalt complex CoL and oxygen as the desulfurization system. Thiophene removal rate could reach 96%under the optimum condition,in which model oil dosage was 25mL,mole ratio of FeCl3/BmimCl was 1∶1 and its dosage was 8 mL,oxygen flow rate was 50 mL/min,reaction temperature was 62℃,CoL dosage was 0.13g,reaction time was 6h. The final thiophene content in the desulfurized model oil could be less than 50μg/g,and the oxidation product of thiophene was SO42−. The ionic liquid FeCl3/BmimCl could be recycled 4 times without significant decrease in desulfurization capability. The oxidative desulfurization rate of diesel oil could reach 100%with the above desulfurization system,which had good application prospect.%将离子液体FeCl3/BmimCl与Schiff碱Co络合物CoL组成催化体系,以氧气为氧化剂,噻吩的正辛烷溶液为模拟油,考察该脱硫体系脱除模拟油中噻吩硫的性能。结果表明,最佳脱硫条件为:模拟油25mL;IL-FeCl3/BmimCl摩尔比为1,8mL;O250mL/min;反应温度62℃;CoL0.13g;时间6h,最终脱硫率可达96%(质量分数),脱硫后油品中噻吩含量最终可降到50μg/g 以下。噻吩的氧化产物为 SO42-离子。离子液体再生4次后脱硫性能开始下降。该脱硫体系对实际柴油中的噻吩硫催化氧化脱硫效果可达100%,该脱硫体系具有实际应用意义。

  17. Enhanced Hg{sup 2+} removal and Hg{sup 0} re-emission control from wet fuel gas desulfurization liquors with additives

    Energy Technology Data Exchange (ETDEWEB)

    Tingmei Tang; Jiang Xu; Rongjie Lu; Jingjing Wo; Xinhua Xu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering

    2010-12-15

    Secondary atmospheric pollutions may result from wet flue gas desulfurization (FGD) systems caused by the reduction of Hg{sup 2+} to Hg{sup 0}. The present study employed three agents: Na{sub 2}S, 2,4,6-trimercaptotiazine, trisodium salt nonahydrate (TMT) and sodium dithiocarbamate (DTCR) to precipitate aqueous Hg{sup 2+} in simulated desulfurization solutions. The effects of the precipitator's dosing quantity, the initial pH value, the reaction temperature, the concentrations of Cl{sup -} and other metal ions (e.g. Cu{sup 2+} and Pb{sup 2+}) on Hg{sup 2+} removal were studied. A linear relationship was observed between Hg{sup 2+} removal efficiency and the increasing precipitator's doses along with initial pH. The addition of chloride and metal ions impaired the Hg{sup 2+} removal from solutions due to the complexation of Cl{sup -} and Hg{sup 2+} as well as the chelating competition between Hg{sup 2+} and other metal ions. Based on a comprehensive comparison of the treatment effects, DTCR was found to be the most effective precipitating agent. Moreover, all the precipitating agents were potent enough to inhibit Hg{sup 2+} reduction as well as Hg{sup 0} re-emission from FGD liquors. More than 90% Hg{sup 2+} was captured by precipitating agents while Hg{sup 2+} reduction efficiency decreased from 54% to just less than 3%. The additives could efficiently control the secondary Hg{sup 0} pollution from FGD liquors. 21 refs., 6 figs.

  18. The Kinetics Research of Diesel Catalytic Oxidation Desulfurization%柴油催化氧化脱硫反应动力学的研究

    Institute of Scientific and Technical Information of China (English)

    艾抚宾; 祁文博; 徐彤; 王海波; 勾连科; 宋丽芝

    2015-01-01

    The kinetics of diesel catalytic oxidation desulfurization is studied. A universal equation is obtained by the regression of the experimental data. The study on kinetics of diesel catalytic oxidation desulfurization shows: when concentration of reactant is constant, reaction speed is inversely proportional to the square of reaction time, indicating that the reaction is a quick response. This reaction has a low energy of apparent activation and reaction control steps are not reaction steps, but the diffusion step. The dynamic equation can be used as the basis for the industrial design of the device.%对柴油催化氧化脱硫反应进行了动力学研究,对试验数据进行回归计算后得到了温度对该反应影响的经验性关系式。由柴油催化氧化脱硫反应动力学研究可知,在反应物初始浓度一定的条件下,反应速度与反应时间的平方成反比,说明该反应是一个快速反应;该反应的表观活化能较小,反应的控制步骤不是反应步骤,而是扩散步骤。该动力学方程的计算值与试验值拟合较好,该方程可以作为中试放大及工业生产装置设计的依据。

  19. The Influence of Micro-Oxygen Addition on Desulfurization Performance and Microbial Communities during Waste-Activated Sludge Digestion in a Rusty Scrap Iron-Loaded Anaerobic Digester

    Directory of Open Access Journals (Sweden)

    Renjun Ruan

    2017-02-01

    Full Text Available In this study, micro-oxygen was integrated into a rusty scrap iron (RSI-loaded anaerobic digester. Under an optimal RSI dosage of 20 g/L, increasing O2 levels were added stepwise in seven stages in a semi-continuous experiment. Results showed the average methane yield was 306 mL/g COD (chemical oxygen demand, and the hydrogen sulphide (H2S concentration was 1933 ppmv with RSI addition. O2 addition induced the microbial oxidation of sulphide by stimulating sulfur-oxidizing bacteria and chemical corrosion of iron, which promoted the generation of FeS and Fe2S3. In the 6th phase of the semi-continuous test, deep desulfurization was achieved without negatively impacting system performance. Average methane yield was 301.1 mL/g COD, and H2S concentration was 75 ppmv. Sulfur mass balance was described, with 84.0%, 11.90% and 0.21% of sulfur present in solid, liquid and gaseous phases, respectively. The Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE analysis revealed that RSI addition could enrich the diversity of hydrogenotrophic methanogens and iron-reducing bacteria to benefit methanogenesis and organic mineralization, and impoverish the methanotroph (Methylocella silvestris to reduce the consumption of methane. Micro-oxygen supplementation could enhance the diversity of iron-oxidizing bacteria arising from the improvement of Fe(II release rate and enrich the sulphur-oxidising bacteria to achieved desulfurization. These results demonstrated that RSI addition in combination with micro-oxygenation represents a promising method for simultaneously controlling biogas H2S concentration and improving digestion performance.

  20. 脱硫石膏砌块力学性能的研究%Study on Mechanical Properties of Desulfurization Gypsum Block

    Institute of Scientific and Technical Information of China (English)

    何廷树; 孟晓林; 史琛

    2014-01-01

    Industrial waste gypsum, lfy ash mixed with small amount of cement and expanded polystyrene particles are used as mixed material to reduce weight and ensure the strength through experimental study on the mechanical properties and the change of apparent density of desulfurization gypsum block. The experimental results show that the optimal ratio were 0.42% lignosulphonate calcium water reducers, 0.12% citric acid retarder, 0.06% lignocellulose, 15% cement, 10% lfy ash, 75% desulphurization gypsum, 25% polystyrene particles. Light desulfurization gypsum block with density of 964kg/m3 and 10.1MPa of 28 d compressive strength can be obtained.%为达到脱硫石膏砌块减重且保证强度的目的,利用工业废料脱硫石膏、粉煤灰,掺加少量水泥、膨胀聚苯颗粒作为混合材料,研究脱硫石膏实心砌块的力学性能及表观密度的变化。结果表明,制备脱硫石膏砌块最优配比为:木钙减水剂0.42%、柠檬酸缓凝剂0.12%、木质纤维素0.06%、水泥15%、粉煤灰10%、脱硫石膏75%、聚苯颗粒25%,此条件下可获得密度为964 kg/m3,28 d抗压强度达10.1 MPa的轻质脱硫石膏砌块。

  1. 非加氢脱硫技术研究进展及其在原油预脱硫中的应用展望%Progress of non-hydrodesulfurization technologies of producing clean fuels and pre-desulfurization of crude oil

    Institute of Scientific and Technical Information of China (English)

    郑凯元; 曲凤娇; 陈英杰; 刘东; 李雯; 邹京伦; 侯绪连

    2013-01-01

    综述了目前轻质油品非加氢脱硫以及原油预脱硫的相关技术,关于轻质油品非加氢脱硫技术详细叙述了氧化脱硫、吸附脱硫和溶剂萃取脱硫等技术的研究进展,简要介绍了络合脱硫、膜分离脱硫等技术,阐述了各非加氢脱硫技术的特点及脱硫效果;针对原油预脱硫技术,主要介绍了物理法原油预脱硫、超声-氧化法原油预脱硫、电化学法原油预脱硫以及微生物法原油预脱硫等技术的研究进展,指出应用能耗低、操作条件温和、脱硫效果好的非加氢脱硫手段是未来的发展趋势,同时指出综合应用非加氢脱硫技术对原油进行预脱硫处理将是未来重要的研究方向。%Research progress of several non-hydrodesulfurization technologies and processes of crude oil pre-desulfurization were reviewed. For light distillates,the non-hydrodesulfurization technologies including oxidative desulfurization,adsorptive desulfurization,solvent extraction desulfurization, extraction desulfurization and membrane separation desulfurization were introduced , and the characteristics and desulfurization effects of these non-hydrodesulfurization technologies were summarized. For crude oil,the desulfurization technologies of physical method,ultrasonic-oxidation method , electrochemical method and microorganism method were introduced. The non-hydrodesulfurization technologies with low energy consumption and mild operating conditions would be the trend of deep desulfurization,and comprehensive utilization of non-hydrodesulfurization technologies for crude oil pre-desulfurization would be an important research orientation.

  2. Desulfurization of gasoline.

    Science.gov (United States)

    Berger, J E

    1975-04-01

    Although gasoline blending streams exhibit widely varying sulfur concentrations, significant quantities of low-sulfur motor gasoline cannot be manufactured by reallocation of existing components without substantial sacrifices in the useful properties of the remaining fuels having normal sulfur levels. To meet the anticipated demand for low-sulfur unleaded gasoline which may be required for catalyst-equipped automobiles it will be necessary to install process equipment based on known hydrotreating technology. The effects which this construction program would exert on the activities, abilities and needs of one petroleum refiner are sketched for two degrees of sulfur removal. The impacts of installing the process facilities which would be necessary are discussed in terms of time requirements, capital needs, and added energy expenditures.

  3. Oxidative desulfurization: kinetic modelling.

    Science.gov (United States)

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  4. Impact property on fine particles from coal combustion in wet flue gas desulfurization process%湿法脱硫烟气中细颗粒物的变化特性

    Institute of Scientific and Technical Information of China (English)

    颜金培; 杨林军; 鲍静静

    2011-01-01

    Fine particles in flue gas before and after WFGD ( wet flue gas desulfurization) were sampled and measured by ELPI (electrical low pressure impactor). Fine particle concentrations and size distributions characteristics were obtained. And the microstructure and major element concentrations of particles were analyzed by SEM ( scanning electron microscopy) and EDS ( energy disperse spectroscopy), respectively. The results show that the removal efficiency of fine particles by WFGD is extremely low using NaOH and CaCO3 desulfurization, but particle number concentration has an obvious increase after ammonia desulfurization. Particles morphology structure and element contents have a great change after WFGD. The surfaces of fine particles from coal-fired may adsorb small particles to form roughness and aggregate structure. But it can be enwrapped by desulfurization reaction products to form a dense irregular block-like structure after CaCO3 desulfurization process. And fine particles are mostly of cube or prism crystal structure after ammonia desulfurization. The main elements of fine particles before WFGD are O, A1 and Si, however, the element content of S in particles is significantly increased after desulfurization, which increases from 1.33% to 10. 01%,19. 96% and 46. 64% after NaOH, CaCO3 and NH3 desulfurization respectively.%采用ELPI(电称低压冲击器)对WFGD(湿法烟气脱硫)前后烟气中的细颗粒进行采样分析,获得细颗粒浓度与粒径分布特性.对脱硫前后细颗粒形貌和主要元素进行SEM(扫描电镜)和EDS(能量色谱仪)分析.结果表明,NaOH和CaCO3脱硫后,WFGD系统对细颗粒脱除效率很低;氨法脱硫后WFGD出口颗粒数浓度明显增加;脱硫前后,细颗粒的形貌特征和元素组分会发生很大变化,洗涤前燃煤细颗粒表面容易吸附小颗粒而形成表面粗糙的团聚体结构;CaCO3脱硫后,细颗粒容易被脱硫反应产物连结或包裹而形成致密的不规则块状或

  5. 湿法烟气脱硫系统 GGH 堵塞的原因分析及对策%Cause and Countermeasure of GGH Blockage in Wet Flue Gas Desulfurization System

    Institute of Scientific and Technical Information of China (English)

    张磊

    2016-01-01

    The easily occurred problem of blockage of GGH ( rotary gas gas for heat exchanger) in wet flue gas desulfuriza-tion ( FGD) system during operation is introduced, and the reasons are analyzed and countermeasures are put forward to ef-fectively overcome the problems of the GGH blockage.The solution has some reference to similar power plant flue gas desul-furization system process.%介绍了湿法烟气脱硫( FGD)系统GGH(回转式气-气换热器)运行中易出现的堵塞等问题,并对其产生的原因进行了分析,提出了有效防止GGH堵塞的对策,对同类型电厂烟气脱硫系统工艺有一定的借鉴作用。

  6. Inorganic Impurity on Preparation of Calcium Carbonate and Its Active Influence Oriented from Desulfurization Gypsum%脱硫石膏中无机杂质对制备碳酸钙及其活性的影响

    Institute of Scientific and Technical Information of China (English)

    史晨杰; 谭文轶; 闫怀晴; 郭霏霏; 徐幸福

    2012-01-01

    为了达到烟气脱硫石膏减量化处理,建立其资源化利用方法,在考虑到烟气脱硫石膏来源复杂性的基础上,分别考察了金属离子(如Mg2+,Fe3+)和非金属离子(如F-)对利用碳酸铵转化烟气脱硫石膏,制备碳酸钙粉末的影响.结果表明,F-,Mg2+,Fe3+等离子对脱硫石膏转化率有不同程度影响,但转化率均能达到70%以上,转化固体产物为较纯碳酸钙粉末.其中随着阳离子Mg2+,Fe3+含量增加,转化率下降;F-的水解作用以及络合物的生成将对转化率造成复杂影响,0.5wt%为最优的含量.转化产物经其吸收活性测试,其活度比天然石灰石略低,到达脱硫剂基本要求,但需注意杂质离子的积累效应.碳酸铵转化烟气脱硫石膏方法可制备微细碳酸钙粉末,是一种循环利用烟气脱硫石膏的有效途径.%To reduce gypsum produced from wet flue gas desulfurization (WFGD)process and to establish a resource approach to utilize desulfurization gypsum, the effect of metal ion such as Mg2+, Fe3+ and nonmetallic ion such as F" on productivity of calcium carbonate prepared from desulfurization gypsum was investigated, taking into consideration of complex composition of desulfurization gypsum. Results showed that the ions such as F", Mg2+, Fe3+ affect conversion of desulfurization gypsum to different extents, with conversion rate more than 70% and pure calcium carbonate as obtained solid powder. As cationic Mg2+, Fe3+ content increased, the conversion rate decreased. Both hydrolysis of F- and formation of the complicates conversion affected the conversion, with F- 0.5 wt% as the optimal content for conversion. It is verified that the solid product obtained has the potential activity to be recycled as desulfurization absorbent though impurities should be paid attentions. Conversion of desulfurization gypsum to calcium carbonate powder by ammonia carbonate is an effective method to recycle desulfurization gypsum.

  7. Ultra-deep oxidative desulfurization of diesel fuel with H{sub 2}O{sub 2} catalyzed under mild conditions by polymolybdates supported on Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, Jose Luis; Murrieta, Florentino; Navarrete, Juan; Jimenez-Cruz, Federico [Instituto Mexicano del Petroleo, Programa de Procesos y Reactores, Eje Central Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico); Fuentes, Gustavo A.; Hernandez-Teran, Maria Eugenia [Area de Ingenieria Quimica, Universidad A. Metropolitana-Iztapalapa, 09340 Mexico D.F. (Mexico)

    2006-05-17

    The evaluation of the catalytic oxidative desulfurization (OD) activity of alumina-supported polymolybdates (Mo/Al{sub 2}O{sub 3}) was carried out using organosulfur model compounds and diesel fuel. Hydrogen peroxide was the oxidizing reagent. Ultra-deep desulfurization, 97.8% removal of sulfur in diesel fuel, was achieved by reaction under mild conditions followed by solvent extraction. The catalyst was prepared by equilibrium adsorption and characterized by infrared, Raman, X-ray photoelectron, {sup 31}P and {sup 27}Al MAS NMR spectroscopies. Our results indicate that the phosphomolybdate used during synthesis of the catalysts decomposes and forms hydrated hepta- and octamolybdates as well as phosphate ions on the surface of alumina. (author)

  8. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    Energy Technology Data Exchange (ETDEWEB)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  9. Alzheimer's Project

    Medline Plus

    Full Text Available ... Momentum in Science, Part 2" (70 minutes) Be a part of something big. HBO's "THE ALZHEIMER'S PROJECT" ... vital research and services. "THE ALZHEIMER'S PROJECT" is a presentation of HBO Documentary Films and the National ...

  10. Alzheimer's Project

    Science.gov (United States)

    ... state Home > News & Events > Upcoming Events > HBO Alzheimer’s Project In the News Walk to End Alzheimer's Upcoming ... Disease Awareness Month World Alzheimer's Month HBO Alzheimer’s Project MAKE A DONATION Your gift will help us ...

  11. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, December 11, 1992--March 11, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1993-12-31

    This report describes the potential of sulfate reducing bacteria to fix sulfur derived from flue gas desulfurization. The first section reviews the problem, the second section reviews progress of this study to use desulfovibrio desulfuricans for this purpose. The final section related progress during the current reporting period. This latter section describes studies to immobilize the bacteria in co-culture with floc-forming anaerobes, use of sewage sludges in the culture media, and sulfate production from sulfur dioxide.

  12. Preparation andApplication of Carbide Slag-Based Combustion-Supporting DesulfurizationAgents%电石渣基高效助燃脱硫剂制备及其应用研究

    Institute of Scientific and Technical Information of China (English)

    张美香; 罗忠涛; 白建飞; 李海桥

    2013-01-01

      采用电石渣复合生石灰及其他助燃组分制备干基脱硫剂,完全可适用于循环流化床的气力输送喷入系统。通过添加复合矿产尾渣催化助燃组分,可有效提高其炉内燃烧效率。试验表明:使用本研究的电石渣基高效助燃脱硫剂,Ca/S >2.5时,在循环流化床锅炉的炉内脱硫效率可达到90%以上,且煤炭燃烧效率提高3%以上。其所产生固硫灰按照30%掺量替代52.5号强度等级水泥熟料所配比胶凝材料,28 d抗压强度达到45.40MPa,且物理性能良好。%Using electric stone slag composite lime and other combustion fraction prepared from dry desulfurizing agent can be completely applied to circulating fluidized bed pneumatic conveying, and adding the compound mineral tailings catalytic combustion components is effective to improve combustion efficiency. Experimental results show that:by using the carbide slag base efficient desulfurizing agent in circulating fluidized bed boiler furnace, the desulfurization efficiency could exceed above 90%with the Ca/S ratio over 2.5, and coal combustion efficiency could improve more than 3%. When desulfurization ash substituted for 30%of 52.5 grade cement clinker, compressive strength of the cementitious material at 28d could reach to 45.40MPa, and had good physical property.

  13. Project ethics

    CERN Document Server

    Jonasson, Haukur Ingi

    2013-01-01

    How relevant is ethics to project management? The book - which aims to demystify the field of ethics for project managers and managers in general - takes both a critical and a practical look at project management in terms of success criteria, and ethical opportunities and risks. The goal is to help the reader to use ethical theory to further identify opportunities and risks within their projects and thereby to advance more directly along the path of mature and sustainable managerial practice.

  14. Microsoft project

    OpenAIRE

    Markić, Lucija; Mandušić, Dubravka; Grbavac, Vitomir

    2005-01-01

    Microsoft Project je alat čije su prednosti u svakodnevnom radu nezamjenjive. Pomoću Microsoft Projecta omogućeno je upravljanje resursima, stvaranje izvještaja o projektima u vremenu, te analize različitih scenarija. Pojavljuje u tri verzije: Microsoft Project Professional, Microsoft Project Server i Microsoft Project Server Client Access Licenses. Upravo je trend da suvremeni poslovni ljudi zadatke povjeravaju Microsoft Projectu jer on znatno povećava produktivnost rada. Te prednos...

  15. Project STAY.

    Science.gov (United States)

    Smith, Bert Kruger

    Project STAY (Scholarships to Able Youth), located in the barrio of San Antonio, Texas, helps young people stay in school beyond the secondary grades. The project provides outreach services to meet the needs of the students. Its primary service is to act as an advocate for these young people. The project recruits all types of youth from families…

  16. Map Projection

    CERN Document Server

    Ghaderpour, Ebrahim

    2014-01-01

    In this paper, we introduce some known map projections from a model of the Earth to a flat sheet of paper or map and derive the plotting equations for these projections. The first fundamental form and the Gaussian fundamental quantities are defined and applied to obtain the plotting equations and distortions in length, shape and size for some of these map projections.

  17. International Projects

    CERN Document Server

    2002-01-01

    Description of co-operation projects implemented with the help of Sweden is presented. Information on performance of Phare and IAEA Regional and National Technical Cooperation projects is provided. Phare project 'Creation of Radiation Protection Infrastructure and Development of Supporting Services' was started in 2002

  18. Highly efficient extraction and oxidative desulfurization system using Na7H2LaW10O36⋅32 H2O in [bmim]BF4 at room temperature.

    Science.gov (United States)

    Xu, Junhua; Zhao, Shen; Chen, Wei; Wang, Miao; Song, Yu-Fei

    2012-04-10

    Highly efficient, deep desulfurization of model oil containing dibenzothiophene (DBT), benzothiophene (BT), or 4,6-dimethyldibenzothiophene (4,6-DMDBT) has been achieved under mild conditions by using an extraction and catalytic oxidative desulfurization system (ECODS) in which a lanthanide-containing polyoxometalate Na(7)H(2)LnW(10)O(36)⋅32 H(2)O (LnW(10); Ln = Eu, La) acts as catalyst, [bmim]BF(4) (bmim = 1-butyl-3-methylimidazolium) as extractant, and H(2)O(2) as oxidant. Sulfur removal follows the order DBT>4,6-DMDBT>BT at 30 °C. DBT can be completely oxidized to the corresponding sulfone in 25 min under mild conditions, and the LaW(10)/[bmim]BF(4) system could be recycled for ten times with only slight decrease in activity. Thus, LaW(10) in [bmim]BF(4) is one of the most efficient systems for desulfurization using ionic liquids as extractant reported so far.

  19. Desulfurization of Diesel Fuel by Extraction with [BF4]- -based Ionic Liquids%四氟硼酸盐类离子液体对典型柴油的萃取脱硫研究

    Institute of Scientific and Technical Information of China (English)

    褚雪梅; 胡玉峰; 李吉广; 梁倩卿; 刘艳升; 张先明; 彭效明; 岳文佳

    2008-01-01

    The extractive removal of sulfur compounds (S-compounds) from Dongying and Liaohe diesel fuels with [BF4]--based ionic liquids were systematically investigated. The results show that the absorption capacity of an ionic liquid for the S-compounds in diesel fuels relies on its structure and its size. In the case of the two examined diesel fuels, both elongating the cation tail length and increasing the mass ratio of ionic liquid/diesel fuel promote the desulfurization ability of the examined ionic liquids. The results also show that imidazolium-based ionic liquids display higher extraction efficiencies than pyridinium-based ionic liquids, presumably owing to the fact that the rings of the S-compounds are similar to the imidazolium head ring. With the 1 : 1 mass ratio of ionic liquid/diesel fuel, the rates of the first desulfurization of Dongying and Liaohe diesel fuels using [C8mim][BF4] amount to 29.96% and 39.76%, suggesting that [C8mim][BF4] is a promising extractant for desulfurization of these diesel fuels.

  20. Pilot scale test on autoclaved brick production by semi-dry desulfurization by-products%半干法脱硫灰生产蒸压砖中试试验研究

    Institute of Scientific and Technical Information of China (English)

    刘松涛; 陈传敏; 赵毅; 卢林; 王涛; 杨艳芬

    2011-01-01

    The semi-dry desulfurization by-products are difficult to be utilized. Pilot scale study on the production technology of autoclaved brick which was mixed with semi-dry desulfurization by-products, slag and quicklime. The results show that autoclaved brick mixed with 50% semi-dry desulfurization ash and 10% quicklime dosage can meet the mechanical properties of MU20 strength grade. The mineral, such as hydrated calcium silicate, hydrated calcium aluminate and hydration sulphoaluminate, formed in autoclaved process can strengthen the strength of autoclaved brick.%为了解决半干法脱硫灰难以利用的问题,用脱硫灰、炉渣和CaO进行了蒸压砖生产的中试试验研究.研究表明:生产强度等级为MU20的脱硫灰蒸压砖,脱硫灰的掺量可控制在50%左右,CaO的掺量控制在10%左右.蒸压过程中形成的水化硅酸钙、水化铝酸钙和水化硫铝酸钙等矿物有利于增强蒸压砖强度.