WorldWideScience

Sample records for bioavailability

  1. Folate bioavailability.

    Science.gov (United States)

    McNulty, Helene; Pentieva, Kristina

    2004-11-01

    The achievement of optimal folate status to prevent neural-tube defects, and possibly other diseases, is hindered by the well-recognised incomplete bioavailability of the natural folates found in foods compared with the synthetic vitamin, folic acid. Folate bioavailability from different foods is considered to be dependent on a number of factors, including the food matrix, the intestinal deconjugation of polyglutamyl folates, the instability of certain labile folates during digestion and the presence of certain dietary constituents that may enhance folate stability during digestion. There is conflicting evidence as to whether the extent of conjugation of polyglutamyl folate (in the absence of specific inhibitors of deconjugation in certain foods) is a limiting factor in folate bioavailability. Estimates of the extent of lower bioavailability of food folates compared with folic acid (relative bioavailability) show great variation, ranging anywhere between 10 and 98%, depending on the methodological approach used. The lack of accurate data on folate bioavailability from natural food sources is of particular concern in those countries in which there is no mandatory folic acid fortification, and therefore a greater reliance on natural food folates as a means to optimise status. Apart from the incomplete bioavailability of food folates, the poor stability of folates in foods (particularly green vegetables) under typical conditions of cooking can substantially reduce the amount of vitamin ingested and thereby be an additional factor limiting the ability of food folates to enhance folate status. A recent workshop convened by the Food Standards Agency concluded that gaining a better understanding of folate bioavailability in representative human diets is a high priority for future research.

  2. Methotrexate bioavailability

    NARCIS (Netherlands)

    van Roon, E. N.; van de Laar, M. A. F. J.

    2010-01-01

    The clinical relevance of the concept of bioavailability rests on two main principles. First, that measurement of the active component at the site of action is generally not possible and, secondly, that a relationship exists between on the one hand efficacy and/or safely and on the other hand concen

  3. Improved bioavailability

    Directory of Open Access Journals (Sweden)

    Nadia M. Morsi

    2016-09-01

    Full Text Available Timolol maleate (TiM, a nonselective β-adrenergic blocker, is a potent highly effective agent for management of hypertension. The drug suffers from extensive first pass effect, resulting in a reduction of oral bioavailability (F% to 50% and a short elimination half-life of 4 h; parameters necessitating its frequent administration. The current study was therefore, designed to formulate and optimize the transfersomal TiM gel for transdermal delivery. TiM loaded transfersomal gel was optimized using two 23 full factorial designs; where the effects of egg phosphatidyl choline (PC: surfactant (SAA molar ratio, solvent volumetric ratio, and the drug amount were evaluated. The formulation variables; including particle size, drug entrapment efficiency (%EE, and release rate were characterized. The optimized transfersomal gel was prepared with 4.65:1 PC:SAA molar ratio, 3:1 solvent volumetric ratio, and 13 mg drug amount with particle size of 2.722 μm, %EE of 39.96%, and a release rate of 134.49 μg/cm2/h. The permeation rate of the optimized formulation through the rat skin was excellent (151.53 μg/cm2/h and showed four times increase in relative bioavailability with prolonged plasma profile up to 72 h compared with oral aqueous solution. In conclusion, a potential transfersomal transdermal system was successfully developed and the factorial design was found to be a smart tool, when optimized.

  4. Human Folate Bioavailability

    Directory of Open Access Journals (Sweden)

    Cornelia M. Witthoft

    2011-04-01

    Full Text Available The vitamin folate is recognized as beneficial health-wise in the prevention of neural tube defects, anemia, cardiovascular diseases, poor cognitive performance, and some forms of cancer. However, suboptimal dietary folate intake has been reported in a number of countries. Several national health authorities have therefore introduced mandatory food fortification with synthetic folic acid, which is considered a convenient fortificant, being cost-efficient in production, more stable than natural food folate, and superior in terms of bioavailability and bioefficacy. Other countries have decided against fortification due to the ambiguous role of synthetic folic acid regarding promotion of subclinical cancers and other adverse health effects. This paper reviews recent studies on folate bioavailability after intervention with folate from food. Our conclusions were that limited folate bioavailability data are available for vegetables, fruits, cereal products, and fortified foods, and that it is difficult to evaluate the bioavailability of food folate or whether intervention with food folate improves folate status. We recommend revising the classical approach of using folic acid as a reference dose for estimating the plasma kinetics and relative bioavailability of food folate.

  5. Bioavailability and generic prescribing.

    Science.gov (United States)

    Mindel, J S

    1976-01-01

    Although oral drug bioinequivalence has been attributed to a number of causes (excipients, dosage form, variation in dissolution time, and aging) less is known about bioavailability problems of topical medications in ophthalmology. Factors that can alter drug absorption from solutions (pH, partition coefficient, container impurities, contact time, etc.) are noted, and cases in which bioavailability problems should be considered as causes of therapeutic failure are discussed. Various attitudes representing pharmaceutical companies, the federal government, pharmacists, consumers and physicians toward the related problems of bioinequivalence and generic prescribing are examined. Techniques for in vivo and in vitro drug testing and for establishing uniform conditions of drug manufacture and storage can contribute to identification and minimization of bioavailability problems. A rational program based on a combination of such techniques could, ultimately, lead to establishment of the terms "generic equivalency" and "therapeutic equivalency" as synonymous. PMID:13505

  6. Bioavailability of Tea Polyphenols

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Tea is a pleasant, popular and safe beverage. Tea provides a dietary source of bioactive components to help humans reduce a wide variety of cancer risks and chronic diseases. The antioxidative activity of green tea-derived polypbenols known as catchins has been extensively studied. The reducfive effect is a synergistic action between EGCG,EGC, ECG, EC, pheophytins a and b, and other components in tealeaves, which are more bioavailable for human body.Green tea has a higher content of catechins than black tea. Green tea extract with hot water has high potential and more efficiencytoreducecancerriskthananyotherteaproductsorpureEGCG. Protein, iron, andotherfoodcomponentsmay interfere with the bioavailability of tea polyphenols. Drinkinggreentea (orpolyphenol-rich tea extract ) also enhances the cancer-preventive activity of some cancer-fighting medication such as Sulindac and Tamoxifen. Further studies are required to determine the bioavailability of green tea and cancer-preventive functionality.

  7. SLUDGE ORGANICS BIOAVAILABILITY

    Science.gov (United States)

    Concern over the bioavailability of toxic organics that can occur in municipal sludges threatens routine land application of sludge. vailable data, however, show that concentrations of priority organics in normal sludges are low. ludges applied at agronomic rates yield chemical c...

  8. Micronutrient bioavailability research priorities.

    Science.gov (United States)

    Casgrain, Amélie; Collings, Rachel; Harvey, Linda J; Boza, Julio J; Fairweather-Tait, Susan J

    2010-05-01

    A micronutrient bioavailability workshop, which involved international experts and members of the scientific community and the food industry, with interactive breakout sessions based on synectics principles, was organized by the International Life Sciences Institute Europe Addition of Nutrients to Food Task Force and the European Commission Network of Excellence European Micronutrient Recommendations Aligned. After presentations by experts, a series of "challenge statements" was discussed. The aim was to address topical issues, in particular those that linked bioavailability with the derivation of micronutrient requirements and dietary recommendations, to identify gaps in knowledge and to consider research priorities. Several generic research priorities were identified, including improving the quality of dietary surveys/food composition tables, the need for more metabolic studies that use stable isotopes and high-quality longer-term interventions, and the development of multifactorial mathematical models. Among the common recurrent factors identified as important were polymorphisms/genotype, consideration of the whole diet, chemical form of the micronutrient, and the determination of physiologic requirements. The involvement of all participants in the structured discussions ensured a broad overview of current knowledge, state-of-the-art research, and consideration of priorities for future research. PMID:20200267

  9. Bioavailability & Bioequivalence Studies ? Pharmaceutical Importance

    Directory of Open Access Journals (Sweden)

    Pratibha Muntha

    2015-04-01

    Full Text Available Pharmacokinetics has now emerged as an important part of drug development especially in the development of new drugs. The combined studies of Pharmacodynamics and pharmacokinetics present a thorough understanding on how the drug affects the body and how the body affects the drug.Bioavailability is the study of the rate and extent to which the active ingredient is absorbed from a dosage form and it is available at the required action site. Bioequivalence is that there should not be any significant difference in bioavailability between two products.Bioavailability (BA and bioequivalence (BE studies play a key role during the phase of drug development for both innovator drugs and generic drugs and thus have gained great attention over the past few decades. BE is used to introduce generic drugs of innovator drugs at a lower cost. So a thorough understanding of these BA/BE studies is required

  10. Dietary factors that affect carotenoid bioavailability

    NARCIS (Netherlands)

    Hof, van het K.

    1999-01-01

    Carotenoids are thought to contribute to the beneficial effects of increased vegetable consumption. To better understand the potential benefits of carotenoids, we investigated the bioavailability of carotenoids from vegetables and dietary factors which might influence carotenoid bioavailability.In a

  11. Bioavailability: implications for science/cleanup policy

    Energy Technology Data Exchange (ETDEWEB)

    Denit, Jeffery; Planicka, J. Gregory

    1998-12-01

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern.

  12. Bioavailability of the polyphenols: status and controversies.

    Science.gov (United States)

    D'Archivio, Massimo; Filesi, Carmelina; Varì, Rosaria; Scazzocchio, Beatrice; Masella, Roberta

    2010-01-01

    The current interest in polyphenols has been driven primarily by epidemiological studies. However, to establish conclusive evidence for the effectiveness of dietary polyphenols in disease prevention, it is useful to better define the bioavailability of the polyphenols, so that their biological activity can be evaluated. The bioavailability appears to differ greatly among the various phenolic compounds, and the most abundant ones in our diet are not necessarily those that have the best bioavailability profile. In the present review, we focus on the factors influencing the bioavailability of the polyphenols. Moreover, a critical overview on the difficulties and the controversies of the studies on the bioavailability is discussed. PMID:20480022

  13. Bioavailability of the Polyphenols: Status and Controversies

    Directory of Open Access Journals (Sweden)

    Massimo D’Archivio

    2010-03-01

    Full Text Available The current interest in polyphenols has been driven primarily by epidemiological studies. However, to establish conclusive evidence for the effectiveness of dietary polyphenols in disease prevention, it is useful to better define the bioavailability of the polyphenols, so that their biological activity can be evaluated. The bioavailability appears to differ greatly among the various phenolic compounds, and the most abundant ones in our diet are not necessarily those that have the best bioavailability profile. In the present review, we focus on the factors influencing the bioavailability of the polyphenols. Moreover, a critical overview on the difficulties and the controversies of the studies on the bioavailability is discussed.

  14. Bioavailability of Metals in Contaminated Sediments

    Directory of Open Access Journals (Sweden)

    Paller M. H.

    2013-04-01

    Full Text Available Bioavailability controls the transfer of metals from sediments to ecological receptors and humans. It can rarely be predicted from total metal concentrations because it is affected by metal geochemistry in sediments as well as the biochemistry, physiology, and behavior of benthic organisms. There is no single approach for including bioavailability in risk assessments because of variability in site specific conditions and the difficulty of validating methods. Acid-volatile sulfide and simultaneously extracted metals are useful in predicting bioavailability in anoxic sediments containing sulfides that react to form insoluble metal complexes. This method can be improved by adjusting for organic carbon and other ligands that also bind free metals. Site-specific desorption Kd values calculated by sequential extraction methods can be useful in predicting bioavailable metal fractions in oxic and anoxic sediments. A modified desorption distribution coefficient (Kdg can be calculated by extraction with the digestive gut fluids of sediment feeding organisms to account for the effects of ingestion on metal release from sediments. Recently developed in situ measurement technologies can accumulate dissolved metals in a controlled fashion that may correspond with bioavailable metal fractions in sediment. Successful evaluation of bioavailability requires the selection of methods suitable for the organisms and sediment environments under consideration. A weight-of-evidence approach that incorporates multiple lines of evidence can help address uncertainties and increase the likelihood of incorporating bioavailability into remedial decisions.

  15. Heavy metal bioavailability and bioaccessibility in soil

    OpenAIRE

    Dean, John

    2009-01-01

    This chapter considers the use of a variety of approaches to assess either the bioavailability or the bioaccessibility of metals in soil. The bioavailability of metals from soils is considered with respect to a series of single-extraction methods, including the use of ethylenediaminetetraacetic acid (EDTA), acetic acid, diethylenetriaminepentaacetic acid (DTPA), ammonium nitrate, calcium chloride and sodium nitrate. Then, a procedure for the recovery of metals using a three-stage sequential e...

  16. Iron bioavailability from commercially available iron supplements

    OpenAIRE

    Christides, Tatiana; Wray, David; McBride, Richard; Fairweather, Rose; Sharp, Paul

    2015-01-01

    Purpose Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including th...

  17. Bioavailability of the Polyphenols: Status and Controversies

    OpenAIRE

    Massimo D’Archivio; Carmelina Filesi; Rosaria Varì; Beatrice Scazzocchio; Roberta Masella

    2010-01-01

    The current interest in polyphenols has been driven primarily by epidemiological studies. However, to establish conclusive evidence for the effectiveness of dietary polyphenols in disease prevention, it is useful to better define the bioavailability of the polyphenols, so that their biological activity can be evaluated. The bioavailability appears to differ greatly among the various phenolic compounds, and the most abundant ones in our diet are not necessarily those that have the best bioavai...

  18. Bioavailability enhancers of herbal origin: an overview.

    Science.gov (United States)

    Kesarwani, Kritika; Gupta, Rajiv; Mukerjee, Alok

    2013-04-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds. PMID:23620848

  19. Bioavailability enhancers of herbal origin: An overview

    Directory of Open Access Journals (Sweden)

    Kritika Kesarwani

    2013-04-01

    Full Text Available Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal, and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported and studies on improvement in drug bioavailability, exhibited particularly by natural compounds.

  20. Bioavailability enhancers of herbal origin: An overview

    Science.gov (United States)

    Kesarwani, Kritika; Gupta, Rajiv

    2013-01-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds. PMID:23620848

  1. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  2. Bioavailability of Plant-Derived Antioxidants

    Directory of Open Access Journals (Sweden)

    Ehab A. Abourashed

    2013-11-01

    Full Text Available Natural products with antioxidant properties have been extensively utilized in the pharmaceutical and food industry and have also been very popular as health-promoting herbal products. This review provides a summary of the literature published around the first decade of the 21st century regarding the oral bioavailability of carotenoids, polyphenols and sulfur compounds as the three major classes of plant-derived antioxidants. The reviewed original research includes more than 40 compounds belonging to the above mentioned classes of natural antioxidants. In addition, related reviews published during the same period have been cited. A brief introduction to general bioavailability-related definitions, procedures and considerations is also included.

  3. Bioavailability of cadmium from linseed and cocoa

    OpenAIRE

    Hansen, Max; Rasmussen, Rie Romme; Sloth, Jens Jørgen

    2014-01-01

    The exposure of the European population to cadmium from food is high compared with the tolerable weekly intake of 2.5 μg/kg bodyweight set by EFSA in 2009. Only few studies on the bioavailability of cadmium from different food sources has been performed but this information in very important for the food authorities in order to give correct advises to the population. The aim of this study was to investigate the bioavailability of cadmium from whole linseed, crushed linseed, cocoa and cadmium ...

  4. Bioavailability of cadmium from linseed and cocoa

    DEFF Research Database (Denmark)

    Hansen, Max; Sloth, Jens Jørgen; Rasmussen, Rie Romme

    In Denmark and EU the exposure of cadmium from food is at a level that is relatively close to the Tolerable Daily Intake (TDI). This report describes an investigation of the bioavailability of cadmium in selected food items known to contain high levels of cadmium. The purpose was to provide data ...... or crushed linseed nor the intake of cocoa and chocolate....

  5. Absorption, bioavailability and metabolism of flavonoids

    NARCIS (Netherlands)

    Hollman, P.C.H.

    2004-01-01

    To unravel mechanisms of action of dietary flavonoids in their potential role in disease prevention, it is crucial to know the factors that determine their release from foods, their extent of absorption, and their fate in the organism. Research on absorption, metabolism, and bioavailability of flavo

  6. A DGT technique for plutonium bioavailability measurements.

    Science.gov (United States)

    Cusnir, Ruslan; Steinmann, Philipp; Bochud, François; Froidevaux, Pascal

    2014-09-16

    The toxicity of heavy metals in natural waters is strongly dependent on the local chemical environment. Assessing the bioavailability of radionuclides predicts the toxic effects to aquatic biota. The technique of diffusive gradients in thin films (DGT) is largely exploited for bioavailability measurements of trace metals in waters. However, it has not been applied for plutonium speciation measurements yet. This study investigates the use of DGT technique for plutonium bioavailability measurements in chemically different environments. We used a diffusion cell to determine the diffusion coefficients (D) of plutonium in polyacrylamide (PAM) gel and found D in the range of 2.06-2.29 × 10(-6) cm(2) s(-1). It ranged between 1.10 and 2.03 × 10(-6) cm(2) s(-1) in the presence of fulvic acid and in natural waters with low DOM. In the presence of 20 ppm of humic acid of an organic-rich soil, plutonium diffusion was hindered by a factor of 5, with a diffusion coefficient of 0.50 × 10(-6) cm(2) s(-1). We also tested commercially available DGT devices with Chelex resin for plutonium bioavailability measurements in laboratory conditions and the diffusion coefficients agreed with those from the diffusion cell experiments. These findings show that the DGT methodology can be used to investigate the bioaccumulation of the labile plutonium fraction in aquatic biota.

  7. Mobility and Bioavailability of Radionuclides in Soils

    International Nuclear Information System (INIS)

    It is crucial to understand the behavior of radionuclides in the environment, their potential mobility and bioavailability related to long-term persistence, radiological hazards, and impact on human health. Such key information is used to develop strategies that support policy decisions. The environmental behavior of radionuclides depends on ecosystem characteristics. A given soil’s capacity to immobilize radionuclides has been proved to be the main factor responsible for their resulting activity concentrations in plants. The mobility and bioavailability of radionuclides in soils is complex, depending on clay-sized soil fraction, clay mineralogy, organic matter, cation exchange capacity, pH and quantities of competing cations. Moreover, plant species have different behaviors regarding radionuclide absorption depending on soil and plan characteristics

  8. Oral bioavailability of curcumin: problems and advancements.

    Science.gov (United States)

    Liu, Weidong; Zhai, Yingjie; Heng, Xueyuan; Che, Feng Yuan; Chen, Wenjun; Sun, Dezhong; Zhai, Guangxi

    2016-09-01

    Curcumin is a natural compound of Curcuma longa L. and has shown many pharmacological activities such as anti-inflammatory, anti-oxidant in both preclinical and clinical studies. Moreover, curcumin has hepatoprotective, neuroprotective activities and protects against myocardial infarction. Particularly, curcumin has also demonstrated favorite anticancer efficacy. But limiting factors such as its extremely low oral bioavailability hampers its application as therapeutic agent. Therefore, many technologies have been developed and applied to overcome this limitation. This review described the main physicochemical properties of curcumin and summarized the recent studies in the design and development of oral delivery systems for curcumin to enhance the solubility and oral bioavailability, including liposomes, nanoparticles and polymeric micelles, phospholipid complexes, and microemulsions. PMID:26942997

  9. Bioavailability and variability of biphasic insulin mixtures

    DEFF Research Database (Denmark)

    Søeborg, Tue; Rasmussen, Christian Hove; Mosekilde, Erik;

    2012-01-01

    Absorption of subcutaneously administered insulin is associated with considerable variability. Some of this variability was quantitatively explained for both soluble insulin and insulin suspensions in a recent contribution to this journal (Søeborg et al., 2009). In the present article......, the absorption kinetics for mixtures of insulins is described. This requires that the bioavailability of the different insulins is considered. A short review of insulin bioavailability and a description of the subcutaneous depot thus precede the presentation of possible mechanisms associated with subcutaneous...... insulin degradation. Soluble insulins are assumed to be degraded enzymatically in the subcutaneous tissue. Suspended insulin crystals form condensed heaps that are assumed to be degraded from their surface by invading macrophages. It is demonstrated how the shape of the heaps affects the absorption...

  10. Polymeric microcontainers improve oral bioavailability of furosemide

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Melero, Ana; Keller, Stephan Sylvest;

    2016-01-01

    Microcontainers with an inner diameter of 223μm are fabricated using the polymer SU-8, and evaluated in vitro, in situ and in vivo for their application as an advanced oral drug delivery system for the poorly water soluble drug furosemide. An amorphous sodium salt of furosemide (ASSF) is filled...... with Eudragit and compared to a furosemide solution. The absorption rate constant of ASSF confined in microcontainers is found to be significantly different from the solution, and by light microscopy, it is observed that the microcontainers are engulfed by the intestinal mucus. An oral bioavailability study...... in rats is performed with ASSF confined in microcontainers coated with Eudragit and a control group with ASSF in Eudragit-coated capsules. A relative bioavailability of 220% for the ASSF in microcontainers compared to ASSF in capsules is found. These studies indicate that the microcontainers could serve...

  11. Heavy Metal Bioavailability and Bioaccessibility in Soil

    Science.gov (United States)

    Dean, John Richard

    This chapter considers the use of a variety of approaches to assess either the bioavailability or the bioaccessibility of metals in soil. The bioavailability of metals from soils is considered with respect to a series of single-extraction methods, including the use of ethylenediaminetetraacetic acid (EDTA), acetic acid, diethylenetriaminepentaacetic acid (DTPA), ammonium nitrate, calcium chloride and sodium nitrate. Then, a procedure for the recovery of metals using a three-stage sequential extraction protocol is described. Two alternate approaches for assessing the environmental health risk to humans by undertaking in vitro gastrointestinal extraction (also known as the physiologically based extraction test, PBET) are considered. Finally, two acid digestion protocols that allow the pseudo-total metal content of samples to be assessed are provided.

  12. Vitamin B12 sources and bioavailability.

    Science.gov (United States)

    Watanabe, Fumio

    2007-11-01

    The usual dietary sources of vitamin B(12) are animal foods, meat, milk, egg, fish, and shellfish. As the intrinsic factor-mediated intestinal absorption system is estimated to be saturated at about 1.5-2.0 microg per meal under physiologic conditions, vitamin B(12) bioavailability significantly decreases with increasing intake of vitamin B(12) per meal. The bioavailability of vitamin B(12) in healthy humans from fish meat, sheep meat, and chicken meat averaged 42%, 56%-89%, and 61%-66%, respectively. Vitamin B(12) in eggs seems to be poorly absorbed (vegans. Fortified breakfast cereals are a particularly valuable source of vitamin B(12) for vegans and elderly people. Production of some vitamin B(12)-enriched vegetables is also being devised.

  13. Bioavailability of Plant-Derived Antioxidants

    OpenAIRE

    Abourashed, Ehab A.

    2013-01-01

    Natural products with antioxidant properties have been extensively utilized in the pharmaceutical and food industry and have also been very popular as health-promoting herbal products. This review provides a summary of the literature published around the first decade of the 21st century regarding the oral bioavailability of carotenoids, polyphenols and sulfur compounds as the three major classes of plant-derived antioxidants. The reviewed original research includes more than 40 compounds belo...

  14. Bioavailability enhancers of herbal origin: An overview

    OpenAIRE

    Kesarwani, Kritika; Gupta, Rajiv

    2013-01-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug...

  15. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Science.gov (United States)

    Stone, Michael S.; Martyn, Lisa; Weaver, Connie M.

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60–100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  16. Potassium Intake, Bioavailability, Hypertension, and Glucose Control.

    Science.gov (United States)

    Stone, Michael S; Martyn, Lisa; Weaver, Connie M

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60-100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  17. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Directory of Open Access Journals (Sweden)

    Michael S. Stone

    2016-07-01

    Full Text Available Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+ ATPase pump. Approximately 90% of potassium consumed (60–100 mEq is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN is the leading cause of cardiovascular disease (CVD and a major financial burden ($50.6 billion to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  18. Bioavailability and biodistribution of nanodelivered lutein.

    Science.gov (United States)

    Kamil, Alison; Smith, Donald E; Blumberg, Jeffrey B; Astete, Carlos; Sabliov, Cristina; Oliver Chen, C-Y

    2016-02-01

    The aim of the study was to evaluate the ability of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to enhance lutein bioavailability. The bioavailability of free lutein and PLGA-NP lutein in rats was assessed by determining plasma pharmacokinetics and deposition in selected tissues. Lutein uptake and secretion was also assessed in Caco-2 cells. Compared to free lutein, PLGA-NP increased the maximal plasma concentration (Cmax) and area under the time-concentration curve in rats by 54.5- and 77.6-fold, respectively, while promoting tissue accumulation in the mesenteric fat and spleen. In comparison with micellized lutein, PLGA-NP lutein improved the Cmax in rat plasma by 15.6-fold and in selected tissues by ⩾ 3.8-fold. In contrast, PLGA-NP lutein had a lower uptake and secretion of lutein in Caco-2 cells by 10.0- and 50.5-fold, respectively, compared to micellized lutein. In conclusion, delivery of lutein with polymeric NP may be an approach to improve the bioavailability of lutein in vivo. PMID:26304429

  19. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana.

    Science.gov (United States)

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A; Morgan, Jennifer L L; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D; Shock, Everett; Hartnett, Hilairy E

    2013-03-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3-67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. PMID:23262070

  20. Bioavailability of Micronutrients from Plant Foods: An Update.

    Science.gov (United States)

    Platel, Kalpana; Srinivasan, Krishnapura

    2016-07-26

    Deficiencies of iron, zinc, iodine and vitamin A are widespread in the developing countries, poor bioavailability of these micronutrients from plant-based foods being the major reason for their wide prevalence. Diets predominantly vegetarian are composed of components that enhance as well as inhibit mineral bioavailability, the latter being predominant. However, prudent cooking practices and use of ideal combinations of food components can significantly improve micronutrient bioavailability. Household processing such as heat treatment, sprouting, fermentation and malting have been evidenced to enhance the bioavailability of iron and β-carotene from plant foods. Food acidulants amchur and lime are also shown to enhance the bioavailability of not only iron and zinc, but also of β-carotene. Recently indentified newer enhancers of micronutrient bioaccessibility include sulphur compound-rich Allium spices-onion and garlic, which also possess antioxidant properties, β-carotene-rich vegetables-carrot and amaranth, and pungent spices-pepper (both red and black) as well as ginger. Information on the beneficial effect of these dietary compounds on micronutrient bioaccessibility is novel. These food components evidenced to improve the bioavailability of micronutrients are common ingredients of Indian culinary, and probably of other tropical countries. Fruits such as mango and papaya, when consumed in combination with milk, provide significantly higher amounts of bioavailable β-carotene. Awareness of the beneficial influence of these common dietary ingredients on the bioavailability of micronutrients would help in devising dietary strategies to improve the bioavailability of these vital nutrients. PMID:25748063

  1. Animal bioavailability of defined xenobiotic lignin metabolites

    International Nuclear Information System (INIS)

    Lignin has been recognized as a major component of bound pesticide residues in plants and is thought to be undigestible in animals. Two defined ring-U-14C-labeled chloroaniline/lignin metabolites have now been fed to rats, where a release of ∼66% of the bound xenobiotic occurred in the form of simple chloroaniline derivatives. The observed high degree of bioavailability indicates that bound pesticidal residues may possess ecotoxicological significance. In parallel studies, the white-rot fungus Phanerochaete chrysosporium was more efficient, and a soil system was much less efficient, in the degradation of the [ring-U-14C]chloroaniline/lignin metabolites

  2. Bioavailability of platinum emitted from automobile exhaust.

    Science.gov (United States)

    Artelt, S; Kock, H; Nachtigall, D; Heinrich, U

    1998-08-01

    A model substance was used which is similar in respect to platinum content of exhaust particles emitted from a three-way-catalytic converter equipped engine. The bioavailability of platinum from such exhaust particles and the kind of platinum species formed in vivo were assessed. An in vitro solubility test showed a solubility of approximately 10 percent of platinum content of the model substance in physiological sodium chloride solution. Two short-term animal studies (8 days) were performed. In all examined rat tissues and body fluids platinum could be detected. In addition, the contribution of the overall bioavailability caused by swallowing a certain amount of the intratracheally applied platinum was evaluated by oral application. It was very low. An analytical method was developed to determine platinum species. Synthetic samples (matrix with a platinum standard solution) were analysed. In rat bronchoalveolar lavage spiked with a platinum standard solution only low molecular complexed platinum was found whereas in rat blood plasma all platinum was bound to proteins. In ongoing studies, the model substance is being tested in a three month rat inhalation study. PMID:9820662

  3. Bioavailability of cadmium from linseed and cocoa

    DEFF Research Database (Denmark)

    Hansen, Max; Rasmussen, Rie Romme; Sloth, Jens Jørgen

    2014-01-01

    for the food authorities in order to give correct advises to the population. The aim of this study was to investigate the bioavailability of cadmium from whole linseed, crushed linseed, cocoa and cadmium chloride in rats. An experiment where 40 rats were divided into 4 groups and a control group and dosed...... with whole linseed, crushed linseed, cocoa and CdCl2 for 3 weeks was performed. Linseed or cocoa made up 10% of the feed (by weight) and was added as a replacement for carbohydrate source. The rats were dosed for 3 weeks and the cadmium content in the rats' kidneys was measured by ICPMS as a biomarker...... be measured in the kidney compared to the calculated total intake was as follows: Control 2.0 %, Crushed linseed 0.9 %, whole linseed, 1.5 %, cocoa 0.7 % and CdCl2 4.6 %. Based on this study it could not be concluded that the bioavailability in rats form whole linseed is lower that for crushed linseed...

  4. Bioavailability of sustained-release theophylline formulations.

    Science.gov (United States)

    Bonora Regazzi, M; Rondanelli, R; Vidale, E; Cristiani, D

    1983-05-01

    Sustained-release formulations of theophylline as well as of other drugs are designed to effect a delayed but constant release of the active principle in the gastrointestinal tract, thus ensuring more prolonged blood level curves. This study was made to assess the bioavailability of two sustained-release microencapsulated formulations and one sustained-release Diffucaps formulation, in comparison with an equivalent dose of theophylline solution. As regards bioavailability, none of the three formulations differed significantly from the reference formulation. The blood levels at steady state were estimated on the basis of data obtained after a single-dose study. All three sustained release formulations showed good results after prolonged administration in terms of peaks and troughs. The time duration at which the theophylline plasma levels remain higher than 75% of the maximum steady-state levels, following 12-h dosing interval, was evaluated: for the sustained-release microencapsulated formulations this time duration reaches 100% of the dosing interval. A multiple-dose administration of the sustained-release formulations used in this study should guarantee almost complete time coverage, with blood levels sharply exceeding the minimum threshold level of the theophylline therapeutic range.

  5. Estimating Lead (Pb) Bioavailability In A Mouse Model

    Science.gov (United States)

    Children are exposed to Pb through ingestion of Pb-contaminated soil. Soil Pb bioavailability is estimated using animal models or with chemically defined in vitro assays that measure bioaccessibility. However, bioavailability estimates in a large animal model (e.g., swine) can be...

  6. Quantifying folate bioavailability: a critical appraisal of methods

    NARCIS (Netherlands)

    Boonstra, A.; Verhoef, P.; West, C.E.

    2004-01-01

    Purpose of review Dietary reference intakes for folate rely on a good estimate of folate bioavailability from the general diet. In this review, current methods for quantifying the bioavailability of dietary folate and specific folate vitamers in humans are reviewed. Emphasis is on isotopic labeling

  7. Dietary factors that affect the bioavailability of carotenoids

    NARCIS (Netherlands)

    Hof, van het K.H.; West, C.E.; Weststrate, J.A.; Hautvast, J.G.A.J.

    2000-01-01

    Carotenoids are thought to contribute to the beneficial effects of increased vegetable consumption. Various dietary factors have an effect on the bioavailability of carotenoids. The type of food matrix in which carotenoids are located is a major factor. The bioavailability of ß-carotene from vegetab

  8. Hemicellulose does not affect iron bioavailability in chicks.

    Science.gov (United States)

    Fly, A D; Czarnecki-Maulden, G L; Fahey, G C; Titgemeyer, E C

    1996-01-01

    Two iron repletion experiments using hemoglobin as a response criterion were conducted to assess effects of hemicelluloses on iron bioavailability to chicks. In Experiment 1, iron bioavailability from intact fiber sources was determined by adding tomato pomace (14.6% hemicelluloses), soybean hulls (20.6% hemicelluloses), beet pulp (21.5% hemicelluloses), orchard grass (24.1% hemicelluloses) and corn fiber (55.2% hemicelluloses) to a casein dextrose basal diet providing 0.4-4.1% hemicelluloses to the diet. Test foods were analyzed for iron, total dietary fiber, neutral detergent residue, neutral detergent fiber, acid detergent fiber, acid detergent lignin, pectins and uronic acids. Hemicelluloses were determined by the difference of neutral detergent residue minus acid detergent fiber. Iron bioavailability was determined by the standard curve method to be (percent relative to ferrous sulfate using hemoglobin as the response criterion) as follows: tomato pomace, 82.0; soybean hulls, 94.0; beet pulp, 26.5; orchard grass, 68.9; corn fiber, 69.4. Iron bioavailability was not related to hemicellulose content of test foods or diets. In Experiment 2, the effect of psyllium husk (a fiber source that contains predominantly hemicelluloses) on iron bioavailability from ferrous sulfate was assessed. Bioavailability was determined by the slope ratio method where treatments consisted of graded levels of ferrous sulfate in the presence and absence of 5% dietary psyllium. Although iron intrinsic to psyllium was unavailable, bioavailability of ferrous sulfate iron was not affected (P > 0.05) by the presence of psyllium. Thus, there was no clear effect of hemicelluloses on iron bioavailability. However, some feeds that contained high levels of hemicelluloses had low intrinsic iron bioavailabilities, suggesting that other dietary factors are primarily responsible for determining iron bioavailability from these feed components. PMID:8558316

  9. Biodisponibilidade do licopeno Bioavailability of lycopene

    Directory of Open Access Journals (Sweden)

    Bettina Moritz

    2006-04-01

    Full Text Available Esta revisão procura reunir diversos estudos que avaliam os fatores que influenciam a biodisponibilidade do licopeno, bem como os alimentos fontes e a recomendação de ingestão desse carotenóide. Para tanto, foi realizado um levantamento bibliográfico, mediante consulta às bases de dados Medline (National Library of Medicine, USA e Lilacs (Bireme, Brasil nas quais foram selecionadas publicações científicas em português e inglês, nos últimos quinze anos, que utilizaram os temas: licopeno, carotenóides e/ou biosponibilidade. O licopeno é um carotenóide sem atividade de pró-vitamina A, mas um potente antioxidante, sendo essa função possivelmente associada à redução do risco da ocorrência do câncer e certas doenças crônicas. Esse nutriente é encontrado em um número limitado de alimentos, e, além disso, o organismo não é capaz de sintetizá-lo; dessa forma, o licopeno é obtido exclusivamente por meio da dieta alimentar. A quantidade sugerida de ingestão de licopeno varia de 4 a 35mg/dia. Estudos mostram que existem vários fatores que podem interferir na biodisponibilidade do licopeno, tais como absorção intestinal, quantidade de licopeno no alimento fonte, formas de apresentação (isômeros e sintéticos, presença da matriz alimentar, presença de outros nutrientes na refeição (como gordura, fibra, outros carotenóides, entre outros, ingestão de drogas, processamento do alimento, além da individualidade biológica e do estado nutricional do indivíduo. Estudos da biodisponibilidade do licopeno têm sido desenvolvidos a partir do tomate e seus produtos, por esse ser a fonte mais comumente consumida. O desenvolvimento do estudo enfatizou a importância da melhor forma de absorção desse nutriente, relevante que é para a prevenção de inúmeras doenças.This review collets several papers that evaluated the factors that influence the bioavailability of licopene, as well as the food sources of this nutrient and

  10. Bioavailability of vitamin A sources for cattle.

    Science.gov (United States)

    Alosilla, C E; McDowell, L R; Wilkinson, N S; Staples, C R; Thatcher, W W; Martin, F G; Blair, M

    2007-05-01

    An experiment was conducted to evaluate the bioavailability of 5 sources of vitamin A. It was hypothesized that some vitamin A products have protective coatings that are more resistant than others to rumen destruction and that such protection would result in greater tissue concentrations of vitamin A. Fifty-three yearling Angus x Brahman cattle, consisting of 39 steers and 14 heifers, were stratified by BW and sex and randomly assigned to 6 high-concentrate diet groups receiving no vitamin A supplementation (control) or vitamin A supplemented from the following sources: Microvit A (Adisseo, Acworth, GA), Rovamix A (DSM, Parsippany, NJ), Sunvit A, Lutavit A, and Microvit A DLC (Adisseo). The vitamin A treatment groups were fed daily 80,000 IU of retinol/animal in a low-retinol concentrate diet (78.5% oats, 10% cottonseed hulls, 8% molasses, and 2% cottonseed meal; DM basis) and a free-choice, poor quality (low carotene) hay for 84 d. Every 28 d, BW was determined and liver biopsies and plasma were collected and analyzed for retinol concentrations. All retinol treatments showed significant increases in liver retinol concentrations compared with control animals (P < 0.0001), which steadily decreased over time. At all collection times, Microvit A led to numerically, but not significantly, greater concentrations of retinol in liver than did all other treatments. However, at the end of the experiment, there was no significant difference in liver retinol concentration among Microvit A, Rovamix A, Lutavit A, and Microvit A DLC diets. When liver retinol concentrations at all collection times were considered, Microvit A and Rovamix A appeared to provide the most bioavailable vitamin A. PMID:17178810

  11. Marine lipids and the bioavailability of omega-3 fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Müllertz, Anette

    2015-01-01

    Marine lipids are enriched with omega-3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acids are important membrane lipids and have many recognized health benefits, the bioavailability of these fatty acids can therefore be important for achieving...... of omega-3 fatty acids has been reported to be affected by several factors; among the important factors were the digestion and absorption processes of omega-3 containing lipids in the gastrointestinal tract. Both lipid structures and food structures can affect the bioavailability of omega-3 fatty acids....... Human studies have shown that the relative bioavailability of omega-3 fatty acids from fish oil (triglyceride formulation) was similar to that from fish, whereas lower relative bioavailability was observed from fatty acid ethyl ester (FAEE) formulation in comparison with other lipid formulations...

  12. Bioavailability of genotoxic mixtures in soil

    Energy Technology Data Exchange (ETDEWEB)

    Bordelon, N.; Washburn, K.; He, L.Y.; Donnelly, K.C. [Texas A and M Univ., College Station, TX (United States). Dept. of Veterinary Anatomy and Public Health

    1996-12-31

    Contaminated media at Superfund sites typically consist of complex mixtures of organic and inorganic chemicals which are difficult to characterize, both analytically and toxicologically. The current EPA approach to risk assessment uses solvent extraction to remove chemicals from the soil as a basis for estimating risk to the human population. However, contaminants that can be recovered with a solvent extract may not represent the mixture of chemicals that are available for human exposure. A procedure using an aqueous extraction was investigated to provide a more realistic estimate of what chemicals are bioavailable. A study was conducted with two soil types: creosote-contaminated sandy soil and coal tar-contaminated clay soil spiked with benzo(a)pyrene [B(a)P], and trinitrotoluene (TNT). Samples were extracted with hexane:acetone and water titrated to pH2 and pH7. HPLC analysis demonstrated up to 35% and 29% recovery of contaminants using the aqueous extracts. The estimated cancer risk for the aqueous extract was one order of magnitude less than that for solvent extracts. Analysis using the Salmonella/microsome assay demonstrated that solvent extracts were genotoxic (133 revertants/mg) with metabolic activation while aqueous extracts of clay soil were not genotoxic. Sandy soil showed genotoxicity both with and without metabolic activation. These results suggest that solvent extraction techniques may overestimate the concentration of contaminants that are available for human exposure and, hence, the risk associated with the presence of the contaminants in soil.

  13. Bioavailability of coffee polyphenols: focus on dose- and structure response

    OpenAIRE

    Erk, Thomas

    2014-01-01

    A positive affection of human health by nutrition is of high interest, especially for bioactive compounds which are consumed daily in high amounts. This is the case for chlorogenic acids (CGA) ingested by coffee. This molecule class is associated with several possible beneficial health effects observed in vitro that strongly depend on their bioavailability. So far factors influencing bioavailability of CGA such as dose, molecule structure and site of absorption haven´t been investigated suffi...

  14. The Extraction, Anticancer Effect, Bioavailability, and Nanotechnology of Baicalin

    Science.gov (United States)

    Moore, Ondrea A.; Gao, Ying; Chen, Allen Y.; Brittain, Ross; Chen, Yi Charlie

    2016-01-01

    The dried root of Baikal skullcap (Scutellaria baicalensis) has been historically and widely used in traditional Eastern medicine. Modern science proved that baicalin is the major bioactive responsible for the physiological activity of Baikal skullcap. Baicalin, a flavonoid found in several species in the genus Scutellaria, has been regarded as a potent anticancer agent. In this review, we present the main extraction methods, anticancer activity and bioavailability of baicalin. Besides, the utilization of nanotechnology to improve the bioavailability of baicalin is also mentioned.

  15. ENHANCED BIOAVAILABILITY OF DRUGS VIA INTRANASAL DRUG DELIVEY SYSTEM

    OpenAIRE

    kumar Brajesh; Shafat Kausar; Akhtar Ali; Prajapati S.K; Singh Devendra

    2012-01-01

    The aim of present investigation is to explain the enhancement of bioavailability of drug through intranasal drug delivery system. Intranasal Therapy has been an accepted form of treatment in the Ayurvedic system of Indian Medicine. Recently, it has been shown that many drugs have better bioavailability by nasal route than the oral route. This has been attributed to rich vasculature and a highly permeable structure of the nasal mucosa coupled with avoidance of hepatic first-pass elimination, ...

  16. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    Science.gov (United States)

    Beyer, W. Nelson; Basta, Nicholas T; Chaney, Rufus L.; Henry, Paula F.; Mosby, David; Rattner, Barnett A.; Scheckel, Kirk G.; Sprague, Dan; Weber, John

    2016-01-01

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with phosphorus significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite and tertiary Pb phosphate), and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb.

  17. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    Science.gov (United States)

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR). PMID:26707985

  18. Bioaccumulation and bioavailability of polybrominated diphynel ethers (PBDEs) in soil

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xianwei; Zhu Shuzhen; Chen Peng [College of Environmental Science and Engineering, Nankai University, Weijin Road 94, Tianjin 300071 (China); Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin 300071 (China); Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China); Zhu Lingyan, E-mail: zhuly@nankai.edu.c [College of Environmental Science and Engineering, Nankai University, Weijin Road 94, Tianjin 300071 (China); Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin 300071 (China); Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China)

    2010-07-15

    Earthworms were exposed to artificially contaminated soils of DE-71 and DE-79 to investigate the bioaccumulation and bioavailability of PBDEs in soil. All major congeners were bioavailable to earthworms. The uptake and elimination rate coefficients of PBDEs decreased with their logK{sub ow}s. The biota soil accumulation factors of PBDEs also declined with logK{sub ow}. These may be due to the large molecular size and the high affinity of PBDEs to soil particles. The concentrations extracted by Tenax for 6 h correlated very well with those found in earthworms, suggesting that the bioavailability of PBDEs in soil is related to the fraction of rapid desorption from soil. This also indicates that 6 h Tenax extraction is a good proxy for the bioavailability of PBDEs to earthworms in soil. The BSAFs of PBDEs in aged soil decreased 22-84% compared to freshly spiked soil, indicating that aging may diminish the bioavailability of PBDEs in soil significantly. - PBDEs are bioavailable to earthworms in soil and the uptake and elimination rate coefficients and BSAFs declined with their logK{sub ow}s.

  19. Atorvastatin solid dispersion for bioavailability enhancement

    Directory of Open Access Journals (Sweden)

    Shamsuddin

    2016-01-01

    Full Text Available Atorvastatin calcium is a lipid-lowering agent. It has approximately 15% of bioavailability, remaining amount of drug showed adverse effect which is undesirable for patients. The objective of the study was to enhance the solubility and a dissolution profile of the atorvastatin (AT calcium. Solid dispersion (SD is a technique which enhances the solubility and a dissolution profile of poorly soluble drug. Various methods are being used for SDs such as microwave irradiation fusion, kneading, solvent evaporation, fusion, and dropping method. The authors have used here conventional fusion method using PEG 4000 as a hydrophilic carrier. The solubility of pure drug, physical mixture using PEG 4000 (1:3, and SD in phosphate buffer solutions (pH 6.8 was found to be 55.33 ± 0.66, 81.89 ± 2.35, and 93.66 ± 1.35, respectively. Fourier transform infrared and differential scanning calorimetry study showed the significant peak shift of drug in SD. It indicated that the nature of drug had been changed from crystalline form to amorphous form due to conversion into SD formulation. The dissolution rate was significantly increased when the drug polyethylene glycol 4000 ratio was 1:3. The mean cumulative percentage drugs release from pure drug, physical mixture, marketed tablet, and SD at 1 h was 28.92 ± 1.66%, 55.26 ± 0.95%, 72.16 ± 1.33%, and 91.66 ± 1.65%, respectively. It was concluded that the solubility and dissolution profile of SD of AT calcium showed the enhancement of solubility and dissolution when compared with marketed preparations.

  20. Influence of biochar amendments on marine sediment trace metal bioavailability

    Science.gov (United States)

    Gehrke, G. E.; Hsu-Kim, H.

    2014-12-01

    Biochar has become a desirable material for use in agricultural application to enhance soil quality and in-situ soil and sediment remediation to immobilize organic contaminants. We investigated the effects of biochar sediment amendments on the bioavailability of a suite of inorganic trace metals (Cr, Co, Ni, Cu, Zn, Pb) in contaminated sediments from multiple sites in Elizabeth River, VA. We incubated sediments in microcosms with a variety of water column redox and salinity conditions and compared sediments amended with two types of woody biochar to sediments amended with charcoal activated carbon and unamended sediments. We leached sediments in artificial gut fluid mimic of the benthic invertebrate Arenicola marina as a measure of bioavailability of the trace metals analyzed. In unamended anaerobic sediments, the gut fluid mimic leachable fraction of each trace metal is 1-4% of the total sediment concentration for each metal. Initial results indicate that in anaerobic microcosms, woody biochar sediment amendments (added to 5% dry wt) decrease the gut fluid mimic leachable fraction by 30-90% for all trace metals analyzed, and have comparable performance to charcoal activated carbon amendments. However, in microcosms without controlled redox conditions, woody biochar amendments increase the bioavailable fraction of Ni and Cu by up to 80%, while decreasing the bioavailable fraction of Co, Zn, and Pb by approximately 50%; charcoal activated carbon amendments decreased the bioavailability of all trace metals analyzed by approximately 20%. In microcosms without an overlying water column, biochar and activated carbon amendments had no significant effects on trace metal bioavailability. This research demonstrates that biochar can effectively decrease the bioavailability of trace metals in marine sediments, but its efficiency is metal-specific, and environmental conditions impact biochar performance.

  1. Phase behavior and oral bioavailability of amorphous Curcumin.

    Science.gov (United States)

    Pawar, Yogesh B; Shete, Ganesh; Popat, Dharmesh; Bansal, Arvind K

    2012-08-30

    Amorphous form has been used as a means to improve aqueous solubility and oral bioavailability of poorly water soluble drugs. The objective of present study was to characterize thermodynamic and kinetic parameters of amorphous form of Curcumin (CRM-A). CRM-A was found to be a good glass former with glass transition temperature (T(g)) of 342.64K and critical cooling rate below 1K/min. CRM-A had a moderate tendency of crystallization and exhibited Kauzmann temperature (T(KS)) of 294.23 K. CRM-A was found to be fragile in nature as determined by T(m)/T(g) (1.32), C(p)(1 iq):C(p)(glass) (1.22), strength parameter (D75), T(K)/T(g) (0.85), and T(g)-T(K) (48.41). Theoretically predicted aqueous solubility advantage of 43.15-folds, was reduced to 17-folds under practical conditions. This reduction in solubility was attributed to water induced devitrification, as evident through PXRD and SEM analysis. Further, oral bioavailability study of CRM-A was undertaken to investigate bioavailability benefits, if any. C(max) was improved by 1.97-folds (statistically significant difference over control). However, oral bioavailability (AUC(0-)(∞)) was improved by 1.45-folds (statistically non significant difference over control). These observations pointed towards role of rapid devitrification of CRM-A in GIT milieu, thus limiting its oral bioavailability advantage. PMID:22609283

  2. Biogeochemical controls of uranium bioavailability from the dissolved phase

    Science.gov (United States)

    Croteau, Marie-Noele; Fuller, Christopher C.; Cain, Daniel J.; Campbell, Kate M.; Aiken, George R.

    2016-01-01

    To gain insights into the risks associated with uranium (U) mining and processing, we investigated the biogeochemical controls of U bioavailability in the model freshwater speciesLymnaea stagnalis (Gastropoda). Bioavailability of dissolved U(VI) was characterized in controlled laboratory experiments over a range of water hardness, pH, and in the presence of complexing ligands in the form of dissolved natural organic matter (DOM). Results show that dissolved U is bioavailable under all the geochemical conditions tested. Uranium uptake rates follow first order kinetics over a range encompassing most environmental concentrations. Uranium uptake rates in L. stagnalis ultimately demonstrate saturation uptake kinetics when exposure concentrations exceed 100 nM, suggesting uptake via a finite number of carriers or ion channels. The lack of a relationship between U uptake rate constants and Ca uptake rates suggest that U does not exclusively use Ca membrane transporters. In general, U bioavailability decreases with increasing pH, increasing Ca and Mg concentrations, and when DOM is present. Competing ions did not affect U uptake rates. Speciation modeling that includes formation constants for U ternary complexes reveals that the aqueous concentration of dicarbonato U species (UO2(CO3)2–2) best predicts U bioavailability to L. stagnalis, challenging the free-ion activity model postulate

  3. Bioavailability enhancers of herbal origin:An overview

    Institute of Scientific and Technical Information of China (English)

    Kritika Kesarwani; Rajiv Gupta

    2013-01-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds.

  4. Bioavailability enhancers of herbal origin:An overview

    Institute of Scientific and Technical Information of China (English)

    Kritika; Kesarwani; Rajiv; Gupta

    2013-01-01

    Recently,the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines.However,many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size,resulting in poor absorption and hence poor bioavailability.Nowadays with the advancement in the technology,novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems.For last one decade many novel carriers such as liposomes,microspheres,nanoparticles,transferosomes,ethosomes,lipid based systems etc.have been reported for successful modified delivery of various herbal drugs.Many herbal compounds including quercetin,genistein,naringin,sinomenine,pipeline,glycvrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability.The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs(herbal),and to achieve better therapeutic response.An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action(wherever reported)and studies on improvement in drug bioavailability,exhibited particularly by natural compounds.

  5. Pharmacokinetic behaviors and oral bioavailability of oridonin in rat plasma

    Institute of Scientific and Technical Information of China (English)

    Wen XU; Jin SUN; Ting-ting ZHANG; Bo MA; Sheng-miao GUI; Da-wei CHEN; Zhong-gui HE

    2006-01-01

    Aim: To study the intravenous and oral pharmacokinetic behavior of oridonin and its extent of absolute oral bioavailability in rats. Methods: Oridonin was administered to rats via iv (5,10 and 15 mg/kg), po (20,40 and 80 mg/kg) or ip administration (10 mg/kg). The concentrations of oridonin in rat plasma were determined by a high performance liquid chromatography with electrospray ionization mass spec-trometric detection (HPLC/ESI-MS) method and the pharmacokinetic parameters were determined by non-compartmental analysis. Results: The plasma concentration of oridonin after intravenous administration decreased poly exponentially, and the pharmacokinetic parameters of oridonin were dose-independent within the examined range. Oridonin was absorbed rapidly after oral gavage with a bioavailability of oridonin following oral administration was 4.32%, 4.58% and 10.8%. The extent of absolute bioavailability of oridonin following intraperitoneal administration was 12.6%. Conclusion: First order rate pharmacokinetics were observed for oridonin within the range of iv doses, while the extent of absolute oral bioavailability was rather low and dose-dependent. The low and dose-dependent extent of oral bioavailability may be due to the saturation of first-pass effects.

  6. Permeability enhancers dramatically increase zanamivir absolute bioavailability in rats: implications for an orally bioavailable influenza treatment.

    Directory of Open Access Journals (Sweden)

    Eric H Holmes

    Full Text Available We have demonstrated that simple formulations composed of the parent drug in combination with generally regarded as safe (GRAS permeability enhancers are capable of dramatically increasing the absolute bioavailability of zanamivir. This has the advantage of not requiring modification of the drug structure to promote absorption, thus reducing the regulatory challenges involved in conversion of an inhaled to oral route of administration of an approved drug. Absolute bioavailability increases of up to 24-fold were observed when Capmul MCM L8 (composed of mono- and diglycerides of caprylic/capric acids in glycerol was mixed with 1.5 mg of zanamivir and administered intraduodenally to rats. Rapid uptake (t(max of 5 min and a C(max of over 7200 ng/mL was achieved. Variation of the drug load or amount of enhancer demonstrated a generally linear variation in absorption, indicating an ability to optimize a formulation for a desired outcome such as a targeted C(max for enzyme saturation. No absorption enhancement was observed when the enhancer was given 2 hr prior to drug administration, indicating, in combination with the observed tmax, that absorption enhancement is temporary. This property is significant and aligns well with therapeutic applications to limit undesirable drug-drug interactions, potentially due to the presence of other poorly absorbed polar drugs. These results suggest that optimal human oral dosage forms of zanamivir should be enteric-coated gelcaps or softgels for intraduodenal release. There continues to be a strong need and market for multiple neuraminidase inhibitors for influenza treatment. Creation of orally available formulations of inhibitor drugs that are currently administered intravenously or by inhalation would provide a significant improvement in treatment of influenza. The very simple GRAS formulation components and anticipated dosage forms would require low manufacturing costs and yield enhanced convenience. These results

  7. Influence of milk products on fluoride bioavailability in man.

    Science.gov (United States)

    Ekstrand, J; Ehrnebo, M

    1979-09-01

    The effect of milk products on the gastrointestinal absorption of fluoride from sodium fluoride tablets was studied in five healthy subjects. Two different diets were tested: (1) 250 ml standardized milk (3% fat) and (2) 500 ml of milk, 3 pieces of white bread with cheese and 150 ml of yoghurt. The 100% bioavailability of sodium fluoride tablets during fasting was greatly decreased by coadministration of milk products: with Diet 1 the absolute bioavailability calculated from combined plasma and urine data was in the range 50--79% and with Diet 2 it ranged from 50--71%. It is suggested that the decreased bioavailability produced by dairy products should be taken into account when establishing flouride dosage regimens for prophylaxis of caries.

  8. Site dependent bioavailability and metabolism of levosimendan in dogs.

    Science.gov (United States)

    Antila, S; Huuskonen, H; Nevalainen, T; Kanerva, H; Vanninen, P; Lehtonen, L

    1999-10-01

    Site specific bioavailability and metabolism of levosimendan was studied in ten dogs by placing intestinal access port catheters in different parts of the gastrointestinal tract. 14C-labelled levosimendan (0.1 mg/kg) was administered intravenously, by gastric tube and directly through catheters that were placed in the duodenum, jejunum and ileum. Plasma samples were collected and radioactivity in the different organs and tissues was measured. The results of the present study showed that bioavailability of levosimendan was high varying from 71 to 86% after extravascular administration. Metabolite OR-1855 concentrations in the plasma were about 3-4 times higher after administration to the ileum compared to the other administration routes. It can be concluded that the bioavailability of levosimendan is not affected by site specific administration. The bacteria or enzymes responsible for the metabolism of levosimendan are located in the lower parts of the gastrointestinal tract.

  9. ENHANCED BIOAVAILABILITY OF DRUGS VIA INTRANASAL DRUG DELIVEY SYSTEM

    Directory of Open Access Journals (Sweden)

    kumar Brajesh

    2012-07-01

    Full Text Available The aim of present investigation is to explain the enhancement of bioavailability of drug through intranasal drug delivery system. Intranasal Therapy has been an accepted form of treatment in the Ayurvedic system of Indian Medicine. Recently, it has been shown that many drugs have better bioavailability by nasal route than the oral route. This has been attributed to rich vasculature and a highly permeable structure of the nasal mucosa coupled with avoidance of hepatic first-pass elimination, gut wall metabolism and/or destruction in the gastrointestinal tract. Intranasal microemulsion, gels, nanoparticles, liposome and microspheres have gained increased interest in recent years as a delivery system for protein and peptides through the nasal route. Thus this review focuses on nasal drug delivery, nasal drug absorption mechanisms, various mechanisms for increasing the bioavailability of drug, and their applications in drug delivery.

  10. Bioavailability of butachlor and myclobutanil residues in soil to earthworms.

    Science.gov (United States)

    Yu, Y L; Wu, X M; Li, S N; Fang, H; Tan, Y J; Yu, J Q

    2005-05-01

    To establish chemical extraction procedures for predicting bioavailability of butachlor and myclobutanil in soil, several solvent systems, including methanol, methanol-water (9:1), methanol-water (1:1), acetone-water (5:3), petroleum ether and water, were assessed for their feasibility in determining extractability of the target compounds from soil samples. Experimental data showed that the extractability of butachlor and myclobutanil by the solvents was well linearly correlated with their bioavailability to Eisenia foetida and Allolobophora caliginosa, indicating that these extraction procedures may be efficient for predicting bioavailability of the two pesticides. The concentrations of the pesticides accumulated in E. foetida and A. caliginosa varied with species, suggesting that the availability of the soil-sequestered pesticide is a species-dependent process.

  11. Bioavailability of autochthonous dissolved organic nitrogen in marine plankton communities

    DEFF Research Database (Denmark)

    Knudsen, Helle; Markager, Svend Stiig; Søndergaard, Morten

    The purpose of this study was to investigate the bioavailability of dissolved organic nitrogen (DON) produced during a phytoplankton bloom. The experiments were conducted with natural plankton communities as batch growth experiments over approximately 30 days with nitrogen limitation. Five to six...... times during the exponential and stationary phases of each experimental bloom the bioavailability of DON was measured over 60 days together with DOC and oxygen consumption. The overall aim was to quantify remineralization of the added nitrate. The results showed that maximum 33 % of the added nitrate....... Otherwise nitrogen was retained in the bacterial biomass. We hypothesize that photochemistry and grazing may increase mineralization of DON in shallow ecosystems....

  12. The bioavailability of an orally administered medroxyprogesterone acetate suspension.

    Science.gov (United States)

    Antal, E J; Gillespie, W R; Albert, K S

    1983-05-01

    The relative bioavailability of an orally administered aqueous suspension of medroxyprogesterone acetate (MPA) intended for intramuscular injection (Depo-Provera) was determined in relation to orally administered tablets. Serum levels of MPA were determined by radioimmunoassay following the administration of 400-mg doses to 19 adult male volunteers in a crossover design after an overnight fast. The two treatments were judged bioequivalent based upon a comparison of the resultant MPA serum levels and the derived bioavailability parameters. Hence, the intramuscular suspension administered orally offers an alternative means of achieving optimal serum levels of MPA in patients requiring high dose therapy. PMID:6222996

  13. Bioavailability of sediment-bound contaminants to marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Colby Coll., Waterville, ME (United States); Neff, J. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Battelle Ocean Sciences, Duxbury, MA (United States)

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  14. Size-fractionated production and bioavailability of dissolved organic matter

    DEFF Research Database (Denmark)

    Knudsen-Leerbeck, Helle; Bronk, Deborah A.; Markager, Stiig

    Production and bioavailability of dissolved organic matter was quantified on a time scale of two days from size fractions ranging from bacteria to zooplankton in the York River, Virginia. The goal was to find the main contributor to DOM. Batch incubation experiments were labeled with N15-ammonium...... mainly in the phytoplankton size fraction, which on average contributed 62 % of total particulate nitrogen and 61 % of total particulate carbon. Up to 5 ± 0.4 μmol dissolved organic nitrogen L-1 and 33 ± 6.2 μmol dissolved organic carbon L-1 was produced during the incubation. Bioavailability of...

  15. Relative Bioavailability and Bioaccessibility and Speciation of Arsenic in Contaminated Soils

    OpenAIRE

    Bradham, Karen D.; Scheckel, Kirk G.; Nelson, Clay M.; Seales, Paul E.; Lee, Grace E.; Hughes, Michael F.; Miller, Bradley W.; Yeow, Aaron; Gilmore, Thomas; Serda, Sophia M.; Harper, Sharon; Thomas, David J

    2011-01-01

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. Objectives: We evaluated inexpensive methods for assessing As bioavailability in soil as a m...

  16. A review on the relationship between food structure, processing, and bioavailability.

    Science.gov (United States)

    Sensoy, Ilkay

    2014-01-01

    This review highlights the effects of processing and food matrix on bioaccessibility and bioavailability of functional components. Human digestive system is reviewed as an element in bioavailability. Methods for bioaccessibility and bioavailability determination are described. Information about the location of functional compounds in the tissue is presented to portray the matrix information. Research data on the effects of food matrix and processing on bioaccessibility and bioavailability are summarized. Finally, trends in the development of functional component delivery systems are included.

  17. 21 CFR 320.38 - Retention of bioavailability samples.

    Science.gov (United States)

    2010-04-01

    ... Federal Food, Drug, and Cosmetic Act, or, if bioavailability testing was performed under contract, the... articles and reference standards and for the studies described: (1) If the formulation of the test article is the same as the formulation(s) used in the clinical studies demonstrating substantial evidence...

  18. Prediction of Petroleum Hydrocarbon Bioavailability in Contaminated Soils and Sediments

    NARCIS (Netherlands)

    Cuypers, M.P.; Clemens, R.; Grotenhuis, J.T.C.; Rulkens, W.H.

    2001-01-01

    Recently, several laboratory methods have been developed for the prediction of contaminant bioavailability. So far, none of these methods has been extensively tested for petroleum hydrocarbons. In the present study we investigated solid-phase extraction and persulfate oxidation for the prediction of

  19. Effect of Attapulgite on The Oral Bioavailability of Ciprofloxacin

    Directory of Open Access Journals (Sweden)

    Zamrotul Izzah

    2013-06-01

    Full Text Available This study was aimed to determine the effect of attapulgite on the bioavailability of a single orallyadministered ciprofloxacin. Six New Zealand white rabbits received each of the following treatments in a randomized, three-way crossover sequence, separated by a 7-day washout period: (i ciprofloxacin (23 mg/kgBW alone; (ii ciprofloxacin (23 mg/kgBW given simultaneously with attapulgite (28 mg/ kgBW; (iii ciprofloxacin (23 mg/kgBW given 2 hours after attapulgite (28 mg/kgBW. Blood samples (1 mL were collected from the marginal ear vein up to 240 minutes postdose. The plasma concentrations of ciprofloxacin were determined by a validated high-performance liquid chromatography method. The maximum concentration and oral bioavailability (AUC0-240 min of ciprofloxacin were significantly decreased by 49 % and 32 % when administered concomitantly with attapulgite (p < 0.001. Attapulgite appeared to have no significant effect on the bioavailability of ciprofloxacin when administered 2 hours before ciprofloxacin. In conclusion, the oral bioavailability of ciprofloxacin was markedly reduced when administered concomitantly with attapulgite. This drug-drug interaction may decrease clinical efficacy and promote microbial resistance to ciprofloxacin. However, the interaction could be minimized by separating the adminsitration of these drugs at least 2 hours.

  20. Bioavailability of folate from processed spinach in humans

    NARCIS (Netherlands)

    Castenmiller, J.J.M.; Poll, van de C.J.; West, C.E.; Brouwer, I.A.; Thomas, C.M.G.; Dusseldorp, van M.

    2000-01-01

    The effect of the food matrix and dietary fibre on the bioavailability of folate is not known. In a controlled, 3-week dietary intervention study, 28 men and 42 women were divided into six groups to receive either a control diet (n = 10), or the control diet plus 20 g/MJ per day (n = 12 per group) o

  1. Relative bioavailability of soil-bound chlordecone in growing lambs.

    Science.gov (United States)

    Jurjanz, S; Jondreville, C; Mahieu, M; Fournier, A; Archimède, H; Rychen, G; Feidt, C

    2014-10-01

    The pollution of soil with the pesticide chlordecone (CLD) is a problem for the use of agricultural surfaces even years after its use has been forbidden. Therefore, the exposure of free-ranged animals such as ruminants needs to be investigated in order to assess the risk of contamination of the food chain. Indeed, measured concentrations could be integrated in a lowered extent if the soil binding would reduce the bioavailability of the pesticide. This bioavailability of soil-bound CLD in a heavily polluted andosol has been investigated relatively of CLD given via spiked oil. Twenty-four weaned lambs were exposed to graded doses of 2, 4 or 6 μg CLD/kg body weight during 15 days via the contaminated soil in comparison to spiked oil. The concentration of this pesticide has been determined in two target tissues: blood serum and kidney fat. The relative bioavailability (RBA) corresponds to the slope ratio between the test matrix-contaminated soil- in comparison to the reference matrix oil. The RBA of the soil-bound CLD was not found to significantly differ from the reference matrix oil in lambs meaning that the pesticide ingested by grazing ruminants would not be sequestered by soil binding. Therefore, CLD from soil gets bioavailable within the intestinal level and exposure to contaminated soil has to be integrated in risk assessments.

  2. BIOAVAILABILITY AND PHARMACOKINETICS OF NORFLOXACIN AFTER INTRAMUSCULAR ADMINISTRATION IN GOATS

    Directory of Open Access Journals (Sweden)

    WAJEEHA, F. H. KHAN AND I. JAVED

    2006-01-01

    Full Text Available Bioavailability and pharmacokinetics of two commercially available preparations of norfloxacin i.e. A (imported and B (locally prepared were determined in six healthy female goats after single intramuscular administration @ 5 mg/kg b.wt following crossover study design. The blood samples collected at 0.25, 0.5, 0.75, 1, 2, 3, 4, 6, 8 and 12 hours postmedication were also analysed for drug concentration by microbiological assay. Results revealed that preparation A showed higher (p<0.05 plasma drug levels than the preparation B at 1, 3, 6 and 8 hours after medication. Among bioavailability parameters AUC (g.h/ml and relative bioavailability (F% were higher for preparation A than the preparation B, while other parameters did not differ between the two preparations. Similarly, various pharmacokinetic parameters did not show any statistical difference between preparation A and B. The study revealed comparable elimination kinetics but different bioavailability of two commercial preparations of norfloxacin. It is concluded from the study that for optimal dosage regimen of drugs, the bioequivalence studies and kinetic behavior of the drugs are of paramount importance.

  3. USE OF PELLETED LETTUCE SEEDS IN BIOAVAILABILITY STUDIES

    Science.gov (United States)

    Lettuce (Latuca sativa L., cv. Buttercrunch) is one of the most common and sensitive test organisms, among plants, used in toxicology and bioavailability studies. Much of the available lettuce seeds in commercial channels are pelleted to allow for precision machine planting. Th...

  4. Speciation and bio-availability of copper in Lake Tjeukemeer.

    NARCIS (Netherlands)

    Verweij, W.

    1991-01-01

    Chapter 1: introductionIn this thesis an account is given of a research project dealing with the chemical speciation and bioavailability of copper in Lake Tjeukemeer, a lake in the north of the Netherlands. The reason for the initiation of this project was a lack of knowledge about the speciation of

  5. Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review

    NARCIS (Netherlands)

    Cornelis, G.; Hund-Rinke, K.; Kuhlbusch, T.; Brink, van den N.W.; Nickel, C.

    2014-01-01

    Interactions within natural soils have often been neglected when assessing fate and bioavailability of engineered nanomaterials (ENM) in soils. This review combines patchwise ENM research using natural soils with the much wider literature on ENM performed in standard tests or on the fate of colloids

  6. Bioavailability of metals-trace in sediments: a review

    International Nuclear Information System (INIS)

    The chemical association of metals in sediments provides an indication of its release by physical, chemical and biological processes, with toxic effects under certain environmental conditions. Knowing about their chemical bonds in sediments, can recognize specific sources of pollution, and speciation of trace metals is important for bioavailability and toxicity to animals and plants. The accumulation of these particles in the sediment occur by the following mechanisms: a) adsorption to the finest particles; b) precipitating of the element in the form of compounds; c) co-precipitating of the element with iron and manganese oxides; d) complexation with organic matter; e) incorporation into the crystal lattice of minerals. Currently, five phases are considered when studying the bioavailability of trace elements in sediments: a) the exchangeable phase, MgCl2 (causes saltiness change); b) leachable phase, (acetic acid causes pH change); c) reducible phase (hydroxylamine hydrochloride causes release of the bound metals linked to Fe and Mn oxides); d) oxidized phase, the peroxide hydrogen (cause the degradation of organic matter); e) the residual pseudo-phase, the aqua regia (cause release of metals associated to minerals). The first three phases are considered the most bioavailable. In the last two fractions, the metals are linked to sediment constituents and not bioavailable. The organic phase is relatively stable and the metal present therein are removed under oxidative conditions. Metals present in the pseudo-phase residual measure the degree of environmental pollution, since great amount of metals at this stage indicates a lower degree of pollution

  7. Uranium Speciation and Bioavailability in Aquatic Systems: An Overview

    Directory of Open Access Journals (Sweden)

    Scott J. Markich

    2002-01-01

    Full Text Available The speciation of uranium (U in relation to its bioavailability is reviewed for surface waters (fresh- and seawater and their sediments. A summary of available analytical and modeling techniques for determining U speciation is also presented. U(VI is the major form of U in oxic surface waters, while U(IV is the major form in anoxic waters. The bioavailability of U (i.e., its ability to bind to or traverse the cell surface of an organism is dependent on its speciation, or physicochemical form. U occurs in surface waters in a variety of physicochemical forms, including the free metal ion (U4+ or UO22+ and complexes with inorganic ligands (e.g., uranyl carbonate or uranyl phosphate, and humic substances (HS (e.g., uranyl fulvate in dissolved, colloidal, and/or particulate forms. Although the relationship between U speciation and bioavailability is complex, there is reasonable evidence to indicate that UO22+ and UO2OH+ are the major forms of U(VI available to organisms, rather than U in strong complexes (e.g., uranyl fulvate or adsorbed to colloidal and/or particulate matter. U(VI complexes with inorganic ligands (e.g., carbonate or phosphate and HS apparently reduce the bioavailability of U by reducing the activity of UO22+ and UO2OH+. The majority of studies have used the results from thermodynamic speciation modeling to support these conclusions. Time-resolved laser-induced fluorescence spectroscopy is the only analytical technique able to directly determine specific U species, but is limited in use to freshwaters of low pH and ionic strength. Nearly all of the available information relating the speciation of U to its bioavailability has been derived using simple, chemically defined experimental freshwaters, rather than natural waters. No data are available for estuarine or seawater. Furthermore, there are no available data on the relationship between U speciation and bioavailability in sediments. An understanding of this relationship has been

  8. Triple antioxidant SNEDDS formulation with enhanced oral bioavailability

    DEFF Research Database (Denmark)

    Tripathi, Shailja; Kushwah, Varun; Thanki, Kaushik;

    2016-01-01

    .3, respectively. DPPH scavenging assay showed comparable antioxidant activity of antioxidant loaded SNEDDS to free antioxidants combination. Furthermore, coumarin-6 loaded SNEDDS formulation showed rapid internalization within 1h of incubation by Caco-2 cells. Moreover, the pharmacokinetic studies in rats......The present study aimed to develop quercetin, resveratrol and genistein loaded self-nanoemulsifying drug delivery system (SNEDDS) by QbD approach in order to improve their oral bioavailability and antioxidant potential. The size and PDI of the optimized formulation were found to be ... for the optimized formulation and free antioxidant suspension were performed. SNEDDS have significantly increased the Cmax and area under curve (AUC) of all three antioxidants. The SNEDDS demonstrated ~4.27 fold enhancement in oral bioavailability of quercetin, ~1.5 fold in case of resveratrol and ~2.8 fold in case...

  9. Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing.

    Science.gov (United States)

    Barba, Francisco J; Nikmaram, Nooshin; Roohinejad, Shahin; Khelfa, Anissa; Zhu, Zhenzhou; Koubaa, Mohamed

    2016-01-01

    Glucosinolates are a large group of plant secondary metabolites with nutritional effects, and are mainly found in cruciferous plants. After ingestion, glucosinolates could be partially absorbed in their intact form through the gastrointestinal mucosa. However, the largest fraction is metabolized in the gut lumen. When cruciferous are consumed without processing, myrosinase enzyme present in these plants hydrolyzes the glucosinolates in the proximal part of the gastrointestinal tract to various metabolites, such as isothiocyanates, nitriles, oxazolidine-2-thiones, and indole-3-carbinols. When cruciferous are cooked before consumption, myrosinase is inactivated and glucosinolates transit to the colon where they are hydrolyzed by the intestinal microbiota. Numerous factors, such as storage time, temperature, and atmosphere packaging, along with inactivation processes of myrosinase are influencing the bioavailability of glucosinolates and their breakdown products. This review paper summarizes the assimilation, absorption, and elimination of these molecules, as well as the impact of processing on their bioavailability. PMID:27579302

  10. Overview on gastroretentive drug delivery systems for improving drug bioavailability.

    Science.gov (United States)

    Lopes, Carla M; Bettencourt, Catarina; Rossi, Alessandra; Buttini, Francesca; Barata, Pedro

    2016-08-20

    In recent decades, many efforts have been made in order to improve drug bioavailability after oral administration. Gastroretentive drug delivery systems are a good example; they emerged to enhance the bioavailability and effectiveness of drugs with a narrow absorption window in the upper gastrointestinal tract and/or to promote local activity in the stomach and duodenum. Several strategies are used to increase the gastric residence time, namely bioadhesive or mucoadhesive systems, expandable systems, high-density systems, floating systems, superporous hydrogels and magnetic systems. The present review highlights some of the drugs that can benefit from gastroretentive strategies, such as the factors that influence gastric retention time and the mechanism of action of gastroretentive systems, as well as their classification into single and multiple unit systems.

  11. Overview on gastroretentive drug delivery systems for improving drug bioavailability.

    Science.gov (United States)

    Lopes, Carla M; Bettencourt, Catarina; Rossi, Alessandra; Buttini, Francesca; Barata, Pedro

    2016-08-20

    In recent decades, many efforts have been made in order to improve drug bioavailability after oral administration. Gastroretentive drug delivery systems are a good example; they emerged to enhance the bioavailability and effectiveness of drugs with a narrow absorption window in the upper gastrointestinal tract and/or to promote local activity in the stomach and duodenum. Several strategies are used to increase the gastric residence time, namely bioadhesive or mucoadhesive systems, expandable systems, high-density systems, floating systems, superporous hydrogels and magnetic systems. The present review highlights some of the drugs that can benefit from gastroretentive strategies, such as the factors that influence gastric retention time and the mechanism of action of gastroretentive systems, as well as their classification into single and multiple unit systems. PMID:27173823

  12. Bioavailability of capsaicin and its implications for drug delivery.

    Science.gov (United States)

    Rollyson, William D; Stover, Cody A; Brown, Kathleen C; Perry, Haley E; Stevenson, Cathryn D; McNees, Christopher A; Ball, John G; Valentovic, Monica A; Dasgupta, Piyali

    2014-12-28

    The dietary compound capsaicin is responsible for the "hot and spicy" taste of chili peppers and pepper extracts. It is a valuable pharmacological agent with several therapeutic applications in controlling pain and inflammation. Emerging studies show that it displays potent anti-tumor activity in several human cancers. On a more basic research level, capsaicin has been used as a ligand to activate several types of ion-channel receptors. The pharmacological activity of capsaicin-like compounds is dependent on several factors like the dose, the route of administration and most importantly on its concentration at target tissues. The present review describes the current knowledge involving the metabolism and bioavailability of capsaicinoids in rodents and humans. Novel drug delivery strategies used to improve the bioavailability and therapeutic index of capsaicin are discussed in detail. The generation of novel capsaicin-mimetics and improved drug delivery methods will foster the hope of innovative applications of capsaicin in human disease. PMID:25307998

  13. The role of H2S bioavailability in endothelial dysfunction

    Science.gov (United States)

    Wang, Rui; Szabo, Csaba; Ichinose, Fumito; Ahmed, Asif; Whiteman, Matthew; Papapetropoulos, Andreas

    2015-01-01

    Endothelial dysfunction reflects pathophysiological changes in the phenotype and functions of endothelial cells that result from and/or contribute to a plethora of cardiovascular diseases. Here we review the role of hydrogen sulfide (H2S) in the pathogenesis of endothelial dysfunction, one of the fastest advanced and hottest research topics. Conventionally treated as an environment pollutant, H2S is also produced in endothelial cells and participates in the fine regulation of endothelial integrity and functions. Disturbed H2S bioavailability has been suggested to be a novel indicator of the progress and prognosis of endothelial dysfunction. Endothelial dysfunction appears to exhibit in different forms in different pathologies but therapeutics aimed at remedying the altered H2S bioavailability may benefit all. PMID:26071118

  14. Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing

    Science.gov (United States)

    Barba, Francisco J.; Nikmaram, Nooshin; Roohinejad, Shahin; Khelfa, Anissa; Zhu, Zhenzhou; Koubaa, Mohamed

    2016-01-01

    Glucosinolates are a large group of plant secondary metabolites with nutritional effects, and are mainly found in cruciferous plants. After ingestion, glucosinolates could be partially absorbed in their intact form through the gastrointestinal mucosa. However, the largest fraction is metabolized in the gut lumen. When cruciferous are consumed without processing, myrosinase enzyme present in these plants hydrolyzes the glucosinolates in the proximal part of the gastrointestinal tract to various metabolites, such as isothiocyanates, nitriles, oxazolidine-2-thiones, and indole-3-carbinols. When cruciferous are cooked before consumption, myrosinase is inactivated and glucosinolates transit to the colon where they are hydrolyzed by the intestinal microbiota. Numerous factors, such as storage time, temperature, and atmosphere packaging, along with inactivation processes of myrosinase are influencing the bioavailability of glucosinolates and their breakdown products. This review paper summarizes the assimilation, absorption, and elimination of these molecules, as well as the impact of processing on their bioavailability. PMID:27579302

  15. Metal bioavailability in smelter-impacted land systems

    Energy Technology Data Exchange (ETDEWEB)

    Abedin, J.; Spiers, G. [Laurentian Univ., Sudbury, ON (Canada). Centre for Environmental Monitoring

    2006-07-01

    Mining activity in Sudbury has led to extensive heavy metal pollution of soils in the region. While previous research has focused on determining the extent of metal contamination in the region, information on total concentrations of metal in soil is often not a good indicator of potential toxicity to plants and other living organisms. This paper presented the results of an investigation which used a dilution of LiNO{sub 3} to extract bioavailable fraction metals in soils from the region. Bioavailability studies are usually used to determine how metals can be desorbed, dissolved or dissociated from their host environment to become available for absorption by another organism. The purpose of this study was to determine anthropogenic influences in the concentrations of metals in the regional soils. The study used 256 soil samples that were collected using a randomized stratified sampling plan covering an area of 200 km by 200 km. Total metal concentration was estimated using an aqua regia extraction method. Results showed that the bioavailability of nickel (Ni), copper (Cu), manganese (Mn), lead (Pb), cobalt (Co), and selenium (Se) correlated with the total metal concentrations. The correlation coefficient values for all elements in the 5-10 cm samples were smaller than those observed in the 0-5 cm soil samples, which suggested that the upper horizons of the soil acted as a filter to prevent the translocation of aerosol particles to the deeper soil horizons. It was concluded that metals from the 0-5 cm and 5-10 cm layers of soils in the Sudbury region were associated with the Sudbury smelting complex. Enrichment was decreased in samples that were more distant from the complex, while maximum enrichment zones were within 15 km of the complex. Maximum bioavailability was observed in both the acid-impacted and non-impacted soils within the region. However, coarse-textured soils with lower pH values were not impacted. 65 refs., 3 tabs., 6 figs.

  16. Bioavailability of nanoemulsified conjugated linoleic acid for an antiobesity effect

    OpenAIRE

    Kim D; Park JH; Kweon DJ; Han GD

    2013-01-01

    Dongyeop Kim,1,3* Jin-Hong Park,2* Dae-Jun Kweon,2 Gi Dong Han11Department of Food Science and Technology, College of Natural Resources, Yeungnam University, Gyeongsan, Republic of Korea; 2BioHealth Convergence Center, Daegu Technopark, Daegu, Republic of Korea; 3Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan *These authors contributed equally to this workBackground: The aim of this study was to enhance the bioavailability of conjugated lin...

  17. Elemental bioavailability in nutrient solutions in relation to precipitation reactions

    OpenAIRE

    De Rijck, G; Schrevens, Eddie

    1998-01-01

    In hydroponic plant nutritional research, nutrient solutions can be considered as aqueous solutions of inorganic ions. In this aqueous solution, the ions are submitted to the laws of aquatic inorganic chemistry. This means that the ions are involved in the dynamic equilibria between complexation, dissociation, and precipitation reactions. These chemical reactions seriously impact elemental speciation and bioavailability. As a result, plant roots experience a different nutritional composition....

  18. Bioavailability of heavy metals in soils amended with sewage sludge

    OpenAIRE

    Morera Luzán, María Teresa; Echeverría Morrás, Jesús; Garrido Segovia, Julián José

    2002-01-01

    The recycling of sewage sludge to agricultural land results in the slow accumulation of potentially toxic heavy metals in soils. A greenhouse experiment was conducted to determine the bioavailability of Cu, Ni, Pb and Zn applied to soils in urban anaerobically stabilized sewage sludge. The soils were Lithic Haplumbrept (Lh), Calcixerollic Xerochrept (Cx1 and Cx2) and Paralithic Xerorthent (Px). Sunflower plants (Helianthus annuus L) were grown in. the soils following amendment with the slu...

  19. Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives

    Directory of Open Access Journals (Sweden)

    Laura Salvia-Trujillo

    2016-01-01

    Full Text Available The oral bioavailability of many hydrophobic bioactive compounds found in natural food products (such as vitamins and nutraceuticals in fruits and vegetables is relatively low due to their low bioaccessibility, chemical instability, or poor absorption. Most previous research has therefore focused on the design of delivery systems to incorporate isolated bioactive compounds into food products. However, a more sustainable and cost-effect approach to enhancing the functionality of bioactive compounds is to leave them within their natural environment, but specifically design excipient foods that enhance their bioavailability. Excipient foods typically do not have functionality themselves but they have the capacity to enhance the functionality of nutrients present in natural foods by altering their bioaccessibility, absorption, and/or chemical transformation. In this review article we present the use of excipient nanoemulsions for increasing the bioavailability of bioactive components from fruits and vegetables. Nanoemulsions present several advantages over other food systems for this application, such as the ability to incorporate hydrophilic, amphiphilic, and lipophilic excipient ingredients, high physical stability, and rapid gastrointestinal digestibility. The design, fabrication, and application of nanoemulsions as excipient foods will therefore be described in this article.

  20. Hologram QSAR model for the prediction of human oral bioavailability.

    Science.gov (United States)

    Moda, Tiago L; Montanari, Carlos A; Andricopulo, Adriano D

    2007-12-15

    A drug intended for use in humans should have an ideal balance of pharmacokinetics and safety, as well as potency and selectivity. Unfavorable pharmacokinetics can negatively affect the clinical development of many otherwise promising drug candidates. A variety of in silico ADME (absorption, distribution, metabolism, and excretion) models are receiving increased attention due to a better appreciation that pharmacokinetic properties should be considered in early phases of the drug discovery process. Human oral bioavailability is an important pharmacokinetic property, which is directly related to the amount of drug available in the systemic circulation to exert pharmacological and therapeutic effects. In the present work, hologram quantitative structure-activity relationships (HQSAR) were performed on a training set of 250 structurally diverse molecules with known human oral bioavailability. The most significant HQSAR model (q(2)=0.70, r(2)=0.93) was obtained using atoms, bond, connection, and chirality as fragment distinction. The predictive ability of the model was evaluated by an external test set containing 52 molecules not included in the training set, and the predicted values were in good agreement with the experimental values. The HQSAR model should be useful for the design of new drug candidates having increased bioavailability as well as in the process of chemical library design, virtual screening, and high-throughput screening.

  1. Bioavailability of zinc in runoff water from roofing materials.

    Science.gov (United States)

    Heijerick, D G; Janssen, C R; Karlèn, C; Wallinder, I Odnevall; Leygraf, C

    2002-06-01

    Corrosion and runoff from zinc-coated materials and outdoor structures is an important source for the dispersion of zinc in the environment. Being part of a large inter-disciplinary research project, this study presents the bioavailability of zinc in runoff water immediately after release from the surface of 15 different commercially available zinc-based materials exposed to the urban environment of Stockholm, Sweden. Runoff water was analysed chemically and evaluated for its possible environmental impact, using both a biosensor test with the bacteria Alcaligenes eutrophus (Biomet) and the conventional 72 h growth inhibition test with the green alga Raphidocelis subcapitata. Chemical speciation modelling revealed that most zinc (94.3-99.9%) was present as the free Zn ion, the most bioavailable speciation form. These findings were confirmed by the results of the biosensor test (Biomet) which indicated that all zinc was indeed bioavailable. Analysis of the ecotoxicity data also suggested that the observed toxic effects were due to the presence of Zn2+ ions. Finally, regression analysis showed that, for this type of runoff samples, the rapid screening biosensor was capable of predicting (a) the total amount of zinc present in the runoff samples (R2 of 0.93-0.98; p < 0.05) and (b) the observed 72 h-EbC50s (R2 of 0.69-0.97; p < 0.05). PMID:12137040

  2. Nicotianamine, a novel enhancer of rice iron bioavailability to humans.

    Directory of Open Access Journals (Sweden)

    Luqing Zheng

    Full Text Available BACKGROUND: Polished rice is a staple food for over 50% of the world's population, but contains little bioavailable iron (Fe to meet human needs. Thus, biofortifying the rice grain with novel promoters or enhancers of Fe utilization would be one of the most effective strategies to prevent the high prevalence of Fe deficiency and iron deficiency anemia in the developing world. METHODOLOGY/PRINCIPAL FINDINGS: We transformed an elite rice line cultivated in Southern China with the rice nicotianamine synthase gene (OsNAS1 fused to a rice glutelin promoter. Endosperm overexpression of OsNAS1 resulted in a significant increase in nicotianamine (NA concentrations in both unpolished and polished grain. Bioavailability of Fe from the high NA grain, as measured by ferritin synthesis in an in vitro Caco-2 cell model that simulates the human digestive system, was twice as much as that of the control line. When added at 1:1 molar ratio to ferrous Fe in the cell system, NA was twice as effective when compared to ascorbic acid (one of the most potent known enhancers of Fe bioavailability in promoting more ferritin synthesis. CONCLUSIONS: Our data demonstrated that NA is a novel and effective promoter of iron utilization. Biofortifying polished rice with this compound has great potential in combating global human iron deficiency in people dependent on rice for their sustenance.

  3. Assessment of the bioavailability of cadmium in Jamaican soils.

    Science.gov (United States)

    Spence, Adrian; Hanson, Richard E; Grant, Charles N; Hoo Fung, Leslie; Rattray, Robin

    2014-07-01

    Extraordinary geogenic concentrations of cadmium (Cd) have been reported for some Jamaican soils. However, the bioavailability of the metal in these soils remains unknown. Here, the bioavailability of Cd in selected Jamaican soils was investigated through the determination of total and sequentially extractable concentrations in paired soil-plant (yam; Dioscorea sp.) samples (n = 24), using neutron activation analysis and atomic absorption spectroscopy as primary analytical techniques. Our results indicate that total soil Cd varied widely (2.2-148.7 mg kg(-1)), and on average, total extractable Cd accounted for ~55 % of the total soil Cd. The exchangeable and oxidizable species averaged 1.5 and 6.4 % of the total Cd, respectively, and, based on Spearman analysis, are the best predictors of yam Cd. There is also good evidence to suggest that variation in the bioavailability of the metal is in part controlled by the geochemical characteristics of the soils analyzed and is best explained by pH, cation exchange capacity (CEC) and organic matter content (% LOI).

  4. Bioavailability of mercury in East Fork Poplar Creek soils

    International Nuclear Information System (INIS)

    The initial risk assessment for the East Fork Poplar Creek (EFPC) floodplain in Oak Ridge, Tennessee, a superfund site heavily contaminated with mercury, was based upon a reference dose for mercuric chloride, a soluble mercury compound not expected to be present in the floodplain, which is frequently saturated with water. Previous investigations had suggested mercury in the EFPC floodplain was less soluble and therefore less bioavailable than mercuric chloride, possibly making the results of the risk assessment unduly conservative. A bioavailability study, designed to measure the amount of mercury available for absorption in a child's digestive tract, the most critical risk endpoint and pathway, was performed on twenty soils from the EFPC floodplain. The average percentage of mercury released during the study for the twenty soils was 5.3%, compared to 100% of the compound mercuric chloride subjected to the same conditions. Alteration of the procedure to test additional conditions possible during soil digestion did not appreciably alter the results. Therefore, use of a reference dose for mercuric chloride in the EFPC risk assessment without inclusion of a corresponding bioavailability factor may be unduly conservative

  5. Proceedings: ISEA Bioavailability Symposium, Durham, North Carolina Use of InVitro Bioaccessibility/Relative Bioavailability Estimates for Metals in Regulatory Settings: What is Needed?

    Science.gov (United States)

    Oral ingestion of soil and dust is a key pathway for human exposures to metal and metalloid contaminants. It is widely recognized that the site-specific bioavailability of metals in soil and dust may be reduced relative to the metal bioavailability in media such as water and food...

  6. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    International Nuclear Information System (INIS)

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl2 extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  7. Budgets for total and bioavailable nitrogen in the North Sea-Baltic Sea transition zone

    DEFF Research Database (Denmark)

    Jørgensen, L.; Markager, Stiig; Maar, Marie

    Budget calculations show that bioavailability of dissolved organic nitrogen (DON) is a key factor in management of eutrophication in open marine areas as it governs the importance of local loadings versus nitrogen received from adjacent seas and hence if eutrophication is a local or regional...... it is essential to know how much of the nitrogen comes from local sources and how much is imported for the adjacent seas. We have therefore made nitrogen budgets for both total nitrogen and bioavailable nitrogen covering the area. Bioavailable nitrogen consists of inorganic N, particulate organic N...... and the bioavailable fraction of DON. Since DON constitutes by far the largest pool of nitrogen, assessment of the bioavailability of DON becomes the most important parameter in the budget. Hence bioavailability of DON also becomes a key issue for management of coastal areas, as it determinates to what extent...

  8. Research progress on berberine with a special focus on its oral bioavailability.

    Science.gov (United States)

    Liu, Chang-Shun; Zheng, Yu-Rong; Zhang, Ying-Feng; Long, Xiao-Ying

    2016-03-01

    The natural product berberine (BBR) has become a potential drug in the treatment of diabetes, hyperlipidemia, and cancer. However, the oral delivery of BBR is challenged by its poor bioavailability. It is necessary to improve the oral bioavailability of BBR before it can be used in many clinical applications. Understanding the pharmacokinetic characteristics of BBR will enable the development of suitable formulas that have improved oral bioavailability. The key considerations for BBR are how to enhance the drug absorption and to avoid the intestinal first-pass effect. This review summarizes the pharmacological activities of BBR and analyzes the factors that lead to its poor oral bioavailability. In particular, the therapeutic potential of BBR in new indications from the aspect of oral bioavailability is discussed. In conclusion, BBR is a promising drug candidate for metabolic disorders and cancer but faces considerable challenges due to its poor oral bioavailability. PMID:26851175

  9. ENHANCEMENT OF ORAL BIOAVAILABILITY OF LIPOPHILLIC DRUGS FROMSELF-MICROEMULSIFYING DRUG DELIVERY SYSTEM (SMEDDS)

    OpenAIRE

    GUPTA ROOP N1, GUPTA RAKESH AND RATHORE GARVENDRA SINGH*

    2009-01-01

    Approximately 40 per cent of new drug candidates have poor water solubility and the oral delivery of such drugs isfrequently associated with implications of low bioavailability, high intra and inter-subject variability, and lack of doseproportionality. Bioavailability problem of lipophillic drugs can be solved by formation of Self-Micro Emulsifying DrugDelivery System (SMEDDS). SMEDDS appears to be a unique and industrially feasible approach to overcome theproblem of low oral bioavailability ...

  10. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils.

    Science.gov (United States)

    Khan, K Asaduzzaman; Stroud, Jacqueline L; Zhu, Yong-Guan; McGrath, Steve P; Zhao, Fang-Jie

    2010-11-15

    Some paddy soils in the Bengal delta are contaminated with arsenic (As) due to irrigation of As-laden groundwater, which may lead to yield losses and elevated As transfer to the food chain. Whether these soils have a higher As bioavailability than other soils containing either geogenic As or contaminated by mining activities was investigated in a pot experiment. Fourteen soils varying in the source and the degree (4-138 mg As kg 1⁻¹) of As contamination were collected, 10 from Bangladeshi paddy fields (contaminated by irrigation water) and two each from China and the UK (geogenic or mining impacted), for comparison. Bangladeshi soils had higher percentages of the total As extractable by ammonium phosphate (specifically sorbed As) than other soils and also released more As into the porewater upon flooding. Porewater As concentrations increased with increasing soil As concentrations more steeply in Bangladeshi soils, with arsenite being the dominant As species. Rice growth and grain yield decreased markedly in Bangladeshi soils containing > 13 mg As kg 1⁻¹, but not in the other soils. Phosphate-extractable or porewater As was a better indicator of As bioavailability than total soil As. Rice straw As concentrations increased with increasing soil As concentrations; however, As phytotoxicity appeared to result in lower grain As concentrations. The relative proportions of inorganic As and dimethylarsinic acid (DMA) in grain varied among soils, and the percentage DMA was larger in greenhouse-grown plants than grain samples collected from the paddy fields of the same soil and the same rice cultivar, indicating a strong environmental influence on As species found in rice grain. This study shows that Bangladeshi paddy soils contaminated by irrigation had a higher As bioavailability than other soils, resulting in As phytotoxicity in rice and substantial yield losses. PMID:20977268

  11. Increasing intracellular bioavailable copper selectively targets prostate cancer cells.

    Science.gov (United States)

    Cater, Michael A; Pearson, Helen B; Wolyniec, Kamil; Klaver, Paul; Bilandzic, Maree; Paterson, Brett M; Bush, Ashley I; Humbert, Patrick O; La Fontaine, Sharon; Donnelly, Paul S; Haupt, Ygal

    2013-07-19

    The therapeutic efficacy of two bis(thiosemicarbazonato) copper complexes, glyoxalbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(gtsm)] and diacetylbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(atsm)], for the treatment of prostate cancer was assessed in cell culture and animal models. Distinctively, copper dissociates intracellularly from Cu(II)(gtsm) but is retained by Cu(II)(atsm). We further demonstrated that intracellular H2gtsm [reduced Cu(II)(gtsm)] continues to redistribute copper into a bioavailable (exchangeable) pool. Both Cu(II)(gtsm) and Cu(II)(atsm) selectively kill transformed (hyperplastic and carcinoma) prostate cell lines but, importantly, do not affect the viability of primary prostate epithelial cells. Increasing extracellular copper concentrations enhanced the therapeutic capacity of both Cu(II)(gtsm) and Cu(II)(atsm), and their ligands (H2gtsm and H2atsm) were toxic only toward cancerous prostate cells when combined with copper. Treatment of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model with Cu(II)(gtsm) (2.5 mg/kg) significantly reduced prostate cancer burden (∼70%) and severity (grade), while treatment with Cu(II)(atsm) (30 mg/kg) was ineffective at the given dose. However, Cu(II)(gtsm) caused mild kidney toxicity in the mice, associated primarily with interstitial nephritis and luminal distention. Mechanistically, we demonstrated that Cu(II)(gtsm) inhibits proteasomal chymotrypsin-like activity, a feature further established as being common to copper-ionophores that increase intracellular bioavailable copper. We have demonstrated that increasing intracellular bioavailable copper can selectively kill cancerous prostate cells in vitro and in vivo and have revealed the potential for bis(thiosemicarbazone) copper complexes to be developed as therapeutics for prostate cancer.

  12. Nanosuspension for enhancement of oral bioavailability of felodipine

    Science.gov (United States)

    Sahu, Bhanu P.; Das, Malay K.

    2013-01-01

    The oral bioavailability of poorly water soluble drug can be improved using nanosuspension. Nanosuspensions are fine dispersion of uniform-sized solid particles in an aqueous vehicle. The present work is aimed at the formulation and evaluation of nanosuspension of felodipine, a poorly water soluble antihypertensive drug. The nanosuspension of felodipine may increase the dissolution rate of drug to improve its oral bioavailability. The nanosuspensions were prepared by nanoprecipitation alone and in combination with ultrasonnication method using ethanol as solvent and water as antisolvent. The prepared nanosuspensions were characterised for particle size, zeta potential, polydispersity index, Scanning electron microscopy (SEM), Differential scanning calorimetry (DSC), X-ray diffraction (XRD) pattern and release behaviour. The effect of variable concentration of drug and stabiliser, ultrasonnication, and solvent to antisolvent ratio on the physical, morphological and dissolution properties of felodipine were studied. The average particle size of felodipine nanoparticles was found to be in the range of 60-330 nm. It was further confirmed by SEM photograph. The particle size varies with increase in concentration of drug and stabiliser. The preparations showed negative zeta potential and polydispersity index in the range of 0.3-0.8. DSC and XRD studies indicated that the crystallinity of precipitated felodipine nanoparticles was markedly lowered than the pure drug. The dissolution of prepared felodipine nanoparticles markedly increased as compared to the original drug. The dissolution profiles of nanosuspension formulation showed up to 79.67 % release in 4 h. It may be concluded that the nanoprecipitation with ultrasonnication have potential to formulate homogenous nanosuspensions with uniform-sized stable nanoparticles of felodipine. The prepared nanosuspension showed enhanced dissolution which may lead to enhanced oral bioavailability of felodipine.

  13. Study of paracetamol 1-g oral solution bioavailability.

    Science.gov (United States)

    Farre, M; Roset, P N; Abanades, S; Menoyo, E; Alvarez, Y; Rovira, M; Baena, A

    2008-01-01

    The aim of this work was to assess paracetamol bioavailability after administering 1 g in oral solution. Eighteen healthy volunteers were selected for this open-label study. A total of 15.4 ml of Gelocatil Oral Solution (Laboratorios Gelos, S.L.), corresponding to 1 g of paracetamol, were administered to fasting subjects. Blood samples were collected at 0 min, 10 min, 20 min, 30 min, 45 min, 1 h, 1.5 h, 2 h, 3 h, 4 h, 6 h, 8 h, 10 h and 12 h. Paracetamol plasma concentrations were determined by reverse-phase high-performance liquid chromatography. The study was conducted without deviations from protocol. Pharmacokinetic data from 18 subjects were allowed for estimating fast and high-paracetamol bioavailability: t(max) 20 min (10-45) [median (range)], C(max) 24. 3 mg/l (6.5) [mean (standard deviation)], AUC(0-t) 64.0 mg h/l (16.1) and AUC(0-00) 68.1 mg h/l (17.9). These results are comparable to those described for Gelocatil Oral Solution given at a 650 mg dose and for immediate release Gelocatil 650 mg tablets. Absorption speed was very fast, similar to that described for other oral-solution formulations, which provides an immediate onset of pain and fever relief. The results of this study show suitable bioavailability for 1 g Gelocatil Oral Solution, with fast-absorption speed that provides an immediate onset of pain and fever relief. PMID:18389096

  14. Potential bioavailability of mercury in humus-coated clay minerals.

    Science.gov (United States)

    Zhu, Daiwen; Zhong, Huan

    2015-10-01

    It is well-known that both clay and organic matter in soils play a key role in mercury biogeochemistry, while their combined effect is less studied. In this study, kaolinite, vermiculite, and montmorillonite were coated or not with humus, and spiked with inorganic mercury (IHg) or methylmercury (MeHg). The potential bioavailability of mercury to plants or deposit-feeders was assessed by CaCl2 or bovine serum albumin (BSA) extraction. For uncoated clay, IHg or MeHg extraction was generally lower in montmorillonite, due to its greater number of functional groups. Humus coating increased partitioning of IHg (0.5%-13.7%) and MeHg (0.8%-52.9%) in clay, because clay-sorbed humus provided more strong binding sites for mercury. Furthermore, humus coating led to a decrease in IHg (3.0%-59.8% for CaCl2 and 2.1%-5.0% for BSA) and MeHg (8.9%-74.6% for CaCl2 and 0.5%-8.2% for BSA) extraction, due to strong binding between mercury and clay-sorbed humus. Among various humus-coated clay particles, mercury extraction by CaCl2 (mainly through cation exchange) was lowest in humus-coated vermiculite, explained by the strong binding between humus and vermiculite. The inhibitory effect of humus on mercury bioavailability was also evidenced by the negative relationship between mercury extraction by CaCl2 and mercury in the organo-complexed fraction. In contrast, extraction of mercury by BSA (principally through complexation) was lowest in humus-coated montmorillonite. This was because BSA itself could be extensively sorbed onto montmorillonite. Results suggested that humus-coated clay could substantially decrease the potential bioavailability of mercury in soils, which should be considered when assessing risk in mercury-contaminated soils.

  15. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.uk [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)

    2011-04-15

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: > Isotope ratios can be used to evaluate chemical methods to predict bioavailability. > Chemical methods predicted bioavailability better than exhaustive extractions. > Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  16. Bioavailability of arsenic in soil: pilot study results and design considerations.

    Science.gov (United States)

    Stanek, Edward J; Calabrese, Edward J; Barnes, Ramond M; Danku, John M C; Zhou, Ying; Kostecki, Paul T; Zillioux, Edward

    2010-11-01

    Bioavailability of arsenic (As) from ingested soil is estimated in a two-period experimental study involving 11 subjects/period. In the first period, a 7-day mass-balance study measured As in food/beverages, urine, and stool to estimate bioavailability of As in food and beverages. Food/beverage As bioavailability (percentage ingested that is not in stool samples) is estimated as 91.0% with a 95% confidence interval given by (84.1%, 97.9%). In the second 7-day study period, subjects were placed on an As suppression diet. In the evening of day 2, each subject ingested a capsule containing 0.63 g of soil, including approximately 111.7 µg of soil-As. The bioavailability estimate of As from food and beverage ingestion during the first 2 days of the second period was 89.7%. Bioavailability of soil-As was estimated over the 5-day period following capsule ingestion, accounting for estimated bioavailability of food/beverage As. Assuming analytic recovery rates of As from combined soil and food/beverage samples are equal, soil-As bioavailability is estimated as 48.7% (95% CI [36.2%, 61.3%]). Relative to bioavailability of As from food/beverage sources, soil-As is estimated to be 54.3% (95% CI [40.3%, 68.4%]) as bioavailable.

  17. Iodine speciation and bioavailability in edible seaweeds harvested in Galicia

    OpenAIRE

    Romarís Hortas, Vanessa

    2013-01-01

    This work has been developed in the context of a region with a recent industry of seaweeds for human consumption. It is well known that algae are one of the organisms containing the highest concentrations of iodine (I), an essential trace element for humans. Nevertheless there is still a lack of information about the nature of the iodinated compounds present in algae and on their bioavailability. The main objectives of this PhD thesis were to study in depth the I content from edible seaweeds ...

  18. Chemical and biological factors affecting bioavailability of contaminants in seawater

    International Nuclear Information System (INIS)

    This paper discusses the influence that salinity has on the bioavailability of the two largest classes of contaminants, trace metals and organic compounds will be discussed. Although data on contaminant toxicity will be used to draw inferences about chemical availability, this discussion will focus on the properties that contaminants are likely to exhibit in waters of varying salinities. In addition, information on physiological changes that are affected by salinity will be used to illustrate how biological effects can alter the apparent availability of contaminants

  19. Effect of Attapulgite on The Oral Bioavailability of Ciprofloxacin

    OpenAIRE

    Zamrotul Izzah; Veronica Gratia; Toetik Aryani; Suharjono

    2013-01-01

    This study was aimed to determine the effect of attapulgite on the bioavailability of a single orallyadministered ciprofloxacin. Six New Zealand white rabbits received each of the following treatments in a randomized, three-way crossover sequence, separated by a 7-day washout period: (i) ciprofloxacin (23 mg/kgBW) alone; (ii) ciprofloxacin (23 mg/kgBW) given simultaneously with attapulgite (28 mg/ kgBW); (iii) ciprofloxacin (23 mg/kgBW) given 2 hours after attapulgite (28 mg/kgBW). Blood s...

  20. Evaluation of bioavailability of food fortificants using stable isotopic methods

    International Nuclear Information System (INIS)

    Because of the complex biochemical processes affecting the bioavailability of micronutrients, it is critical to understand regional factors that affect the design of a nutritional supplementation strategy. These factors include the prevalence of multiple micronutrient deficiencies, the presence of inhibitors in indigenous foods, interactions among co-fortificants, and coexisting medical diseases affecting absorptive capacity. Each of these can lessen the bioavailability, and thus the effectiveness, of supplements. Stable isotopic studies can help determine the fate of ingested micronutrients; therefore, they can evaluate the efficacy of fortification programs, provide evidence of poor bioavailability, and point to potential remedies. This has been the focus of several recent investigations by the Baylor Stable Isotope Laboratory and a proposed project in Sri Lanka. In Indonesia an efficacy study evaluated the current program of iron fortification of flour and the proposed addition of zinc. Three groups of 30 children ages 4 to 8 were given supplemented flour (iron only, iron plus zinc sulfate, iron plus zinc oxide). Each group exhibited iron absorption of greater than 10%, but concomitant zinc administration decreased iron bioavailability. This decrease was only statistically significant for zinc sulfate, however. Zinc absorption exceeded 20% in both the zinc oxide and zinc sulfate groups. In Peru four groups of one-year old children were given supplemented rolls containing iron, iron plus vitamin A, iron plus zinc, and iron plus zinc plus vitamin A. Isotopic analysis demonstrated that iron absorption was significantly better with the addition of vitamin A, marginally worse when zinc was included, and nearly equivalent when the three supplements were given in combination. Another recent study in Peru demonstrated the efficacy of a beverage fortified with multiple micronutrients in school age children. This investigation showed that balanced micronutrient

  1. Relative Bioavailability of Chlorothiazide from Mucoadhesive Compacts in Pigs

    OpenAIRE

    Neelam, Karunakar; Mahalingam, Ravichandran; Birudaraj, Raj; Alfredson, Tom; Anne, Pratap; Li, Xiaoling; Jasti, Bhaskara R.

    2009-01-01

    The relative bioavailability of chlorothiazide from mucoadhesive polymeric compacts is compared to commercial oral suspension in pigs. A single-dose randomized study was conducted in 12 healthy pigs that are 9–10 weeks old. After overnight fasting, pigs were divided into two groups of six animals. To the first group, a reference product containing 50 mg of chlorothiazide suspension, and in the second group, test product (mucoadhesive compacts) chlorothiazide (50 mg) was administered with 75 m...

  2. Determinants of oral bioavailability of soil-borne contaminants

    OpenAIRE

    Oomen, Agnes Guadalupe

    2001-01-01

    Children ingest soil, either accidentally via hand-to-mouth behavior or deliberately. In this manner, a child ingests on average between 50 and 200 mg soil/day, although amounts of as much as 60 g/day have also been observed. Hence, soil ingestion can be a main route of exposure to soil-borne contaminants to children. To estimate the health risk associated to this exposure route, and to assess intervention values for contaminants in soils, one needs to know the oral bioavailability of the soi...

  3. Ageing of vanadium in soils and consequences for bioavailability

    OpenAIRE

    Baken, Stijn; Larsson, M. A.; Gustafsson, J. P; Cubadda, F.; Smolders, Erik

    2012-01-01

    Total vanadium (V) concentrations in soils commonly range from 20 to 120 mg kg-1. Vanadium added directly to soils is more soluble than geogenic V and can be phytotoxic at doses within this range of background concentrations. However, it is unknown how slow sorption reactions change the fate and effect of added V in soils. This study addresses the changes in V solubility, toxicity and bioavailability in soils over time. Four soils were amended with pentavalent V in the form of a soluble vanad...

  4. Bioavailability of seocalcitol I: Relating solubility in biorelevant media with oral bioavailability in rats--effect of medium and long chain triglycerides

    DEFF Research Database (Denmark)

    Grove, Mette; Pedersen, Gitte P; Nielsen, Jeanet L;

    2005-01-01

    the influence of fatty acid chain length on the in vitro solubility of seocalcitol. The same solubility of seocalcitol was found in media containing either MC-LP or LC-LP. The bioavailability after oral administration of seocalcitol dissolved in medium chain triglyceride (MCT), long chain triglyceride (LCT......), and a reference formulation containing propylene glycol (PG) was studied in vivo in rats. The lipid formulations showed a twofold increase in bioavailability compared with the reference formulation, indicating positive effects of lipids on the bioavailability reflecting a better solubility in the intestine...

  5. Vanadium bioavailability in soils amended with blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Maja A., E-mail: maja.larsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Baken, Stijn, E-mail: stijn.baken@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Smolders, Erik, E-mail: erik.smolders@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Cubadda, Francesco, E-mail: francesco.cubadda@iss.it [Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161 (Italy); Gustafsson, Jon Petter, E-mail: jon-petter.gustafsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Division of Land and Water Resources Engineering, KTH Royal Institute of Technology, Brinellvägen 28, 100 44 Stockholm (Sweden)

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg{sup −1}) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  6. Optimized nanoemulsifying systems with enhanced bioavailability of carvedilol.

    Science.gov (United States)

    Singh, Bhupinder; Singh, Ramandeep; Bandyopadhyay, Shantanu; Kapil, Rishi; Garg, Babita

    2013-01-01

    The current studies entail a novel approach of formulating the solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of carvedilol solely using rational blends of lipidic and emulsifying excipients without using equipment-intensive techniques and/or inert porous carriers. Delineating the nanoemulsion regions, the amounts of Capmul MCM (i.e., lipid) and Nikkol HCO 50 (i.e., emulgent) were selected as the critical factors for systematically formulating the optimized S-SNEDDS employing face centered cube design. The optimized formulation (mean globule size: 40.8 nm) indicated marked improvement in drug release profile vis-à-vis pure drug and marketed formulation. Augmentation in the values of C(max) (134.2%) and AUC (85.2%) indicated significant enhancement in the rate and extent of bioavailability by the S-SNEDDS formulation compared to pure drug. In situ SPIP studies ascribed the significant enhancement in absorptivity parameters of SNEDDS formulations to transport through the lymphatic system and reduced P-gp efflux. Successful establishment of various levels of in vitro/in vivo correlations (IVIVC's) substantiated the judicious choice of the in vitro dissolution milieu for simulating the in vivo conditions. The optimized formulation was found to be quite stable during six months of study period. The current investigations, therefore, report the successful development of systematically optimized S-SNEDDS with enhanced bioavailability potential of carvedilol. PMID:23010056

  7. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects.

    Science.gov (United States)

    Brglez Mojzer, Eva; Knez Hrnčič, Maša; Škerget, Mojca; Knez, Željko; Bren, Urban

    2016-01-01

    Being secondary plant metabolites, polyphenols represent a large and diverse group of substances abundantly present in a majority of fruits, herbs and vegetables. The current contribution is focused on their bioavailability, antioxidative and anticarcinogenic properties. An overview of extraction methods is also given, with supercritical fluid extraction highlighted as a promising eco-friendly alternative providing exceptional separation and protection from degradation of unstable polyphenols. The protective role of polyphenols against reactive oxygen and nitrogen species, UV light, plant pathogens, parasites and predators results in several beneficial biological activities giving rise to prophylaxis or possibly even to a cure for several prevailing human diseases, especially various cancer types. Omnipresence, specificity of the response and the absence of or low toxicity are crucial advantages of polyphenols as anticancer agents. The main problem represents their low bioavailability and rapid metabolism. One of the promising solutions lies in nanoformulation of polyphenols that prevents their degradation and thus enables significantly higher concentrations to reach the target cells. Another, more practiced, solution is the use of mixtures of various polyphenols that bring synergistic effects, resulting in lowering of the required therapeutic dose and in multitargeted action. The combination of polyphenols with existing drugs and therapies also shows promising results and significantly reduces their toxicity. PMID:27409600

  8. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects

    Directory of Open Access Journals (Sweden)

    Eva Brglez Mojzer

    2016-07-01

    Full Text Available Being secondary plant metabolites, polyphenols represent a large and diverse group of substances abundantly present in a majority of fruits, herbs and vegetables. The current contribution is focused on their bioavailability, antioxidative and anticarcinogenic properties. An overview of extraction methods is also given, with supercritical fluid extraction highlighted as a promising eco-friendly alternative providing exceptional separation and protection from degradation of unstable polyphenols. The protective role of polyphenols against reactive oxygen and nitrogen species, UV light, plant pathogens, parasites and predators results in several beneficial biological activities giving rise to prophylaxis or possibly even to a cure for several prevailing human diseases, especially various cancer types. Omnipresence, specificity of the response and the absence of or low toxicity are crucial advantages of polyphenols as anticancer agents. The main problem represents their low bioavailability and rapid metabolism. One of the promising solutions lies in nanoformulation of polyphenols that prevents their degradation and thus enables significantly higher concentrations to reach the target cells. Another, more practiced, solution is the use of mixtures of various polyphenols that bring synergistic effects, resulting in lowering of the required therapeutic dose and in multitargeted action. The combination of polyphenols with existing drugs and therapies also shows promising results and significantly reduces their toxicity.

  9. Pharmaceutical and pharmacological approaches for bioavailability enhancement of etoposide

    Indian Academy of Sciences (India)

    Ishtiyaq Ahmad Najar; Rakesh Kamal Johri

    2014-03-01

    Etoposide, a semi-synthetic derivative of podophyllotoxin, is one of the most active and useful antineoplastic agent used routinely in firstline combination chemotherapy of testicular cancer, small-cell lung cancer and non-Hodgkin’s lymphoma. Etoposide displays narrow therapeutic index, erratic pharmacokinetics and dose individualization that needs to be achieved for overcoming inter- and intra-patient variability (25–80%), so as to maintain proper drug exposure within a therapeutic range. Etoposide posses high plasma protein binding (97%) and is degraded via complex metabolic pathways. The main pharmacokinetic determinants of etoposide are still not completely defined in order to optimize the pharmaco-therapeutic parameters including dose, therapeutic schedule and route of administration. Much research has been done to determine drug–drug and herb–drug interactions for improving the bioavailability of etoposide. The present article gives insight on pharmaceutical and pharmacological attempts made from time to time to overcome the erratic inter- and intra-patient variability for improving the bioavailability of etoposide.

  10. Bioavailable copper modulates oxidative phosphorylation and growth of tumors.

    Science.gov (United States)

    Ishida, Seiko; Andreux, Pénélope; Poitry-Yamate, Carole; Auwerx, Johan; Hanahan, Douglas

    2013-11-26

    Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment.

  11. Functionalized Polymers for Enhance Oral Bioavailability of Sensitive Molecules

    Directory of Open Access Journals (Sweden)

    Yolanda Alvarado Pérez

    2016-06-01

    Full Text Available Currently, many sensitive molecules have been studied for effective oral administration. These substances are biologically active compounds that mainly suffer early degradation in the gastrointestinal tract (GIT and physicochemical instability, inactivation and poor solubility and permeability. The sensibility of the biomolecules has limited their oral administration in the body and today is an important research topic to achieve desired effects in medicine field. Under this perspective, various enhancement approaches have been studied as alternatives to increase their oral bioavailability. Some of these strategies include functionalized polymers to provide specific useful benefits as protection to the intestinal tract by preventing its degradation by stomach enzymes, to increase their absorption, permeability, stability, and to make a proper release in the GIT. Due to specific chemical groups, shapes and sizes, morphologies, mechanical properties, and degradation, recent advances in functionalized polymers have opened the door to great possibilities to improve the physicochemical characteristics of these biopharmaceuticals. Today, many biomolecules are found in basic studies, preclinical steps, and others are late stage clinical development. This review summarizes the contribution of functionalized polymers to enhance oral bioavailability of sensitive molecules and their application status in medicine for different diseases. Future trends of these polymers and their possible uses to achieve different formulation goals for oral delivery are also covered in this manuscript.

  12. Content and bioavailability of trace elements in vegetarian diets.

    Science.gov (United States)

    Gibson, R S

    1994-05-01

    This review compares the content and major food sources of copper, manganese, selenium, and zinc in vegetarian and omnivorous diets. Interactions affecting trace element bioavailability and their impact on the trace element status of vegetarians are discussed. Adult vegetarian diets often have a lower zinc and selenium content but a higher copper and manganese content compared with omnivorous diets. Cereals are the primary sources of copper, manganese, and selenium in most diets and the major source of zinc in many vegetarian diets; flesh floods are the primary source of zinc and secondary source of selenium in omnivorous diets. Despite the apparent lower bioavailability of zinc, copper, manganese, and selenium in vegetarian diets because of the high contents of phytic acid and/or dietary fiber and the low content of flesh foods in the diet, the trace element status of most adult vegetarians appears to be adequate. Children, however, appear to be more vulnerable to suboptimal zinc status, presumably because of their high zinc requirements for growth and their bodies' failure to adapt to a vegetarian diet by increased absorption of dietary zinc.

  13. Bioavailability and toxicity of dietborne copper and zinc to fish

    Science.gov (United States)

    Clearwater, Susan J.; Farag, Aida M.; Meyer, J.S.

    2002-01-01

    To date, most researchers have used dietborne metal concentrations rather than daily doses to define metal exposure and this has resulted in contradictory data within and between fish species. It has also resulted in the impression that high concentrations of dietborne Cu and Zn (e.g.>900 mg kg−1 dry diet) are relatively non-toxic to fish. We re-analyzed existing data using rations and dietborne metal concentrations and used daily dose, species and life stage to define the toxicity of dietborne Cu and Zn to fish. Partly because of insufficient information we were unable to find consistent relationships between metal toxicity in laboratory-prepared diets and any other factor including, supplemented metal compound (e.g. CuSO4 or CuCl2), duration of metal exposure, diet type (i.e. practical, purified or live diets), or water quality (flow rates, temperature, hardness, pH, alkalinity). For laboratory-prepared diets, dietborne Cu toxicity occurred at daily doses of >1 mg kg−1 body weight d−1 for channel catfish (Ictalurus punctatus), 1–15 mg kg−1 body weight d−1 (depending on life stage) for Atlantic salmon (Salmo salar) and 35–45 mg kg−1 body weight d−1 for rainbow trout (Oncorhynchus mykiss). We found that dietborne Zn toxicity has not yet been demonstrated in rainbow trout or turbot (Scophthalmus maximus) probably because these species have been exposed to relatively low doses of metal (<90 mg kg−1 body weight d−1) and effects on growth and reproduction have not been analyzed. However, daily doses of 9–12 mg Zn kg−1 body weight d−1 in laboratory-prepared diets were toxic to three other species, carp Cyprinus carpio, Nile tilapia Oreochromis niloticus, and guppy Poecilia reticulata. Limited research indicates that biological incorporation of Cu or Zn into a natural diet can either increase or decrease metal bioavailability, and the relationship between bioavailability and toxicity remains unclear. We have resolved the contradictory data

  14. Bioavailability and antioxidant effects of olive oil phenols in humans: a review

    NARCIS (Netherlands)

    Vissers, M.N.; Katan, M.B.; Zock, P.L.

    2004-01-01

    Objective: We reviewed the bioavailability and antioxidant effects of phenols from extra virgin olive oil. Search strategy: We searched the MEDLINE database for the years 1966 - 2002. To review the bioavailability of olive oil phenols, we selected animal and human studies that studied the absorption

  15. Advances In Assessing Bioavailability Of Metal(Loid)s In Contaminated Soils

    Science.gov (United States)

    The term bioavailability has many different meanings across various disciplines of toxicology and pharmacology. Often bioavailability is concerned with human health aspects such as in the case of lead (Pb) ingestion by children. However, some of the most contaminated sites are ...

  16. Bioavailability of Food Folates is 80% of that of folic acid 1-3

    NARCIS (Netherlands)

    Winkels, R.M.; Brouwer, I.A.; Siebelink, E.; Katan, M.B.; Verhoef, P.

    2007-01-01

    Background: The bioavailability of natural food folates is lower than that of synthetic folic acid, but no agreement exists as to the extent of the difference. Objective: In a 4-wk dietary intervention study, we determined the aggregate bioavailability of food folates from fruit, vegetables, and liv

  17. Geochemical partitioning of Cu and Ni in mangrove sediments: Relationships with their bioavailability

    International Nuclear Information System (INIS)

    Highlights: • Metal speciation controls bioavailability in mangrove ecosystem. • Bioavailability of Ni was controlled by Fe/Mn-oxyhydroxide and organic phases • Bioavailability of Cu in mangrove roots was controlled by organic phase in the sediments. • Cu interacts more strongly with organic phases than Ni in mangrove sediment. - Abstract: Sequential extraction study was performed to determine the concentrations of non-residual metal-complexes in the mangrove sediments from the Divar Island, (west coast of India). Accumulation of metal in the mangrove roots (from the same location) was determined and used as an indicator of bioavailability of metal. An attempt was made to establish a mechanistic linkage between the non-residual metal complexes and their bioavailability in the mangrove system. The non-residual fractions of Cu and Ni were mainly associated with Fe/Mn oxyhydroxide and organic phases in the sediments. A part of these metal fractions were bioavailable in the system. These two phases were the major controlling factors for Ni speciation and their bioavailability in the studied sediments. However, Cu was found to interact more strongly with the organic phases than Ni in the mangrove sediments. Organic phases in the mangrove sediments acted as buffer to control the speciation and bioavailability of Cu in the system

  18. Bioavailability of iron, zinc, folic acid, and vitamin A from fortified maize.

    Science.gov (United States)

    Moretti, Diego; Biebinger, Ralf; Bruins, Maaike J; Hoeft, Birgit; Kraemer, Klaus

    2014-04-01

    Several strategies appear suitable to improve iron and zinc bioavailability from fortified maize, and fortification per se will increase the intake of bioavailable iron and zinc. Corn masa flour or whole maize should be fortified with sodium iron ethylenediaminetetraacetate (NaFeEDTA), ferrous fumarate, or ferrous sulfate, and degermed corn flour should be fortified with ferrous sulfate or ferrous fumarate. The choice of zinc fortificant appears to have a limited impact on zinc bioavailability. Phytic acid is a major inhibitor of both iron and zinc absorption. Degermination at the mill will reduce phytic acid content, and degermed maize appears to be a suitable vehicle for iron and zinc fortification. Enzymatic phytate degradation may be a suitable home-based technique to enhance the bioavailability of iron and zinc from fortified maize. Bioavailability experiments with low phytic acid-containing maize varieties have suggested an improved zinc bioavailability compared to wild-type counterparts. The bioavailability of folic acid from maize porridge was reported to be slightly higher than from baked wheat bread. The bioavailability of vitamin A provided as encapsulated retinyl esters is generally high and is typically not strongly influenced by the food matrix, but has not been fully investigated in maize.

  19. EFFECT OF SOIL PROPERTIES ON LEAD BIOAVAILABILITY AND TOXCITY TO EARTHWORMS

    Science.gov (United States)

    Soil properties are important factors modifying metal bioavailability to ecological receptors. Twenty-one soils with a wide range of soil properties were amended with a single concentration of Pb (2000 mg/kg) to determine the effects of soil properties on Pb bioavailability and ...

  20. High absolute bioavailability of methylene blue given as an aqueous oral formulation

    OpenAIRE

    Walter-Sack, Ingeborg; Rengelshausen, Jens; Oberwittler, Heike; Burhenne, Juergen; Mueller, Olaf; Meissner, Peter; Mikus, Gerd

    2008-01-01

    Abstract Purpose Methylene blue (MB) has recently been reevaluated for malaria treatment. With the aim of excluding treatment failures due to low bioavailability, we have investigated the absolute bioavailability of MB given as an aqueous oral formulation and its interaction with chloroquine (CQ). Methods A phase...

  1. Bioavailability of Anthocyanins from Purple Carrot Juice: Effects of Acylation and Plant Matrix

    Science.gov (United States)

    Bioavailability of anthocyanins from juiced purple carrots was investigated through a human feeding study. Ten healthy adults consumed three doses of purple carrot juice, and bioavailability was assessed by appearance of anthocyanins in plasma for 8 hours after the dose. Doses were 50 mL, 150 mL, ...

  2. Nanoparticle Formulation Increases Oral Bioavailability of Poorly Soluble Drugs: Approaches Experimental Evidences and Theory

    OpenAIRE

    Jia, Lee

    2005-01-01

    The increasing frequency at which poorly soluble new chemical entities are being discovered raises concerns in the pharmaceutical industry about drugability associated with erratic dissolution and low bioavailability of these hydrophobic compounds. Nanonization provides a plausible pharmaceutical basis for enhancing oral bioavailability and therapeutic effectiveness of these compounds by increasing their surface area. This paper surveys methods available to pharmaceutical manufacturing nanopa...

  3. Low Thermal Pretreatment as Method for Increasing the Bioavailability of Organic Matters in Domestic Mixed Sludge

    OpenAIRE

    Seswoya Roslinda; Abdul Karim Ahmad Tarmizi

    2016-01-01

    In practice, primary and secondary sludge are fed into anaerobic digestion. However, the microbial cell exists in secondary sludge are an unfavorable substrate for biodegradation. Thermal pretreatment is proved to increase the bioavailability of organic and improve the biodegradation subsequently. During low thermal pretreatment, both intracellular (within the microbial cell) and extracellular (within the polymeric network) materials were extracted. This process increases the bioavailability ...

  4. Comparative bioavailability study of two brands of prazosin-containing tablets in healthy volunteers.

    Science.gov (United States)

    Guelen, P J; Janssen, T J; Lam, M H; Vree, T B; Exler, P S

    1990-10-19

    The bioavailability of two prazosin formulations was studied in 12 healthy volunteers. 1 Subject left the study. Based on the statistical tests of the pharmacokinetic parameters of prazosin in 11 volunteers, such as t 1/2, Cmax, tmax and AUC, it could be concluded that both preparations had comparable bioavailabilities. PMID:2255586

  5. 21 CFR 320.29 - Analytical methods for an in vivo bioavailability or bioequivalence study.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Analytical methods for an in vivo bioavailability... Analytical methods for an in vivo bioavailability or bioequivalence study. (a) The analytical method used in... ingredient or therapeutic moiety, or its active metabolite(s), achieved in the body. (b) When the...

  6. Remediation of a Mercury-Contaminated Industrial Soil Using Bioavailable Contaminant Stripping

    Institute of Scientific and Technical Information of China (English)

    F.PEDRON; G.PETRUZZELLI; M.BARBAFIERI; E.TASSI

    2013-01-01

    The method to remove bioavailable amounts of heavy metals from a contaminated soil by using plants is defined as bioavailable contaminant stripping (BCS) and could safely be applied if the soil's long-term ability to replenish the bioavailable pool is known.The aim of this study was to evaluate the ability of three common plant species selected,Brassica juncea,Poa annua,and Helianthus annus,to remove bioavailable amounts of mercury (Hg) from a contaminated industrial soil containing 15.1 mg kg-1 Hg.Trials were carried out under greenhouse conditions using pots (mesocosms).According to the precautionary principle,we modified the BCS remediation approach by adding a new step,in which mercury bioavailability was increased by the addition of a strong mobilizing agent,ammonium thiosulphate,(NH4)2S2O3,to obtain an estimate of the likely long-term bioavailable Hg pool.The modified BCS remediation approach was called enhanced bioavailable contaminant stripping (EBCS).After one growth cycle,nearly all the bioavailable mercury (95.7%) was removed and the metal remaining in the soil was considered inert since it was neither extractable by (NH4)2S2O3 nor taken up by plants during a second growth cycle.The results demonstrated that EBCS appeared promising since it removed the most dangerous metal forms while substantially shortening the cleanup time.

  7. Bioavailability and Bioaccumulation of Metal-Based Engineered Nanomaterials in Aquatic Environments

    DEFF Research Database (Denmark)

    Luoma, Samuel; Khan, Farhan R.; Croteau, Marie-Noelle

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs...

  8. Oral bioavailability of moxifloxacin after Roux-en-Y gastric bypass surgery

    NARCIS (Netherlands)

    De Smet, Julie; Colin, Pieter; De Paepe, Peter; Ruige, Johannes; Batens, Helene; Van Nieuwenhove, Yves; Vogelaers, Dirk; Blot, Stijn; Van Bocxlaer, Jan; Van Bortel, Luc M.; Boussery, Koen

    2012-01-01

    Objectives: Roux-en-Y gastric bypass surgery is the most commonly performed procedure for the treatment of morbid obesity. This anatomical alteration may affect the absorption and consequently the bioavailability of oral drugs. This study aims to investigate the oral bioavailability of moxifloxacin

  9. Application of a mer-lux biosensor for estimating bioavailable mercury in soil

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Sørensen, Søren Johannes; Turner, Ralph R.;

    2000-01-01

    A previously described bioassay using a mer-lux gene fusion for detection of bioavailable mercury was applied for the estimation of the bioavailable fraction of mercury in soil. The bioavailable fraction is defined here as being part of the water leachable fraction. Due to masking of light emission...... responses. The utility of the mer-lux biosensor assay was tested by relating measurements of bioavailable and total mercury to the response of the soil microbial community to mercury exposure. Two different soil types (an agricultural and a beech forest soil) were spiked with 2.5 µg Hg(II) g-1 in microcosms...... in resistance or diversity. This study showed that the bioassay using the mer-lux biosensor is a useful and sensitive tool for estimation of bioavailable mercury in soil....

  10. In vitro bioavailability of iron from the heme analogue sodium iron chlorophyllin.

    Science.gov (United States)

    Miret, Silvia; Tascioglu, Serpil; van der Burg, Monique; Frenken, Leon; Klaffke, Werner

    2010-01-27

    The use of heme analogues from vegetable origin could provide an alternative iron source of potentially high bioavailability. Sodium iron chlorophyllin is a water-soluble semisynthetic chlorophyll derivative where the magnesium in the porphyrin ring has been substituted by iron. We have used an in vitro model that combines gastric and intestinal digestion followed by intestinal iron uptake in Caco-2 cells to determine the bioavailability of iron from sodium iron chlorophyllin. Our results demonstrate that sodium iron chlorophyllin is stable under simulated gastrointestinal conditions and is able to deliver bioavailable iron to Caco-2 cells. Similar to the heme, the bioavailability of iron from sodium iron chlorophyllin is dependent on the food matrix, and it was inhibited by calcium. Potentially, sodium iron chlorophyllin could be used as an iron fortificant from vegetable origin with high bioavailability.

  11. Bioavailability of prednisolone in rabbits: Comparison of a highviscosity gel and an aqueous suspension - single- and repeated applications

    DEFF Research Database (Denmark)

    Johansen, Sven; Rask-Pedersen, Eva; Prause, J.U.

    1994-01-01

    Øjenpatologi, carbomer, vehicle, fusidic acid, ophthalmic bioavailability, rabbit, aqueous suspension, prednisolone acetate, sulfacetamide sodium......Øjenpatologi, carbomer, vehicle, fusidic acid, ophthalmic bioavailability, rabbit, aqueous suspension, prednisolone acetate, sulfacetamide sodium...

  12. Bioavailability of cadmium from infant diets in newborn rats

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, G.; Oskarsson, A. [Dept. of Pharmacology and Toxicology, Swedish University of Agricultural Sciences, Uppsala (Sweden); Petersson Grawe, K. [Toxicology Div., National Food Administration, Uppsala (Sweden)

    2001-11-01

    Infants are exposed to higher levels of cadmium (Cd) from infant and follow-on formulas than from breast milk. We studied the bioavailability of {sup 109}CdCl{sub 2} from cows' milk formula, soy formula, wheat/oat/milk formula, wholemeal/milk formula and water in 11-day-old rat pups. The pups received a single oral dose of one diet labelled with {sup 109}Cd, 0.1 or 0.3 mg Cd/kg body weight. After 2 or 24 h or 4, 9 or 12 days the fractional retention of {sup 109}Cd in the whole body, in segments of rinsed small intestine and in tissue was measured in a gamma counter. Pups receiving {sup 109}Cd in water or cows' milk formula had the highest mean whole-body retention. It ranged from 67% of the dose in the water group to 52% in the wholemeal/milk formula group 4 days after dosing. The retention of {sup 109}Cd in the rinsed small intestine was significantly higher in the water group and the cows' milk formula group than in the cereal-based formula groups at 24 h and 4 days after dosing. It was still high in all groups on day 9, ranging from 26 to 11%. Initially most of the {sup 109}Cd was retained in the duodenum but by day 4 it had moved further down into the jejunum. In the liver, the highest and lowest retention on day 4 was 16 permille and 3 permille of the dose in the water group and wholemeal/milk formula group, respectively. In the kidney, {sup 109}Cd was still increasing 12 days after exposure in all groups. Whole-body retention and tissue levels were higher than previously reported in adult animals. The lower bioavailability of {sup 109}Cd from the cereal-based formulas compared to water and cows' milk formula on the longer survival times is most likely explained by Cd binding to dietary fibre and phytic acid in the cereal-based formulas reducing the intestinal binding and decreasing the bioavailability of Cd. The high retention of {sup 109}Cd in the small intestine, leading to a prolonged absorption period, emphasizes the importance of

  13. Chemodynamics of chromium reduction in soils: Implications to bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Choppala, Girish [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia); Bolan, Nanthi, E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia); Seshadri, Balaji [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia)

    2013-10-15

    Highlights: • Examined the effects of sorption, pH and C sources on Cr(VI) reduction and toxicity. • The rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and pH. • The proton dynamics in Cr(VI) reduction was assessed in relation to remediation. • A novel black carbon showed the highest reduction rate of Cr(VI) in soils. • Black carbon decreased the bioavailability and phytotoxicity of Cr(VI) in soils. -- Abstract: Chromium toxicity in soils can be mitigated by reduction of Cr(VI) to Cr(III) which is influenced by the presence of free Cr(VI) species in soil solution, and the supply of protons and electrons. In this study, the effects of Cr(VI) adsorption (i.e. availability of free Cr(VI) species in soil solution), soil pH (i.e. supply of protons) and three electron donor carbon sources [black carbon (BC), chicken manure biochar (CMB) and cow manure (CM)] on the reduction of Cr(VI) to Cr(III) in soils were investigated. The results indicated that the rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and soil pH, which is attributed to decreased supply of free Cr(VI) ions and protons, respectively. Among the three different amendments tested, BC showed the highest rate of Cr(VI) reduction followed by CM and CMB. Furthermore, addition of BC, CM and CMB decreased the bioavailability of Cr(VI) in contaminated soils. The high efficiency of BC on Cr(VI) reduction was due to the electron donor's functional groups such as phenolic, hydroxyl, carbonyl and amides. The study demonstrated that free form of Cr(VI) ions in soil solution and carbon amendments enriched with acidic functional groups favored the reduction of Cr(VI), thereby mitigating its bioavailability and toxicity in contaminated soils.

  14. Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    C. S. Hassler

    2009-10-01

    Full Text Available Iron (Fe is known to be mostly bound to organic ligands and to limit primary productivity in the Southern Ocean. It is thus important to investigate the bioavailability of organically bound Fe. In this study, we used four phytoplankton species of the Southern Ocean (Phaeocystis sp., Chaetoceros sp., Fragilariopsis kerguelensis and Thalassiosira antarctica Comber to measure the influence of various organic ligands on Fe solubility and bioavailability. Short-term uptake Fe:C ratios were inversely related to the surface area to volume ratios of the phytoplankton. The ratio of extracellular to intracellular Fe is used to discuss the relative importance of diffusive supply and uptake to control Fe bioavailability. The effect of excess organic ligands on Fe bioavailability cannot be solely explained by their effect on Fe solubility. For most strains studied, the bioavailability of Fe can be enhanced relative to inorganic Fe in the presence of porphyrin, catecholate siderophore and saccharides whereas it was decreased in presence of hydroxamate siderophore and organic amine. For Thalassiosira, iron bioavailability was not affected by the presence of porphyrin, catecholate siderophore and saccharides. The enhancement of Fe bioavailability in presence of saccharides is presented as the result from both the formation of bioavailable (or chemically labile organic form of Fe and the stabilisation of Fe within the dissolved phase. Given the ubiquitous presence of saccharides in the ocean, these compounds might represent an important factor to control the basal level of soluble and bioavailable Fe. Results show that the use of model phytoplankton is promising to improve mechanistic understanding of Fe bioavailability and primary productivity in HNLC regions of the ocean.

  15. Long-term changes in cadmium bioavailability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Hamon, R.E. [Univ. of Adelaide, Urrbrae, South Australia (Australia). Dept. of Soil Science]|[Cooperative Research Centre for Soil and Land Management, Glen Osmond, South Australia (Australia); McLaughlin, M.J.; Naidu, R. [Cooperative Research Centre for Soil and Land Management, Glen Osmond, South Australia (Australia)]|[CSIRO Div. of Land and Water, Glen Osmond, South Australia (Australia); Correll, R. [CSIRO Div. of Land and Water, Glen Osmond, South Australia (Australia)

    1998-12-01

    A study was conducted to examine changes in total and phytoavailable Cd in a soil that had received inputs of Cd due to fertilization with single superphosphate (SSP) at various rates since 1948. Accumulation of Cd in the soil was highly correlated to the application rate of SSP. No evidence was found to indicate offsite movement of Cd, either through horizontal transfer or via leaching through the profile. Increases in soil Cd led to an increase in the Cd content of wheat that was grown in the soil. However, using a radioisotope dilution technique, a significant proportion of the added Cd was found to exist in a non-bioavailable pool in the soil. A model was developed which estimated that Cd was being fixed in this soil at a rate of 1--1.5% of the total added Cd per year.

  16. Overview of metabolism and bioavailability enhancement of polyphenols.

    Science.gov (United States)

    Lewandowska, Urszula; Szewczyk, Karolina; Hrabec, Elżbieta; Janecka, Anna; Gorlach, Sylwia

    2013-12-18

    A proper diet is one of major factors contributing to good health and is directly related to general condition of the organism. Phenolic compounds are abundant in foods and beverages (fresh and processed fruits and vegetables, leguminous plants, cereals, herbs, spices, tea, coffee, wine, beer) and their pleiotropic biological activities result in numerous health beneficial effects. On the other hand, high reactivity and very large diversity in terms of structure and molecular weight renders polyphenols one of the most difficult groups of compounds to investigate, as evidenced by ambiguous and sometimes contradictory results of many studies. Furthermore, phenolics undergo metabolic transformations, which significantly change their biological activities. Here, we discuss some aspects of metabolism and absorption of phenolic compounds. On the basis of information reported in the literature as well as in summaries of clinical trials and patent applications, we also give an overview of strategies for enhancing their bioavailability.

  17. Environmental risk assessment of metals: tools for incorporating bioavailability.

    Science.gov (United States)

    Janssen, C R; Heijerick, D G; De Schamphelaere, K A C; Allen, H E

    2003-03-01

    In this paper, some of the main processes and parameters which affect metal bioavailability and toxicity in the aquatic environment and its implications for metal risk assessment procedures will be discussed. It has become clear that, besides chemical processes (speciation, complexation), attention should also be given to physiological aspects for predicting metal toxicity. The development of biotic ligand models (BLMs), which combine speciation models with more biologically oriented models (e.g. GSIM), has offered an answer to this need. The various BLMs which have been developed and/or refined for a number of metals (e.g. Cu, Ag, Zn) and species (algae, crustaceans, fish) are discussed here. Finally, the potential of the BLM approach is illustrated through a theoretical exercise in which chronic zinc toxicity to Daphnia magna is predicted in three regions, taking the physico-chemical characteristics of these areas into account.

  18. The Impact of Polymeric Nanoencapsulation on the Bioavailability of Lutein

    Science.gov (United States)

    Kamil, Alison

    Lutein, a fat-soluble xanthophyll, contributes partially to the health benefits from consuming plant foods. Like all dietary carotenoids, lutein has a low bioavailability. In addition to increasing the intake of lutein-rich foods to enhance lutein status, delivery of lutein in polymeric nanoparticles (NP) presents a novel approach to enhancing lutein bioavailability. The overall research objective of this project was to investigate, in rats, the impact of nanoencapsulation using poly(lactic-co-glycolic acid) (PLGA) on the pharmacokinetics of lutein. We also used an in vitro cell culture approach utilizing human epithelial colorectal adenocarcinoma (Caco-2) cells grown in both conventional (CONV) and permeable support (PS) systems to investigate the impact of PLGA-NP on the absorption of lutein in intestinal cells. In chapter one, we compared the efficacy of lutein absorption in vitro using Caco-2 cells grown in both CONV and PS systems. We further examined the role of the micelle, the physiological vehicle for lutein within the small intestine, on its intestinal absorption in vitro compared to an organic solvent, ethanol, which is safe and consumed by humans. The finding from this study demonstrated that the CONV system displayed a larger efficacy of lutein uptake by Caco-2 cells. Further, in the PS system, micelle components appeared to facilitate more effective intestinal secretion of lutein. These findings suggest that lutein uptake by Caco-2 cells is subject to the influence of culturing system (CONV vs. PS) and delivery vehicle (ethanol vs. micelle). Chapter two examined the impact of PLGA-NP in rats on lutein pharmacokinetics in plasma and distribution in selected tissues as compared to free lutein. We also investigated the effect of nanoencapsulation on the absorption of lutein in intestinal cells compared to a more physiological vehicle, the micelle, using the PS method. In addition, we explored the need of additional micelles for the ultimate absorption of

  19. New data on the bioavailability of bread magnesium.

    Science.gov (United States)

    Lopez, H W; Leenhardt, F; Remesy, C

    2004-12-01

    Whole cereal products are the main source of magnesium in human nutrition. Even if wholemeal bread is an important source of Mg, it also contains considerable amounts of phytic acid (PA), a natural chelator that lowers the absorption of trace elements such as Fe or Zn as well as Ca or Mg in cereal products. Significant Mg bioavailability improvement in bread could be supplied by the choice of raw materials and the baking processes of cereals. Improvement in the Mg content of wheat grain was proved possible by traditional plant selection. Bread making using sourdough improves the nutritional properties of bread by reducing the amounts of phytic acid and phytate breakdown, which is mainly explained by the acidity level in the sourdough process that promotes greater efficiency in the wheat phytase activity. A slight acidification due to sourdough effectively reduces the phytate content and improves Mg bioavaibility.

  20. Assessing biochar's ability to reduce bioavailability of aminocyclopyrachlor in soils

    International Nuclear Information System (INIS)

    Aminocyclopyrachlor is a pyrimidine carboxylic acid herbicide used to control broadleaf weeds and brush. Amending soil with activated charcoal is recommended to prevent off-site transport of aminocyclopyrachlor and non-target plant damage. We used the batch-equilibrium method to determine the concentration of aminocyclopyrachlor in a pseudo-steady state with biochar, soil, and biochar-soil systems (5 kg ha−1–7.27 × 105 kg ha−1). - Highlights: • Aminocyclopyrachlor is mobile in three Minnesota soils. • Biochar amendments had limited use for aminocyclopyrachlor remediation in soil. • Two biochar amendments consistently reduced the aqueous-phase herbicide. • Biochar inputs would be very high and not feasible for field-scale remediation. - This was the first study to assess the use of biochar as a remediation tool for reducing bioavailable aminocyclopyrachlor in the liquid phase soil systems

  1. Microbial bioavailability regulates organic matter preservation in marine sediments

    Directory of Open Access Journals (Sweden)

    K. A. Koho

    2012-09-01

    Full Text Available Burial of organic matter (OM plays an important role in marine sediments, linking the short-term, biological carbon cycle with the long-term, geological subsurface cycle. It is well established that low-oxygen conditions promote organic carbon burial in marine sediments. However, the mechanism remains enigmatic. Here we report biochemical quality, microbial degradability, OM preservation and accumulation along an oxygen gradient in the Indian Ocean. Our results show that more OM, and of biochemically higher quality, accumulates under low oxygen conditions. Nevertheless, microbial degradability does not correlate with the biochemical quality of OM. This decoupling of OM biochemical quality and microbial degradability, or bioavailability, violates the ruling paradigm that higher quality implies higher microbial processing. The inhibition of bacterial OM remineralisation may play an important role in the burial of organic matter in marine sediments and formation of oil source rocks.

  2. Bioavailability of energy-effluent materials in coastal ecosystems

    International Nuclear Information System (INIS)

    An attempt is made to study the long-term effects of effluents from coastal and offshore nuclear power plants. The original intent of the program was to integrate approaches in chemistry, ocean transport, and biological uptake to quantify the variables that regulate biological availability of energy-effluent materials. Initial work was focused on the fate and effects of copper. In later research, the authors examined the basic environmental variables controlling the bioavailability of energy-related contaminants. They investigated how factors such as dissolved organic compounds, suspended particles, and sediment binding affected chemical speciation and how chemical speciation, in turn, influenced the availability of metals and radionuclides to marine invertebrates. They developed a hydrodynamic model to predict sediment and contaminant transport, and they quantified the bioconcentration of synthetic-fuel residuals in plankton

  3. Quantitative assessment of radiocaesium bioavailability in forest soils

    International Nuclear Information System (INIS)

    A method for quantitative characterisation of the radiocaesium availability to plants in forest ecosystems has been developed. For this purpose an expression has been proposed to calculate the radiocaesium availability factor in soils, which is a combination of key soil characteristics: radiocaesium exchangeability, exchangeable calcium in soil and effective selectivity coefficient. The experimental dependencies of the radiocaesium soil to plant concentration factors for fern and bilberry, on the availability factor calculated by the above equation were satisfactory described by linear function. The advantage of this method to characterise bioavailability of radiocaesium and to estimate site-specific values of concentration factor is that the necessary soil characteristics may be taken from the reference literature, evaluated by experts or determined with a simple experimental procedure. The method can be used in development of a radioecological geographic information systems. (orig.)

  4. Oral absorption and bioavailability of flumequine in veal calves.

    Science.gov (United States)

    Mevius, D J; Breukink, H J; Jansen, T; Guelen, P J; de Grève, B

    1989-10-01

    The oral absorption and bioavailability of flumequine was studied in 1-, 5- and 18-week-old calves following intravenous and oral administration of different formulations of flumequine (Flumix, Flumix C and pure flumequine). Increasing age had a negative influence on the Cmax after the administration of Flumix, based on a larger VD in the older calves. The Cmax decreased from 5.02 +/- 1.46 micrograms/ml in the first week to 3.28 +/- 0.42 micrograms/ml in the 18th week. Adding colistin sulfate to the flumequine formulation and administring pure flumequine mixed with milk replacer had a negative effect on the Cmax of flumequine after oral administration of 5 and 10 mg/kg body weight. The bioavailability of the orally administered flumequine formulations was 100% in all cases except after the administration of Flumix C, for which it was 75.9 +/- 18.2%. The urinary recovery of flumequine after intravenous injection of a 10% solution varied from 35.2 +/- 2.3% for Group B, to 41.2 +/- 6.3% for Group C. The dosage of 5 mg/kg body weight Flumix twice daily in 1-week-old veal calves is sufficient to reach therapeutic plasma concentrations, based on a MIC value of 0.8 micrograms/ml of the target bacteria. In older calves it is advisable to increase the dosage 7.5 or 10 mg/kg body weight every 12 hours. In combination with colistin sulfate it is also advisable to increase the dosage slightly because of the negative effect of the colistin sulfate on the Cmax of flumequine. PMID:2603356

  5. BIOAVAILABILITY AND PHARMACOKINETICS OF ANASTROZOLE IN HEALTHY MALE VOLUNTEERS

    Institute of Scientific and Technical Information of China (English)

    安富荣; 崔岚; 刘晓琰; 王平全; 祝德秋; 曹惠明

    2002-01-01

    Objective To evaluate bioavailability and pharmacokinetics of domestic and imported anastrozole tablets. Methods Twenty Chinese healthy male volunteers were enrolled in a randomized crossover study with a single oral dose of 2mg of the two formulations respectively. The anastrozole in plasma was measured by gas chromatography with electron-capture detection. The linear range was 1. 325 ~ 106ng /ml plasma. The extraction recovery rates for plasma concentration of 5.3, 21.2 and 53. Ong/ml were 76.8% ,87.0% and 78.7%, respectively. Inter-day and intra-day precisions of the method were < 9%. Area under concentration-time curve ( AUCo t) , maximum plasma concentration (Cmax) and reach peak time (Tmax) were evaluated by variance analysis and two one-side t-test . Results A two-compartment model was adopted in anastrozole plasma concentration-time data analysis. The main pharmacokinetic parameters of domestic and imported anastrozloe tablets such as Cmax , Tmax, AUCo - t and T1/2β were (36.5 ± 6.9)ng/ml and (35.6 ± 9.4)ng/ml, (1.56-±0.41)hand(1.53 ±0.49)h, (1403.6 ± 321.2)ng'h/mland (1371.6±329.4)ng'h/mi, (42.57 ± 10.15)h and (43.41 ± 8.59)h, respectively, and there were no significant differences between the two formulations. Conclusion Domestic and imported anastrozole tablets were of bioequivalence.The relative bioavailability of the domestic tablet was (102.7 ± 5.6)%.

  6. ENHANCEMENT OF BIOAVAILABILITY THROUGH INCREASE IN DRUG PERMEATION, STABILITY AND RETENTION TIME

    Directory of Open Access Journals (Sweden)

    Vishal Sachdeva

    2013-06-01

    Full Text Available The rate and extent to which an unchanged drug reaches the systemic circulation is called as bioavailability (BA. Bioavailability, a subcategory of absorption is one of the principal pharmacokinetic parameter determined for an active substance form a pharmaceutical product. It also indicates the fractional extent to which a dose of drug reaches its site of action or biological fluid from which the drug has access to its site of action. Physical properties of drug, drug formulation, route of administration, gastric emptying rate etc. are several factors affect the bioavailability of drug from its drug product. Poor solubility, enzymatic and transporters barrier, drug stability and short retention of the drug in stomach due to peristaltic movement are several factors decrease the bioavailability of the drug. This review deals with the bioavailability improvements techniques from poor permeation, lesser stability and short retention of the drug in stomach. Lipid based formulations; ion pairing and use of permeation enhancer are different methods to enhance the bioavailability through increase in permeation. Enteric coating, complexation and metabolism inhibitors lead to increase in drug stability. Bioadhesive polymers in formulation improve the gastro retention time serve as improved bioavailable product.

  7. Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils.

    Directory of Open Access Journals (Sweden)

    Youngdae Yoon

    Full Text Available It is important to have tools to measure the bioavailability to assess the risks of pollutants because the bioavailability is defined as the portions of pollutants showing the biological effects on living organisms. This study described the construction of tunable Escherichia coli whole-cell bioreporter (WCB using the promoter region of zinc-inducible operon and its application on contaminated soils. It was verified that this WCB system showed specific and sensitive responses to cadmium rather than zinc in the experimental conditions. It was inferred that Cd(II associates stronger with ZntR, a regulatory protein of zinc-inducible operon, than other metal ions. Moreover, the expression of reporter genes, egfp and mcherry, were proportional to the concentration of cadmium, thereby being a quantitative sensor to monitor bioavailable cadmium. The capability to determine bioavailable cadmium was verified with Cd(II amended LUFA soils, and then the applicability on environmental systems was investigated with field soils collected from smelter area in Korea before and after soil-washing. The total amount of cadmium was decreased after soil washing, while the bioavailability was increased. Consequently, it would be valuable to have tools to assess bioavailability and the effectiveness of soil remediation should be evaluated in the aspect of bioavailability as well as removal efficiency.

  8. Geochemical partitioning of Cu and Ni in mangrove sediments: Relationships with their bioavailability

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Ramteke, D.; Chakraborty, S.

    sediments. However, Cu was found to interact more strongly with the organic phases than Ni in the mangrove sediments. Organic phases in the mangrove sediments acted as buffer to control the speciation and bioavailability of Cu in the system....

  9. Chemical composition and effects of micronized corn bran on iron bioavailability in rats

    Directory of Open Access Journals (Sweden)

    Gilson Irineu de Oliveira Junior

    2014-09-01

    Full Text Available The degermination of corn grains by dry milling generates 5% of a fibrous residue. After segregation and micronization, corn bran becomes a potential source of dietary fiber consumption. However, its effect on iron bioavailability has not been reported in the literature. The objective of the present study was to determine the nutritional composition of corn bran and its effects on iron bioavailability using the hemoglobin depletion-repletion method in rats. The animals were divided into two groups: cellulose (control and corn bran (experimental. The bran had high content of total dietary fiber, especially the insoluble fraction, and low phytate content. Hemoglobin uptake did not differ between groups at the end of repletion period, and the iron relative bioavailability value of the corn bran diet was 104% in comparison to that of the control group. The product evaluated proved to be a potential source of dietary fiber and it showed no negative effects on iron bioavailability.

  10. Comparative pharmacokinetics and bioavailability of tapentadol following oral administration of immediate- and prolonged-release formulations

    NARCIS (Netherlands)

    Gohler, K.; Brett, M.; Smit, J.W.A.; Rengelshausen, J.; Terlinden, R.

    2013-01-01

    OBJECTIVE: To evaluate the bioavailability and pharmacokinetics of orally administered tapentadol immediate release (IR) compared with tapentadol prolonged release (PR). METHODS: Three randomized, open-label, crossover studies were conducted in subjects under fasted conditions. Studies 1 and 2 deter

  11. Bioavailability of water-soluble CoQ10 in beagle dogs.

    Science.gov (United States)

    Prosek, Mirko; Butinar, Janos; Lukanc, Barbara; Fir, Maja Milivojevic; Milivojevic, Luka; Krizman, Mitja; Smidovnik, Andrej

    2008-08-01

    The bioavailability of a novel water-soluble inclusion complex of CoQ10, prepared in our laboratory was determined and compared with the bioavailability of commercially available oil-based form of CoQ10. Experimental work consisted of single dose comparative bioavailability study on seven beagle dogs, with a 14-day washout period between treatments. Identification and quantification of CoQ10 was done with HPLC-MS method using positive APCI ionization and SIM mode, M+ m/z 863.4. The bioavailability results confirm that the water-soluble formulation has nearly three times higher AUC(0-48 h), two times higher Cmax, and Tmax is shortened from 6 to 4 h. PMID:18495407

  12. Bioavailability and bioaccessibility of petroleum hydrocarbons in contaminated site soils

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, G.; Angell, R.; Strive, E.; Ma, W. [Stantec Consulting Ltd., Surrey, BC (Canada)

    2010-07-01

    Although the bioavailability and/or bioaccessibility of contaminants in soil can be measured by various ecological receptors, the methods that are suitable for metals do not necessarily work well for petroleum hydrocarbons (PHCs). In this study, several biological and chemical methods were used at various PHC contaminated sites to find the most fitting method for different soil types in terms of predicting the biological responses of organisms as measured by standard single species toxicity tests. Organisms such as plants, earthworms, and collembolan were exposed to soils with different PHC concentrations. Multiple endpoints were then measured to evaluate the biological responses. The exposure concentrations for the 4 CCME hydrocarbon fractions were measured using hexane:acetone extraction as well as extractions with cyclodextrin, and a mixture of enzymes to simulate the gastro-intestinal fluid of an earthworm. The estimated exposure concentrations depended on the extraction method. The study showed that existing methodologies must be modified in order to better estimate the biological effect of PHCs in soil. Comparative data was presented and discussed along with proposed methodological modifications.

  13. Gastro retentive microencapsulated Cefpodoxime Proxetil to improve oral bioavailability

    Institute of Scientific and Technical Information of China (English)

    Deepa Karthikeyan; Karthikeyan M

    2009-01-01

    Objective:The objective of the present study was to develop floating microspheres of Cefpodoxime Proxetil in order to achieve an extended retention in the upper GIT,which may result in enhanced absorption and there by improved bioavailability.Methods:The microspheres were prepared by non -aqueous solvent evaporation method using polymers such as Hydroxyl Propyl Methyl Cellulose (HPMC K15M),Ethyl Cellulose (EC)in different ratios,and Cefpodoxime Proxetil contain in each formulation.In vitro drug release were performed by USP apparatus type I andthe microspheres were characterized by calculating percentage yield,particle size a-nalysis,buoyancy percentage,drug entrapment efficiencyand in vitro drug release studies.Results:The result showed microspheres yield were 50.50 %-72.21 %,particle size were distributed between75-600 μm,drug entrapment efficiency were 14.1 %-28.2 %,buoyancy percentage were 70.10 %-88.25 %.Conclusion:Cefpodoxime Proxetil floating microspheres,at the lower polymer to drug ratio,there was a significant drug re-lease.The better drug release profile was seen with FA2 with ratio of drug polymer (1∶2).

  14. In-vivo Self Emulsification: Tools for Bioavailability Enhancement

    Directory of Open Access Journals (Sweden)

    Shweta Mishra

    2015-03-01

    Full Text Available With the advancements in science and technology, a lot of new drug molecules have been added and are being added to our repertoire of drugs for fighting against diseases and ailments that trouble mankind. Each and every drug molecule is different in respect of their physico-chemical properties, thereby differing in their biotherapeutic effects. Problems like poor solubility and low permeability may render a perfectly effective drug molecule inactive in vivo because of low bioavailabilty. Thus the drug molecules which fall under the BCS category of Class II and Class IV represent certain specific problems regarding attainment of therapeutic drug concentrations at the required site and their bioavailability. Various techniques and drug delivery systems are being developed for such drugs. SEDDS or SELF’s represent one of such efforts. SEDDS are an isotropic mixture of one or more hydrophilic solvent and co- solvent /surfactants. On mild agitation they form fine oil – in- water (o/w microemulsion. This present study aims at studying the various formulation, classification, optimization and utilization aspects of these systems.

  15. Bioavailability of radiostrontium in soil: Experimental study and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sysoeva, A.A. [Russian Institute of Agricultural Radiology and Agroecology, 249032 Obninsk (Russian Federation)]. E-mail: lab22@riarae.obninsk.org; Konopleva, I.V. [Russian Institute of Agricultural Radiology and Agroecology, 249032 Obninsk (Russian Federation); Sanzharova, N.I. [Russian Institute of Agricultural Radiology and Agroecology, 249032 Obninsk (Russian Federation)

    2005-07-01

    Parameters related to {sup 90}Sr mobility in the soil-plant system are reported: exchangeable content, selectivity coefficient, and transfer factor. Large mobility of {sup 90}Sr in different soil types was shown. The fraction of exchangeable {sup 90}Sr varied between 70 and 90%. The selectivity coefficient K {sub C}({sup 90}Sr/Ca) values were in the range 1.3-2.5. The radionuclide transfer factors (TF) varied by a factor of 9.6 for barley seedlings and by a factor of 6.6 for lupine seedlings. The exchangeable Ca content was the determinant soil parameter responsible for differences in {sup 90}Sr biological availability. A static model was devised that describes {sup 90}Sr sorption from soil solution by soil and on the root surface. The parameter of {sup 90}Sr bioavailability (A) has been suggested. Parameter A was calculated from data on soil exchangeable Ca content and {sup 90}Sr mobility indicators - exchangeable fraction of the radionuclide and the selectivity coefficient K {sub C}({sup 90}Sr/Ca). A correlation was found between TF and parameter A.

  16. Comparison of lutein bioavailability from vegetables and supplement.

    Science.gov (United States)

    Riso, Patrizia; Brusamolino, Antonella; Ciappellano, Salvatore; Porrini, Marisa

    2003-05-01

    Lutein is a carotenoid present in dark green leafy vegetables and it may be involved in the prevention of several diseases related to oxidative stress. The aim of this study was to evaluate bioavailability of lutein from different food sources (150 g spinach and 200 g broccoli) and a supplement in oil (300 mg VEGEX), all providing about 9 mg lutein. Eight healthy females were instructed to eat a low-carotenoid diet for the period of experimentation. On three different occasions, three weeks apart, volunteers ate the lutein sources together with 10 g olive oil and 40 g bread. Blood samples were collected just before eating, every two hours for 12 hours, and at 24, 32, 56, 80 and 104 hours. Lutein concentration increased significantly after six to eight hours and peaked after 10-12 hours, with the highest concentration reached after VEGEX intake. Lutein concentration remained significantly elevated for up to 80 hours (VEGEX and spinach). On the whole, our results suggest that the intake of one single dose of lutein from different sources is able to bring about a significant plasma response in the short term.

  17. Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide

    Science.gov (United States)

    Cain, Daniel J.; Croteau, Marie-Noële; Fuller, Christopher C.

    2013-01-01

    The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of 65Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with 65Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary 65Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of 65Cu from HFO was determined following 1–3 days of depuration. Mass transfer of 65Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of 65Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.

  18. Biosolids inhibit bioavailability and plant uptake of triclosan and triclocarban.

    Science.gov (United States)

    Fu, Qiuguo; Wu, Xiaoqin; Ye, Qingfu; Ernst, Fredrick; Gan, Jay

    2016-10-01

    Biosolids from wastewater treatment are primarily disposed of via land applications, where numerous pharmaceuticals and personal care products (PPCPs) may contaminate food crops and pose a human exposure risk. Biosolids are rich in organic carbon and addition of biosolids can increase the sorption of certain PPCPs in soil, decreasing their bioavailability. This study tested the hypothesis that the relative plant uptake of PPCPs decreases with increasing biosolids amendment. Accumulation of triclosan and triclocarban was measured in roots of radish and carrot grown in soils with or without biosolids. Addition of biosolids significantly prolonged the persistence of triclosan in soil. When expressed in bioaccumulation factor (BCF), accumulation of triclosan drastically decreased in biosolids-amended soils, while the effect was limited for triclocarban. Compared to the unamended soil, amending biosolids at 2% (w/w) decreased BCF of triclosan in the edible tissues of radish and carrot by 85.4 and 89.3%, respectively. Measurement using a thin-film passive sampler provided direct evidence showing that the availability of triclosan greatly decreased in biosolids-amended soils. Partial correlation analysis using data from this and published studies validated that biosolids decreased plant uptake primarily by increasing soil organic carbon content and subsequently sorption. Therefore, contamination of food crops by biosolids-borne contaminants does not linearly depend on biosolids use rates. This finding bears significant implications in the overall risk evaluation of biosolids-borne contaminants. PMID:27337347

  19. Lead Speciation and Bioavailability in Apatite-Amended Sediments

    Directory of Open Access Journals (Sweden)

    Kirk G. Scheckel

    2011-01-01

    Full Text Available The in situ sequestration of lead (Pb in sediment with a phosphate amendment was investigated by Pb speciation and bioavailability. Sediment Pb in preamendment samples was identified as galena (PbS with trace amounts of absorbed Pb. Sediment exposed to atmospheric conditions underwent conversion to hydrocerussite and anglesite. Sediments mixed with apatite exhibited limited conversion to pyromorphite, the hypothesized end product. Conversion of PbS to pyromorphite is inhibited under reducing conditions, and pyromorphite formation appears limited to reaction with pore water Pb and PbS oxidation products. Porewater Pb values were decreased by 94% or more when sediment was amended with apatite. The acute toxicity of the sediment Pb was evaluated with Hyalella azteca and bioaccumulation of Pb with Lumbriculus variegatus. The growth of H. azteca may be mildly inhibited in contaminated sediment, with apatite-amended sediments exhibiting on average a higher growth weight by approximately 20%. The bioaccumulation of Pb in L. variegatus tissue decreased with increased phosphate loading in contaminated sediment. The study indicates limited effectiveness of apatite in sequestering Pb if present as PbS under reducing conditions, but sequestration of porewater Pb and stabilization of near-surface sediment may be a feasible and alternative approach to decreasing potential toxicity of Pb.

  20. Cadmium bioavailability and speciation using the permeation liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bayen, Stephane [CABE, University of Geneva, Sciences II, 30 Quai Ernest Ansermet, CH 1211, Geneva 4 (Switzerland)]. E-mail: stephane.bayen@cabe.unige.ch; Worms, Isabelle [CABE, University of Geneva, Sciences II, 30 Quai Ernest Ansermet, CH 1211, Geneva 4 (Switzerland); Parthasarathy, Nalini [CABE, University of Geneva, Sciences II, 30 Quai Ernest Ansermet, CH 1211, Geneva 4 (Switzerland); Wilkinson, Kevin [Department of Chemistry, University of Montreal, CP 6128, succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada); Buffle, Jacques [CABE, University of Geneva, Sciences II, 30 Quai Ernest Ansermet, CH 1211, Geneva 4 (Switzerland)

    2006-08-11

    The permeation liquid membrane (PLM) technique was used to evaluate cadmium speciation in media resembling natural freshwaters. A planar sheet PLM system was characterized by measuring Cd fluxes in the absence and presence of complexing agents such as citrate, malonate, nitrilotriacetate and the Suwannee River standard humic acid. Comparison with theoretical speciation calculations and the results of a Cd{sup 2+} selective electrode, showed that free Cd was correctly measured using the planar sheet PLM within the studied concentration range, i.e. 10{sup -8} to 10{sup -4} M. The effect of pH and potentially co-transported ions on Cd transport through the PLM was also studied. An example of the ability of the hollow-fiber PLM (HFPLM) to measure free Cd in the nM range is also presented. In order to evaluate the usefulness of the technique as a predictor of bioavailability, Cd PLM measurements (fluxes) were compared to Cd biouptake (internalization flux) for a freshwater alga, Chlorella kesslerii, in the absence and presence of SRHA. The use of PLM measurements is shown to be an attractive tool to better understand Cd biouptake.

  1. Bioavailability of phenols from a phenol-enriched olive oil.

    Science.gov (United States)

    Suárez, Manuel; Valls, Rosa M; Romero, Maria-Paz; Macià, Alba; Fernández, Sara; Giralt, Montse; Solà, Rosa; Motilva, Maria-José

    2011-12-01

    Phenolic compounds are one of the main reasons behind the healthy properties of virgin olive oil (VOO). However, their daily intake from VOO is low compared with that obtained from other phenolic sources. Therefore, the intake of VOO enriched with its own phenolic compounds could be of interest to increase the daily dose of these beneficial compounds. To evaluate the effectiveness of enrichment on their bioavailability, the concentration of phenolic compounds and their metabolites in human plasma (0, 60, 120, 240 and 300 min) from thirteen healthy volunteers (seven men and six women, aged 25 and 69 years) was determined after the ingestion of a single dose (30 ml) of either enriched virgin olive oil (EVOO) (961·17 mg/kg oil) or control VOO (288·89 mg/kg oil) in a cross-over study. Compared with VOO, EVOO increased plasma concentration of the phenol metabolites, particularly hydroxytyrosol sulphate and vanillin sulphate (P phenols are highly dependent on the individual.

  2. Asymmetric dimethylarginine, endothelial nitric oxide bioavailability and mortality in sepsis.

    Directory of Open Access Journals (Sweden)

    Joshua S Davis

    Full Text Available BACKGROUND: Plasma concentrations of asymmetric dimethylarginine (ADMA, an endogenous inhibitor of nitric oxide synthase, are raised in patients with chronic vascular disease, causing increased cardiovascular risk and endothelial dysfunction, but the role of ADMA in acute inflammatory states is less well defined. METHODS AND RESULTS: In a prospective longitudinal study in 67 patients with acute sepsis and 31 controls, digital microvascular reactivity was measured by peripheral arterial tonometry and blood was collected at baseline and 2-4 days later. Plasma ADMA and L-arginine concentrations were determined by high performance liquid chromatography. Baseline plasma L-arginine: ADMA ratio was significantly lower in sepsis patients (median [IQR] 63 [45-103] than in hospital controls (143 [123-166], p<0.0001 and correlated with microvascular reactivity (r = 0.34, R(2 = 0.12, p = 0.02. Baseline plasma ADMA was independently associated with 28-day mortality (Odds ratio [95% CI] for death in those in the highest quartile (≥ 0.66 µmol/L = 20.8 [2.2-195.0], p = 0.008, and was independently correlated with severity of organ failure. Increase in ADMA over time correlated with increase in organ failure and decrease in microvascular reactivity. CONCLUSIONS: Impaired endothelial and microvascular function due to decreased endothelial NO bioavailability is a potential mechanism linking increased plasma ADMA with organ failure and death in sepsis.

  3. Self nanoprecipitating preconcentrate of tamoxifen citrate for enhanced bioavailability.

    Science.gov (United States)

    Kapse, Sonali V; Gaikwad, Rajiv V; Samad, Abdul; Devarajan, Padma V

    2012-06-15

    We disclose a self nanoprecipitating preconcentrate (SNP) of tamoxifen citrate (TMX), which forms TMX loaded polymeric nanoparticles, on dilution with aqueous media. SNP comprised TMX, polymer (Kollidon SR) and surfactant/s dissolved in a pharmaceutically acceptable vehicle. Binary surfactant mixtures of Aerosol OT (AOT) with Tween 80 revealed synergistic reduction in surface tension to enable both high entrapment efficiency (EE) and low particle size (PS). Synergism of the surfactants was confirmed by molecular interaction parameter(β(σ)). Combination of AOT and Tween 80 resulted in EE (∼85%) and PS (nanoparticles in situ was reproducible under most experimental conditions and exhibited pH independent behavior. Dilution volume (>80mL) influenced both PS and EE while dilution temperature influenced only PS. Marginal increase in size was evident at the end of 1h nevertheless was not of concern as TMX SNP exhibited near complete release in 1h. DSC and XRD studies revealed amorphous nature of TMX in nanoparticles. FTIR imaging confirmed uniform distribution of TMX in nanoparticles. ESEM and TEM revealed spherical nanoparticles. Biodistribution studies of (99m)Tc labeled TMX SNP in rats revealed no significant absorption however oral pharmacokinetics revealed enhanced oral bioavailability of TMX (165%) compared to TMX suspension. SNP presents a new in situ approach, for design of drug loaded polymeric nanoparticles. PMID:22414426

  4. Effects of irradiation of sewage sludge on heavy metal bioavailability

    International Nuclear Information System (INIS)

    Sewage sludges are a valuable resource to agriculture, but their use is limited by the hazards of pathogens, toxic chemicals and heavy metals. Irradiation can control the pathogens and deactivate some of the toxic chemicals. The relative cost of industrial-scale irradiation using accelerators has decreased progressively. This, coupled with the increasing necessity to recycle wastes, has led to renewed interest in irradiation of sludges. In response to this renewed interest, this report examines what is known about the effects of irradiation on the bioavailability of heavy metals. Very few studies have addressed this topic, although workers in the U.S. have claimed decreased solubility of metals in irradiated sludges. We have also briefly reviewed the general literature on sludge to gain indirect evidence on the likely effects. The scant data, often based on less than ideal experimental methodologies, show no major consistent effects of irradiation on the availability of heavy metals from sludge. The data are not sufficient to rule out such effects entirely, but the effects appear to be fairly subtle and not likely to persist beyond one growth season. 85 refs

  5. Bioavailability of zinc in marine systems through time

    Science.gov (United States)

    Scott, Clint; Planavsky, Noah J.; Dupont, Chris L.; Kendall, Brian; Gill, Benjamin C.; Robbins, Leslie J.; Husband, Kathryn F.; Arnold, Gail L.; Wing, Boswell A.; Poulton, Simon W.; Bekker, Andrey; Anbar, Ariel D.; Konhauser, Kurt O.; Lyons, Timothy W.

    2013-02-01

    The redox state of the oceans strongly influences the concentration of dissolved trace metals in sea water. Changes in the redox state of the oceans are thought to have limited the availability of some trace metals in the past, particularly during the Proterozoic eon, 2,500 to 542 million years ago. Of these trace metals, zinc (Zn) is of particular importance to eukaryotic organisms, because it is essential for a wide range of basic cellular functions. It has been suggested that during the Proterozoic, marine environments were broadly euxinic--that is, anoxic and sulphidic--which would have resulted in low Zn availability. Low Zn bioavailability could therefore be responsible for an observed delay in eukaryote diversification. Here we present a compilation of Zn abundance data from black shales deposited under euxinic conditions from the Precambrian time to the present. We show that these values track first-order trends in seawater Zn availability. Contrary to previous estimates, we find that Zn concentrations during the Proterozoic were similar to modern concentrations, supporting recent studies that call for limited euxinia at this time. Instead, we propose that predominantly anoxic and iron-rich deep oceans, combined with large hydrothermal fluxes of Zn, maintained high levels of dissolved Zn throughout the oceans. We thus suggest that the protracted diversification of eukaryotic Zn-binding proteins was not a result of Znbiolimitation.

  6. Bioavailability and bioaccessibility of petroleum hydrocarbons in contaminated site soils

    International Nuclear Information System (INIS)

    Although the bioavailability and/or bioaccessibility of contaminants in soil can be measured by various ecological receptors, the methods that are suitable for metals do not necessarily work well for petroleum hydrocarbons (PHCs). In this study, several biological and chemical methods were used at various PHC contaminated sites to find the most fitting method for different soil types in terms of predicting the biological responses of organisms as measured by standard single species toxicity tests. Organisms such as plants, earthworms, and collembolan were exposed to soils with different PHC concentrations. Multiple endpoints were then measured to evaluate the biological responses. The exposure concentrations for the 4 CCME hydrocarbon fractions were measured using hexane:acetone extraction as well as extractions with cyclodextrin, and a mixture of enzymes to simulate the gastro-intestinal fluid of an earthworm. The estimated exposure concentrations depended on the extraction method. The study showed that existing methodologies must be modified in order to better estimate the biological effect of PHCs in soil. Comparative data was presented and discussed along with proposed methodological modifications.

  7. Bioavailability of a potato chromium complex to the laboratory rat

    International Nuclear Information System (INIS)

    Research objectives were to study the effect of food source, preparation method and chemical form on bioavailability of chromium. Chromium concentration in potatoes was determined and tubers labeled either intrinsically or extrinsically with radioactive chromate. A labeled chromium complexes was isolated from preparations of raw, baked or fried potatoes and chromatographed on gel permeation media. Availability of the potato chromium complex to the rat was examined in three feeding studies. Animals were dosed with radioactive extrinsically or intrinsically labeled potato extract or with chromate. A labeled chromium complex was isolated from gastrointestinal contents of rats and chromatographed. Potato pulp and peel contained 1.63 and 2.70 μg Cr/g tissue respectively. True and apparent absorption from extrinsically labeled feedings were 33.4 +/- 4.7 and 29.8 +/- 11.2% respectively, and no differences existed between absorption from raw and cooked potatoes. Absorption from the extrinsic labeled potatoes differed significantly from absorption of inorganic chromatium. Apparent absorption of raw (11.1 +/- 7.9%) and cooked (-0.7 +/- 2.8%) intrinsically labeled feedings differed significantly. Absorption of inorganic chromium was 17.8% (true) and 11.5% (apparent). Examination of the chromium complex isolated from gastrointestinal tract contents showed enlargement of the complex in the stomach after consumption

  8. Selenium Biochemistry and Bioavailability: Implications for Animal Agriculture

    Directory of Open Access Journals (Sweden)

    Shaniko Shini

    2015-12-01

    Full Text Available Selenium (Se is an essential trace mineral required for growth, development, immune function, and metabolism. Selenium exerts its biological effects as an integral component of selenoproteins (SePs. Deficiency or low Se status leads to marked changes in many biochemical pathways and a range of pathologies and disorders which are associated with SeP function. Animals, and presumably humans, are able to efficiently utilize nutritionally adequate levels of Se in both organic and inorganic forms. It is now clear that the bioavailability of Se varies depending on the source and chemical form of the Se supplement. There are a range of products available for dietary Se supplementation, however, organic sources have been shown to be assimilated more efficiently than inorganic compounds and are considered to be less toxic and more appropriate as a feed supplement. Yeast enriched with Selenohomoalanthionine (SeHLan has recently become commercially available, and initial research suggests that it may be an efficacious source for the production of Se enriched animal products.

  9. Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: the Golden Pigment from Golden Spice

    OpenAIRE

    Prasad, Sahdeo; Tyagi, Amit K.; Aggarwal, Bharat B.

    2014-01-01

    Curcumin (diferuloylmethane) is a yellow pigment present in the spice turmeric (Curcuma longa) that has been associated with antioxidant, anti-inflammatory, anticancer, antiviral, and antibacterial activities as indicated by over 6,000 citations. In addition, over one hundred clinical studies have been carried out with curcumin. One of the major problems with curcumin is perceived to be the bioavailability. How curcumin should be delivered in vivo, how bioavailable is it, how well curcumin is...

  10. Bioavailability of Heme Iron in Biscuit Filling Using Piglets as an Animal Model for Humans

    OpenAIRE

    Adrián Guillermo Quintero-Gutiérrez, Guillermina González-Rosendo, Jonathan Sánchez-Muñoz, Javier Polo-Pozo, José Juan Rodríguez-Jerez

    2008-01-01

    The objective of this work was to evaluate the bioavailability of heme iron added to biscuit filling. It comprised two stages: first, the development of the heme iron enriched biscuit filling; second, the evaluation of the bioavailability of the mineral in fattening piglets. Two groups were selected randomly and fed: a) Low iron feed and biscuits with heme iron supplemented filling; b) Normal feed (with ferrous sulphate). Weight and blood parameters were measured every fifteen days. Averages ...

  11. Experimental determination of the oral bioavailability and bioaccessibility of lead particles

    OpenAIRE

    Deshommes Elise; Tardif Robert; Edwards Marc; Sauvé Sébastien; Prévost Michèle

    2012-01-01

    Abstract In vivo estimations of Pb particle bioavailability are costly and variable, because of the nature of animal assays. The most feasible alternative for increasing the number of investigations carried out on Pb particle bioavailability is in vitro testing. This testing method requires calibration using in vivo data on an adapted animal model, so that the results will be valid for childhood exposure assessment. Also, the test results must be reproducible within and between laboratories. ...

  12. Lower Zinc Bioavailability May Be Related to Higher Risk of Subclinical Atherosclerosis in Korean Adults

    OpenAIRE

    Su Kyoung Jung; Mi-Kyung Kim; Young-Hoon Lee; Dong Hoon Shin; Min-Ho Shin; Byung-Yeol Chun; Bo Youl Choi

    2013-01-01

    BACKGROUND: There is a proposed link between dietary zinc intake and atherosclerosis, but this relationship remains unclear. Phytate may contribute to this relationship by influencing zinc bioavailability. OBJECTIVE: The aim of this study is to examine the relationship between zinc bioavailability and subclinical atherosclerosis in healthy Korean adults. MATERIALS AND METHODS: The present cross-sectional analysis used baseline data from the Korean multi-Rural Communities Cohort Study (MRCohor...

  13. Bioavailability of flavonoids and cinnamic acids and their effect on plasma homocysteine in humans

    OpenAIRE

    Olthof, M.R.

    2001-01-01

    Dietary antioxidants might prevent oxidative damage to tissues and therefore protect against cardiovascular disease and cancer. Dietary phenols are strong antioxidants in vitro but their role in vivo is uncertain. Furthermore, there are only limited data on their bioavailability in humans. The aim of this thesis was to investigate whether bioavailability data on flavonoids and cinnamic acids support the hypothesis that they can affect health in humans . Because the group of phenols in foods i...

  14. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T; Diepen, van, F.N.J.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  15. Accounting for metal bioavailability in assessing water quality: A step change?

    Science.gov (United States)

    Merrington, Graham; Peters, Adam; Schlekat, Christian E

    2016-02-01

    Bioavailability of metals to aquatic organisms can be considered to be a combination of the physicochemical factors governing metal behavior and the specific pathophysiological characteristics of the organism's biological receptor. Effectively this means that a measure of bioavailability will reflect the exposures that organisms in the water column actually "experience". This is important because it has long been established that measures of total metal in waters have limited relevance to potential environmental risk. The concept of accounting for bioavailability in regard to deriving and implementing environmental water quality standards is not new, but the regulatory reality has lagged behind the development of scientific evidence supporting the concept. Practical and technical reasons help to explain this situation. For example, concerns remain from regulators and the regulated that the efforts required to change existing systems of metal environmental protection that have been in place for over 35 yr are so great as not to be commensurate with likely benefits. However, more regulatory jurisdictions are now considering accounting for metal bioavailability in assessments of water quality as a means to support evidence-based decision-making. In the past decade, both the US Environmental Protection Agency and the European Commission have established bioavailability-based standards for metals, including Cu and Ni. These actions have shifted the debate toward identifying harmonized approaches for determining when knowledge is adequate to establish bioavailability-based approaches and how to implement them.

  16. Accounting for metal bioavailability in assessing water quality: A step change?

    Science.gov (United States)

    Merrington, Graham; Peters, Adam; Schlekat, Christian E

    2016-02-01

    Bioavailability of metals to aquatic organisms can be considered to be a combination of the physicochemical factors governing metal behavior and the specific pathophysiological characteristics of the organism's biological receptor. Effectively this means that a measure of bioavailability will reflect the exposures that organisms in the water column actually "experience". This is important because it has long been established that measures of total metal in waters have limited relevance to potential environmental risk. The concept of accounting for bioavailability in regard to deriving and implementing environmental water quality standards is not new, but the regulatory reality has lagged behind the development of scientific evidence supporting the concept. Practical and technical reasons help to explain this situation. For example, concerns remain from regulators and the regulated that the efforts required to change existing systems of metal environmental protection that have been in place for over 35 yr are so great as not to be commensurate with likely benefits. However, more regulatory jurisdictions are now considering accounting for metal bioavailability in assessments of water quality as a means to support evidence-based decision-making. In the past decade, both the US Environmental Protection Agency and the European Commission have established bioavailability-based standards for metals, including Cu and Ni. These actions have shifted the debate toward identifying harmonized approaches for determining when knowledge is adequate to establish bioavailability-based approaches and how to implement them. PMID:26808908

  17. Evaluating bioavailability of organic pollutants in soils by sequential ultrasonic extraction procedure.

    Science.gov (United States)

    Wu, Xiang; Zhu, Lizhong

    2016-08-01

    Under current retrospective risk assessment framework, the total concentrations of organic pollutants in soils have been employed as the standard for over 30 years. The total concentrations reflect the overall accumulation in soils but tend to be overly conservative for assessing the ecological risks, where the bioavailability plays an important role. In this study, the bioavailability of organic pollutants in soils was evaluated using a stepwise and tiered classification method, namely the sequential ultrasonic extraction procedure (SEUP). The water-soluble and acid-soluble fractions extracted by the SEUP were the bioavailable fractions. The reliability and environmental relevance of the speciation method were examined with representative organic pollutants using the root uptake methods and the semipermeable membrane devices (SPMDs). The plant uptake amounts corrected with weight were highly correlated with the bioavailable fractions (R(2) > 0.75). The amounts of the bioavailable fractions were negatively correlated with the logKow values (R(2) ranging from 0.71 to 0.77) of the organic pollutants and the contents of soil organic matter (R(2) ranging from 0.68 to 0.96). As a refinement of the current risk assessment framework, the SUEP that has proved to be a reliable and convenient is thus highly recommended for evaluating the bioavailability of organic pollutants in soils. PMID:27156212

  18. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary.

    Science.gov (United States)

    Rosado, Daniel; Usero, José; Morillo, José

    2016-06-01

    Relationship between toxicity and bioavailable metals in sediments from the Huelva estuary and its littoral of influence was analyzed. Toxicity was assessed with Microtox(®) bioassay using a marine luminescent bacterium: Vibrio fischeri. Bioavailable metals were considered as both, acid extractable fraction of BCR procedure and the sum of exchangeable and bound to carbonates fractions of Tessier sequential extraction. A bioavailable metals index was calculated to integrate results in a single figure. Toxicity and bioavailable metals showed a similar pattern. Higher levels were found in the estuary than in the littoral (140 TU/g). In Huelva estuary, highest levels were found in the Tinto estuary (5725 TU/g), followed by the Odiel estuary (5100 TU/g) and the Padre Santo Canal (2500 TU/g). Results in this area were well over than those in nearby estuaries. Furthermore, they are similar to or even higher than those in other polluted sediments around the world. Bioavailable metal index showed a stronger correlation with acid extractable fraction of BCR (R(2) = 0.704) than that for the sum of exchangeable and bound to carbonates fractions of Tessier (R(2) = 0.661). These results suggest that bioavailable metals are an important source of sediment toxicity in the Huelva estuary and its littoral of influence, an area with one of the highest mortality risks of Spain. PMID:27002282

  19. Influence of plant activity and phosphates on thorium bioavailability in soils from Baotou area, Inner Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Guo Pengran [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, Jilin 130022 (China); School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Jia Xiaoyu; Duan Taicheng; Xu Jingwei [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, Jilin 130022 (China); Chen Hangting, E-mail: guopengran@gmail.co [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, Jilin 130022 (China)

    2010-09-15

    Harm of thorium to living organisms is governed by its bioavailability. Thorium bioavailability in the soil-plant system of Baotou rare earth industrial area was studied using pot experiments of wheat and single extraction methods. The effects of wheat growth stage and phosphate on thorium bioavailability were also investigated. Based on extractabilities of various extraction methods (CaCl{sub 2}, NH{sub 4}NO{sub 3}, EDTA, HOAc) and correlation analysis of thorium uptake by wheat plant and extractable thorium, a mixture of 0.02 M EDTA + 0.5 M NH{sub 4}OAc (pH 4.6) was found suitable for evaluation of thorium bioavailability in Baotou soil, which could be predicted quantitatively by multiple regression models. Because of differences of wheat root activities, thorium bioavailability in rhizosphere soil was higher than in bulk soil at tillering stage, but the reverse occurred at jointing stage. Phosphate addition induced the mineralization of soluble thorium by forming stable thorium phosphate compounds, and reduced thorium bioavailability in soil.

  20. Predicting arsenic relative bioavailability in contaminated soils using meta analysis and relative bioavailability-bioaccessibility regression models.

    Science.gov (United States)

    Juhasz, Albert L; Weber, John; Smith, Euan

    2011-12-15

    A number of in vitro assays are available for the determination of arsenic (As) bioaccessibility and prediction of As relative bioavailability (RBA) to quantify exposure for site-specific risk assessment. These data are usually considered in isolation; however, meta analysis may provide predictive capabilities for source-specific As bioaccessibility and RBA. The objectives of this study were to predict As RBA using previously published in vivo/in vitro correlations and to assess the influence of As sources on As RBA independent of geographical location. Data representing 351 soils (classified based on As source) and 514 independent bioaccessibility values were retrieved from the literature for comparison. Arsenic RBA was predicted using published in vivo/in vitro regression models, and 90th and 95th percentiles were determined for each As source classification and in vitro methodology. Differences in predicted mean As RBA were observed among soils contaminated from different As sources and within source materials when various in vitro methodologies were utilized. However, when in vitro data were standardized by transforming SBRC intestinal, IVG, and PBET data to SBRC gastric phase values (through linear regression models), predicted As RBA values for As sources followed the order CCA posts ≥ herbicide/pesticide > mining/smelting > gossan soils with 95th percentiles for predicted As RBA of 78.0, 78.4, 67.0, and 23.7%, respectively. PMID:22059522

  1. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Aliphatic, aromatic and polycyclic aromatic oil hydrocarbons are structurally complicated man-caused pollutants that are constantly brought into biosphere. Oil production in Russia, so as all over the world, is connected with pollution of biotopes, ecosystems and agro-landscapes. Presently large funds are allocated either for oil leak prevention or for discharged oil gathering. At the same time, in spite of large necessity in technologies for efficient reconstruction of soil bio-productivity, reliable regional systems of their remediation in situ have not been developed yet. One such method is rhizosphere remediation, a biotechnology, based on the functioning of plant-microbial complexes. Little is known about bioavailability in phyto-remediation systems. Specific bioavailability-promoting mechanisms, operating in soil with hydrocarbon-degrading populations, may be responsible for increased rates of pollutant transformation (increased bacterial adherence to the pollutants, production of bio-surfactants by bacteria or by plants, possible role of chemotaxis). In the course of work collection of 42 chemo-tactically active bio-surfactant producing strain-degraders of petroleum hydrocarbons including polycyclic aromatic hydrocarbons (PAHs) was created. Two representative strains were selected for detailed chemotaxis studies with PAHs (naphthalene, phenanthrene, anthracene, and pyrene), bacterial lipopolysaccharide and root exudates from seven different plants. These strains are produce the bio-surfactants (rhamno-lipid). The chemotactic response was quantified with a capillary and densitometric chemotaxis assay. Surface tension of cultural liquid was measured after cultivation of strains in the presence of hexadecane or phenanthrene with the use of a ring tensiometer. Before measuring of surface tension microbial cells were collected from liquid culture by centrifugation. Total petroleum Hydrocarbons (TPH) in soil were analyzed by infra-red spectroscopy method. PAHs

  2. 226Ra bioavailability of plants at urgeirica uranium mill tailings

    International Nuclear Information System (INIS)

    Large amounts of solid wastes (tailings) resulting from the exploitation and treatment of uranium ore at the Urgeirica mine (north of Portugal) have been accumulated in dams (tailing ponds). To reduce the dispersion of natural radionuclides into the environment some dams were revegetated with eucalyptus (Eucalyptus globolus) and pines (Pinus pinea). Besides, some shrubs (Cytisus s.p.) are growing at some of the dams. The objective of this study is to determine the 226Ra bioavailability from uranium mill tailings through the quantification of the total and available fraction of radium in the solid wastes and to estimate its transfer to the plants growing on the tailing piles. Plants and solid waste samples were randomly collected at dams. Activity concentration of 226Ra in plants (aerial part and roots) and solid wastes were measured by gamma spectrometry. The exchangeable fraction of radium in solid wastes was quantified using one single step extraction with 1 mol dm-3 ammonium acetate (pH=7) or 1 mol dm-3 calcium chloride solutions. The results obtained for the 226Ra uptake by plants show that 226Ra concentration ratios for eucalyptus and pines decrease at low 226Ra concentration in the solid wastes and appear relatively constant at higher radium concentrations. For shrubs, the concentration ratios increase at higher 226Ra solid waste concentrations approaching a saturation value. Percentage values of 16.0±8.3 and 12.9±8.9, for the fraction of radium extracted from the solid wastes, using 1 mol dm-3 ammonium acetate or calcium chloride solutions respectively, were obtained. The 226Ra concentration ratios determined on the basis of exchangeable radium are one order of magnitude higher than those based on total radium. It can be concluded that, within the standard error values, more consistent 226Ra concentration ratios were obtained when calculated on the basis of available radium than when total radium was considered, for all the dams. (author)

  3. Relative bioavailability of a new transdermal nitroglycerin delivery system.

    Science.gov (United States)

    Noonan, P K; Gonzalez, M A; Ruggirello, D; Tomlinson, J; Babcock-Atkinson, E; Ray, M; Golub, A; Cohen, A

    1986-07-01

    The purpose of this study was to measure the bioavailability of nitroglycerin from a new transdermal delivery system, Nitro-Dur II, relative to that of Nitro-Dur. Twenty-four healthy male volunteers completed a two-way crossover study. Each subject randomly received Nitro-Dur (I) and Nitro-Dur II (II) for a 24-h period. Both transdermal systems had an active surface area of 20 cm2. Blood samples were collected immediately before treatment, at 0.5, 1, 2, 3, 4, 6, 8, 12, 18, and 24 h after topical application of the units, and 30 min after the units were removed. Nitroglycerin was determined with an analytical sensitivity of 50 pg/mL using gas chromatography with electron capture detection (GC-EC). Mean steady-state concentrations of nitroglycerin were 182 and 224 pg/mL for I and II, respectively. There were no statistical differences between I and II in the pharmacokinetic parameters measured (Css, AUC, Cmax, % fluctuation). Residual nitroglycerin content was measured in each transdermal unit after application to each of the 24 volunteers. The amounts of nitroglycerin delivered by I and II were 9.78 +/- 4.11 and 10.67 +/- 4.78 mg, respectively, or approximately 10 mg in 24 h. Statistical analysis of these data using an analysis of variance indicated no significant difference between these treatments (p = 0.27). Since there were also no differences in the plasma concentrations and pharmacokinetic parameters calculated after treatment with I and II, the bioequivalence of the two delivery systems was established. PMID:3093667

  4. Bioavailability of radiocaesium in soil: parameterization using soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Syssoeva, A.A.; Konopleva, I.V. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation)

    2004-07-01

    It has been shown that radiocaesium availability to plants strongly influenced by soil properties. For the best evaluation of TFs it necessary to use mechanistic models that predict radionuclide uptake by plants based on consideration of sorption-desorption and fixation-remobilization of the radionuclide in the soil as well as root uptake processes controlled by the plant. The aim of the research was to characterise typical Russian soils on the basis of the radiocaesium availability. The parameter of the radiocaesium availability in soils (A) has been developed which consist on radiocaesium exchangeability; CF -concentration factor which is the ratio of the radiocaesium in plant to that in soil solution; K{sub Dex} - exchangeable solid-liquid distribution coefficient of radiocaesium. The approach was tested for a wide range of Russian soils using radiocaesium uptake data from a barley pot trial and parameters of the radiocaesium bioavailability. Soils were collected from the arable horizons in different soil climatic zones of Russia and artificially contaminated by {sup 137}Cs. The classification of soils in terms of the radiocaesium availability corresponds quite well to observed linear relationship between {sup 137}Cs TF for barley and A. K{sub Dex} is related to the soil radiocaesium interception potential (RIP), which was found to be positively and strongly related to clay and physical clay (<0,01 mm) content. The {sup 137}Cs exchangeability were found to be in close relation to the soil vermiculite content, which was estimated by the method of Cs{sup +} fixation. It's shown radiocaesium availability to plants in soils under study can be parameterized through mineralogical soil characteristics: % clay and the soil vermiculite content. (author)

  5. Bioavailability, pharmacokinetics and residues of chloramphenicol in the chicken.

    Science.gov (United States)

    Anadón, A; Bringas, P; Martinez-Larrañaga, M R; Diaz, M J

    1994-02-01

    The pharmacokinetic properties of chloramphenicol were determined in broiler chickens after two single oral doses (30 and 50 mg/kg body weight) and after a single intravenous (i.v.) dose (30 mg/kg body weight). After oral and i.v. administration, the plasma concentration-time graph was characteristic of a two-compartment open model. After oral administration (30 and 50 mg/kg), chloramphenicol was absorbed rapidly (time to maximal concentration of 0.72 or 0.60 h) and eliminated with a mean half-life (t1/2 beta) of 6.87 or 7.41 h, respectively. The bioavailability was 29% at 30 mg/kg chloramphenicol and 38% at 50 mg/kg chloramphenicol. Concentrations greater than 5 micrograms/ml were achieved at 15 min and persisted up to 2 or 4 h post-administration, respectively. Statistically significant differences between the two routes of administration were found for the pharmacokinetic variables, half-lives of both distribution and elimination phases (t1/2 alpha, t1/2 beta) and apparent volume of distribution [Vd(area)]. The mean t1/2 beta of chloramphenicol and i.v. administration was 5.23 h. Chloramphenicol was extensively metabolized into dehydrochloramphenicol (DH-CAP), nitrophenylaminopropanedione (NPAP) and nitroso-chloramphenicol (NO-CAP) derivatives. Residues of chloramphenicol (CAP) and the three metabolites DH-CAP, NPAP and NO-CAP in kidney, liver and muscle were measured in chickens that received an oral dose of 50 mg/kg once daily for 4 days. The results indicate that CAP and DH-CAP residues were cleared slowly and were at or below the detection limit of 0.005 microgram/ml within 12 days after dosing. However, at the time of slaughter (12 days), the NPAP and NO-CAP residues were detected in the tissue.

  6. Intestinal Oxidative State Can Alter Nutrient and Drug Bioavailability

    Directory of Open Access Journals (Sweden)

    Faria Ana

    2009-01-01

    Full Text Available Organic cations (OCs are substances of endogenous (e.g., dopamine, choline or exogenous (e.g., drugs like cimetidine origin that are positively charged at physiological ph. since many of these compounds can not pass the cell membrane freely, their transport in or out of cells must be mediated by specific transport systems. Transport by organic cation transporters (OCTs can be regulated rapidly by altering their trafficking and/or affinities in response to stimuli. However, for example, a specific disease could lead to modifications in the expression of OCTs. Chronic exposure to oxidative stress has been suggested to alter regulation and functional activity of proteins through several pathways. According to results from a previous work, oxidation-reduction pathways were thought to be involved in intestinal organic cation uptake modulation. The present work was performed in order to evaluate the influence of oxidative stressors, especially glutathione, on the intestinal organic cation absorption. For this purpose, the effect of compounds with different redox potential (glutathione, an endogenous antioxidant, and procyanidins, diet antioxidants was assessed on MPP+ (1-methyl-4-phenylpyridinium iodide uptake in an enterocyte cell line (Caco-2. Caco-2 cells were subcultured with two different media conditions (physiological: 5 mM glucose, referred as control cells; and high-glucose: 25 mM glucose, referred as HG cells. In HG cells, the uptake was significantly lower than in control cells. Redox changing interventions affected Mpp+ uptake, both in control and in high-glucose Caco-2 cells. Cellular glutathione levels could have an important impact on membrane transporter activity. The results indicate that modifications in the cellular oxidative state modulate MPP+ uptake by Caco-2 cells. Such modifications may reflect in changes of nutrient and drug bioavailability.

  7. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals.

    Science.gov (United States)

    Bachhav, Y G; Mondon, K; Kalia, Y N; Gurny, R; Möller, M

    2011-07-30

    Efficient topical drug administration for the treatment of superficial fungal infections would deliver the therapeutic agent to the target compartment and reduce the risk of systemic side effects. However, the physicochemical properties of the commonly used azole antifungals make their formulation a considerable challenge. The objective of the present investigation was to develop aqueous micelle solutions of clotrimazole (CLZ), econazole nitrate (ECZ) and fluconazole (FLZ) using novel amphiphilic methoxy-poly(ethylene glycol)-hexyl substituted polylactide (MPEG-hexPLA) block copolymers. The CLZ, ECZ and FLZ formulations were characterized with respect to drug loading and micelle size. The optimal drug formulation was selected for skin transport studies that were performed using full thickness porcine and human skin. Penetration pathways and micellar distribution in the skin were visualized using fluorescein loaded micelles and confocal laser scanning microscopy. The hydrodynamic diameters of the azole loaded micelles were between 70 and 165nm and the corresponding number weighted diameters (d(n)) were 30 to 40nm. Somewhat surprisingly, the lowest loading efficiency (13-fold higher than that from Pevaryl® cream (22.8±3.8 and 1.7±0.6μg/cm(2), respectively). A significant enhancement was also observed with human skin; the amounts of ECZ deposited were 11.3±1.6 and 1.5±0.4μg/cm(2), respectively (i.e., a 7.5-fold improvement in delivery). Confocal laser scanning microscopy images supported the hypothesis that the higher delivery observed in porcine skin was due to a larger contribution of the follicular penetration pathway. In conclusion, the significant increase in ECZ skin deposition achieved using the MPEG-dihexPLA micelles demonstrates their ability to improve cutaneous drug bioavailability; this may translate into improved clinical efficacy in vivo. Moreover, these micelle systems may also enable targeting of the hair follicle and this will be investigated

  8. Bioavailability of heavy metals in soils: definitions and practical implementation--a critical review.

    Science.gov (United States)

    Kim, Rog-Young; Yoon, Jeong-Ki; Kim, Tae-Seung; Yang, Jae E; Owens, Gary; Kim, Kwon-Rae

    2015-12-01

    Worldwide regulatory frameworks for the assessment and remediation of contaminated soils have moved towards a risk-based approach, taking contaminant bioavailability into consideration. However, there is much debate on the precise definition of bioavailability and on the standardization of methods for the measurement of bioavailability so that it can be reliably applied as a tool for risk assessment. Therefore, in this paper, we reviewed the existing definitions of heavy metal bioavailability in relation to plant uptake (phytoavailability), in order to better understand both the conceptual and operational aspects of bioavailability. The related concepts of specific and non-specific adsorption, as well as complex formation and organic ligand affinity were also intensively discussed to explain the variations of heavy metal solubility and mobility in soils. Further, the most frequently used methods to measure bioavailable metal soil fractions based on both chemical extractions and mechanistic geochemical models were reviewed. For relatively highly mobile metals (Cd, Ni, and Zn), a neutral salt solution such as 0.01 M CaCl2 or 1 M NH4NO3 was recommended, whereas a strong acid or chelating solution such as 0.43 M HNO3 or 0.05 M DTPA was recommended for strongly soil-adsorbed and less mobile metals (Cu, Cr, and Pb). While methods which assessed the free metal ion activity in the pore water such as DGT and DMT or WHAM/Model VI, NICA-Donnan model, and TBLM are advantageous for providing a more direct measure of bioavailability, few of these models have to date been properly validated. PMID:25841357

  9. Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils.

    Science.gov (United States)

    Bolan, Nanthi; Mahimairaja, Santiago; Kunhikrishnan, Anitha; Naidu, Ravi

    2013-10-15

    In this work, the nexus between sorption and bioavailability of arsenic (As) and cadmium (Cd) as affected by soil type, soil pH, ageing, and mobilizing agents were examined. The adsorption of As and Cd was examined using a number of allophanic and non-allophanic soils which vary in their charge components. The effect of pH and ageing on the bioavailability of As and Cd was examined using spiked soils in a plant growth experiment. The effect of phosphate (P)-induced mobility of As on its bioavailability was examined using a naturally contaminated sheep dip soil. The results indicated that the adsorption of both As and Cd varied amongst the soils, and the difference in Cd adsorption is attributed to the difference in surface charge. An increase in soil pH increased net negative charge by an average of 45.7 mmol/kg/pH thereby increasing cation (Cd) adsorption; whereas, the effect of pH on anion (As) adsorption was inconsistent. The bioavailability of As and Cd decreased by 3.31- and 2.30-fold, respectively, with ageing which may be attributed to increased immobilization. Phosphate addition increased the mobility and bioavailability of As by 4.34- and 3.35-fold, respectively, in the sheep dip soil. However, the net effect of P on As phytoavailability depends on the extent of P-induced As mobilization in soils and P-induced competition for As uptake by roots. The results demonstrate the nexus between sorption and bioavailability of As and Cd in soils, indicating that the effects of various factors on bioavailability are mediated through their effects on sorption reactions.

  10. Bioavailability of Phosphorus in Two Cultivars of Pea for Broiler Chicks.

    Science.gov (United States)

    Woyengo, T A; Emiola, I A; Kim, I H; Nyachoti, C M

    2016-03-01

    The aim was to determine the relative bioavailability of phosphorus (P) in peas for 21-day old broiler chickens using slope-ratio assay. One hundred and sixty eight male Ross 308 broiler chicks were divided into 42 groups 4 balanced for body weight and fed 7 diets in a completely randomized design (6 groups/diet) from day 1 to 21 of age. The diets were a corn-soybean meal basal diet, and the corn-soybean meal basal diet to which monosodium phosphate, brown- or yellow-seeded pea was added at the expense of cornstarch to supply 0.5% or 1% total phosphorus. Monosodium phosphate was included as a reference, and hence the estimated bioavailability of P in pea cultivars was relative to that in the monosodium phosphate. Birds and feed were weighed weekly and on d 21 they were killed to obtain tibia. The brown-seeded pea contained 23.4% crude protein, 0.47% P, whereas the yellow-seeded pea contained 24.3% crude protein and 0.38% P. Increasing dietary P supply improved (p<0.05) chick body weight gain and tibia ash and bone density. The estimated relative bioavailability of p values for brown- and yellow-seeded peas obtained using final body weight, average daily gain, tibia ash, and bone mineral density were 31.5% and 36.2%, 35.6% and 37.3%, 23.0% and 5.60%, and 40.3% and 30.3%, respectively. The estimated relative bioavailability of p values for brown- and yellow-seeded peas did not differ within each of the response criteria measured in this study. In conclusion, the relative bioavailability of P in pea did not differ depending on the cultivar (brown- vs yellow-seed). However, the relative bioavailability of P in pea may vary depending on the response criterion used to measure the bioavailability. PMID:26950872

  11. Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity

    OpenAIRE

    Valicherla, Guru R.; Dave, Kandarp M.; Anees A. Syed; Mohammed Riyazuddin; Gupta, Anand P.; Akhilesh Singh; Wahajuddin,; Kalyan Mitra; Dipak Datta; Gayen, Jiaur R.

    2016-01-01

    Poor bioavailability of Docetaxel (DCT) arising due to its low aqueous solubility and permeability limits its clinical utility. The aim of the present study was to develop DCT loaded self-emulsified drug delivery systems (D-SEDDS) and evaluate its potential ability to improve the oral bioavailability and therapeutic efficacy of DCT. D-SEDDS were characterized for their in vitro antitumor activity, in situ single pass intestinal perfusion (SPIP), bioavailability, chylomicron flow blocking stud...

  12. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    Science.gov (United States)

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  13. Loading amorphous Asarone in mesoporous silica SBA-15 through supercritical carbon dioxide technology to enhance dissolution and bioavailability.

    Science.gov (United States)

    Zhang, Zhengzan; Quan, Guilan; Wu, Qiaoli; Zhou, Chan; Li, Feng; Bai, Xuequn; Li, Ge; Pan, Xin; Wu, Chuanbin

    2015-05-01

    The aim of this study was to load amorphous hydrophobic drug into ordered mesoporous silica (SBA-15) by supercritical carbon dioxide technology in order to improve the dissolution and bioavailability of the drug. Asarone was selected as a model drug due to its lipophilic character and poor bioavailability. In vitro dissolution and in vivo bioavailability of the obtained Asarone-SBA-15 were significantly improved as compared to the micronized crystalline drug. This study offers an effective, safe, and environmentally benign means of solving the problems relating to the solubility and bioavailability of hydrophobic molecules. PMID:25720818

  14. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils.

    Science.gov (United States)

    Juhasz, Albert L; Smith, Euan; Weber, John; Rees, Matthew; Rofe, Allan; Kuchel, Tim; Sansom, Lloyd; Naidu, Ravi

    2007-10-01

    An in vivo swine assay was utilised for the determination of arsenic (As) bioavailability in contaminated soils. Arsenic bioavailability was assessed using pharmacokinetic analysis encompassing area under the blood plasma-As concentration time curve following zero correction and dose normalisation. In contaminated soil studies, As uptake into systemic circulation was compared to an arsenate oral dose and expressed as relative As bioavailability. Arsenic bioavailability ranged from 6.9+/-5.0% to 74.7+/-11.2% in 12 contaminated soils collected from former railway corridors, dip sites, mine sites and naturally elevated gossan soils. Arsenic bioavailability was generally low in the gossan soils and highest in the railway soils, ranging from 12.1+/-8.5% to 16.4+/-9.1% and 11.2+/-4.7% to 74.7+/-11.2%, respectively. Comparison of in vivo and in vitro (Simplified Bioaccessibility Extraction Test [SBET]) data from the 12 contaminated soils and bioavailability data collected from an As spiked soil study demonstrated that As bioavailability and As bioaccessibility were linearly correlated (in vivo As bioavailability (mgkg(-1))=14.19+0.93.SBET As bioaccessibility (mgkg(-1)); r(2)=0.92). The correlation between the two methods indicates that As bioavailability (in vivo) may be estimated using the less expensive, rapid in vitro chemical extraction method (SBET) to predict As exposure in human health risk assessment. PMID:17585998

  15. Effects of polymer molecular weight on relative oral bioavailability of curcumin

    Directory of Open Access Journals (Sweden)

    Lin LC

    2012-06-01

    Full Text Available Yin-Meng Tsai,1 Wan-Ling Chang-Liao,1 Chao-Feng Chien,1 Lie-Chwen Lin,1,2 Tung-Hu Tsai,1,31Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, 2National Research Institute of Chinese Medicine, 3Department of Education and Research, Taipei City Hospital, Taipei, TaiwanBackground: Polylactic-co-glycolic acid (PLGA nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome.Methods: Curcumin encapsulated in low (5000–15,000 and high (40,000–75,000 molecular weight PLGA (LMw-NPC and HMw-NPC, respectively were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples.Results: There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (Cmax of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 µg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability

  16. Phospholipid-based solid drug formulations for oral bioavailability enhancement: A meta-analysis.

    Science.gov (United States)

    Fong, Sophia Yui Kau; Brandl, Martin; Bauer-Brandl, Annette

    2015-12-01

    Low bioavailability nowadays often represents a challenge in oral dosage form development. Solid formulations composed of drug and phospholipid (PL), which, upon contact with water, eventually form multilamellar liposomes (i.e. 'proliposomes'), are an emerging approach to solve such issue. Regarded as an 'improved' version of liposomes concerning storage stability, the potential and versatility of a range of such formulations for oral drug delivery have been extensively discussed. However, a systematic and quantitative analysis of the studies that applied solid PL for oral bioavailability enhancement is currently lacking. Such analysis is necessary for providing an overview of the research progress and addressing the question on how promising this approach can be on bioavailability enhancement. The current review performed a systematic search of references in three evidence-based English databases, Medline, Embase, and SciFinder, from the year of 1985 up till March 2015. A total of 112 research articles and 82 patents that involved solid PL-based formulations were identified. The majority of such formulations was intended for oral drug delivery (55%) and was developed to address low bioavailability issues (49%). A final of 54 studies that applied such formulations for bioavailability enhancement of 43 different drugs with poor water solubility and/or permeability were identified. These proof-of-concept studies with in vitro (n=31) and/or animal (n=23) evidences have been systematically summarized. Meta-analyses were conducted to measure the overall enhancement power (percent increase compared to control group) of solid PL formulations on drugs' solubility, permeability and oral bioavailability, which were found to be 127.4% (95% CI [86.1, 168.7]), 59.6% (95% CI [30.1, 89.0]), and 18.5% (95% CI [10.1, 26.9]) respectively. Correlations between the enhancement factors and in silico physiochemical properties of drugs were also performed to check if such approach can be

  17. Carcinogenicity of azo colorants: influence of solubility and bioavailability.

    Science.gov (United States)

    Golka, Klaus; Kopps, Silke; Myslak, Zdislaw W

    2004-06-15

    In the past, azo colorants based on benzidine, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine (o-tolidine), and 3,3'-dimethoxybenzidine (o-dianisidine) have been synthesized in large amounts and numbers. Studies in exposed workers have demonstrated that the azoreduction of benzidine-based dyes occurs in man. The metabolic conversion of benzidine-, 3,3'-dimethylbenzidine- and 3,3'-dimethoxybenzidine-based dyes to their (carcinogenic) amine precursors in vivo is a general phenomenon that must be considered for each member of this class of chemicals. Several epidemiological studies have demonstrated that the use of the benzidine-based dyes has caused bladder cancer in humans. However, in contrast to water-soluble dyes, the question of biological azoreduction of (practically insoluble) pigments has been a matter of discussion. As a majority of azo pigments are based on 3,3'-dichlorobenzidine, much of the available experimental data are focused on this group. Long-term animal carcinogenicity studies performed with pigments based on 3,3'-dichlorobenzidine did not show a carcinogenic effect. The absence of a genotoxic effect has been supported by mutagenicity studies with the 3,3'-dichlorobenzidine-based Pigment Yellow 12. Studies in which azo pigments based on 3,3'-dichlorobenzidine had been orally administered to rats, hamsters, rabbits and monkeys could generally not detect significant amounts of 3,3'-dichlorobenzidine in the urine. It, therefore, appears well established that the aromatic amine components from azo pigments based on 3,3'-dichlorobenzidine are practically not bioavailable. Hence, it is very unlikely that occupational exposure to insoluble azo pigments would be associated with a substantial risk of (bladder) cancer in man. According to current EU regulations, azo dyes based on benzidine, 3,3'-dimethoxybenzidine and 3,3'-dimethylbenzidine have been classified as carcinogens of category 2 as "substances which should be regarded as if they are carcinogenic

  18. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity.

    Science.gov (United States)

    Zhang, Liang; Navaratna, Tejas; Thurber, Greg M

    2016-07-20

    Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (sc) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. Their ease and efficiency make double-click helix stabilization chemistries a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control sc absorption and clearance rates to customize plasma pharmacokinetics. PMID:27327034

  19. Lacidipine self-nanoemulsifying drug delivery system for the enhancement of oral bioavailability.

    Science.gov (United States)

    Subramanian, Natesan; Sharavanan, Shanmugam Palaniappan; Chandrasekar, Ponnusamy; Balakumar, Alagar; Moulik, Satya Priya

    2016-04-01

    Low bioavailability of Lacidipine (LD), an calcium channel blocker pose many challenges in the treatment of hypertension. The objective of this study was to formulate and characterize LD self-nanoemulsifying drug delivery systems (SNEDDS) to improve oral bioavailability of the drug. Formulations were evaluated for globule size, surface morphology, emulsification time, cloud point, drug content, in vitro dissolution, ex vivo permeation, stability and oral bioavailability studies. Captex 810D, TPGS, Tween-60, Transcutol P and PEG 400 was selected based on the solubility study results. The optimized SNEDDS readily gets nanoemulsified at 37 °C with droplet size of 41 nm when mixed with 200 times of its water. Transmission electron microscope photographs confirmed the spherical shape of the globules. In vitro dissolution of SNEDDS showed more than 80 % of drug release within 15 min. The ex vivo permeation of LD from SNEDDS is 4.8- and 9-fold higher compared to pure drug in the absence and presence of verapamil respectively. The stability study of the SNEDDS confirmed no environmental effect on the physical nature and drug content. Oral bioavailability of SNEDDS is 2.5 times higher than marketed tablet. The results suggest that, the SNEDDS formulation can be used as a possible alternative for the traditional oral formulations of LD to improve its oral bioavailability. PMID:26362165

  20. Chemical extraction to assess the bioavailability of chlorobenzenes in soil with different aging periods

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang; Wang, Fang; Yang, Xinglun; Liu, Cuiying; Jin, Xin; Jiang, Xin [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Kengara, Fredrick Orori [Maseno Univ. (Kenya). Dept. of Chemistry

    2011-12-15

    Bioavailability is mainly influenced by aging and desorption of contaminants in soil. The purpose of this study was to investigate the desorption kinetics of chlorobenzenes (CBs) in soil and to investigate whether chemical extractions are suitable for the bioavailability assessment of CBs in soil. A soil spiked with CBs and aged for different periods was extracted with Tenax, hydroxypropyl-{beta}-cyclodextrin (HPCD), and butanol to assess the bioavailability of CBs in soil, respectively. Earthworm (Eisenia foetida) accumulation was used as bioassay in parallel experiments to evaluate the chemical extractions. The results showed that desorption of CBs from soil with consecutive Tenax extraction fitted into triphasic kinetics model. Different chemical methods extracted different amounts of CBs over different aging periods. For hexachlorobenzene (HCB), the extraction efficiency was in the order of butanol > Tenax-6h > HPCD extraction, while the order of butanol > HPCD > Tenax-6h extraction for pentachlorobenzene (PeCB). The bioaccumulation by earthworm decreased with increasing aging period and was significantly higher for HCB than for PeCB (p < 0.05). Earthworm accumulated CBs correlated well with all the three chemical extracted CBs. However, HPCD extraction showed the converse extraction tendency with earthworm uptake of CBs. Chemical extraction could be used to assess the bioavailability of contaminants in soil; however, they were method and compound specific. Tenax and butanol extractions were more reliable than HPCD extraction for bioavailability assessment of the tested CBs and the soil used since they showed the consistent extraction tendency with earthworm uptake of CBs.

  1. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability

    Science.gov (United States)

    Jyun Chen, Yi; Inbaraj, Baskaran Stephen; Shiau Pu, Yeong; Chen, Bing Huei

    2014-04-01

    The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications.

  2. Bioavailability of Fe and Zn in selected legumes, cereals, meat and milk products consumed in Fiji.

    Science.gov (United States)

    Singh, Poonam; Prasad, Surendra; Aalbersberg, William

    2016-09-15

    The present study reports contents and the bioavailability of Fe and Zn from 25 selected raw and cooked food samples. The results showed highest variation of Fe content in raw food samples ranging from 2.19 ± 0.04 to 0.93 ± 0.03 mg/100g in legumes. The raw black eye bean, cheese and fish showed high Zn content up to 8.85 ± 0.01, 12.93 ± 0.26 and 172.03 ± 5.09 mg/100g, respectively. Pulses and cereals showed high level of ionizable Fe. Zn bioavailability was quite low in cereals as compared to pulses; 4.02% in yellow split to 17.40% in Bengal gram. Zn bioavailability of 17.40% is in cheese. Fe bioavailability is high in cooked rice 160.60%, white bread 428.30% and milk powder 241.67% showing that Fe bioavailability increased after cooking whereas the lowest in fish 0.84%. The multivariate and cluster analysis categorized studied foods into two main groups. PMID:27080888

  3. Assessment of bioavailability of heavy metal pollutants using soil isolates of Chlorella sp.

    Science.gov (United States)

    Krishnamurti, Gummuluru S R; Subashchandrabose, Suresh R; Megharaj, Mallavarapu; Naidu, Ravi

    2015-06-01

    Biotests conducted with plants are presently used to estimate metal bioavailability in contaminated soils. But when plants are grown in soils, especially the plants with fine roots, root collection is easily biased and tedious. Indeed, at harvest, small amounts of soil can adhere to roots, resulting in overestimation of root metal content, and the finest roots are often discarded from the analysis because of their difficult and almost impossible recovery. This report presents a novel method for assessing the bioavailability of heavy metals in soils using microalgae. Two species of green unicellular microalgae were isolated from two highly contaminated soils and identified by phylogenetic and molecular evolutionary analyses as Chlorella sp. RBM and Chlorella sp. RHM. These two cultures were used to determine the metal uptake from metal-contaminated soils of South Australia as a novel, cost-effective, simple and rapid method for assessing the bioavailability of heavy metals in soils. The suggested method is an attempt to achieve a realistic estimate of bioavailability which overcomes the inherent drawback of root metal contamination in the bioavailability indices so far reported.

  4. Complexation of Z-ligustilide with hydroxypropyl-β-cyclodextrin to improve stability and oral bioavailability

    Directory of Open Access Journals (Sweden)

    Lu Yapeng

    2014-06-01

    Full Text Available To improve the stability and oral bioavailability of Z-ligustilide (LIG, the inclusion complex of LIG with hydroxypropyl- β-cyclodextrin (HP-β-CD was prepared by the kneading method and characterized by UV-Vis spectroscopy, differential thermal analysis (DTA and Fourier transform infrared (FTIR spectroscopy. LIG is capable of forming an inclusion complex with HP-b-CD and the stoichiometry of the complex was 1:1. Stability of the inclusion complex against temperature and light was greatly enhanced compared to that of free LIG. Further, oral bioavailability of LIG and the inclusion complex in rats were studied and the plasma drug concentration-time curves fitted well with the non-compartment model to estimate the absolute bioavailability, which was 7.5 and 35.9 %, respectively. In conclusion, these results show that LIG/HP-β-CD complexation can be of great use for increasing the stability and biological efficacy of LIG

  5. ENHANCEMENT OF ORAL BIOAVAILABILITY OF LIPOPHILLIC DRUGS FROMSELF-MICROEMULSIFYING DRUG DELIVERY SYSTEM (SMEDDS

    Directory of Open Access Journals (Sweden)

    GUPTA ROOP N1, GUPTA RAKESH AND RATHORE GARVENDRA SINGH*

    2009-12-01

    Full Text Available Approximately 40 per cent of new drug candidates have poor water solubility and the oral delivery of such drugs isfrequently associated with implications of low bioavailability, high intra and inter-subject variability, and lack of doseproportionality. Bioavailability problem of lipophillic drugs can be solved by formation of Self-Micro Emulsifying DrugDelivery System (SMEDDS. SMEDDS appears to be a unique and industrially feasible approach to overcome theproblem of low oral bioavailability associated with the lipophillic drugs. Self-micro emulsifying formulations are mixturesof oils and surfactants, ideally isotropic, and sometimes containing co-solvents, which emulsify spontaneously to producefine oil-in-water emulsion when introduced into aqueous phase under conditions of gentle agitation. The digestive motilityof the stomach and intestine provide the agitation necessary for self-emulsification in vivo. This review describesSMEDDS as one of the important approaches to overcome the formulation difficulties of potent lipophillic drugs.

  6. Effects of Water Stress on Rice Production: Bioavailability of Potassium in Soil

    Directory of Open Access Journals (Sweden)

    Jahan, Sarwar

    2013-04-01

    Full Text Available Water demand in agriculture, municipal, and industrial purposes is increasing rapidly which will pressure on future demand in agriculture. To justify less water use in rice production, we produced rice under different water levels (DWLs and justified potassium bioavailability. There were five DWLs were employed in this experiment. Besides measuring yield and yield parameters, relative water content (WRC and chlorophyll content in leaves, soil pH and bioavailability of potassium (K in soil solution were measured. Yield and yield parameters showed insignificant difference under DWLs. Different water levels did not affect weekly data of chlorophyll content and RWC in leaves. But chlorophyll content and RWC in leaves were significantly higher in week 6 or 9 than week 3. Different water levels did not affect soil pH. Our results suggested that rice can be produced under low water input without affecting yield and yield parameters and K bioavailability in soil.

  7. Copper bioavailability and toxicity to Mytilus galloprovincialis in Shelter Island Yacht Basin, San Diego, CA.

    Science.gov (United States)

    Bosse, Casey; Rosen, Gunther; Colvin, Marienne; Earley, Patrick; Santore, Robert; Rivera-Duarte, Ignacio

    2014-08-15

    The bioavailability and toxicity of copper (Cu) in Shelter Island Yacht Basin (SIYB), San Diego, CA, USA, was assessed with simultaneous toxicological, chemical, and modeling approaches. Toxicological measurements included laboratory toxicity testing with Mytilus galloprovincialis (Mediterranean mussel) embryos added to both site water (ambient) and site water spiked with multiple Cu concentrations. Chemical assessment of ambient samples included total and dissolved Cu concentrations, and Cu complexation capacity measurements. Modeling was based on chemical speciation and predictions of bioavailability and toxicity using a marine Biotic Ligand Model (BLM). Cumulatively, these methods assessed the natural buffering capacity of Cu in SIYB during singular wet and dry season sampling events. Overall, the three approaches suggested negligible bioavailability, and isolated observed or predicted toxicity, despite an observed gradient of increasing Cu concentration, both horizontally and vertically within the water body, exceeding current water quality criteria for saltwater.

  8. Ageing of atrazine in manure amended soils assessed by bioavailability to Pseudomonas sp. strain ADP

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Bælum, Jacob; Strobel, Bjarne W.;

    2014-01-01

    bacteria Pseudomonas sp. strain ADP. Throughout an ageing period of 90 days bioavailability was investigated at days 1, 10, 32, 60 and 90, where ~108 cells g−1 of the ADP strain was inoculated to the 14C-atrazine exposed soil and 14CO2 was collected over 7 days as a measure of mineralized atrazine. Even......Animal manure is applied to agricultural land in areas of high livestock production. In the present study, we evaluated ageing of atrazine in two topsoils with and without addition of manure and in one subsoil. Ageing was assessed as the bioavailability of atrazine to the atrazine mineralizing...... though the bioavailable residue decreased in all of the three soils as time proceeded, we found that ageing occurred faster in the topsoils rich in organic carbon than in subsoil. For one topsoil rich in organic carbon content, Simmelkær, we observed a higher degree of ageing when treated with manure...

  9. An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yunlong [Department of Plant Protection, Zhejiang University, Kaixuan Road 268, Hangzhou, Zhejiang 310029 (China)]. E-mail: ylyu@zju.edu.cn; Wu Xiaomao [Department of Plant Protection, College of Agriculture, Guizhou University, Guiyang 550025 (China); Li Shaonan [Department of Plant Protection, Zhejiang University, Kaixuan Road 268, Hangzhou, Zhejiang 310029 (China); Fang Hua [Department of Plant Protection, Zhejiang University, Kaixuan Road 268, Hangzhou, Zhejiang 310029 (China); Zhan Haiyan [Department of Plant Protection, Zhejiang University, Kaixuan Road 268, Hangzhou, Zhejiang 310029 (China); Yu Jingquan [Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China)

    2006-06-15

    A study was conducted to determine the adsorption/desorption of butachlor, myclobutanil and chlorpyrifos on five soils using a batch equilibration technique and to study the relationship between bioavailability to Allolobophora caliginosa and the adsorption/desorption of these three pesticides. The results showed that the adsorption/desorption processes of the tested compounds were mainly controlled by soil organic matter content (OM) and octanol/water-partitioning coefficient (K {sub ow}), and that the bioavailability of the pesticides was dependent on characteristics of pesticides, properties of soils, and uptake routes of earthworms. Bioconcentration of butachlor and myclobutanil was negatively correlated with Freundlich adsorption constant K {sub af} and K {sub df}. However, only a slightly positive correlation between bioconcentration and K {sub af} and K {sub df} was observed for chlorpyrifos due to its high affinity onto soil. - Bioavailability of pesticides in soil to earthworm is governed by adsorption characteristics.

  10. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans

    DEFF Research Database (Denmark)

    Nielsen, Inge Lise F; Chee, Winnie S S; Poulsen, Lea;

    2006-01-01

    Hesperidin is the predominant polyphenol consumed from citrus fruits and juices. However, hesperidin is proposed to have limited bioavailability due to the rutinoside moiety attached to the flavonoid. The aim of this study was to demonstrate in human subjects that the removal of the rhamnose grou...... that the bioavailability of hesperidin was modulated by enzymatic conversion to hesperetin-7-glucoside, thus changing the absorption site from the colon to the small intestine. This may affect future interventions concerning the health benefits of citrus flavonoids.......Hesperidin is the predominant polyphenol consumed from citrus fruits and juices. However, hesperidin is proposed to have limited bioavailability due to the rutinoside moiety attached to the flavonoid. The aim of this study was to demonstrate in human subjects that the removal of the rhamnose group...

  11. Changes in the composition and bioavailability of dissolved organic matter during sea ice formation

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Stedmon, Colin A.; Kaartokallio, Hermanni;

    2015-01-01

    The Arctic Ocean receives a large amount of terrestrial dissolved organic matter (DOM) from rivers and more than half of this is removed during its passage through the Arctic Ocean. Terrestrial DOM is generally believed to have a low bioavailability and recent studies point to physicochemical...... processes such as sea ice formation as the source of the significant DOM removal in the Arctic Ocean. We present the results of a mesocosm experiment designed to investigate how sea ice formation affects DOM composition and bioavailability. We measured the change in different fluorescent dissolved organic...... formation, leading to modifications in composition and increased bioavailability, which can in part explain terrestrial DOC removal in the Arctic Ocean....

  12. Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin.

    Science.gov (United States)

    Berger, L M; Wein, S; Blank, R; Metges, C C; Wolffram, S

    2012-09-01

    The bioavailability of quercetin has been intensively investigated in monogastric species, but knowledge about its bioavailability in ruminants does not exist. Thus, the aim of the present study was to determine the bioavailability of quercetin in nonlactating cows equipped with indwelling catheters placed in one jugular vein after intraruminal and additionally after i.v. application, respectively. Quercetin was administered intraruminally in equimolar amounts, either in the aglycone form or as its glucorhamnoside rutin, each at 2 dosages [10 and 50 mg of quercetin/kg of body weight (BW)]. In a second trial, 0.8 mg of quercetin aglycone/kg of BW was applied i.v. Blood samples were drawn 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12, and 24 h after intraruminal application and every 5 min (first hour), every 10 min(second hour), and at 3 and 6h after i.v. bolus application, respectively. Quercetin and quercetin metabolites with an intact flavonol structure (isorhamnetin, tamarixetin, and kaempferol) in plasma samples were analyzed by HPLC with fluorescence detection. After intraruminal application of quercetin and rutin, respectively, quercetin and its methylated (isorhamnetin, tamarixetin) and dehydroxylated (kaempferol) derivatives were present in plasma mainly as conjugated forms, whereas free quercetin and its derivatives were scarcely detected. For rutin, the relative bioavailability of total flavonols (sum of conjugated and nonconjugated quercetin and its conjugated and nonconjugated derivatives after intake of 50 mg/kg of BW) was 767.3% compared with quercetin aglycone (100%). Absolute bioavailability of total flavonols was only 0.1 and 0.5% after quercetin aglycone and rutin applications, respectively. Our data demonstrate that bioavailability of quercetin from rutin is substantially higher compared with that from quercetin aglycone in cows after intraruminal (or oral) application, unlike in monogastric species. PMID:22916908

  13. Bioavailability and mobility of organic contaminants in soil: new three-step ecotoxicological evaluation.

    Science.gov (United States)

    Prokop, Zbyněk; Nečasová, Anežka; Klánová, Jana; Čupr, Pavel

    2016-03-01

    A novel approach was developed for rapid assessment of bioavailability and potential mobility of contaminants in soil. The response of the same test organism to the organic extract, water extract and solid phase of soil was recorded and compared. This approach was designed to give an initial estimate of the total organic toxicity (response to organic extractable fraction), as well as the mobile (response to water extract) and bioavailable fraction (response to solid phase) of soil samples. Eighteen soil samples with different levels of pollution and content of organic carbon were selected to validate the novel three-step ecotoxicological evaluation approach. All samples were chemically analysed for priority contaminants, including aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) and dichlordiphenyltrichloroethane (DDT). The ecotoxicological evaluation involved determination of toxicity of the organic, mobile and bioavailable fractions of soil to the test organism, bacterium Bacillus cereus. We found a good correlation between the chemical analysis and the toxicity of organic extract. The low toxicity of water extracts indicated low water solubility, and thus, low potential mobility of toxic contaminants present in the soil samples. The toxicity of the bioavailable fraction was significantly greater than the toxicity of water-soluble (mobile) fraction of the contaminants as deduced from comparing untreated samples and water extracts. The bioavailability of the contaminants decreased with increasing concentrations of organic carbon in evaluated soil samples. In conclusion, the three-step ecotoxicological evaluation utilised in this study can give a quick insight into soil contamination in context with bioavailability and mobility of the contaminants present. This information can be useful for hazard identification and risk assessment of soil-associated contaminants. Graphical Abstract New three-step ecotoxicological

  14. Bioavailability of Phosphorus in Two Cultivars of Pea for Broiler Chicks.

    Science.gov (United States)

    Woyengo, T A; Emiola, I A; Kim, I H; Nyachoti, C M

    2016-03-01

    The aim was to determine the relative bioavailability of phosphorus (P) in peas for 21-day old broiler chickens using slope-ratio assay. One hundred and sixty eight male Ross 308 broiler chicks were divided into 42 groups 4 balanced for body weight and fed 7 diets in a completely randomized design (6 groups/diet) from day 1 to 21 of age. The diets were a corn-soybean meal basal diet, and the corn-soybean meal basal diet to which monosodium phosphate, brown- or yellow-seeded pea was added at the expense of cornstarch to supply 0.5% or 1% total phosphorus. Monosodium phosphate was included as a reference, and hence the estimated bioavailability of P in pea cultivars was relative to that in the monosodium phosphate. Birds and feed were weighed weekly and on d 21 they were killed to obtain tibia. The brown-seeded pea contained 23.4% crude protein, 0.47% P, whereas the yellow-seeded pea contained 24.3% crude protein and 0.38% P. Increasing dietary P supply improved (ppeas obtained using final body weight, average daily gain, tibia ash, and bone mineral density were 31.5% and 36.2%, 35.6% and 37.3%, 23.0% and 5.60%, and 40.3% and 30.3%, respectively. The estimated relative bioavailability of p values for brown- and yellow-seeded peas did not differ within each of the response criteria measured in this study. In conclusion, the relative bioavailability of P in pea did not differ depending on the cultivar (brown- vs yellow-seed). However, the relative bioavailability of P in pea may vary depending on the response criterion used to measure the bioavailability.

  15. Biofortification and bioavailability of rice grain zinc as affected by different forms of foliar zinc fertilization.

    Directory of Open Access Journals (Sweden)

    Yanyan Wei

    Full Text Available BACKGROUND: Zinc (Zn biofortification through foliar Zn application is an attractive strategy to reduce human Zn deficiency. However, little is known about the biofortification efficiency and bioavailability of rice grain from different forms of foliar Zn fertilizers. METHODOLOGY/PRINCIPAL FINDINGS: Four different Zn forms were applied as a foliar treatment among three rice cultivars under field trial. Zinc bioavailability was assessed by in vitro digestion/Caco-2 cell model. Foliar Zn fertilization was an effective agronomic practice to promote grain Zn concentration and Zn bioavailability among three rice cultivars, especially, in case of Zn-amino acid and ZnSO(4. On average, Zn-amino acid and ZnSO(4 increased Zn concentration in polished rice up to 24.04% and 22.47%, respectively. On average, Zn-amino acid and ZnSO(4 increased Zn bioavailability in polished rice up to 68.37% and 64.43%, respectively. The effectiveness of foliar applied Zn-amino acid and ZnSO(4 were higher than Zn-EDTA and Zn-Citrate on improvement of Zn concentration, and reduction of phytic acid, as a results higher accumulation of bioavailable Zn in polished rice. Moreover, foliar Zn application could maintain grain yield, the protein and minerals (Fe and Ca quality of the polished rice. CONCLUSIONS: Foliar application of Zn in rice offers a practical and useful approach to improve bioavailable Zn in polished rice. According to current study, Zn-amino acid and ZnSO(4 are recommended as excellent foliar Zn forms to ongoing agronomic biofortification.

  16. Simultaneous detection of bioavailable arsenic and cadmium in contaminated soils using dual-sensing bioreporters.

    Science.gov (United States)

    Yoon, Youngdae; Kim, Sunghoon; Chae, Yooeun; Kim, Shin Woong; Kang, Yerin; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2016-04-01

    Whole-cell bioreporters (WCBs) have attracted increasing attention during the last few decades because they allow fast determination of bioavailable heavy metals in contaminated sites. Various WCBs to monitor specific heavy metals such as arsenic and cadmium in diverse environmental systems are available. However, currently, no study on simultaneous analysis of arsenic and cadmium has been reported, even though soils are contaminated by diverse heavy metals and metalloids. We demonstrated herein the development of dual-sensing WCBs to simultaneously quantify bioavailable arsenic and cadmium in contaminated sites by employing the promoter regions of the ars and znt operons as separate metal-sensing domains, and egfp and mcherry as reporter genes. The dual-sensing WCBs were generated by inserting two sets of genes into E. coli DH5α. The capability of WCBs was successfully proved to simultaneously quantify bioavailable arsenic and cadmium in amended Landwirtschaftliche Untersuchungs und Forschungsanstalt (LUFA) soils, and then, it was applied to contaminated field soils collected from a smelter area in Korea. As a result, it was noticed that the bioavailable portion of cadmium was higher than that of arsenic while the absolute amount of bioavailable arsenic and cadmium level was opposite. Since both cadmium and arsenic were assessed from the same E. coli cells, the data obtained by using dual-sensing WCBs would be more efficient and convenient than that from comparative WCB assay. In spite of advantageous aspects, to our knowledge, this is the first report on a dual-sensing WCB for rapid and concurrent quantification of bioavailable arsenic and cadmium in contaminated soils.

  17. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans

    DEFF Research Database (Denmark)

    Maiani, Giuseppe; Castón, María Jesús Periago; Catasta, Giovina;

    2009-01-01

    Carotenoids are one of the major food micronutrients in human diets and the overall objective of this review is to re-examine the role of carotenoids in human nutrition. We have emphasized the attention on the following carotenoids present in food and human tissues: -carotene, -cryptoxanthin......, -carotene, lycopene, lutein and zeaxanthin; we have reported the major food sources and dietary intake of these compounds. We have tried to summarize positive and negative effects of food processing, storage, cooking on carotenoid content and carotenoid bioavailability. In particular, we have evidenced...... the possibility to improve carotenoids bioavailability in accordance with changes and variations of technology procedures....

  18. Effect of adhesive matrix composition and terpinolene on indomethacin bioavailability in rats from transdermal therapeutic system.

    Science.gov (United States)

    Cal, Krzysztof; Sznitowska, Malgorzata; Janicki, Stanislaw

    2008-10-01

    Drug-in-adhesive matrix-type transdermal therapeutic systems for indomethacin (IND) were formulated and evaluated. Silicone and two types of polyacrylates were used as the bases of matrices. Terpinolene was used as a penetration enhancer. The physicochemical properties of matrices were determined. The bioavailability study of IND was performed in rats. The presence of IND in blood was demonstrated for each system. The calculated pharmacokinetics parameters for IND mainly depend on the solubility of IND in the adhesive layer. The positive influence of a penetration enhancer on IND bioavailability was observed only for one type of polyacrylate matrices. PMID:18777239

  19. Effect of pomegranate pretreatment on the oral bioavailability of buspirone in male albino rabbits

    OpenAIRE

    M. Sarangapani; Y Madhusudan Rao; R Shiva Kumar; Ramesh, G.; Y Vamshi Vishnu; Bhargavi Latha, A.; Adukondalu, D.; Y Shravan Kumar

    2011-01-01

    Background and the Purpose of the study: Many drug substances and variety of naturally occurring dietary or herbal components are capable of interaction with the CYP enzyme system. The aim of the study was to investigate the effect of pomegranate juice pretreatment on the bioavailability of buspirone in rabbits. Methods: White New Zealand rabbits weighing 2.1±0.13 Kg were selected for study. The bioavailability of buspirone after pre-treatment with pomegranate juice (10 ml Kg-1 for sev...

  20. Bioavailability of omega-3 long-chain polyunsaturated fatty acids from foods

    DEFF Research Database (Denmark)

    Mu, Huiling

    2008-01-01

    Increasing recognition of the importance of the omega-3 long chain polyunsaturated fatty acids (LCPUFA) has caused greater attention about dietary intake of these fatty acids. Fatty fish is the major dietary source of these fatty acids. Because of the low intake of fish at many places, foods...... enriched with omega-3 LCPUFA can be good alternatives to improve the intake of these fatty acids. Effects of lipid structures and food matrices on bioavailability of omega-3 LCPUFA have been investigated. Short term studies showed that both lipid structure and food matrix affect the bioavailability...

  1. Improving bioavailability and anthelmintic activity of albendazole by preparing albendazole-cyclodextrin complexes

    Directory of Open Access Journals (Sweden)

    García-Rodriguez J.J.

    2001-06-01

    Full Text Available The bioavailability and anthelmintic activity of albendazole-cyclodextrin complexes (ABZ-CDC compared to albendazole suspensions in carboxymethylcellulose (ABZ-CMC was assessed in a mouse model for Trichinella infections. Swiss CD-1 mice experimentally infected with T. spiralis were treated with both formulations against enteral (adult worms and parenteral (migrating and encysted larvae. Oral bioavailability was assessed in age matched mice treated with 50 mg/kg of both formulations. The anthelmintic effects and plasma concentration of the active metabolite albendazole-sulphoxide (ABZSO enantiomer (– were significantly increased following administration of ABZ-CDC in relation to ABZ-CMC.

  2. Whole-Cell Fluorescent Biosensors for Bioavailability and Biodegradation of Polychlorinated Biphenyls

    Directory of Open Access Journals (Sweden)

    David Ryan

    2010-02-01

    Full Text Available Whole-cell microbial biosensors are one of the newest molecular tools used in environmental monitoring. Such biosensors are constructed through fusing a reporter gene such as lux, gfp or lacZ,to a responsive promoter. There have been many reports of the applications of biosensors, particularly their use in assaying pollutant toxicity and bioavailability. This paper reviews the basic concepts behind the construction of whole-cell microbial biosensors for pollutant monitoring, and describes the applications of two such biosensors for detecting the bioavailability and biodegradation of Polychlorinated Biphenyls (PCBs.

  3. Heavy metals in soils from Baia Mare mining impacted area (Romania) and their bioavailability

    Science.gov (United States)

    Roba, Carmen; Baciu, Calin; Rosu, Cristina; Pistea, Ioana; Ozunu, Alexandru

    2015-04-01

    Keywords: heavy metals, soil contamination, bioavailability, Romania The fate of various metals, including chromium, nickel, copper, manganese, mercury, cadmium, and lead, and metalloids, like arsenic, antimony, and selenium, in the natural environment is of great concern, particularly in the vicinity of former mining sites, dumps, tailings piles, and impoundments, but also in urban areas and industrial centres. Most of the studies focused on the heavy metal pollution in mining areas present only the total amounts of metals in soils. The bioavailable concentration of metals in soil may be a better predictor for environmental impact of historical and current dispersion of metals. Assessment of the metal bioavailability and bioaccessibility is critical in understanding the possible effects on soil biota. The bioavailability of metals in soil and their retention in the solid phase of soil is affected by different parameters like pH, metal amount, cation-exchange capacity, content of organic matter, or soil mineralogy. The main objectives of the present study were to determine the total fraction and the bioavailable fraction of Cu, Cd, Pb and Zn from soil in a well-known mining region in Romania, and to evaluate the influence of soil pH on the metal bioavailability in soil. The heavy metal contents and their bioavailability were monitored in a total of 50 soil samples, collected during June and July 2014 from private gardens of the inhabitants from Baia-Mare area. The main mining activities developed in the area consisted of non-ferrous sulphidic ores extraction and processing, aiming to obtain concentrates of lead, copper, zinc and precious metals. After 2006, the metallurgical industry has considerably reduced its activity by closing or diminishing its production capacity. The analysed soil samples proved to have high levels of Pb (50 - 830 mg/kg), Cu (40 - 600 mg/kg), Zn (100 - 700 mg/kg) and Cd (up to 10 mg/kg). The metal abundance in the total fraction is

  4. Improving bioavailability and anthelmintic activity of albendazole by preparing albendazole-cyclodextrin complexes.

    Science.gov (United States)

    García-Rodriguez, J J; Torrado, J; Bolás, F

    2001-06-01

    The bioavailability and anthelmintic activity of albendazole-cyclodextrin complexes (ABZ-CDC) compared to albendazole suspensions in carboxymethylcellulose (ABZ-CMC) was assessed in a mouse model for Trichinella infections. Swiss CD-1 mice experimentally infected with T. spiralis were treated with both formulations against enteral (adult worms) and parenteral (migrating and encysted larvae). Oral bioavailability was assessed in age matched mice treated with 50 mg/kg of both formulations. The anthelmintic effects and plasma concentration of the active metabolite albendazole-sulphoxide (ABZSO) enantiomer (-) were significantly increased following administration of ABZ-CDC in relation to ABZ-CMC. PMID:11484352

  5. Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria

    Directory of Open Access Journals (Sweden)

    Olesja Bondarenko

    2008-11-01

    Full Text Available A set of nine recombinant heavy metal-specific luminescent bacterial sensors belonging to Gram-negative (Escherichia and Pseudomonas and Gram-positive (Staphylococcus and Bacillus genera and containing various types of recombinant metalresponse genetic elements was characterized for heavy metal bioavailability studies. All nine strains were induced by Hg and Cd and five strains also by Zn. As a lowest limit, the sensors were detecting 0.03 μg·L-1 of Hg, 2 μg·L-1 of Cd and 400 μg·L-1 of Zn. Limit of determination of the sensors depended mostly on metal-response element, whereas the toxicity of those metals towards the sensor bacteria was mostly dependent on the type of the host bacterium, with Gram-positive strains being more sensitive than Gram-negative ones. The set of sensors was used to evaluate bioavailability of Hg, Cd and Zn in spiked soils. The bioavailable fraction of Cd and Zn in soil suspension assay (2.6 – 5.1% and 0.32 – 0.61%, of the total Cd and Zn, respectively was almost comparable for all the sensors, whereas the bioavailability of Hg was about 10-fold higher for Gram-negative sensor cells (30.5% of total Hg, compared to Gram-positive ones (3.2% of the total Hg. For Zn, the bioavailable fraction in soil-water suspensions and respective extracts was comparable (0.37 versus 0.33% of the total Zn. However, in the case of Cd, for all the sensors used and for Hg concerning only Gram-negative sensor strains, the bioavailable fraction in soilwater suspensions exceeded the water-extracted fraction about 14-fold, indicating that upon direct contact, an additional fraction of Cd and Hg was mobilized by those sensor bacteria. Thus, for robust bioavailability studies of heavy metals in soils any type of genetic metal-response elements could be used for the construction of the sensor strains. However, Gram-positive and Gram-negative senor strains should be used in

  6. The impact of metal transport processes on bioavailability of free and complex metal ions in methanogenic granular sludge

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Vergeldt, F.; Gerkema, E.; Maca, J.; As, van H.; Lens, P.N.L.

    2012-01-01

    Bioavailability of metals in anaerobic granular sludge has been extensively studied, because it can have a major effect on metal limitation and metal toxicity to microorganisms present in the sludge. Bioavailability of metals can be manipulated by bonding to complexing molecules such as ethylenediam

  7. Extraction of carotenoids from feces enabling the bioavailability of ß-carotene to be studied in Indonesian children

    NARCIS (Netherlands)

    Lieshout, van M.; West, C.E.; Bovenkamp, van de P.; Wang, Y.; Sun, Y.; Breemen, van R.B.; Permaesih, D.; Muhilal,; Verhoeven, M.A.; Creemers, A.F.L.; Lugtenburg, J.

    2003-01-01

    Previously, we have presented a method for quantifying beta-carotene bioavailability based on analysis in serum, following administration of C-13-labeled beta-carotene. Because stool samples can be collected noninvasively, we have now extended the method to measure the bioavailability based on measu

  8. Bioavailability of Organic Solvents in Soils: Input into Biologically Based Dose-Response Models for Human Risk Assessments - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Webster, R. C.

    2000-10-01

    Compared to dermal exposures with neat or aqueous compound, little is understood about the dermal bioavailability of solvents in soil, dust, sludge, or sediment matrices. Therefore, research in this project was designed to provide an understanding of the influence of various environmental factors on the kinetics and bioavailability of solvent-laden soils.

  9. EARLY INDICATORS OF NITRATE STRESS; EFFECTS TO ECOSYSTEMS OF CHRONIC EXPOSURE TO LOW DOSES OF BIOAVAILABLE NITROGEN

    Science.gov (United States)

    Throughout the eastern United States, from the Front Range of the Rocky Mountains to the Atlantic Ocean, bioavailable nitrogen has been falling in the rain since the industrial revolution. Bioavailable nitrogen is a limiting nutrient throughout this region. While long-term rese...

  10. Utilizing Polymer-Coated Vials to Illustrate the Fugacity and Bioavailability of Chlorinated Pesticide Residues in Contaminated Soils

    Science.gov (United States)

    Andrade, Natasha A.; McConnell, Laura L.; Torrents, Alba; Hapeman, Cathleen J.

    2013-01-01

    Fugacity and bioavailability can be used to facilitate students' understanding of potential environmental risks associated with toxic chemicals and, therefore, should be incorporated in environmental chemistry and science laboratories. Although the concept of concentration is easy to grasp, fugacity and bioavailability can be challenging…

  11. Does vitamin C enhance nitric oxide bioavailability in a tetrahydrobiopterin-dependent manner? In vitro, in vivo and clinical studies.

    Science.gov (United States)

    Mortensen, Alan; Lykkesfeldt, Jens

    2014-01-30

    Ascorbate (Asc) has been shown to increase nitric oxide (NO) bioavailability and thereby improve endothelial function in patients showing signs of endothelial dysfunction. Tetrahydrobiopterin (BH₄) is a co-factor of endothelial nitric oxide synthase (eNOS) which may easily become oxidized to the inactive form dihydrobiopterin (BH₂). Asc may increase NO bioavailability by a number of mechanisms involving BH₄ and eNOS. Asc increases BH₄ bioavailability by either reducing oxidized BH₄ or preventing BH₄ from becoming oxidized in the first place. Asc could also increase NO bioavailability in a BH₄-independent manner by increasing eNOS activity by changing its phosphorylation and S-nitrosylation status or by upregulating eNOS expression. In this review, we discuss the putative mechanisms by which Asc may increase NO bioavailability through its interactions with BH₄ and eNOS.

  12. In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: A review

    International Nuclear Information System (INIS)

    We reviewed the published evidence of lead (Pb) contamination of urban soils, soil Pb risk to children through hand-to-mouth activity, reduction of soil Pb bioavailability due to soil amendments, and methods to assess bioaccessibility which correlate with bioavailability of soil Pb. Feeding tests have shown that urban soils may have much lower Pb bioavailability than previously assumed. Hence bioavailability of soil Pb is the important measure for protection of public health, not total soil Pb. Chemical extraction tests (Pb bioaccessibility) have been developed which are well correlated with the results of bioavailability tests; application of these tests can save money and time compared with feeding tests. Recent findings have revealed that fractional bioaccessibility (bioaccessible compared to total) of Pb in urban soils is only 5-10% of total soil Pb, far lower than the 60% as bioavailable as food-Pb presumed by U.S.-EPA (30% absolute bioavailability used in IEUBK model). - Highlights: → Among direct exposure pathways for Pb in urban environments, inadvertent ingestion of soil is considered the major concern. → The concentration of lead in house dusts is significantly related to that in garden soil, and is highest at older homes. → In modeling risks from diet/water/soil Pb, US-EPA presumes that soil-Pb is 60% as bioavailable as other dietary Pb. → Joplin study proved that RBALP method seriously underestimated the ability of phosphate treatments to reduce soil Pb bioavailability. → Zia et al. method has revealed that urban soils have only 5-10% bioaccessible Pb of total Pb level. - Improved risk evaluation and recommendations for Pb contaminated soils should be based on bioavailability-correlated bioaccessible soil Pb rather than total soil Pb.

  13. Distribution, speciation and bioavailability of Lanthanides in the Rhine-Meuse estuary, The Netherlands

    NARCIS (Netherlands)

    Moermond, C.T.A.; Tijink, J.; Wezel, van A.P.; Koelmans, A.A.

    2001-01-01

    Changing environmental conditions may influence the fate and bioavailability of lanthanides (part of the rare earth elements [Ln]) in estuaries. The aim of this study was to quantify the variation in estuarine lanthanide solid/water distribution, speciation, and bioaccumulation. The latter was studi

  14. Comparative bioavailability of a morphine suppository given rectally and in a colostomy

    DEFF Research Database (Denmark)

    Højsted, J; Rubeck-Petersen, K; Rask, H;

    1990-01-01

    In eight patients with a colostomy, plasma morphine levels were followed for 8 h after administration of 20 mg morphine chloride as a suppository, first rectally and after at least 48 h via the colostomy. The bioavailability after administration in the colostomy showed very great variation; the m...

  15. Speciation of Se and DOC in soil solution and their relation to Se bioavailability.

    NARCIS (Netherlands)

    Weng, L.P.; Vega, F.A.; Supriatin, S.; Bussink, W.; Riemsdijk, van W.H.

    2011-01-01

    A 0.01 M CaCl2 extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciat

  16. Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation.

    Science.gov (United States)

    Balakumar, Krishnamoorthy; Raghavan, Chellan Vijaya; selvan, Natarajan Tamil; prasad, Ranganathan Hari; Abdu, Siyad

    2013-12-01

    The aim of the present study is to improve solubility and bioavailability of Rosuvastatin calcium using self nanoemulsifying drug delivery system (SNEDDS). Self emulsifying property of various oils including essential oils was evaluated with suitable surfactants and co-surfactants. Ternary phase diagrams were constructed based on Rosuvastatin calcium solubility analysis for optimizing the system. The prepared formulations were evaluated for self emulsifying time, robustness to dilution, droplet size determination and zeta potential analysis. The system was found to be robust in different pH media and dilution volume. The globule size of the optimized system was less than 200nm which could be an acceptable nanoemulsion size range. The zeta potential of the selected CN 7 SNEDDS formulation (cinnamon oil 30%; labrasol 60%; Capmul MCM C8 10%) was -29.5±0.63 with an average particle size distribution of 122nm. In vitro drug release studies showed remarkable increase in dissolution of CN7 SNEDDS compared to marketed formulation. In house developed HPLC method for determination of Rosuvastatin calcium in rat plasma was used in the bioavailability and pharmacokinetic evaluation. The relative bioavailability of self nanoemulsified formulation showed an enhanced bioavailability of 2.45 times greater than that of drug in suspension. The obtained plasma drug concentration data was processed with PKSolver 2.0 and it was best fit into the one compartment model. PMID:24012665

  17. SELF EMULSIFYING DRUG DELIVERY SYSTEM: A METHOD FOR ENHANCEMENT OF BIOAVAILABILITY

    Directory of Open Access Journals (Sweden)

    Urvashi Goyal et al.

    Full Text Available Oral route is the easiest and most convenient route of drug administration, being non invasive and cost effective, thereby leading worldwide drug delivery market. But major problem encountered in oral formulations (as estimated more than 50 % of oral formulations are found to be poorly aqueous soluble, is low bioavailability, giving rise to further problems like, high inter and intra subject variability, lack of dose uniformity and finally leading to therapeutic failure. The challenging task is to increase the bioavailability of drugs. Number of technological strategies are investigated and reported in literature for improving bioavailability like solid dispersions, cyclodextrins, micronization etc. But Self-microemulsifying Drug Delivery System (SMEDDS have gained exposure for their ability to increase solubility and bioavailability of poorly aqueous soluble drugs with reduction in dose and also drugs are protected from hostile environment in gut. SMEDDS are isotropic mixture of oil, surfactant, drug and sometimes containing co-surfactant and administered orally which on mild agitation with GI fluids forms o/w microemulsion. This review gives complete overview of SMEDDS but special attention has been paid to formulation design, evaluation and little emphasis on application of SMEDDS.

  18. Towards bioavailability-based soil criteria: past, present and future perspectives

    NARCIS (Netherlands)

    Naidu, R.; Channey, R.; McConnell, S.; Johnston, N.; Semple, K.T.; McGrath, S.; Dries, V.; Nathanail, P.; Harmsen, J.; Pruszinski, A.; MacMillan, J.

    2015-01-01

    Bioavailability has been used as a key indicator in chemical risk assessment yet poorly quantified risk factor. Worldwide, the framework used to assess potentially contaminated sites is similar, and the decisions are based on threshold contaminant concentration. The uncertainty in the definition and

  19. Increased understanding of the cereal phytase complement for better mineral bio-availability and resource management

    DEFF Research Database (Denmark)

    Brinch-Pedersen, Henrik; Madsen, Claus Krogh; Holme, Inger Bæksted;

    2014-01-01

    for the bio-availability of micronutrients in human nutrition. The composition and levels of mature grain phytase activity (MGPA) in cereals is of central importance for efficient phytate hydrolysis. The MGPA varies considerably between species. Substantial activity is present in Triticeae tribe cereals like...

  20. Bioavailability assessments following biochar and activated carbon amendment in DDT-contaminated soil.

    Science.gov (United States)

    Denyes, Mackenzie J; Rutter, Allison; Zeeb, Barbara A

    2016-02-01

    The effects of 2.8% w/w granulated activated carbon (GAC) and two types of biochar (Burt's and BlueLeaf) on DDT bioavailability in soil (39 μg/g) were investigated using invertebrates (Eisenia fetida), plants (Cucurbita pepo spp. pepo) and a polyoxymethylene (POM) passive sampler method. Biochar significantly reduced DDT accumulation in E. fetida (49%) and showed no detrimental effects to invertebrate health. In contrast, addition of GAC caused significant toxic effects (invertebrate avoidance and decreased weight) and did not significantly reduce the accumulation of DDT into invertebrate tissue. None of the carbon amendments reduced plant uptake of DDT. Bioaccumulation of 4,4'DDT and 4,4'-DDE in plants (C. pepo spp. pepo) and invertebrates (E. fetida) was assessed using bioaccumulation factors (BAFs) and compared to predicted bioavailability using the freely-dissolved porewater obtained from a polyoxymethylene (POM) equilibrium biomimetic method. The bioavailable fraction predicted by the POM samplers correlated well with measured invertebrate uptake ( 10 μg/g. The results of these studies illustrate the importance of including plants in bioavailability studies as the use of carbon materials for in situ contaminant sorption moves from predominantly sediment to soil remediation technologies. PMID:26495827

  1. Palaeo-pollution from mining activities in the Vosges Mountains: 1000 years and still bioavailable.

    Science.gov (United States)

    Mariet, Anne-Lise; de Vaufleury, Annette; Bégeot, Carole; Walter-Simonnet, Anne-Véronique; Gimbert, Frédéric

    2016-07-01

    Mining and smelting activities have contaminated the environment with trace metals (TMs) at a worldwide scale for at least two millennia. A combination of chemical approaches and active biomonitoring was performed to analyse the environmental availability and bioavailability of TM palaeo-pollution in a former PbAg mining district in the Vosges Mountains, France. Along a soil TM contamination gradient that covered eight stations, including two archaeological mining sites, the toxicokinetics of six TMs (Pb, Cd, As, Ag, Co, Sb) in the snail Cantareus aspersus revealed that palaeo-pollution from the studied sites remains bioavailable. This study provides the first data on the accumulation kinetics of Ag and Co for C. aspersus. The environmental availability of the TMs was estimated with three chemical extraction methods (aqua regia, EDTA 50 mM, CaCl2 10 mM). Univariate regression analyses showed that EDTA extraction is the best method for estimating the bioavailability of Pb, As, Ag, Co and Sb to snails. None of the three extractants was efficient for Cd. A multivariate analysis of bioaccumulation data revealed that TM bioavailability and transfer were modulated by exposure sources (soil, humus and vegetation) rather than by soil physico-chemical characteristics. Hence, although the deposition of mining wastes dates back several centuries, these wastes still represent a source of contamination that must be considered to develop relevant site management and environmental risk assessment. PMID:27131817

  2. Exceptionally strong sorption of infochemicals to activated carbon reduces their bioavailability to fish

    NARCIS (Netherlands)

    Jonker, Michiel T O; van Mourik, Louise

    2014-01-01

    The addition of activated carbon (AC) to sediments is a relatively new approach to remediate contaminated sites. Activated carbon strongly sorbs hydrophobic organic contaminants, thereby reducing their bioavailability and uptake in organisms. Because of its high sorption capacity, AC might, however,

  3. Improving zinc bioavailability in transition from flooded to aerobic rice. A review

    NARCIS (Netherlands)

    Gao, X.; Hoffland, E.; Stomph, T.J.; Grant, C.A.; Zou, C.; Zhang, F.

    2012-01-01

    Zinc (Zn) deficiency is a widely occurring constraint for rice production and for human nutrition. Scarcity of water is leading to a shift from flooded to aerobic rice production, which can have an impact on Zn deficiency in rice. Zinc bioavailability is a function of both soil and plant factors tha

  4. Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater

    Science.gov (United States)

    Chapelle, Francis H.; Bradley, Paul M.; McMahon, Peter B.; Kaiser, Karl; Benner, Ron

    2012-01-01

    Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA254) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems.

  5. Effect of yeast extract on speciation and bioavailability of nickel and cobalt in anaerobic bioreactors

    NARCIS (Netherlands)

    Gonzalez-Gil, G.; Jansen, S.; Zandvoort, M.H.; Leeuwen, van H.P.

    2003-01-01

    The speciation of metals plays an important role in their bioavailability. In the case of anaerobic reactors for the treatment of wastewaters, the ubiquitous presence of sulfide leads to extensive precipitation of metals like nickel and cobalt, which are essential for the metabolism of the anaerobic

  6. Bioavailability pathways underlying zinc-induced avoidance behavior and reproduction toxicity in Lumbricus rubellus earthworms.

    NARCIS (Netherlands)

    Ma, W.C.; Bonten, L.T.C.

    2011-01-01

    We investigated possible bioavailability pathways underlying zinc-induced avoidance behavior and sublethal reproduction impairment in Lumbricus rubellus. Clay-loam (pH 7.3) and sandy soil (three pH values of 4.3–6.0) were amended with zinc sulfate at six soil concentrations of total Zn ranging from

  7. Bioavailibility of selenium from fish, yeast and selenate: a comparative study in humans using stable isotopes

    NARCIS (Netherlands)

    Fox, T.E.; Heuvel, van den E.G.H.M.; Atherton, C.A.; Luten, J.B.; Hoek-van Nieuwenhuizen, van M.; Kotterman, M.J.J.

    2004-01-01

    Objective: To measure the bioavailability of selenium from cooked and raw fish in humans by estimating and comparing apparent absorption and retention of selenium in biosynthetically labelled fish with labelled selenate and biosynthetically labelled selenium in brewers yeast. Design: The interventio

  8. Bioavailability of selenium from fish, yeast and selenate: A comparative study in humans using stable isotopes

    NARCIS (Netherlands)

    Fox, T.E.; Heuvel, E.G.H.M. van den; Atherton, C.A.; Dainty, J.R.; Lewis, D.J.; Langford, N.J.; Crews, H.M.; Luten, J.B.; Lorentzen, M.; Sieling, F.W.; Aken-Schneyder, P. van; Hoek, M.; Kotterman, M.J.J.; Dael, P. van; Firweather-Tail, S.J.

    2004-01-01

    Objective: To measure the bioavailability of selenium from cooked and raw fish in humans by estimating and comparing apparent absorption and retention of selenium in biosynthetically labelled fish with labelled selenate and biosynthetically labelled selenium in brewers yeast. Design: The interventio

  9. Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants

    Science.gov (United States)

    A study was carried out to understand the fate of biodegradable dissolved organic nitrogen (BDON) and bioavailable dissolved organic nitrogen (ABDON) along the treatment trains of a wastewater treatment facility (WWTF) equipped with an activated sludge (AS) system and a WWTF equipped with a two-stag...

  10. Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms (Eisenia fetida)

    Energy Technology Data Exchange (ETDEWEB)

    J Unrine; S Hunyadi; O Tsyusko; W Rao; A Shoults-Wilson; P Bertsch

    2011-12-31

    Because Au nanoparticles (NPs) are resistant to oxidative dissolution and are easily detected, they have been used as stable probes for the behavior of nanomaterials within biological systems. Previous studies provide somewhat limited evidence for bioavailability of Au NPs in food webs, because the spatial distribution within tissues and the speciation of Au was not determined. In this study, we provide multiple lines of evidence, including orthogonal microspectroscopic techniques, as well as evidence from biological responses, that Au NPs are bioavailable from soil to a model detritivore (Eisenia fetida). We also present limited evidence that Au NPs may cause adverse effects on earthworm reproduction. This is perhaps the first study to demonstrate that Au NPs can be taken up by detritivores from soil and distributed among tissues. We found that primary particle size (20 or 55 nm) did not consistently influence accumulated concentrations on a mass concentration basis; however, on a particle number basis the 20 nm particles were more bioavailable. Differences in bioavailability between the treatments may have been explained by aggregation behavior in pore water. The results suggest that nanoparticles present in soil from activities such as biosolids application have the potential to enter terrestrial food webs.

  11. Comparison of trace metal bioavailabilities in European coastal waters using mussels from Mytilus edulis

    NARCIS (Netherlands)

    Przytarska, J.E.; Sokolowski, A.; Wolowicz, M.; Hummel, H.; Jansen, J.M.

    2010-01-01

    Mussels from Mytilus edulis complex were used as biomonitors of the trace metals Fe, Mn, Pb, Zn, and Cu at 17 sampling sites to assess the relative bioavailability of metals in coastal waters around the European continent. Because accumulated metal concentrations in a given area can differ temporall

  12. Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils.

    Science.gov (United States)

    Ptak, Corey; McBride, Murray

    2015-12-01

    Antimony (Sb) is a metalloid belonging to group 15 of the periodic table. Chemical similarities between arsenic (As) and Sb produce concerns about potential health effects of Sb and enrichment in the environment. Antimony is found in oxic environments predominately as an oxyanionic species, antimonite (Sb[OH](6-)). As a result of its net negative charge, Sb[OH](6-) was not initially predicted to have strong interactions with natural organic matter. Oxyanionic species could bind the negatively charged organic matter via a ternary complexation mechanism, in which cationic metals mediate the strong association between organic matter functional groups and oxyanions. However, these interactions are poorly understood in how they influence the bioavailability of oxyanionic contaminants to plants. Iron (Fe) additions to organic soils have been found to increase the number of organically complexed Fe sites suitable for Sb exchange, resulting in a reduced bioavailable fraction of Sb. The bioavailability of Sb to maize seedlings as a function of organically complexed Fe was examined using a greenhouse study. A significant increase in plant tissue Sb was observed as organically complexed Fe increased, which was not predicted by methods commonly used to assess bioavailable Sb. Extraction of soils with organic acids common to the maize rhizosphere suggested that organic acid exudation can readily mobilize Sb bound by organic Fe complexes. PMID:26076768

  13. Bioavailability and kinetics of sulforaphane in humans after consumption of cooked versus raw broccoli

    NARCIS (Netherlands)

    Vermeulen, M.; Klöpping-Ketelaars, I.W.A.A.; Berg, R. van den; Vaes, W.H.J.

    2008-01-01

    The aim of this study was to determine the bioavailability and kinetics of the supposed anticarcinogen sulforaphane, the hydrolysis product of glucoraphanin, from raw and cooked broccoli. Eight men consumed 200 g of crushed broccoli, raw or cooked, with a warm meal in a randomized, free-living, open

  14. Reduction of bioavailability and leachability of heavy metals during vermicomposting of water hyacinth.

    Science.gov (United States)

    Singh, Jiwan; Kalamdhad, Ajay S

    2013-12-01

    Vermicomposting of water hyacinth is a good alternative for the treatment of water hyacinth (Eichhornia crassipes) and subsequentially, beneficial for agriculture purposes. The bioavailability and leachability of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) were evaluated during vermicomposting of E. crassipes employing Eisenia fetida earthworm. Five different proportions (trials 1, 2, 3, 4, and 5) of cattle manure, water hyacinth, and sawdust were prepared for the vermicomposting process. Results show that very poor biomass growth of earthworms was observed in the highest proportion of water hyacinth (trial 1). The water soluble, diethylenetriaminepentaacetic acid (DTPA) extractable, and leachable heavy metals concentration (percentage of total heavy metals) were reduced significantly in all trials except trial 1. The total concentration of some metals was low but its water soluble and DTPA extractable fractions were similar or more than other metals which were present in higher concentration. This study revealed that the toxicity of metals depends on bioavailable fraction rather than total metal concentration. Bioavailable fraction of metals may be toxic for plants and soil microorganisms. The vermicomposting of water hyacinth by E. fetida was very effective for reduction of bioavailability and leachability of selected heavy metals. Leachability test confirmed that prepared vermicompost is not hazardous for soil, plants, and human health. The feasibility of earthworms to mitigate the metal toxicity and to enhance the nutrient profile in water hyacinth vermicompost might be useful in sustainable land renovation practices at low-input basis. PMID:23757026

  15. Bioavailability of milk protein-derived bioactive peptides: a glycaemic management perspective.

    Science.gov (United States)

    Horner, Katy; Drummond, Elaine; Brennan, Lorraine

    2016-06-01

    Milk protein-derived peptides have been reported to have potential benefits for reducing the risk of type 2 diabetes. However, what the active components are and whether intact peptides exert this bioactivity has received little investigation in human subjects. Furthermore, potentially useful bioactive peptides can be limited by low bioavailability. Various peptides have been identified in the gastrointestinal tract and bloodstream after milk-protein ingestion, providing valuable insights into their potential bioavailability. However, these studies are currently limited and the structure and sequence of milk peptides exerting bioactivity for glycaemic management has received little investigation in human subjects. The present article reviews the bioavailability of milk protein-derived peptides in human studies to date, and examines the evidence on milk proteins and glycaemic management, including potential mechanisms of action. Areas in need of advancement are identified. Only by establishing the bioavailability of milk protein-derived peptides, the active components and the mechanistic pathways involved can the benefits of milk proteins for the prevention or management of type 2 diabetes be fully realised in future.

  16. In vitro cytotoxicity and bioavailability of solid lipid nanoparticles containing tamoxifen citrate.

    Science.gov (United States)

    Hashem, Fahima M; Nasr, Mohamed; Khairy, Ahmed

    2014-11-01

    The objective of this study was to evaluate the influence of solid lipid nanoparticles (SLN) loaded with the poorly water-soluble drug tamoxifen citrate (TC) on the in vitro antitumor activity and bioavailability of the drug. TC-loaded SLN were prepared by solvent injection method using glycerol monostearate (GMS) or stearic acid (SA) as lipid matrix. Poloxamer 188 or tween 80 were used as stabilizers. TC-loaded SLN (F3 and F4) prepared using GMS and stabilized by poloxamer 188 showed highest entrapment efficiency % (86.07 ± 1.74 and 90.40 ± 1.22%) and reasonable mean particle sizes (130.40 ± 9.45 and 243.80 ± 12.33 nm), respectively. The in vitro release of TC from F3 and F4 exhibited an initial burst effect followed by a sustained drug release. In vitro cytotoxicity of F3 against human breast cancer cell line MCF-7 showed comparable antitumor activity to free drug. Moreover, the results of bioavailability evaluation of TC-loaded SLN in rats compared to free TC indicated that 160.61% increase in the oral bioavailability of TC. The obtained results suggest that incorporation of the poorly water-soluble drug TC in SLN preserves the in vitro antitumor activity and significantly enhance oral bioavailability of TC in rats. PMID:24032414

  17. Bioavailability and effects of non-ionic organic pesticides in soil

    NARCIS (Netherlands)

    Ronday, R.

    1995-01-01

    In soil contamination studies the extent of contamination is usually described in terms of the content of the chemical on a dry soil mass basis. However, it has been found that a particular content of a chemical in soil exhibits divergent bio-availability, and thus toxicity, in different soils. Meas

  18. Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils.

    Science.gov (United States)

    Ptak, Corey; McBride, Murray

    2015-12-01

    Antimony (Sb) is a metalloid belonging to group 15 of the periodic table. Chemical similarities between arsenic (As) and Sb produce concerns about potential health effects of Sb and enrichment in the environment. Antimony is found in oxic environments predominately as an oxyanionic species, antimonite (Sb[OH](6-)). As a result of its net negative charge, Sb[OH](6-) was not initially predicted to have strong interactions with natural organic matter. Oxyanionic species could bind the negatively charged organic matter via a ternary complexation mechanism, in which cationic metals mediate the strong association between organic matter functional groups and oxyanions. However, these interactions are poorly understood in how they influence the bioavailability of oxyanionic contaminants to plants. Iron (Fe) additions to organic soils have been found to increase the number of organically complexed Fe sites suitable for Sb exchange, resulting in a reduced bioavailable fraction of Sb. The bioavailability of Sb to maize seedlings as a function of organically complexed Fe was examined using a greenhouse study. A significant increase in plant tissue Sb was observed as organically complexed Fe increased, which was not predicted by methods commonly used to assess bioavailable Sb. Extraction of soils with organic acids common to the maize rhizosphere suggested that organic acid exudation can readily mobilize Sb bound by organic Fe complexes.

  19. Relative bioavailability of three newly developed albendazole formulations : a randomized crossover study with healthy volunteers

    NARCIS (Netherlands)

    Rigter, I M; Schipper, H G; Koopmans, R P; van Kan, H J M; Frijlink, H W; Kager, P A; Guchelaar, H-J

    2004-01-01

    This study of healthy volunteers shows that the relative bioavailability of albendazole formulations that use arachis oil-polysorbate 80 or hydroxypropyl-beta-cyclodextrin as an excipient was enhanced 4.3- and 9.7-fold compared to the results seen with commercial tablets. Administration of macrogol

  20. Palaeo-pollution from mining activities in the Vosges Mountains: 1000 years and still bioavailable.

    Science.gov (United States)

    Mariet, Anne-Lise; de Vaufleury, Annette; Bégeot, Carole; Walter-Simonnet, Anne-Véronique; Gimbert, Frédéric

    2016-07-01

    Mining and smelting activities have contaminated the environment with trace metals (TMs) at a worldwide scale for at least two millennia. A combination of chemical approaches and active biomonitoring was performed to analyse the environmental availability and bioavailability of TM palaeo-pollution in a former PbAg mining district in the Vosges Mountains, France. Along a soil TM contamination gradient that covered eight stations, including two archaeological mining sites, the toxicokinetics of six TMs (Pb, Cd, As, Ag, Co, Sb) in the snail Cantareus aspersus revealed that palaeo-pollution from the studied sites remains bioavailable. This study provides the first data on the accumulation kinetics of Ag and Co for C. aspersus. The environmental availability of the TMs was estimated with three chemical extraction methods (aqua regia, EDTA 50 mM, CaCl2 10 mM). Univariate regression analyses showed that EDTA extraction is the best method for estimating the bioavailability of Pb, As, Ag, Co and Sb to snails. None of the three extractants was efficient for Cd. A multivariate analysis of bioaccumulation data revealed that TM bioavailability and transfer were modulated by exposure sources (soil, humus and vegetation) rather than by soil physico-chemical characteristics. Hence, although the deposition of mining wastes dates back several centuries, these wastes still represent a source of contamination that must be considered to develop relevant site management and environmental risk assessment.

  1. Evaluation of a Florida coastal golf complex as a local and watershed source of bioavailable contaminants

    Science.gov (United States)

    Lewis, Michael A., Robert L. Quarles, Darrin D. Dantin and James C. Moore. 2004. Evaluation of a Coastal Golf Complex as a Local and Watershed Source of Bioavailable Contaminants. Mar. Pollut. Bull. 48(3-4):254-262. (ERL,GB 1183). Contaminant fate in coastal areas impacte...

  2. Towards bioavailability-based soil criteria: Past, present and future perspectives

    Science.gov (United States)

    Bioavailability has been used as a key indicator in chemical risk assessment, yet it is a poorly quantified risk factor. Worldwide, the framework used to assess potentially contaminated sites is similar and the decisions are based on threshold contaminant concentration. The uncertainty in the defin...

  3. Effects of hypertonic buffer composition on lymph node uptake and bioavailability of rituximab, after subcutaneous administration.

    Science.gov (United States)

    Fathallah, Anas M; Turner, Michael R; Mager, Donald E; Balu-Iyer, Sathy V

    2015-03-01

    The subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after s.c. administration remains a major challenge. In this work we investigated the effects of excipient dependent hyperosmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as the animal model, we compared the effects of NaCl, mannitol and O-phospho-L-serine (OPLS) on the plasma concentration of rituximab over 5 days after s.c. administration. An increase was observed in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, compared with isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to the improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph nodes in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatics, as estimated by the model, increased from 0.05% in isotonic buffer to 13% in hypertonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. The data suggest that hypertonic solutions may be a viable option for improving s.c. bioavailability.

  4. Bioavailability of classical and novel flame retardants: Effect of fullerene presence.

    Science.gov (United States)

    Santín, Giselle; Eljarrat, Ethel; Barceló, Damià

    2016-09-15

    To understand the behavior of some emerging flame retardants (FRs) in the environment, a nonexhaustive extraction using Tenax was applied to study their behavior in aquatic ecosystems. Desorption of 8 polybrominated diphenyl ethers (PBDEs), 8 methoxylated PBDEs, 3 emerging brominated FRs and 6 halogenated norbornenes from sediments spiked in the laboratory was studied. Results showed that emerging FRs have a similar bioavailability than that of legacy FRs, already banned. In addition, some parameters such as sediment total organic carbon (TOC), aging or nanomaterial (NMs) presence in the sediment were modified in order to study their effects on the bioavailability of FRs. Bioavailability increases with a diminution of sediment TOC, while diminishes with an increase of aging. The study of effect of NM presence was performed at three different pH (acidic, neutral and basic), and for the three scenarios, FR bioavailability decreased with NM presence. The retention of pollutants in the sediment seems to be favoured by NM presence, minimizing their impact on living organisms. PMID:27177136

  5. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    Directory of Open Access Journals (Sweden)

    Tatiana Christides

    Full Text Available Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55 increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.

  6. Bioavailability of folic acid from fortified pasteurised and UHT-treated milk in humans

    NARCIS (Netherlands)

    Jong, R.J. de; Verwei, M.; West, C.E.; Vliet, T. van; Siebelink, E.; Berg, H. van den; Castenmiller, J.J.M.

    2005-01-01

    Objective: The aim of this study was to investigate whether milk fortified with folic acid enhances the folate status of humans and whether the presence of folate-binding proteins (FBP) in pasteurised milk affects the bioavailability of folic acid from fortified milk. In untreated and pasteurised mi

  7. Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats

    NARCIS (Netherlands)

    Walczak, A.P.; Hendriksen, P.J.M.; Woutersen, R.A.; Zande, M. van der; Undas, A.K.; Helsdingen, R.; Berg, H.H.J. van den; Rietjens, I.M.C.M.; Bouwmeester, H.

    2015-01-01

    The likelihood of oral exposure to nanoparticles (NPs) is increasing, and it is necessary to evaluate the oral bioavailability of NPs. In vitro approaches could help reducing animal studies, but validation against in vivo studies is essential. Previously, we assessed the translocation of 50 nm polys

  8. Production of bioavailable and refractory dissolved organic matter by coastal heterotrophic microbial populations

    Science.gov (United States)

    Lønborg, Christian; Álvarez-Salgado, Xosé A.; Davidson, Keith; Miller, Axel E. J.

    2009-05-01

    Production of dissolved organic matter (DOM) by heterotrophic microbial communities isolated from Loch Creran (Scotland) was studied in time course incubations in which cells were re-suspended in artificial seawater amended with variable proportions of glucose, ammonium and phosphate. The incubation experiments demonstrated that microheterotrophs released part of the substrate as new DOM, with a production efficiency of 11 ± 1% for DOC, 18 ± 2% for DON and 17 ± 2% for DOP. Estimating the impact of this production in Loch Creran, showed that from 3 ± 1% (DOC) to 72 ± 16% (DOP) of DOM could originate from the heterotrophic microbial community. The produced DOM (PDOM) was both bioavailable (BDOM) and refractory (RDOM). Bioavailability as assessed by the difference between the maximum and the end DOM concentration, was generally higher than found in natural systems, with DOP (73 ± 15%, average ± SD) more bioavailable than DON (70 ± 15%), and DON than DOC (34 ± 13%). The stoichiometry of PDOM was linked to both nutrient uptake and BDOM ratios. Absorption and fluorescence of DOM increased significantly during the incubation time, indicating that microheterotrophs were also a source of coloured DOM (CDOM) and that they produce both bioavailable protein-like and refractory humic-like fluorophores.

  9. Influence of deposition and spray pattern of nasal powders on insulin bioavailability.

    Science.gov (United States)

    Pringels, E; Callens, C; Vervaet, C; Dumont, F; Slegers, G; Foreman, P; Remon, J P

    2006-03-01

    The influence of the deposition pattern and spray characteristics of nasal powder formulations on the insulin bioavailability was investigated in rabbits. The formulations were prepared by freeze drying a dispersion containing a physical mixture of drum dried waxy maize starch (DDWM)/Carbopol 974P (90/10, w/w) or a spray-dried mixture of Amioca starch/Carbopol 974P (25/75, w/w). The deposition in the nasal cavity of rabbits and in a silicone human nose model after actuation of three nasal delivery devices (Monopowder, Pfeiffer and experimental system) was compared and related to the insulin bioavailability. Posterior deposition of the powder formulation in the nasal cavity lowered the insulin bioavailability. To study the spray pattern, the shape and cross-section of the emitted powder cloud were analysed. It was concluded that the powder bulk density of the formulation influenced the spray pattern. Consequently, powders of different bulk density were prepared by changing the solid fraction of the freeze dried dispersion and by changing the freezing rate during freeze drying. After nasal delivery of these powder formulations no influence of the powder bulk density and of the spray pattern on the insulin bioavailability was observed.

  10. Lecithin-Based Nano-emulsification Improves the Bioavailability of Conjugated Linoleic Acid.

    Science.gov (United States)

    Heo, Wan; Kim, Jun Ho; Pan, Jeong Hoon; Kim, Young Jun

    2016-02-17

    In this study, we investigated the effects of lecithin-based nano-emulsification on the heat stability and bioavailability of conjugated linoleic acid (CLA) in different free fatty acid (FFA) and triglyceride (TG) forms. CLA nano-emulsion in TG form exhibited a small droplet size (70-120 nm) compared to CLA nano-emulsion in FFA form (230-260 nm). Nano-emulsification protected CLA isomers in TG form, but not in free form, against thermal decomposition during the heat treatment. The in vitro bioavailability test using monolayers of Caco-2 human intestinal cells showed that nano-emulsification increased the cellular uptake of CLA in both FFA and TG forms. More importantly, a rat feeding study showed that CLA content in small intestinal tissues or plasma was higher when CLA was emulsified, indicating an enhanced oral bioavailability of CLA by nano-emulsification. These results provide important information for development of nano-emulsion-based delivery systems that improve thermal stability and bioavailability of CLA.

  11. Bioavailability and cellular effects of metals on Lumbricus terrestris inhabiting volcanic soils

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Andre [Departamento de Biologia, Universidade dos Acores, R. Mae de Deus, APT 1422, PT-9501-855 Ponta Delgada (Portugal)]. E-mail: aamaral@notes.uac.pt; Soto, Manu [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzi Fakultatea, Euskal Herriko Unibertsitatea, 644 PK E-48080 Bilbao (Spain); Cunha, Regina [Departamento de Biologia, Universidade dos Acores, R. Mae de Deus, APT 1422, PT-9501-855 Ponta Delgada (Portugal); Marigomez, Ionan [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzi Fakultatea, Euskal Herriko Unibertsitatea, 644 PK E-48080 Bilbao (Spain); Rodrigues, Armindo [Departamento de Biologia, Universidade dos Acores, R. Mae de Deus, APT 1422, PT-9501-855 Ponta Delgada (Portugal)

    2006-07-15

    Whether the radial thickness (RT) of the chloragogenous tissue and intestinal epithelium of earthworms (Lumbricus terrestris) reflects the bioavailability of metals in soils was investigated in two areas, one with active volcanism (Furnas) and another with no volcanic activity since 3 million years ago (Santa Maria), in the Azores. Metal contents in soil samples and earthworms from the two areas were analyzed. Autometallography and measurements of the RT were performed in the chloragogenous tissue and intestinal epithelium. Earthworms from the active volcanic area demonstrated lower RT of chloragogenous tissue and intestinal epithelium as well as higher levels of bioavailable metals, especially Zn and Cd. Comparison of bioavailable metal contents between both areas suggests a higher risk for uptake of potentially toxic metals in the active volcanic area than in the non-active volcanic area, which is reflected by the lower RT of the chloragogenous tissue and intestinal epithelium in the former. - In earthworms, differences in the chloragogenous tissue morphometry may be related to the bioavailability of metals in soils.

  12. Predicting zinc bioavailability to wheat improved by integrating pH dependent nonlinear root suface adsorption

    NARCIS (Netherlands)

    Duffner, A.; Hoffland, E.; Weng, L.P.; Zee, van der S.E.A.T.M.

    2013-01-01

    Aim Our aim was to improve the prediction of Zn bioavailability to wheat grown on low-Zn soils. The classical approach that directly relates Zn in a certain soil extract to Zn uptake has been shown to be inadequate in many cases. We tested a stepwise approach where the steps of the uptake process ar

  13. Bioavailability of flavonoids and cinnamic acids and their effect on plasma homocysteine in humans

    NARCIS (Netherlands)

    Olthof, M.R.

    2001-01-01

    Dietary antioxidants might prevent oxidative damage to tissues and therefore protect against cardiovascular disease and cancer. Dietary phenols are strong antioxidants in vitro but their role in vivo is uncertain. Furthermore, there are only limited data on their bioavailability in humans. The aim o

  14. Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility

    Science.gov (United States)

    Several investigations have been conducted to develop in vitro bioaccessibility (IVBA) assays that reliably predict in vivo oral relative bioavailability (RBA) of arsenic (As). This study describes a meta-regression model relating soil As RBA and IVBA that is based upon data comb...

  15. Iron and zinc bioavailabilities to pigs from red and white beans (Phaseolus vulgaris L.) are similar

    Science.gov (United States)

    Common beans contain relatively high concentrations of iron (Fe) and zinc (Zn) but are also high in polyphenols and phytates, factors that may inhibit Fe and Zn absorption. In vitro (Caco-2 cells) and in vivo (pigs) models were used to compare Fe and Zn bioavailabilities between red and white beans,...

  16. Interchangeability of gabapentin generic formulations in the Netherlands: a comparative bioavailability study

    NARCIS (Netherlands)

    Yu, Y.; Teerenstra, S.; Vanmolkot, F.; Neef, C.; Burger, D.M.; Maliepaard, M.

    2013-01-01

    To investigate the so-called "drift" with generic-generic drug substitution, a single-dose, four-way crossover comparative bioavailability study was performed involving 24 healthy subjects and three generic and one branded formulation of a tablet containing 800 mg gabapentin as test medication. The

  17. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion

    Directory of Open Access Journals (Sweden)

    Ali Javed

    2008-07-01

    Full Text Available Abstract Background Celecoxib, a selective cyclo-oxygenase-2 inhibitor has been recommended orally for the treatment of arthritis and osteoarthritis. Long term oral administration of celecoxib produces serious gastrointestinal side effects. It is a highly lipophilic, poorly soluble drug with oral bioavailability of around 40% (Capsule. Therefore the aim of the present investigation was to assess the skin permeation mechanism and bioavailability of celecoxib by transdermally applied nanoemulsion formulation. Optimized oil-in-water nanoemulsion of celecoxib was prepared by the aqueous phase titration method. Skin permeation mechanism of celecoxib from nanoemulsion was evaluated by FTIR spectral analysis, DSC thermogram, activation energy measurement and histopathological examination. The optimized nanoemulsion was subjected to pharmacokinetic (bioavailability studies on Wistar male rats. Results FTIR spectra and DSC thermogram of skin treated with nanoemulsion indicated that permeation occurred due to the disruption of lipid bilayers by nanoemulsion. The significant decrease in activation energy (2.373 kcal/mol for celecoxib permeation across rat skin indicated that the stratum corneum lipid bilayers were significantly disrupted (p Conclusion Results of skin permeation mechanism and pharmacokinetic studies indicated that the nanoemulsions can be successfully used as potential vehicles for enhancement of skin permeation and bioavailability of poorly soluble drugs.

  18. Using in vitro and in vivo models to evaluate the oral bioavailability of nutraceuticals.

    Science.gov (United States)

    Ting, Yuwen; Zhao, Qin; Xia, Chunxin; Huang, Qingrong

    2015-02-11

    Nutraceuticals are the bioactive compounds found in many dietary sources. Numerous publications have reported their ability to prevent the development of degenerative diseases through modulation of physiological and physiochemical processes in living systems. Having sufficient concentration at the target site of action is the most critical factor for nutraceuticals to deliver the health benefits. For consumers, it is commonly accepted to ingest these bioactive components through oral delivery route because it is convenient and cost-efficient and allows flexible dosing schedule. Thus, it is important to understand the oral bioavailability of nutraceuticals to evaluate their qualifications as disease preventive agents and to calculate the required ingestion dosages. To predict the oral bioavailability of nutraceuticals, many in vitro and in vivo models have been developed to reduce the need for frequent human pharmacokinetic studies, which are costly and time-consuming and involve ethical complications. These models evaluate one or more of the influential factors that contribute to the oral bioavailability and are efficient screening techniques with the potential of predicting the pharmacokinetic process in humans. To accurately predict human oral bioavailability, further research is required to develop not only a better correlation between the in vitro and in vivo models but also an accurate scaling factor that takes into account interspecies variations.

  19. Oleoyl-lysophosphatidylcholine limits endothelial nitric oxide bioavailability by induction of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Andrijana Kozina

    Full Text Available Previously we reported modulation of endothelial prostacyclin and interleukin-8 production, cyclooxygenase-2 expression and vasorelaxation by oleoyl- lysophosphatidylcholine (LPC 18:1. In the present study, we examined the impact of this LPC on nitric oxide (NO bioavailability in vascular endothelial EA.hy926 cells. Basal NO formation in these cells was decreased by LPC 18:1. This was accompanied with a partial disruption of the active endothelial nitric oxide synthase (eNOS- dimer, leading to eNOS uncoupling and increased formation of reactive oxygen species (ROS. The LPC 18:1-induced ROS formation was attenuated by the superoxide scavenger Tiron, as well as by the pharmacological inhibitors of eNOS, NADPH oxidases, flavin-containing enzymes and superoxide dismutase (SOD. Intracellular ROS-formation was most prominent in mitochondria, less pronounced in cytosol and undetectable in endoplasmic reticulum. Importantly, Tiron completely prevented the LPC 18:1-induced decrease in NO bioavailability in EA.hy926 cells. The importance of the discovered findings for more in vivo like situations was analyzed by organ bath experiments in mouse aortic rings. LPC 18:1 attenuated the acetylcholine-induced, endothelium dependent vasorelaxation and massively decreased NO bioavailability. We conclude that LPC 18:1 induces eNOS uncoupling and unspecific superoxide production. This results in NO scavenging by ROS, a limited endothelial NO bioavailability and impaired vascular function.

  20. Enhancement of absorption and bioavailability of echinacoside by verapamil or clove oil

    Directory of Open Access Journals (Sweden)

    Shen JY

    2015-08-01

    Full Text Available Jin-Yang Shen,1,* Xiao-Lin Yang,2,* Zhong-Lin Yang,1 Jun-Ping Kou,1 Fei Li11State Key Laboratory of Natural Medicines, China Pharmaceutical University, 2Key Laboratory of Pharmaceutical and Biological Marine Resources Research and Development of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China*These authors contributed equally to this workPurpose: This present study investigated the absorption kinetics of echinacoside (ECH in situ and in vitro and its oral bioavailability in rats. Additional aim was to find an agent(s to promote ECH absorption and oral bioavailability among two efflux proteins and three absorption promoters.Methods: ECH absorption behaviors were investigated by everted gut sac model in vitro and single-pass intestinal perfusion model in situ. Pharmacokinetics study was performed to investigate the influences of verapamil and clove oil on ECH bioavailability in vivo. All samples were measured at different time intervals by high performance liquid chromatography.Results: The results showed that the effective permeability coefficient (Peff and apparent permeability coefficient of ECH were 0.83×10-6–3.23×10-6 cm/s and 2.99×10-6–9.86×10-6 cm/s, respectively. The Peff among duodenum, jejunum, and ileum were not statistically different, but they were higher than colon (P<0.01, which demonstrated that intestinal ECH absorption was poor and site dependent. Additionally, verapamil and clove oil significantly increased the jejunal Peff of ECH both in situ and in vitro. Moreover, the bioavailability of ECH in combination with verapamil and clove oil were increased by 1.37-fold (P<0.05 and 2.36-fold (P<0.001, respectively, when compared to ECH group. Overall, verapamil and clove oil facilitated ECH absorption and oral bioavailability.Conclusion: The absorption and bioavailability of ECH were enhanced by verapamil and clove oil, respectively, both in vitro and in vivo. Consequently

  1. Effects of plant growth stage on the bioavailability of cesium and strontium in rhizosphere soil

    International Nuclear Information System (INIS)

    The effects of plant growth stage on the bioavailability of Cs and Sr in rhizosphere soil were studied by soybean pot experiments. Soybean seeds were sown into 12 pots and the plants were grown in a greenhouse for 84 d. Three pots were kept unplanted. The concentrations of Mg, K, Ca, Sr and Cs in plants and in soil solutions at different growth periods were measured. The mass flow of the elements from soil solution to the root surface was calculated from the concentrations in the soil solution and daily transpiration of the soybean plant. The concentrations of elements in the soil solution decreased as the soybean plants grew. The decrease of Mg, K, Ca, and Sr was high in planted pots. The differences in Mg, K, Ca, and Sr concentrations between the planted and the unplanted pots indicated that the active uptake of these elements by the soybean plants caused the drop in their concentrations. However, no obvious difference in Cs concentrations was seen between the planted and the unplanted ports. Although the ratio of mass flow to actual uptake of Cs was 1.4 for the vegetative growth stage, it increased to 4.2 for the podding stage. This meant that the Cs mass flow was in excess of what was absorbed by the plants, so the Cs uptake was inhibited near the roots for the podding stage. It was assumed that the increase of Cs sorption due to the K concentration decrease in soil solution decreased the Cs bioavailability in the rhizosphere soil. The bioavailability of Cs and Sr in the rhizosphere was examined in a small-scale pot experiment. The soil-soil solution distribution coefficients (Kd) of Cs and Sr were observed as an index of their sorption level. Kd of Cs increased in the rhizosphere soil after cultivation. The decrease of bioavailable fraction of soil Cs was also observed. The exchangeable Cs in the rhizosphere soil clearly decreased. On the other hand, no specific rhizosphere effect was observed for Sr bioavailability. These results showed that the Cs

  2. Biochemical indicators for the bioavailability of organic carbon in ground water

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Goode, D.J.; Tiedeman, C.; Lacombe, P.J.; Kaiser, K.; Benner, R.

    2009-01-01

    The bioavailability of total organic carbon (TOC) was examined in ground water from two hydrologically distinct aquifers using biochemical indicators widely employed in chemical oceanography. Concentrations of total hydrolyzable neutral sugars (THNS), total hydrolyzable amino acids (THAA), and carbon-normalized percentages of TOC present as THNS and THAA (referred to as "yields") were assessed as indicators of bioavailability. A shallow coastal plain aquifer in Kings Bay, Georgia, was characterized by relatively high concentrations (425 to 1492 ??M; 5.1 to 17.9 mg/L) of TOC but relatively low THNS and THAA yields (???0.2%-1.0%). These low yields are consistent with the highly biodegraded nature of TOC mobilized from relatively ancient (Pleistocene) sediments overlying the aquifer. In contrast, a shallow fractured rock aquifer in West Trenton, New Jersey, exhibited lower TOC concentrations (47 to 325 ??M; 0.6 to 3.9 mg/L) but higher THNS and THAA yields (???1% to 4%). These higher yields were consistent with the younger, and thus more bioavailable, TOC being mobilized from modern soils overlying the aquifer. Consistent with these apparent differences in TOC bioavailability, no significant correlation between TOC and dissolved inorganic carbon (DIC), a product of organic carbon mineralization, was observed at Kings Bay, whereas a strong correlation was observed at West Trenton. In contrast to TOC, THNS and THAA concentrations were observed to correlate with DIC at the Kings Bay site. These observations suggest that biochemical indicators such as THNS and THAA may provide information concerning the bioavailability of organic carbon present in ground water that is not available from TOC measurements alone.

  3. Stimulating in situ surfactant production to increase contaminant bioavailability and augment bioremediation of petroleum hydrocarbons

    Science.gov (United States)

    Haws, N. W.; Bentley, H. W.; Yiannakakis, A.; Bentley, A. J.; Cassidy, D. P.

    2006-12-01

    The effectiveness of a bioremediation strategy is largely dependent on relationships between contaminant sequestration (geochemical limitations) and microbial degradation potential (biological limitations). As contaminant bioavailability becomes mass transfer limited, contaminant removal will show less sensitivity to biodegradation enhancements without concurrent enhancements to rates of mass transfer into the bioavailable phase. Implementing a strategy that can simultaneously address geochemical and biological limitations is motivated by a subsurface zone of liquid petroleum hydrocarbons (LPH) contamination that is in excess of 10 acres (40,000 sq. meters). Biodegradation potential at the site is high; however, observed biodegradation rates are generally low, indicative of bioavailability limitations (e.g., low aqueous solubilities, nutrient deficiencies, and/or mass transfer limitations), and estimates indicate that bioremediation (i.e., biosparging/bioventing) with unaugmented biodegradation may be unable to achieve the remedial objectives within an acceptable time. Bench-scale experiments using soils native to the site provide evidence that, in addition to nutrient additions, a pulsed oxygen delivery can increase biodegradation rates by stimulating the microbial production of biosurfactants (rhamnolipids), leading to a reduction in surface tension and an increase in contaminant bioavailability. Pilot-scale tests at the field site are evaluating the effectiveness of stimulating in situ biosurfactant production using cyclic biosparging. The cyclic sparging creates extended periods of alternating aerobic and oxygen-depleted conditions in the submerged smear zone. The increased bioavailability of LPH and the resulting biodegradation enhancements during the test are evaluated using measurements of surface tension (as confirmation of biosurfactant accumulation) and nitrate concentrations (as substantiation of anaerobic biodegradation during shut-off periods). The

  4. Enhancing the Delivery of Resveratrol in Humans: If Low Bioavailability is the Problem, What is the Solution?

    Directory of Open Access Journals (Sweden)

    James M. Smoliga

    2014-10-01

    Full Text Available Resveratrol has emerged as a leading candidate for improving healthspan through potentially slowing the aging process and preventing chronic diseases. The poor bioavailability of resveratrol in humans has been a major concern for translating basic science findings into clinical utility. Although a number of positive findings have emerged from human clinical trials, there remain many conflicting results, which may partially be attributed to the dosing protocols used. A number of theoretical solutions have been developed to improve the bioavailability of resveratrol, including consumption with various foods, micronized powders, combining it with additional phytochemicals, controlled release devices, and nanotechnological formulations. While laboratory models indicate these approaches all have potential to improve bioavailability of resveratrol and optimize its clinical utility, there is surprisingly very little data regarding the bioavailability of resveratrol in humans. If bioavailability is indeed a limitation in the clinical utility of resveratrol, there is a need to further explore methods to optimize bioavailability in humans. This review summarizes the current bioavailability data, focusing on data from humans, and provides suggested directions for future research in this realm.

  5. Comparative bioavailability studies of citric acid and malonic acid based aspirin effervescent tablets

    Directory of Open Access Journals (Sweden)

    Anju Gauniya

    2010-01-01

    Full Text Available Purpose: The present investigation is aimed at comparing the pharmacokinetic profile (Bioavailability of aspirin in tablet formulations, which were prepared by using different effervescent excipients such as citric acid and malonic acid. Materials and Methods: The relative bioavailability and pharmacokinetics of citric acid based aspirin effervescent tablet (Product A and malonic acid based aspirin effervescent tablet (Product B formulations were evaluated for an in-vitro dissolution study and in-vivo bioavailability study, in 10 normal healthy rabbits. The study utilized a randomized, crossover design with a one-week washout period between doses. Blood samples were collected at 0, 1, 2, 4, 6, 8, 12 and 24 hours following a 100 mg/kg dose. Plasma samples were assayed by High Performance Liquid Chromatography. T max , C max , AUC 0-24 , AUC 0- ∞, MRT, K a, and relative bioavailability were estimated using the traditional pharmacokinetic methods and were compared by using the paired t-test. Result: In the present study, Products A and B showed their T max , C max , AUC 0-24 , AUC 0- ∞, MRT, and K a values as 2.5 h, 2589 ± 54.79 ng/ml, 9623 ± 112.87 ng.h/ml, 9586 ± 126.22 ng.h/ml, 3.6 ± 0.10 h, and 0.3698 ± 0.003 h -1 for Product A and 3.0 h, 2054 ± 55.79 ng/ml, 9637 ± 132.87 ng.h/ml, 9870 ± 129.22 ng.h/ml, 4.76 ± 0.10 h, and 0.3812 ± 0.002 h -1 for Product B, respectively. Conclusion: The results of the paired t-test of pharmacokinetics data showed that there was no significant difference between Products A and B. From both the in vitro dissolution studies and in vivo bioavailability studies it was concluded that products A and B had similar bioavailability.

  6. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    Directory of Open Access Journals (Sweden)

    Yousaf AM

    2016-01-01

    Full Text Available Abid Mehmood Yousaf,1,2 Omer Mustapha,1 Dong Wuk Kim,1 Dong Shik Kim,1 Kyeong Soo Kim,1 Sung Giu Jin,1 Chul Soon Yong,3 Yu Seok Youn,4 Yu-Kyoung Oh,5 Jong Oh Kim,3 Han-Gon Choi1 1College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, South Korea; 2Faculty of Pharmacy, University of Central Punjab, Johar, Lahore, Pakistan; 3College of Pharmacy, Yeungnam University, Gyongsan, North Gyeongsang, 4School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi, 5College of Pharmacy, Seoul National University, Seoul, South Korea Purpose: The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate.Methods: Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion.Results: All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1

  7. The study of lead content distribution in Chinese seafood and its oral bioavailability in mice.

    Science.gov (United States)

    Tong, Yongpeng; Zhu, Zhipeng; Hao, Xin; He, Long; He, Weibiao; Chen, Jianmin

    2016-01-01

    Using inductively coupled plasma mass spectrometry (ICP-MS), the lead concentrations and isotope ratios of 32 kinds of seafood collected from local markets of China were measured. Among these seafoods, the highest concentrations of lead were found in Patinopecten yessoensis and Mugil cephalus, which were 2.94 ± 0.40 and 2.02 ± 0.26 μg g(-1) of dry weight, respectively. Pb concentration was found to be higher in benthic fish than in other fish. The result indicated that lead concentrations in some seafood exceeded the maximum levels of Pb in foods proposed by European Commission (EC). Nine species of cooked seafood were chosen to feed mice (35-38 g). The result showed that Pb oral bioavailability of cooked seafood in vivo was below 10%. Furthermore, oral bioavailability of the same lead-containing seafood increased greatly in pregnant mice compared with non-pregnant mice.

  8. A Review on Phytosome Technology as a Novel Approach to Improve The Bioavailability of Nutraceuticals

    Science.gov (United States)

    Amin, Tawheed; Bhat, Suman Vikas

    2012-08-01

    The bioavailability and absorption of water soluble phytoconstituents is erratic due to poor solubility of these constituents in gastrointestinal tract. This can be overcome by a novel delivery system known as phytosome technology in which water soluble phytoconstituents are allowed to react with phospholipids. For better and improved bioavailability, natural phytoconstituents must have a good balance between hydrophilicity (helps in dissolution in gastro-intestinal fluids) and hydrophobicity (helps to cross lipid rich cell membranes). This is achieved through phytosome technology. Phospholipids have a dual solubility and acts as an emulsifier. Phytosome technology acts as a bridge between novel and conventional delivery systems. Many products are available in the market based on this phytosome technology which include popular herbal extracts such as Ginkgo biloba, Silybum marianum, grape seed, olive oil flavonoids etc.

  9. Effect of Tamarindus indica. L on the bioavailability of ibuprofen in healthy human volunteers.

    Science.gov (United States)

    Garba, M; Yakasai, I A; Bakare, M T; Munir, H Y

    2003-01-01

    The influence of Tamarindus indica L fruit extract incorporated in a traditional meal on the bioavailability of Ibuprofen tablets 400 mg dose when given concurrently was studied in 6 healthy human volunteers. There was a statistically significant increase in the plasma levels of Ibuprofen and its metabolites hydroxy-ibuprofen and carboxy-ibuprofen respectively, when the meal containing Tamarindus indica fruit extract was administered with the ibuprofen tablets than when taken under fasting state or with the meal without the fruit extract. The C(max), AUC(0-6 hr) and Ka for ibuprofen increased from 38 +/- 0.70 microg/ml to 42 +/- 0.98 microg/ml (p > 0.05); and 28.03 +/- 2.40 microg/ml x hr to 56.51 +/- 0.16 microg/ml x hr (p Tamarindus indica L. fruit extract significantly increased the bioavailability of Ibuprofen.

  10. Effect of Tamarindus indica L. on the bioavailability of aspirin in healthy human volunteers.

    Science.gov (United States)

    Mustapha, A; Yakasai, I A; Aguye, I A

    1996-01-01

    The influence of Tamarindus indica L. fruit extract incorporated in a traditional meal on the bioavailability of aspirin tablets 600 mg dose was studied in 6 healthy volunteers. There was a statistically significant increase in the plasma levels of aspirin and salicylic acid, respectively, when the meal containing Tamarindus indica fruit extract was administered with the aspirin tablets than when taken under fasting state or with the meal without the fruit extract. The Cmax, AUC0-6h and t1/2 for aspirin increased from 10.04 +/- 0.1 mg/ml to 28.62 +/- 0.21 mg/ml (P Tamarindus indica L. fruit extract significantly increased the bioavailability of aspirin.

  11. Nanomemulsion of megestrol acetate for improved oral bioavailability and reduced food effect.

    Science.gov (United States)

    Li, Yixian; Song, Chung Kil; Kim, Min-Kyoung; Lim, Hyosang; Shen, Qingbo; Lee, Don Haeng; Yang, Su-Geun

    2015-10-01

    Megestrol acetate (MGA) belongs to the BCS class II drugs with low solubility and high permeability, and its oral absorption in conventional dosage form MGA microcrystal suspension (MGA MS) is very limited and greatly affected by food. In this study, MGA nanoemulsion (MGA NE) was formulated based on solubility, phase-diagram and release studies. Then oral bioavailability of MGA NE and MGA MS was evaluated. A randomized two-way crossover trial was conducted on six male dogs under fed and fasting conditions. Blood concentrations of MGA were analyzed using LC-MS/MS. MGA NE yielded 5.00-fold higher oral bioavailability in fasting conditions and displayed more stable absorption profiles after food intake compared with MGA MS. PMID:25893430

  12. Bioavailability of copper bound to dietary fiber in mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Rockway, S.W.; Brannon, P.M.; Weber, C.W.

    The bioavailability of copper (Cu) was compared in mice or rats fed diets containing wheat bran-bound Cu and adequate Cu (unbound) or deficient Cu with cellulose or wheat bran. Cardiac and hepatic Cu content were comparable in mice fed bran-bound or adequate Cu and greater than mice fed deficient Cu. Cardiac Cu content was comparable in rats fed bran-bound Cu and adequate Cu and greater than rats fed deficient Cu. Hepatic Cu content, however, was less in rats fed bran-bound Cu than adequate Cu and greater in both than deficient Cu. Both rats and mice utilized dietary Cu bound to wheat bran, suggesting that mineral-fiber interactions may not decrease bioavailability when dietary mineral is adequate. Tissue Cu content in Cu-deficiency was lower in animals fed wheat bran compared to cellulose, suggesting that the type of fiber may exacerbate effects of mineral deficiency.

  13. Effect of simultaneous consumption of milk and coffee on chlorogenic acids' bioavailability in humans.

    Science.gov (United States)

    Duarte, Giselle S; Farah, Adriana

    2011-07-27

    Different studies have shown that milk may interact with polyphenols and affect their bioavailability in humans. The present study investigated the effect of the simultaneous consumption of coffee and milk on the urinary excretion of chlorogenic acids (CGA) and metabolites. Subjects were submitted to consumption of water, instant coffee (609 mmol of CGA) dissolved in water, and instant coffee dissolved in whole milk. Urine was collected for 24 h after consumption of each treatment for analysis of CGA and metabolites by HPLC/LC-MS. The amount of CGA and metabolites recovered after consumption of combined coffee-milk (40% ± 27%) was consistently lower in all subjects compared to that of coffee alone (68% ± 20%). Concluding, the simultaneous consumption of milk and coffee may impair the bioavailability of coffee CGA in humans.

  14. Triple antioxidant SNEDDS formulation with enhanced oral bioavailability: Implication of chemoprevention of breast cancer.

    Science.gov (United States)

    Tripathi, Shailja; Kushwah, Varun; Thanki, Kaushik; Jain, Sanyog

    2016-08-01

    The present study aimed to develop quercetin, resveratrol and genistein loaded self-nanoemulsifying drug delivery system (SNEDDS) by QbD approach in order to improve their oral bioavailability and antioxidant potential. The size and PDI of the optimized formulation were found to be curve (AUC) of all three antioxidants. The SNEDDS demonstrated ~4.27 fold enhancement in oral bioavailability of quercetin, ~1.5 fold in case of resveratrol and ~2.8 fold in case of genistein as compared to free antioxidants suspension. Finally, the prophylactic antitumor efficacy of developed formulation was tested against DMBA induced breast cancer model in rats, which demonstrated enhanced abeyance towards the tumor growth as compared to free antioxidants. PMID:27033463

  15. Quantifying the effect of sorption and bioavailability of hydrophobic organic contaminants

    International Nuclear Information System (INIS)

    In-situ bioremediation has been applied successfully at a few sites. Several restrictions presently exist which could greatly limit the effectiveness of this promising technology. Hydrophobic organic contaminants tend to sorb onto soil. However, microorganisms are most effective in utilizing substrates from the aqueous phase. Sorption tends to separate the direct contact between microorganisms and contaminants necessary for biodegradation to occur. A series of experiments, which represented scenarios with fast sorption/desorption, slow sorption/desorption, mass transfer across boundary layer and mass transfer within attached microorganisms (biofilm), was conducted to demonstrate the concentration effect and the mass transfer effect. A method has been developed to quantify bioavailability of organic contaminants in aquatic environments. Bioavailability Factor (Bf), a dimensionless parameter derived from mathematical models and verified by experimental results, has been formulated to describe the impact of equilibrium sorption, nonequilibrium sorption, and mass transfer processes on the rate and extent of biodegradation of petroleum hydrocarbons

  16. Recent Trends of Phytosomes for Delivering Herbal Extract with Improved Bioavailability

    Directory of Open Access Journals (Sweden)

    Arijit Gandhi

    2012-11-01

    Full Text Available In the recent days, most of the prevailing diseases and nutritional disorders are treated with natural medicines. The effectiveness of any herbal medication is dependent on the delivery of effective level of the therapeutically active compound. But a severe limitation exists in their bioavailability when administered orally or by topical applications. Phytosomes are recently introduced herbal formulations that are better absorbed and as a result produced better bioavailability and actions than the conventional phyto molecules or botanical extracts. Phytosomes are produced by a process whereby the standardized plant extract or its constituents are bound to phospholipids, mainly phosphatidylcholine producing a lipid compatible molecular complex. Phytosome exhibit better pharmacokinetic and pharmacodynamic profile than conventional herbal extracts. The present review represents the recent advancesand applications of various standardized herbal extract phytosomes as a tool of drug delivery.

  17. Two novel ternary albendazole-cyclodextrin-polymer systems: dissolution, bioavailability and efficacy against Taenia crassiceps cysts.

    Science.gov (United States)

    Palomares-Alonso, Francisca; González, Cesar Rivas; Bernad-Bernad, Ma Josefa; Montiel, María Dolores Castillo; Hernández, Guadalupe Palencia; González-Hernández, Iliana; Castro-Torres, Nelly; Estrada, Enrique Pinzón; Jung-Cook, Helgi

    2010-01-01

    The effect of two water-soluble polymers: pectin and polyvinylpyrrolidone in combination with beta-cyclodextrin, on the dissolution, bioavailability and cysticidal efficacy of albendazole was evaluated using a commercial suspension as reference product. The dissolution of the albendazole-beta-cyclodextrin-pectin formulation was slow and incomplete (44.7%). No statistical differences in C(max) and AUC were found between this formulation and the reference. Also its cysticidal efficacy (33%) was similar to the reference (38%). The albendazole-beta-cyclodextrin-polyvinylpyrrolidone formulation exhibited the highest dissolution rate (78.5%) and its bioavailability was also significantly increased (2.3-fold). In addition, the cysticidal activity of this formulation (83%) was greater than a commercial suspension. Our results suggest that the ternary system of albendazole-beta-cyclodextrin-polyvinylpyrrolidone could be a potential alternative for the treatment of systemic helmintic diseases and it is worth to continue its preclinical evaluation. PMID:19769931

  18. Assessment of metal bioavailability in the vineyard soil-grapevine system using different extraction methods.

    Science.gov (United States)

    Vázquez Vázquez, Francisco A; Pérez Cid, Benita; Río Segade, Susana

    2016-10-01

    This study was focused on the assessment of single and sequential extraction methods to predict the bioavailability of metals in the vineyard soil-grapevine system. The modified BCR sequential extraction method and two single-step extraction methods based on the use of EDTA and acetic acid were applied to differently amended vineyard soils. The variety effect was studied on the uptake of metals by leaves and grapes. Most of the elements studied (Ca, Mg, Cu, Fe, Mn, Zn and Pb) were weakly mobilized from vineyard soils, with the exception of Cu and Mn. The determination of total metal content in leaves and grapes showed a different accumulation pattern in the two parts of the vine. A significant relationship was observed, for all the elements studied except for Fe, between the content bioavailable in the soil and the accumulated in both leaves and grapes (R=0.602-0.775, p<0.01). PMID:27132841

  19. Bioavailability of lithium from lithium citrate syrup versus conventional lithium carbonate tablets.

    Science.gov (United States)

    Guelen, P J; Janssen, T J; De Witte, T C; Vree, T B; Benson, K

    1992-10-01

    The bioavailability of lithium citrate syrup was compared with that of regular lithium carbonate tablets in 18 healthy male human volunteers. Blood samples were collected up to 48 h after dosing. Lithium serum concentrations were determined by means of AAS. The absorption rate following oral administration of the syrup was greater (tmax 0.8 h) than following administration of regular tablets (tmax 1.4 h). Maximum lithium serum concentrations, however, were only about 10 per cent higher after syrup dosing and serum concentrations resulting from syrup and tablets were almost superimposable from 2 h after dosing. The terminal half-life of lithium was found to be 22 h after syrup as well as after tablet dosing. No side-effects were observed during the study. The bioavailability of lithium from syrup relative to tablets was found to be bioequivalent with respect to the maximum lithium serum concentration and the extent of drug absorption (AUC). PMID:1489941

  20. Experimental determination of the oral bioavailability and bioaccessibility of lead particles

    Directory of Open Access Journals (Sweden)

    Deshommes Elise

    2012-11-01

    Full Text Available Abstract In vivo estimations of Pb particle bioavailability are costly and variable, because of the nature of animal assays. The most feasible alternative for increasing the number of investigations carried out on Pb particle bioavailability is in vitro testing. This testing method requires calibration using in vivo data on an adapted animal model, so that the results will be valid for childhood exposure assessment. Also, the test results must be reproducible within and between laboratories. The Relative Bioaccessibility Leaching Procedure, which is calibrated with in vivo data on soils, presents the highest degree of validation and simplicity. This method could be applied to Pb particles, including those in paint and dust, and those in drinking water systems, which although relevant, have been poorly investigated up to now for childhood exposure assessment.

  1. The matrix effect of blueberry, oat meal and milk on polyphenols, antioxidant activity and potential bioavailability.

    Science.gov (United States)

    Cebeci, Fatma; Şahin-Yeşilçubuk, Neşe

    2014-02-01

    In recent years, ready-to eat breakfast cereals prepared with fruit ingredients have gained particular attention due to their polyphenolic contents and health promoting effects. In this study, the matrix effect of blueberry, oat meal, whole milk or skimmed milk on polyphenols, antioxidative potential as well as their potential bioavailability were investigated. The phenolic properties of whole milk, skimmed milk, blueberry and oat meal were investigated and the changes in combinations of the ingredients were determined. Milk addition decreased the total phenolic, flavonoid and anthocyanin content of samples statistically and had negative effect on antioxidant activity showing differences among different methods. According to HPLC results, it was not possible to detect catechin in mixtures due to milk addition. In vitro digestion method was used to determine potential bioavailability of phenolic compounds. According to in vitro digestion procedure results, whole or skimmed milk did not affect the total phenolic content of the proportion passing to the blood from intestine.

  2. [Study on dosage form design for improving oral bioavailability of traditional Chinese medicines].

    Science.gov (United States)

    Xia, Hai-Jian; Zhang, Zhen-Hai; Yao, Dong-Dong; Jia, Xiao-Bin

    2013-09-01

    Both chemical drugs and traditional Chinese medicines have the problem of low bioavailability. However, as traditional Chinese medicines are a multi-component complex, their dosage forms are required to be designed in line with their characteristics, in order to improve the bioavailability of traditional Chinese medicines. Traditional Chinese medicines are mostly prepared into pill, powder, paste, elixir and decoction, but with such drawbacks as high administration dose and poor efficacy. With the process of modernization of traditional Chinese medicines, new-type preparations have be developed and made outstanding achievements. However, they fail to make an organic integration between traditional Chinese medicine theories and modern preparation theories. Characteristics of traditional Chinese medicines are required to be taken into account during the development of traditional Chinese medicines. In the article, multi-component preparation technology was adopted to establish a multi-component drug release system of traditional Chinese medicines on the basis of multiple components of traditional Chinese medicines.

  3. Volunteer stratification is more relevant than technological treatment in orange juice flavanone bioavailability.

    Science.gov (United States)

    Tomás-Navarro, María; Vallejo, Fernando; Sentandreu, Enrique; Navarro, Jose L; Tomás-Barberán, Francisco A

    2014-01-01

    The effect of two technological treatments on orange juice flavanone bioavailability in humans was assessed. Processing affected flavanone solubility and particle size of the cloud. Volunteers were stratified in high, medium, and low urinary excretion capabilities. Flavanones from high-pressure homogenized juice showed better absorption than those of conventional pasteurized juice in high excretors. These differences were not observed in medium and low excretors. High flavanone excretors took advantage of the high-pressure homogenization juice attributes (smaller cloud particle size) and showed an improved absorption/excretion. Stratification of the individuals by their excretion capability is more relevant than technological treatments in terms of flavanone bioavailability. This stratification should be considered in clinical studies with citrus juices and extracts as it could explain the large interindividual variability that is often observed.

  4. Improving the oral bioavailability of sulpiride by sodium oleate in rabbits.

    Science.gov (United States)

    Naasani, I; Kohri, N; Iseki, K; Miyazaki, K

    1995-06-01

    To improve the limited oral bioavailability of sulpiride, a dosage form containing sodium oleate as an absorption enhancer was developed and evaluated using gastric-emptying-controlled rabbits in a cross-over manner. In addition to the known properties of sodium oleate with respect to modifying the permeability of biomembranes, it was found to be capable of improving the physicochemical properties of sulpiride toward a higher lipophilicity (by ion-pair association) and a higher solubility (by micellar solubilization). Nonetheless, the incorporation of sodium oleate with sulpiride as a mixture filled in hard gelatin capsules failed to increase intestinal absorption, whereas the use of enteric capsules, instead of the hard gelatin capsules resulted in a significant increase (P < 0.05) in the oral bioavailability. PMID:7674129

  5. Bioavailability of iron to rats from processed soybean fractions determined by intrinsic and extrinsic labeling techniques

    International Nuclear Information System (INIS)

    Intrinsic and extrinsic labeling techniques were used to measure iron bioavailability from soybean fractions (isolated soy protein, defatted flour, soy hulls, insoluble material and whey) by iron-depleted and non-iron-depleted rats. As expected, absorption of iron was higher in the iron-depleted than in the non-iron-depleted rats. In the iron-depleted group, significantly more iron was absorbed from soy whey than from other fractions. No other significant difference in iron absorption associated with iron source was observed. The higher absorption rate of iron from whey by the iron-depleted rats probably was related to a lower quantity of food consumed during the test meal by this group. Intrinsic and extrinsic labeling techniques produced similar assessments of bioavailability of iron

  6. Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle.

    Science.gov (United States)

    Hu, Liandong; Jia, Yanhong; Niu, Feng; Jia, Zheng; Yang, Xun; Jiao, Kuiliang

    2012-07-25

    A new microemulsions system of curcumin (CUR-MEs) was successfully developed to improve the solubility and bioavailability of curcumin. Several formulations of the microemulsions system were prepared and evaluated using different ratios of oils, surfactants, and co-surfactants (S&CoS). The optimal formulation, which consists of Capryol 90 (oil), Cremophor RH40 (surfactant), and Transcutol P aqueous solution (co-surfactant), could enhance the solubility of curcumin up to 32.5 mg/mL. The pharmacokinetic study of microemulsions was performed in rats compared to the corresponding suspension. The stability of microemulsions after dilution was excellence. Microemulsions have significantly increased the C(max) and area under the curve (AUC) in comparison to that in suspension (p microemulsions was 22.6-fold higher than that in suspension. The results indicated that the CUR-MEs could be used as an effective formulation for enhancing the oral bioavailability of curcumin. PMID:22587560

  7. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  8. Enhanced bioavailability of orally administered flurbiprofen by combined use of hydroxypropyl-cyclodextrin and poly(alkyl-cyanoacrylate) nanoparticles.

    Science.gov (United States)

    Zhao, Xiaoyun; Li, Wei; Luo, Qiuhua; Zhang, Xiangrong

    2014-03-01

    Flurbiprofen was formulated into nanoparticle suspension to improve its oral bioavailability. Hydroxypropyl-β-cyclodextrin inclusion-flurbiprofen complex (HP-β-CD-FP) was prepared, then incorporating this complex into poly(alkyl-cyanoacrylate) (PACA) nanoparticles. HP-β-CD-FP-PACA nanoparticle was prepared by the emulsion solvent polymerization method. The zeta potential was -26.8 mV, the mean volume particle diameter was 134 nm, drug encapsulation efficiency was 53.3 ± 3.6 % and concentration was 1.5 mg/mL. The bioavailability of flurbiprofen from optimized nanoparticles was assessed in male Wistar rats at a dose of 15 mg/kg. As compared to the flurbiprofen suspension, 211.6 % relative bioavailability was observed for flurbiprofen nanoparticles. The reduced particle size and increased surface area may contribute to improve oral bioavailability of flurbiprofen.

  9. Sources and fate of bioavailable dissolved organic nitrogen in the Neuse River Estuary, North Carolina

    Science.gov (United States)

    Paerl, H. W.; Peierls, B. L.; Hounshell, A.; Osburn, C. L.

    2015-12-01

    Eutrophication is a widespread problem affecting the structure and function of estuaries and is often linked to anthropogenic nitrogen (N) enrichment, since N is the primary nutrient limiting algal production. Watershed management actions typically have ignored dissolved organic nitrogen (DON) loading because of its perceived refractory nature and instead focused on inorganic N as targets for loading reductions. A fluorescence-based model indicated that anthropogenic sources of DON near the head of the microtidal Neuse River Estuary (NRE), NC were dominated by septic systems and poultry waste. A series of bioassays were used to determine the bioavailability of river DON and DON-rich sources to primary producers and whether those additions promoted the growth of certain phytoplankton taxa, particularly harmful species. Overall, at time scales up to two to three weeks, estuarine phytoplankton and bacteria only showed limited responses to additions of high molecular weight (HMW, >1 kDa) river DON. When increases in productivity and biomass did occur, they were quite small compared with the response to inorganic N. Low molecular weight (LMW) river DON, waste water treatment plant effluent, and poultry litter extract did have a positive effect on phytoplankton and bacterial production, indicating a bioavailable fraction. High variability of bulk DON concentration suggested that bioavailable compounds added in the experimental treatments were low in concentration and turned over quite rapidly. Some phytoplankton taxa, as measured by diagnostic photopigments, appeared to be selectively enhanced by the HMW and specific source DON additions, although the taxa could not be positively identified as harmful species. Preliminary tests show that labile autochthonous organic matter may act as a primer for the mineralization of the HMW DON. These and other, longer-term bioavailability studies will be needed to adequately address the fate of watershed DON in estuarine ecosystems.

  10. Design and optimization of self-nanoemulsifying drug delivery systems for improved bioavailability of cyclovirobuxine D

    OpenAIRE

    Ke, Zhongcheng

    2016-01-01

    Zhongcheng Ke,1–3 Xuefeng Hou,4 Xiao-bin Jia31Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 2Huangshan University, Huangshan, Anhui, 3Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 4Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of ChinaBackground: The main purpose of this research was to design a self-nanoemulsifying drug delivery system (SNEDDS) for improving the bioavailability of cyclovirobux...

  11. Systematic Development of Self-Emulsifying Drug Delivery Systems of Atorvastatin with Improved Bioavailability Potential

    OpenAIRE

    Khan, Fariba; Islam, Md Saiful; Roni, Monzurul Amin; Jalil, Reza-Ul

    2012-01-01

    The aim of this study was to prepare and characterize a self-emulsifying drug delivery system (SEDDS) with a high drug load of poorly water-soluble atorvastatin for the enhancement of dissolution and oral bioavailability. Solubility of atorvastatin in oil, surfactant, and cosurfactant was determined. Pseudo-ternary phase diagrams were constructed by the aqueous titration method, and formulations were developed based on the optimum excipient combinations. A high drug load (10% w/w) was achieve...

  12. Design and optimization of self-nanoemulsifying drug delivery systems for improved bioavailability of cyclovirobuxine D

    Directory of Open Access Journals (Sweden)

    Ke ZC

    2016-06-01

    Full Text Available Zhongcheng Ke,1–3 Xuefeng Hou,4 Xiao-bin Jia31Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 2Huangshan University, Huangshan, Anhui, 3Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 4Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of ChinaBackground: The main purpose of this research was to design a self-nanoemulsifying drug delivery system (SNEDDS for improving the bioavailability of cyclovirobuxine D as a poorly water-soluble drug.Materials and methods: Solubility trials, emulsifying studies, and pseudo-ternary phase diagrams were used to screen the SNEDDS formulations. The optimized drug-loaded SNEDDS was prepared at a mass ratio of 3:24:38:38 for cyclovirobuxine D, oleic acid, Solutol SH15, and propylene glycol, respectively. The optimized formulation was characterized in terms of physicochemical and pharmacokinetic parameters compared with marketed cyclovirobuxine D tablets.Results: The optimized cyclovirobuxine-D-loaded SNEDDS was spontaneously dispersed to form a nanoemulsion with a globule size of 64.80±3.58 nm, which exhibited significant improvement of drug solubility, rapid absorption rate, and enhanced area under the curve, together with increased permeation and decreased efflux. Fortunately, there was a nonsignificant cytotoxic effect toward Caco-2 cells. The relative bioavailability of SNEDDS was 200.22% in comparison with market tablets, in rabbits.Conclusion: SNEDDS could be a potential candidate for an oral dosage form of cyclovirobuxine D with improved bioavailability.Keywords: self-nanoemulsifying drug delivery, bioavailability, cyclovirobuxine D

  13. Design and optimization of self-nanoemulsifying drug delivery systems for improved bioavailability of cyclovirobuxine D

    OpenAIRE

    Ke ZC; Hou XF; Jia XB

    2016-01-01

    Zhongcheng Ke,1–3 Xuefeng Hou,4 Xiao-bin Jia31Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 2Huangshan University, Huangshan, Anhui, 3Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 4Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of ChinaBackground: The main purpose of this research was to design a self-nanoemulsifying drug delivery system (SNEDDS) for improving the bioavailability of cyclovirobuxine D as...

  14. Functions of Lipids for Enhancement of Oral Bioavailability of Poorly Water-Soluble Drugs

    OpenAIRE

    Basavaraj K. Nanjwade; Patel, Didhija J.; Udhani, Ritesh A.; Manvi, Fakirappa V.

    2011-01-01

    Lipid-based formulations encompass a diverse group of formulations with very different physical appearance, ranging from simple triglyceride vehicles to more sophisticated formulations such as self-emulsifying drug delivery systems (SEDDS). Lipid-based drug delivery systems may contain a broad range of oils, surfactants, and co-solvents. They represent one of the most popular approaches to overcome the absorption barriers and to improve the bioavailability of poorly water-soluble drugs. Diver...

  15. Comparison of a solid SMEDDS and solid dispersion for enhanced stability and bioavailability of clopidogrel napadisilate.

    Science.gov (United States)

    Kim, Dong Wuk; Kwon, Min Seok; Yousaf, Abid Mehmood; Balakrishnan, Prabagar; Park, Jong Hyuck; Kim, Dong Shik; Lee, Beom-Jin; Park, Young Joon; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2014-12-19

    The intention of this study was to compare the physicochemical properties, stability and bioavailability of a clopidogrel napadisilate (CN)-loaded solid dispersion (SD) and solid self-microemulsifying drug delivery system (solid SMEDDS). SD was prepared by a surface attached method using different ratios of Cremophor RH60 (surfactant) and HPMC (polymer), optimized based on their drug solubility. Liquid SMEDDS was composed of oil (peceol), a surfactant (Cremophor RH60) and a co-surfactant (Transcutol HP). A pseudo-ternary phase diagram was constructed to identify the emulsifying domain, and the optimized liquid SMEDDS was spray dried with an inert solid carrier (silicon dioxide), producing the solid SMEDDS. The physicochemical properties, solubility, dissolution, stability and pharmacokinetics were assessed and compared to clopidogrel napadisilate (CN) and bisulfate (CB) powders. In solid SMEDDS, liquid SMEDDS was absorbed or coated inside the pores of silicon dioxide. In SD, hydrophilic polymer and surfactants were adhered onto drug surface. The drug was in crystalline and molecularly dispersed form in SD and solid SMEDDS, respectively. Solid SMEDDS and SD greatly increased the solubility of CN but gave lower drug solubility compared to CB powder. These preparations significantly improved the dissolution of CN, but the latter more increased than the former. Stability under accelerated condition showed that they were more stable compared to CB powder, and SD was more stable than solid SMEDDS. They significantly increased the oral bioavailability of CN powder. Furthermore, SD showed significantly improved oral bioavailability compared to solid SMEDDS and CB powder. Thus, SD with excellent stability and bioavailability is recommended as an alternative for the clopidogrel-based oral formulation. PMID:25263903

  16. Improvement of Bioavailability of Poorly Soluble Drugs through Self Emulsifying Drug Delivery System

    OpenAIRE

    Sanjay Dey; Sajal Kumar Jha; Jadupati Malakar; Amites Gangopadhyay

    2012-01-01

    Self emulsifying drug delivery system (SEDDS) has received particular attention as a means of improvement of oral bioavailability poorly soluble and absorbed drugs. SEDDS are the mixture of oils,surfactants, and co-surfactants. This becomes emulsify when come in contact with aqueous solution of GIT under the condition of gentle stirring and digestive motility. SEDDS includes various dosage forms like capsule, tablets, beads, microspheres, nanospheres, etc. thus SEDDS could efficiently improve...

  17. How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies

    OpenAIRE

    Liang Shen; Cui-Cui Liu; Chun-Yan An; Hong-Fang Ji

    2016-01-01

    Curcumin is a natural product with multiple biological activities and numerous potential therapeutic applications. However, its poor systemic bioavailability fails to explain the potent pharmacological effects and hinders its clinical application. Using experimental and theoretical approaches, we compared curcumin and its degradation products for its biological activities against Alzheimer’s disease (AD), including the superoxide anion radical (O2 .–)-scavenging activity, Aβ fibrils (fAβ) for...

  18. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine

    OpenAIRE

    Gunasekaran, Thirumurugan; Haile, Tedesse; Nigusse, Tedele; Dhanaraju, Magharla Dasaratha

    2014-01-01

    To achieve the desired therapeutic objective, the drug product must deliver the active drug at an optimal rate and amount. By proper biopharmaceutic design, the rate and extent of drug absorption (also called as bioavailability) or the systemic delivery of drugs to the body can be varied from rapid and complete absorption to slow and sustained absorption depending upon the desired therapeutic objective. Phytomedicine have served as the foundation for a larger fraction of the current pharmacop...

  19. HCN Producing Bacteria Enable Sensing Of Non-Bioavailable Hg Species by the Whole Cell Biosensor

    Science.gov (United States)

    Horvat, M.; Rijavec, T.; Koron, N.; Lapanje, A.

    2015-12-01

    Bacteria play an important role in Hg transformation reactions. The production of cyanide (HCN) and other secondary metabolites seems to be key elements involved in these transformations. Current hypotheses link the role of HCN production to growth inhibition of nonHCN producing competitor organisms (role of an antimicrobial agent). Our past investigations showed that HCN production did not correlate with antimicrobial activity and since pK value of HCN is very high (pK = 9,21), it can be expected that most of the produced HCN is removed from the microenvironment. This way, the expected inhibitory concentrations can hardly be reached. Accordingly, we proposed a new concept, where the ability of complexation of transient metals by HCN served as a regulation process for the accessibility of micro-elements. In our study, we focused on the presence of HCN producing bacteria and carried it out in the Hg contaminated environment connected to the Idrija Mercury Mine, Slovenia. We characterised the isolates according to the presence of Hg resistance (HgR), level of HCN production and genetic similarities. In laboratory setups, using our merR whole cell based biosensor, we determined the transformation of low bioavailable Hg0 and HgS forms into bioavailable Hg by these HCN producing bacteria. We observed that HgR strains producing HCN had the highest impact on increased Hg bioavailability. In the proposed ecological strategy HgR HCN producing bacteria increase their competitive edge over non-HgR competitors through the increase of Hg toxicity. Due to their activity, Hg is made available to other organisms as well and thus enters into the ecosystem. Finally, using some of the characteristics of bacteria (e.g. Hg resistance genetic elements), we developed a fully automated sensing approach, combining biosensorics and mechatronics, to measure the bioavailability of Hg in situ.

  20. DETERMINATION OF MOBILITY AND BIOAVAILABILITY OF HEAVY METALS IN THE URBAN AIR PARTICULATES MATTER OF ISFAHAN

    OpenAIRE

    Kalantari, A.; M. Talebi; B BINA

    2001-01-01

    Introduction: In addition to, Carbohyrates, Lipids, Amino acids and vitamins, some of the trace metals are known vital for biological activity. But some of them not only are not necessary, but also they are very toxic and carcinogen. In this research the rate of Mobility and Bioavailability of heavy metals associated with airborne particulates matter such as Zn, Pb, Cd, Cu, Fe, Ni and Cr have been measured. Methods: The sequential extraction has been used for releasing of heavy metales f...

  1. Arsenic in marine sediments from French Mediterranean ports: Geochemical partitioning, bioavailability and ecotoxicology

    OpenAIRE

    Mamindy-Pajany, Yannick; Hurel, Charlotte; Geret, Florence; Galgani, Francois; Battaglia-Brunet, Fabienne; Marmier, Nicolas; Romeo, Michele

    2013-01-01

    This work investigates arsenic mobility, bioavailability and toxicity in marine port sediments using chemical sequential extraction and laboratory toxicity tests. Sediment samples were collected from two different Mediterranean ports, one highly polluted with arsenic and other inorganic and organic pollutants (Estaque port (EST)), and the other one, less polluted, with a low arsenic content (Saint Mandrier port (SM)). Arsenic distribution in the solid phase was studied using a sequential extr...

  2. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haw-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Huang, Chin-Shiu [Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China); Li, Chien-Chun [School of Nutrition, Chung Shan Medical University, Taichung, Taiwan (China); Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Ai-Hsuan; Huang, Yu-Ju [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Wang, Tsu-Shing [Department of Biomedical Science, Chung Shan Medical University, Taichung, Taiwan (China); Yao, Hsien-Tsung, E-mail: htyao@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Lii, Chong-Kuei, E-mail: cklii@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China)

    2014-10-01

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1 μM which peaked at 30 min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50 mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (p < 0.05). Immunoblot analysis and EMSA revealed that andrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl{sub 4}) at day 6. Andrographolide pretreatment suppressed CCl{sub 4}-induced plasma aminotransferase activity and hepatic lipid peroxidation (p < 0.05). These results suggest that andrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. - Highlights: • The bioavailability of andrographolide is 1.19% in rats. • Plasma concentration reaches 1 μM after giving 50 mg/kg andrographolide. • Andrographolide up-regulates Nrf2-dependent antioxidant genes. • Andrographolide increases antioxidant defense

  3. Enhanced oral bioavailability of docetaxel by lecithin nanoparticles: preparation, in vitro, and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Hu K

    2012-07-01

    Full Text Available Kaili Hu,1 Shan Cao,1,2 Fuqiang Hu,3 Jianfang Feng11Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 2Pharmacy Department, Baoshan Central Hospital, Shanghai, 3School of Pharmacy, Zhejiang University, Hangzhou, ChinaAbstract: The aim of this research work was to investigate the potential of lecithin nanoparticles (LNs in improving the oral bioavailability of docetaxel. Docetaxel-loaded LNs (DTX-LNs were prepared from oil-in-water emulsions and characterized in terms of morphology, size, zeta potential, and encapsulation efficiency. The in vitro release of docetaxel from the nanoparticles was studied by using dialysis bag method. Caco-2 cell monolayer was used for the in vitro permeation study of DTX-LNs. Bioavailability studies were conducted in rats and different pharmacokinetic parameters were evaluated after oral administration of DTX-LNs. The results showed that DTX-LNs had a mean diameter of 360 ± 8 nm and exhibited spherical shape with smooth surface under transmission electron microscopy. The DTX-LNs showed a sustained-release profile, with about 80% of docetaxel released within 72 hours. The apical to basolateral transport of docetaxel across the Caco-2 cell monolayer from the DTX-LNs was 2.14 times compared to that of the docetaxel solution (0.15 × 10-5 ± 0.016 × 10-5 cm/second versus 0.07 × 10-5 ± 0.003 × 10-5 cm/second. The oral bioavailability of the DTX-LNs was 3.65 times that of docetaxel solution (8.75% versus 2.40%. These results indicate that DTX-LNs were valuable as an oral drug delivery system to enhance the absorption of docetaxel.Keywords: lecithin nanoparticles, oral delivery, docetaxel, bioavailability

  4. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models.

    OpenAIRE

    Costa, D L; Dreher, K. L.

    1997-01-01

    Many epidemiologic reports associate ambient levels of particulate matter (PM) with human mortality and morbidity, particularly in people with preexisting cardiopulmonary disease (e.g., chronic obstructive pulmonary disease, infection, asthma). Because much ambient PM is derived from combustion sources, we tested the hypothesis that the health effects of PM arise from anthropogenic PM that contains bioavailable transition metals. The PM samples studied derived from three emission sources (two...

  5. Bioavailability and absorption kinetics of nicotine following application of a transdermal system.

    OpenAIRE

    Gupta, S.K.; Benowitz, N L; Jacob, P.; Rolf, C N; Gorsline, J

    1993-01-01

    1. The absolute bioavailability and absorption kinetics of nicotine were investigated in 13 healthy adult male smokers following single and multiple applications of a nicotine transdermal system (NTS), designed to release nicotine at an approximate rate of 1.5 mg h-1 over 24 h. The absorption of nicotine from the single NTS application was calculated with reference to a simultaneous intravenous infusion (i.v.) of deuterium-labelled nicotine. 2. The mean input time (MIT) and mean absorption ti...

  6. Development of an integrated in vitro model for the prediction of oral bioavailability of nanoparticles

    OpenAIRE

    Walczak, A.P.

    2014-01-01

    Title of the PhD thesis: Development of an integrated in vitro model for the prediction of oral bioavailability of nanoparticles The number of food-related products containing nanoparticles (NPs) increases. To understand the safety of such products, the potential uptake of these NPs following consumption needs to be assessed. In normal safety assessment studies this is investigated using animal models. For scientific, ethical and economical reasons, there is a demand to refine, reduce and rep...

  7. Factors regulating the bioavailability of methylmercury to breeding rusty blackbirds in northeastern wetlands

    International Nuclear Information System (INIS)

    Rusty blackbirds are undergoing rapid population decline and have elevated Hg concentrations while breeding in the Acadian ecoregion of North America. Factors regulating the bioavailability of methyl-Hg (MeHg) within this population's habitat were determined using water, invertebrates, and blood from adult rusty blackbirds collected for Hg-speciation, along with additional water column parameters: MeHg and THg, dissolved organic carbon, pH, dissolved oxygen, conductivity, redox potential, and temperature. Both DO2 and pH were negatively related to biota MeHg, while water MeHg concentrations were positively related. Both invertebrate MeHg concentration and %MeHg increased with trophic level. Invertebrate MeHg concentrations were among the greatest reported when compared with those reported elsewhere for wetlands and waterbodies—often several times greater for similar taxa—while percent MeHg of THg were similar. An environment with high bioavailability of MeHg in combination with a high trophic position best explains elevated Hg concentrations for this species regional population. - Highlights: ► DO2 and pH negatively correlate with wetland biota methylmercury. ► Water MeHg concentrations positively correlate with wetland biota methylmercury. ► Rusty blackbird blood-Hg correlates with MeHg in Araneae, Ephemeroptera, and Trichoptera, but not Odonata. ► Habitat with high MeHg bioavailability and a high trophic position explains regionally elevated Hg in the rusty blackbird. - Elevated mercury concentrations in the disappearing Acadian population of breeding rusty blackbirds are due to a diet of aquatic macroinvertebrates in an environment with high methylmercury bioavailability.

  8. A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect

    OpenAIRE

    Luca Regazzoni; Barbora de Courten; Davide Garzon; Alessandra Altomare; Cristina Marinello; Michaela Jakubova; Silvia Vallova; Patrik Krumpolec; Marina Carini; Jozef Ukropec; Barbara Ukropcova; Giancarlo Aldini

    2016-01-01

    Carnosine is a natural dipeptide able to react with reactive carbonyl species, which have been recently associated with the onset and progression of several human diseases. Herein, we report an intervention study in overweight individuals. Carnosine (2 g/day) was orally administered for twelve weeks in order to evaluate its bioavailability and metabolic fate. Two carnosine adducts were detected in the urine samples of all subjects. Such adducts are generated from a reaction with acrolein, whi...

  9. The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin.

    OpenAIRE

    Sahai, J; Healy, D P; Stotka, J; Polk, R E

    1993-01-01

    Six healthy male volunteers participated in a two-period, two-treatment study to determine the effect of chronic calcium carbonate administration on ciprofloxacin bioavailability. There was a mean reduction of 40% in Cmax and 43% in AUC when calcium carbonate was administered with ciprofloxacin, compared with ciprofloxacin alone (P < 0.05). There were no changes in either half-life or tmax. It is therefore recommended that patients being treated with ciprofloxacin for serious infections refra...

  10. Bioavailability assessment of metals chelated as proteinates using the Ussing Chamber Model

    OpenAIRE

    Piva, G.; G. Cavanna; G. Casadei; A. Piva

    2011-01-01

    Preparation of proteinates by hydrolysis of organic matter produces a blend of different proteins, and may likely result in the chelation of trace elements. Often this process results in an increased bioavailability of minerals, leading to a higher absorption rate than inorganic salts (Cao et al., 2000; Uchida et al., 2001; Bailey et al., 2001; Guo et al., 2001). Usually trace elements uptake takes place along the small intestine, mainly jejunum (Tapia et al., 1996; Arredondo et al., 2000), e...

  11. Oral Bioavailability Enhancement of Exemestane from Self-Microemulsifying Drug Delivery System (SMEDDS)

    OpenAIRE

    Singh, Ajeet K.; Chaurasiya, Akash; Awasthi, Anshumali; Mishra, Gautam; Asati, Dinesh; Khar, Roop K.; Mukherjee, Rama

    2009-01-01

    Limited aqueous solubility of exemestane leads to high variability in absorption after oral administration. To improve the solubility and bioavailability of exemestane, the self-microemulsifying drug delivery system (SMEDDS) was developed. SMEDDS comprises of isotropic mixture of natural or synthetic oil, surfactant, and cosurfactant, which, upon dilution with aqueous media, spontaneously form fine o/w microemulsion with less than 100 nm in droplet size. Solubility of exemestane were determin...

  12. Prediction of the bioavailability of minerals and trace elements in foods.

    OpenAIRE

    Wolters, M.G.E.

    1992-01-01

    Minerals and trace elements play essential roles in numerous biochemical and physiological processes in animals and man. A deficiency, an overdose or imbalances between minerals or trace elements will exert a negative effect on health. Generally, it is not the ingested dose of minerals and trace elements that is important to maintain balance, but rather the amount that is bioavailable (available for biological and biochemical processes in the organism). Several food components are able to for...

  13. Selenium bioavailability from naturally produced high-selenium peas and oats in selenium-deficient rats.

    Science.gov (United States)

    Yan, Lin; Johnson, LuAnn K

    2011-06-01

    This study determined the bioavailability of selenium (Se) from yellow peas and oats harvested from the high-Se soil of South Dakota, United States. The Se concentrations were 13.5 ± 0.2 and 2.5 ± 0.1 mg/kg (dry weight) for peas and oats, respectively. Male weanling Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1 μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet supplemented with 20, 30, or 40 μg Se/kg from peas or oats, respectively. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for yellow peas and oats to those for l-selenomethionine (SeMet; used as a reference) by using a slope-ratio method. Dietary supplementation with peas or oats resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Supplementation with peas or oats resulted in linear or log-linear, dose-dependent increases in Se concentrations of plasma, liver, gastrocnemius muscle, and kidneys. The overall bioavailability was approximately 88% for Se from yellow peas and 92% from oats, compared to SeMet. It was concluded that Se from naturally produced high-Se yellow peas or oats is highly bioavailable in this model and that these high-Se foods may be a good dietary source of Se. PMID:21553810

  14. Oxygen bioavailability and haemoglobins in the brine shrimp Artemia franciscana

    OpenAIRE

    Wachter, B; Blust, R.; Decleir, W.

    1992-01-01

    Bioavailability of oxygen for the saline-water invertebrate Artemia franciscana was studied, since both oxygen concentration and oxygen diffusion rate change with salinity. Total haemoglobin concentration and the relative contribution of each of three haemoglobins was measured in specimens acclimated to different salinities and oxygen concentrations. Both haemoglobin concentration and contribution were influenced by salinity and the group observed (males, females with and females without eggs...

  15. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Kim MS

    2011-11-01

    Full Text Available Min-Soo Kim1, Jeong-Soo Kim1, Hee Jun Park1, Won Kyung Cho1,3, Kwang-Ho Cha1,3, Sung-Joo Hwang2,31College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea, 2College of Pharmacy, 3Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of KoreaBackground: The aim of this study was to improve the physicochemical properties and bioavailability of poorly water-soluble sirolimus via preparation of a solid dispersion of nanoparticles using a supercritical antisolvent (SAS process.Methods: First, excipients for enhancing the stability and solubility of sirolimus were screened. Second, using the SAS process, solid dispersions of sirolimus-polyvinylpyrrolidone (PVP K30 nanoparticles were prepared with or without surfactants such as sodium lauryl sulfate (SLS, tocopheryl propylene glycol succinate, Sucroester 15, Gelucire 50/13, and Myrj 52. A mean particle size of approximately 250 nm was obtained for PVP K30-sirolimus nanoparticles. Solid state characterization, kinetic solubility, powder dissolution, stability, and pharmacokinetics were analyzed in rats.Results: X-ray diffraction, differential scanning calorimetry, and high-pressure liquid chromatography indicated that sirolimus existed in an anhydrous amorphous form within a solid dispersion of nanoparticles and that no degradation occurred after SAS processing. The improved supersaturation and dissolution of sirolimus as a solid dispersion of nanoparticles appeared to be well correlated with enhanced bioavailability of oral sirolimus in rats. With oral administration of a solid dispersion of PVP K30-SLS-sirolimus nanoparticles, the peak concentration and AUC0→12h of sirolimus were increased by approximately 18.3-fold and 15.2-fold, respectively.Conclusion: The results of this study suggest that preparation of PVP K30-sirolimus-surfactant nanoparticles using the SAS process may be a promising approach for improving the bioavailability of sirolimus

  16. Comparative human bioavailability study of macrocrystalline nitrofurantoin and two prolonged-action hydroxymethylnitrofurantoin preparations.

    Science.gov (United States)

    Guelen, P J; Boerema, J B; Vree, T B

    1988-12-01

    This single-blind crossover study compared the human bioavailability of macrocrystalline nitrofurantoin (Furadantine MC) and two prolonged-action hydroxymethylnitrofurantoin formulations (Urfadyn PL, bid, and Uridurine, tid), based on plasma nitrofurantoin concentrations and urinary nitrofurantoin excretion. The drugs were administered to 16 healthy females for a single day according to the recommended daily dosages. For comparison, Furadantine MC was administered both at the qid dosage recommended by the manufacturer and at tid dosage. Pharmacokinetic parameters determined were maximum plasma concentration after first dose, minimum plasma concentration after first dose, area under the plasma concentration-time curve (AUC), cumulative renal excretion over 30 hours (ARE), overall renal clearance, total body clearance, and bioavailability relative to Furadantine MC qid, based on plasma AUC (F) and ARE (Fren). F for Furadantine MC 100 mg tid was 108 +/- 25 percent (mean +/- SD); for Uridurine 100 mg tid and Urfadyn PL 100 mg bid, F equalled 86 +/- 33 percent and 53 +/- 20 percent (p less than 0.05), respectively. A similar relationship was observed between Fren for Furadantine MC 100 mg qid and the respective Fren of Furadantine MC 100 mg tid, Uridurine 100 mg tid, and Urfadyn PL 100 mg bid. No significant difference was found between the respective F and Fren of each of the drugs studied. Although bioavailability was comparable for Furadantine MC tid and qid, the single-day design of these studies precludes inferring that these dosage schedules are therapeutically equivalent. However, the significantly lower relative bioavailabilities for the prolonged-action hydroxymethylnitrofurantoin formulations suggest that Urfadyn PL 100 mg bid and Uridurine 100 mg tid are not pharmacokinetically equivalent to Furadantine MC. PMID:3243175

  17. Toxicokinetics/toxicodynamics links bioavailability for assessing arsenic uptake and toxicity in three aquaculture species.

    Science.gov (United States)

    Chen, Wei-Yu; Liao, Chung-Min

    2012-11-01

    The purpose of this study was to link toxicokinetics/toxicodynamics (TK/TD) and bioavailability-based metal uptake kinetics to assess arsenic (As) uptake and bioaccumulation in three common farmed species of tilapia (Oreochromis mossambicus), milkfish (Chanos chanos), and freshwater clam (Corbicula fluminea). We developed a mechanistic framework by linking damage assessment model (DAM) and bioavailability-based Michaelis-Menten model for describing TK/TD and As uptake mechanisms. The proposed model was verified with published acute toxicity data. The estimated TK/TD parameters were used to simulate the relationship between bioavailable As uptake and susceptibility probability. The As toxicity was also evaluated based on a constructed elimination-recovery scheme. Absorption rate constants were estimated to be 0.025, 0.016, and 0.175 mL g(-1) h(-1) and As uptake rate constant estimates were 22.875, 63.125, and 788.318 ng g(-1) h(-1) for tilapia, milkfish, and freshwater clam, respectively. Here we showed that a potential trade-off between capacities of As elimination and damage recovery was found among three farmed species. Moreover, the susceptibility probability can also be estimated by the elimination-recovery relations. This study suggested that bioavailability-based uptake kinetics and TK/TD-based DAM could be integrated for assessing metal uptake and toxicity in aquatic organisms. This study is useful to quantitatively assess the complex environmental behavior of metal uptake and implicate to risk assessment of metals in aquaculture systems.

  18. Relating Bioavailability Parameters to the Sorbent Characteristics of PAH Polluted Soils

    OpenAIRE

    Bartolome, N.; Hilber, I.; Schulin, R.; Mayer, Philipp; Bucheli, T.

    2015-01-01

    Regulation of Hydrophobic Organic Contaminants (HOC) such as polycyclic aromatic hydrocarbons (PAHs) in soil is still based on total concentrations. However, many studies have demonstrated that not all of a pollutant’s content in soil is equally available to organisms (Reichenberg & Mayer 2006). Over the last decade, intensive effort has been made to incorporate bioavailability into risk assessment (Cachada et al. 2014). Here, we compare total concentrations of PAH with two bioavailabilit...

  19. Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans.

    Science.gov (United States)

    Pereira-Caro, Gema; Oliver, Christine M; Weerakkody, Rangika; Singh, Tanoj; Conlon, Michael; Borges, Gina; Sanguansri, Luz; Lockett, Trevor; Roberts, Susan A; Crozier, Alan; Augustin, Mary Ann

    2015-07-01

    Orange juice (OJ) flavanones are bioactive polyphenols that are absorbed principally in the large intestine. Ingestion of probiotics has been associated with favorable changes in the colonic microflora. The present study examined the acute and chronic effects of orally administered Bifidobacterium longum R0175 on the colonic microflora and bioavailability of OJ flavanones in healthy volunteers. In an acute study volunteers drank OJ with and without the microencapsulated probiotic, whereas the chronic effects were examined when OJ was consumed after daily supplementation with the probiotic over 4 weeks. Bioavailability, assessed by 0-24h urinary excretion, was similar when OJ was consumed with and without acute probiotic intake. Hesperetin-O-glucuronides, naringenin-O-glucuronides, and hesperetin-3'-O-sulfate were the main urinary flavanone metabolites. The overall urinary excretion of these metabolites after OJ ingestion and acute probiotic intake corresponded to 22% of intake, whereas excretion of key colon-derived phenolic and aromatic acids was equivalent to 21% of the ingested OJ (poly)phenols. Acute OJ consumption after chronic probiotic intake over 4 weeks resulted in the excretion of 27% of flavanone intake, and excretion of selected phenolic acids also increased significantly to 43% of (poly)phenol intake, corresponding to an overall bioavailability of 70%. Neither the probiotic bacterial profiles of stools nor the stool moisture, weight, pH, or levels of short-chain fatty acids and phenols differed significantly between treatments. These findings highlight the positive effect of chronic, but not acute, intake of microencapsulated B. longum R0175 on the bioavailability of OJ flavanones.

  20. Lower zinc bioavailability may be related to higher risk of subclinical atherosclerosis in Korean adults.

    Directory of Open Access Journals (Sweden)

    Su Kyoung Jung

    Full Text Available BACKGROUND: There is a proposed link between dietary zinc intake and atherosclerosis, but this relationship remains unclear. Phytate may contribute to this relationship by influencing zinc bioavailability. OBJECTIVE: The aim of this study is to examine the relationship between zinc bioavailability and subclinical atherosclerosis in healthy Korean adults. MATERIALS AND METHODS: The present cross-sectional analysis used baseline data from the Korean multi-Rural Communities Cohort Study (MRCohort, which is a part of The Korean Genome Epidemiology Study (KoGES. A total of 5,532 subjects (2,116 men and 3,416 women aged 40 years and older were recruited from rural communities in South Korea between 2005 and 2010. Phytate:zinc molar ratio, estimated from a food-based food frequency questionnaire (FFQ of 106 food items, was used to determine zinc bioavailability, and carotid intima media thickness (cIMT and pulse wave velocity (PWV were measured to calculate the subclinical atherosclerotic index. RESULTS: We found that phytate:zinc molar ratio is positively related to cIMT in men. A higher phytate:zinc molar ratio was significantly related to an increased risk of atherosclerosis in men, defined as the 80(th percentile value of cIMT (5(th vs. 1(st quintile, OR = 2.11, 95% CI 1.42-3.15, P for trend = 0.0009, and especially in elderly men (5(th vs. 1(st quintile, OR = 2.58, 95% CI 1.52-4.37, P for trend = 0.0021. We found a positive relationship between phytate:zinc molar ratio and atherosclerosis risk among women aged 65 years or younger. Phytate:zinc molar ratio was not found to be related to PWV. CONCLUSIONS: Lower zinc bioavailability may be related to higher atherosclerosis risk.

  1. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants

    OpenAIRE

    Palafox-Carlos, Hugo; Ayala-Zavala, Jesús Fernando; Gustavo A. González-Aguilar

    2011-01-01

    Antioxidants are abundant compounds primarily found in fresh fruits and vegetables, and evidence for their role in the prevention of degenerative diseases is continuously emerging. However, the bioaccessibility and bioavailability of each compound differs greatly, and the most abundant antioxidants in ingested fruit are not necessarily those leading to the highest concentrations of active metabolites in target tissues. Fruit antioxidants are commonly mixed with different macromolecules such a...

  2. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats

    International Nuclear Information System (INIS)

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1 μM which peaked at 30 min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50 mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (p < 0.05). Immunoblot analysis and EMSA revealed that andrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl4) at day 6. Andrographolide pretreatment suppressed CCl4-induced plasma aminotransferase activity and hepatic lipid peroxidation (p < 0.05). These results suggest that andrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. - Highlights: • The bioavailability of andrographolide is 1.19% in rats. • Plasma concentration reaches 1 μM after giving 50 mg/kg andrographolide. • Andrographolide up-regulates Nrf2-dependent antioxidant genes. • Andrographolide increases antioxidant defense in various

  3. Speciation and Bioavailability Measurements of Environmental Plutonium Using Diffusion in Thin Films

    OpenAIRE

    Cusnir R.; Steinmann P.; Christl M.; Bochud F.; Froidevaux P.

    2015-01-01

    The biological uptake of plutonium (Pu) in aquatic ecosystems is of particular concern since it is an alpha-particle emitter with long half-life which can potentially contribute to the exposure of biota and humans. The diffusive gradients in thin films technique is introduced here for in-situ measurements of Pu bioavailability and speciation. A diffusion cell constructed for laboratory experiments with Pu and the newly developed protocol make it possible to simulate the environmental behavior...

  4. Enhanced bioavailability of apigenin via preparation of a carbon nanopowder solid dispersion

    Directory of Open Access Journals (Sweden)

    Ding SM

    2014-05-01

    Full Text Available Shu-min Ding,1–3 Zhen-hai Zhang,1,3 Jie Song,1,3 Xu-dong Cheng,1,3 Jun Jiang,1,3 Xiao-bin Jia1,31Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China; 2School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China; 3Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, People's Republic of ChinaAbstract: In this study, a novel carbon nanopowder (CNP drug carrier was developed to improve the oral bioavailability of apigenin (AP. Solid dispersions (SDs of AP with CNP were prepared, and their in vitro drug release and in vivo performance were evaluated. The physicochemical properties of the formulations were examined by differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy. Drug release profiles showed that AP dissolution from the CNP-AP system (weight ratio, 6:1 after 60 minutes improved by 275% compared with that of pure AP. Moreover, the pharmacokinetic analysis of SD formulations in rats showed that the AP area under the curve0–t value was 1.83 times higher for the CNP-AP system than for pure AP, indicating that its bioavailability was significantly improved. In addition, compared with pure AP, SDs had a significantly higher peak and shorter time to peak. Preliminary intestinal toxicity tests indicated that there was no significant difference in the tissues of the rats treated with the CNP-AP system, rats treated with the CNP alone, and controls. In conclusion, CNP-based SDs could be used for enhancing the bioavailability of poorly water-soluble drugs while also improving drug safety.Keywords: apigenin, carbon nanopowder, solid dispersions, dissolution, oral bioavailability

  5. Enhancement of oral bioavailability of cyclosporine A: comparison of various nanoscale drug-delivery systems.

    Science.gov (United States)

    Wang, Kai; Qi, Jianping; Weng, Tengfei; Tian, Zhiqiang; Lu, Yi; Hu, Kaili; Yin, Zongning; Wu, Wei

    2014-01-01

    A variety of nanoscale delivery systems have been shown to enhance the oral absorption of poorly water-soluble and poorly permeable drugs. However, the performance of these systems has seldom been evaluated simultaneously. The aim of this study was to compare the bioavailability enhancement effect of lipid-based nanocarriers with poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to highlight the importance of the lipid composition, with cyclosporine A (CyA) as a model drug. CyA-loaded PLGA NPs, nanostructured lipid carriers (NLCs), and self-microemulsifying drug-delivery systems (SMEDDS) were prepared. The particle size of PLGA NPs (182.2 ± 12.8 nm) was larger than that of NLCs (89.7 ± 9.0 nm) and SMEDDS (26.9 ± 1.9 nm). All vehicles are charged negatively. The entrapment efficiency of PLGA NPs and NLCs was 87.6%± 1.6% and 80.3%± 0.6%, respectively. In vitro release tests indicated that the cumulative release of CyA was lower than 4% from all vehicles, including Sandimmun Neoral(®), according to the dialysis method. Both NLCs and SMEDDS showed high relative oral bioavailability, 111.8% and 73.6%, respectively, after oral gavage administration to beagle dogs, which was not statistically different from commercial Sandimmun Neoral(®). However, PLGA NPs failed to achieve efficient absorption, with relative bioavailability of about 22.7%. It is concluded that lipid-based nanoscale drug-delivery systems are superior to polymeric NPs in enhancing oral bioavailability of poorly water-soluble and poorly permeable drugs. PMID:25378925

  6. Role of herbal bioactives as a potential bioavailability enhancer for Active Pharmaceutical Ingredients.

    Science.gov (United States)

    Ajazuddin; Alexander, Amit; Qureshi, Azra; Kumari, Leena; Vaishnav, Pramudita; Sharma, Mukesh; Saraf, Swarnlata; Saraf, Shailendra

    2014-09-01

    The current review emphasizes on the herbal bioenhancers which themselves do not possess inherent pharmacological activity of their own but when co-administered with Active Pharmaceutical Ingredients (API), enhances their bioavailability and efficacy. Herbal bioenhancers play a crucial role in enhancing the bioavailability and bioefficacy of different classes of drugs, such as antihypertensives, anticancer, antiviral, antitubercular and antifungal drugs at low doses. This paper highlights various natural compounds that can be utilized as an efficient bioenhancer. Several herbal compounds including piperine, quercetin, genistein, naringin, sinomenine, curcumin, and glycyrrhizin have demonstrated capability to improve the pharmacokinetic parameters of several potent API. This article also focuses on various United States patents on herbal bioenhancers, which has proved to be beneficial in improving oral absorption of nutraceuticals like vitamins, minerals, amino acids and certain herbal compounds. The present paper also describes proposed mechanism of action, which mainly includes absorption process, drug metabolism, and action on drug target. The herbal bioenhancers are easily available, safe, free from side effects, minimizes drug toxicity, shortens the duration of treatment, lowers the drug resistance problems and minimizes the cost of treatment. Inspite of the fact that herbal bioenhancers provide an innovative concept for enhancing the bioavailability of several potent drugs, there are numerous bioenhancers of herbal origin that are yet to be explored in several vital areas. These bioenhancers must also be implied to enhance the bioavailability and bioefficacy through routes other than the oral route of drug delivery. There is a vast array of unexploited plants which can be investigated for their drug bioenhancing potency. The toxicity profiles of these herbal bioenhancers must not be overlooked. Researches must be carried out to solve these issues and to

  7. Design and development of microemulsion drug delivery system of acyclovir for improvement of oral bioavailability

    OpenAIRE

    Ghosh, Pradip Kumar; Majithiya, Rita J.; Umrethia, Manish L.; Murthy, Rayasa S. R.

    2006-01-01

    The main purpose of this work was to develop an oral microemulsion formulation for enhancing the bioavailability of acyclovir. A Labrafac-based microemulsion formulation with Labrasol as surfactant and Plurol Oleique as cosurfactant was developed for oral delivery of acyclovir. Phase behavior and solubilization capacity of the microemulsion system were characterized, and in vivo oral absorption of acyclovir from the microemulsion was investigated in rats. A single isotropic region, which was ...

  8. The effect of food and concurrent chemotherapy on the bioavailability of oral etoposide.

    OpenAIRE

    Harvey, V. J.; Slevin, M L; Joel, S P; Johnston, A.; Wrigley, P F

    1985-01-01

    There is no information on the effect of food or concurrent drug administration on the bioavailability of oral etoposide, despite the fact that treatment is frequently administered over several days and most often in combination with other cytotoxic agents. The influence of these factors has been studied in 11 patients, receiving combination cytotoxic therapy for extensive small cell lung carcinoma. Neither food nor concurrent oral or intravenous chemotherapy had a significant effect on the m...

  9. [Distribution and bioavailability of nitrogen and phosphorus species in the urban dusts from Hefei City].

    Science.gov (United States)

    Li, Ru-Zhong; Zhou, Ai-Jia; Tong, Fang; Li, Feng; Qian, Jia-Zhong

    2012-04-01

    To find out the distribution and bioavailability of nitrogen (N) and phosphorus (P) species in the urban dusts of Hefei City, 52 samples were collected from impervious areas with six different urban land-use types. The contents of ammonia nitrogen (NH4(+) -N), nitrate nitrogen (NO3(-) -N), exchangeable P (Ex-P), Al-bound P (Al-P), Fe-bound P (Fe-P), occluded P (Oc-P), Ca-bound P (Ca-P), detrital apatite P (De-P), organic P (Or-P) as well as total nitrogen (TN) and total phosphorus (TP) were measured by sequential extraction methods. The studies on spatial distribution, correlation and bioavailability of nitrogen and phosphorus species were made according to the analyzed data. The results show that the TN is composed mainly of organic nitrogen (Or-N) while the TP consists chiefly of inorganic phosphorus (IP) in the urban dusts of Hefei City, and the spatial variability of nitrogen and phosphorus species contents are greatly affected by the mode of urban land-use type. In addition, there are significant correlations among partial nitrogen and phosphorus forms in dusts. Corresponding to different urban land-use types such as industrial area, commercial area, residential area, educational area, traffic area and public landscapes and city squares, the average ratios of bioavailable nitrogen content (the sum of NH4(+) -N and NO3(-) -N) to TN are 8.87%, 9.60%, 6.68%, 9.37%, 8.20% and 8.17%, respectively, while the mean ratios of bioavailable phosphorus content (the sum of Ex-P, Al-P and Fe-P) to TP, are equal to 6.70%, 18.19%, 10.10%, 9.69%, 10.64% and 14.03%, respectively. PMID:22720560

  10. Bioavailability of Silica, Titanium Dioxide, and Zinc Oxide Nanoparticles in Rats.

    Science.gov (United States)

    Kim, Mi-Kyung; Lee, Jeong-A; Jo, Mi-Rae; Choi, Soo-Jin

    2016-06-01

    Inorganic nanoparticles have been widely applied to various industrial fields and biological applications. However, the question as to whether nanoparticles are more efficiently absorbed into the systemic circulation than bulk-sized materials remains to be unclear. In the present study, the physico-chemical and dissolution properties of the most extensively developed inorganic nanoparticles, such as silica (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO), were analyzed, as compared with bulk-sized particles. Furthermore, the bioavailability of nanoparticles versus their bulk counterparts was evaluated in rats after a single oral administration and intravenous injection, respectively. The results demonstrated that all bulk materials had slightly higher crystallinity than nanoparticles, however, their dissolution properties were not affected by particle size. No significant difference in oral absorption and bioavailability of both SiO2 and TiO2 was found between nano- and bulk-sized materials, while bulk ZnO particles were more bioavailable in the body than ZnO nanoparticles. These finding will provide critical information to apply nanoparticles with high efficiency as well as to predict their toxicity potential.

  11. Gastrointestinal modifications and bioavailability of brown seaweed phlorotannins and effects on inflammatory markers.

    Science.gov (United States)

    Corona, Giulia; Ji, Yang; Anegboonlap, Prapaporn; Hotchkiss, Sarah; Gill, Chris; Yaqoob, Parveen; Spencer, Jeremy P E; Rowland, Ian

    2016-04-14

    Brown seaweeds such as Ascophyllum nodosum are a rich source of phlorotannins (oligomers and polymers of phloroglucinol units), a class of polyphenols that are unique to Phaeophyceae. At present, there is no information on the bioavailability of seaweed polyphenols and limited evidence on their bioactivity in vivo. Consequently, we investigated the gastrointestinal modifications in vitro of seaweed phlorotannins from A. nodosum and their bioavailability and effect on inflammatory markers in healthy participants. In vitro, some phlorotannin oligomers were identified after digestion and colonic fermentation. In addition, seven metabolites corresponding to in vitro-absorbed metabolites were identified. Urine and plasma samples contained a variety of metabolites attributed to both unconjugated and conjugated metabolites (glucuronides and/or sulphates). In both urine and plasma, the majority of the metabolites were found in samples collected at late time points (6-24 h), suggesting colonic metabolism of high-molecular-weight phlorotannins, with three phlorotannin oligomers (hydroxytrifuhalol A, 7-hydroxyeckol, C-O-C dimer of phloroglucinol) identified in urine samples. A significant increase of the cytokine IL-8 was also observed. Our study shows for the first time that seaweed phlorotannins are metabolised and absorbed, predominantly in the large intestine, and there is a large inter-individual variation in their metabolic profile. Three phlorotannin oligomers present in the capsule are excreted in urine. Our study is the first investigation of the metabolism and bioavailability of seaweed phlorotannins and the role of colonic biotransformation. In addition, IL-8 is a possible target for phlorotannin bioactivity. PMID:26879487

  12. Improvement of Bioavailability of Poorly Soluble Drugs through Self Emulsifying Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Sanjay Dey*

    2012-01-01

    Full Text Available Self emulsifying drug delivery system (SEDDS has received particular attention as a means of improvement of oral bioavailability poorly soluble and absorbed drugs. SEDDS are the mixture of oils,surfactants, and co-surfactants. This becomes emulsify when come in contact with aqueous solution of GIT under the condition of gentle stirring and digestive motility. SEDDS includes various dosage forms like capsule, tablets, beads, microspheres, nanospheres, etc. thus SEDDS could efficiently improve oral absorption of the sparingly soluble drugs by self-emulsification. For the improvement of bio-availability of drugs with such properties presents one of the greatest challenges in drug formulations. Various technological strategies are reported in the literature including cyclodextrines complex formation, solid dispersions, or micronization, and different technologies of drug delivery systems. Including these approaches self-emulsifying drug delivery system (SEDDS has gained more attention for enhancement of oral bio-availability with reduction in dose. SEDDS are isotropic mixtures of oil, surfactants, solvents and cosolvents/surfactants. For lipophilic drugs, which have dissolution rate-limited absorption, SEDDS may be a promising strategy to improve the rate and extent of oral absorption.

  13. Effects of IGF-I bioavailability on bovine preantral follicular development in vitro.

    Science.gov (United States)

    Thomas, Fiona H; Campbell, Bruce K; Armstrong, David G; Telfer, Evelyn E

    2007-06-01

    The aim of this study was to determine the effect of regulation of IGF-I bioavailability on preantral follicle development in vitro. Bovine preantral follicles were cultured for 6 days in serum-free medium with increasing doses of Long R3 (LR3) IGF-I (an analog with low affinity for IGF-binding proteins (IGFBPs)), or human recombinant IGF-I (hrIGF-I). Follicle diameter and estradiol production were measured every second day. On day 6, ratios of oocyte/follicle diameter and oocyte morphology were assessed by histological examination, and IGFBP-2 and -3 were detected by immunocytochemistry and in situ hybridization respectively. Both types of IGF-I increased follicle diameter in a dose-dependent manner (P LR3 IGF-I and the highest concentration of hrIGF-I (1000 ng/ml) had smaller oocyte/follicle ratios, and increased oocyte degeneration, compared with controls or follicles treated with physiological concentrations of hrIGF-I (P < 0.05). IGFBPs were detected in cultured preantral follicles, indicating a requirement for regulation of IGF bioavailability during the early stages of follicular development. Specifically, IGFBP-3 mRNA was found to be expressed in oocytes, and IGFBP-2 immunoreactivity was detected in oocytes and granulosa cells of cultured follicles. In summary, the regulation of IGF-I bioavailability by IGFBPs is necessary for the co-ordination of oocyte and follicle development in vitro. PMID:17636166

  14. Bioavailability of Silica, Titanium Dioxide, and Zinc Oxide Nanoparticles in Rats.

    Science.gov (United States)

    Kim, Mi-Kyung; Lee, Jeong-A; Jo, Mi-Rae; Choi, Soo-Jin

    2016-06-01

    Inorganic nanoparticles have been widely applied to various industrial fields and biological applications. However, the question as to whether nanoparticles are more efficiently absorbed into the systemic circulation than bulk-sized materials remains to be unclear. In the present study, the physico-chemical and dissolution properties of the most extensively developed inorganic nanoparticles, such as silica (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO), were analyzed, as compared with bulk-sized particles. Furthermore, the bioavailability of nanoparticles versus their bulk counterparts was evaluated in rats after a single oral administration and intravenous injection, respectively. The results demonstrated that all bulk materials had slightly higher crystallinity than nanoparticles, however, their dissolution properties were not affected by particle size. No significant difference in oral absorption and bioavailability of both SiO2 and TiO2 was found between nano- and bulk-sized materials, while bulk ZnO particles were more bioavailable in the body than ZnO nanoparticles. These finding will provide critical information to apply nanoparticles with high efficiency as well as to predict their toxicity potential. PMID:27427756

  15. Abiotic and biotic factors that influence the bioavailability of gold nanoparticles to aquatic macrophytes.

    Science.gov (United States)

    Glenn, J Brad; Klaine, Stephen J

    2013-09-17

    This research identified and characterized factors that influenced nanomaterial bioavailability to three aquatic plants: Azolla caroliniana Willd, Egeria densa Planch., and Myriophyllum simulans Orch. Plants were exposed to 4-, 18-, and 30-nm gold nanoparticles. Uptake was influenced by nanoparticle size, the presence of roots on the plant, and dissolved organic carbon in the media. Statistical analysis of the data also revealed that particle uptake was influenced by a 4-way (plant species, plant roots, particle size, and dissolved organic carbon) interaction suggesting nanoparticle bioavailability was a complex result of multiple parameters. Size and species dependent absorption was observed that was dependent on the presence of roots and nanoparticle size. The presence of dissolved organic carbon was found to associate with 4- and 18-nm gold nanoparticles in suspension and form a nanoparticle/organic matter complex that resulted in (1) minimized particle aggregation and (2) a decrease of nanoparticle absorption by the aquatic plants. The same effect was not observed with the 30-nm nanoparticle treatment. These results indicate that multiple factors, both biotic and abiotic, must be taken into account when predicting bioavailability of nanomaterials to aquatic plants. PMID:23947987

  16. Utilization of Microemulsions from Rhinacanthus nasutus (L.) Kurz to Improve Carotenoid Bioavailability.

    Science.gov (United States)

    Ho, Nai-Hsing; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2016-01-01

    Carotenoids have been known to reduce the risk of several diseases including cancer and cardiovascular. However, carotenoids are unstable and susceptible to degradation. Rhinacanthus nasutus (L.) Kurz (R. nasutus), a Chinese medicinal herb rich in carotenoids, was reported to possess vital biological activities such as anti-cancer. This study intends to isolate carotenoids from R. nasutus by column chromatography, identify and quantify by HPLC-MS, and prepare carotenoid microemulsions for determination of absolute bioavailability in rats. Initially, carotenoid fraction was isolated using 250 mL ethyl acetate poured into an open-column packed with magnesium oxide-diatomaceous earth (1:3, w/w). Fourteen carotenoids including internal standard β-apo-8'-carotenal were resolved within 62 min by a YMC C30 column and gradient mobile phase of methanol-acetonitrile-water (82:14:4, v/v/v) and methylene chloride. Highly stable carotenoid microemulsions were prepared using a mixture of Capryol(TM)90, Transcutol®HP, Tween 80 and deionized water, with the mean particle being 10.4 nm for oral administration and 10.7 nm for intravenous injection. Pharmacokinetic study revealed that the absolute bioavailability of carotenoids in microemulsions and dispersion was 0.45% and 0.11%, respectively, while a much higher value of 6.25% and 1.57% were shown for lutein, demonstrating 4-fold enhancement in bioavailability upon incorporation of R. nasutus carotenoids into a microemulsion system. PMID:27150134

  17. Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation.

    Science.gov (United States)

    Feng, Yingshu; Sun, Congyong; Yuan, Yangyang; Zhu, Yuan; Wan, Jinyi; Firempong, Caleb Kesse; Omari-Siaw, Emmanuel; Xu, Yang; Pu, Zunqin; Yu, Jiangnan; Xu, Ximing

    2016-03-30

    In the present study, a formulation system consisting of cholesterol and phosphatidyl choline was used to prepare an effective chlorogenic acid-loaded liposome (CAL) with an improved oral bioavailability and an increased antioxidant activity. The developed liposomal formulation produced regular, spherical and multilamellar-shaped distribution nanoparticles. The pharmacokinetic analysis of CAL compared with chlorogenic acid (CA), showed a higher value of Cmax(6.42 ± 1.49 min versus 3.97 ± 0.39 min) and a delayed Tmax(15 min versus 10 min), with 1.29-fold increase in relative oral bioavailability. The tissue distribution in mice also demonstrated that CAL predominantly accumulated in the liver which indicated hepatic targeting potential of the drug. The increased activities of antioxidant enzymes (Total Superoxide Dismutase (T-SOD) and Glutathione Peroxidase (GSH-Px)) and total antioxidant capacity (T-AOC), in addition to decreased level of malondialdehyde (MDA) in CCl4-induced hepatotoxicity study further revealed that CAL exhibited significant hepatoprotective and antioxidant effects. Collectively, these findings present a liposomal formulation with significantly improved oral bioavailability and an increased in vivo antioxidant activity of CA. PMID:26861689

  18. Nanoencapsulation of psoralidin via chitosan and Eudragit S100 for enhancement of oral bioavailability.

    Science.gov (United States)

    Yin, Juntao; Xiang, Cuiyu; Song, Xiaoyong

    2016-08-20

    Psoralidin (PL) has recently been attracting more attention as a new anticancer agent candidate. Nevertheless, peroral administration of PL is largely challenged by its insoluble nature and intestinal efflux. This article aimed to develop a nanoencapsulation formulation of PL using water-soluble chitosan and Eudragit S100 and to evaluate its potential for bioavailability enhancement. PL-loaded nanocapsules (PL-NCs) were prepared by a solvent diffusion and high-pressure homogenization technique with Poloxamer 188 as a stabilizer. The resultant PL-NCs were approximately 132.5nm in particle size and possessed a high entrapment efficiency (98.1%). In vitro release showed that PL was released less from the nanocapsules due to electrostatic complexation. A lipolytic experiment demonstrated that our prepared PL-NCs were not degraded by lipase, in contrast with the most commonly used lipid nanoparticles. Furthermore, PL-NCs appeared to have less affinity for intestinal mucins. Following oral administration, the bioavailability of PL was significantly enhanced via the PL-NCs, with a value of 339.02% relative to the reference (suspensions). Excellent intestinal adhesion and transepithelial permeability accounted for the enhancement of oral bioavailability. Taken together, these results indicate that nanoencapsulation of PL with chitosan and Eudragit S100 is a promising strategy for improved PL oral delivery. PMID:27154253

  19. Effect of Helicobacter pylori infection and acid blockade by lansoprazole on clarithromycin bioavailability

    Directory of Open Access Journals (Sweden)

    R.A.M. Ortiz

    2007-03-01

    Full Text Available The effect of proton pump inhibitors and Helicobacter pylori infection on the bioavailability of antibiotics is poorly understood. We determined the effects of 5-day oral administration of 60 mg lansoprazole on the bioavailability of clarithromycin in individuals with and without H. pylori infection. Thirteen H. pylori-infected and 10 non-infected healthy volunteers were enrolled in a study with an open-randomized two-period crossover design and a 21-day washout period between phases. Plasma concentrations of clarithromycin in subjects with and without lansoprazole pre-treatment were measured by liquid chromatography coupled to a tandem mass spectrometer. Clarithromycin Cmax and AUC0-10 h were significantly reduced after lansoprazole administration. In addition, lansoprazole treatment of the H. pylori-positive group resulted in a statistically significant greater reduction in Cmax (40 vs 15% and AUC0-10 h (30 vs 10% compared to lansoprazole-treated H. pylori-negative subjects. Thus, treatment with lansoprazole for 5 days reduced bioavailability of clarithromycin, irrespective of H. pylori status. This reduction, however, was even more pronounced in H. pylori-infected individuals.

  20. Effect of biochar amendment on the bioavailability of pesticide chlorantraniliprole in soil to earthworm.

    Science.gov (United States)

    Wang, Ting-Ting; Cheng, Jie; Liu, Xian-Jin; Jiang, Wayne; Zhang, Chao-Lan; Yu, Xiang-Yang

    2012-09-01

    To evaluate the effect of biochar amendment on the bioavailability of chlorantraniliprole (CAP) in soils with different physico-chemical properties, the uptake of CAP from various soils by earthworms was studied. It was observed that the biochar amendment of the soils affected the sorption of CAP, but the magnitude of the sorption enhancement by biochar amendment among the soils was varied, presumably due to the attenuation of the sorptivity of the biochar when amended in the soil. The amendment with biochars leads to a decrease in the bioavailability of CAP in the soils to earthworms, and more prominent for biochar BC850 amendment. In the soil with a CAP concentration of 10 mg kg(-1), the residue of CAP in the earthworm tissues was found to be 9.65 mg kg(-1), in comparison with that the CAP residue was 4.05 mg kg(-1) in BC450 amended soil and 0.59 mg kg(-1) in BC850, respectively. The degree of bioavailability reduction by same level of biochar amendment was different among soils with different properties. The results demonstrate that the properties of soils are important to performance of biochar in soil. PMID:22776710

  1. Studies on inclusion complex as potential systems for enhancement of oral bioavailability of olmesartan medoxomil

    Directory of Open Access Journals (Sweden)

    Hetal Paresh Thakkar

    2012-01-01

    Full Text Available Background: Olmesartan medoxomil (OLM, an anti-hypertensive agent administered orally, has absolute bioavailability of only 26% due to the poor aqueous solubility (7.75 μg/ml. Inclusion complexation with cyclodextrins (CD has been reported to increase the aqueous solubility of various compounds. Aim: The present investigation aimed to enhancing the oral bioavailability of OLM by inclusion complexation with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD. Materials and Methods: The inclusion complexes with HP-β-CD were prepared using two different methods, viz., physical mixture and kneading. The prepared complexes were characterized for various parameters such as drug content, aqueous solubility, dissolution study, in vitro diffusion, intestinal permeability and stability study. The formation of the inclusion complex was confirmed by differential scanning calorimetry, X-ray diffraction, and Fourier transform infrared spectroscopy. Results: The solubility, dissolution, diffusion rate, and intestinal permeability of the prepared complexes were found to be significantly higher than that of the plain drug. Among the two methods used for formation of inclusion complex, KN method gave higher solubility rates and hence is a better method when compared with PM. Conclusion: The approach seems to be promising in improving the oral bioavailability of OLM.

  2. Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement.

    Science.gov (United States)

    Tran, Tuan Hiep; Ramasamy, Thiruganesh; Truong, Duy Hieu; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2014-12-01

    The aim of this study is to investigate the potential of nanostructured lipid carriers (NLCs) in improving the oral bioavailability of a lipid lowering agent, fenofibrate (FEN). FEN-loaded NLCs (FEN-NLCs) were prepared by hot homogenization followed by an ultrasonication method using Compritol 888 ATO as a solid lipid, Labrafil M 1944CS as a liquid lipid, and soya lecithin and Tween 80 as emulsifiers. NLCs were characterized in terms of particle size and zeta potential, surface morphology, encapsulation efficiency, and physical state properties. Bioavailability studies were carried out in rats by oral administration of FEN-NLC. NLCs exhibited a spherical shape with a small particle size (84.9 ± 4.9 nm). The drug entrapment efficiency was 99% with a loading capacity of 9.93 ± 0.01% (w/w). Biphasic drug release manner with a burst release initially, followed by prolonged release was depicted for in vitro drug release studies. After oral administration of the FEN-NLC, drug concentration in plasma and AUCt-∞ was fourfold higher, respectively, compared to the free FEN suspension. According to these results, FEN-NLC could be a potential delivery system for improvement of loading capacity and control of drug release, thus prolonging drug action time in the body and enhancing the bioavailability. PMID:25035071

  3. The effect of proteins from animal source foods on heme iron bioavailability in humans.

    Science.gov (United States)

    Pizarro, Fernando; Olivares, Manuel; Valenzuela, Carolina; Brito, Alex; Weinborn, Valerie; Flores, Sebastián; Arredondo, Miguel

    2016-04-01

    Forty-five women (35-45 year) were randomly assigned to three iron (Fe) absorption sub-studies, which measured the effects of dietary animal proteins on the absorption of heme Fe. Study 1 was focused on heme, red blood cell concentrate (RBCC), hemoglobin (Hb), RBCC+beef meat; study 2 on heme, heme+fish, chicken, and beef; and study 3 on heme and heme+purified animal protein (casein, collagen, albumin). Study 1: the bioavailability of heme Fe from Hb was similar to heme only (∼13.0%). RBCC (25.0%) and RBCC+beef (21.3%) were found to be increased 2- and 1.6-fold, respectively, when compared with heme alone (p<0.05). Study 2: the bioavailability from heme alone (10.3%) was reduced (p<0.05) when it was blended with fish (7.1%) and chicken (4.9%), however it was unaffected by beef. Study 3: casein, collagen, and albumin did not affect the bioavailability of Fe. Proteins from animal source foods and their digestion products did not enhance heme Fe absorption. PMID:26593548

  4. Development and Evaluation of Solid Lipid Nanoparticles of Raloxifene Hydrochloride for Enhanced Bioavailability

    Directory of Open Access Journals (Sweden)

    Anand Kumar Kushwaha

    2013-01-01

    Full Text Available Raloxifene hydrochloride (RL-HCL is an orally selective estrogen receptor modulator (SERM with poor bioavailability of nearly 2% due to its poor aqueous solubility and extensive first pass metabolism. In order to improve the oral bioavailability of raloxifene, raloxifene loaded solid lipid nanoparticles (SLN have been developed using Compritol 888 ATO as lipid carrier and Pluronic F68 as surfactant. Raloxifene loaded SLN were prepared by solvent emulsification/evaporation method, and different concentrations of surfactant, and homogenization speed were taken as process variables for optimization. SLN were characterized for particle size, zeta potential, entrapment efficiency, surface morphology, and crystallinity of lipid and drug. In vitro drug release studies were performed in phosphate buffer of pH 6.8 using dialysis bag diffusion technique. Particle sizes of all the formulations were in the range of 250 to 1406 nm, and the entrapment efficiency ranges from 55 to 66%. FTIR and DSC studies indicated no interaction between drug and lipid, and the XRD spectrum showed that RL-HCL is in amorphous form in the formulation. In vitro release profiles were biphasic in nature and followed Higuchi model of release kinetics. Pharmacokinetics of raloxifene loaded solid lipid nanoparticles after oral administration to Wistar rats was studied. Bioavailability of RL-HCL loaded SLN was nearly five times than that of pure RL-HCL.

  5. [Silica-coated ethosome as a novel oral delivery system for enhanced oral bioavailability of curcumin].

    Science.gov (United States)

    Li, Chong; Deng, Li; Zhang, Yan; Su, Ting-Ting; Jiang, Yin; Chen, Zhang-Bao

    2012-11-01

    The aim of this study is to investigate the feasibility of silica-coated ethosome as a novel oral delivery system for the poorly water-soluble curcumin (as a model drug). The silica-coated ethosomes loading curcumin (CU-SE) were prepared by alcohol injection method with homogenization, followed by the precipitation of silica by sol-gel process. The physical and chemical features of CU-SEs, and curcumin release were determined in vitro. The pharmacodynamics and bioavailability measurements were sequentially performed. The mean diameter of CU-SE was (478.5 +/- 80.3) nm and the polydispersity index was 0.285 +/- 0.042, while the mean value of apparent drug entrapment efficiency was 80.77%. In vitro assays demonstrated that CU-SEs were significantly stable with improved release properties when compared with curcumin-loaded ethosomes (CU-ETs) without silica-coatings. The bioavailability of CU-SEs and CU-ETs was 11.86- and 5.25-fold higher, respectively, than that of curcumin suspensions (CU-SUs) in in vivo assays. The silica coatings significantly promoted the stability of ethosomes and CU-SEs exhibited 2.26-fold increase in bioavailablity relative to CU-ETs, indicating that the silica-coated ethosomes might be a potential approach for oral delivery of poorly water-soluble drugs especially the active ingredients of traditional Chinese medicine with improved bioavailability. PMID:23387090

  6. Ageing of atrazine in manure amended soils assessed by bioavailability to Pseudomonas sp. strain ADP.

    Science.gov (United States)

    Glæsner, Nadia; Bælum, Jacob; Strobel, Bjarne W; Jacobsen, Carsten S

    2014-04-01

    Animal manure is applied to agricultural land in areas of high livestock production. In the present study, we evaluated ageing of atrazine in two topsoils with and without addition of manure and in one subsoil. Ageing was assessed as the bioavailability of atrazine to the atrazine mineralizing bacteria Pseudomonas sp. strain ADP. Throughout an ageing period of 90 days bioavailability was investigated at days 1, 10, 32, 60 and 90, where ~10(8) cells g(-1) of the ADP strain was inoculated to the (14)C-atrazine exposed soil and (14)CO2 was collected over 7 days as a measure of mineralized atrazine. Even though the bioavailable residue decreased in all of the three soils as time proceeded, we found that ageing occurred faster in the topsoils rich in organic carbon than in subsoil. For one topsoil rich in organic carbon content, Simmelkær, we observed a higher degree of ageing when treated with manure. Contrarily, sorption experiments showed less sorption to Simmelkær treated with manure than the untreated soil indicating that sorption processes are not the only mechanisms of ageing. The other topsoil low in organic carbon content, Ringe, showed no significant difference in ageing between the manure-treated and untreated soil. The present study illustrates that not simply the organic carbon content influences adsorption and ageing of atrazine in soil but the origin and composition of organic matter plays an important role.

  7. Bioavailability of soy isoflavones through placental/lactational transfer and soy food

    International Nuclear Information System (INIS)

    Isoflavones are non-nutritive components of soy responsible for estrogenic responses observed in vitro and in experimental animals. Possible beneficial effects (e.g., reduction of serum lipids, increased bone mineral density, relief of hot flashes and other menopausal symptoms, mammary and prostate cancer chemoprevention) in humans have been attributed to consumption of isoflavones but evidence for potential adverse effects (e.g., stimulation of estrogen-dependent mammary tumors and aberrant perinatal development) has also been reported in experimental animal models. Bioavailability from appropriate food matrices and exposure during different life stages are both critical determinants of isoflavone effects. For these reasons, it is important to compare isoflavone bioavailability in adults to that in fetal and neonatal animals for a more complete understanding of potential susceptibility issues. Studies of the major soy isoflavone genistein were conducted in pregnant and lactating Sprague-Dawley rats to quantify placental and lactational transfer to plasma and brain to understand better biological effects observed in multigenerational studies. In addition, studies were conducted with genistein in adult Balb/c mice to define absolute bioavailability from both gavage and soy protein isolate (SPI)-containing food. The information derived from these studies makes it possible to predict internal exposures of children to genistein from soy infant formula, which is manufactured using SPI.

  8. Bioavailability as an issue in risk assessment and management of food cadmium: A review

    International Nuclear Information System (INIS)

    The bioavailability of cadmium (Cd) from food is an important determinant of the potential risk of this toxic element. This review summarizes the effects of marginal deficiencies of the essential nutrients zinc (Zn), iron (Fe), and calcium (Ca) on the enhancement of absorption and organ accumulation and retention of dietary Cd in laboratory animals. These marginal deficiencies enhanced Cd absorption as much as ten-fold from diets containing low Cd concentrations similar to that consumed by some human populations, indicating that people who are nutritionally marginal with respect to Zn, Fe, and Ca are at higher risk of Cd disease than those who are nutritionally adequate. Results from these studies also suggest that the bioavailability of Cd is different for different food sources. This has implications for the design of food safety rules for Cd in that if the dietary source plays such a significant role in the risk of Cd, then different foods would require different Cd limits. Lastly, the importance of food-level exposures of Cd and other potentially toxic elements in the study of risk assessment are emphasized. Most foods contain low concentrations of Cd that are poorly absorbed, and it is neither relevant nor practical to use toxic doses of Cd in experimental diets to study food Cd risks. A more comprehensive understanding of the biochemistry involved in the bioavailability of Cd from foods would help resolve food safety questions and provide the support for a badly needed advance in international policies regarding Cd in crops and foods

  9. Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Albert L., E-mail: albert.juhasz@unisa.edu.a [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Smith, Euan [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Waller, Natasha [CSIRO Land and Water, Glen Osmond, SA 5064 (Australia); Stewart, Richard [Remediate, Kent Town, SA 5067 (Australia); Weber, John [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia)

    2010-02-15

    The impact of residual PAHs (2250 +- 71 mug total PAHs g{sup -1}) following enhanced natural attenuation (ENA) of creosote-contaminated soil (7767 +- 1286 mug total PAHs g{sup -1}) was assessed using a variety of ecological assays. Microtox{sup TM} results for aqueous soil extracts indicated that there was no significant difference in EC{sub 50} values for uncontaminated, pre- and post-remediated soil. However, in studies conducted with Eisenia fetida, PAH bioaccumulation was reduced by up to 6.5-fold as a result of ENA. Similarly, Beta vulgaris L. biomass yields were increased 2.1-fold following ENA of creosote-contaminated soil. While earthworm and plant assays indicated that PAH bioavailability was reduced following ENA, the residual PAH fraction still exerted toxicological impacts on both receptors. Results from this study highlight that residual PAHs following ENA (presumably non-bioavailable to bioremediation) may still be bioavailable to important receptor organisms such as earthworms and plants. - Residual PAHs in creosote-contaminated soil following enhanced natural attenuation impacted negatively on ecological receptors.

  10. Aging effect on the mobility and bioavailability of copper in soil

    Institute of Scientific and Technical Information of China (English)

    LU Anxiang; ZHANG Shuzhen; QIN Xiangyang; WU Wenyong; LIU Honglu

    2009-01-01

    Aging effect on the mobility and bioavailability of copper (Cu) was investigated using a spiked soil with different incubation periods from 3 to 56 d. Wheat was planted and earthworm was cultured separately in the incubated soils. The mobility of Cu in soil was evaluated by a chemical fractionation scheme and the toxicity and bioavailability were assessed by measuring the biomass and Cu concentration in tissues. Results showed that aging had a significant effect on Cu fraction distribution, of which Cu tended to incorporate from the exchangeable into more stable fractions such as the reducible and oxidisable fractions. However, aging had little effect on Cu bioavailability to wheat and earthworms. Comparing the soil being incubated for 3 d and 56 d, Cu concentration in wheat roots decreased from 14.5 to 12.8 mg/kg, and no significant changes in Cu concentration were observed in both wheat shoots and earthworms. The Cu concentration was around 2.0 and 50 mg/kg for wheat shoots and earthworms, respectively, irrespective of soil incubation time. The CaCl2-extractable Cu had a linear relationship with Cu concentration in wheat roots (R2 = 0.65, P < 0.05), but no linear relationship can be found for wheat shoots and earthworms. Biological control may be more crucial for Cu accumulation in organism than the changes in soil Cu fraction caused by aging.

  11. Enhancement of bioavailability and anthelmintic efficacy of albendazole by solid dispersion and cyclodextrin complexation techniques.

    Science.gov (United States)

    Kalaiselvan, R; Mohanta, G P; Madhusudan, S; Manna, P K; Manavalan, R

    2007-08-01

    The objective of this study was to improve the oral bioavailability and therapeutic efficacy of albendazole (ABZ) employing solid dispersion and cyclodextrin complexation techniques. Solid dispersion (dispersion) was prepared using ABZ and polyvinylpyrrolidone (PVP) polymer (1:1 weight ratio). Ternary inclusion complex (ternary complex) was prepared using ABZ, hydroxypropyl beta-cyclodextrin (HPbetaCD) and L-tartaric acid (1:1:1 molar ratio). In rabbits with high gastric acidity (gastric pH approximately 1), ternary complex and solid dispersion showed a bioavailability enhancement of 3.2 and 2.4 fold respectively, compared to a commercial suspension (p 5) caused a 62% reduction in AUC (area under the plasma level curve) for the commercial suspension, whereas the reduction in case of PVP dispersion and ternary complex was only 43% and 37% respectively. The rapid absorption of the drug from solid dispersion and ternary complex was reflected in improved anthelmintic efficacy against the systemic phases of Trichinella spiralis. The ternary complex was significantly more efficient than solid dispersion and exhibited the highest larvicidal activity (90%) at a dose of 50 mg x kg(-1) (p < 0.05). These results suggest that the bioavailability and therapeutic efficacy of the ternary complex might be high even if there is a great variation in the gastric pH. PMID:17867556

  12. Migration and bioavailability of {sup 137}Cs in forest soil of southern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Konopleva, I.; Klemt, E. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany); Konoplev, A. [Scientific Production Association ' TYPHOON' , Obninsk (Russian Federation); Zibold, G. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany)], E-mail: zibold@hs-weingarten.de

    2009-04-15

    To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered.

  13. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation.

    Science.gov (United States)

    Guo, Meixia; Gong, Zongqiang; Allinson, Graeme; Tai, Peidong; Miao, Renhui; Li, Xiaojun; Jia, Chunyun; Zhuang, Jie

    2016-02-01

    The aim of this study was to demonstrate the variations in bioavailability remaining in industrial and agricultural soils contaminated by polycyclic aromatic hydrocarbons (PAHs) after bioremediation. After inoculation of Mycobacterium sp. and Mucor sp., PAH biodegradation was tested on a manufactured gas plant (MGP) soil and an agricultural soil. PAH bioavailability was assessed before and after biodegradation using solid-phase extraction (Tenax-TA extraction) and solid-phase micro-extraction (SPME) to represent bioaccessibility and chemical activity of PAHs, respectively. Only 3- and 4-ring PAHs were noticeably biodegradable in the MGP soil. PAH biodegradation in the agricultural soil was different from that in the MGP soil. The rapidly desorbing fractions (F(rap)) extracted by Tenax-TA and the freely dissolved concentrations of 3- and 4-ring PAHs determined by SPME from the MGP soil decreased after 30 days biodegradation; those values of the 5- and 6-ring PAHs changed to a lesser degree. For the agricultural soil, the F(rap) values of the 3- and 4-ring PAHs also decreased after the biodegradation experiment. The Tenax-TA extraction and the SPME have the potential to assess variations in the bioavailability of PAHs and the degree of biodegradation in contaminated MGP soils. In addition, Tenax-TA extraction is more sensitive than SPME when used in the agricultural soil.

  14. Bioavailability of the Nano-Unit 14C-Agrochemicals Under Various Water Potential.

    Science.gov (United States)

    Jung, S C; Kim, H G; Kuk, Y I; Ahn, H G; Senseman, S A; Lee, D J

    2015-08-01

    The study was conducted to investigate the effects of water potential on bioavailability of the nano-unit 14C-cafenstrole, 14C-pretilachlor, 14C-benfuresate, 14C-simetryn and 14C-oxyfluorfen applied with or without dimepiperate or daimuron under various water potential conditions. The highest bioavailable concentration in soil solution (BCSS) was found at 60% soil moisture, while the lowest occurred at 50% soil moisture for soil-applied alone or in combination. All water potential conditions differed significantly from each other with variations in total bioavailable amount in soil solution (TBSS) when either dimepiperate or daimuron were added to the soil, and changes were directly proportional to variations in water potential. Across all treatments, TBSS at 80% soil moisture was three to four times greater than that at 50% soil moisture when applied alone or in combination with dimepiperate or daimuron. Cafenstrole and simetryn had distribution coefficient (Kd) values <64 ml g-1 and a TBSS ranging from 10 to 44 ng g-1 soil, regardless of water potential conditions applied alone or in combination. Pretilachlor and benfuresate had Kd values <15 ml g-1 and a TBSS range of 38 to 255 ng g-1 soil when applied with or without dimepiperate or daimuron. PMID:26369226

  15. Part II: bioavailability in beagle dogs of nimodipine solid dispersions prepared by hot-melt extrusion.

    Science.gov (United States)

    Zheng, Xin; Yang, Rui; Zhang, Yu; Wang, Zhijun; Tang, Xing; Zheng, Liangyuan

    2007-07-01

    The aim of the present work was to investigate the in vitro dissolution properties and oral bioavailability of three solid dispersions of nimodipine. The solid dispersions were compared with pure nimodipine, their physical mixtures, and the marketed drug product Nimotop. Nimodipine solid dispersions were prepared by a hot-melt extrusion process with hydroxypropyl methylcellulose (HPMC, Methocel E5), polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA, Plasdone S630), and ethyl acrylate, methyl methacrylate polymer (Eudragit EPO). Previous studies of XRPD and DSC data showed that the crystallinity was not observed in hot-melt extrudates, two T(g)s were observed in the 30% and 50% NMD-HPMC samples, indicating phase separation. The weakening and shift of the N-H stretching vibration of the secondary amine groups of nimodipine as determined by FT-IR proved hydrogen bonding between the drug and polymers in the solid dispersion. The dissolution profiles of the three dispersion systems showed that the release was improved compared with the unmanipulated drug. Drug plasma concentrations were determined by HPLC, and pharmacokinetic parameters were calculated after orally administering each preparation containing 60 mg of nimodipine. The mean bioavailability of nimodipine was comparable after administration of the Eudragit EPO solid dispersion and Nimotop, but the HPMC and PVP/VA dispersions exhibited much lower bioavailability. However, the AUC(0-12 hr) values of all three solid dispersions were significantly higher than physical mixtures with the same carriers and nimodipine powder. PMID:17654027

  16. Factors limiting the extent of absolute bioavailability of pradefovir in rat.

    Science.gov (United States)

    Xiao, Qingqing; Yang, Wanqiu; Wang, Dan; Chen, Lin; Yuan, Linwen; Ding, Yitao; Yang, Jin

    2016-10-01

    1. Pradefovir was designed as an oral liver target prodrug of 9-(2-phosphonylmethoxyethyl) adenine (PMEA). Liver targeting arises through first pass hepatic metabolism by cytochrome P-450 3A4 (CYP3A4). For CYP3A4 primarily exists in intestines and liver, intestinal metabolism may impair its liver selectivity and oral bioavailability, and then impair its efficacy and safety. It was important to reveal details of the disposition of pradefovir in intestines and liver in a preclinical study. 2. The absolute bioavailability of pradefovir was 4.75% based on the intravenous and oral AUC0-24 h in rats. Pradefovir was stable in intestinal segments and microsomes. The fractions of the dose absorbed from the GI tract were 20.3% and 15.3% from intravenous and oral administration of pradefovir in rats and portal vein-cannulated rat models, respectively. The liver extraction ratio was predicted to be 49.2% from liver microsomes system, based on the monitoring substrate loss rate. Rat intestines' Ussing chamber experiment indicated that P-glycoprotein (P-gp) transporter and paracellular pathway may involve in intestinal transportation. 3. Activation of pradefovir mainly occurs in the liver. Low intestinal absorption was the main reason of low bioavailability of pradefovir in rats. The result was suggestive for the disposition of pradefovir in human intestine and liver. PMID:26846680

  17. Characterization of polycyclic aromatic hydrocarbon bioavailability in estuarine sediments using thin-film extraction.

    Science.gov (United States)

    Golding, Christopher J; Gobas, Frank A P C; Birch, Gavin E

    2007-05-01

    It is well documented that the bioavailability of hydrophobic organic chemicals (HOCs) can vary substantially among sediments. This makes risk assessments based on total sediment concentrations problematic. The present study investigates the application of thin-film solid-phase extraction to measure bioavailable concentrations of phenanthrene in estuarine sediment by comparing concentrations of phenanthrene in the amphipod Corophium colo and in thin ethylene/vinyl acetate films at different concentrations in three geochemically different sediments. For all sediment types, concentrations of phenanthrene in sediments and thin films followed linear relationships, indicating first-order exchange kinetics. Organism/thin-film concentration ratios did not vary systematically among sediment types but dropped significantly with increasing phenanthrene concentration in the sediments. While at low phenanthrene concentrations in the sediment fugacities of phenanthrene in the amphipods approached the fugacities in the thin films, they were significantly lower than those in the sediments at higher concentrations. While phenanthrene concentrations in the three sediment types were identical, biota sediment accumulation factors and concentrations in amphipods and thin films were consistently lower in sediments enriched with black carbon than in sediments with sedimentary organic matter bearing a more diagenetic organic signature. It is concluded that, for the range of concentrations tested, thin-film solid-phase extraction can be a useful tool in the characterization of differences in bioavailability of HOCs among sediment types.

  18. Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement

    Directory of Open Access Journals (Sweden)

    Hetal Paresh Thakkar

    2011-01-01

    Full Text Available Background : Olmesartan medoxomil (OLM, an anti-hypertensive agent administered orally has absolute bioavailability of only 26% due to the poor aqueous solubility (<7.75 μg/ml. The present investigation aimed at enhancing the oral bioavailability of OLM by improving its solubility and dissolution rate by preparing nanosuspensions. Materials and methods : The nanosuspensions of OLM were prepared using media milling technique followed by its lyophilization using mannitol as a cryoprotectant. Various formulation as well as process parameters were optimized in order to achieve desirable size and saturation solubility. Characterization of the prepared nanosuspension was done with respect to particle size, zeta potential, saturation solubility, dissolution rate, morphology study (TEM, in-vitro and exvivo drug diffusion study. Evaluation of the crystalline state before and after particle size reduction was done by differential scanning calorimetry (DSC and powder X-ray diffraction (PXRD. Results : The results indicated that the initial crystalline state is preserved following particle size reduction and that the saturation solubility, dissolution velocity and diffusion rate of the drug from the nanosuspension is significantly higher than that of the plain drug suspension as well as from the marketed tablet formulation. Conclusion : Nanosuspension seems to be a promising approach for bioavailability enhancement because of the simple method of its preparation and its universal applicability.

  19. Cosmic meteor dust: potentially the dominant source of bio-available iron in the Southern Ocean

    Science.gov (United States)

    Dyrud, L. P.; Marsh, D. R.; Del Castillo, C. E.; Fentzke, J.; Lopez-Rosado, R.; Behrenfeld, M.

    2012-12-01

    Johnson, 2001 [Johnson, Kenneth. S. (2001), Iron supply and demand in the upper ocean: Is extraterrestrial dust a significant source of bioavailable iron?, Global Biogeochem. Cycles, 15(1), 61-63, doi:10.1029/2000GB001295], first suggested that meteoric particulate flux could be a significant source of bio-available iron, particularly in regions with little or no eolean sources, such as the Southern Ocean. While these calculations raised intriguing questions, there were many large unknowns in the input calculations between meteor flux and bio-available ocean molecular densities. There has been significant research in the intervening decade on related topics, such as the magnitude (~200 ktons per year) and composition of the meteoric flux, its atmospheric evaporation, transport, mesospheric formation of potentially soluble meteoric smoke, and extraterrestrial iron isotope identification. Paramount of these findings are recent NCAR WACCM atmosphere model results demonstrating that the majority of meteoric constituents are transported towards the winter poles and the polar vortex. This may lead to a focusing of meteoritic iron deposition towards the Southern Ocean. We present a proposed research plan involving Southern Ocean sample collection and analysis and atmospheric and biological modeling to determine both the current relevance of meteoric iron, and examine the past and future consequences of cosmic dust under a changing climate.

  20. Bioavailability of anthocyanins and colonic polyphenol metabolites following consumption of aronia berry extract.

    Science.gov (United States)

    Xie, Liyang; Lee, Sang Gil; Vance, Terrence M; Wang, Ying; Kim, Bohkyung; Lee, Ji-Young; Chun, Ock K; Bolling, Bradley W

    2016-11-15

    A single-dose pharmacokinetic trial was conducted in 6 adults to evaluate the bioavailability of anthocyanins and colonic polyphenol metabolites after consumption of 500mg aronia berry extract. UHPLC-MS methods were developed to quantitate aronia berry polyphenols and their metabolites in plasma and urine. While anthocyanins were bioavailable, microbial phenolic catabolites increased ∼10-fold more than anthocyanins in plasma and urine. Among the anthocyanins, cyanidin-3-O-galactoside was rapidly metabolized to peonidin-3-O-galactoside. Aronia polyphenols were absorbed and extensively metabolized with tmax of anthocyanins and other polyphenol catabolites from 1.0h to 6.33h in plasma and urine. Despite significant inter-individual variation in pharmacokinetic parameters, concentrations of polyphenol metabolites in plasma and urine at 24h were positively correlated with total AUC in plasma and urine (r=0.93, and r=0.98, respectively). This suggests that fasting blood and urine collections could be used to estimate polyphenol bioavailability and metabolism after aronia polyphenol consumption. PMID:27283706

  1. Low Thermal Pretreatment as Method for Increasing the Bioavailability of Organic Matters in Domestic Mixed Sludge

    Directory of Open Access Journals (Sweden)

    Seswoya Roslinda

    2016-01-01

    Full Text Available In practice, primary and secondary sludge are fed into anaerobic digestion. However, the microbial cell exists in secondary sludge are an unfavorable substrate for biodegradation. Thermal pretreatment is proved to increase the bioavailability of organic and improve the biodegradation subsequently. During low thermal pretreatment, both intracellular (within the microbial cell and extracellular (within the polymeric network materials were extracted. This process increases the bioavailability meaning that organic compounds are accessible to the microorganisms for their degradation. This research aims to investigate the effect of thermal pretreatment on domestic mixed sludge disintegration. Domestic mixed sludge was thermally treated at 70°C for various holding times. The pre-thermally treated domestic mixed sludge was measured for protein and carbohydrates following the Lowry Method, and Phenol-Sulphuric Acid Method respectively. DR 6000 UV-Vis spectrophotometer, DRB200 Reactor (digester and COD vial (TNT plus 822 were used for COD determination, based on Reactor Digestion Method approved by USEPA. The results showed that the organic matter in domestic mixed sludge is efficiently solubilised during thermal treatment organic matter. The higher soluble yield for each monitored parameter determined in this study indicated that low thermal pretreatment improve bioavailability.

  2. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants

    Science.gov (United States)

    Palafox-Carlos, Hugo; Ayala-Zavala, Jesús Fernando; González-Aguilar, Gustavo A

    2011-01-01

    Antioxidants are abundant compounds primarily found in fresh fruits and vegetables, and evidence for their role in the prevention of degenerative diseases is continuously emerging. However, the bioaccessibility and bioavailability of each compound differs greatly, and the most abundant antioxidants in ingested fruit are not necessarily those leading to the highest concentrations of active metabolites in target tissues. Fruit antioxidants are commonly mixed with different macromolecules such as carbohydrates, lipids, and proteins to form a food matrix. In fruits and vegetables, carbohydrates are the major compounds found, mainly in free and conjugated forms. Dietary fiber, the indigestible cell wall component of plant material, is considered to play an important role in human diet and health. Most studies on antioxidant bioavailability are focused on foods and beverages from which antioxidants are easily released. There is evidence indicating that food microstructure affects the bioaccessibility and bioavailability of several nutrients, referring mostly to antioxidants. Nevertheless, the specific role of dietary fiber in the absorption of antioxidants has not been widely discussed. In this context, the purpose of the present review is to compile and analyze evidence relating to the association between dietary fiber and antioxidants, and the physical and chemical interactions that modulate their release from the chyme in the gastrointestinal tract. PMID:21535705

  3. Iron deficiency and bioavailability in anaerobic batch and submerged membrane bioreactors (SAMBR) during organic shock loads.

    Science.gov (United States)

    Ketheesan, Balachandran; Thanh, Pham Minh; Stuckey, David C

    2016-07-01

    This study examined the effects of Fe(2+) and its bioavailability for controlling VFAs during organic shock loads in batch reactors and a submerged anaerobic membrane bioreactor (SAMBR). When seed grown under Fe-sufficient conditions (7.95±0.05mgFe/g-TSS), an organic shock resulted in leaching of Fe from the residual to organically bound and soluble forms. Under Fe-deficient seed conditions (0.1±0.002mgFe/gTSS), Fe(2+) supplementation (3.34mgFe(2+)/g-TSS) with acetate resulted in a 2.1-3.9 fold increase in the rate of methane production, while with propionate it increased by 1.2-1.5 fold compared to non-Fe(2+) supplemented reactors. Precipitation of Fe(2+) as sulphides and organically bound Fe were bioavailable to methanogens for acetate assimilation. The results confirmed that the transitory/long term limitations of Fe play a significant role in controlling the degradation of VFAs during organic shock loads due to their varying physical/chemical states, and bioavailability. PMID:27015020

  4. Measures of bioavailable serum sex hormone levels in aging Chinese by protein chip

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Yong; CHANG; Shuying; MENG; Xiaoluo; YU; Huafeng; WANG; Luning; HE; Jinggui; ZHANG; Baohe; ZHANG; Juntian; GENG; Meiyu; DU; Guanhua

    2006-01-01

    The purpose of this study was to develop a protein chip technique based on receptor binding assays to measure bioavailable serum sex hormone levels (BSSHL). 224 aging healthy Chinese were investigated to get the referenced values of BSSHL for the first time. In the assays recombined sex hormone receptor proteins were jointed to polysaccharide coated slides to make protein chip, and the dose-dependence curves of sex hormone on chip were prepared. The data showed that this method had good precision (CV<16%) and accuracy (Bias<10%), and the sensitivity could reach 1 pmol/L. From the results, BSSHL of men and women declined with aging, but no significant differences were observed. The BSSHL of aging men were higher than those of women. The bioavailable serum androgen level of men was 52―112 pmol/L, women's was 3―70 pmol/L and the whole group was 41.9―81.4 pmol/L. The bioavailable serum estrogen level of men was 0.8―3.0 pmol/L, women's was 1.2―2.5 pmol/L and the whole group was 0.6―2.64 pmol/L. Based on the assays, BSSHL measurement by protein chip can meet the needs of epidemiological studies in terms of speed, accuracy and sample volume required, and was helpful in quantitative assessment of aging people's health.

  5. Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients

    Science.gov (United States)

    Wang, Conan K.; Northfield, Susan E.; Colless, Barbara; Chaousis, Stephanie; Hamernig, Ingrid; Lohman, Rink-Jan; Nielsen, Daniel S.; Schroeder, Christina I.; Liras, Spiros; Price, David A.; Fairlie, David P.; Craik, David J.

    2014-01-01

    Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog. PMID:25416591

  6. Extractive biodegradation and bioavailability assessment of phenanthrene in the cloud point system by Sphingomonas polyaromaticivorans.

    Science.gov (United States)

    Pan, Tao; Deng, Tao; Zeng, Xinying; Dong, Wei; Yu, Shuijing

    2016-01-01

    The biological treatment of polycyclic aromatic hydrocarbons is an important issue. Most microbes have limited practical applications because of the poor bioavailability of polycyclic aromatic hydrocarbons. In this study, the extractive biodegradation of phenanthrene by Sphingomonas polyaromaticivorans was conducted by introducing the cloud point system. The cloud point system is composed of a mixture of (40 g/L) Brij 30 and Tergitol TMN-3, which are nonionic surfactants, in equal proportions. After phenanthrene degradation, a higher wet cell weight and lower phenanthrene residue were obtained in the cloud point system than that in the control system. According to the results of high-performance liquid chromatography, the residual phenanthrene preferred to partition from the dilute phase into the coacervate phase. The concentration of residual phenanthrene in the dilute phase (below 0.001 mg/L) is lower than its solubility in water (1.18 mg/L) after extractive biodegradation. Therefore, dilute phase detoxification was achieved, thus indicating that the dilute phase could be discharged without causing phenanthrene pollution. Bioavailability was assessed by introducing the apparent logP in the cloud point system. Apparent logP decreased significantly, thus indicating that the bioavailability of phenanthrene increased remarkably in the system. This study provides a potential application of biological treatment in water and soil contaminated by phenanthrene. PMID:26392138

  7. Bioavailability of Heme Iron in Biscuit Filling Using Piglets as an Animal Model for Humans

    Directory of Open Access Journals (Sweden)

    Adrián Guillermo Quintero-Gutiérrez, Guillermina González-Rosendo, Jonathan Sánchez-Muñoz, Javier Polo-Pozo, José Juan Rodríguez-Jerez

    2008-01-01

    Full Text Available The objective of this work was to evaluate the bioavailability of heme iron added to biscuit filling. It comprised two stages: first, the development of the heme iron enriched biscuit filling; second, the evaluation of the bioavailability of the mineral in fattening piglets. Two groups were selected randomly and fed: a Low iron feed and biscuits with heme iron supplemented filling; b Normal feed (with ferrous sulphate. Weight and blood parameters were measured every fifteen days. Averages were compared after duplicate analyses. The filling had a creamy appearance, chocolate taste and smell, appropriate spreadability, heme iron content of 2.6 mg per gram and a shelf-life of a month. The heme iron supplemented pigs registered a greater (P<0.05 weight gain (27.8% more than the control group. Mortality in the heme iron group was 10%, compared to 50% in the control group. The amount of iron measured in the different compartment was greater in the heme group (3315 mg than in the control group (2792 mg. However, the amount of iron consumed in the latter was greater. We show that an acceptable product with high heme iron content can be formulated, suitable for use as biscuit filling. The heme iron supplement produced better weight increase and lesser mortality in fattening pigs. The bioavailability of heme iron was 23% greater (P<0.05 compared to ferrous sulphate.

  8. [Silica-coated ethosome as a novel oral delivery system for enhanced oral bioavailability of curcumin].

    Science.gov (United States)

    Li, Chong; Deng, Li; Zhang, Yan; Su, Ting-Ting; Jiang, Yin; Chen, Zhang-Bao

    2012-11-01

    The aim of this study is to investigate the feasibility of silica-coated ethosome as a novel oral delivery system for the poorly water-soluble curcumin (as a model drug). The silica-coated ethosomes loading curcumin (CU-SE) were prepared by alcohol injection method with homogenization, followed by the precipitation of silica by sol-gel process. The physical and chemical features of CU-SEs, and curcumin release were determined in vitro. The pharmacodynamics and bioavailability measurements were sequentially performed. The mean diameter of CU-SE was (478.5 +/- 80.3) nm and the polydispersity index was 0.285 +/- 0.042, while the mean value of apparent drug entrapment efficiency was 80.77%. In vitro assays demonstrated that CU-SEs were significantly stable with improved release properties when compared with curcumin-loaded ethosomes (CU-ETs) without silica-coatings. The bioavailability of CU-SEs and CU-ETs was 11.86- and 5.25-fold higher, respectively, than that of curcumin suspensions (CU-SUs) in in vivo assays. The silica coatings significantly promoted the stability of ethosomes and CU-SEs exhibited 2.26-fold increase in bioavailablity relative to CU-ETs, indicating that the silica-coated ethosomes might be a potential approach for oral delivery of poorly water-soluble drugs especially the active ingredients of traditional Chinese medicine with improved bioavailability.

  9. Enhanced bioavailability of apigenin via preparation of a carbon nanopowder solid dispersion.

    Science.gov (United States)

    Ding, Shu-min; Zhang, Zhen-hai; Song, Jie; Cheng, Xu-dong; Jiang, Jun; Jia, Xiao-bin

    2014-01-01

    In this study, a novel carbon nanopowder (CNP) drug carrier was developed to improve the oral bioavailability of apigenin (AP). Solid dispersions (SDs) of AP with CNP were prepared, and their in vitro drug release and in vivo performance were evaluated. The physicochemical properties of the formulations were examined by differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy. Drug release profiles showed that AP dissolution from the CNP-AP system (weight ratio, 6:1) after 60 minutes improved by 275% compared with that of pure AP. Moreover, the pharmacokinetic analysis of SD formulations in rats showed that the AP area under the curve0-t value was 1.83 times higher for the CNP-AP system than for pure AP, indicating that its bioavailability was significantly improved. In addition, compared with pure AP, SDs had a significantly higher peak and shorter time to peak. Preliminary intestinal toxicity tests indicated that there was no significant difference in the tissues of the rats treated with the CNP-AP system, rats treated with the CNP alone, and controls. In conclusion, CNP-based SDs could be used for enhancing the bioavailability of poorly water-soluble drugs while also improving drug safety. PMID:24872695

  10. Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials.

    Science.gov (United States)

    Kirschling, Teresa L; Golas, Patricia L; Unrine, Jason M; Matyjaszewski, Krzysztof; Gregory, Kelvin B; Lowry, Gregory V; Tilton, Robert D

    2011-06-15

    By controlling nanoparticle flocculation and deposition, polymer coatings strongly affect nanoparticle fate, transport, and subsequent biological impact in the environment. Biodegradation is a potential route to coating breakdown, but it is unknown whether surface-bound polymers are bioavailable. Here we demonstrate, for the first time, that polymer coatings covalently bound to nanomaterials are bioavailable. Model poly(ethylene oxide) (PEO) brush-coated nanoparticles (densely cross-linked bottle brush copolymers) with hydrophobic divinyl benzene cross-linked cores and hydrophilic PEO brush shells, having ~ 30 nm hydrodynamic radii, were synthesized to obtain a nanomaterial in which biodegradation was the only available coating breakdown mechanism. PEO-degrading enrichment cultures were supplied with either PEO homopolymer or PEO brush nanoparticles as the sole carbon source, and protein and CO₂ production were monitored as a measure of biological conversion. Protein production after 90 h corresponded to 14% and 8% of the total carbon available in the PEO homopolymer and PEO brush nanoparticle cultures, respectively, and CO₂ production corresponded to 37% and 3.8% of the carbon added to the respective system. These results indicate that the PEO in the brush is bioavailable. Brush biodegradation resulted in particle aggregation, pointing to the need to understand biologically mediated transformations of nanoparticle coatings in order to understand the fate and transport of nanoparticles in the environment. PMID:21609011

  11. Improving dissolution and oral bioavailability of pranlukast hemihydrate by particle surface modification with surfactants and homogenization

    Directory of Open Access Journals (Sweden)

    Ha ES

    2015-06-01

    Full Text Available Eun-Sol Ha,1 In-hwan Baek,2 Jin-Wook Yoo,1 Yunjin Jung,1 Min-Soo Kim1 1College of Pharmacy, Pusan National University, 2College of Pharmacy, Kyungsung University, Busan, Republic of Korea Abstract: The present study was carried out to develop an oral formulation of pranlukast hemihydrate with improved dissolution and oral bioavailability using a surface-modified microparticle. Based on solubility measurements, surface-modified pranlukast hemihydrate microparticles were manufactured using the spray-drying method with hydroxypropylmethyl cellulose, sucrose laurate, and water and without the use of an organic solvent. The hydrophilicity of the surface-modified pranlukast hemihydrate microparticle increased, leading to enhanced dissolution and oral bioavailability of pranlukast hemihydrate without a change in crystallinity. The surface-modified microparticles with an hydroxypropylmethyl cellulose/sucrose laurate ratio of 1:2 showed rapid dissolution of up to 85% within 30 minutes in dissolution medium (pH 6.8 and oral bioavailability higher than that of the commercial product, with approximately 2.5-fold and 3.9-fold increases in area under the curve (AUC0→12 h and peak plasma concentration, respectively. Therefore, the surface-modified microparticle is an effective oral drug delivery system for the poorly water-soluble therapeutic pranlukast hemihydrate. Keywords: solubility, wettability, sucrose laurate, cellulose

  12. Speciation and bioavailability of soil nutrients: effect on crop production and environment

    Directory of Open Access Journals (Sweden)

    Elisabetta Barberis

    Full Text Available The agricultural production, determining the quality of the foodstuffs, depends on the biological characteristics of the crops and on the environmental properties, where soil environment plays a central role. Crops absorb water and nutritive elements from soil, but they can intake toxic elements as well. The potential benefits, or dangers, due to the presence of a certain element in soil, depend on its chemical speciation regulating its bioavailability, toxicity, environmental mobility, and biogeochemistry. Elements may exist in soil in different redox species and organic or inorganic forms. They may thus undergo different chemical processes occurring in solution, in the solid phase, or at the solid-water interface. The chemical speciation and bioavailability of the elements are affected by soil and environmental properties, which may undergo natural or anthropogenic modifications. As an example, we reported here some aspects linked to the chemical speciation, bioavailability and environmental fate of two chemically similar elements. The former, phosphorus, is a macronutrient element, essential for plant growth, while the latter, arsenic, is strongly toxic for most living organisms.

  13. Application of dermal microdialysis for the determination of bioavailability of clobetasol propionate applied to the skin of human subjects

    DEFF Research Database (Denmark)

    Au, W L; Skinner, M F; Benfeldt, E;

    2012-01-01

    Dermal microdialysis was used to assess the bioavailability of a topical corticosteroid, clobetasol propionate, following application onto the skin of human subjects. The penetration of clobetasol propionate from a 4% m/v ethanolic solution applied onto 4 sites on one forearm of healthy human...... drug of interest. Furthermore, the study clearly demonstrated the application of dermal microdialysis as a valuable tool to assess the bioavailability/bioequivalence of clobetasol propionate penetration into the skin following topical application....

  14. Determination of activable isotopic tracers of zinc by neutron activation analysis for study of bioavailability of zinc

    International Nuclear Information System (INIS)

    A procedure of pre-irradiation concentration of zinc in fecal samples using anion exchanger was developed for the study of the bioavailability of zinc by neutron activation analysis. The mass ratios between 70Zn and 68Zn, or 64Zn and their contents between natural zinc and enriched zinc are used to calculate the bioavailability of zinc when the abundance of the isotope 70Zn is not high enough. (author) 9 refs.; 1 fig.; 2 tabs

  15. Iron, zinc and phytic acid in rice from China: wet and dry processing towards improved mineral bioavailability

    OpenAIRE

    Liang, J.

    2007-01-01

    Rice and rice products supply two thirds of Chinese people with their staple food. Mineral deficiencies, especially of iron and zinc, are prevalent in China, and are caused by insufficient intake and poor bioavailability. Rice and rice products contribute more than 50% of the antinutrient  phytic acid consumed in the average diet, which has a significant negative impact on mineral bioavailability. This thesis reports studies of dry and wet rice processing methods on levels and in vitro solubi...

  16. Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity.

    Science.gov (United States)

    Valicherla, Guru R; Dave, Kandarp M; Syed, Anees A; Riyazuddin, Mohammed; Gupta, Anand P; Singh, Akhilesh; Wahajuddin; Mitra, Kalyan; Datta, Dipak; Gayen, Jiaur R

    2016-01-01

    Poor bioavailability of Docetaxel (DCT) arising due to its low aqueous solubility and permeability limits its clinical utility. The aim of the present study was to develop DCT loaded self-emulsified drug delivery systems (D-SEDDS) and evaluate its potential ability to improve the oral bioavailability and therapeutic efficacy of DCT. D-SEDDS were characterized for their in vitro antitumor activity, in situ single pass intestinal perfusion (SPIP), bioavailability, chylomicron flow blocking study and bio-distribution profile. The D-SEDDS were prepared using Capryol 90, Vitamin E TPGS, Gelucire 44/14 and Transcutol HP with a ratio of 32.7/29.4/8.3/29.6 using D-Optimal Mixture Design. The solubility of DCT was improved upto 50 mg/mL. The oral bioavailability of the D-SEDDS in rats (21.84 ± 3.12%) was increased by 3.19 fold than orally administered Taxotere (6.85 ± 1.82%). The enhanced bioavailability was probably due to increase in solubility and permeability. In SPIP, effective permeability of D-SEDDS was significantly higher than Taxotere. D-SEDDS showed 25 fold more in vitro cytotoxic activity compared to free DCT. Chylomicron flow blocking study and tissue distribution demonstrated the intestinal lymphatic transport of D-SEDDS and higher retention in tumor than Taxotere. The data suggests that D-SEDDS showed desired stability, enhanced oral bioavailability and in vitro antitumor efficacy. PMID:27241877

  17. Application of isotope dilution method for measuring bioavailability of organic contaminants sorbed to dissolved organic matter (DOM)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Moreno, Laura, E-mail: laura.delgado@eez.csic.es; Wu, Laosheng; Gan, Jay

    2015-08-15

    Natural waters such as surface water and sediment porewater invariably contain dissolved organic matter (DOM). Association of strongly hydrophobic contaminants (HOCs) with DOM leads to decreased toxicity and bioavailability, but bioavailability of DOM-sorbed HOCs is difficult to measure. Current methods to estimate bioavailability of HOCs in water are based on only the freely dissolved concentration (C{sub free}). The ignorance of the exchangeable fraction of HOCs sorbed on DOM may result in an underestimation of the toxicity potential of HOCs to aquatic organisms. Here we explore the applicability of an isotope dilution method (IDM) to measuring the desorption fraction of DOM-sorbed pyrene and bifenthrin and determining their exchangeable pool (E) as an approximation of bioavailability. E values, expressed as percentage of the total concentration, ranged between 0.80 and 0.92% for pyrene and 0.74 and 0.85% for bifenthrin, depending primarily on the amount of chemical in the freely dissolved form. However, between 34 and 78% of the DOM-sorbed pyrene was exchangeable. This fraction ranged between 23% and 82% for bifenthrin. The ability of IDM to predict bioavailability was further shown from a significant relationship (r{sup 2} > 0.72, P < 0.0001) between E and bioaccumulation into Daphnia magna. Therefore, IDM may be used to improve the bioavailability measurement and risk assessment of HOCs in aquatic systems.

  18. Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity.

    Science.gov (United States)

    Valicherla, Guru R; Dave, Kandarp M; Syed, Anees A; Riyazuddin, Mohammed; Gupta, Anand P; Singh, Akhilesh; Wahajuddin; Mitra, Kalyan; Datta, Dipak; Gayen, Jiaur R

    2016-05-31

    Poor bioavailability of Docetaxel (DCT) arising due to its low aqueous solubility and permeability limits its clinical utility. The aim of the present study was to develop DCT loaded self-emulsified drug delivery systems (D-SEDDS) and evaluate its potential ability to improve the oral bioavailability and therapeutic efficacy of DCT. D-SEDDS were characterized for their in vitro antitumor activity, in situ single pass intestinal perfusion (SPIP), bioavailability, chylomicron flow blocking study and bio-distribution profile. The D-SEDDS were prepared using Capryol 90, Vitamin E TPGS, Gelucire 44/14 and Transcutol HP with a ratio of 32.7/29.4/8.3/29.6 using D-Optimal Mixture Design. The solubility of DCT was improved upto 50 mg/mL. The oral bioavailability of the D-SEDDS in rats (21.84 ± 3.12%) was increased by 3.19 fold than orally administered Taxotere (6.85 ± 1.82%). The enhanced bioavailability was probably due to increase in solubility and permeability. In SPIP, effective permeability of D-SEDDS was significantly higher than Taxotere. D-SEDDS showed 25 fold more in vitro cytotoxic activity compared to free DCT. Chylomicron flow blocking study and tissue distribution demonstrated the intestinal lymphatic transport of D-SEDDS and higher retention in tumor than Taxotere. The data suggests that D-SEDDS showed desired stability, enhanced oral bioavailability and in vitro antitumor efficacy.

  19. Bioavailability Of Arsenic In Arsenical Pesticide-Amended Soils: Preliminary Greenhouse Study

    Science.gov (United States)

    Quazi, S.; Sarkar, D.; Khairom, A.; Datta, R.; Sharma, S.

    2005-05-01

    Long-term application of arsenical pesticides in agricultural lands has resulted in high levels of arsenic (As). Conversion of former agricultural lands to residential areas has resulted in increased human contact with soil As. Soil ingestion from incidental hand-to-mouth activity by children is now a very important issue in assessing human health risk associated with exposure to arsenical pesticide-applied former agricultural soils. Human health risk from direct exposure to soil As via hand to mouth action is restricted only to those fractions of As in the soil that are available to the human gastrointestinal system. Thus this study aimed at addressing the issue of soil variability on As bioavailability as a function of soil physiochemical properties in a dynamic interaction between soils, water and plants and pesticides. In the current greenhouse study two soils with drastically different chemical characteristics w.r.t As reactivity (Immokalee-low As retention potential and Millhopper-high As retention potential) and one pesticide (sodium arsenate) were used. Soils were amended with sodium arsenate at two rates representing the high and low ends of As contamination, generally representative of Superfunds site conditions: 675 and 1500 mg/kg As. Rice (Oryza sativa) was used as the test crop. Sequential digestion to estimate in-vitro As in the stomach phase and the intestinal phase was employed on soils sampled at 4 times: 0-time, after 3 mo, 6 mo and 9 mo of soil-pesticide equilibration. In-vitro bioavailability experiments were also performed with the same soils in order to obtain an estimate of the amount of As that would be absorbed to the intestinal linings in simulated systems. Following the greenhouse study, selective in-vivo bioavailability studies using As-contaminated soils will be conducted on male and female mice to correlate in-vitro results with the in-vivo data. Treatments will consist of a soil group (As in soil), a positive control group (only As

  20. Enhancement of oral bioavailability of cyclosporine A: comparison of various nanoscale drug-delivery systems

    Directory of Open Access Journals (Sweden)

    Wang K

    2014-10-01

    Full Text Available Kai Wang,1–3 Jianping Qi,1 Tengfei Weng,1,2 Zhiqiang Tian,1 Yi Lu,1 Kaili Hu,4 Zongning Yin,2 Wei Wu1 1School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of Ministry of Education, Shanghai, People’s Republic of China; 2West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 3Tropical Crops Genetic Resources Institute, Hainan Provincial Engineering Research Center for Blumea Balsamifera, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, People’s Republic of China; 4Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of ChinaAbstract: A variety of nanoscale delivery systems have been shown to enhance the oral absorption of poorly water-soluble and poorly permeable drugs. However, the performance of these systems has seldom been evaluated simultaneously. The aim of this study was to compare the bioavailability enhancement effect of lipid-based nanocarriers with poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs to highlight the importance of the lipid composition, with cyclosporine A (CyA as a model drug. CyA-loaded PLGA NPs, nanostructured lipid carriers (NLCs, and self-microemulsifying drug-delivery systems (SMEDDS were prepared. The particle size of PLGA NPs (182.2±12.8 nm was larger than that of NLCs (89.7±9.0 nm and SMEDDS (26.9±1.9 nm. All vehicles are charged negatively. The entrapment efficiency of PLGA NPs and NLCs was 87.6%±1.6% and 80.3%±0.6%, respectively. In vitro release tests indicated that the cumulative release of CyA was lower than 4% from all vehicles, including Sandimmun Neoral®, according to the dialysis method. Both NLCs and SMEDDS showed high relative oral bioavailability, 111.8% and 73.6%, respectively, after oral gavage administration to beagle dogs, which was not statistically different from commercial Sandimmun Neoral®. However, PLGA NPs

  1. Preparation, characterization and relative bioavailability of oral elemene o/w microemulsion

    Directory of Open Access Journals (Sweden)

    Zhaowu Zeng

    2010-08-01

    Full Text Available Zhaowu Zeng1, Guanglin Zhou1, Xiaoli Wang2, Eric Zhijian Huang1, Xiaori Zhan1, Jun Liu1, Shuling Wang1, Anming Wang1, Haifeng Li1, Xiaolin Pei1, Tian Xie11Research Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou, Zhejiang, China; 2Yichun University of Jiangxi Province, Yichun, Jiangxi, ChinaAbstract: The objective was to develop an elemene oil/water (o/w microemulsion and evaluate its characteristics and oral relative bioavailability in rats. Elemene was used as the oil phase and drug, polysorbate 80 as a surfactant along with ethanol, propylene glycol, and glycerol as the cosurfactants. The microemulsion was prepared by mixing method, or ultrasonication method in an ultrasonic bath. Its three-dimensional response surface diagram was drawn by Mathcad software. The microemulsion was characterized by visual observation, cross-polarized microscopy, size, zeta potential, acidity, viscosity, and surface tension measurement. The drug content and entrapment efficiency were determined by ultra fast liquid chromatography (UFLC and liquid surface method. Blood was drawn from rats at different time points after oral administration of an elemene microemulsion or a commercial elemene emulsion for measurement of the drug in plasma by UFLC to establish the pharmacokinetic parameters and relative bioavailability. The elemene microemulsion as a clarified and isotropic system containing 1% elemene (w/v, 5% ethanol (v/v, 15% propylene glycol (v/v, 15% glycerol (v/v, and 5% polysorbate 80 (w/v, was characterized as (57.7 ± 2.8 nm in size, 0.485 ± 0.032 in polydispersity index, (3.2 ± 0.4 mv in zeta potential, (5.19 ± 0.08 in pH, 6 mpa•s in viscosity, (31.8 ± 0.3 mN•m-1 in surface tension, (8.273 ± 0.018 mg•mL-1 in content of ß-elemene, and (99.81 ± 0.24% in average entrapment efficiency. The area under the concentration-time curves from 0 h to 24 h (AUC0→24h of the elemene microemulsion and commercial elemene emulsion were

  2. Importance of suspended sediment (SPS) composition and grain size in the bioavailability of SPS-associated pyrene to Daphnia magna.

    Science.gov (United States)

    Xia, Xinghui; Zhang, Xiaotian; Zhou, Dong; Bao, Yimeng; Li, Husheng; Zhai, Yawei

    2016-07-01

    Hydrophobic organic compounds (HOCs) tend to associate with suspended sediment (SPS) in aquatic environments; the composition and grain size of SPS will affect the bioavailability of SPS-associated HOCs. However, the bioavailability of HOCs sorbed on SPS with different compositions and grain sizes is not well understood. In this work, passive dosing devices were made to control the freely dissolved concentration of pyrene, a typical HOC, in the exposure systems. The effect of pyrene associated with amorphous organic carbon (AOC), black carbon (BC), and minerals of SPS with grain sizes of 0-50 μm and 50-100 μm on the immobilization and enzymatic activities of Daphnia magna was investigated to quantify the bioavailability of pyrene sorbed on SPS with different grain sizes and compositions. The results showed that the contribution of AOC-, BC-, and mineral-associated pyrene to the total bioavailability of SPS-associated pyrene was approximately 50%-60%, 10%-29%, and 20%-30%, respectively. The bioavailable fraction of pyrene sorbed on the three components of SPS was ordered as AOC (22.4%-67.3%) > minerals (20.1%-46.0%) > BC (9.11%-16.8%), and the bioavailable fraction sorbed on SPS of 50-100 μm grain size was higher than those of 0-50 μm grain size. This is because the SPS grain size will affect the ingestion of SPS and the SPS composition will affect the desorption of SPS-associated pyrene in Daphnia magna. According to the results obtained in this study, a model has been developed to calculate the bioavailability of HOCs to aquatic organisms in natural waters considering both SPS grain size and composition. PMID:27112726

  3. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation

    Directory of Open Access Journals (Sweden)

    Yousaf AM

    2015-03-01

    Full Text Available Abid Mehmood Yousaf,1 Dong Wuk Kim,1 Yu-Kyoung Oh,2 Chul Soon Yong,3 Jong Oh Kim,3 Han-Gon Choi11College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 2College of Pharmacy, Seoul National University, Seoul, 3College of Pharmacy, Yeungnam University, Gyongsan, South KoreaBackground: The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate.Methods: The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS, fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder.Results: Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in

  4. Influence of dispersants on petroleum bioavailability in a marine food chain

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, M.; Tjeerdema, R. [Univ. of California, Santa Cruz, CA (United States). Dept. of Chemistry and Biochemistry; Sowby, M. [California Dept. of Fish and Game, Sacramento, CA (United States)

    1995-12-31

    When crude oil is accidentally released into the ocean it threatens many levels of marine life. Intervention, in the form of chemical dispersing agents, may alter the normal behavior of petroleum hydrocarbons (PH) by increasing their functional water solubility and the extent of their exposure to sub-surface marine organisms. Further, the dispersing agent may modify bioavailability as a result of altered interactions between dispersed PH droplets and organismal cell membranes, To date, little information exists on the sub-lethal effects of dispersants and factors modifying their role in the bioavailability and disposition of PH in marine food chains. The objective of the current research was to determine the impact of dispersing agents on PH bioavailability to primary levels of a marine food chain. Uptake, bioaccumulation, deputation, and metabolic transformation of a model PH, {sup 14}C-naphthalene, were measured and compared for dispersed Prudhoe Bay Crude Oil (PBCO) vs. undispersed preparations of the water-accommodated fractions (WAF) of PBCO at two salinities (22 and 34 ppt) employing Isochrysis galbana, a primary producer, and Brachionus plicatilis, a primary consumer. Fractionation and identification of metabolites was done by HPLC co-chromatography with analytical standards, and quantitation was done by liquid scintillation counting. GC-FID characterization of WAF and dispersed oil preparations shows higher concentrations of petroleum hydrocarbons and a greater number of individual constituents in the dispersed oil preparations. However, short term (eight hour) and long term (two week) static exposure studies indicate the uptake of{sup 14}C-naphthalene from WAF preparations is inhibited by up to 50% from dispersed oil preparations. Results of comparative static and flow-through chamber exposure studies will be presented.

  5. Sublingual fast dissolving niosomal films for enhanced bioavailability and prolonged effect of metoprolol tartrate

    Directory of Open Access Journals (Sweden)

    Allam A

    2016-08-01

    Full Text Available Ayat Allam, Gihan Fetih Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt Abstract: The aim of the present work was to prepare and evaluate sublingual fast dissolving films containing metoprolol tartrate-loaded niosomes. Niosomes were utilized to allow for prolonged release of the drug, whereas the films were used to increase the drug’s bioavailability via the sublingual route. Niosomes were prepared using span 60 and cholesterol at different drug to surfactant ratios. The niosomes were characterized for size, zeta-potential, and entrapment efficiency. The selected niosomal formulation was incorporated into polymeric films using hydroxypropyl methyl cellulose E15 and methyl cellulose as film-forming polymers and Avicel as superdisintegrant. The physical characteristics (appearance, texture, pH, uniformity of weight and thickness, disintegration time, and palatability of the prepared films were studied, in addition to evaluating the in vitro drug release, stability, and in vivo pharmacokinetics in rabbits. The release of the drug from the medicated film was fast (99.9% of the drug was released within 30 minutes, while the drug loaded into the niosomes, either incorporated into the film or not, showed only 22.85% drug release within the same time. The selected sublingual film showed significantly higher rate of drug absorption and higher drug plasma levels compared with that of commercial oral tablet. The plasma levels remained detectable for 24 hours following sublingual administration, compared with only 12 hours after administration of the oral tablet. In addition, the absolute bioavailability of the drug (ie, relative to intravenous administration following sublingual administration was found to be significantly higher (91.06%±13.28%, as compared with that after oral tablet administration (39.37%±11.4%. These results indicate that the fast dissolving niosomal film could be a promising delivery system to

  6. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability.

    Science.gov (United States)

    Tran, Thanh Huyen; Guo, Yi; Song, Donghui; Bruno, Richard S; Lu, Xiuling

    2014-03-01

    Quercetin is a dietary flavonoid with potential chemoprotective effects, but has low bioavailability because of poor aqueous solubility and low intestinal absorption. A quercetin-containing self-nanoemulsifying drug delivery system (Q-SNEDDS) was developed to form oil-in-water nanoemulsions in situ for improving quercetin oral bioavailability. On the basis of the quercetin solubility, emulsifying ability, and stability after dispersion in an aqueous phase, an optimal SNEDDS consisting of castor oil, Tween® 80, Cremophor® RH 40, and PEG 400 (20:16:34:30, w/w) was identified. Upon mixing with water, Q-SNEDDS formed a nanoemulsion having a droplet size of 208.8 ± 4.5 nm and zeta potential of -26.3 ± 1.2 mV. The presence of Tween® 80 and PEG 400 increased quercetin solubility and maintained supersaturated quercetin concentrations (5 mg/mL) for >1 month. The optimized Q-SNEDDS significantly improved quercetin transport across a human colon carcinoma (Caco-2) cell monolayer. Fluorescence imaging demonstrated rapid absorption of the Q-SNEDDS within 40 min of oral ingestion. Following oral administration of Q-SNEDDS in rats (15 mg/kg), the area under the concentration curve and maximum concentration of plasma quercetin after 24 h increased by approximately twofold and threefold compared with the quercetin control suspension. These data suggest that this Q-SNEDDS formulation can enhance the solubility and oral bioavailability of quercetin for appropriate clinical application. PMID:24464737

  7. Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid.

    Directory of Open Access Journals (Sweden)

    Chandraiah Godugu

    Full Text Available The poor bioavailability of Berberine (BBR and Betulinic acid (BA limits the development of these promising anticancer agents for clinical use. In the current study, BBR and BA in spray dried (SD mucoadhesive microparticle formulations were prepared.A patented dual channel spray gun technology established in our laboratory was used for both formulations. Gastrointestinal (GI permeability studies were carried out using Caco-2 cell monolayer grown in in-vitro system. The oral bioavailability and pharmacokinetic profile of SD formulations were studied in Sprague Dawley rats. A549 orthotopic and H1650 metastatic NSCLC models were utilized for the anticancer evaluations.Pharmacokinetic studies demonstrated that BBR and BA SD formulations resulted in 3.46 and 3.90 fold respectively, significant increase in plasma Cmax concentrations. AUC levels were increased by 6.98 and 7.41 fold in BBR and BA SD formulations, respectively. Compared to untreated controls groups, 49.8 & 53.4% decrease in the tumor volumes was observed in SD formulation groups of BBR and BA, respectively. Molecular studies done on excised tumor (A549 tissue suggested that BBR in SD form resulted in a significant decrease in the survivin, Bcl-2, cyclin D1, MMP-9, HIF-1α, VEGF and CD31 expressions. Cleaved caspase 3, p53 and TUNEL expressions were increased in SD formulations. The RT-PCR analysis on H1650 tumor tissue suggested that p38, Phospho-JNK, Bax, BAD, cleaved caspase 3&8 mRNA expressions were significantly increased in BA SD formulations. Chronic administration of BBR and BA SD formulations did not show any toxicity.Due to significant increase in oral bioavailability and superior anticancer effects, our results suggest that spray drying is a superior alternative formulation approach for oral delivery of BBR and BA.

  8. Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Walczak, Agata P. [Wageningen University, Division of Toxicology (Netherlands); Hendriksen, Peter J. M. [RIKILT Wageningen UR (Netherlands); Woutersen, Ruud A. [TNO Earth, Life and Social Sciences (Netherlands); Zande, Meike van der; Undas, Anna K.; Helsdingen, Richard [RIKILT Wageningen UR (Netherlands); Berg, Hans H. J. van den; Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands); Bouwmeester, Hans, E-mail: hans.bouwmeester@wur.nl [RIKILT Wageningen UR (Netherlands)

    2015-05-15

    The likelihood of oral exposure to nanoparticles (NPs) is increasing, and it is necessary to evaluate the oral bioavailability of NPs. In vitro approaches could help reducing animal studies, but validation against in vivo studies is essential. Previously, we assessed the translocation of 50 nm polystyrene NPs of different charges (neutral, positive and negative) using a Caco-2/HT29-MTX in vitro intestinal translocation model. The NPs translocated in a surface charge-dependent manner. The present study aimed to validate this in vitro intestinal model by an in vivo study. For this, rats were orally exposed to a single dose of these polystyrene NPs and the uptake in organs was determined. A negatively charged NP was taken up more than other NPs, with the highest amounts in kidney (37.4 µg/g tissue), heart (52.8 µg/g tissue), stomach wall (98.3 µg/g tissue) and small intestinal wall (94.4 µg/g tissue). This partly confirms our in vitro findings, where the same NPs translocated to the highest extent. The estimated bioavailability of different types of NPs ranged from 0.2 to 1.7 % in vivo, which was much lower than in vitro (1.6–12.3 %). Therefore, the integrated in vitro model cannot be used for a direct prediction of the bioavailability of orally administered NPs. However, the model can be used for prioritizing NPs before further in vivo testing for risk assessment.

  9. [Absolute bioavailability of a special sustained-release acetylsalicylic acid formulation].

    Science.gov (United States)

    Lücker, P W; Swoboda, M; Wetzelsberger, N

    1989-03-01

    Absolute Bioavailability of a Special Acetylsalicylic Acid Sustained Release Formulation. The absolute bioavailability of an acetylsalicylic acid (ASA) sustained release formulation (Contrheuma retard), containing 300 mg ASA as initial dose and 350 mg in a retard formulation, was determined in comparison to a standard ASA solution for intravenous administration in a two-treatment, two-period cross-over trial with 6 healthy male volunteers by comparing the areas under the plasma-fluctuation-time curves of the primary metabolite. In addition, it was examined by comparison of the mean times after administration of both formulations, whether the test formulation meets the requirements of a sustained release formulation. The investigations led to the following results: The absolute bioavailability of the test formulation was 95%. The statistical comparison of the areas under the concentration-time courses allowed no decision (neither for equivalence nor difference). The maximal concentration of SA after intravenous administration of the standard formulation was reached after 0.4 h on an average and amounted to 62 micrograms/ml. After oral administration of the test formulation, a mean concentration maximum of 28 micrograms/ml was calculated, which had been reached after about 2 h. The differences are statistically significant. The mean time for SA was 6 h after the standard formulation, whereas after administration of the test compound, a mean of 11.5 h was calculated. 24 h following administration, the concentration of SA was 1.3 micrograms/ml after intravenous administration of the standard formulation and 5.5 micrograms/ml after administration of the test formulation. These differences, too, are statistically significant. From the comparison of the mean time for SA, a retard factor of 1.9 was calculated. PMID:2757664

  10. Strategies to Quantify and Decrease Mercury Bioavailability and Methylation Potential in the Aquatic Environment

    Science.gov (United States)

    Hsu-Kim, H.; Deshusses, M.; Elias, D. A.

    2015-12-01

    Mercury (Hg) contamination in aquatic environments is a concern due to the production of monomethylmercury (MeHg), the highly bioaccumulative form that can impart neurotoxic effects to wildlife and humans. One strategy for remediation is to minimize MeHg production by anaerobic microorganisms that are prevalent in benthic settings. However, the factors that influence MeHg production and, in particular, the bioavailability of inorganic Hg for methylating microorganisms are poorly understood and difficult to quantify. This presentation will discuss the application of a thiol-based selective leaching assay to quantify the bioavailable fraction of Hg in sediments. This leaching assay involves quantification of leachable Hg concentrations in samples that are exposed to anoxic solutions containing glutathione (GSH). This thiol-based approach was chosen because cellular uptake and methylation of Hg by methylating bacteria are known to increase with the addition of GSH to cultures. This assay was applied to sediment-slurry microcosms that were amended with multiple types of inorganic Hg (dissolved Hg2+, Hg-sorbed to FeS, nanoparticulate HgS, microcrystalline HgS) that are known to span a range of bioavailability and methylation potential. The results demonstrated that the GSH-leachable Hg concentration correlated with MeHg production in cultures and microcosms. Methylation potential did not correlate to the concentration of Hg in the filtered aqueous fraction in the microcosm (i.e., passable though 0.2 um filters). These results suggest that a portion of the particle-bound Hg is available for methylation in a way that cannot be assessed by conventional filtration methods. The results of this work will be discussed in the context of management and in-situ remediation of contaminated sediments.

  11. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats.

    Science.gov (United States)

    Chen, Haw-Wen; Huang, Chin-Shiu; Li, Chien-Chun; Lin, Ai-Hsuan; Huang, Yu-Ju; Wang, Tsu-Shing; Yao, Hsien-Tsung; Lii, Chong-Kuei

    2014-10-01

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1μM which peaked at 30min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (p<0.05). Immunoblot analysis and EMSA revealed that andrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl4) at day 6. Andrographolide pretreatment suppressed CCl4-induced plasma aminotransferase activity and hepatic lipid peroxidation (p<0.05). These results suggest that andrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. PMID:25110055

  12. Pharmacokinetics, bioavailability, metabolism and excretion of δ-viniferin in rats

    Directory of Open Access Journals (Sweden)

    Ping Mao

    2016-05-01

    Full Text Available A highly rapid and sensitive liquid chromatographic–electrospray ionization tandem mass spectrometric (LC–ESI-MS/MS method was developed and validated for the determination of trans-δ-viniferin (Rs-1 in rat plasma, urine and feces. All biological samples were prepared by liquid–liquid extraction and hesperetin was included as an internal standard (IS. Chromatographic separation was achieved on a shim-pack XR-ODS column using a gradient mobile phase. MS/MS detection was performed by negative ion electrospray ionization. The method was sensitive with a lower limit of quantification of 1.42 ng/mL and linear over the range of 1.42–2172 ng/mL in all matrices. The method was applied to study the pharmacokinetics, bioavailability, metabolism, and excretion of Rs-1 in rats following a single oral or intravenous dose. Two metabolites, Rs-1 glucuronide and Rs-1 sulfate, were detected in plasma and in urine after administration of Rs-1. The absolute oral bioavailability of Rs-1 was 2.3%, and the total absorption rose to 31.5% with addition of its glucuronide and sulfate metabolites. Only 0.09% of the gavaged dose, including Rs-1 and metabolites, was excreted in the urine, while 60.3% was found in the feces in unchanged form. The results indicate that both poor absorption and extensive metabolism were the important factors that led to the poor bioavailability of Rs-1, which can provide a basis for further studies on structural modification and dosage form design.

  13. The study of bioavailability and bioequivalence of oseltamivir in Chinese health volunteers

    Institute of Scientific and Technical Information of China (English)

    LI Jing-lai; CUI Meng-cun; WANG Xiao-ying; QIAO Jian-zhong; YUAN Su-lan; ZHANG Zhen-qing; RUAN Jin-xiu; ZHONG Wu; LI Song

    2008-01-01

    Objective To evaluate the bioavailability and bioequivalence of oseltamivir capsule in Chinese health male volunteers. Methods A randomized, two period, two treatment, two sequence crossover bioequivalence trial was designed, 24 Chinese health volunteers were randomly divided into two groups, each group was orally given single dose oseltamivir phosphate (tamifla) or AMMS 607 capsule. The active metabolite oseltamivir carboxylate of oseltamivir in the plasma were determined by liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method. The pharmacokinetics parameters and relative bioavailability were calculated to evaluate the bioequivalence of AMMS 607 and tamifla. Results Cmax of the AMMS 607 and tamifla were 602.07±153.27 ng·mL-1 and 620.09±132.39 ng·mL-1 respectively; tmax were 4.2± 1.1 h and 4.8±1.0 h; t1/2β were 6.60±0.87 h and 6.61±0.83 h;MRT were 10.00±1.77 h and 10.40 ±1.62 h; AUC0-24 were 6285.88±1083.66 ng·h·mL-1 and 6546.01±1199.32 ng·h·mL-1; Compared with the reference of tamifla capsule, the bioavailability F0-tn of AMMS 607 capsule was 99.5±27.7 %. The main pharmacokinetics parameters of AUC0-24, Cmax and Tmax showed no statistically significant difference between the two capsules. Conclusions The AMMS 607 capsule and tamifla capsule are bioequivalent.

  14. Flocculated amorphous itraconazole nanoparticles for enhanced in vitro supersaturation and in vivo bioavailability.

    Science.gov (United States)

    Miller, Maria A; DiNunzio, James; Matteucci, Michal E; Ludher, Baltej S; Williams, Robert O; Johnston, Keith P

    2012-05-01

    Rapid flocculation of nanoparticle dispersions of a poorly water soluble drug, itraconazole (Itz), was utilized to produce amorphous powders with desirable dissolution properties for high bioavailability in rats. Antisolvent precipitation (AP) was utilized to form Itz nanodispersions with high drug loadings stabilized with hydroxypropylmethylcellulose (HPMC) or the pH-sensitive Eudragit(®) L100-55 (EL10055). The HPMC dispersions were flocculated by desolvating the polymer through the addition of a divalent salt, and the enteric EL10055 by reducing the pH. The formation of open flocs by diffusion limited aggregation facilitated redispersion of the flocs at pH 6.8. Upon redispersion of the flocculated nanoparticles at pH 6.8, the particle size was modestly larger than the original size, on the order of 1 μm. High in vitro supersaturation (AUC) of the flocculated nanoparticle dispersions was observed in micellar media at pH 6.8, after 2 hours initial exposure at pH 1.2 to simulate the stomach, relative to the AUC for a commercially available Itz formulation, Sporanox. Greater in vivo bioavailability in rats was correlated directly to the higher in vitro AUC at pH 6.8 with micelles during the pH shift experiment for the flocculated nanoparticle dispersions relative to Sporanox. The ability to generate and sustain high supersaturation in micellar media at pH 6.8, as shown with the in vitro pH shift dissolution test, is beneficial for increasing bioavailability of Itz by oral delivery. PMID:21961961

  15. Effects of standard humic materials on relative bioavailability of NDL-PCBs in juvenile swine.

    Directory of Open Access Journals (Sweden)

    Matthieu Delannoy

    Full Text Available Young children with their hand-to-mouth activity may be exposed to contaminated soils. However few studies assessing exposure of organic compounds sequestrated in soil were realized. The present study explores the impact of different organic matters on retention of NDL-PCBs during digestive processes using commercial humic substances in a close digestive model of children: the piglet. Six artificial soils were used. One standard soil, devoid of organic matter, and five amended versions of this standard soil with either fulvic acid, humic acid, Sphagnum peat, activated carbon or a mix of Sphagnum peat and activated carbon (95∶5 (SPAC were prepared. In order to compare the different treatments, we use spiked oil and negative control animals. Forty male piglets were randomly distributed in 7 contaminated and one control groups (n = 5 for each group. During 10 days, the piglets were fed artificial soil or a corn oil spiked with 19,200 ng of Aroclor 1254 per g of dry matter (6,000 ng.g⁻¹ of NDL-PCBs to achieve an exposure dose of 1,200 ng NDL-PCBs.Kg⁻¹ of body weight per day. NDL-PCBs in adipose tissue were analyzed by GC-MS. Fulvic acid reduced slightly the bioavailability of NDL-PCBs compared to oil. Humic acid and Sphagnum peat reduced it significantly higher whereas activated carbon reduced the most. Piglets exposed to soil containing both activated carbon and Shagnum peat exhibited a lower reduction than soil with only activated carbon. Therefore, treatment groups are ordered by decreasing value of relative bioavailability as following: oil ≥ fulvic acid>Sphagnum peat ≥ Sphagnum peat and activated carbon ≥ Humic acid>>activated carbon. This suggests competition between Sphagnum peat and activated carbon. The present study highlights that quality of organic matter does have a significant effect on bioavailability of sequestrated organic compounds.

  16. Study on Plasma Concentration and Bioavailability of Wogonin in Beagle's Dogs

    Institute of Scientific and Technical Information of China (English)

    LI Jian-chun; CHEN Fei-hu; DONG Hai-jun; GAO Shu

    2011-01-01

    Objective To develop an LC-MS/MS method for determining the concentration of wogonin in dog plasma and investigate the pharmacokinetics and bioavailability by different administrations of wogonin in Beagle's dogs. Methods LC-MS/MS was employed in determining the concentration of wogonin with the selected ion monitoring model after liquid-liquid extraction with ethyl acetate of dog plasma samples. The lower limit of quantification was 0.105 μg/L. Target ions were at m/z 285.0→270.0 for wogonin and 373.3→305.3 for finasteride. In a randomized, self-control, and cross-over study, six male Beagle's dogs were treated with different administration methods in three test periods. Pharmacokinetic parameters were calculated with DAS software (Ver. 2.0). Results The calibration curve was linear in the range of 0.105-107.36 μg/L for wogonin in dog plasma samples. The main pharmacokinetic parameters of ig administration (native drug of 15 mg/kg and solution preparation of 5 mg/kg) and iv route were as follows: Cmax (2.5 ± 1.1), (7.9 ± 3.3), and (6838.7 ± 1322.1) μg/L, tmax (0.7 ± 0.3) and (0.3 ± 0.2) h for the both former, AUC0-1 (7.1 ± 2.0), (21.0 ± 3.2), and (629.7 ±111.8) μg·h/L. The absolute bioavailability of native and solution of wogonin were (0.59 ± 0.35)% and (3.65 ± 2.00)%, respectively. Conclusion The validated method is convenient, sensitive, and specific, and the improvement of wogonin solubility could remarkably increase the absolute bioavailability.

  17. Effects of aging on the fraction distribution and bioavailability of selenium in three different soils.

    Science.gov (United States)

    Li, Jun; Peng, Qin; Liang, Dongli; Liang, Sijie; Chen, Juan; Sun, Huan; Li, Shuqi; Lei, Penghui

    2016-02-01

    Aging refers to the processes by which the mobility and bioavailability of metals in soil decline with time. Although long-term aging is a key process that needs to be considered in risk assessment of metals, few investigations has been attempted to determine whether and how residence time influences the selenium (Se) fractions and bioavailability in soil. In this study, the fractions of Se in soils was evaluated, and bioavailability were assessed by measuring Se concentration in pak choi (Brassica chinensis L.). Results showed that the change of soil available Se in all tested soils divided into two phases: rapid decrease at the initial time (42 d) and slow decline thereafter. The second-order equation could describe the decrease processes of available Se in tested soils during the entire incubation time (R(2) > 0.99), while parabolic diffusion equation had less goodness of fit. Those results indicated that Se aging was controlled not only by diffusion process but also by other processes such as nucleation/precipitation, adsorption/desorption with soil component, occlusion by organic matter and reduction reaction. Soil available Se fractions tended to transform to more stable fractions during aging. The changes of Se concentration in pak choi were consistent with the variation in soil available Se content. In addition, 21 d could be reference for the time of Se aging reaching stabilization in krasnozems and fluvo-aquic soil, and 30 d for black soil. Results could provide theoretical basis to formulate environmental quality criterion and choose the equilibrium time before implementing a pot experiment in Se-spiked soils. PMID:26606190

  18. Interaction of phytic acid and zinc affecting copper bioavailability in rats

    International Nuclear Information System (INIS)

    The objectives of this investigation were to develop a protocol to measure Cu bioavailability using four different indices of Cu status, and to evaluate the effect of phytic acid on Cu bioavailability using these indices in the rat. Ninety-six Sprague-Dawley male weanling rats were fed a Cu-deficient diet for four weeks. The Cu-depleted rats were divided into twelve groups and fed test diets containing 1, 2, 3, and 10 ug Cu and 0, 0.4 and 0.8% phytic acid at each Cu level. After 3 days of Cu repletion, liver copper (LCu), liver superoxide dismutase (LSOD) activity, serum copper (SCu), and serum ceruloplasmin (CP) were measured. There was a significant decrease in SCu and LCu in rats fed 30 ug Zn/g or 230 ug Zn/g compared to animals fed 12 ug Zn/g. Phytic acid increased the level of Cu in the sera and livers of rats fed the diet with 30 ug Zn/g, but those of rats fed 12 or 230 ug Zn/g did not. Dietary phytic acid appeared to reduce the synthesis of two intestinal proteins: a high molecular weight protein and metallothionein. The incorporation of 35S-cysteine into both proteins increased with increasing levels of dietary Zn. The results of these studied indicated: (1) LCu and SCu are reliable indices of Cu for absorption and utilization in the rat, and (2) phytic acid increases Cu bioavailability by binding dietary Zn and reduces the level of Zn-induced mucosal proteins which allows Cu to be more efficiently absorbed

  19. Enhanced bioavailability of nerve growth factor with phytantriol lipid-based crystalline nanoparticles in cochlea

    Directory of Open Access Journals (Sweden)

    Bu M

    2015-11-01

    Full Text Available Meng Bu,1,2 Jingling Tang,3 Yinghui Wei,4 Yanhui Sun,1 Xinyu Wang,1 Linhua Wu,2 Hongzhuo Liu1 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China; 2Department of Pharmacy, the Second Affiliated Hospital, 3School of Pharmacy, Harbin Medical University, Harbin, People’s Republic of China; 4College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China Purpose: Supplementation of exogenous nerve growth factor (NGF into the cochlea of deafened animals rescues spiral ganglion cells from degeneration. However, a safe and potent delivery of therapeutic proteins, such as NGF, to spiral ganglion cells remains one of the greatest challenges. This study presents the development of self-assembled cubic lipid-based crystalline nanoparticles to enhance inner ear bioavailability of bioactive NGF via a round window membrane route.Methods: A novel nanocarrier-entrapped NGF was developed based on phytantriol by a liquid precursor dilution, with Pluronic® F127 and propylene glycol as the surfactant and solubilizer, respectively. Upon dilution of the liquid lipid precursors, monodispersed submicron-sized particles with a slight negative charge formed spontaneously.Results: Biological activity of entrapped NGF was assessed using pheochromocytoma cells with NGF-loaded reservoirs to induce significant neuronal outgrowth, similar to that seen in free NGF-treated controls. Finally, a 3.28-fold increase in inner ear bioavailability was observed after administration of phytantriol lipid-based crystalline nanoparticles as compared to free drug, contributing to an enhanced drug permeability of the round window membrane. Conclusion: Data presented here demonstrate the potential of lipid-based crystalline nanoparticles to improve the outcomes of patients bearing cochlear implants. Keywords: nerve growth factor, lipid-based crystalline nanoparticles, PC12 cells, inner ear drug

  20. Metals in sediments: bioavailability and toxicity in a tropical reservoir used for public water supply.

    Science.gov (United States)

    Cardoso-Silva, Sheila; Da Silva, Daniel Clemente Vieira Rego; Lage, Fernanda; de Paiva, Teresa Cristina Brazil; Moschini-Carlos, Viviane; Rosa, André Henrique; Pompêo, Marcelo

    2016-05-01

    Sediments may be a repository of contaminants in freshwater ecosystems. One way to assess the quality of this compartment, in terms of potentially bioavailable metals, is by the analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM). In order to investigate the bioavailability, toxicity, and compartmentalization of different metals (Cd, Cr, Cu, Ni, Pb, Zn), sampling of surface sediments was performed at nine stations along the Paiva Castro reservoir (São Paulo, Brazil). The metals were analyzed using atomic absorption spectroscopy. Sediment organic matter (OM), organic carbon (OC), and grain size were also measured. The parameters pH, EH, temperature, and dissolved oxygen were determined at the sediment-water interface. Chronic and acute toxicological tests were performed with sediments from the area where water was extracted for the public water supply. Low levels of OM, associated with loss of stratification in the water column, explained the relatively low AVS values. The molar ratio ∑[SEM]-[AVS]/fOC was less than 130 mmol/kg(-1) for all the sampling stations, indicating that the metals were not bioavailable. With the exception of Cd, metal levels were in accordance with background concentrations and the threshold effect level (TEL) established by the Canadian Council of Ministers of the Environment. The ecotoxicological tests confirmed the absence of toxic effects to biota. Application of principal component analysis indicated the presence of four compartments along the reservoir: (1) a riverine zone, potentially threatened by contamination with Cd; (2) an intermediate zone; (3) a limnic area; and (4) the area where water was taken for the public water supply. PMID:27117444

  1. Assessment of the mobility and bioavailability of 60 Co and 137 Cs in contaminated soils

    International Nuclear Information System (INIS)

    Results of a classical sequential chemical extraction procedure for 137 Cs in an acid Oxisol showed that after 3 years of contamination radiocesium remains potentially available for transfer processes: 40% bio-available, 20% mobile under oxidizing conditions and 40% bound to Fe and Mn oxides (available under reducing conditions). At this time, the transfer factor obtained in this soil was higher than values obtained in basic Oxisol and was higher than values obtained in soils from temperate climate areas. Seven years after the contamination, the 137 Cs distribution in this acid Oxisol have been changed as consequence of changes in soil properties: 8% bioavailable, 16% mobile under oxidizing conditions, 43% bound to Fe and Mn oxides and 33% strongly bound to soil compounds. Changes in the 137 Cs distribution in this soil were followed by reductions in soil to plant transfer factor. Between 1996 and 2000, the 137 Cs distribution, 137 Cs soil to plant transfer factor and soil properties in the basic Oxisol remained almost the same. The 60 Co distribution showed that Mn oxides is the main sink for this element and four years after contamination no 60 Co was detected as bioavailable or detectable in plants. In this study the use of an alternative sequential chemical extraction protocol to evaluate 60 Co and 137 Cs mobility under a large range of physico-chemical soil properties has shown to be very consistent with soil to plant transfer factors data for maize. The knowledge of bio-geochemical behavior of radionuclides in soil system can be used for the risk assessment in the case of nuclear accident or contamination scenarios. (author)

  2. Sodium pyrophosphate enhances iron bioavailability from bouillon cubes fortified with ferric pyrophosphate.

    Science.gov (United States)

    Cercamondi, Colin I; Duchateau, Guus S M J E; Harika, Rajwinder K; van den Berg, Robin; Murray, Peter; Koppenol, Wieneke P; Zeder, Christophe; Zimmermann, Michael B; Moretti, Diego

    2016-08-01

    Fe fortification of centrally manufactured and frequently consumed condiments such as bouillon cubes could help prevent Fe deficiency in developing countries. However, Fe compounds that do not cause sensory changes in the fortified product, such as ferric pyrophosphate (FePP), exhibit low absorption in humans. Tetra sodium pyrophosphate (NaPP) can form soluble complexes with Fe, which could increase Fe bioavailability. Therefore, the aim of this study was to investigate Fe bioavailability from bouillon cubes fortified with either FePP only, FePP+NaPP, ferrous sulphate (FeSO4) only, or FeSO4+NaPP. We first conducted in vitro studies using a protocol of simulated digestion to assess the dialysable and ionic Fe, and the cellular ferritin response in a Caco-2 cell model. Second, Fe absorption from bouillon prepared from intrinsically labelled cubes (2·5 mg stable Fe isotopes/cube) was assessed in twenty-four Fe-deficient women, by measuring Fe incorporation into erythrocytes 2 weeks after consumption. Fe bioavailability in humans increased by 46 % (Pabsorption from bouillons fortified with FeSO4 only and with FeSO4+NaPP was 33·8 and 27·8 %, respectively (NS). The outcome from the human study is in agreement with the dialysable Fe from the in vitro experiments. Our findings suggest that the addition of NaPP could be a promising strategy to increase Fe absorption from FePP-fortified bouillon cubes, and if confirmed by further research, for other fortified foods with complex food matrices as well. PMID:27267429

  3. A Randomised Cross-Over Pharmacokinetic Bioavailability Study of Synthetic versus Kiwifruit-Derived Vitamin C

    Directory of Open Access Journals (Sweden)

    Margreet C. M. Vissers

    2013-11-01

    Full Text Available Kiwifruit are a rich source of vitamin C and also contain numerous phytochemicals, such as flavonoids, which may influence the bioavailability of kiwifruit-derived vitamin C. The aim of this study was to compare the relative bioavailability of synthetic versus kiwifruit-derived vitamin C using a randomised cross-over pharmacokinetic study design. Nine non-smoking males (aged 18–35 years received either a chewable tablet (200 mg vitamin C or the equivalent dose from gold kiwifruit (Actinidia chinensis var. Sungold. Fasting blood and urine were collected half hourly to hourly over the eight hours following intervention. The ascorbate content of the plasma and urine was determined using HPLC with electrochemical detection. Plasma ascorbate levels increased from 0.5 h after the intervention (P = 0.008. No significant differences in the plasma time-concentration curves were observed between the two interventions (P = 0.645. An estimate of the total increase in plasma ascorbate indicated complete uptake of the ingested vitamin C tablet and kiwifruit-derived vitamin C. There was an increase in urinary ascorbate excretion, relative to urinary creatinine, from two hours post intervention (P < 0.001. There was also a significant difference between the two interventions, with enhanced ascorbate excretion observed in the kiwifruit group (P = 0.016. Urinary excretion was calculated as ~40% and ~50% of the ingested dose from the vitamin C tablet and kiwifruit arms, respectively. Overall, our pharmacokinetic study has shown comparable relative bioavailability of kiwifruit-derived vitamin C and synthetic vitamin C.

  4. Assessing the bioavailability of organic contaminants using a novel bioluminescent biosensor

    International Nuclear Information System (INIS)

    The limited rate and extent of biodegradation in contaminated soils is often attributed to a lack of bioavailability of hydrophobic organic compounds. To date, the majority of studies aimed at assessing bioavailability and modes of bacterial uptake have relied upon quantification of microbial degradation rates in comparison to rates of dissolution or desorption in corresponding abiotic systems. Several studies have indicated the possibility of a direct uptake mechanism for sorbed or separate phase compounds. However, there is a lack of direct evidence to support these claims. To address the need for a direct measurement technique for microbial bioavailability, we have constructed a whole-cell bioluminescent biosensor, Pseudomonas putida F1G4 (PpF1G4), by fusing lux genes that encode for bioluminescence to the solvent efflux pump (sep) promoter element in PpF1G4, which is induced by the presence of target organic compounds. When the biosensor microorganism is exposed to an inducing compound, the bioluminescence system is activated and the cell produces an intensity of visible light (λ = 495 nm) that is directly related to the level of exposure to the contaminant. Batch experiments were carried out to assess whether the biosensor is able to sense the presence of toluene, a representative target compound, contained in a NAPL. Preliminary results show that while PpF1G4 responds to toluene in the aqueous phase, the biosensor does not appear to emit a significant bioluminescence signal in response to the toluene present in the NAPL. Ongoing research is focusing on optimizing the experimental procedure to fully explore this issue. (author)

  5. Bioavailability and metabolism of hydroxycinnamates in rats fed with durum wheat aleurone fractions.

    Science.gov (United States)

    Calani, Luca; Ounnas, Fayçal; Salen, Patricia; Demeilliers, Christine; Bresciani, Letizia; Scazzina, Francesca; Brighenti, Furio; Melegari, Camilla; Crozier, Alan; de Lorgeril, Michel; Del Rio, Daniele

    2014-08-01

    The consumption of wholemeal cereals has been associated with the reduced risk of several chronic diseases, and the mechanisms behind these protective effects may be linked, besides dietary fiber and micronutrients, to an increased intake of hydroxycinnamates contained in the bran. Among bran fractions, aleurone usually contains the highest concentration of ferulic acid and diferulic acid esters linked to arabinoxylans representing the most relevant subclasses. The aim of the present study was to evaluate the absorption of hydroxycinnamates by measuring the urinary metabolite profiles of rats fed with the two different aleurone fractions (the inner part of the aleurone, named wheat aleurone A, WA-A, and the outer part, named wheat aleurone B, WA-B). An acute feeding experiment with two rat groups consuming equivalent amounts of total ferulic acid from the different aleurone fractions was carried out to evaluate ferulic acid bioavailability as affected by different sources. A chronic feeding experiment was also conducted with two rat groups consuming the same amount of the two different aleurone fractions, carried out to investigate the short-term metabolism and absorption of aleurone phenolics. The results revealed higher increases in the 24 h-excretion of phenolic metabolites/catabolites in aleurone fed rats compared to rats fed with a regular diet. Specifically, in the chronic feeding, ferulic acid was more bioavailable when WA-A was ingested. Based on previous observations, demonstrating various positive physiological responses to ferulic acid and aleurone fractions characterized by higher phenolic bioavailability, our results indicate that the WA-A fraction has potentially interesting nutritional characteristics that might be used for the formulation of new wheat based products.

  6. Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion technique.

    Science.gov (United States)

    Li, Haiying; Pan, Tingting; Cui, Ying; Li, Xiaxia; Gao, Jiefang; Yang, Wenzhi; Shen, Shigang

    2016-01-01

    The objective of this work was to prepare an oil/water glimepiride (GM) microemulsion (ME) for oral administration to improve its solubility and enhance its bioavailability. Based on a solubility study, pseudoternary phase diagrams, and Box-Behnken design, the oil/water GMME formulation was optimized and prepared. GMME was characterized by dynamic laser light scattering, zeta potential, transmission electron microscopy, and viscosity. The in vitro drug release, storage stability, pharmacodynamics, and pharmacokinetics of GMME were investigated. The optimized GMME was composed of Capryol 90 (oil), Cremophor RH40 (surfactant), and Transcutol (cosurfactant), and increased GM solubility up to 544.6±4.91 µg/mL. The GMME was spherical in shape. The particle size and its polydispersity index were 38.9±17.46 nm and 0.266±0.057, respectively. Meanwhile, the GMME was physicochemically stable at 4°C for at least 3 months. The short-term efficacy in diabetic mice provided the proof that blood glucose had a consistent and significant reduction at a dose of 375 µg/kg whether via IP injection or IG administration of GMME. Compared with the glimepiride suspensions or glimepiride-meglumine complex solution, the pharmacokinetics of GMME in Wistar rats via IG administration exhibited higher plasma drug concentration, larger area under the curve, and more enhanced oral bioavailability. There was a good correlation of GMME between the in vitro release values and the in vivo oral absorption. ME could be an effective oral drug delivery system to improve bioavailability of GM. PMID:27540291

  7. Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats

    International Nuclear Information System (INIS)

    The likelihood of oral exposure to nanoparticles (NPs) is increasing, and it is necessary to evaluate the oral bioavailability of NPs. In vitro approaches could help reducing animal studies, but validation against in vivo studies is essential. Previously, we assessed the translocation of 50 nm polystyrene NPs of different charges (neutral, positive and negative) using a Caco-2/HT29-MTX in vitro intestinal translocation model. The NPs translocated in a surface charge-dependent manner. The present study aimed to validate this in vitro intestinal model by an in vivo study. For this, rats were orally exposed to a single dose of these polystyrene NPs and the uptake in organs was determined. A negatively charged NP was taken up more than other NPs, with the highest amounts in kidney (37.4 µg/g tissue), heart (52.8 µg/g tissue), stomach wall (98.3 µg/g tissue) and small intestinal wall (94.4 µg/g tissue). This partly confirms our in vitro findings, where the same NPs translocated to the highest extent. The estimated bioavailability of different types of NPs ranged from 0.2 to 1.7 % in vivo, which was much lower than in vitro (1.6–12.3 %). Therefore, the integrated in vitro model cannot be used for a direct prediction of the bioavailability of orally administered NPs. However, the model can be used for prioritizing NPs before further in vivo testing for risk assessment

  8. Utilization of Microemulsions from Rhinacanthus nasutus (L.) Kurz to Improve Carotenoid Bioavailability

    Science.gov (United States)

    Ho, Nai-Hsing; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2016-01-01

    Carotenoids have been known to reduce the risk of several diseases including cancer and cardiovascular. However, carotenoids are unstable and susceptible to degradation. Rhinacanthus nasutus (L.) Kurz (R. nasutus), a Chinese medicinal herb rich in carotenoids, was reported to possess vital biological activities such as anti-cancer. This study intends to isolate carotenoids from R. nasutus by column chromatography, identify and quantify by HPLC-MS, and prepare carotenoid microemulsions for determination of absolute bioavailability in rats. Initially, carotenoid fraction was isolated using 250 mL ethyl acetate poured into an open-column packed with magnesium oxide-diatomaceous earth (1:3, w/w). Fourteen carotenoids including internal standard β-apo-8′-carotenal were resolved within 62 min by a YMC C30 column and gradient mobile phase of methanol-acetonitrile-water (82:14:4, v/v/v) and methylene chloride. Highly stable carotenoid microemulsions were prepared using a mixture of CapryolTM90, Transcutol®HP, Tween 80 and deionized water, with the mean particle being 10.4 nm for oral administration and 10.7 nm for intravenous injection. Pharmacokinetic study revealed that the absolute bioavailability of carotenoids in microemulsions and dispersion was 0.45% and 0.11%, respectively, while a much higher value of 6.25% and 1.57% were shown for lutein, demonstrating 4-fold enhancement in bioavailability upon incorporation of R. nasutus carotenoids into a microemulsion system. PMID:27150134

  9. Preparation and characterization of microemulsion of cilostazol for enhancement of oral bioavailability.

    Science.gov (United States)

    Patel, Samir G; Rajput, Sadhana J; Groshev, Anastasia; Sutariya, Vijaykumar B

    2014-01-01

    Cilostazol is a promising drug for antiplatelet combination therapy that is very important for treatment for various cardiovascular disorders. However, oral delivery of this drug is greatly impeded by the poor solubility in aqueous solutions. The aim of this study was to develop microemulsion (ME) delivery system capable of improving the drug bioavailability. In this study, Capmul MCM C8 (glycerol monocaprylate) based MEs containing Tween 20(polysorbate 20) and/or Labrafil M 1944(poly oxyglycerides) as surfactant(S) and Transcutol P(diethyl glycol monoethyl ether) as cosurfactant(CoS) were studied as potential delivery systems of cilostazol. A number of such systems were prepared containing different S:CoS ratios(1:1, 2:1 and 3:1) based on phase diagrams. Loading of cilostazol was selected as per solubilization capacity and was characterized for pH, viscosity, conductivity, particle size, zeta potential and % transmittance. The MEs systems were further investigated for chemical stability, diffusion and bioavailability. Cilostazol displayed high solubility in microemulsions with particle size up to 70 nm. It was also stable at ambient temperature up to 6 months without significant change in particle size, zeta potential, and % transmittance. Dilution up to 100 fold with aqueous medium observed a visible cloudiness having a particle size up to 104 nm. The in vitro release, and ex vivo intraduodenal diffusion, and in vivo study indicated the capacity of developed ME to improve the bioavailability (1.43 fold) via oral route administration when compared with commercially available tablets (Pletoz-50). PMID:24274587

  10. Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion technique

    Science.gov (United States)

    Li, Haiying; Pan, Tingting; Cui, Ying; Li, Xiaxia; Gao, Jiefang; Yang, Wenzhi; Shen, Shigang

    2016-01-01

    The objective of this work was to prepare an oil/water glimepiride (GM) microemulsion (ME) for oral administration to improve its solubility and enhance its bioavailability. Based on a solubility study, pseudoternary phase diagrams, and Box–Behnken design, the oil/water GMME formulation was optimized and prepared. GMME was characterized by dynamic laser light scattering, zeta potential, transmission electron microscopy, and viscosity. The in vitro drug release, storage stability, pharmacodynamics, and pharmacokinetics of GMME were investigated. The optimized GMME was composed of Capryol 90 (oil), Cremophor RH40 (surfactant), and Transcutol (cosurfactant), and increased GM solubility up to 544.6±4.91 µg/mL. The GMME was spherical in shape. The particle size and its polydispersity index were 38.9±17.46 nm and 0.266±0.057, respectively. Meanwhile, the GMME was physicochemically stable at 4°C for at least 3 months. The short-term efficacy in diabetic mice provided the proof that blood glucose had a consistent and significant reduction at a dose of 375 µg/kg whether via IP injection or IG administration of GMME. Compared with the glimepiride suspensions or glimepiride-meglumine complex solution, the pharmacokinetics of GMME in Wistar rats via IG administration exhibited higher plasma drug concentration, larger area under the curve, and more enhanced oral bioavailability. There was a good correlation of GMME between the in vitro release values and the in vivo oral absorption. ME could be an effective oral drug delivery system to improve bioavailability of GM. PMID:27540291

  11. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability

    Directory of Open Access Journals (Sweden)

    Ma YR

    2012-02-01

    Full Text Available Yiran Ma, Xinyi Zhao, Jian Li, Qi ShenSchool of Pharmacy, Shanghai Jiao Tong University, Shanghai, ChinaAbstract: The aim of this research was to increase the oral bioavailability of daidzein by the formulations of poly(lactic-co-glycolic acid (PLGA nanoparticles loaded with daidzein. Amongst the various traditional and novel techniques of preparing daidzein-loaded PLGA nanoparticles, daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were selected. The average drug entrapment efficiency, particle size, and zeta potential of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were 81.9% ± 5%, 309.2 ± 14.0 nm, -32.14 ± 2.53 mV and 83.2% ± 7.2%, 323.2 ± 4.8 nm, -18.73 ± 1.68 mV, respectively. The morphological characterization of nanoparticles was observed with scanning electron microscopy by stereological method and the physicochemical state of nanoparticles was valued by differential scanning calorimetry. The in vitro drug-release profile of both nanoparticle formulations fitted the Weibull dynamic equation. Pharmacokinetic studies demonstrated that after oral administration of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 5.57- and 8.85-fold, respectively, compared to daidzein suspension as control. These results describe an effective strategy for oral delivery of daidzein-loaded PLGA nanoparticles and might provide a fresh approach to enhancing the bioavailability of drugs with poor lipophilic and poor hydrophilic properties.Keywords: daidzein, phospholipid complexes, cyclodextrin inclusion complexes, PLGA, nanoparticles

  12. 1H NMR Metabolomics: A New Molecular Level Tool for Assessment of Organic Contaminant Bioavailability to Earthworms in Soil

    Science.gov (United States)

    McKelvie, J. R.; Wolfe, D. M.; Celejewski, M. A.; Simpson, A. J.; Simpson, M. J.

    2009-05-01

    At contaminated field sites, the complete removal of polycyclic aromatic hydrocarbons (PAHs) is rarely achieved since a portion of these compounds remain tightly bound to the soil matrix. The concentration of PAHs in soil typically decreases until a plateau is reached, at which point the remaining contaminant is considered non- bioavailable. Numerous soil extraction techniques, including cyclodextrin extraction, have been developed to estimate contaminant bioavailability. However, these are indirect methods that do not directly measure the response of organisms to chemical exposure in soil. Earthworm metabolomics offers a promising new way to directly evaluate the bioavailability and toxicity of contaminants in soil. Metabolomics involves the measurement of changes in small-molecule metabolites, including sugars and amino acids, in living organisms due to an external stress, such as contaminant exposure. The objective of this study was to compare cyclodextrin extraction of soil (a bioavailability proxy) and 1H NMR metabolomic analysis of aqueous earthworm tissue extracts as indicators of contaminant bioavailability. A 30 day laboratory experiment was conducted using phenanthrene-spiked sphagnum peat soil and the OECD recommended earthworm species for toxicity testing, Eisenia fetida. The initial phenanthrene concentration in the soil was 320 mg/kg. Rapid biodegradation of phenanthrene occurred and concentrations decreased to 16 mg/kg within 15 days. After 15 days, phenanthrene biodegradation slowed and cyclodextrin extraction of the soil suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of the 1H NMR spectra for E. fetida tissue extracts indicated that the metabolic profile of phenanthrene exposed earthworms differed from control earthworms throughout the 30 day experiment. This suggests that the residual phenanthrene remaining in the soil after 15 days continued to elicit a metabolic response, even though it was not

  13. Bioaccessibility and bioavailability of methylmercury from seafood commonly consumed in North America: In vitro and epidemiological studies.

    Science.gov (United States)

    Siedlikowski, Maia; Bradley, Mark; Kubow, Stan; Goodrich, Jaclyn M; Franzblau, Alfred; Basu, Niladri

    2016-08-01

    Methylmercury (MeHg) is a global contaminant of concern and human exposures are largely realized via seafood consumption. While it is assumed that 95-100% of the ingested MeHg from seafood reaches systemic circulation, recent in vitro studies have yielded results to suggest otherwise. Of the published studies to have characterized the bioaccessibility or bioavailability of MeHg from seafood, only a handful of seafood species have been characterized, there exists tremendous variability in data within and across species, few species of relevance to North America have been studied, and none of the in vitro studies have adapted results to an epidemiology study. The objective of the current study was two-fold: (a) to characterize in vitro MeHg bioaccessibility and bioavailability from ten commonly consumed types of seafood in North America; and (b) to apply the bioaccessibility and bioavailability data from the in vitro study to an existing human MeHg exposure assessment study. Raw seafood samples (cod, crab, halibut, salmon, scallop, shrimp, tilapia, and three tuna types: canned light, canned white, fresh) were purchased in Montreal and their MeHg concentrations generally overlapped with values reported elsewhere. The bioaccessibility of MeHg from these samples ranged from 50.1±19.2 (canned white tuna) to 100% (shrimp and scallop) of the amount measured in the raw undigested sample. The bioavailability of MeHg from these samples ranged from 29.3±10.4 (crab) to 67.4±9.7% (salmon) of the value measured in the raw undigested sample. There were significant correlations between the initial MeHg concentration in seafood with the percent of that Hg that was bioaccessible (r=-0.476) and bioavailable (r=-0.294). When the in vitro data were applied to an existing MeHg exposure assessment study, the estimated amount of MeHg absorbed into systemic circulation decreased by 25% and 42% when considering bioaccessibility and bioavailability, respectively. When the in vitro data

  14. Improving Oral Bioavailability of Sorafenib by Optimizing the "Spring" and "Parachute" Based on Molecular Interaction Mechanisms.

    Science.gov (United States)

    Liu, Chengyu; Chen, Zhen; Chen, Yuejie; Lu, Jia; Li, Yuan; Wang, Shujing; Wu, Guoliang; Qian, Feng

    2016-02-01

    Sorafenib is a clinically important oral tyrosine kinase inhibitor for the treatment of various cancers. However, the oral bioavailability of sorafenib tablet (Nexavar) is merely 38-49% relative to the oral solution, due to the low aqueous solubility of sorafenib and its relatively high daily dose. It is desirable to improve the oral bioavailability of sorafenib to expand the therapeutic window, reduce the drug resistance, and enhance patient compliance. In this study, we observed that the solubility of sorafenib could be increased ∼50-fold in the coexistence of poly(vinylpyrrolidone-vinyl acetate) (PVP-VA) and sodium lauryl sulfate (SLS), due to the formation of PVP-VA/SLS complexes at a lower critical aggregation concentration. The enhanced solubility provided a faster initial sorafenib dissolution rate, analogous to a forceful "spring" to release drug into solution, from tablets containing both PVP-VA and SLS. However, SLS appears to impair the ability of PVP-VA to act as an efficient "parachute" to keep the drug in solution and maintain drug supersaturation. Using 2D (1)H NMR, (13)C NMR, and FT-IR analysis, we concluded that the solubility enhancement and supersaturation of sorafenib were achieved by PVP-VA/SLS complexes and PVP-VA/sorafenib interaction, respectively, both through molecular interactions hinged on the PVP-VA VA groups. Therefore, a balance between "spring" and "parachute" must be carefully considered in formulation design. To confirm the in vivo relevance of these molecular interaction mechanisms, we prepared three tablet formulations containing PVP-VA alone, SLS alone, and PVP-VA/SLS in combination. The USP II in vitro dissolution and dog pharmacokinetic in vivo evaluation showed clear differentiation between these three formulations, and also good in vitro-in vivo correlation. The formulation containing PVP-VA alone demonstrated the best bioavailability with 1.85-fold and 1.79-fold increases in Cmax and AUC, respectively, compared with the

  15. Surfactant-like compounds enhance the bioavailability of organic contaminants: Treatability results for a field demonstration

    International Nuclear Information System (INIS)

    Methods to enhance rates of trichloroethylene (TCE) biodegradation were investigated during laboratory treatability studies in support of a field demonstration. Several commercially available nutrients with surfactant-like properties were assayed for their effect on enhancing TCE bioavailability and rates of degradation in soils with high clay content. The bacteria assayed were Methylosinus trichosporium OB3b (a methanotroph) and a heterotrophic consortium isolated from TCE saturated water. Several surfactants were added to 1 gram of site soil with the bacteria. Laboratory results showed that samples containing even low concentrations of surfactant compounds exhibited increased TCE partitionining into the liquid phase from the headspace, which correlated with an enhanced degradation rate

  16. The Aminopeptidase Inhibitor CHR-2863 Is an Orally Bioavailable Inhibitor of Murine Malaria

    OpenAIRE

    Skinner-Adams, Tina S.; Peatey, Christopher L.; Anderson, Karen; Trenholme, Katharine R.; Krige, David; Christopher L. Brown; Stack, Colin; Nsangou, Desire M. M.; Mathews, Rency T.; Thivierge, Karine; Dalton, John P; GARDINER, DONALD L.

    2012-01-01

    Malaria remains a significant risk in many areas of the world, with resistance to the current antimalarial pharmacopeia an ever-increasing problem. The M1 alanine aminopeptidase (PfM1AAP) and M17 leucine aminopeptidase (PfM17LAP) are believed to play a role in the terminal stages of digestion of host hemoglobin and thereby generate a pool of free amino acids that are essential for parasite growth and development. Here, we show that an orally bioavailable aminopeptidase inhibitor, CHR-2863, is...

  17. Synthesis of novel iodinated derivatives of nonoxynol-9 and their bioavailability in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Philip T.; Matsumoto, Kazuya; Page, Richard C.; Digenis, George A. E-mail: digenis@pop.uky.edu

    2002-10-01

    The absorption and distribution of iodinated derivatives of nonoxynol-9, after vaginal administration in rats, were compared with results reported for [{sup 14}C] nonoxynol-9. Mono-iodinated nonoxynol-9 was synthesized in addition to the radiolabeled derivative incorporating iodide-125 ([{sup 125}I]). Six hours after dosing, test rats were euthanized and selected tissues were excised and assessed for radioactivity. Levels of radioactive markers in the reproductive system were substantial for both [{sup 14}C] and [{sup 125}I]. It was concluded that [{sup 125}I] mono-iodinated nonoxynol-9 and [{sup 14}C] nonoxynol-9 possessed similar bioavailability.

  18. Assessment of polymorphic metabolite data in bioavailability/bioequivalence studies - considerations and challenges

    Directory of Open Access Journals (Sweden)

    Nuggehally R Srinivas

    2011-01-01

    Full Text Available Bioavailability (BA/ bioequivalence (BE studies are the cornerstone for the approval of generic drugs. While BA/BE assessment involving the pharmacokinetic data of the parent compound has been routinely performed, the introduction of the assessment of metabolite(s data, alone or in addition to parent compound, has also emerged. In this context, the assessment of BA/BE of metabolite(s may pose additional complexities and challenges, if the metabolic pathway is under the influence of a polymorphic enzyme. This communication provides brief perspectives on the challenges and study design considerations for the assessment of polymorphic metabolite in BA/BE studies.

  19. Relative bioavailability of soil-bound polychlorinated biphenyls in lactating goats.

    Science.gov (United States)

    Feidt, Cyril; Ounnas, Fayçal; Julien-David, Diane; Jurjanz, Stefan; Toussaint, Hervé; Jondreville, Catherine; Rychen, Guido

    2013-06-01

    Livestock may be exposed to organic pollutants via ingestion of contaminated matrices such as fodder or soil. The question on contribution of soil-bound polychlorinated biphenyls (PCB) to livestock exposure was not yet considered. The aim of this study was to assess the relative bioavailability of soil-bound PCB by assessing milk excretion of indicator PCB (I-PCB) after ingestion by goats of graded levels of PCB (mainly PCB forms 153, 180, and 138) in soil-contaminated feeds or in oil-contaminated feeds. Eight multiparous Alpine goats were grouped in 4 pairs on the basis of body weight and milk yield. In each pair, one goat was assigned to the soil feeds and the other one to the oil feeds. The experiment consisted of a 7-d adaptation period, followed by a 96-d exposure period. The exposure period was divided into 3 successive 32-d periods during which each goat received either 3 soil feeds or 3 oil feeds, distributed in increasing rank of contamination. During the last week of each 32-d period, milk from each goat was collected during 3 successive 24-h periods, stored at -20°C, and freeze dried before analysis (extraction by accelerated solvent extraction, followed by gas chromatography-mass spectrometry analysis). Bioavailability of I-PCB from soil or spiked oil feeds was estimated by means of the slope-ratio method from I-PCB concentration in milk in response to ingested I-PCB. Relative bioavailability was found to vary from 36 to 50% for PCB 118, 138, and 153 and it was 73% for PCB 180. When considered globally, the response obtained with the I-PCB was estimated to 51%. Relative bioavailability was not established for PCB 52 and 101, compounds known to be readily cleared and showing low concentrations in milk. For PCB 28, no significant interaction was found between matrix and dose. This experiment reveals that PCB bound to soil are potentially liberated from soil during the digestive process and may undergo absorption, distribution, metabolism, and excretion

  20. Characterization and Bioavailability of Wogonin by Different Administration Routes in Beagles

    Science.gov (United States)

    Zhu, Na; Li, Jian-chun; Zhu, Jin-xiu; Wang, Xiu; Zhang, Jin

    2016-01-01

    Background With the gradually accumulating research on pharmacological activity of wogonin, the in vitro analysis research on wogonin has become more and more popular, but there are very few reports about in vivo detection, and there are no solid dispersions (SDs) of Wogonin. The aim of this study was to explore the formation of solid dispersions (SDs) of wogonin. The reasons for the low bioavailability were studied through different routes of administration. Material/Methods SDs was formulated using the solvent evaporation method via polyvinylpyrrolidone K30 (PVP). The characterization of the drug and its carrier was detected by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The serum concentrations of Wogonin were detected using the LC-MS/MS method. Six beagles were fed 3 different formulations of wogonin in 3 cycles. Results The SDs of wogonin had a higher solubility than the physical mixtures. Based on XRD and DSC, wogonin was transformed from a crystalline morphology to an amorphous structure. The main pharmacokinetic parameters of i.g. administration (crude material and SD) and i.v. route were as follows: Cmax (2.5±1.1), (7.9±3.3), and (6838.7±1322.1) μg/L, tmax (0.7±0.3) and (0.3±0.2) h for the former, AUC0-t (7.1±2.0), (21.0±3.2) and (629.7±111.8) μg·h/L. The absolute bioavailability of native wogonin and wogonin arginine solution were (0.59±0.35)% and (3.65±2.60)%. Further research showed that the low bioavailability of wogonin might be associated with low solubility and rapid combination with glucuronic acid in vivo. Conclusions The significantly increased solubility of SDs and the further preparation of arginine solution could significantly increase the bioavailability of wogonin. PMID:27744456

  1. Bioavailability of zinc and phosphorus in calcareous soils as affected by citrate exudation

    OpenAIRE

    Duffner, A.; Hoffland, E.; Temminghoff, E. J. M.

    2012-01-01

    Aims Zinc (Zn) and phosphorus (P) deficiency often occurs at the same time and limits crop production in many soils. It has been suggested that citrate root exudation is a response of plants to both deficiencies. We used white lupin (Lupinus albus L.) as a model plant to clarify if citrate exuded by roots could increase the bioavailability of Zn and P in calcareous soils. Methods White lupin was grown in nutrient solution and in two calcareous soils in a rhizobox. Rhizosphere soil solution wa...

  2. Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria

    OpenAIRE

    Olesja Bondarenko; Taisia Rõlova; Anne Kahru; Angela Ivask

    2008-01-01

    A set of nine recombinant heavy metal-specific luminescent bacterial sensors belonging to Gram-negative (Escherichia and Pseudomonas) and Gram-positive (Staphylococcus and Bacillus) genera and containing various types of recombinant metalresponse genetic elements was characterized for heavy metal bioavailability studies. All nine strains were induced by Hg and Cd and five strains also by Zn. As a lowest limit, the sensors were detecting 0.03 μg·L-1 of Hg, 2 μg·L-1 of Cd and 400 Î...

  3. Bioavailability of Phosphorus in Two Cultivars of Pea for Broiler Chicks

    OpenAIRE

    Woyengo, T. A.; Emiola, I. A.; Kim, I. H.; Nyachoti, C. M.

    2016-01-01

    The aim was to determine the relative bioavailability of phosphorus (P) in peas for 21-day old broiler chickens using slope-ratio assay. One hundred and sixty eight male Ross 308 broiler chicks were divided into 42 groups 4 balanced for body weight and fed 7 diets in a completely randomized design (6 groups/diet) from day 1 to 21 of age. The diets were a corn-soybean meal basal diet, and the corn-soybean meal basal diet to which monosodium phosphate, brown- or yellow-seeded pea was added at t...

  4. Runoff rates, chemical speciation and bioavailability of copper released from naturally patinated copper.

    Science.gov (United States)

    Karlén, C; Wallinder, I Odnevall; Heijerick, D; Leygraf, C

    2002-01-01

    The release of copper, induced by atmospheric corrosion, from naturally patinated copper of varying age (0 and 30 years) has been investigated together with its potential ecotoxic effect. Results were generated in an interdisciplinary research effort in which corrosion science and ecotoxicology aspects were combined. The aim of the investigation was to elucidate the situation when copper-containing rainwater leaves a roof in terms of runoff rate, chemical speciation, bioavailability and ecotoxicity effects. Data have been collected during a three-year field exposure conducted in the urban environment of Stockholm, Sweden. The potential environmental effects have been evaluated using a combination of a copper specific biosensor test with the bacterium Alcaligenes eutrophus and the conventional 72-h growth inhibition test with the green alga Raphidocelis subcapitata. The results show annual runoff rates between 1.0 and 1.5 g/m2 year for naturally patinated copper of varying age. The runoff rate increased slightly with patina age, which mainly is attributed to the enhanced first flush effect observed on thicker patina layers. The total copper concentration in investigated runoff samplings ranged from 0.9 to 9.7 mg/l. Both computer modeling and experimental studies revealed that the majority (60-100%) of released copper was present as the free hydrated cupric ion, Cu(H2O)6(2+), the most bioavailable copper species. However, other copper species in the runoff water, such as, e.g. Cu(OH)+ and Cu2(OH)2(2+), were also bioavailable. The copper-containing runoff water, sampled directly after release from the roof, caused significant reduction in growth rate of the green alga. It should be emphasized that the results describe the runoff situation immediately after release from the copper roof and not the real environmental ecotoxicity. Therefore the data should only be used as an initial assessment of the potential environmental effect of copper runoff from building

  5. Effect of organic amendments and mineral fertilizer on zinc bioavailability, plant content and translocation

    Science.gov (United States)

    Chami, Ziad Al; Cavoski, Ivana; Mondelli, Donato; Miano, Teodoro

    2013-04-01

    Organic matter plays a key role in heavy metal bioavailability through changes in soil chemical characteristics, and by its metal-chelating ability, the latter being one of the most important factors controlling the mobility and bioavailability of heavy metals in the soil-plant system. In this research, rocket (Eruca vesicaria L. Cavalieri), a common edible plant species in the Mediterranean regions, was used as bio-indicator to evaluate the effect of different organic amendments on Zn toxicity, absorption, and translocation. The main objectives of this study were to investigate the bioavailability of Zn in an artificially contaminated soil after the addition of compost, manure and chemical fertilizers at agronomically recommended doses and to evaluate their ability to reduce Zn concentration in the edible plant part. A greenhouse pots experiment was carried out using rocket plant grown on an artificially contaminated soil. In this study, the effect of compost, manure and chemical fertilizers on Zn fate in a soil-plant system was evaluated. At the end of the experiment main growth parameters and Zn content in plants were determined. In addition, Zn speciation in the soil was assessed using the original BCR sequential extraction and the DTPA extraction. The overall assessment of experimental results is that compost, followed by chemical fertilizers treatments, was the most efficient in enhancing plant growth and decreasing metal toxicity and concentrations in plant tissues. Manure amendments increased plant Zn content and toxicity in rocket plants. In the case of compost treatment, this effect can be attributed to the humified OM present in compost; while the negative effect of manure is due to its content in low molecular weight organic acids. The effect of chemical fertilizers treatment could be attributed to the addition of P fertilizer in soluble and highly available forms to the plants. On the contrary, using DTPA and BCR sequential extraction procedure, all

  6. Bioavailability of ambroxol sustained release preparations. Part II: Single and multiple oral dose studies in man.

    Science.gov (United States)

    Janssen, T J; Guelen, P J; Vree, T B; Botterblom, M H; Valducci, R

    1988-01-01

    The bioavailability of a new ambroxol sustained release preparation (75 mg) based on a dialyzing membrane for controlled release was studied in healthy volunteers after single and multiple oral dose in comparison with a standard sustained release formulation in a cross-over study under carefully controlled conditions. Plasma concentrations of ambroxol were measured by means of a HPLC method. Based on AUC data both preparations are found to be bioequivalent, but show different plasma concentration profiles. The test preparation showed a more pronounced sustained release profile than the reference preparation (single dose) resulting in significantly higher steady state plasma levels. PMID:3365282

  7. DNA Microspheres Coated with Bioavailable Polymer as an Efficient Gene Expression Agent in Yeasts

    Directory of Open Access Journals (Sweden)

    Irena Reytblat

    2016-01-01

    Full Text Available Gene delivery is one of the steps necessary for gene therapy and for genetic modification. However, delivering DNA into cells is challenging due to its negative charge that leads to repulsion by the negative cell membrane. In the current research, DNA spheres with a DNA encoding to a certain gene were coated with bioavailable polymers, polyethylene imine (PEI and polycaprolactone (PCL, in a short, one-step sonochemical reaction. The polymers were used in order to neutralize the negative charge of the DNA. Our study shows that the DNA nanospheres not only managed to penetrate the cell without causing it any damage, but also expressed the desired gene inside it.

  8. Improving the Bioavailability of Seed Phosphorous in Low Phytic Acid Soybean Mutants

    OpenAIRE

    Ashok Badigannavar and J. G. Manjaya

    2012-01-01

    Phytic acid, the heat stable anti-nutritional factor forms 75% of the total Phosphorous (P) in soybean seeds. It acts as strong chelatingagent binding to metal ions reducing the bioavailability of Fe, Zn, Mg and Ca in human and non-ruminant livestock. In the presentstudy, 106 soybean germplasm lines were screened to estimate the seed phytate. It ranged from 0.16 to 4.741mg per g soy flour. Highyielding, low phytate cultivar were selected and subjected to 250 Gy gamma ray irradiation. In M3 ge...

  9. Enhanced Lacto-Tri-Peptide Bio-Availability by Co-Ingestion of Macronutrients.

    Directory of Open Access Journals (Sweden)

    Gabriella A M Ten Have

    Full Text Available Some food-derived peptides possess bioactive properties, and may affect health positively. For example, the C-terminal lacto-tri-peptides Ile-Pro-Pro (IPP, Leu-Pro-Pro (LPP and Val-Pro-Pro (VPP (together named here XPP are described to lower blood pressure. The bioactivity depends on their availability at the site of action. Quantitative trans-organ availability/kinetic measurements will provide more insight in C-terminal tri-peptides behavior in the body. We hypothesize that the composition of the meal will modify their systemic availability. We studied trans-organ XPP fluxes in catheterized pigs (25 kg; n=10 to determine systemic and portal availability, as well as renal and hepatic uptake of a water-based single dose of synthetic XPP and a XPP containing protein matrix (casein hydrolyte, CasH. In a second experiment (n=10, we compared the CasH-containing protein matrix with a CasH-containing meal matrix and the modifying effects of macronutrients in a meal on the availability (high carbohydrates, low quality protein, high fat, and fiber. Portal availability of synthetic XPP was 0.08 ± 0.01% of intake and increased when a protein matrix was present (respectively 3.1, 1.8 and 83 times for IPP, LPP and VPP. Difference between individual XPP was probably due to release from longer peptides. CasH prolonged portal bioavailability with 18 min (absorption half-life, synthetic XPP: 15 ± 2 min, CasH: 33 ± 3 min, p<0.0001 and increased systemic elimination with 20 min (synthetic XPP: 12 ± 2 min; CasH: 32 ± 3 min, p<0.0001. Subsequent renal and hepatic uptake is about 75% of the portal release. A meal containing CasH, increased portal 1.8 and systemic bioavailability 1.2 times. Low protein quality and fiber increased XPP systemic bioavailability further (respectively 1.5 and 1.4 times. We conclude that the amount and quality of the protein, and the presence of fiber in a meal, are the main factors that increase the systemic bioavailability of food

  10. Time and moisture effects on total and bioavailable copper in soil water extracts

    DEFF Research Database (Denmark)

    Tom-Petersen, Andreas; Hansen, H.C.B.; Nybroe, O.

    2004-01-01

    between total metal content and metal toxicity calls for integrated chemical and biological analysis. The aim of this work was to determine time- and moisture-dependent changes in total water-extractable Cu as well as bioavailable Cu in soil water extracts. Measurements of total water-extractable copper...... to increase with time. The moisture content of the soil was important for Cu retention. Dry soil had higher [Cu](tot) concentrations than humid soil, but the [Cu](bio) to [Cu](tot) ratio was lower in the dry soil. Alternating drying and wetting did not lead to a more rapid Cu retention than observed under...

  11. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics

    Directory of Open Access Journals (Sweden)

    Ahmed OA

    2015-01-01

    Full Text Available Osama AA Ahmed,1,2 Khaled M Hosny,1,3 Majid M Al-Sawahli,1,4 Usama A Fahmy11Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 4Holding Company for Biological Products & Vaccines (VACSERA, Cairo, EgyptAbstract: The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid–liquid phase separation method, according to the Box–Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1, ethanol concentration (X2, and caseinate concentration (X3. The selected dependent variables were mean particle size (Y1, SMV encapsulation efficiency (Y2, and cumulative percentage of drug permeated after 1 hour (Y3. The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability

  12. Addition of contaminant bioavailability and species susceptibility to a sediment toxicity assessment: Application in an urban stream in China

    International Nuclear Information System (INIS)

    Sediments collected from an urban creek in China exhibited high acute toxicity to Hyalella azteca with 81.3% of sediments being toxic. A toxic unit (TU) estimation demonstrated that the pyrethroid, cypermethrin, was the major contributor to toxicity. The traditional TU approach, however, overestimated the toxicity. Reduced bioavailability of sediment-associated cypermethrin due to sequestration explained the overestimation. Additionally, antagonism among multiple contaminants and species susceptibility to various contaminants also contributed to the unexpectedly low toxicity to H. azteca. Bioavailable TUs derived from the bioavailability-based approaches, Tenax extraction and matrix-solid phase microextraction (matrix-SPME), showed better correlations with the noted toxicity compared to traditional TUs. As the first successful attempt to use matrix-SPME for estimating toxicity caused by emerging insecticides in field sediment, the present study found freely dissolved cypermethrin concentrations significantly improved the prediction of sediment toxicity to H. azteca compared to organic carbon normalized and Tenax extractable concentrations. Highlights: •Over 80% sediments from an urban stream in China were acutely toxic to H. azteca. •Toxic unit analysis showed cypermethrin was the major contributor to toxicity. •The traditional toxic unit approach overestimated sediment toxicity. •Reduced bioavailability was the reason for overestimating sediment toxicity. Freely dissolved cypermethrin concentrations greatly improved toxicity prediction. -- Field sediment toxicity caused by current-use pesticides could be more accurately evaluated by incorporating bioavailability measurements into the toxic unit analysis

  13. Improving the relationship between soil characteristics and metal bioavailability by using reactive fractions of soil parameters in calcareous soils.

    Science.gov (United States)

    de Santiago-Martín, Ana; van Oort, Folkert; González, Concepción; Quintana, José R; Lafuente, Antonio L; Lamy, Isabelle

    2015-01-01

    The contribution of the nature instead of the total content of soil parameters relevant to metal bioavailability in lettuce was tested using a series of low-polluted Mediterranean agricultural calcareous soils offering natural gradients in the content and composition of carbonate, organic, and oxide fractions. Two datasets were compared by canonical ordination based on redundancy analysis: total concentrations (TC dataset) of main soil parameters (constituents, phases, or elements) involved in metal retention and bioavailability; and chemically defined reactive fractions of these parameters (RF dataset). The metal bioavailability patterns were satisfactorily explained only when the RF dataset was used, and the results showed that the proportion of crystalline Fe oxides, dissolved organic C, diethylene-triamine-pentaacetic acid (DTPA)-extractable Cu and Zn, and a labile organic pool accounted for 76% of the variance. In addition, 2 multipollution scenarios by metal spiking were tested that showed better relationships with the RF dataset than with the TC dataset (up to 17% more) and new reactive fractions involved. For Mediterranean calcareous soils, the use of reactive pools of soil parameters rather than their total contents improved the relationships between soil constituents and metal bioavailability. Such pool determinations should be systematically included in studies dealing with bioavailability or risk assessment. PMID:25318656

  14. Improving oral bioavailability of metformin hydrochloride using water-in-oil microemulsions and analysis of phase behavior after dilution.

    Science.gov (United States)

    Li, Yuan; Song, Jiaqi; Tian, Ning; Cai, Jie; Huang, Meihong; Xing, Qiao; Wang, Yalong; Wu, Chuanbin; Hu, Haiyan

    2014-10-01

    Microemulsions show significant promise for enhancing the oral bioavailability of biopharmaceutics classification system (BCS) class II drugs, but how about class III drugs remains unclear. Here we employed metformin hydrochloride (MET) as the model drug and prepared drug-loaded water-in-oil (W/O) microemulsions selecting different hydrophile-lipophile balance (HLB) surfactant systems, using HLB 8 as a cut-off. We examined the phase behaviors of microemulsions after dilution and attempted to correlate these behaviors to drug oral bioavailability. ME-A, including a lower content of surfactants (35%), underwent a transition of W/O emulsion and then became a stable O/W emulsion in a light milky appearance; ME-B, in contrast, introducing a higher content of surfactants (45%), still remained transparent or semitransparent upon dilution. Unexpectedly, ME-A showed significantly higher oral bioavailability, which can be reduced by blocking the lymphatic absorption pathway. Comparatively, the AUC of ME-B is lower, close to MET solution. Both microemulsions behaved similarly in intestinal perfusion test because of the dilution before perfusion, lacking of the important phase transition of W/O emulsion. These findings suggest that W/O microemulsions improve oral bioavailability of BCS class III drug by promoting lymphatic absorption. Analyzing the phase behavior of microemulsions after dilution may help predict the drug oral bioavailability and optimize formulations.

  15. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    Science.gov (United States)

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  16. Effects of root exudates on the leachability, distribution, and bioavailability of phenanthrene and pyrene from mangrove sediments.

    Science.gov (United States)

    Jia, Hui; Lu, Haoliang; Liu, Jingchun; Li, Jian; Dai, Minyue; Yan, Chongling

    2016-03-01

    In this study, column leaching experiments were used to evaluate the leachability, distribution and bioavailability of phenanthrene and pyrene by root exudates from contaminated mangrove sediments. We observed that root exudates significantly promoted the release and enhanced the bioavailability of phenanthrene and pyrene from sediment columns. The concentration of phenanthrene and pyrene and cumulative content released from the analyzed sediment samples following root exudate rinsing decreased in the following order: citric acid > oxalic acid > malic acid. After elution, the total concentrations of phenanthrene and pyrene in sediment layers followed a descending order of bottom (9-12 cm) > middle (5-7 cm) > top (0-3 cm). Furthermore, a positive correlation between leachate pH values and PAH concentrations of the leachate was found. Consequently, the addition of root exudates can increase the leachability and bioavailability of phenanthrene and pyrene. PMID:26573317

  17. Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models.

    Science.gov (United States)

    Serra, Aida; Macià, Alba; Romero, Maria-Paz; Valls, Josep; Bladé, Cinta; Arola, Lluís; Motilva, Maria-José

    2010-04-01

    Among procyanidins (PC), monomers, such as catechin and epicatechin, have been widely studied, whereas dimer and trimer oligomers have received much less attention, despite their abundance in our diet. Recent studies have showed that as dimers and trimers could be important in determining the biological effects of procyanidin-rich food, understanding their bioavailability and metabolism is fundamental. The purpose of the present work is to study the stability of PC under digestion conditions, the metabolism and the bioavailability by using a combination of in vitro and in vivo models. Simultaneously, the matrix effect of a carbohydrate-rich food on the digestibility and bioavailability of PC is investigated. The results show a high level of stability of PC under gastric and duodenal digestion conditions. However, the pharmacokinetic study revealed limited absorption. Free forms of dimers and trimers have been detected in rat plasma, reaching the maximum concentration 1 h after oral intake of a grape seed extract.

  18. Mean apical concentration and duration in the comparative bioavailability of slowly absorbed and eliminated drug preparations.

    Science.gov (United States)

    Pollak, P T; Freeman, D J; Carruthers, S G

    1988-06-01

    Present criteria for comparing bioavailability are inadequate when the Cmax and tmax cannot be reliably identified in individual subjects. Drug formulations which are slowly absorbed and eliminated have concentration-time profiles with a broad apex, increasing the likelihood that samples taken at the apical region of the curve will have statistically indistinguishable concentrations. Using data from a study of three dosage forms of piroxicam, we propose an alternative approach which decreases the influence of sampling bias and analytical error on the identification of the apex of the concentration-time curve and provides a simple tool for describing the shape of the curve around the apex. An adequate frequency of sampling around the expected apex of the concentration-time curve and consideration of the coefficient of variation (CV) of the analytical assay when assessing the observed Cmax are used in defining new parameters. This approach may be useful for studying the relationship of onset and duration of maximal plasma concentration to the efficacy and toxicity of drugs and in developing standards for comparing the bioavailability of slow-release preparations, which is of increasing interest to pharmaceutical companies and regulatory agencies. PMID:3171924

  19. Influence of dispersants on petroleum bioavailability in a marine food chain

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, M.F.; Younghans-Haug, C.O.; Tjeerdema, R.S. [Univ. of California, Santa Cruz, CA (United States); Sowby, M.L. [Office of Oil Spill Prevention and Response, Sacramento, CA (United States)

    1994-12-31

    Oil spills represent a serious threat to marine organisms. Crude oil consists of numerous compounds with a wide range of physicochemical properties critical in determining those organisms at greatest risk. Surface inhabitants may benefit from the application of dispersing agents, yet little is understood of the disposition of the dispersed components of a spill. As the functional water solubility of petroleum hydrocarbons increases in the water column, the portion that is available for uptake may also increase, placing another group of organisms at risk. Potential increases in adsorption and bioaccumulation may extend the threat of oil spills from marine organisms to human consumers. Studies to date have focused on the acute toxicity of oil and dispersants. The objective of this research was to determine the influence of a dispersant on the bioavailability of crude oil components at concentrations below the no observable effect level (NOEL). Flow-through chambers were used to expose the algae, Isochrysis galbana, to ``undispersed`` Prudhoe Bay Crude Oil (PBCO) spiked with {sup 14}C naphthalene and ``dispersed`` spiked PBCO/Corexit 9527 sea water preparations. Bioavailability to Isochrysis was assessed as uptake, bioconcentration, and deputation of {sup 14}C naphthalene and its metabolites. Results of exposure studies will be presented.

  20. Influence of dispersants on petroleum bioavailability to primary producers in a brackish water food chain

    Energy Technology Data Exchange (ETDEWEB)

    Younghans-Haug, C.O.; Wolfe, M.F.; Tjeerdema, R.S. [Univ. of California, Santa Cruz, CA (United States). Dept. of Chemistry and Biochemistry; Sowby, M.L. [Office of Oil Spill Prevention and Response, Sacramento, CA (United States)

    1994-12-31

    Petroleum is transported and processed within biologically rich brackish environments worldwide. Past research has investigated disposition of chemically dispersed oil in mammals, fish, and higher invertebrates, yet little is known about how chemical dispersion influences petroleum behavior within primary producers within brackish water food chains. One concern is whether chemical dispersion influences petroleum bioavailability to primary producers and the potential for increased petroleum bioaccumulation. This research examines changes in petroleum bioavailability to the euryhaline phytoplankton Isochrysis galbana by measuring bioconcentration factors (BCFS) including uptake and deputation rates for dispersed and undispersed brackish water oil spills. Isochrysis is a major food source for zooplankton which are consumed by a multitude of larval fish having both ecological and commercial importance. Prudhoe Bay Crude oil, Corexit 9527, and {sup 14}C-naphthalene were used for these studies. Constant-concentration flow-through exposures were employed for the uptake and BCF experiments. Work was performed below the ``no observable effect concentration`` to eliminate stress-induced metabolic altercations that could in themselves influence petroleum behavior. Exposure chamber and experimental design will be discussed, and study results presented. Understanding how chemical dispersion alters petroleum behavior within the lowest levels of the food chain leads to better delineation of consumer risks.

  1. Novel curcumin diclofenac conjugate enhanced curcumin bioavailability and efficacy in streptococcal cell wall-induced arthritis

    Directory of Open Access Journals (Sweden)

    S K Jain

    2014-01-01

    Full Text Available Curcumin-diclofenac conjugate as been synthesized by esterification of phenolic group of curcumin with the acid moiety of diclofenac, and characterized by mass spectrometry, NMR, FTIR, DSC, thermogravimetric analysis and X-ray diffraction analysis. The relative solubility of curcumin-diclofenac conjugate, curcumin and diclofenac; stability of curcumin-diclofenac conjugate in intestinal extract; permeability study of curcumin-diclofenac conjugate using the everted rat intestinal sac method; stability of curcumin-diclofenac conjugate in gastrointestinal fluids and in vitro efficacy have been evaluated. In vivo bioavailability of curcumin-diclofenac conjugate and curcumin in Sprague-Dawley rats, and antiarthritic activity of curcumin-diclofenac conjugate, curcumin and diclofenac in modified streptococcal cell wall-induced arthritis model in Balb/c mice to mimic rheumatoid arthritis in humans have also been studied. In all of the above studies, curcumin-diclofenac conjugate exhibited enhanced stability as compared to curcumin; its activity was twice that of diclofenac in inhibiting thermal protein denaturation taken as a measure of in vitro antiinflammatory activity; it enhanced the bioavailability of curcumin by more than five folds, and significantly (P<0.01 alleviated the symptoms of arthritis in streptococcal cell wall-induced arthritis model as compared to both diclofenac and curcumin.

  2. Development of Solid Self-Emulsifying Formulation for Improving the Oral Bioavailability of Erlotinib.

    Science.gov (United States)

    Truong, Duy Hieu; Tran, Tuan Hiep; Ramasamy, Thiruganesh; Choi, Ju Yeon; Lee, Hee Hyun; Moon, Cheol; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-04-01

    To improve the solubility and oral bioavailability of erlotinib, a poorly water-soluble anticancer drug, solid self-emulsifying drug delivery system (SEDDS) was developed using solid inert carriers such as dextran 40 and Aerosil® 200 (colloidal silica). The preliminary solubility of erlotinib in various oils, surfactants, and co-surfactants was determined. Labrafil M2125CS, Labrasol, and Transcutol HP were chosen as the oil, surfactant, and co-surfactant, respectively, for preparation of the SEDDS formulations. The ternary phase diagram was evaluated to show the self-emulsifying area. The formulations were optimized using the droplet size and polydispersity index (PDI) of the resultant emulsions. Then, the optimized formulation containing 5% Labrafil M2125CS, 65% Labrasol, and 30% Transcutol was spray dried with dextran or Aerosil® and characterized for surface morphology, crystallinity, and pharmacokinetics in rats. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) exhibited the amorphous form or molecular dispersion of erlotinib in the formulations. The pharmacokinetic parameters of the optimized formulations showed that the maximum concentration (C max) and area under the curve (AUC) of erlotinib were significantly increased, compared to erlotinib powder (p < 0.05). Thus, this SEDDS could be a promising method for enhancing the oral bioavailability of erlotinib. PMID:26238806

  3. Solid self-microemulsifying dispersible tablets of celastrol: formulation development, charaterization and bioavailability evaluation.

    Science.gov (United States)

    Qi, Xiaole; Qin, Jiayi; Ma, Ning; Chou, Xiaohua; Wu, Zhenghong

    2014-09-10

    The aims of this study were to choose a suitable adsorbent of self-microemulsion and to develop a fine solid self-microemulsifying dispersible tablets for promoting the dissolution and oral bioavailability of celastrol. Solubility test, self-emulsifying grading test, droplet size analysis and ternary phase diagrams test were performed to screen and optimize the composition of liquid celastrol self-microemulsifying drug delivery system (SMEDDS). Then microcrystalline cellulose KG 802 was added as a suitable adsorbent into the optimized liquid celastrol-SMEDDS formulation to prepare the dispersible tablets by wet granulation compression method. The optimized formulation of celastrol-SMEDDS dispersible tablets was finally determinated by the feasibility of the preparing process and redispersibility. The in vitro study showed that the dispersible tablets could disperse in the dispersion medium within 3 min with the average particle size of 25.32 ± 3.26 nm. In vivo pharmacokinetic experiments of rats, the relative bioavailability of celastrol SMEDDS and SMEDDS dispersible tablets compared to the 0.4% CMC-Na suspension was 569 ± 7.07% and 558 ± 6.77%, respectively, while there were no significant difference between the SMEDDS and SMEDDS dispersible tablets. The results suggest the potential use of SMEDDS dispersible tablets for the oral delivery of poorly water-soluble terpenes drugs, such as celastrol. PMID:24929011

  4. Self-Emulsifying Drug Delivery System for Enhancing Bioavailability and Lymphatic Delivery of Tacrolimus.

    Science.gov (United States)

    Cho, Hea-Young; Choi, Ji-Hoon; Oh, In-Joon; Lee, Yong-Bok

    2015-02-01

    A self-emulsifying drug delivery system (SEDDS) containing tacrolimus has been developed to enhance the bioavailability and lymphatic delivery of tacrolimus. Solubility tests, combination tests, and phase diagrams were constructed for different sorts and ratios of oils, surfactants, and cosurfactants to identify optimal formulation. Optimized SEDDS was assessed for droplet size, zeta potential, stability in various media, and in vitro release. The tacrolimus-loaded SEDDS and commercial capsule (Prograf®) were orally administered (5 mg/kg) to rats. Whole blood, and mesenteric and axillary lymph node samples were taken and the concentrations of tacrolimus were measured to evaluate pharmacokinetic characteristics and the lymphatic delivery effects. The optimized SEDDS droplets were approximately 40 nm in size and stable enough to endure gastric pH environments. The release rate of tacrolimus from SEDDS was significantly higher than that from the commercial capsule. The bioavailability of tacrolimus in SEDDS after oral administration was significantly improved versus that of Prograf®. The lymphatic targeting efficiency of the prepared SEDDS formulation showed significantly greater than that of Prograf®. Our research indicates that prepared SEDDS can be an alternative to the conventional oral formulation of tacrolimus. Furthermore, SEDDS should be explored as a potential drug carrier for other lipophilic drugs. PMID:26353739

  5. Elemental sulfur amendment decreases bio-available Cr-VI in soils impacted by leather tanneries.

    Science.gov (United States)

    Shi, Jingjing; Chen, Hualin; Arocena, Joselito M; Whitcombe, Todd; Thring, Ronald W; Memiaghe, Jeff Nze

    2016-05-01

    This study investigated the potential use of elemental S (S(0)) to convert Cr-VI to Cr-III which should decrease the bio-availability hence, toxicity of Cr-VI in soils. The bio-available fraction of Cr in soil was measured by phosphate buffer extraction (PBE) and the results showed that the fraction is about 10% of the total Cr-VI and varied from 12.8 to 42.5 mg kg(-1). The addition of 4.0 mg g(-1) S(0) decreased PBE Cr-VI to <0.4 mg kg(-1) limit established for Cr-VI toxicity in soils. Synchrotron-based X-ray absorption near-edge structure (XANES), X-ray fluorescence (XRF) and micro-XRD revealed that Cr-III was the dominant species (99% of total Cr) and Cr was retained by hematite and goethite in soil. Fe-containing minerals may have provided sufficient protection to render the dominant Cr-III species biochemically inert to redox processes in soils. It is concluded that S(0)amendment is a promising approach to remediate Cr-VI contaminated soils. PMID:26840517

  6. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women

    Directory of Open Access Journals (Sweden)

    Sato Toshiro

    2012-11-01

    Full Text Available Abstract Background Vitamin K2 contributes to bone and cardiovascular health. Therefore, two vitamin K2 homologues, menaquinone-4 (MK-4 and menaquinone-7 (MK-7, have been used as nutrients by the food industry and as nutritional supplements to support bone and cardiovascular health. However, little is known about the bioavailability of nutritional MK-4. To investigate MK-4 and MK-7 bioavailability, nutritional doses were administered to healthy Japanese women. Findings Single dose administration of MK-4 (420 μg; 945 nmol or MK-7 (420 μg; 647 nmol was given in the morning together with standardized breakfast. MK-7 was well absorbed and reached maximal serum level at 6 h after intake and was detected up to 48 h after intake. MK-4 was not detectable in the serum of all subjects at any time point. Consecutive administration of MK-4 (60 μg; 135 nmol or MK-7 (60 μg; 92 nmol for 7 days demonstrated that MK-4 supplementation did not increase serum MK-4 levels. However, consecutive administration of MK-7 increased serum MK-7 levels significantly in all subjects. Conclusions We conclude that MK-4 present in food does not contribute to the vitamin K status as measured by serum vitamin K levels. MK-7, however significantly increases serum MK-7 levels and therefore may be of particular importance for extrahepatic tissues.

  7. Improvement of the Bioavailability and Glycaemic Metabolism of Cinnamon Oil in Rats by Liquid Loadable Tablets

    Directory of Open Access Journals (Sweden)

    Chunchao Han

    2012-01-01

    Full Text Available The purpose of this study is to investigate the bioavailability and glycaemic metabolism of cinnamon oil (CIO carried by liquid-loadable tablets (CIO-LLTs, the carrier of a CIO self-emulsifying formulation (CIO-LS. The results of tests performed to evaluate the physical properties of the CIO-LLT complied with Chinese Pharmacopeia (2010. The release profile suggested that the CIO-LLT preserved the enhancement of in vitro dissolution of cio. After orally administration, the plasma concentration-time profile and pharmacokinetic parameters suggested that a significant increase (P<0.0001 in the Cmax, AUC and F were observed in the CIO-LLT. The blood glucose and the HbA1c were significantly decreased in alloxan-induced hyperglycemic rats (P<0.05, P<0.01, resp., while the level of insulin secretion was markedly elevated in alloxan-induced hyperglycemic rats (P<0.05. The alloxan-damaged pancreatic β-cells of the rats were partly recovered gradually after the rats were administered with CIO-LLT 45 days later. CIO-LLT could improve the bioavailability and glycaemic metabolism of CIO.

  8. Determination of Quercetin and Resveratrol in Whole Blood—Implications for Bioavailability Studies

    Directory of Open Access Journals (Sweden)

    Cristina Paradisi

    2010-09-01

    Full Text Available Resveratrol (trans-3,4',5-trihydroxystilbene and quercetin (3,3’,4’,5,7-pentahydroxyflavone are two naturally occurring polyphenols with the potential to exert beneficial health effects. Since their low bioavailability is a major obstacle to biomedical applications, efforts are being made to improve their absorption and slow down phase II metabolism. An accurate evaluation of the corresponding levels in the bloodstream is important to assess delivery strategies, as well as to verify claims of efficacy based on in vitro results. In the present work we have optimized a simple method ensuring complete stabilization and extraction of resveratrol and quercetin from whole blood. The suitability of different protocols was evaluated by measuring the recovery of polyphenol and internal standard from spiked blood samples via HPLC/UV analysis. The optimized procedure ensured a satisfactory recovery of both internal standards and compounds. Comparing plasma and whole blood, up to 76% of the analyte, being associated with the cellular fraction, was unaccounted for when examining only plasma. This indicates the importance of analysing whole blood rather than plasma to avoid underestimating polyphenol absorption in bioavailability studies.

  9. Absorption, bioavailability, and metabolism of para-nonylphenol in the rat.

    Science.gov (United States)

    Green, Trevor; Swain, Cindy; Van Miller, John P; Joiner, Ronald L

    2003-08-01

    To better interpret the responses to para-nonylphenol (NP; CASRN84852-15-3) in in vivo toxicity studies, including estrogen-like activity, the bioavailability of 14C-radiolabelled NP has been determined in male and female CD rats following either single oral doses of 10 and 100 mg/kg, single i.v. doses of 10 mg/kg, or repeated daily oral doses of 10 mg/kg for up to 14 d. Up to 80% of an oral dose of NP was rapidly absorbed, the remainder being excreted unchanged in faeces. Excretion was largely complete within 24 h of dosing. Following absorption, NP was metabolised in the liver, with the majority of the metabolites excreted in bile, mainly as glucuronide conjugates. Unchanged NP was found only in bile and urine from female rats given a 100 mg/kg dose, indicating that metabolic saturation occurred. Following repeated dosing, steady state was reached within 7 d. There was no evidence of significant accumulation into tissue compartments nor of a significant change in clearance or the metabolite profiles in urine. These data suggest that the estrogen-like effects observed in toxicity studies with female rats at oral NP doses of approximately 50 mg/kg/d and greater are a result of the increased bioavailability of NP which occurs following metabolic saturation.

  10. Early effects of erythropoietin on serum hepcidin and serum iron bioavailability in healthy volunteers.

    Science.gov (United States)

    Lainé, Fabrice; Laviolle, Bruno; Ropert, Martine; Bouguen, Guillaume; Morcet, Jeff; Hamon, Catherine; Massart, Catherine; Westermann, Mark; Deugnier, Yves; Loréal, Olivier

    2012-04-01

    Hepcidin regulates plasma iron bioavailability and subsequently iron availability for erythropoiesis. rHuEPO has been reported to decrease hepcidin expression in case of repeated subcutaneous injections. Thus, hepcidin level measurement could be a candidate marker for detection of rHuEPO abuse. However, when used for doping, rHuEPO can be injected intravenously and the scheme of injection is unknown. Our aim was to evaluate the early effects of a single intravenous rHuEPO injection on serum hepcidin levels. Fourteen male healthy volunteers received one intravenous injection of 50 U/Kg of rHuEPO during a placebo-controlled, randomized, double-blind, cross-over study. Serum hepcidin, quantified by a competitive ELISA method and iron parameters was then evaluated for 24 h. Serum levels of hepcidin were significantly increased 4 h after rHuEPO injection when compared with placebo injection (78.3 ± 55.5 vs. 57.5 ± 34.6 ng/ml, respectively; +36%, p recombinant EPO induces a precocious and transient increase of serum hepcidin leading to a transient decrease of iron bioavailability. The transitory increase and dynamics of its concentration make difficult the practical use of hepcidin to detect rHuEPO doping. PMID:21818622

  11. A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures

    Science.gov (United States)

    Croteau, M.-N.; Dybowska, A.D.; Luoma, S.N.; Valsami-Jones, E.

    2011-01-01

    If engineered nanomaterials are released into the environment, some are likely to end up associated with the food of animals due to aggregation and sorption processes. However, few studies have considered dietary exposure of nanomaterials. Here we show that zinc (Zn) from isotopically modified 67ZnO particles is efficiently assimilated by freshwater snails when ingested with food. The 67Zn from nano-sized 67ZnO appears as bioavailable as 67Zn internalized by diatoms. Apparent agglomeration of the zinc oxide (ZnO) particles did not reduce bioavailability, nor preclude toxicity. In the diet, ZnO nanoparticles damage digestion: snails ate less, defecated less and inefficiently processed the ingested food when exposed to high concentrations of ZnO. It was not clear whether the toxicity was due to the high Zn dose achieved with nanoparticles or to the ZnO nanoparticles themselves. Further study of exposure from nanoparticles in food would greatly benefit assessment of ecological and human health risks. ?? 2011 Informa UK, Ltd.

  12. Mapping and prediction of Coal Workers' Pneumoconiosis with bioavailable iron content in the bituminous coals

    Science.gov (United States)

    Huang, X.; Li, W.; Attfield, M.D.; Nadas, A.; Frenkel, K.; Finkelman, R.B.

    2005-01-01

    Based on the first National Study of Coal Workers' Pneumoconiosis (CWP) and the U.S. Geological Survey database of coal quality, we show that the prevalence of CWP in seven coal mine regions correlates with levels of bioavailable iron (BAI) in the coals from that particular region (correlation coefficient r = 0.94, p < 0.0015). CWP prevalence is also correlated with contents of pyritic sulfur (r = 0.91, p < 0.0048) or total iron (r = 0.85, p < 0.016) but not with coal rank (r = 0.59, p < 0.16) or silica (r = 0.28, p < 0.54). BAI was calculated using our model, taking into account chemical interactions of pyrite, sulfuric acid, calcite, and total iron. That is, iron present in coals can become bioavailable by pyrite oxidation, which produces ferrous sulfate and sulfuric acid. Calcite is the major component in coals that neutralizes the available acid and inhibits iron's bioavailabiity. Therefore, levels of BAI in the coals are determined by the available amounts of acid after neutralization of calcite and the amount of total iron in the coals. Using the linear fit of CWP prevalence and the calculated BAI in the seven coal mine regions, we have derived and mapped the pneumoconiotic potencies of 7,000 coal samples. Our studies indicate that levels of BAI in the coals may be used to predict coal's toxicity, even before large-scalen mining.

  13. Comparison of Bioavailability and Biotransformation of Inorganic and Organic Arsenic to Two Marine Fish.

    Science.gov (United States)

    Zhang, Wei; Wang, Wen-Xiong; Zhang, Li

    2016-03-01

    Dietary uptake could be the primary route of arsenic (As) bioaccumulation in marine fish, but the bioavailability of inorganic and organic As remains elusive. In this study, we investigated the trophic transfer and bioavailability of As in herbivorous rabbitfish Siganus fuscescens and carnivorous seabass Lateolabrax japonicus. Rabbitfish were fed with one artificial diet or three macroalgae, whereas seabass were fed with one artificial diet, one polychaete, or two bivalves for 28 days. The six spiked fresh prey diets contained different proportions of inorganic As [As(III) and As(V)] and organic As compounds [methylarsenate (MMA), dimethylarsenate (DMA), and arsenobetaine (AsB)], and the spiked artificial diet mainly contained As(III) or As(V). We demonstrated that the trophic transfer factors (TTF) of As in both fish were negatively correlated with the concentrations of inorganic As in the diets, while there was no relationship between TTF and the AsB concentrations in the diets. Positive correlation was observed between the accumulated As concentrations and the AsB concentrations in both fish, suggesting that organic As compounds (AsB) were more trophically available than inorganic As. Furthermore, the biotransformation ability of seabass was higher than that in rabbitfish, which resulted in higher As accumulation in seabass than in rabbitfish. Our study demonstrated that different prey with different inorganic/organic As proportions resulted in diverse bioaccumulation of total As in different marine fish.

  14. Effects of alga polysaccharide capsule shells on in-vivo bioavailability and disintegration

    Institute of Scientific and Technical Information of China (English)

    LI Ting; GUO Shuju; MA Lin; YUAN Yi; HAN Lijun

    2012-01-01

    Gelatin has been used in hard capsule shells for more than a century,and some shortcomings have appeared,such as high moisture content and risk of transmitting diseases of animal origin to people.Based on available studies regarding gelatin and vegetable shells,we developed a new type of algal polysaccharide capsule (APPC) shells.To test whether our products can replace commercial gelatin shells,we measured in-vivo plasma concentration of 12 selected volunteers with a model drug,ibuprofen,using high performance liquid chromatography (HPLC),by calculating the relative bioavailability of APPC and Qualicaps(R) referenced to gelatin capsules and assessing bioequivalence of the three types of shells,and calculated pharmacokinetic parameters with the software DAS 2.0 (China).The results show that APPC shells possess bioequivalence with Qualicaps(R) and gelatin shells.Moreover,the disintegration behavior of four types of shells (APPC,Vegcaps(R),Qualicaps(R) and gelatin shells) with the content of lactose and radioactive element (99mTc) was observed via gamma-scintigraphic images.The bioavailability and gamma-scintigraphic studies showed that APPC was not statistically different from other vegetable and gelatin capsule shells with respect to in-vivo behavior.Hence,it can be concluded that APPCs are exchangeable with other vegetable and gelatin shells.

  15. [Role of ABC efflux transporters in the oral bioavailability and drug-induced intestinal toxicity].

    Science.gov (United States)

    Yokooji, Tomoharu

    2013-01-01

    The gastrointestinal tract is the organ that absorbs nutrients and water from foods and drinks. This organ is often exposed to various harmful xenobiotics, and therefore possesses various detoxification/barrier systems, including metabolizing enzymes and efflux transporters. Intestinal epithelial cells express ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein, multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein, in addition to various solute carrier (SLC) influx transporters. These transporters are expressed site- and membrane-specifically in enterocytes, which affects the bioavailability of ingested substrate drugs. Expression and/or function of transporters can be modulated by various compounds, including therapeutic drugs, herbal products, some foods, and by disease states. The modulation of transporters could cause unexpectedly higher or lower blood concentrations, marked inter- and intra-individual variations in pharmacokinetics, and unreliable pharmacological actions in association with toxicities of substrates. Recently, we found that hyperbilirubinemia, which occurs in some disease states, increased intestinal accumulation and toxicity of methotrexate, an MRP substrate, because of the suppression of MRP function by high plasma concentrations of conjugated bilirubin. We also attempted to ameliorate the intestinal toxicity of irinotecan hydrochloride by modulating the hepatic and intestinal functions of MRP2. This review summarizes our findings regarding the role of ABC transporters, especially MRPs, in oral bioavailability and in drug-induced intestinal toxicity. Our approach to treat intestinal toxicity using an MRP2 modulator is also described. PMID:23811769

  16. Exceptionally strong sorption of infochemicals to activated carbon reduces their bioavailability to fish.

    Science.gov (United States)

    Jonker, Michiel T O; van Mourik, Louise

    2014-03-01

    The addition of activated carbon (AC) to sediments is a relatively new approach to remediate contaminated sites. Activated carbon strongly sorbs hydrophobic organic contaminants, thereby reducing their bioavailability and uptake in organisms. Because of its high sorption capacity, AC might, however, also sorb other chemicals that are not contaminants but instead have ecological functions. Examples of such compounds are infochemicals or pheromones (i.e., compounds serving as chemical inter- and intraspecies information vectors). The present study investigated the sorption of 2 known infochemicals, hypoxanthine-3-N-oxide (H3NO) and pyridine-N-oxide (PNO), to 5 different powdered ACs. Sorption isotherms of these low-molecular-weight, polar fish kairomone substances appeared highly nonlinear, with logarithmic Freundlich sorption coefficients of up to 7.6. At physiologically relevant concentrations, sorption was up to 7 to 9 orders of magnitude stronger than expected on the basis of hydrophobic forces only (i.e., the compounds' log octanol-water partition coefficient, being approximately -1), indicating exceptionally strong binding to specific sites. This binding effectively reduced the bioavailability of H3NO to Sarasa goldfish, as was shown in a behavioral assay. The present study demonstrates the previously unrecognized potential of AC to sorb ecologically relevant chemicals. Whether this potential may lead to subtle, unwanted ecological effects in the field will have to be investigated in more detail during future research. PMID:24272993

  17. Prediction of positive food effect: Bioavailability enhancement of BCS class II drugs.

    Science.gov (United States)

    Raman, Siddarth; Polli, James E

    2016-06-15

    High-throughput screening methods have increased the number of poorly water-soluble, highly permeable drug candidates. Many of these candidates have increased bioavailability when administered with food (i.e., exhibit a positive food effect). Food is known to impact drug bioavailability through a variety of mechanisms, including drug solubilization and prolonged gastric residence time. In vitro dissolution media that aim to mimic in vivo gastrointestinal (GI) conditions have been developed to lessen the need for fed human bioequivalence studies. The objective of this work was to develop an in vitro lipolysis model to predict positive food effect of three BCS Class II drugs (i.e., danazol, amiodarone and ivermectin) in previously developed lipolysis media. This in vitro lipolysis model was comparatively benchmarked against FeSSIF and FaSSIF media that were modified for an in vitro lipolysis approach, as FeSSIF and FaSSIF are widely used in in vitro dissolution studies. The in vitro lipolysis model accurately predicted the in vivo positive food effect for three model BCS class II drugs. The in vitro lipolysis model has potential use as a screening test of drug candidates in early development to assess positive food effect.

  18. Effects of combined composting and vermicomposting of waste sludge on arsenic fate and bioavailability.

    Science.gov (United States)

    Maňáková, Blanka; Kuta, Jan; Svobodová, Markéta; Hofman, Jakub

    2014-09-15

    Composting and vermicomposting are traditional processes for the treatment of sludge. During these processes, the humification of organic matter has a significant effect on the physicochemical form and distribution of heavy metals. In this study, industrial sludge (groundwater treatment waste) contaminated by arsenic (396 ± 1 mg kg(-1)) was used. Such sludge poses a significant challenge with respect to effective treatment. Composting, vermicomposting (with Eisenia fetida), and the combined approach of composting and vermicomposting were performed to determine the evolution of arsenic speciation, mobility and bioavailability. The composting/vermicomposting was done with sludge, horse manure, and grass in the ratios of 3:6:1. A solution of 0.1M NH4COOCH3 was used as a single extraction solvent for determination of the mobile arsenic pool and targeted arsenic species (As(III), As(V), monomethylarsenic acid - MMA(V), dimethylarsenic acid - DMA(V)). The analysis of arsenic in the extracts was carried out by means of HPLC-ICP-MS spectrometry. In addition, the earthworm species E. fetida was used for bioaccumulation tests that followed the compost and vermicompost processes. The obtained results indicate a reduction in arsenic mobility and bioavailability in all matured composts and vermicomposts. The combined process exhibited a greater effect than compost or vermicompost alone. PMID:25209831

  19. Cu lability and bioavailability in an urban stream during baseflow versus stormflow

    Science.gov (United States)

    Vadas, T.; Luan, H.

    2012-12-01

    Urban streams are dynamic systems with many anthropogenic inputs and stressors. Existing contaminant inputs are regulated through total maximum daily loads. Techniques for assessing that load are based on a combination of acute and chronic water quality criteria, biotic ligand models, and physical, chemical and biological assessments. In addition, the apportionment of reduction in load to different sources is based on total mass and not, for example, on bioavailable fraction. Our understanding of the impact of different metal inputs to stream impairment is limited. Free metal ions are understood to play a role in direct cellular uptake, but metal speciation (e.g. free metal, labile metals, or size fractionated) is relevant to more complex stream food webs. As part of an ongoing study, this work examines dissolved and particulate Cu concentrations in the Hockanum River, Vernon, CT situated in a developed watershed. Stream samples were taken during baseflow as well as stormflow upstream and downstream of wastewater treatment plant and stormwater runoff inputs. In addition, diffusive gradient in thin-film (DGT) devices which measure labile metal concentrations and cultured periphyton were used to examine bioavailable fractions. Total and filtered Cu concentrations ranged from about 1.3 to 10.7 μg/L, and 0.9 to 5.1 μg/L, respectively. Cu concentrations always increased downstream of the wastewater treatment plant by about 1.1-2 times, and effluent accounted for about 30% of baseflow. Generally, small increases (allocating resources to mitigate metal contamination.

  20. Bioavailability of Clindamycin From a New Clindamycin Phosphate 1.2%-Benzoyl Peroxide 3% Combination Gel.

    Science.gov (United States)

    Jones, Terry M; Jasper, Stacy; Alió Sáenz, Alessandra B

    2013-01-01

    A new topical fixed-dose combination product containing clindamycin (1%, formulated as 1.2% clindamycin phosphate, CLNP 1.2%) with low strength (3%) benzoyl peroxide (BPO) in a methylparaben-free gel vehicle (CLNP 1.2%-BPO 3%-MPF) has been developed for the treatment of acne. The objective of this study was to determine the relative bioavailability of clindamycin and clindamycin sulfoxide from CLNP 1.2%-BPO 3%-MPF compared with clindamycin phosphate 1.2%-BPO 5% in a methylparaben-preserved gel vehicle (CLNP 1.2%-BPO 5%-MP) and clindamycin phosphate 1.2%-BPO 5% in a methylparaben-free gel vehicle (CLNP 1.2%-BPO 5%-MPF), and to determine whether exposure is affected by BPO concentration (3% vs. 5%) when applied topically. Seventy-two subjects with moderate-severe acne were randomized to receive CLNP 1.2%-BPO 3%-MPF, CLNP 1.2%-BPO 5%-MP, or CLNP 1.2%-BPO 5%-MPF in a 5-day, open-label, and parallel-group study. Cmax and AUC values for clindamycin were highest for CLNP 1.2%-BPO 5%-MP, followed by CLNP 1.2%-BPO 3%-MPF and CLNP 1.2%-BPO 5%-MPF, but differences were not statistically significant. Systemic exposure to clindamycin and clindamycin sulfoxide was low and comparable between the formulations. Results indicate that differences in BPO concentration do not influence clindamycin bioavailability.