WorldWideScience

Sample records for bioassays water-pollution effects

  1. Evaluation of genotoxic effects of surface waters using a battery of bioassays indicating different mode of action.

    Science.gov (United States)

    Han, Yingnan; Li, Na; Oda, Yoshimitsu; Ma, Mei; Rao, Kaifeng; Wang, Zijian; Jin, Wei; Hong, Gang; Li, Zhiguo; Luo, Yi

    2016-11-01

    With the burgeoning contamination of surface waters threatening human health, the genotoxic effects of surface waters have received much attention. Because mutagenic and carcinogenic compounds in water cause tumors by different mechanisms, a battery of bioassays that each indicate a different mode of action (MOA) is required to evaluate the genotoxic effects of contaminants in water samples. In this study, 15 water samples from two source water reservoirs and surrounding rivers in Shijiazhuang city of China were evaluated for genotoxic effects. Target chemical analyses of 14 genotoxic pollutants were performed according to the Environmental quality standards for surface water of China. Then, the in vitro cytokinesis-block micronucleus (CBMN) assay, based on a high-content screening technique, was used to detect the effect of chromosome damage. The SOS/umu test using strain TA1535/pSK1002 was used to detect effects on SOS repair of gene expression. Additionally, two other strains, NM2009 and NM3009, which are highly sensitive to aromatic amines and nitroarenes, respectively, were used in the SOS/umu test to avoid false negative results. In the water samples, only two of the genotoxic chemicals listed in the water standards were detected in a few samples, with concentrations that were below water quality standards. However, positive results for the CBMN assay were observed in two river samples, and positive results for the induction of umuC gene expression in TA1535/pSK1002 were observed in seven river samples. Moreover, positive results were observed for NM2009 with S9 and NM3009 without S9 in some samples that had negative results using the strain TA1535/pSK1002. Based on the results with NM2009 and NM3009, some unknown or undetected aromatic amines and nitroarenes were likely in the source water reservoirs and the surrounding rivers. Furthermore, these compounds were most likely the causative pollutants for the genotoxic effect of these water samples. Therefore

  2. Assessing the genotoxicity of urban air pollutants using two in situ plant bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Villarini, M.; Fatigoni, C.; Dominici, L.; Maestri, S. [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy); Ederli, L.; Pasqualini, S. [Department of Applied Biology, University of Perugia, I-06121 (Italy); Monarca, S. [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy); Moretti, M., E-mail: massimo.moretti@unipg.i [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy)

    2009-12-15

    Genotoxicity of urban air has been analysed almost exclusively in airborne particulates. We monitored the genotoxic effects of airborne pollutants in the urban air of Perugia (Central Italy). Two plant bioindicators with different genetic endpoints were used: micronuclei in meiotic pollen mother cells using Tradescantia-micronucleus bioassay (Trad-MCN) and DNA damage in nuclei of Nicotiana tabacum leaves using comet assay (Nicotiana-comet). Buds of Tradescantia clone no. 4430 and young N. tabacum cv. Xanthi plants were exposed for 24 h at three sites with different pollution levels. One control site (indoor control) was also used. The two bioassays showed different sensitivities toward urban pollutants: Trad-MCN assay was the most sensitive, but DNA damage in N. tabacum showed a better correlation with the pollutant concentrations. In situ biomonitoring of airborne genotoxins using higher plants combined with chemical analysis is thus recommended for characterizing genotoxicity of urban air. - Plant bioassays used to explore in situ the correlation between air pollution and genotoxicity.

  3. Assessing the genotoxicity of urban air pollutants using two in situ plant bioassays

    International Nuclear Information System (INIS)

    Villarini, M.; Fatigoni, C.; Dominici, L.; Maestri, S.; Ederli, L.; Pasqualini, S.; Monarca, S.; Moretti, M.

    2009-01-01

    Genotoxicity of urban air has been analysed almost exclusively in airborne particulates. We monitored the genotoxic effects of airborne pollutants in the urban air of Perugia (Central Italy). Two plant bioindicators with different genetic endpoints were used: micronuclei in meiotic pollen mother cells using Tradescantia-micronucleus bioassay (Trad-MCN) and DNA damage in nuclei of Nicotiana tabacum leaves using comet assay (Nicotiana-comet). Buds of Tradescantia clone no. 4430 and young N. tabacum cv. Xanthi plants were exposed for 24 h at three sites with different pollution levels. One control site (indoor control) was also used. The two bioassays showed different sensitivities toward urban pollutants: Trad-MCN assay was the most sensitive, but DNA damage in N. tabacum showed a better correlation with the pollutant concentrations. In situ biomonitoring of airborne genotoxins using higher plants combined with chemical analysis is thus recommended for characterizing genotoxicity of urban air. - Plant bioassays used to explore in situ the correlation between air pollution and genotoxicity.

  4. Genotoxic and mutagenic effects of polluted surface water in the midwestern region of Brazil using animal and plant bioassays

    Directory of Open Access Journals (Sweden)

    Priscila Leocádia Rosa Dourado

    Full Text Available Abstract This study aimed to evaluate DNA damage in animal and plant cells exposed to water from the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil by using bioassays, and to identify the chemical compounds in the water to determine the water quality in the area. Through the cytotoxicity bioassay with Allium cepa, using micronucleus test, and comet assay, using Astyanax altiparanae fish, the results indicated that biological samples were genetically altered. Micronuclei were observed in erythrocytes of A. altiparanae after exposure to water from locations close to industrial waste discharge. The highest DNA damage observed with the comet assay in fish occurred with the exposure to water from locations where the presence of metals (Cu, Pb, Cd, Ni was high, indicating the possibility of genotoxic effects of these compounds. Thus, these results reinforce the importance of conducting genotoxicity tests for developing management plans to improve water quality, and indicate the need for waste management before domestic and industrial effluents are released into the rivers and streams.

  5. A method for screening for the risk of chronic effects of surface water pollution.

    Science.gov (United States)

    Soldán, Přemysl; Badurová, Jana

    2013-01-01

    The article describes a method for screening for the risk of chronic surface water pollution which was developed at the T. G. Masaryk Water Research Institute. The approach, which is based on exotoxicological analyses, can be classed as a rapid method of assessment. The degree of risk of chronic effects surface water pollution is determined from an evaluation of two major parameters-toxicity and genotoxicity. As the method utilizes relative simple procedures for sample collection, pretreatment of the sample, chemical analyses, bioassays and results assessment, this approach is suitable for widespread practical use. Extensive utilization of this approach for assessing river basins in the Czech Republic has proved its suitability for a more sophisticated detection of the biological impact of surface water pollution. This is documented in the article where the method is used in a study of the Bílina River, and in the overview of the results of the risk assessment of chronic effects of surface water pollution in selected sections of three international river basins in the Czech Republic.

  6. Bioassay battery interlaboratory investigation of emerging contaminants in spiked water extracts - Towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring.

    Science.gov (United States)

    Di Paolo, Carolina; Ottermanns, Richard; Keiter, Steffen; Ait-Aissa, Selim; Bluhm, Kerstin; Brack, Werner; Breitholtz, Magnus; Buchinger, Sebastian; Carere, Mario; Chalon, Carole; Cousin, Xavier; Dulio, Valeria; Escher, Beate I; Hamers, Timo; Hilscherová, Klára; Jarque, Sergio; Jonas, Adam; Maillot-Marechal, Emmanuelle; Marneffe, Yves; Nguyen, Mai Thao; Pandard, Pascal; Schifferli, Andrea; Schulze, Tobias; Seidensticker, Sven; Seiler, Thomas-Benjamin; Tang, Janet; van der Oost, Ron; Vermeirssen, Etienne; Zounková, Radka; Zwart, Nick; Hollert, Henner

    2016-11-01

    Bioassays are particularly useful tools to link the chemical and ecological assessments in water quality monitoring. Different methods cover a broad range of toxicity mechanisms in diverse organisms, and account for risks posed by non-target compounds and mixtures. Many tests are already applied in chemical and waste assessments, and stakeholders from the science-police interface have recommended their integration in regulatory water quality monitoring. Still, there is a need to address bioassay suitability to evaluate water samples containing emerging pollutants, which are a current priority in water quality monitoring. The presented interlaboratory study (ILS) verified whether a battery of miniaturized bioassays, conducted in 11 different laboratories following their own protocols, would produce comparable results when applied to evaluate blinded samples consisting of a pristine water extract spiked with four emerging pollutants as single chemicals or mixtures, i.e. triclosan, acridine, 17α-ethinylestradiol (EE2) and 3-nitrobenzanthrone (3-NBA). Assays evaluated effects on aquatic organisms from three different trophic levels (algae, daphnids, zebrafish embryos) and mechanism-specific effects using in vitro estrogenicity (ER-Luc, YES) and mutagenicity (Ames fluctuation) assays. The test battery presented complementary sensitivity and specificity to evaluate the different blinded water extract spikes. Aquatic organisms differed in terms of sensitivity to triclosan (algae > daphnids > fish) and acridine (fish > daphnids > algae) spikes, confirming the complementary role of the three taxa for water quality assessment. Estrogenicity and mutagenicity assays identified with high precision the respective mechanism-specific effects of spikes even when non-specific toxicity occurred in mixture. For estrogenicity, although differences were observed between assays and models, EE2 spike relative induction EC 50 values were comparable to the literature, and E2/EE2

  7. Effect-based trigger values for in vitro bioassays: Reading across from existing water quality guideline values.

    Science.gov (United States)

    Escher, Beate I; Neale, Peta A; Leusch, Frederic D L

    2015-09-15

    Cell-based bioassays are becoming increasingly popular in water quality assessment. The new generations of reporter-gene assays are very sensitive and effects are often detected in very clean water types such as drinking water and recycled water. For monitoring applications it is therefore imperative to derive trigger values that differentiate between acceptable and unacceptable effect levels. In this proof-of-concept paper, we propose a statistical method to read directly across from chemical guideline values to trigger values without the need to perform in vitro to in vivo extrapolations. The derivation is based on matching effect concentrations with existing chemical guideline values and filtering out appropriate chemicals that are responsive in the given bioassays at concentrations in the range of the guideline values. To account for the mixture effects of many chemicals acting together in a complex water sample, we propose bioanalytical equivalents that integrate the effects of groups of chemicals with the same mode of action that act in a concentration-additive manner. Statistical distribution methods are proposed to derive a specific effect-based trigger bioanalytical equivalent concentration (EBT-BEQ) for each bioassay of environmental interest that targets receptor-mediated toxicity. Even bioassays that are indicative of the same mode of action have slightly different numeric trigger values due to differences in their inherent sensitivity. The algorithm was applied to 18 cell-based bioassays and 11 provisional effect-based trigger bioanalytical equivalents were derived as an illustrative example using the 349 chemical guideline values protective for human health of the Australian Guidelines for Water Recycling. We illustrate the applicability using the example of a diverse set of water samples including recycled water. Most recycled water samples were compliant with the proposed triggers while wastewater effluent would not have been compliant with a few

  8. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays.

    Science.gov (United States)

    Escher, Beate I; Allinson, Mayumi; Altenburger, Rolf; Bain, Peter A; Balaguer, Patrick; Busch, Wibke; Crago, Jordan; Denslow, Nancy D; Dopp, Elke; Hilscherova, Klara; Humpage, Andrew R; Kumar, Anu; Grimaldi, Marina; Jayasinghe, B Sumith; Jarosova, Barbora; Jia, Ai; Makarov, Sergei; Maruya, Keith A; Medvedev, Alex; Mehinto, Alvine C; Mendez, Jamie E; Poulsen, Anita; Prochazka, Erik; Richard, Jessica; Schifferli, Andrea; Schlenk, Daniel; Scholz, Stefan; Shiraishi, Fujio; Snyder, Shane; Su, Guanyong; Tang, Janet Y M; van der Burg, Bart; van der Linden, Sander C; Werner, Inge; Westerheide, Sandy D; Wong, Chris K C; Yang, Min; Yeung, Bonnie H Y; Zhang, Xiaowei; Leusch, Frederic D L

    2014-01-01

    Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes. The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive modes of toxic action, activation of adaptive stress response pathways and system responses. Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/activated carbon filtration), stormwater, surface water, and drinking water. Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water). Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems. The most responsive health-relevant endpoints were related to xenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response). This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring.

  9. Soil plate bioassay: an effective method to determine ecotoxicological risks.

    Science.gov (United States)

    Boluda, R; Roca-Pérez, L; Marimón, L

    2011-06-01

    Heavy metals have become one of the most serious anthropogenic stressors for plants and other living organisms. Having efficient and feasible bioassays available to assess the ecotoxicological risks deriving from soil pollution is necessary. This work determines pollution by Cd, Co, Cr, Cu, Ni, Pb, V and Zn in two soils used for growing rice from the Albufera Natural Park in Valencia (Spain). Both were submitted to a different degree of anthropic activity, and their ecotoxicological risk was assessed by four ecotoxicity tests to compare their effectiveness: Microtox test, Zucconi test, pot bioassay (PB) and soil plate bioassay (SPB). The sensitivity of three plant species (barley, cress and lettuce) was also assessed. The results reveal a different degree of effectiveness and level of inhibition in the target organisms' growth depending on the test applied, to such an extent that the one-way analysis of variance showed significant differences only for the plate bioassay results, with considerable inhibition of root and shoot elongation in seedlings. Of the three plant species selected, lettuce was the most sensitive species to toxic effects, followed by cress and barley. Finally, the results also indicate that the SPB is an efficient, simple and economic alternative to other ecotoxicological assays to assess toxicity risks deriving from soil pollution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Evaluation of genotoxic effects caused by extracts of chlorinated drinking water using a combination of three different bioassays.

    Science.gov (United States)

    Zeng, Qiang; Zhang, Shao-Hui; Liao, Jing; Miao, Dong-Yue; Wang, Xin-Yi; Yang, Pan; Yun, Luo-Jia; Liu, Ai-Lin; Lu, Wen-Qing

    2015-10-15

    Potential genotoxic effects of chlorinated drinking water now are of a great concern. In this study, raw water, finished water, and tap water from a water plant in Wuhan, China were collected in two different sampling times of the year (January and July). Genotoxic effects of water extracts were evaluated using a combination of three different bioassays: SOS/umu test, HGPRT gene mutation assay, and micronucleus assay, which were separately used to detect DNA damage, gene mutation, and chromosome aberration. The results of three different bioassays showed that all water samples in January and July induced at least one types of genotoxic effects, of which the DNA-damage effects were all detectable. The levels of DNA-damage effects and gene-mutation effects of finished water and tap water in January were higher than those in July. Chlorination could increase the DNA-damage effects of drinking water in January and the gene-mutation effects of drinking water in both January and July, but did not increase the chromosome-aberration effects of drinking water in both January and July. Our results highlighted the importance of using a combination of different bioassays to evaluate the genotoxicity of water samples in different seasons. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Review of Bioassays for Monitoring Fate and Transport ofEstrogenic Endocrine Disrupting Compounds in Water

    Energy Technology Data Exchange (ETDEWEB)

    CGCampbell@lbl.gov

    2004-01-30

    Endocrine disrupting compounds (EDCs) are recognizedcontaminants threatening water quality. Despite efforts in sourceidentification, few strategies exist for characterization or treatment ofthis environmental pollution. Given that there are numerous EDCs that cannegatively affect humans and wildlife, general screening techniques likebioassays and biosensors provide an essential rapid and intensiveanalysis capacity. Commonly applied bioassays include the ELISA and YESassays, but promising technologies include ER-CALUXa, ELRA, Endotecta,RIANA, and IR-bioamplification. Two biosensors, Endotecta and RIANA, arefield portable using non-cellular biological detection strategies.Environmental management of EDCs in water requires integration ofbiosensors and bioassays for monitoring and assessment.

  12. Pollutants impact bioassay from waters and soils in Banat region

    Directory of Open Access Journals (Sweden)

    Crina Laura Mosneang

    2014-12-01

    Full Text Available Analyses of water and soil samples by chemical methods identified the quantities of chlorides, nitrates and phosphates by comparison with the maximum limits of law. Acute toxicity tests on zebra fish embryos is an alternative test of water samples around swine farms in Banat region, because embryos are not subject to animal protection legislation during experiments. The use of Eisenia fetida earthworms as pollution indicators allowed assessment of avoidance behavior of potentially polluting soils collected from different distances from farms.

  13. In vitro bioassays to evaluate complex chemical mixtures in recycled water

    Science.gov (United States)

    Jia, Ai; Escher, Beate I.; Leusch, Frederic D.L.; Tang, Janet Y.M.; Prochazka, Erik; Dong, Bingfeng; Snyder, Erin M.; Snyder, Shane A.

    2016-01-01

    With burgeoning population and diminishing availability of freshwater resources, the world continues to expand the use of alternative water resources for drinking, and the quality of these sources has been a great concern for the public as well as public health professionals. In vitro bioassays are increasingly being used to enable rapid, relatively inexpensive toxicity screening that can be used in conjunction with analytical chemistry data to evaluate water quality and the effectiveness of water treatment. In this study, a comprehensive bioassay battery consisting of 36 bioassays covering 18 biological endpoints was applied to screen the bioactivity of waters of varying qualities with parallel treatments. Samples include wastewater effluent, ultraviolet light (UV) and/or ozone advanced oxidation processed (AOP) recycled water, and infiltrated recycled groundwater. Based on assay sensitivity and detection frequency in the samples, several endpoints were highlighted in the battery, including assays for genotoxicity, mutagenicity, estrogenic activity, glucocorticoid activity, aryl hydrocarbon receptor activity, oxidative stress response, and cytotoxicity. Attenuation of bioactivity was found to be dependent on the treatment process and bioassay endpoint. For instance, ozone technology significantly removed oxidative stress activity, while UV based technologies were most efficient for the attenuation of glucocorticoid activity. Chlorination partially attenuated genotoxicity and greatly decreased herbicidal activity, while groundwater infiltration efficiently attenuated most of the evaluated bioactivity with the exception of genotoxicity. In some cases, bioactivity (e.g., mutagenicity, genotoxicity, and arylhydrocarbon receptor) increased following water treatment, indicating that transformation products of water treatment may be a concern. Furthermore, several types of bioassays with the same endpoint were compared in this study, which could help guide the selection

  14. Paper-based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction.

    Science.gov (United States)

    Pujol-Vila, F; Vigués, N; Guerrero-Navarro, A; Jiménez, S; Gómez, D; Fernández, M; Bori, J; Vallès, B; Riva, M C; Muñoz-Berbel, X; Mas, J

    2016-03-03

    Water quality assessment requires a continuous and strict analysis of samples to guarantee compliance with established standards. Nowadays, the increasing number of pollutants and their synergistic effects lead to the development general toxicity bioassays capable to analyse water pollution as a whole. Current general toxicity methods, e.g. Microtox(®), rely on long operation protocols, the use of complex and expensive instrumentation and sample pre-treatment, which should be transported to the laboratory for analysis. These requirements delay sample analysis and hence, the response to avoid an environmental catastrophe. In an attempt to solve it, a fast (15 min) and low-cost toxicity bioassay based on the chromatic changes associated to bacterial ferricyanide reduction is here presented. E. coli cells (used as model bacteria) were stably trapped on low-cost paper matrices (cellulose-based paper discs, PDs) and remained viable for long times (1 month at -20 °C). Apart from bacterial carrier, paper matrices also acted as a fluidic element, allowing fluid management without the need of external pumps. Bioassay evaluation was performed using copper as model toxic agent. Chromatic changes associated to bacterial ferricyanide reduction were determined by three different transduction methods, i.e. (i) optical reflectometry (as reference method), (ii) image analysis and (iii) visual inspection. In all cases, bioassay results (in terms of half maximal effective concentrations, EC50) were in agreement with already reported data, confirming the good performance of the bioassay. The validation of the bioassay was performed by analysis of real samples from natural sources, which were analysed and compared with a reference method (i.e. Microtox). Obtained results showed agreement for about 70% of toxic samples and 80% of non-toxic samples, which may validate the use of this simple and quick protocol in the determination of general toxicity. The minimum instrumentation

  15. Gravitactic orientation of Euglena gracilis – a sensitive endpoint for ecotoxicological assessment of water pollutants

    Directory of Open Access Journals (Sweden)

    Aziz eUllah

    2013-12-01

    Full Text Available Pollution of aquatic environments with natural and anthropogenically produced substances is one of the major environmental problems of the world. In many countries the decreasing quantity of water coupled with its increasing usage in multiple sectors has adversely affected water quality and caused problems of water pollution. Polluted water has been a main cause of adverse effects on plants, animals and humans throughout the world. Physicochemical analysis of water, which is a common method used for quality assessment of water, alone may not be enough as it cannot evaluate the impact on living organisms. Therefore, bioassessment of water and wastewater quality is considered to be essential to reflect the ultimate effects on living organisms. Many organisms like bacteria, algae, fish, invertebrates and protozoan are used as bioassay organisms for assessment of water quality. This review article elucidates the use of Euglena gracilis, a freshwater motile flagellate of the phylum Euglenophyta, as a suitable organism in ecotoxicological studies with special emphasis on its gravitactic orientation as a sensitive end point in ecotoxicological assessment of water pollutants.

  16. Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive

    NARCIS (Netherlands)

    Escher, Beate I.; Aїt-Aїssa, Selim; Behnisch, Peter A.; Brack, Werner; Brion, François; Brouwer, Abraham; Buchinger, Sebastian; Crawford, Sarah E.; Du Pasquier, David; Hamers, Timo; Hettwer, Karina; Hilscherová, Klára; Hollert, Henner; Kase, Robert; Kienle, Cornelia; Tindall, Andrew J.; Tuerk, Jochen; van der Oost, Ron; Vermeirssen, Etienne; Neale, Peta A.

    Effect-based methods including cell-based bioassays, reporter gene assays and whole-organism assays have been applied for decades in water quality monitoring and testing of enriched solid-phase extracts. There is no common EU-wide agreement on what level of bioassay response in water extracts is

  17. Developments in Water Pollution Law and Policy in China: Effective Enough to Cope with Water Pollution Conflict?

    Directory of Open Access Journals (Sweden)

    Qun Du

    2011-10-01

    Full Text Available Water pollution is one of the most serious environmental issues facing China. In 2005, an exceptionally serious water pollution accident in the Songhua River — caused by an unintended and sudden chemicals explosion — heralded an official recognition of a water pollution crisis in China. Although there have been new initiatives in national law and policy concerning water pollution that attempt to respond to issues of: social conflict caused by water pollution; government accountability; liability of polluting entities; and citizens’ rights in cases of water pollution, the challenges for the rule of environmental law in effectively reducing water pollution accidents and resolving water pollution conflict still exist. There is an urgent need to strengthen compliance and enforcement. This paper discusses the issues of water pollution conflict and the possible resolutions offered through law and policy.

  18. In vitro bioassays to evaluate complex chemical mixtures in recycled water.

    Science.gov (United States)

    Jia, Ai; Escher, Beate I; Leusch, Frederic D L; Tang, Janet Y M; Prochazka, Erik; Dong, Bingfeng; Snyder, Erin M; Snyder, Shane A

    2015-09-01

    With burgeoning population and diminishing availability of freshwater resources, the world continues to expand the use of alternative water resources for drinking, and the quality of these sources has been a great concern for the public as well as public health professionals. In vitro bioassays are increasingly being used to enable rapid, relatively inexpensive toxicity screening that can be used in conjunction with analytical chemistry data to evaluate water quality and the effectiveness of water treatment. In this study, a comprehensive bioassay battery consisting of 36 bioassays covering 18 biological endpoints was applied to screen the bioactivity of waters of varying qualities with parallel treatments. Samples include wastewater effluent, ultraviolet light (UV) and/or ozone advanced oxidation processed (AOP) recycled water, and infiltrated recycled groundwater. Based on assay sensitivity and detection frequency in the samples, several endpoints were highlighted in the battery, including assays for genotoxicity, mutagenicity, estrogenic activity, glucocorticoid activity, arylhydrocarbon receptor activity, oxidative stress response, and cytotoxicity. Attenuation of bioactivity was found to be dependent on the treatment process and bioassay endpoint. For instance, ozone technology significantly removed oxidative stress activity, while UV based technologies were most efficient for the attenuation of glucocorticoid activity. Chlorination partially attenuated genotoxicity and greatly decreased herbicidal activity, while groundwater infiltration efficiently attenuated most of the evaluated bioactivity with the exception of genotoxicity. In some cases, bioactivity (e.g., mutagenicity, genotoxicity, and arylhydrocarbon receptor) increased following water treatment, indicating that transformation products of water treatment may be a concern. Furthermore, several types of bioassays with the same endpoint were compared in this study, which could help guide the selection

  19. Continuous flow bioassay method to evaluate the effects of outboard motor exhausts and selected aromatic toxicants on fish. [Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Brenniman, G. (Univ. of Illinois, Chicago); Hartung, R.; Weber, W.J. Jr.

    1976-01-01

    A continuous flow bioassay system was designed to measure the effects of outboard motor exhaust (OME) emissions and selected volatile and evaporative aromatic toxicants on goldfish (Carassius auratus). Continuous flow bioassays were run for 24, 48, 72, 96, and 720 h to determine lethal concentrations for 50 percent of individuals (LC 50's) for leaded OME, non-leaded OME, toluene, xylene, and 1,3,5 trimethylbenzene, the three individual compounds having been identified as significant aromatic components of OME. The 96 h LC-50's for these substances were found to be 171, 168, 23, 17, and 13 ppm, respectively. The values of 171 and 168 ppm for the two OME's are given in terms of gallons of fuel burned per million gallons of water. The continuous flow bioassay method was demonstrated to be a more reliable indicator of the effects of OME pollutants on aquatic organisms than is the static bioassay method.

  20. Water Pollution. Project COMPSEP.

    Science.gov (United States)

    Lantz, H. B., Jr.

    This is an introductory program on water pollution. Examined are the cause and effect relationships of water pollution, sources of water pollution, and possible alternatives to effect solutions from our water pollution problems. Included is background information on water pollution, a glossary of pollution terminology, a script for a slide script…

  1. Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive.

    Science.gov (United States)

    Escher, Beate I; Aїt-Aїssa, Selim; Behnisch, Peter A; Brack, Werner; Brion, François; Brouwer, Abraham; Buchinger, Sebastian; Crawford, Sarah E; Du Pasquier, David; Hamers, Timo; Hettwer, Karina; Hilscherová, Klára; Hollert, Henner; Kase, Robert; Kienle, Cornelia; Tindall, Andrew J; Tuerk, Jochen; van der Oost, Ron; Vermeirssen, Etienne; Neale, Peta A

    2018-07-01

    Effect-based methods including cell-based bioassays, reporter gene assays and whole-organism assays have been applied for decades in water quality monitoring and testing of enriched solid-phase extracts. There is no common EU-wide agreement on what level of bioassay response in water extracts is acceptable. At present, bioassay results are only benchmarked against each other but not against a consented measure of chemical water quality. The EU environmental quality standards (EQS) differentiate between acceptable and unacceptable surface water concentrations for individual chemicals but cannot capture the thousands of chemicals in water and their biological action as mixtures. We developed a method that reads across from existing EQS and includes additional mixture considerations with the goal that the derived effect-based trigger values (EBT) indicate acceptable risk for complex mixtures as they occur in surface water. Advantages and limitations of various approaches to read across from EQS are discussed and distilled to an algorithm that translates EQS into their corresponding bioanalytical equivalent concentrations (BEQ). The proposed EBT derivation method was applied to 48 in vitro bioassays with 32 of them having sufficient information to yield preliminary EBTs. To assess the practicability and robustness of the proposed approach, we compared the tentative EBTs with observed environmental effects. The proposed method only gives guidance on how to derive EBTs but does not propose final EBTs for implementation. The EBTs for some bioassays such as those for estrogenicity are already mature and could be implemented into regulation in the near future, while for others it will still take a few iterations until we can be confident of the power of the proposed EBTs to differentiate good from poor water quality with respect to chemical contamination. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Mixture effects in samples of multiple contaminants - An inter-laboratory study with manifold bioassays.

    Science.gov (United States)

    Altenburger, Rolf; Scholze, Martin; Busch, Wibke; Escher, Beate I; Jakobs, Gianina; Krauss, Martin; Krüger, Janet; Neale, Peta A; Ait-Aissa, Selim; Almeida, Ana Catarina; Seiler, Thomas-Benjamin; Brion, François; Hilscherová, Klára; Hollert, Henner; Novák, Jiří; Schlichting, Rita; Serra, Hélène; Shao, Ying; Tindall, Andrew; Tolefsen, Knut-Erik; Umbuzeiro, Gisela; Williams, Tim D; Kortenkamp, Andreas

    2018-05-01

    Chemicals in the environment occur in mixtures rather than as individual entities. Environmental quality monitoring thus faces the challenge to comprehensively assess a multitude of contaminants and potential adverse effects. Effect-based methods have been suggested as complements to chemical analytical characterisation of complex pollution patterns. The regularly observed discrepancy between chemical and biological assessments of adverse effects due to contaminants in the field may be either due to unidentified contaminants or result from interactions of compounds in mixtures. Here, we present an interlaboratory study where individual compounds and their mixtures were investigated by extensive concentration-effect analysis using 19 different bioassays. The assay panel consisted of 5 whole organism assays measuring apical effects and 14 cell- and organism-based bioassays with more specific effect observations. Twelve organic water pollutants of diverse structure and unique known modes of action were studied individually and as mixtures mirroring exposure scenarios in freshwaters. We compared the observed mixture effects against component-based mixture effect predictions derived from additivity expectations (assumption of non-interaction). Most of the assays detected the mixture response of the active components as predicted even against a background of other inactive contaminants. When none of the mixture components showed any activity by themselves then the mixture also was without effects. The mixture effects observed using apical endpoints fell in the middle of a prediction window defined by the additivity predictions for concentration addition and independent action, reflecting well the diversity of the anticipated modes of action. In one case, an unexpectedly reduced solubility of one of the mixture components led to mixture responses that fell short of the predictions of both additivity mixture models. The majority of the specific cell- and organism

  3. Assessment of acrylamide toxicity using a battery of standardised bioassays.

    Science.gov (United States)

    Zovko, Mira; Vidaković-Cifrek, Željka; Cvetković, Želimira; Bošnir, Jasna; Šikić, Sandra

    2015-12-01

    Acrylamide is a monomer widely used as an intermediate in the production of organic chemicals, e.g. polyacrylamides (PAMs). Since PAMs are low cost chemicals with applications in various industries and waste- and drinking water treatment, a certain amount of non-polymerised acrylamide is expected to end up in waterways. PAMs are non-toxic but acrylamide induces neurotoxic effects in humans and genotoxic, reproductive, and carcinogenic effects in laboratory animals. In order to evaluate the effect of acrylamide on freshwater organisms, bioassays were conducted on four species: algae Desmodesmus subspicatus and Pseudokirchneriella subcapitata, duckweed Lemna minor and water flea Daphnia magna according to ISO (International Organization for Standardisation) standardised methods. This approach ensures the evaluation of acrylamide toxicity on organisms with different levels of organisation and the comparability of results, and it examines the value of using a battery of low-cost standardised bioassays in the monitoring of pollution and contamination of aquatic ecosystems. These results showed that EC50 values were lower for Desmodesmus subspicatus and Pseudokirchneriella subcapitata than for Daphnia magna and Lemna minor, which suggests an increased sensitivity of algae to acrylamide. According to the toxic unit approach, the values estimated by the Lemna minor and Daphnia magna bioassays, classify acrylamide as slightly toxic (TU=0-1; Class 1). The results obtained from algal bioassays (Desmodesmus subspicatus and Pseudokirchneriella subcapitata) revealed the toxic effect of acrylamide (TU=1-10; Class 2) on these organisms.

  4. Application of the Microtox test and pollution indices to the study of water toxicity in the Albufera Natural Park (Valencia, Spain).

    Science.gov (United States)

    Boluda, R; Quintanilla, J F; Bonilla, J A; Sáez, E; Gamón, M

    2002-01-01

    The toxic effects of waters collected from irrigation channels in a Mediterranean wetland (Albufera Natural Park, Valencia, Spain) were tested with the Microtox assay and compared with six pollution indices (PIs) defined from analytical parameters. Chemical oxygen demand (COD), biological oxygen demand (BOD), nutrients, heavy metals and pesticides were measured. The bioassay result (concentrations of the water sample (% V/V) that reduced light emission to 10%, 20% and 50%, EC10, EC20 and EC50, respectively (ECs)) was compared with the PIs. This comparison has demonstrated a general agreement between ECs and PIs, except in the case of irrigation channels affected by herbicides used in rice farming (molinate and thiobencarb). No pronounced inhibition was detected in the bioluminescence in relation to the eutrophic parameters in the irrigation waters for EC50 values, indicating that this parameter does not suffice to detect eutrophic waters. Data derived from irrigation water pollution and bioassay were assembled by multivariate statistical techniques (principal component analysis). These components were associated with various contamination sources.

  5. Progress in herbicide determination with the thylakoid bioassay.

    Science.gov (United States)

    Trapmann, S; Etxebarria, N; Schnabl, H; Grobecker, K H

    1998-01-01

    Chloroplast thylakoids are used as biological units to determine herbicides in different kinds of water samples as well as in aqueous extracts of compost, soil or food samples. The thylakoid bioassay shows clearly inhibition of fluorescence yield in the presence of photosystem II specific herbicides. Due to this method the ecotoxicological effect of samples with unknown pollutants can be tested fast and cost effective. It has been proven that all photosynthetic active compounds are recorded at the same time because only additive interactions occur. Therefore, the contamination level can be expressed as cumulative parameter for photosystem II active substances. Application was improved clearly by the addition of the radical scavenger sodium ascorbate to the isolation media and by a higher concentration of the measuring medium. A new data evaluation method is described yielding in a lower detection limit of 0.4 microg diuron/1. The guidelines for the quality of water for human consumption with an allowable concentration of pesticides in groups is 0,5 microg/1 and can be controlled with the thylakoid bioassay without performing any preconcentration steps.

  6. Sediment toxicity assessment in the Lagoon of Venice (Italy) using Paracentrotus lividus (Echinodermata: Echinoidea) fertilization and embryo bioassays.

    Science.gov (United States)

    Volpi Ghirardini, A; Arizzi Novelli, A; Tagliapietra, D

    2005-09-01

    The capacity of two toxicity bioassays (fertilization and embryo toxicity tests) to discriminate sediment toxicity using the sea urchin Paracentrotus lividus was tested in five stations with different levels of pollution in the Lagoon of Venice. Two stations were located in estuarine sites, two in the industrial zone, and one in a site at the top of our quality gradient (reference). Elutriate was chosen as sediment matrix to assess the potential effects of bioavailable pollutants in the water column as a consequence of sediment resuspension (dredging and dumping, fishing gear, etc.). An experimental design based on Quality Assurance/Quality Control procedures (QA/QC) was adopted in order to set the methodological basis for an effective use of these bioassays in monitoring programs. Results revealed both higher embriotoxicity than spermiotoxicity in all stations and the efficacy of combined use of both toxicity bioassays in discriminating differing pollution/bioavailability between stations and periods. The good representativeness of the integrated sampling scheme and the standardization of all experimental phases yielded high precision of results. Clear Toxicity Fingerprints were evidenced for the investigated sites through the combined use of both bioassays. A good fit between ecotoxicological data and chemical contamination levels was found, except for unnatural sediment texture.

  7. Water pollution analysis and detection. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The bibliography contains citations concerning water pollution analysis, detection, monitoring, and regulation. Citations review online systems, bioassay monitoring, laser-based detection, sensor and biosensor systems, metabolic analyzers, and microsystem techniques. References cover fiber-optic portable detection instruments and rapid detection of toxicants in drinking water. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. Semipermeable membrane devices in monitoring of organic pollutants in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Sabaliunas, D

    1999-03-01

    Semipermeable membrane devices (SPMDs) are passive samplers capable of concentrating hydrophobic chemicals from water, sediments, soil and air. They consist of layflat polymeric membrane such as polyethylene containing a thin film of synthetic lipid such as triolein. The transport of hydrophobic chemicals through the membrane into the lipid is governed by the process of passive diffusion. Therefore, SPMDs sample chemicals in a way similar to organisms. This thesis deals with the application of SPMDs in the monitoring of concentrations and effects of organic pollutants in the aquatic environment. SPMDs were exposed to various pesticides (organochlorines, synthetic pyrethroids, dinitroanilines, amides) in laboratory flow-through experiments to study the uptake kinetics of organic chemicals from water. To compare the uptake of model compounds by SPMDs and aquatic organisms, the membrane samplers were exposed to chemicals side-by-side with bivalves. Mixtures of chemicals accumulated by SPMDs and mussels were tested in standard toxicity and genotoxicity assays (Microtox, Mutatox, invertebrate toxicity tests, the Ames test, sister chromatid exchange test). These studies showed that the uptake pattern of organic compounds by SPMDs and aquatic organisms was similar, and the passive samplers accumulated levels of chemicals sufficient for standard bioassays. To further validate the method, SPMDs were deployed in a number of polluted water sources in Lithuania. Bioassay-directed fractionation and chemical analytical methods were used to identify pollutants sampled (PAHs, PCBs, organochlorines) and their effects were evaluated in bioassays. SPMDs proved to be useful tools in monitoring of organic pollutants under the field conditions. Criteria for bioassays to be integrated with the SPMD technique were defined based on the results of these studies. Some important factors in the integration of SPMDs and bioassays (toxicity of SPMD-inherent oleic and sediment

  9. In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination.

    Science.gov (United States)

    Faria, Mafalda S; Lopes, Ricardo J; Nogueira, António J A; Soares, Amadeu M V M

    2007-09-01

    We used bioassays employing head capsule width and body length increase of Chironomus riparius larvae as end points to evaluate metal contamination in streams. Bioassays were performed in situ near an abandoned Portuguese goldmine in the spring of 2003 and 2004. Bioassays also were performed under laboratory conditions with water and sediment collected from each stream to verify if laboratory bioassays could detect in situ toxicity and to evaluate the relative contribution of sediment and water to overall toxicity. We used field sediments with control water and control sediments with field water to discriminate between metal contamination in water and sediment. Field water with dry and sieved, organic matter-free, and nontreated sediments was used to determine the toxicity of heavy metals that enter the organism through ingested material. In both in situ and laboratory bioassays, body length increase was significantly inhibited by metal contamination, whereas head capsule width was not affected. Body length increase was more affected by contaminated sediment compared to contaminated water. The lowest-effect level of heavy metals was observed in the dry and sieved sediment that prevented ingestion of sediment particles by larvae. These results suggest that body length increase of C. riparius larvae can be used to indicate the impact of metal contamination in rivers. Chironomus riparius larvae are more affected by heavy metals that enter the organism through ingested sediment than by heavy metals dissolved in the water column. Nevertheless, several factors, such as the particle size and organic matter of sediment, must be taken into account.

  10. Development by flow cytometry of bioassays based on chlorella for environmental monitoring

    Directory of Open Access Journals (Sweden)

    Petrescu C-M,

    2016-05-01

    Full Text Available In ecotoxicological assessments, bioassays (ecotoxicity tests or biotests are one of the main tools, defined as methods which use living cells, tissues, organism or communities to assess exposure-related effects of chemicals. The increasing complexity of environmental degradation requires an increase in the capacity of scientific approach in monitoring and notification as early as possible risks. Our own objective concerns the detection of aquatic environment pollution in Romania and particularly in the Danube basin. For assessing aquatic environment pollution degree or for assessing cytotoxicity or ecotoxicity of pollutants (heavy metals, nanoparticles, pesticides, etc. we developed news experimental bioassays based on the use of viability and apoptosis biomarkers of Chlorella cells by flow cytometry. Our proposed bioassays could be rapid and very sensitive tests for in laboratory aquatic risk assessment and biomonitoring.

  11. Developments in Water Pollution Law and Policy in China: Effective Enough to Cope with Water Pollution Conflict?

    OpenAIRE

    Du, Qun

    2011-01-01

    Water pollution is one of the most serious environmental issues facing China. In 2005, an exceptionally serious water pollution accident in the Songhua River — caused by an unintended and sudden chemicals explosion — heralded an official recognition of a water pollution crisis in China. Although there have been new initiatives in national law and policy concerning water pollution that attempt to respond to issues of: social conflict caused by water pollution; government accountability; liabil...

  12. Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Lors, Christine [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, LGCgE-MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France); Centre National de Recherche sur les Sites et Sols Pollues, 930 Boulevard Lahure, BP 537, 59505 Douai Cedex (France); Ponge, Jean-Francois, E-mail: ponge@mnhn.fr [Museum National d' Histoire Naturelle, Departement Ecologie et Gestion de la Biodiversite, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Martinez Aldaya, Maite [Museum National d' Histoire Naturelle, Departement Ecologie et Gestion de la Biodiversite, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Damidot, Denis [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, LGCgE-MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France)

    2011-10-15

    Bioassays on aqueous and solid phases of contaminated soils were compared, belonging to a wide array of trophic and response levels and using ecoscores for evaluating ecotoxicological and genotoxicological endpoints. The method was applied to four coke factory soils contaminated mainly with PAHs, but also to a lesser extent by heavy metals and cyanides. Aquatic bioassays do not differ from terrestrial bioassays when scaling soils according to toxicity but they are complementary from the viewpoint of ecological relevance. Both aquatic and terrestrial endpoints are strongly correlated with concentrations of 3-ring PAHs. This evaluation procedure allows us to propose a cost-effective battery which embraces a wide array of test organisms and response levels: it includes two rapid bioassays (Microtox) and springtail avoidance), a micronucleus test and three bioassays of a longer duration (algal growth, lettuce germination and springtail reproduction). This battery can be recommended for a cost-effective assessment of polluted/remediated soils. - Highlights: > Comparison of liquid- and solid-phase bioassays on contaminated soils, using ecoscores. > Complementarity of liquid- and solid-phase bioassays for the evaluation of environmental hazards. > Proposal for a restricted battery of 5 most sensitive tests. > Use of this restricted battery for a cost-effective assessment of polluted/remediated soils. - Aqueous and solid phases of contaminated soils give similar results in terms of toxicity but are complementary for the evaluation of environmental hazards by ecoscores.

  13. Development of bacteria-based bioassays for arsenic detection in natural waters.

    Science.gov (United States)

    Diesel, Elizabeth; Schreiber, Madeline; van der Meer, Jan Roelof

    2009-06-01

    Arsenic contamination of natural waters is a worldwide concern, as the drinking water supplies for large populations can have high concentrations of arsenic. Traditional techniques to detect arsenic in natural water samples can be costly and time-consuming; therefore, robust and inexpensive methods to detect arsenic in water are highly desirable. Additionally, methods for detecting arsenic in the field have been greatly sought after. This article focuses on the use of bacteria-based assays as an emerging method that is both robust and inexpensive for the detection of arsenic in groundwater both in the field and in the laboratory. The arsenic detection elements in bacteria-based bioassays are biosensor-reporter strains; genetically modified strains of, e.g., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Rhodopseudomonas palustris. In response to the presence of arsenic, such bacteria produce a reporter protein, the amount or activity of which is measured in the bioassay. Some of these bacterial biosensor-reporters have been successfully utilized for comparative in-field analyses through the use of simple solution-based assays, but future methods may concentrate on miniaturization using fiberoptics or microfluidics platforms. Additionally, there are other potential emerging bioassays for the detection of arsenic in natural waters including nematodes and clams.

  14. Development of bacteria-based bioassays for arsenic detection in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Diesel, Elizabeth; Schreiber, Madeline [Virginia Tech, Department of Geosciences, Blacksburg, VA (United States); Meer, Jan Roelof van der [University of Lausanne, Department of Fundamental Microbiology, Lausanne (Switzerland)

    2009-06-15

    Arsenic contamination of natural waters is a worldwide concern, as the drinking water supplies for large populations can have high concentrations of arsenic. Traditional techniques to detect arsenic in natural water samples can be costly and time-consuming; therefore, robust and inexpensive methods to detect arsenic in water are highly desirable. Additionally, methods for detecting arsenic in the field have been greatly sought after. This article focuses on the use of bacteria-based assays as an emerging method that is both robust and inexpensive for the detection of arsenic in groundwater both in the field and in the laboratory. The arsenic detection elements in bacteria-based bioassays are biosensor-reporter strains; genetically modified strains of, e.g., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Rhodopseudomonas palustris. In response to the presence of arsenic, such bacteria produce a reporter protein, the amount or activity of which is measured in the bioassay. Some of these bacterial biosensor-reporters have been successfully utilized for comparative in-field analyses through the use of simple solution-based assays, but future methods may concentrate on miniaturization using fiberoptics or microfluidics platforms. Additionally, there are other potential emerging bioassays for the detection of arsenic in natural waters including nematodes and clams. (orig.)

  15. Industrial water pollution, water environment treatment, and health risks in China.

    Science.gov (United States)

    Wang, Qing; Yang, Zhiming

    2016-11-01

    The negative health effects of water pollution remain a major source of morbidity and mortality in China. The Chinese government is making great efforts to strengthen water environment treatment; however, no studies have evaluated the effects of water treatment on human health by water pollution in China. This study evaluated the association between water pollution and health outcomes, and determined the extent to which environmental regulations on water pollution may lead to health benefits. Data were extracted from the 2011 and 2013 China Health and Retirement Longitudinal Study (CHARLS). Random effects model and random effects Logit model were applied to study the relationship between health and water pollution, while a Mediator model was used to estimate the effects of environmental water treatment on health outcomes by the intensity of water pollution. Unsurprisingly, water pollution was negatively associated with health outcomes, and the common pollutants in industrial wastewater had differential impacts on health outcomes. The effects were stronger for low-income respondents. Water environment treatment led to improved health outcomes among Chinese people. Reduced water pollution mediated the associations between water environment treatment and health outcomes. The results of this study offer compelling evidence to support treatment of water pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Pollutants in drinking water - sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2005-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemicals and radionuclide etc. This is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  17. Water, heat, and airborne pollutants effects on transpiration of urban trees

    International Nuclear Information System (INIS)

    Wang Hua; Ouyang Zhiyun; Chen Weiping; Wang Xiaoke; Zheng Hua; Ren Yufen

    2011-01-01

    Transpiration rates of six urban tree species in Beijing evaluated by thermal dissipation method for one year were correlated to environmental variables in heat, water, and pollutant groups. To sort out colinearity of the explanatory variables, their individual and joint contributions to variance of tree transpiration were determined by the variation and hierarchical partitioning methods. Majority of the variance in transpiration rates was associated with joint effects of variables in heat and water groups and variance due to individual effects of explanatory group were in comparison small. Atmospheric pollutants exerted only minor effects on tree transpiration. Daily transpiration rate was most affected by air temperature, soil temperature, total radiation, vapor pressure deficit, and ozone. Relative humidity would replace soil temperature when factors influencing hourly transpiration rate was considered. - Highlights: → Heat, water, pollutants effect on transpiration was evaluated by partitioning method. → Urban tree transpiration was mainly affected by combined effects of these variables. → The heat and water variables affected transpiration of urban trees. → The urban air pollution merely acts as an antagonistic factor. - Heat and water related environmental variables affected transpiration of urban trees and ozone was an added yet minor stress factor.

  18. Sample preparation for combined chemical analysis and bioassay application in water quality assessment

    NARCIS (Netherlands)

    Kolkman, A.; Schriks, M.; Brand, W; Bäuerlein, P.S.; van der Kooi, M.M.E.; van Doorn, R.H.; Emke, E.; Reus, A.; van der Linden, S.; de Voogt, P.; Heringa, M.B.

    2013-01-01

    The combination of in vitro bioassays and chemical screening can provide a powerful toolbox to determine biologically relevant compounds in water extracts. In this study, a sample preparation method is evaluated for the suitability for both chemical analysis and in vitro bioassays. A set of 39

  19. Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils

    International Nuclear Information System (INIS)

    Lors, Christine; Ponge, Jean-Francois; Martinez Aldaya, Maite; Damidot, Denis

    2011-01-01

    Bioassays on aqueous and solid phases of contaminated soils were compared, belonging to a wide array of trophic and response levels and using ecoscores for evaluating ecotoxicological and genotoxicological endpoints. The method was applied to four coke factory soils contaminated mainly with PAHs, but also to a lesser extent by heavy metals and cyanides. Aquatic bioassays do not differ from terrestrial bioassays when scaling soils according to toxicity but they are complementary from the viewpoint of ecological relevance. Both aquatic and terrestrial endpoints are strongly correlated with concentrations of 3-ring PAHs. This evaluation procedure allows us to propose a cost-effective battery which embraces a wide array of test organisms and response levels: it includes two rapid bioassays (Microtox) and springtail avoidance), a micronucleus test and three bioassays of a longer duration (algal growth, lettuce germination and springtail reproduction). This battery can be recommended for a cost-effective assessment of polluted/remediated soils. - Highlights: → Comparison of liquid- and solid-phase bioassays on contaminated soils, using ecoscores. → Complementarity of liquid- and solid-phase bioassays for the evaluation of environmental hazards. → Proposal for a restricted battery of 5 most sensitive tests. → Use of this restricted battery for a cost-effective assessment of polluted/remediated soils. - Aqueous and solid phases of contaminated soils give similar results in terms of toxicity but are complementary for the evaluation of environmental hazards by ecoscores.

  20. Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates.

    NARCIS (Netherlands)

    Santarufo, L.; van Gestel, C.A.M.; Maisto, G.

    2012-01-01

    This study aimed at assessing the quality of urban soils by integrating chemical and ecotoxicological approaches. Soils from five sites in downtown Naples, Italy, were sampled and characterized for physical-chemical properties and total and water-extractable metal concentrations. Bioassays with

  1. A rapid bioassay for detecting saxitoxins using a Daphnia acute toxicity test

    Energy Technology Data Exchange (ETDEWEB)

    Ferrao-Filho, Aloysio da S., E-mail: aloysio@ioc.fiocruz.b [Laboratorio de Avaliacao e Promocao da Saude Ambiental, Departamento de Biologia, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21045-900 (Brazil); Soares, Maria Carolina S., E-mail: mcarolsoares@gmail.co [Departamento de Engenharia Sanitaria e Ambiental Faculdade de Engenharia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900 (Brazil); Freitas de Magalhaes, Valeria, E-mail: valeria@biof.ufrj.b [Laboratorio de Ecofisiologia e Toxicologia de Cianobacterias, Instituto de Biofisica Carlos Chagas Filho, CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro, RJ 21949-900 (Brazil); Azevedo, Sandra M.F.O., E-mail: sazevedo@biof.ufrj.b [Laboratorio de Ecofisiologia e Toxicologia de Cianobacterias, Instituto de Biofisica Carlos Chagas Filho, CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro, RJ 21949-900 (Brazil)

    2010-06-15

    Bioassays using Daphnia pulex and Moina micrura were designed to detect cyanobacterial neurotoxins in raw water samples. Phytoplankton and cyanotoxins from seston were analyzed during 15 months in a eutrophic reservoir. Effective time to immobilize 50% of the exposed individuals (ET{sub 50}) was adopted as the endpoint. Paralysis of swimming movements was observed between approx0.5-3 h of exposure to lake water containing toxic cyanobacteria, followed by an almost complete recovery of the swimming activity within 24 h after being placed in control water. The same effects were observed in bioassays with a saxitoxin-producer strain of Cylindrospermopsis raciborskii isolated from the reservoir. Regression analysis showed significant relationships between ET{sub 50}vs. cell density, biomass and saxitoxins content, suggesting that the paralysis of Daphnia in lake water samples was caused by saxitoxins found in C. raciborskii. Daphnia bioassay was found to be a sensitive method for detecting fast-acting neurotoxins in natural samples, with important advantages over mouse bioassays. - A new Daphnia bioassay, as an alternative to the mouse bioassay, is able to detect effects of fast-acting, potent neurotoxins in raw water.

  2. A rapid bioassay for detecting saxitoxins using a Daphnia acute toxicity test

    International Nuclear Information System (INIS)

    Ferrao-Filho, Aloysio da S.; Soares, Maria Carolina S.; Freitas de Magalhaes, Valeria; Azevedo, Sandra M.F.O.

    2010-01-01

    Bioassays using Daphnia pulex and Moina micrura were designed to detect cyanobacterial neurotoxins in raw water samples. Phytoplankton and cyanotoxins from seston were analyzed during 15 months in a eutrophic reservoir. Effective time to immobilize 50% of the exposed individuals (ET 50 ) was adopted as the endpoint. Paralysis of swimming movements was observed between ∼0.5-3 h of exposure to lake water containing toxic cyanobacteria, followed by an almost complete recovery of the swimming activity within 24 h after being placed in control water. The same effects were observed in bioassays with a saxitoxin-producer strain of Cylindrospermopsis raciborskii isolated from the reservoir. Regression analysis showed significant relationships between ET 50 vs. cell density, biomass and saxitoxins content, suggesting that the paralysis of Daphnia in lake water samples was caused by saxitoxins found in C. raciborskii. Daphnia bioassay was found to be a sensitive method for detecting fast-acting neurotoxins in natural samples, with important advantages over mouse bioassays. - A new Daphnia bioassay, as an alternative to the mouse bioassay, is able to detect effects of fast-acting, potent neurotoxins in raw water.

  3. Biological and chemical evaluation of sewage water pollution in the Rietvlei nature reserve wetland area, South Africa

    International Nuclear Information System (INIS)

    Oberholster, P.J.; Botha, A.-M.; Cloete, T.E.

    2008-01-01

    Macroinvertebrate communities in Rietvlei nature reserve wetland area and their relationship with water quality were studied with the aim to evaluate their use as potential indicators of pollution. Sampling locations were selected to include outlets from swage effluent, agricultural and informal residential runoff. A large increase in nutrient concentrations was observed downstream from discharged treated sewage with an associated decrease in species richness. Bioassays performed included: Daphnia magna, Hydra attenuate, Lactuca sativa, Allium cepa and Pyxicephalus adspersus. The highest percentage of lethality response to a screen (100% concentration) of sampled wetland water by test specimens were observed at the point source input of the Hartbeespoort treated sewage plant. Data generated from the AUSRIVAS method and multitrophic level bioassays revealed the deterioration of the wetland possibly due to factors such as increasing urbanization, industrialization, agriculture runoff and rapid human settlement in the Hennops River catchment area and its principal tributaries. - Bioassays confirmed the degradation of a freshwater wetland system due to effluent from a variety of sources

  4. Biological and chemical evaluation of sewage water pollution in the Rietvlei nature reserve wetland area, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Oberholster, P.J. [CSIR Natural Resources and the Environment, P.O. Box 395, Pretoria 0001 (South Africa)], E-mail: anna.oberholster@up.ac.za; Botha, A.-M. [Department of Genetics, University of Pretoria, Hillcrest, Pretoria ZA002 (South Africa); Cloete, T.E. [Department of Microbiology and Plant Pathology, University of Pretoria, Hillcrest, Pretoria ZA002 (South Africa)

    2008-11-15

    Macroinvertebrate communities in Rietvlei nature reserve wetland area and their relationship with water quality were studied with the aim to evaluate their use as potential indicators of pollution. Sampling locations were selected to include outlets from swage effluent, agricultural and informal residential runoff. A large increase in nutrient concentrations was observed downstream from discharged treated sewage with an associated decrease in species richness. Bioassays performed included: Daphnia magna, Hydra attenuate, Lactuca sativa, Allium cepa and Pyxicephalus adspersus. The highest percentage of lethality response to a screen (100% concentration) of sampled wetland water by test specimens were observed at the point source input of the Hartbeespoort treated sewage plant. Data generated from the AUSRIVAS method and multitrophic level bioassays revealed the deterioration of the wetland possibly due to factors such as increasing urbanization, industrialization, agriculture runoff and rapid human settlement in the Hennops River catchment area and its principal tributaries. - Bioassays confirmed the degradation of a freshwater wetland system due to effluent from a variety of sources.

  5. Toxicity assessment using different bioassays and microbial biosensors.

    Science.gov (United States)

    Hassan, Sedky H A; Van Ginkel, Steven W; Hussein, Mohamed A M; Abskharon, Romany; Oh, Sang-Eun

    2016-01-01

    Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Pollutants in drinking water: their sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2004-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemical and radionuclide etc. this is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication. Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  7. Biomonitoring of cyanotoxins in two tropical reservoirs by cladoceran toxicity bioassays.

    Science.gov (United States)

    da S Ferrão-Filho, Aloysio; Soares, Maria Carolina S; de Freitas Magalhães, Valeria; Azevedo, Sandra M F O

    2009-02-01

    This study evaluates the potential for the use of cladocerans in biomonitoring of cyanobacterial toxins. Two zooplankton species (Daphnia gessneri and Moina micrura) were cultivated in the laboratory for use in acute (48 h) and chronic (10 days) bioassays. Water samples were collected from two reservoirs and diluted in mineral water at four concentrations. Survivorship in the acute bioassays was used to calculate LC50, and survivorship and fecundity in chronic bioassays were used to calculate the intrinsic population growth rate (r) and the EC50. Analysis of phytoplankton in the water samples from one reservoir revealed that cyanobacteria were the dominant group, represented by the genera Anabaena, Cylindrospermopsis, and Microcystis. Results of bioassays showed adverse effects including death, paralysis, and reduced population growth rate, generally proportional to the reservoir water concentration. These effects may be related to the presence of cyanobacteria toxins (microcystins or saxitoxins) in the water.

  8. The continental waters pollution

    International Nuclear Information System (INIS)

    Marsily, G. de

    1996-01-01

    This work deals with the continental water pollution. The sewage affect considerably the quality of some rivers water and of some basins. Moreover, a slow and general damage of natural waters has been established. The direct effects on men and on the natural medium (climatic change, aquatic ecosystems, water cycle) are given as well as the protection means (waste processing, the water-bearing bed and underground water protection, the aquatic ecosystems protection and planning) used and future to abate the water pollution. (O.L.). 17 refs., 6 tabs

  9. Ground water pollution through air pollutants

    International Nuclear Information System (INIS)

    Cichorowski, G.; Michel, B.; Versteegen, D.; Wettmann, R.

    1989-01-01

    The aim of the investigation is to determine the significance of air pollutants for ground water quality and ground water use. The report summarizes present knowledge and assesses statements with a view to potential ground water pollution from the air. In this context pollution paths, the spreading behaviour of pollutants, and 'cross points' with burden potentials from other pollutant sources are presented. (orig.) [de

  10. Bioassay using the water soluble fraction of a Nigerian Light Crude ...

    African Journals Online (AJOL)

    Summary: A 96-hour bioassay was conducted using the water soluble fraction of a Nigerian light crude oil sample on Clarias gariepinus fingerlings. 0, 2.5, 5.0, 7.5 and 10 mls of water soluble fractions (WSF) of the oil were added to 1000 litres of de-chlorinated tap water to form 0, 25, 50 , 75 and 100 parts per million ...

  11. Water Pollution

    International Nuclear Information System (INIS)

    Goni, J.

    1984-01-01

    This work is about the water pollution. The air and the water interaction cycles is the main idea of the geochemical pollution conception. In the water surface as well as in the deep aquifers we can found cough metals or minerals from the athmosferic air. The activities of mercury fluor and nitrates are important to the pollution study

  12. Effect of aquatic plants on 95Zr concentration in slightly polluted water

    International Nuclear Information System (INIS)

    Shi Jianjun; Yang Ziyin; Chen Hui

    2004-01-01

    Effect of three aquatic plants (Ceratophyllum demersum, Azolla caroliniana and Eichhornia crassipes) on 95 Zr concentration in slightly polluted water was studied by using isotope tracer techniques. The results showed that the aquatic plants had strong ability of 95 Zr concentration in water. The concentration factor (CF) were from 56.78 to 112.94, so three aquatic plants were suggested be bio-indicators for 95 Zr polluted water. The specific activity of 95 Zr in water decreased with time when the aquatic plants were put in slightly 95 Zr polluted water. The descent of specific activity of 95 Zr in water was very quick during the beginning period (0-3d). The time for the specific activity reduced to 50% was only 3 days, indicating that theres aquatic plants could be used to purge slightly 95 Zr polluted water. The effect of Eichhornia crassipes on purging 95 Zr in water was the best among the three aquatic plants. The specific activity of 95 Zr in bottom clay only decreased 5% after putting aquatic plants in water, indicating that desorption of 95 Zr from bottom clay was not easy. As the bottom clay had strong ability of adsorption and fixation to 95 Zr, the effect of aquatic plant on purging 95 Zr adsorbed by bottom clay was not visible

  13. Water Pollution

    Science.gov (United States)

    Bowen, H. J. M.

    1975-01-01

    Deals with water pollution in the following categories: a global view, self purification, local pollution, difficulties in chemical analysis, and remedies for water pollution. Emphasizes the extent to which man's activities have modified the cycles of certain elements. (GS)

  14. Linking sewage pollution and water quality to spatial patterns of Porites lobata growth anomalies in Puako, Hawaii.

    Science.gov (United States)

    Yoshioka, Reyn M; Kim, Catherine J S; Tracy, Allison M; Most, Rebecca; Harvell, C Drew

    2016-03-15

    Sewage pollution threatens the health of coastal populations and ecosystems, including coral reefs. We investigated spatial patterns of sewage pollution in Puako, Hawaii using enterococci concentrations and δ(15)N Ulva fasciata macroalgal bioassays to assess relationships with the coral disease Porites lobata growth anomalies (PGAs). PGA severity and enterococci concentrations were high, spatially variable, and positively related. Bioassay algal δ(15)N showed low sewage pollution at the reef edge while high values of resident algae indicated sewage pollution nearshore. Neither δ(15)N metric predicted PGA measures, though bioassay δ(15)N was negatively related to coral cover. Furthermore, PGA prevalence was much higher than previously recorded in Hawaii and the greater Indo-Pacific, highlighting Puako as an area of concern. Although further work is needed to resolve the relationship between sewage pollution and coral cover and disease, these results implicate sewage pollution as a contributor to diminished reef health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Design an effective storm water pollution prevention plan

    International Nuclear Information System (INIS)

    Vivona, M.A.

    1995-01-01

    A case history shows ''how'' to plan and organize a storm water pollution prevention program (SWPPP). Using easy-to-use worksheets and guidelines, hydrocarbon processing industry (HPI) operators can build upon existing best management practices (i.e., housekeeping procedures, visual inspections, spill prevention programs, etc.) to meet tighter restrictions set by National Pollutant Discharge Elimination system (NPDES) permits. Especially in high rainfall areas, storm water poses an intermittent, but large volume problem. The facility's site size is another factor that impacts the scope and cost for SWPPP. The five steps to implementing a SWPPP are: Planning and organization; Assessment; Best management practice (BMP) identification; Implementation; Evaluation and monitoring. Initially, HPI operators must identify all potential contamination sources and past spills and leak areas. Following the SWPP guidelines, operators can map out a cost-effective storm water program that meets all NPDES requirements

  16. Assessment of Sediment Heavy Metals Pollution Using Screening Methods (XRF, TGA/MS, XRPD and Earthworms Bioassay)

    Science.gov (United States)

    Findoráková, Lenka; Šestinová, Ol'ga; Hančul'ák, Jozef; Fedorová, Erika; Zorkovská, Anna

    2016-10-01

    The aim of this study is focused on the use of screening methods (TG/DTA coupled with MS, XRF, AAS, XRPD and earthworm bioassay) for sediments pollution assessing by heavy metals (Cu, Zn, Pb, Hg) coming from the former mining workloads in the central Spis, Eastern Slovakia. The screening methods (XRF, AAS) indicated pollution of studied sediments by Cu, Zn, Pb, Hg. The earthworms Dendrobaena veneta caused in some studied samples decrease of heavy metals concentration after their 7 days’ exposure in sediments. The other screening methods such as thermal analysis and XRPD analysis, does not confirm the specifically changes in physicochemical properties comparing the properties before and after 7 days’ earthworm's exposure.

  17. Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung-Seok; Lee, Pyeong-Koo [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of). Geologic Environment Div.; Kong, In Chul [Yeungnam Univ., Kyungbuk (Korea, Republic of). Dept. of Environmental Engineering

    2012-09-15

    The sensitivities of four different kinds of bioassays to the toxicities of arsenite, chromate, cadmium, and copper were compared. The different bioassays exhibited different sensitivities, i.e., they responded to different levels of toxicity of each of the different metals. However, with the exception of the {alpha}-glucosidase enzyme activity, arsenite was the most toxic compound towards all the tested organisms, exhibiting the highest toxic effect on the seeds of Lactuca, with an EC{sub 50} value of 0.63 mg/L. The sensitivities of Lactuca and Raphanus were greater than the sensitivities of two other kinds of seeds tested. Therefore, these were the seeds appropriate for use in a seed germination assay. A high revertant mutagenic ratio (5:1) of Salmonella typhimurium was observed with an arsenite concentration of 0.1 {mu}g/plate, indicative of a high possibility of mutagenicity. These different results suggested that a battery of bioassays, rather than one bioassay alone, is needed as a more accurate and better tool for the bioassessment of environmental pollutants. (orig.)

  18. Water pollution

    OpenAIRE

    Institute, Marine

    2013-01-01

    Students will learn about what causes water pollution and how to be environmentally aware. *Note: Students should understand the concept of the water cycle before moving onto water pollution (see Lesson Plan “Oceans all Around Us”).

  19. Assessing the ecological long-term impact of wastewater irrigation on soil and water based on bioassays and chemical analyses.

    Science.gov (United States)

    Richter, Elisabeth; Hecht, Fabian; Schnellbacher, Nadine; Ternes, Thomas A; Wick, Arne; Wode, Florian; Coors, Anja

    2015-11-01

    The reuse of treated wastewater for irrigation and groundwater recharge can counteract water scarcity and reduce pollution of surface waters, but assessing its environmental risk should likewise consider effects associated to the soil. The present study therefore aimed at determining the impact of wastewater irrigation on the habitat quality of water after soil passage and of soil after percolation by applying bioassays and chemical analysis. Lab-scale columns of four different soils encompassing standard European soil and three field soils of varying characteristics and pre-contamination were continuously percolated with treated wastewater to simulate long-term irrigation. Wastewater and its percolates were tested for immobilization of Daphnia magna and growth inhibition of green algae (Pseudokirchneriella subcapitata) and water lentils (Lemna minor). The observed phytotoxicity of the treated wastewater was mostly reduced by soil passage, but in some percolates also increased for green algae. Chemical analysis covering an extensive set of wastewater-born organic pollutants demonstrated that many of them were considerably reduced by soil passage, particularly through peaty soils. Taken together, these results indicated that wastewater-born phytotoxic substances may be removed by soil passage, while existing soil pollutants (e.g. metals) may leach and impair percolate quality. Soils with and without wastewater irrigation were tested for growth of plants (Avena sativa, Brassica napus) and soil bacteria (Arthrobacter globiformis) and reproduction of collembolans (Folsomia candida) and oligochaetes (Enchytraeus crypticus, Eisenia fetida). The habitat quality of the standard and two field soils appeared to be deteriorated by wastewater percolation for at least one organism (enchytraeids, plants or bacteria), while for two pre-contaminated field soils it also was improved (for plants and/or enchytraeids). Wastewater percolation did not seem to raise soil concentrations

  20. Linking sewage pollution and water quality to spatial patterns of Porites lobata growth anomalies in Puako, Hawaii

    International Nuclear Information System (INIS)

    Yoshioka, Reyn M.; Kim, Catherine J.S.; Tracy, Allison M.; Most, Rebecca; Harvell, C. Drew

    2016-01-01

    Sewage pollution threatens the health of coastal populations and ecosystems, including coral reefs. We investigated spatial patterns of sewage pollution in Puako, Hawaii using enterococci concentrations and δ 15 N Ulva fasciata macroalgal bioassays to assess relationships with the coral disease Porites lobata growth anomalies (PGAs). PGA severity and enterococci concentrations were high, spatially variable, and positively related. Bioassay algal δ 15 N showed low sewage pollution at the reef edge while high values of resident algae indicated sewage pollution nearshore. Neither δ 15 N metric predicted PGA measures, though bioassay δ 15 N was negatively related to coral cover. Furthermore, PGA prevalence was much higher than previously recorded in Hawaii and the greater Indo-Pacific, highlighting Puako as an area of concern. Although further work is needed to resolve the relationship between sewage pollution and coral cover and disease, these results implicate sewage pollution as a contributor to diminished reef health. - Highlights: •Abundant enterococci and high algal δ 15 N suggest sewage pollution in Puako. •Sewage pollution may influence Porites lobata growth anomalies (PGAs). •There is high spatial and temporal variability in sewage pollution entering reefs. •Physical factors (rainfall, hydrology, etc.) alter sewage and disease dynamics. •Long-term reef and pollution monitoring is needed in Puako.

  1. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    Science.gov (United States)

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  2. Natural products phytotoxicity A bioassay suitable for small quantities of slightly water-soluble compounds.

    Science.gov (United States)

    Dornbos, D L; Spencer, G F

    1990-02-01

    A large variety of secondary metabolites that can inhibit germination and/or seedling growth are produced by plants in low quantities. The objective of this study was to develop a bioassay capable of reliably assessing reductions in germination percentage and seedling length of small-seeded plant species caused by exposure to minute quantities of these compounds. The germination and growth of alfalfa (Medicago saliva), annual ryegrass (Lolium multiflorum), and velvetleaf (Abutilon theophrasti) were evaluated against six known phytotoxins from five chemical classes; cinmethylin (a herbicidal cineole derivative) was selected as a comparison standard. Each phytotoxin, dissolved in a suitable organic solvent, was placed on water-agar in small tissue culture wells. After the solvent evaporated, imbibed seeds were placed on the agar; after three days, germination percentages and seedling lengths were measured. Compared to a commonly used filter paper procedure, this modified agar bioassay required smaller quantities of compound per seed for comparable bioassay results. This bioassay also readily permitted the measurement of seedling length, a more sensitive indicator of phytotoxicity than germination. Seedling length decreased sigmoidally as the toxin concentration increased logarithmically. Phytotoxicity was a function of both compound and plant species. Cinmethylin, a grass herbicide, reduced the length of annual ryegrass seedlings by 90-100%, whereas that of alfalfa and velvetleaf was inhibited slightly. The agar bioassay facilitated the rapid and reliable testing of slightly water-soluble compounds, requiring only minute quantities of each compound to give reproducible results.

  3. The effect of water solubles on Kelvin effects of the Maritime Polluted ...

    African Journals Online (AJOL)

    In this work microphysical properties of Maritime Polluted aerosols wereextracted from Optical Properties of Aerosols and Clouds (OPAC) after varying the concentrations of water soluble at five different levels. The analytical expressions for the changes in the equilibrium relative humidity (RH), effective radii, effective ...

  4. Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river.

    Science.gov (United States)

    Kalogianni, Eleni; Vourka, Aikaterini; Karaouzas, Ioannis; Vardakas, Leonidas; Laschou, Sofia; Skoulikidis, Nikolaos Th

    2017-12-15

    Water stress is a key stressor in Mediterranean intermittent rivers exacerbating the negative effects of other stressors, such as pollutants, with multiple effects on different river biota. The current study aimed to determine the response of macroinvertebrate and fish assemblages to instream habitat and water chemistry, at the microhabitat scale and at different levels of water stress and pollution, in an intermittent Mediterranean river. Sampling was conducted at high and low summer discharge, at two consecutive years, and included four reaches that were targeted for their different levels of water stress and pollution. Overall, the macroinvertebrate fauna of Evrotas River indicated high resilience to intermittency, however, variation in community structure and composition occurred under acute water stress, due to habitat alteration and change in water physico-chemistry, i.e. water temperature increase. The combined effects of pollution and high water stress had, however, pronounced effects on species richness, abundance and community structure in the pollution impacted reach, where pollution sensitive taxa were almost extirpated. Fish response to drought, in reaches free of pollution, consisted of an increase in the abundance of the two small limnophilic species, coupled with their shift to faster flowing riffle habitats, and a reduction in the abundance of the larger, rheophilic species. In the pollution impacted reach, however, the combination of pollution and high water stress led to hypoxic conditions assumed to be the leading cause of the almost complete elimination of the fish assemblage. In contrast, the perennial Evrotas reaches with relatively stable physicochemical conditions, though affected hydrologically by drought, appear to function as refugia for fish during high water stress. When comparing the response of the two biotic groups to combined acute water stress and pollution, it is evident that macroinvertebrates were negatively impacted, but fish

  5. A rapid bioassay for detecting saxitoxins using a Daphnia acute toxicity test.

    Science.gov (United States)

    Ferrão-Filho, Aloysio da S; Soares, Maria Carolina S; de Magalhães, Valéria Freitas; Azevedo, Sandra M F O

    2010-06-01

    Bioassays using Daphnia pulex and Moina micrura were designed to detect cyanobacterial neurotoxins in raw water samples. Phytoplankton and cyanotoxins from seston were analyzed during 15 months in a eutrophic reservoir. Effective time to immobilize 50% of the exposed individuals (ET50) was adopted as the endpoint. Paralysis of swimming movements was observed between approximately 0.5-3 h of exposure to lake water containing toxic cyanobacteria, followed by an almost complete recovery of the swimming activity within 24 h after being placed in control water. The same effects were observed in bioassays with a saxitoxin-producer strain of Cylindrospermopsis raciborskii isolated from the reservoir. Regression analysis showed significant relationships between ET50 vs. cell density, biomass and saxitoxins content, suggesting that the paralysis of Daphnia in lake water samples was caused by saxitoxins found in C. raciborskii. Daphnia bioassay was found to be a sensitive method for detecting fast-acting neurotoxins in natural samples, with important advantages over mouse bioassays. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. E-Alerts: Environmental pollution and control (water pollution and control). E-mail newsletter

    International Nuclear Information System (INIS)

    1999-01-01

    Topics of discussion include the following: Pollution by municipal wastes, agricultural wastes, industrial wastes, mine wastes, radioactive contaminants; Chemistry and analysis of pollutants; Thermal pollution; Oil pollution; Control techniques and equipment; Sewage treatment; Industrial waste water pretreatment; Hydrology and limnology; Biological and ecological effects; Waste water reuse; Laws, legislation, and regulations; Public administration; Economics; Land use

  7. E-Alerts: Environmental pollution and control (water pollution and control). E-mail newsletter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Topics of discussion include the following: Pollution by municipal wastes, agricultural wastes, industrial wastes, mine wastes, radioactive contaminants; Chemistry and analysis of pollutants; Thermal pollution; Oil pollution; Control techniques and equipment; Sewage treatment; Industrial waste water pretreatment; Hydrology and limnology; Biological and ecological effects; Waste water reuse; Laws, legislation, and regulations; Public administration; Economics; Land use.

  8. Municipal water pollution prevention program

    International Nuclear Information System (INIS)

    1991-03-01

    EPA believes that the most effective and equitable means of assuring viability of this infrastructure is through environmentally preferred pollution prevention approaches especially through application of Municipal Water Pollution Prevention (MWPP). These approaches may enhance worker safety, improve the usability of sludge, increase the ability for local community expansion, and reduce operation and compliance costs. State-based municipal pollution prevention programs focus attention on a series of actions to prevent pollution in advance rather than taking more expensive corrective actions. MWPP encourages resource conservation to reduce water and energy use, appropriate pricing, toxicity reductions at the source, BOD reductions, recycling, proper treatment of wastes, and beneficial uses of sludge

  9. The Practice of Water Pollution Biology.

    Science.gov (United States)

    Mackenthun, Kenneth M.

    Water pollution techniques and practices, including data analysis, interpretation and display are described in this book intended primarily for the biologist inexperienced in this work, and for sanitary engineers, chemists, and water pollution control administrators. The characteristics of aquatic environments, their biota, and the effects of…

  10. Screening for unicellular algae as possible bioassay organisms for monitoring marine water samples.

    Science.gov (United States)

    Millán de Kuhn, Rosmary; Streb, Christine; Breiter, Roman; Richter, Peter; Neesse, Thomas; Häder, Donat-Peter

    2006-08-01

    ECOTOX is an automatic early warning system to monitor potential pollution of freshwater, municipal or industrial waste waters or aquatic ecosystems. It is based on a real time image analysis of the motility and orientation parameters of the unicellular, photosynthetic flagellate Euglena gracilis. In order to widen the use of the device to marine habitats and saline waters nine marine flagellates were evaluated as putative bioassay organisms, viz. Dunaliella salina, Dunaliella viridis, Dunaliella bardawil, Prorocentrum minimum Kattegat, P. minimum Lissabon, Tetraselmis suecica, Heterocapsa triquetra, Gyrodinium dorsum and Cryptomonas maculata. Because of their slow growth the last three strains were excluded from further evaluation. Selection criteria were ease of culture, density of cell suspension, stability of motility and gravitactic orientation. The sensitivity toward toxins was tested using copper(II) ions. The instrument allows the user to automatically determine effect-concentration (EC) curves from which the EC(50) values can be calculated. For the interpretation of the EC curves a sigmoid logistic model was proposed which proved to be satisfactory for all tested strains. The inhibition of the motility was considered as the most appropriate movement parameter as an endpoint. The Dunaliella species had the lowest sensitivity to copper with EC(50) values of 220, 198 and 176 mg/L for D. salina, D. bardawil and D. viridis, respectively, followed by T. suecica with an EC(50) value of 40 mg/L. The Prorocentrum species were found to be the most sensitive with an EC(50) value of 13.5 mg/L for P. minimum Lissabon and 7.5 mg/L for P. minimum Kattegat.

  11. The effect of pesticide residue on caged mosquito bioassays.

    Science.gov (United States)

    Barber, J A S; Greer, Mike; Coughlin, Jamie

    2006-09-01

    Wind tunnel experiments showed that secondary pickup of insecticide residue by mosquitoes in cage bioassays had a significant effect on mortality. Cage bioassays using adult Ochlerotatus taeniorhynchus (Wiedemann) investigated the effect of exposure time to a contaminated surface. Cages were dosed in a wind tunnel using the LC50 for naled (0.124 mg a.i./ml) and an LC25 (0.0772 mg a.i./ml) for naled. Half of the bioassay mosquitoes were moved directly into clean cages with the other half remaining in the sprayed, hence contaminated, cage. Treatment mortality was assessed at 8, 15, 30, 60, 120, 240, and 1,440 min postapplication. Cage contamination had a significant effect on mosquito mortality for both the LC25 and LC50 between 15 and 30 min postapplication.

  12. Water Pollution, Causes and Cures.

    Science.gov (United States)

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of water pollution and water pollution treatment systems is accompanied by graphic illustrations. Sources of pollution such as lake bottom vegetation, synthetic organic pollutants, heat pollution, radioactive substance pollution, and human and industrial waste products are discussed. Several types of water purification…

  13. Effects of climate change on the toxicity of soils polluted by metal mine wastes to Enchytraeus crypticus

    NARCIS (Netherlands)

    Gonzalez Alcaraz, M.N.; Tsitsiou, E.; Wieldraaijer, R.; Verweij, R.A.; van Gestel, C.A.M.

    2015-01-01

    The present study aimed to assess the effects of climate change on the toxicity of metal-polluted soils. Bioassays with Enchytraeus crypticus were performed in soils polluted by mine wastes (mine tailing, forest, and watercourse) and under different combinations of temperature (20°C and 25°C) and

  14. Methodology for the ecotoxicological evaluation of areas polluted by phosphogypsum wastes.

    Science.gov (United States)

    Martínez-Sanchez, M. J.; Garcia-Lorenzo, M. L.; Perez-Sirvent, C.; Martinez-Lopez, S.; Hernandez-Cordoba, M.; Bech, J.

    2012-04-01

    In Spain, the production of phosphoric acid, and hence of phosphogypsum, is restricted to a fertilizer industrial site. The residues contain some radionuclides of the U-series and other contaminants. In order to estimate the risk posed by these materials, chemical methods need to be complemented with biological methods. Then, the aim of this study was to develop a battery of bioassays for the ecotoxicological screening of areas polluted by phosphogypsum wastes. Particularly, the toxicity of water samples, sediments and their pore-water extracts was evaluated by using three assays: bacteria, plants and ostracods. The applied bioassays were: the bioluminescence inhibition of Vibrio fischeri in superficial water samples using Microtox® bioassay; the root and shoot elongation inhibition and the mortality of Lepidium sativum, Sorghum saccharatum and Sinapis alba using Phytotoxkit® bioassay; and inhibition of Heterocypris incongruens by way of Ostracodtoxkit®. Proposed methodology allows the identification of contamination sources and non contaminated areas, corresponding to decreasing toxicity values.

  15. Coupling of In Vitro Bioassays with Planar Chromatography in Effect-Directed Analysis.

    Science.gov (United States)

    Weiss, Stefan C; Egetenmeyer, Nicole; Schulz, Wolfgang

    Modern analytical test methods increasingly detect anthropogenic organic substances and their transformation products in water samples and in the environment. The presence of these compounds might pose a risk to the aquatic environment. To determine a possible (eco)toxicological risk, aquatic samples are tested using various bioassays, including sub-organismic assays such as the luminescent bacteria inhibition test, the acetylcholinesterase inhibition test, and the umu-test. The effect-directed analysis (EDA) combines physicochemical separation methods with biological (in vitro) tests. High-performance thin-layer chromatography (HPTLC) has proved to be particularly well suited for the separation of organic compounds and the subsequent analysis of effects by the application of the biotests directly on the surface of the HPTLC plate. The advantage of using HPTLC in comparison to high-performance liquid chromatography (HPLC) for EDA is that the solvent which is used as a mobile phase during chromatography is completely evaporated after the separation and therefore can no longer influence the applied bioassays.A prioritization during the complex identification process can be achieved when observed effects are associated with the separated zones in HPTLC. This increases the probability of identifying the substance responsible for an adverse effect from the multitude of organic trace substances in environmental samples. Furthermore, by comparing the pattern of biological effects of a separated sample, it is possible to track and assess changes in biological activity over time, over space, or in the course of a process, even without identifying the substance. HPTLC has already been coupled with various bioassays.Because HPTLC is a very flexible system, various detection techniques can be used and combined. In addition to the UV/Vis absorption and fluorescence measurements, TLC can also be coupled with a mass spectrometer (MS) for compound identification. In addition

  16. In situ bioassays with Chironomus riparius larvae to biomonitor metal pollution in rivers and to evaluate the efficiency of restoration measures in mine areas

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Mafalda S. [CESAM and Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)], E-mail: mafaldafaria@sapo.pt; Lopes, Ricardo J. [CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, 4485-661 Vairao (Portugal); Malcato, Joao; Nogueira, Antonio J.A.; Soares, Amadeu M.V.M. [CESAM and Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2008-01-15

    In this study we evaluate the ability of an in situ bioassay with Chironomus riparius larvae, using larval development and growth as endpoints, to biomonitor water quality and to assess the biological recovery of metal contaminated freshwater ecosystems of mine areas that are subject of restoration measures. The bioassay was carried out in streams located near an abandoned goldmine in North Portugal, throughout an environmental rehabilitation of the mine (2002-2004). During this period, a decrease in the inhibition of larval growth in the metal contaminated stream was observed. The bioassay was also performed in streams located near an active tungsten mine in Central Portugal. Larval growth and development were highly inhibited in the stream that receives acid drainage from the tungsten mine and treated water from the AMD treatment station. The results indicate that the bioassay can be used to evaluate the efficiency of environmental restoration measures in mining areas. - In situ bioassays with Chironomus riparius larvae can be a suitable tool to monitor restoration efficiency after a long time of metallic sediment contamination.

  17. In situ bioassays with Chironomus riparius larvae to biomonitor metal pollution in rivers and to evaluate the efficiency of restoration measures in mine areas

    International Nuclear Information System (INIS)

    Faria, Mafalda S.; Lopes, Ricardo J.; Malcato, Joao; Nogueira, Antonio J.A.; Soares, Amadeu M.V.M.

    2008-01-01

    In this study we evaluate the ability of an in situ bioassay with Chironomus riparius larvae, using larval development and growth as endpoints, to biomonitor water quality and to assess the biological recovery of metal contaminated freshwater ecosystems of mine areas that are subject of restoration measures. The bioassay was carried out in streams located near an abandoned goldmine in North Portugal, throughout an environmental rehabilitation of the mine (2002-2004). During this period, a decrease in the inhibition of larval growth in the metal contaminated stream was observed. The bioassay was also performed in streams located near an active tungsten mine in Central Portugal. Larval growth and development were highly inhibited in the stream that receives acid drainage from the tungsten mine and treated water from the AMD treatment station. The results indicate that the bioassay can be used to evaluate the efficiency of environmental restoration measures in mining areas. - In situ bioassays with Chironomus riparius larvae can be a suitable tool to monitor restoration efficiency after a long time of metallic sediment contamination

  18. Reproductive toxicity assessment of surface water of the Tai section of the Yangtze River, China by in vitro bioassays coupled with chemical analysis

    International Nuclear Information System (INIS)

    Wang Xiaoyi; Wu Jiang; Hao Yingqun; Zhu Bingqing; Shi Wei; Hu Guanjiu; Han Xiaodong; Giesy, John P.; Yu Hongxia

    2011-01-01

    Reproductive toxicity of organic extracts of the surface water from the Tai section of the Yangtze River was assessed by in vitro cytotoxity assays and selected persistent organic pollutants including PCBs, OCPs and PAHs were quantified by instrumental analysis. Eleven of the US EPA priority PAHs were detected. Individual PAHs were found to range from 0.7 to 20 ng/L. Concentrations of BaP did not exceed the national drinking water source quality standard of China. However, a 286-fold concentrated organic extract induced significant reproductive toxicity in adult male rats. The morphology of cells, MTT assay and LDH release assay were all affected by exposure to the organic extracts of water. The results of the reproductive toxicity indicated that PAHs posed the greatest risk of the chemicals studied. The compounds present in the water could be bioconcentrated and result in adverse effects. - Highlights: → Only 11 PAHs of US EPA priority PAHs were detected in surface water the Yangtze River. → Level of BaP didn't exceed national drinking water source quality standard of China. → 286-fold concentrated organic extracts induced great reproductive toxicity in rats. → PAHs posed the greatest risk of the chemicals studied. → The compounds in the water could be bioconcentrated and result in adverse effects. - In vitro bioassay responses observed in Yangtze River source water extracts showed great reproductive toxicity, and PAHs were responsible.

  19. Environmental Monitoring, Water Quality - Water Pollution Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Pollution Control Facility is a DEP primary facility type related to the Water Pollution Control Program. The sub-facility types related to Water Pollution...

  20. Finite Difference Formulation for Prediction of Water Pollution

    Science.gov (United States)

    Johari, Hanani; Rusli, Nursalasawati; Yahya, Zainab

    2018-03-01

    Water is an important component of the earth. Human being and living organisms are demand for the quality of water. Human activity is one of the causes of the water pollution. The pollution happened give bad effect to the physical and characteristic of water contents. It is not practical to monitor all aspects of water flow and transport distribution. So, in order to help people to access to the polluted area, a prediction of water pollution concentration must be modelled. This study proposed a one-dimensional advection diffusion equation for predicting the water pollution concentration transport. The numerical modelling will be produced in order to predict the transportation of water pollution concentration. In order to approximate the advection diffusion equation, the implicit Crank Nicolson is used. For the purpose of the simulation, the boundary condition and initial condition, the spatial steps and time steps as well as the approximations of the advection diffusion equation have been encoded. The results of one dimensional advection diffusion equation have successfully been used to predict the transportation of water pollution concentration by manipulating the velocity and diffusion parameters.

  1. Effect of water pollution on expression of immune response genes of ...

    African Journals Online (AJOL)

    This research was aimed to study quality of water in Lake Qarun and effects of pollution on expression of immune genes in Egyptian sole (Solea aegyptiaca) fish. The study was carried out from August 2006 to the end of April 2007. The water samples were collected from different locations of Lake Qarun at Al-Oberge within ...

  2. Multiple evaluations of the removal of pollutants in road runoff by soil infiltration.

    Science.gov (United States)

    Murakami, Michio; Sato, Nobuyuki; Anegawa, Aya; Nakada, Norihide; Harada, Arata; Komatsu, Toshiya; Takada, Hideshige; Tanaka, Hiroaki; Ono, Yoshiro; Furumai, Hiroaki

    2008-05-01

    Groundwater replenishment by infiltration of road runoff is expected to be a promising option for ensuring a sustainable urban water cycle. In this study, we performed a soil infiltration column test using artificial road runoff equivalent to approximately 11-12 years of rainfall to evaluate the removal of pollutants by using various chemical analyses and bioassay tests. These results indicated that soil infiltration treatment works effectively to remove most of the pollutants such as organic matter (chemical oxygen demand (CODMn) and dissolved organic carbon (DOC)), P species, polycyclic aromatic hydrocarbons (PAHs), numerous heavy metals and oestrogenic activities. Bioassay tests, including algal growth inhibition test, Microtox and mutagen formation potential (MFP) test, also revealed effective removal of toxicities by the soils. However, limited amounts of NO3, Mn, Ni, alkaline earth metals, perfluorooctane sulphonate (PFOS) and perfluorooctane sulphonamide (FOSA) were removed by the soils and they possibly reach the groundwater and cause contamination.

  3. Bioassay guideline 2: guidelines for tritium bioassay

    International Nuclear Information System (INIS)

    1983-01-01

    This guideline is one of a series under preparation by the Federal-Provincial Working Group on Bioassay and In Vivo Monitoring Criteria. In this report tritium compounds have been grouped into four categories for the purpose of calculating Annual Limits on Intake and Investigation Levels: tritium gas, tritiated water, tritium-labelled compounds and nucleic acid precursors

  4. The Other Water Pollution

    Science.gov (United States)

    Barton, Kathy

    1978-01-01

    Nonpoint source pollution, water pollution not released at one specific identifiable point, now accounts for 50 percent of the nation's water pollution problem. Runoff is the primary culprit and includes the following sources: agriculture, mining, hydrologic modifications, and urban runoff. Economics, legislation, practices, and management of this…

  5. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    Science.gov (United States)

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,…

  6. Effects of chronic pollution and water flow intermittency on stream biofilms biodegradation capacity.

    Science.gov (United States)

    Rožman, Marko; Acuña, Vicenç; Petrović, Mira

    2018-02-01

    A mesocosm case study was conducted to gain understanding and practical knowledge on biofilm emerging contaminants biodegradation capacity under stressor and multiple stressor conditions. Two real life scenarios: I) biodegradation in a pristine intermittent stream experiencing acute pollution and II) biodegradation in a chronically polluted intermittent stream, were examined via a multifactorial experiment using an artificial stream facility. Stream biofilms were exposed to different water flow conditions i.e. permanent and intermittent water flow. Venlafaxine, a readily biodegradable pharmaceutical was used as a measure of biodegradation capacity while pollution was simulated by a mixture of four emerging contaminants (erythromycin, sulfisoxazole, diclofenac and imidacloprid in addition to venlafaxine) in environmentally relevant concentrations. Biodegradation kinetics monitored via LC-MS/MS was established, statistically evaluated, and used to link biodegradation with stress events. The results suggest that the effects of intermittent flow do not hinder and may even stimulate pristine biofilm biodegradation capacity. Chronic pollution completely reduced biodegradation in permanent water flow experimental treatments while no change in intermittent streams was observed. A combined effect of water flow conditions and emerging contaminants exposure on biodegradation was found. The decrease in biodegradation due to exposure to emerging contaminants is significantly greater in streams with permanent water flow suggesting that the short and medium term biodegradation capacity in intermittent systems may be preserved or even greater than in perennial streams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Effect of antecedent dry period on water quality of urban storm runoff pollution].

    Science.gov (United States)

    Bian, Bo

    2009-12-01

    Identified the main factor influencing urban rainfall-runoff pollution provides a scientific basis for urban rainfall-runoff pollution control and management. Therefore, starting in May 2006, a study was conducted to characterize water quality from representative land uses types in Zhenjiang to analyse the effect of antecedent dry period on stormwater runoff quality. The results show that the beginning of rainfall, with the increase of antecedent dry periods, the percentages of less than 40 microm is increased, the correlation of the water quality parameters (TN, TP, Zn, Pb, Cu, TSS and COD) and antecedent dry period shows a significant positive correlation, dissolved pollutants in the initial period surface runoff is increased. These findings show that facilitating the recognition of antecedent dry periods is the main factor influencing the change in concentration and partitioning of pollutants to provide the scientific basis for non-point source pollution control and management.

  8. Water Pollution Scrubber Activity Simulates Pollution Control Devices.

    Science.gov (United States)

    Kennedy, Edward C., III; Waggoner, Todd C.

    2003-01-01

    A laboratory activity caused students to think actively about water pollution. The students realized that it would be easier to keep water clean than to remove pollutants. They created a water scrubbing system allowing them to pour water in one end and have it emerge clean at the other end. (JOW)

  9. Water pollution control for underground coal gasification

    International Nuclear Information System (INIS)

    Humenick, M.J.

    1984-01-01

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes

  10. Effect of air and water pollutants on human health

    Energy Technology Data Exchange (ETDEWEB)

    Rhondia, D

    1973-01-01

    The two basic approaches in the study of the influence of air and water pollutants on human health are reviewed. The first one is an experimental or toxicological approach, concerned with biochemical, physiological, and clinical lesions, with the mechanism of the genesis of such lesions, and with the possible relations between the toxic dose and the extent or degree of the lesions. Thus, considerable changes in the electrolyte and trace element concentrations in the organism were observed following short-term exposure to such air pollutants as ozone and nitrogen dioxide which cause emphysema in a short time. Rather stable equilibrium between the uptake and excretion of lead was established. The increase in the blood lead level is accompanied by a decrease in the aminolevulinic acid dehydratase activity, a change believed to have no functional consequence. The other, epidemiological, approach is based on the study of human populations actually exposed to pollutants in daily life. Such epidemiological studies are complicated by the large number of extraneous variables playing a significant role in such discrete effects. Epidemiological studies are concerned with the establishment of relationships between specific or nonspecific mortality and morbidity associated with the actual pollution level as compared with control areas and control populations. A qualitative relationship between the increasing pollution level and advanced date of death was determinef for populations with respiratory and cardiovascular diseases. A relationship was found between the high pollution level and the number of patients hospitalized during high-pollution in Los Angeles.

  11. Effects of sporophyll storage on giant kelp Macrocystis pyrifera (Agardh) bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Gully, J.R.; Bottomley, J.P.; Baird, R.B.

    1999-07-01

    The giant kelp Macrocystis pyrifera (Agardh) is a US Environmental Protection Agency (US EPA)-approved west coast marine species for chronic toxicity monitoring and compliance in the National Pollution Discharge Elimination System (NPDES). The protocol allows field-collected sporophylls to be stored for up to 24 h at 9 to 12 C prior to use. However, the effects of sporophyll storage on the bioassay results have not been fully investigated, particularly with kelp collected from beds south of Point Conception, CA, USA. Therefore, 13 matched-pair reference toxicant bioassays using fresh and stored sporophylls collected from a subtidal kelp bed near Laguna Beach, CA, USA, were performed and compared. The results indicate that a lower percentage of spores germinate and the germ tube lengths are reduced when stored sporophylls are used. The intratest precision of the germination endpoint decreased as evidenced by significant increases in the percent minimum significant difference (%MSD) statistic. The intertest precision also decreased in the germination endpoint as demonstrated by significant increases in the coefficient of variation (CV) values at four effect levels. Conversely, a significant reduction in the CVs was observed in the germ tube length data, possibly as a consequence of the decrease in germ tube length associated with storage. Finally, significant decreases in mean effect concentrations in the germination endpoint in tests using stored sporophylls indicated that storage increased the sensitivity of the spores to the toxic effects of CuCl{sub 2}. The toxicological sensitivity and intratest precision of the germ tube length endpoint were not significantly affected by storage of the sporophylls. The effects of sporophyll storage resulted in a high frequency of invalid tests, lower statistical power, less effective quality assurance standards, and apparent bias in the observed toxicity of CuCl{sub 2}.

  12. Laser and infrared techniques for water pollution control

    International Nuclear Information System (INIS)

    Geraci, A.L.; Landolina, F.; Pantani, L.; Cecchi, G.

    1993-01-01

    A remote sensing application for the control of oil pollution and water quality was developed by the National Council of Research at Florence, and the University of Catania, both in Italy. The application is based on the simultaneous use of active antipassive remote sensing systems (lidar and flir systems) from a helicopter. Water pollution characteristics were determined with the lidar system, in polluted areas of water detected, on a larger scale, by the flir system. Pollution characteristics detected included type of pollutant, type of oil, and oil thickness. The experiment, named LIRA, was carried out using an Italian Navy helicopter over sea areas around Sicily having a high risk of pollution. The results proved the effectiveness and usefulness of the techniques proposed

  13. Selection of a bioassay battery to assess toxicity in the affluents and effluents of three water-treatment plants

    Directory of Open Access Journals (Sweden)

    Paola Bohórquez-Echeverry

    2012-08-01

    Full Text Available The assessment of water quality includes the analysis of both physical-chemical and microbiological parameters. However,none of these evaluates the biological effect that can be generated in ecosystems or humans. In order to define the most suitable organismsto evaluate the toxicity in the affluent and effluent of three drinking-water treatment plants, five acute toxicity bioassays were used,incorporating three taxonomic groups of the food chain. Materials and methods. The bioassays used were Daphnia magna and Hydraattenuata as animal models, Lactuca sativa and Pseudokirchneriella subcapitata as plant models, and Photobacterium leioghnathi asbacterial model. To meet this objective, selection criteria of the organisms evaluated and cluster analysis were used to identify the mostsensitive in the affluent and effluent of each plant. Results. All organisms are potentially useful in the assessment of water quality bymeeting four essential requirements and 17 desirable requirements equivalent to 100% acceptability, except P. leioghnathi which doesnot meet two essential requirements that are the IC50 for the toxic reference and the confidence interval. The animal, plant and bacterialmodels showed different levels of sensitivity at the entrance and exit of the water treatment systems. Conclusions. H. attenuata, P.subcapitata and P. leioghnathi were the most effective organisms in detecting toxicity levels in the affluents and D. magna, P. subcapitataand P. leioghnathi in the effluents.

  14. Water Pollution, Teachers' Edition.

    Science.gov (United States)

    Lavaroni, Charles W.; And Others

    One of three in a series about pollution, this teacher's guide for a unit on water pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of water pollution and involves students in processes of…

  15. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  16. Water Pollution

    Science.gov (United States)

    ... What is NIEHS Doing? Further Reading For Educators Introduction Water pollution is any contamination of water with ... NIEHS Newsletter) Karletta Chief Featured in Science Friday Film (April 2018) Chlorine Levels Help Detect Risk for ...

  17. Application of Bioassays for the Ecotoxicity Assessment of Contaminated Soils

    Science.gov (United States)

    Fernández, María D.; Babín, Mar; Tarazona, José V.

    The use of bioassays for soil characterization is receiving significant attention as a complementary tool to chemical analysis. Bioassays consist of direct toxicity assays of environmental samples that are transferred to the laboratory and analyzed for toxicity against selected organisms. Such soil samples contain the combination of the different pollutants present in situ and enable factors such as the bioavailability of contaminants or the interactions (synergic and antagonic) between them to be simultaneously studied.

  18. Detection of genotoxic effects of drinking water disinfection by-products using Vicia faba bioassay.

    Science.gov (United States)

    Hu, Yu; Tan, Li; Zhang, Shao-Hui; Zuo, Yu-Ting; Han, Xue; Liu, Na; Lu, Wen-Qing; Liu, Ai-Lin

    2017-01-01

    Plant-based bioassays have gained wide use among the toxicological and/or ecotoxicological assessment procedures because of their simplicity, sensitivity, low cost, and reliability. The present study describes the use of Vicia faba (V. faba) micronucleus (MN) test and V. faba comet assay in the evaluation of the genotoxic potential of disinfection by-products (DBPs) commonly found in chlorine-disinfected drinking water. Five haloacetic acids and three halogenated acetonitriles were chosen as representatives of DBPs in this study because they are of potentially great public health risk. Results of the MN test indicated that monochloroacetic acid (MCA), monobromoacetic acid (MBA), dichloroacetic acid (DCA), dibromoacetic acid (DBA), trichloroacetic acid (TCA), and trichloroacetonitrile (TCAN) caused a statistically significant increase in MN frequency in V. faba root tip cells. However, no genotoxic response was observed for dichloroacetonitrile (DCAN) and dibromoacetonitrile (DBAN). Results of the comet assay showed that all tested DBPs induced a statistically significant increase in genomic DNA damage to V. faba root tip cells. On considering the capacity to detect genomic damage of a different nature, we suggest that a combination of V. faba MN test and V. faba comet assay is a useful tool for the detection of genotoxic effects of DBPs. It is worthy of assessing the feasibility of using V. faba comet assay combined with V. faba MN test to screen for the genotoxic activity of chlorinated drinking water in future work.

  19. Study of pollution effect on water quality of Grogol River, DKI Jakarta

    Science.gov (United States)

    Amira, S.; Astono, W.; Hendrawan, D.

    2018-01-01

    A study has been conducted to identify the incoming pollutants and assess the water quality in Grogol River, DKI Jakarta, Indonesia, which has a length of 13.35 km and consists of two segments. The water quality assessment is determined by pollution index method, referring to Minister of Environment Decree No. 15/2013 on The Guidelines of Water Quality Status. The samples were taken both in rainy and dry seasons at 7 sampling points. Based on the analyses of 10 key parameters and the calculation of pollution index value, it can be concluded that Grogol River is low polluted in rainy season and moderate polluted in dry season. The information obtained from this research can be used for decision making to improve the water quality of Grogol River.

  20. Air pollution as it affects orchids at the New York Botanical Garden

    Energy Technology Data Exchange (ETDEWEB)

    Adderley, L.

    1965-08-01

    A general discussion of the effects of air pollution on orchids is presented, along with ameliorative measures. One orchid, Dendrobium Phalaenopsis, is suggested as an air pollution bioassay tool, in that it is extremely sensitive to air pollution.

  1. Summary report of bioassays for the city of Hollywood water plant membrane reject water as it mixed with WWTP effluent in an ocean outfall environment

    Energy Technology Data Exchange (ETDEWEB)

    Fergen, R.E.; Vinci, P.; Bloetscher, F.

    1999-07-01

    A special bioassay study was conducted to review the impact of the City of Hollywood's Membrane Softening Water Treatment Plant (WRP) reject water as it mixes with the City's Wastewater Treatment Plant (WWTP) effluent. Three sampling periods occurred during 1997. The purpose of this study was to determine potential toxicity of the WTP reject water, pre-chlorinated effluent, and combined effluent, and to demonstrate if the combined effluent was acceptable for ocean discharge on the basis of no potential toxicity. Effluent was acceptable for ocean discharge on the basis of no potential toxicity. Effluent samples were collected at six sampling points; three were in the plant, while the other three were along the outfall pipeline. Definitive, static renewal bioassay tests were performed using Mysidopsis bahia and Menidia beryllina as indicators of potential toxicity. The bioassay tests at 30% effluent concentration indicate that there is not potential toxicity for the pre-chlorinated WTP effluent, WTP reject water, dechlorinate combined effluent at the plant, and chlorinated combined effluent at Holland Park, the riser, and the terminus. The results indicate that the WTP reject water (100%) is not toxic to Menidia beryllina but was toxic to Mysidopsis bahia. When combined with the WWRP effluent, the reject water's impact on the potential toxicity of the commingled effluent was insignificant. All of the tests indicate the combined effluents are not toxic to the species tested at the 30% effluent level. Therefore, potential toxicity concerns were not demonstrated for this outfall discharge and did not prevent FDEP from issuing a permit to the City of Hollywood for the disposal of the combined effluent. Furthermore, these results, in combination with the previous results, indicated that individual bioassay testing for the reject water for regulatory compliance is not required.

  2. Effects of Abandoned Arsenic Mine on Water Resources Pollution in North West of Iran

    OpenAIRE

    Esmail Fatehifar; Sakineh Jadidi; Bahram Vosugh; Fazel Khaleghi; Mohammad Mosaferi; Behzad Hajalilou

    2011-01-01

    Background: Pollution due to mining activities could have an important role in health andwelfare of people who are living in mining area. When mining operation finishes, environmentof mining area can be influenced by related pollution e.g. heavy metals emission to waterresources. The present study was aimed to evaluate Valiloo abandoned arsenic mine effectson drinking water resources quality and possible health effects on the residents of miningarea in the North West of Iran.Methods: Water sa...

  3. Pricing of Water Resources With Depletable Externality: The Effects of Pollution Charges

    Science.gov (United States)

    Kitabatake, Yoshifusa

    1990-04-01

    With an abstraction of a real-world situation, the paper views water resources as a depletable capital asset which yields a stream of services such as water supply and the assimilation of pollution discharge. The concept of the concave or convex water resource depletion function is then introduced and applied to a general two-sector, three-factor model. The main theoretical contribution is to prove that when the water resource depletion function is a concave rather than a convex function of pollution, it is more likely that gross regional income will increase with a higher pollution charge policy. The concavity of the function is meant to imply that with an increase in pollution released, the ability of supplying water at a certain minimum quality level diminishes faster and faster. A numerical example is also provided.

  4. Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal–arsenic polluted soil

    International Nuclear Information System (INIS)

    González, V.; García, I.; Del Moral, F.; Simón, M.

    2012-01-01

    Highlights: ► The effectiveness of soil amendments was studied in lixiviates and in pore water. ► Heavy metals and arsenic showed different partitioning. ► The amendment which was effective against arsenic was not effective against metals. ► The amendment that fixed metals increased the arsenic concentration in lixiviates. ► Using amendments in combination did not improve the effectiveness. - Abstract: A metal–arsenic polluted soil from sulphide-mine waste was treated, in all possible combinations, with two different amounts of marble sludge (98% CaCO 3 ), compost (41% organic carbon), and Byferrox (70% Fe). Lixiviate and pore water from each treated and untreated soil were analysed, and lettuce-seed bioassays were performed. None of the treatments decreased the electrical conductivity of lixiviates or the concentrations of all pollutants found in both solutions. Marble sludge and compost increased the pH values and decreased the zinc, cadmium, copper, and lead concentrations in both solutions while increasing the arsenic concentrations in the lixiviates. Byferrox did not alter the physicochemical parameters or the concentrations of zinc, cadmium, copper, or lead in either solution but significantly decreased the arsenic concentrations in pore water. Compared with the Byferrox treatment, the mixture of marble sludge and Byferrox decreased redox potential values, increasing the arsenic concentrations in both solutions and the electrical conductivity of the pore water. All lixiviates were highly phytotoxic and seeds did not germinate. Pore-water phytotoxicity was related to electrical conductivity values and heavy-metal concentrations. The combination of marble sludge and compost was most effective at diminishing toxicity in lettuce. The soils treated with Byferrox, alone or mixed with marble sludge or compost, were the most phytotoxic.

  5. The limits of two-year bioassay exposure regimens for identifying chemical carcinogens.

    Science.gov (United States)

    Huff, James; Jacobson, Michael F; Davis, Devra Lee

    2008-11-01

    Chemical carcinogenesis bioassays in animals have long been recognized and accepted as valid predictors of potential cancer hazards to humans. Most rodent bioassays begin several weeks after birth and expose animals to chemicals or other substances, including workplace and environmental pollutants, for 2 years. New findings indicate the need to extend the timing and duration of exposures used in the rodent bioassay. In this Commentary, we propose that the sensitivity of chemical carcinogenesis bio-assays would be enhanced by exposing rodents beginning in utero and continuing for 30 months (130 weeks) or until their natural deaths at up to about 3 years. Studies of three chemicals of different structures and uses-aspartame, cadmium, and toluene-suggest that exposing experimental animals in utero and continuing exposure for 30 months or until their natural deaths increase the sensitivity of bioassays, avoid false-negative results, and strengthen the value and validity of results for regulatory agencies. Government agencies, drug companies, and the chemical industry should conduct and compare the results of 2-year bioassays of known carcinogens or chemicals for which there is equivocal evidence of carcinogenicity with longer-term studies, with and without in utero exposure. If studies longer than 2 years and/or with in utero exposure are found to better identify potential human carcinogens, then regulatory agencies should promptly revise their testing guidelines, which were established in the 1960s and early 1970s. Changing the timing and dosing of the animal bioassay would enhance protection of workers and consumers who are exposed to potentially dangerous workplace or home contaminants, pollutants, drugs, food additives, and other chemicals throughout their lives.

  6. Effects of pollution in River Krishni on hand pump water quality

    Directory of Open Access Journals (Sweden)

    K. Dhakyanaika

    2010-01-01

    Full Text Available River Krishni is highly polluted. The investigation was “to study the effect of pollution in River Krishni on the quality ofgroundwater abstracted through shallow and deep hand pumps placed in the close vicinity of River Krishni”. One suchaffected Village Chanedna Maal was selected for the study. Water samples were analyzed in terms of physical, chemicaland bacteriological water quality parameters. Range of values of conductivity (1040–2770 μS/cm, TOC (27.79–1365.1mg/L, UV absorbance at 254 nm (0.281–10.34 cm-1, color (1510–5200 CU, and COD (15.82–1062 mg/L indicatedpresence of significant amount of pollution / organics in the river water, total coliform (16x102–46x106 MPN/100mLand fecal coliform (16x102–24x106 MPN/100mL. In case of deeper India Mark-II hand pumps conductivity was foundto range from 443–755 μS/cm, TOC (0.226–9.284 mg/L, UV absorbance (0.0–0.118 cm-1, colour (0.0–119 CU, COD(9.0–113 mg/L and MPN (0.0–93x101/100m L. While in case of shallower hand pumps conductivity (441–1609 μS/cm, TOC (0.015–68.82 mg/L, UV absorbance (0.0–1.094 cm-1, colour (4.0–560 CU, COD (9.72–163 mg/L and MPN(0.0–15x102/100mL. Hand pumps abstracting water from shallow and deep unconfined aquifers have been found to deliverpolluted water in terms of color, organics and coliform bacteria. As the hand pumps are the only source of water supply inVillage Chandena Maal, pollution of the groundwater has adversely affected the day to day life of its 3000 residents.

  7. Water Pollution

    Science.gov (United States)

    We all need clean water. People need it to grow crops and to operate factories, and for drinking and recreation. Fish and wildlife depend on ... and phosphorus make algae grow and can turn water green. Bacteria, often from sewage spills, can pollute ...

  8. Detection of organic compounds with whole-cell bioluminescent bioassays.

    Science.gov (United States)

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven; Sayler, Gary

    2014-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.

  9. Effects of pollution on freshwater fish

    International Nuclear Information System (INIS)

    McKim, J.M.; Christensen, G.M.; Tucker, J.H.; Benoit, D.A.; Lewis, M.J.

    1974-01-01

    Various aspects of pollution effects on fishes are reviewed under the following headings: methodology; water quality; pesticide pollutants; industrial pollutants; domestic pollutants; radioactive pollutants; and other pollutants. A table is presented to show acute and chronic toxicity of inorganic and organic pollutants to freshwater fish. (U.S.)

  10. Water pollution by non-radioactive materials

    International Nuclear Information System (INIS)

    Dickenbrok, G.

    1974-01-01

    Water is in constant circulation from the ocean to the earth's atmosphere and back to the ocean. In the course of this cycle, the composition of the water is altered by natural and human influences. Depending on the prevailing conditions, the water may contain solute gases, undissolved substances, inorganic salts, organic compounds, and microorganisms of varying types and concentrations. Many of these substances are known to pollute the water and thus to threaten its various uses. Emitting sources of water pollutants are: waste waters, seepings from open dumpings, mineral fertilizers and biocides washed out from agricultural areas, water pollutants emitted during storage and transport, air pollutants, and erosions from roads. The thermal load is an additional factor. Technical and legal steps are necessary in order to prevent water pollution and to maintain the quality of water required for its various uses. These measures are treated in detail. (orig./AK) [de

  11. Plastic pollutants in water environment

    Directory of Open Access Journals (Sweden)

    Mrowiec Bożena

    2017-12-01

    Full Text Available Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm. Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment. Wastewater treatment plants (WWTPs are mentioned as one of main sources of microplastics introduced into fresh water, and rivers are the pathways for the transportation of the pollutants to seas and oceans. But, effluents from tertiary wastewater treatment facilities can contain only minimally microplastic loads. The issue of discharge reduction of plastic pollutants into water environment needs activities in the scope of efficient wastewater treatment, waste disposal, recycling of plastic materials, education and public involvement.

  12. Influence of bioassay volume, water column height, and octanol-water partition coefficient on the toxicity of pesticides to rainbow trout.

    Science.gov (United States)

    Altinok, Ilhan; Capkin, Erol; Boran, Halis

    2011-06-01

    Effects of water volume and water column height on toxicity of cypermethrin, carbaryl, dichlorvos, tetradifon, maneb, captan, carbosulfan endosulfan and HgCl₂ to juvenile rainbow trout (Oncorhynchus mykiss, 3.2 ± 0.7 g) were evaluated in different glass aquaria under static conditions. When fish were exposed to the chemical compounds in 23 cm water column height (25 L), their mortality ranged between 0% and 58%. At the same water volume, but lower water column height (9 cm), mortality of fish increased significantly and was in a range from 60% to 95%. At the same water column height, toxic effects of chemicals were significantly higher in 25 L water volume than that of 8.5 L, water except maneb which has lowest (-0.45) octanol-water partition coefficient value. Mortality rates ratio of 9 and 23 cm water column height ranged between 1.12 and 90 while mortality rates ratio of 9 and 25 L water volume ranged between 1.20 and 4.0. Because actual exposure concentrations were not affected by either water volume or water column height, we propose that increased pesticides' toxicity was related to an increase in bioassay volume, since more pesticide molecules were able to interact with or accumulate the fish. However, there seem to be no relationship between the effects of water volume, water column height and Kow value of chemicals with regard to toxicity in juvenile rainbow trout.

  13. Using a macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs

    International Nuclear Information System (INIS)

    Kaldy, James

    2011-01-01

    Highlights: → Green macroalgae exposed to nutrient solutions exhibited changes in tissue 15 N signatures. → Macroalgae exhibited no fractionation with NO 3 and slight fractionation with NH 4 . → Algae exposed to cruise ship waste water had increased tissue δ 15 N indicating a heavy N source. → Field bioassays exhibited decreased δ 15 N indicating isotopically light riverine δ 15 N-NO 3 was likely the dominant N source. → Algal bioassays could not detect a δ 15 N cruise ship waste water signal in this system. - Abstract: Green macroalgae bioassays were used to determine if the δ 15 N signature of cruise ship waste water effluent (CSWWE) could be detected in a small harbor. Opportunistic green macroalgae (Ulva spp.) were collected, cultured under nutrient depleted conditions and characterized with regard to N content and δ 15 N. Samples of algae were used in controlled incubations to evaluate the direction of isotope shift from exposure to CSWWE. Algae samples exposed to CSWWE exhibited an increase of 1-2.5 per mille in δ 15 N values indicating that the CSWWE had an enriched isotope signature. In contrast, algae samples exposed to field conditions exhibited a significant decrease in the observed δ 15 N indicating that a light N source was used. Isotopically light, riverine nitrogen derived from N 2 -fixing trees in the watershed may be a N source utilized by algae. These experiments indicate that the δ 15 N CSWWE signature was not detectable under the CSWWE loading conditions of this experiment.

  14. Mimicking Daphnia magna bioassay performance by an electronic tongue for urban water quality control

    Energy Technology Data Exchange (ETDEWEB)

    Kirsanov, Dmitry, E-mail: d.kirsanov@gmail.com [Laboratory of Chemical Sensors, St. Petersburg State University, St. Petersburg (Russian Federation); Laboratory of Artificial Sensor Systems, ITMO University, St. Petersburg (Russian Federation); Legin, Evgeny [Laboratory of Artificial Sensor Systems, ITMO University, St. Petersburg (Russian Federation); Sensor Systems LLC, St. Petersburg (Russian Federation); Zagrebin, Anatoly; Ignatieva, Natalia; Rybakin, Vladimir [Institute of Limnology, Russian Academy of Sciences, St. Petersburg (Russian Federation); Legin, Andrey [Laboratory of Chemical Sensors, St. Petersburg State University, St. Petersburg (Russian Federation); Laboratory of Artificial Sensor Systems, ITMO University, St. Petersburg (Russian Federation)

    2014-05-01

    Highlights: • -Daphnia magna bioassay can be simulated with multisensor system. • Urban water toxicity can be predicted from potentiometric ET data. • Independent test set validation confirms statistical significance of the results. - Abstract: Toxicity is one of the key parameters of water quality in environmental monitoring. However, being evaluated as a response of living beings (as their mobility, fertility, death rate, etc.) to water quality, toxicity can only be assessed with the help of these living beings. This imposes certain restrictions on toxicity bioassay as an analytical method: biotest organisms must be properly bred, fed and kept under strictly regulated conditions and duration of tests can be quite long (up to several days), thus making the whole procedure the prerogative of the limited number of highly specialized laboratories. This report describes an original application of potentiometric multisensor system (electronic tongue) when the set of electrochemical sensors was calibrated against Daphnia magna death rate in order to perform toxicity assessment of urban waters without immediate involvement of living creatures. PRM (partial robust M) and PLS (projections on latent structures) regression models based on the data from this multisensor system allowed for prediction of toxicity of unknown water samples in terms of biotests but in the fast and simple instrumental way. Typical errors of water toxicity predictions were below 20% in terms of Daphnia death rate which can be considered as a good result taking into account the complexity of the task.

  15. Nature and analysis of chemical species: pollution effects on surface waters and groundwater

    International Nuclear Information System (INIS)

    Young, R.H.F.

    1975-01-01

    A literature review of 103 items covers: nutrients in surface waters; runoff and waste discharges primarily from energy-intensive activities; groundwater pollution causes, effects, controls and monitoring; land and subsurface wastewater disposal; radionuclides; biological effects; thermal effluents; and biological and mathematical models for rivers

  16. Water Pollution Search | ECHO | US EPA

    Science.gov (United States)

    The Water Pollution Search within the Water Pollutant Loading Tool gives users options to search for pollutant loading information from Discharge Monitoring Report (DMR) and Toxic Release Inventory (TRI) data.

  17. Water Pollution Detection Based on Hypothesis Testing in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xu Luo

    2017-01-01

    Full Text Available Water pollution detection is of great importance in water conservation. In this paper, the water pollution detection problems of the network and of the node in sensor networks are discussed. The detection problems in both cases of the distribution of the monitoring noise being normal and nonnormal are considered. The pollution detection problems are analyzed based on hypothesis testing theory firstly; then, the specific detection algorithms are given. Finally, two implementation examples are given to illustrate how the proposed detection methods are used in the water pollution detection in sensor networks and prove the effectiveness of the proposed detection methods.

  18. Water availability pollution and control

    International Nuclear Information System (INIS)

    Qureshi, K.A.

    2001-01-01

    Water has played a very important role in the development of human society. Resources of water have shaped the development of people and nations. Management of water gave the birth to innovations and technologies. Our complex metropolitan civilization and advanced technologies have generated new demands for water. Its importance to society and government has never diminished. The growing concern over resources availability and a rapid spread of water pollution, the link between water supply and water quality have become more apparent. The global management of water demands economy in use, restricted chemical and sanitation emissions, population control, discouragement of urbanization and water pollution awareness can greatly assist in averting the water holocaust that the world is expecting to face in the years to come. The scientific community in Pakistan is required to diagnose these problems in a systematic way to give advance warning of expected water scarcity, water pollution, water related land degradation, urban growth and population to assure the water cycle integrity of our world. (author)

  19. Assessment of the genotoxicity of 137Cs radiation using Vicia-micronucleus, Tradescantia-micronucleus and Tradescantia-stamen-hair mutation bioassays.

    Science.gov (United States)

    Minouflet, Marion; Ayrault, Sophie; Badot, Pierre-Marie; Cotelle, Sylvie; Ferard, Jean-François

    2005-01-01

    Since the middle of the 20th century, ionizing radiations from radioactive isotopes including 137Cs have been investigated to determine their genotoxic impact on living organisms. The present study was designed to compare the effectiveness of three plant bioassays to assess DNA damage induced by low doses of 137Cs: Vicia-micronucleus test (Vicia-MCN), Tradescantia-micronucleus test (Trad-MCN) and Tradescantia-stamen-hair mutation test (Trad-SH) were used. Vicia faba (broad bean) and Tradescantia clone 4430 (spiderwort) were exposed to 137Cs according to different scenarios: external and internal (contamination) irradiations. Experiments were conducted with various levels of radioactivity in solution or in soil, using solid or liquid 137Cs sources. The three bioassays showed different sensitivities to the treatments. Trad-MCN appeared to be the most sensitive test (significative response from 1.5 kBq/200 ml after 30 h of contamination). Moreover, at comparable doses, internal irradiations led to larger effects for the three bioassays. These bioassays are effective tests for assessing the genotoxic effects of radioactive 137Cs pollution.

  20. Assessment of the genotoxicity of 137Cs radiation using Vicia-micronucleus, Tradescantia-micronucleus and Tradescantia-stamen-hair mutation bioassays

    International Nuclear Information System (INIS)

    Minouflet, Marion; Ayrault, Sophie; Badot, Pierre-Marie; Cotelle, Sylvie; Ferard, Jean-Francois

    2005-01-01

    Since the middle of the 20th century, ionizing radiations from radioactive isotopes including 137 Cs have been investigated to determine their genotoxic impact on living organisms. The present study was designed to compare the effectiveness of three plant bioassays to assess DNA damage induced by low doses of 137 Cs: Vicia-micronucleus test (Vicia-MCN), Tradescantia-micronucleus test (Trad-MCN) and Tradescantia-stamen-hair mutation test (Trad-SH) were used. Vicia faba (broad bean) and Tradescantia clone 4430 (spiderwort) were exposed to 137 Cs according to different scenarios: external and internal (contamination) irradiations. Experiments were conducted with various levels of radioactivity in solution or in soil, using solid or liquid 137 Cs sources. The three bioassays showed different sensitivities to the treatments. Trad-MCN appeared to be the most sensitive test (significative response from 1.5 kBq/200 ml after 30 h of contamination). Moreover, at comparable doses, internal irradiations led to larger effects for the three bioassays. These bioassays are effective tests for assessing the genotoxic effects of radioactive 137 Cs pollution

  1. Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal-arsenic polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, V., E-mail: vga220@ual.es [Departamento de Edafologia y Quimica Agricola, ESI CITE IIB, Universidad de Almeria, Carretera de Sacramento s/n, 04129 Almeria (Spain); Garcia, I.; Del Moral, F.; Simon, M. [Departamento de Edafologia y Quimica Agricola, ESI CITE IIB, Universidad de Almeria, Carretera de Sacramento s/n, 04129 Almeria (Spain)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer The effectiveness of soil amendments was studied in lixiviates and in pore water. Black-Right-Pointing-Pointer Heavy metals and arsenic showed different partitioning. Black-Right-Pointing-Pointer The amendment which was effective against arsenic was not effective against metals. Black-Right-Pointing-Pointer The amendment that fixed metals increased the arsenic concentration in lixiviates. Black-Right-Pointing-Pointer Using amendments in combination did not improve the effectiveness. - Abstract: A metal-arsenic polluted soil from sulphide-mine waste was treated, in all possible combinations, with two different amounts of marble sludge (98% CaCO{sub 3}), compost (41% organic carbon), and Byferrox (70% Fe). Lixiviate and pore water from each treated and untreated soil were analysed, and lettuce-seed bioassays were performed. None of the treatments decreased the electrical conductivity of lixiviates or the concentrations of all pollutants found in both solutions. Marble sludge and compost increased the pH values and decreased the zinc, cadmium, copper, and lead concentrations in both solutions while increasing the arsenic concentrations in the lixiviates. Byferrox did not alter the physicochemical parameters or the concentrations of zinc, cadmium, copper, or lead in either solution but significantly decreased the arsenic concentrations in pore water. Compared with the Byferrox treatment, the mixture of marble sludge and Byferrox decreased redox potential values, increasing the arsenic concentrations in both solutions and the electrical conductivity of the pore water. All lixiviates were highly phytotoxic and seeds did not germinate. Pore-water phytotoxicity was related to electrical conductivity values and heavy-metal concentrations. The combination of marble sludge and compost was most effective at diminishing toxicity in lettuce. The soils treated with Byferrox, alone or mixed with marble sludge or compost, were the most

  2. Organ nic pollutants in underground water

    International Nuclear Information System (INIS)

    Hussein, H. H.

    1998-01-01

    Many organic compounds have been diagnosed in underground and surface waters, and there are many theories that explain the source of the dangerous materials on Punic health. The source of pollution could be the underground stored fuel or the polluted water in farms saturated with agricultural insecticides and chemical fertilizers, or there could be leaks in sewage water wastes. The source of pollution could also be the water surfaces in the areas of garbage disposal or industrial and home waste discharge. Due to the fact that the underground water is separated from oxygen in the air, its ability on self-purification is very low, in that the micro-organism that will do the dismantling and decomposition of the organic materials that pollute the water are in need for oxygen. In the event that underground water is subject to pollution m there are many methods for t resting the polluted water including the chemical decomposition method by injecting the polluted areas with neutralizing or oxidizing chemicals, such as Ozone, Chlorine or Hydrogen Peroxide. The mechanical methods could be used for getting rid of the volatile organic materials. As to biological decomposition, it is done with the use of bacteria in dismantling the poisonous materials into un poisonous materials. The preliminary analysis of water samples in one of the water wells in Sar ir and Tazarbo in Great Jamahirieh indicated that the concentration of total organic compounds (TOC) exceeded the internationally allowed limits. This indicates a deterioration of quality of some of underground water resources. It is well known that some of the organic pollutants have a great role in causing dangerous diseases, such as the polynuclear aromatic hydrocarbons and some halogenated compounds that cause cancer. Therefore, much research is required in this field for diagnosing the polluting organic compounds and determining the suitability of this water for drinking or for human consumption. (author). 21 refs., 6 figs

  3. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  4. Strategies to water pollution control in western China

    Institute of Scientific and Technical Information of China (English)

    JIANGWenchao; CHENGJijian; LONGTengrui; HEQiang

    2003-01-01

    Problems of and main limiting factors to Chinese western eco-environment are analyzea firstly and principles of integrating water pollution control with water resources planning and management, with ecological construction and with economic development planning and setting control priorities according to local conditions are proposed. Following strategies for water pollution control are suggested: 1) a master plan for western area need to be established as soon as possible; 2) total emission control should be regarded as the basic policy and measures such as clean production, charging and subsidy need to be implemented; 3) point sources pollution control should be considered the main task in short term and centralized wasteweter treatment plants by using sustainable processes should be constructed primarily for large and medium-size cities with heavier pollution; 4) sound institutional and regulation systems need to be established to create an enabling environment; 5) multiple investment system should be established; and 6) studies of pragmatic theories and methodologies for water pollution control and cost-effective technologies appropriate to western area, and training of local technicians need to be enhanced as well.

  5. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  6. Anisotropic diffusion of volatile pollutants at air-water interface

    Directory of Open Access Journals (Sweden)

    Li-ping Chen

    2013-04-01

    Full Text Available The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3 release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.

  7. Effects of Pollution on Freshwater Fish.

    Science.gov (United States)

    Brungs, W. A.; And Others

    1978-01-01

    Presents a literature review of the effects of pollution on freshwater fish, covering publications of 1976-77. This review includes: (1) water quality; (2) pesticide pollutants; (3) chemical pollutants; (4) miscellaneous pollutants; and (5) physical factors of pollution on freshwater fish. A list of 338 references is also presented. (HM)

  8. Sudden water pollution accidents and reservoir emergency operations: impact analysis at Danjiangkou Reservoir.

    Science.gov (United States)

    Zheng, Hezhen; Lei, Xiaohui; Shang, Yizi; Duan, Yang; Kong, Lingzhong; Jiang, Yunzhong; Wang, Hao

    2018-03-01

    Danjiangkou Reservoir is the source reservoir of the Middle Route of the South-to-North Water Diversion Project (MRP). Any sudden water pollution accident in the reservoir would threaten the water supply of the MRP. We established a 3-D hydrodynamic and water quality model for the Danjiangkou Reservoir, and proposed scientific suggestions on the prevention and emergency management for sudden water pollution accidents based on simulated results. Simulations were performed on 20 hypothetical pollutant discharge locations and 3 assumed amounts, in order to model the effect of pollutant spreading under different reservoir operation types. The results showed that both the location and mass of pollution affected water quality; however, different reservoir operation types had little effect. Five joint regulation scenarios, which altered the hydrodynamic processes of water conveyance for the Danjiangkou and Taocha dams, were considered for controlling pollution dispersion. The results showed that the spread of a pollutant could be effectively controlled through the joint regulation of the two dams and that the collaborative operation of the Danjiangkou and Taocha dams is critical for ensuring the security of water quality along the MRP.

  9. Seasonally and regionally determined indication potential of bioassays in contaminated river sediments.

    Science.gov (United States)

    Hilscherová, Klára; Dusek, Ladislav; Sídlová, Tereza; Jálová, Veronika; Cupr, Pavel; Giesy, John P; Nehyba, Slavomír; Jarkovský, Jirí; Klánová, Jana; Holoubek, Ivan

    2010-03-01

    River sediments are a dynamic system, especially in areas where floods occur frequently. In the present study, an integrative approach is used to investigate the seasonal and spatial dynamics of contamination of sediments from a regularly flooded industrial area in the Czech Republic, which presents a suitable model ecosystem for pollutant distribution research at a regional level. Surface sediments were sampled repeatedly to represent two different hydrological situations: spring (after the peak of high flow) and autumn (after longer period of low flow). Samples were characterized for abiotic parameters and concentrations of priority organic pollutants. Toxicity was assessed by Microtox test; genotoxicity by SOS-chromotest and green fluorescent protein (GFP)-yeast test; and the presence of compounds with specific mode of action by in vitro bioassays for dioxin-like activity, anti-/androgenicity, and anti-/estrogenicity. Distribution of organic contaminants varied among regions and seasonally. Although the results of Microtox and genotoxicity tests were relatively inconclusive, all other specific bioassays led to statistically significant regional and seasonal differences in profiles and allowed clear separation of upstream and downstream regions. The outcomes of these bioassays indicated an association with concentrations of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) as master variables. There were significant interrelations among dioxin-like activity, antiandrogenicity and content of organic carbon, clay, and concentration of PAHs and PCBs, which documents the significance of abiotic factors in accumulation of pollutants. The study demonstrates the strength of the specific bioassays in indicating the changes in contamination and emphasizes the crucial role of a well-designed sampling plan, in which both spatial and temporal dynamics should be taken into account, for the correct interpretations of information in risk assessments.

  10. Analysis of 'wet-landscape' surface water fractions using medaka embryo-toxicity bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Peters, L. E.; McConkey, B. J.; Vanden Heuvel, M. R. (Waterloo, Univ., Dept, of Biology, Waterloo, ON (Canada)); MacKinnon, M. D. (Syncrude Canada Ltd., Fort McMurray, AB (Canada)) Munkittricx, K. (Environment Canada, Burlington, ON (Canada))

    1998-01-01

    The self-sustaining biological potential of Syncrude's 'wetland-scape' waste disposal method was evaluated by testing water extracts from experimental pits of different ages and fine tailings/natural water compositions. This waste disposal method involves capping fine tailings with a layer of surface water. Preliminary estimates suggests a higher incidence of mortality and deformity in Japanese Medaka embryos incubated in pit waters containing elevated concentrations of naphthenates. Another study on adult perch stocked in the demonstration pit indicated the presence of PAHs in the fish bile at biologically relevant concentrations. This study was designed to determine the causative agents of the fish embryo toxicity and the level of concentrations at which chronic effects occur. The water extracts were fractionated into acid (containing naphthenates) and base-neutral (containing PAHs) components and tested using the Japanese Medaka bioassay. Endpoints measured were the presence of deformity, hatch success, swim-bladder inflation, length at hatch and time to mortality. HPLC analysis showed that PAHs were present at concentrations in the part/billion and the parts/million range. This is being taken as an indication that PAHs are not directly responsible for the observed toxicity to the embryos.

  11. Genotoxicity of Water Contaminants from the Basin of Lake Sevan, Armenia Evaluated by the Comet Assay in Gibel Carp (Carassius auratus gibelio) and Tradescantia Bioassays.

    Science.gov (United States)

    Simonyan, Anna; Gabrielyan, Barduch; Minasyan, Seyran; Hovhannisyan, Galina; Aroutiounian, Rouben

    2016-03-01

    Combination of bioassays and chemical analysis was applied to determine the genotoxic/mutagenic contamination in four different sites of the basin of Lake Sevan in Armenia. Water genotoxicity was evaluated using the single cell gel electrophoresis technique (comet assay) in erythrocytes of gibel carp (Carassius auratus gibelio), Tradescantia micronucleus (Trad-MCN) and Tradescantia stamen hair mutation (Trad-SHM) assays. Significant inter-site differences in the levels of water genotoxicity according to fish and Trad-MCN bioassays have been revealed. Two groups of locations with lower (south-southwest of the village Shorzha and Peninsula of Lake Sevan) and higher (estuaries of Gavaraget and Dzknaget rivers) levels of water genotoxicity were distinguished. Correlation analysis support the hypothesis that the observed genetic alterations in fish and plant may be a manifestation of the effects of water contamination by nitrate ions, Si, Al, Fe, Mn and Cu. Increase of DNA damage in fish also correlated with content of total phosphorus.

  12. Pollutant infiltration and ground water management

    International Nuclear Information System (INIS)

    1993-01-01

    Following a short overview of hazard potentials for ground water in Germany, this book, which was compiled by the technical committee of DVWK on ground water use, discusses the natural scientific bases of pollutant movement to and in ground water. It points out whether and to what extent soil/ground water systems can be protected from harmful influences, and indicates relative strategies. Two zones are distinguished: the unsaturated zone, where local defence and remedial measures are frequently possible, and the saturated zone. From the protective function of geological systems, which is always pollutant-specific, criteria are derived for judging the systems generally, or at least regarding entire classes of pollutants. Finally, the impact of the infiltration of pollutants into ground water on its use as drinking water is pointed out and an estimate of the cost of remedial measures is given. (orig.) [de

  13. In vitro bioanalysis of drinking water from source to tap.

    Science.gov (United States)

    Rosenmai, Anna Kjerstine; Lundqvist, Johan; le Godec, Théo; Ohlsson, Åsa; Tröger, Rikard; Hellman, Björn; Oskarsson, Agneta

    2018-08-01

    The presence of chemical pollutants in sources of drinking water is a key environmental problem threatening public health. Efficient removal of pollutants in drinking water treatment plants (DWTPs) is needed as well as methods for assessment of the total impact of all present chemicals on water quality. In the present study we have analyzed the bioactivity of water samples from source to tap, including effects of various water treatments in a DWTP, using a battery of cell-based bioassays, covering health-relevant endpoints. Reporter gene assays were used to analyze receptor activity of the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), androgen receptor (AR), peroxisome proliferator-activated receptor alpha (PPARα) and induction of oxidative stress by the nuclear factor erythroid 2-related factor 2 (Nrf2). DNA damage was determined by Comet assay. Grab water samples were concentrated by HLB or ENV solid phase extraction and the water samples assayed at a relative enrichment factor of 50. The enrichment procedure did not induce any bioactivity. No bioactivity was detected in Milli-Q water or drinking water control samples. Induction of AhR, ER and Nrf2 activities was revealed in source to tap water samples. No cytotoxicity, PPARα or AR antagonist activity, or DNA damage were observed in any of the water samples. A low AR agonist activity was detected in a few samples of surface water, but not in the samples from the DWTP. The treatment steps at the DWTP, coagulation, granulated activated carbon filtration, UV disinfection and NH 2 Cl dosing had little or no effect on the AhR, Nrf2 and ER bioactivity. However, nanofiltration and passage through the distribution network drastically decreased AhR activity, while the effect on Nrf2 activity was more modest and no apparent effect was observed on ER activity. The present results suggest that bioassays are useful tools for evaluation of the efficiency of different treatment steps in DWTPs in reducing toxic

  14. Groundwater and surface water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.S.; Hamidi, A. [eds.

    2000-07-01

    This book contains almost all the technical know-how that is required to clean up the water supply. It provides a survey of up-to-date technologies for remediation, as well as a step-by-step guide to pollution assessment for both ground and surface waters. In addition to focusing on causes, effects, and remedies, the book stresses reuse, recycling, and recovery of resources. The authors suggest that through total recycling wastes can become resources.

  15. Contaminated sediments and bioassay responses of three macroinvertebrates, the midge larva Chironomus riparius, the water louse Asellus aquaticus and the mayfly nymph Ephoron virgo

    NARCIS (Netherlands)

    Lange, de H.J.; Haas, de E.M.; Maas, H.; Peeters, E.T.H.M.

    2005-01-01

    Bioassays are widely used to estimate ecological risks of contaminated sediments. We compared the results of three whole sediment bioassays, using the midge larva Chironomus riparius, the water louse Asellus aquaticus, and the mayfly nymph Ephoron virgo. We used sediments from sixteen locations in

  16. 7 Vascular Hydrophytes for Bioassay.cdr

    African Journals Online (AJOL)

    Administrator

    4 water (see Table 1). tool. The greater extension growth of macrophyte shoots in water from downstream of STWs (Fig. 1) was supported by both chemical analysis, which showed increased phosphate concentration (Table 1), and by conventional Selenastrum bioassay in which higher cell concentrations were achieved.

  17. Effect of air and water pollutants on human health

    Energy Technology Data Exchange (ETDEWEB)

    Rondia, D.

    1973-01-01

    Toxicological and epidemiological studies on the effects of air pollutants on human health are reviewed. The epidemiological approach is based on the study of the human population actually exposed to air pollutants in daily life. Levels of increasing toxicity were established for the commonest air pollutants such as lead, sulfur dioxide, nitrogen oxides, and various allergens. The effects of pollution on immunology and adaptation, of carbon monoxide on carboxyhemoglobin levels, of sulfur dioxide on mortality and morbidity in urban areas, of nitrogen oxides on electrolytes and glutathion, of ozone and NO/sub x/ on respiratory diseases, and of pollutants on chronic bronchitis are reviewed.

  18. Effect of industrial pollution on seed germination

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, M.Z.; Qadir, S.A.

    1973-01-01

    The germination behavior of seeds in polluted waters and polluted soil extracts was found to be identical, only a few species behaved differently. Prosopis juliflora, Haloxylon recurvum, Acacia senegal showed best germination in the two conditions but Prosopis juliflora was the most resistant to pollution. In Suaeda fruticosa no germination took place in the control treatment whereas highest germination (70%) was seen in treatment with polluted soil extract of EPLA. Blepharis sindica showed a stimulating effect of polluted water on germination, whereas low germination was observed when their seeds were treated with the soil extract of the same site. 40% germination of Suaeda monoica was seen in polluted water of Carbon and Ribbon Mfg. Co., whereas 30% germination was found in a control treatment. Low percentage of germination was found when the seeds of Cassia holosericea were treated with polluted waters of different industries as compared to soil extract treatments of the same industries. Datura alba showed 50, 30 and 10% seed germination in polluted soil extract of Carbon and Ribbon Mfg. Co., in control and in polluted water of Darbar Soap Works, respectively. 5 references, 1 table.

  19. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    2008-09-01

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m 3 day -1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  20. Androgenic and Estrogenic Response of Green Mussel Extracts from Singapore’s Coastal Environment Using a Human Cell-Based Bioassay

    Science.gov (United States)

    Bayen, Stéphane; Gong, Yinhan; Chin, Hong Soon; Lee, Hian Kee; Leong, Yong Eu; Obbard, Jeffrey Philip

    2004-01-01

    In the last decade, evidence of endocrine disruption in biota exposed to environmental pollutants has raised serious concern. Human cell-based bioassays have been developed to evaluate induced androgenic and estrogenic activities of chemical compounds. However, bioassays have been sparsely applied to environmental samples. In this study we present data on sex hormone activities in the green mussel, Perna viridis, in Singapore’s coastal waters. P. viridis is a common bioindicator of marine contamination, and this study is a follow-up to an earlier investigation that reported the presence of sex hormone activities in seawater samples from Singapore’s coastal environment. Specimens were collected from eight locations around the Singapore coastline and analyzed for persistent organic pollutants (POPs) and heavy metals. Tissue extracts were then screened for activities on androgen receptors (ARs) and estrogen receptors (ER-α and ER-β) using a reporter gene bio-assay based on a HeLa human cell line. Mussel extracts alone did not exhibit AR activity, but in the presence of the reference androgenic hormone dihydrotestosterone (DHT), activities were up to 340% higher than those observed for DHT alone. Peak activities were observed in locations adjacent to industrial and shipping activities. Estrogenic activities of the mussel extract both alone and in the presence of reference hormone were positive. Correlations were statistically investigated between sex hormone activities, levels of pollutants in the mussel tissues, and various biological parameters (specimen size, sex ratio, lipid and moisture content). Significant correlations exist between AR activities, in the presence of DHT, and total concentration of POPs (r = 0.725, p < 0.05). PMID:15531429

  1. Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates.

    Science.gov (United States)

    Santorufo, Lucia; Van Gestel, Cornelis A M; Maisto, Giulia

    2012-07-01

    This study aimed at assessing the quality of urban soils by integrating chemical and ecotoxicological approaches. Soils from five sites in downtown Naples, Italy, were sampled and characterized for physical-chemical properties and total and water-extractable metal concentrations. Bioassays with Eisenia andrei, Enchytraeus crypticus and Folsomia candida were performed to assess toxicity of the soils, using survival, reproduction and growth as the endpoints. Metal bioaccumulation in the animals was also measured. The properties and metal concentrations of the soils strongly differed. Metal bioaccumulation was related with total metal concentrations in soil and was highest in E. crypticus, which was more sensitive than E. andrei and F. candida. Responses of the three species to the investigated soils seemed due to both metal contamination and soil properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Water Pollution (Causes, Mechanisms, Solution).

    Science.gov (United States)

    Strandberg, Carl

    Written for the general public, this book illustrates the causes, status, problem areas, and prediction and control of water pollution. Water pollution is one of the most pressing issues of our time and the author communicates the complexities of this problem to the reader in common language. The purpose of the introductory chapter is to show what…

  3. Biology and Water Pollution Control.

    Science.gov (United States)

    Warren, Charles E.

    Within this text, the reader is attuned to the role biology can and should play in combating the alarming increase in water pollution. Both the urgency of the problem and the biological techniques that are being developed to cope with the water pollution crisis are scrutinized; what is and is not known about the problem is explained; past,…

  4. A novel bioassay using the barnacle Amphibalanus amphitrite to evaluate chronic effects of aluminium, gallium and molybdenum in tropical marine receiving environments.

    Science.gov (United States)

    van Dam, Joost W; Trenfield, Melanie A; Harries, Simon J; Streten, Claire; Harford, Andrew J; Parry, David; van Dam, Rick A

    2016-11-15

    A need exists for appropriate tools to evaluate risk and monitor potential effects of contaminants in tropical marine environments, as currently impact assessments are conducted by non-representative approaches. Here, a novel bioassay is presented that allows for the estimation of the chronic toxicity of contaminants in receiving tropical marine environments. The bioassay is conducted using planktonic larvae of the barnacle Amphibalanus amphitrite and is targeted at generating environmentally relevant, chronic toxicity data for water quality guideline derivation or compliance testing. The developmental endpoint demonstrated a consistently high control performance, validated through the use of copper as a reference toxicant. In addition, the biological effects of aluminium, gallium and molybdenum were assessed. The endpoint expressed high sensitivity to copper and moderate sensitivity to aluminium, whereas gallium and molybdenum exhibited no discernible effects, even at high concentrations, providing valuable information on the toxicity of these elements in tropical marine waters. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  5. Effects of abandoned arsenic mine on water resources pollution in north west of iran.

    Science.gov (United States)

    Hajalilou, Behzad; Mosaferi, Mohammad; Khaleghi, Fazel; Jadidi, Sakineh; Vosugh, Bahram; Fatehifar, Esmail

    2011-01-01

    Pollution due to mining activities could have an important role in health and welfare of people who are living in mining area. When mining operation finishes, environ-ment of mining area can be influenced by related pollution e.g. heavy metals emission to wa-ter resources. The present study was aimed to evaluate Valiloo abandoned arsenic mine ef-fects on drinking water resources quality and possible health effects on the residents of min-ing area in the North West of Iran. Water samples and some limited composite wheat samples in downstream of min-ing area were collected. Water samples were analyzed for chemical parameters according to standard methods. For determination of arsenic in water samples, Graphite Furnace Atomic Absorption Spectrometric Method (GFAAS) and for wheat samples X - Ray Fluorescence (XRF) and Inductively Coupled Plasma Method (ICP) were used. Information about possible health effects due to exposure to arsenic was collected through interviews in studied villages and health center of Herris City. The highest concentrations of arsenic were measured near the mine (as high as 2000 µg/L in Valiloo mine opening water). With increasing distance from the mine, concentration was decreased. Arsenic was not detectable in any of wheat samples. Fortunately, no health effects had been reported between residents of studied area due to exposure to arsenic. Valiloo abandoned arsenic mine has caused release of arsenic to the around en-vironment of the mine, so arsenic concentration has been increased in the groundwater and also downstream river that requires proper measures to mitigate spread of arsenic.

  6. Surface Water Quality Assessment and Prioritize the Factors Pollute This Water Using Topsis Fuzzy Hierarchical Analysis

    Directory of Open Access Journals (Sweden)

    Mehdi Komasi

    2017-03-01

    Full Text Available Background & Objective: Nowadays, according to growth of industry and increasing population, water resources are seriousely shortened. This lack of water resources will require special management to be considered in industry and agriculture. Among the various sources of water, surface waters are more susceptible to infection. The most important of these sources of pollution are industrial pollution, detergent, pesticides, radioactive materials, heat and salt concentration.  Materials & methods: In this article, at first the importance of each pollutant will be evaluated base on the effects and its results and then quality evaluation of surface water will be studied. In order to assess the relative importance of these pollutants primarily using TOPSIS software, prioritize these factors as one of the hierarchical analysis and then is modeled with decision tree method using Weka software, the importance of each factor is evaluated and if it does not meet the minimal importance of the decision tree will be removed. Results: The results obtained from the Topsis fuzzy analysis indicate that surface water and groundwater are exposed to pollution about 74% and 26% respectively among the six pollutants examined in this study. In addition, results obtaned from the hierarchical tree in software Weka has shown that the heat factor, soluble salts and industrial pollutants give impac factor or purity about 0.1338, 0.0523 and 1.2694 respectively. Conclusion: Surface water is at greater risk of being polluted compared with groundwater. The heat factor and low concentration of dissolved salts have the low impact and industrial pollutants are considered as the most influential factors in surface water pollution.

  7. The latent causal chain of industrial water pollution in China.

    Science.gov (United States)

    Miao, Xin; Tang, Yanhong; Wong, Christina W Y; Zang, Hongyu

    2015-01-01

    The purpose of this paper is to discover the latent causal chain of industrial water pollution in China and find ways to cure the want on discharge of toxic waste from industries. It draws evidences from the past pollution incidents in China. Through further digging the back interests and relations by analyzing representative cases, extended theory about loophole derivations and causal chain effect is drawn. This theoretical breakthrough reflects deeper causality. Institutional defect instead of human error is confirmed as the deeper reason of frequent outbreaks of water pollution incidents in China. Ways for collaborative environmental governance are proposed. This paper contributes to a better understanding about the deep inducements of industrial water pollution in China, and, is meaningful for ensuring future prevention and mitigation of environmental pollution. It illuminates multiple dimensions for collaborative environmental governance to cure the stubborn problem.

  8. Characterization and source apportionment of water pollution in Jinjiang River, China.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Yue, Weifeng; Song, Liuting

    2013-11-01

    Characterizing water quality and identifying potential pollution sources could greatly improve our knowledge about human impacts on the river ecosystem. In this study, fuzzy comprehensive assessment (FCA), pollution index (PI), principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) were combined to obtain a deeper understanding of temporal-spatial characterization and sources of water pollution with a case study of the Jinjiang River, China. Measurement data were obtained with 17 water quality variables from 20 sampling sites in the December 2010 (withered water period) and June 2011 (high flow period). FCA and PI were used to comprehensively estimate the water quality variables and compare temporal-spatial variations, respectively. Rotated PCA and receptor model (APCS-MLR) revealed potential pollution sources and their corresponding contributions. Application results showed that comprehensive application of various multivariate methods were effective for water quality assessment and management. In the withered water period, most sampling sites were assessed as low or moderate pollution with characteristics pollutants of permanganate index and total nitrogen (TN), whereas 90% sites were classified as high pollution in the high flow period with higher TN and total phosphorus. Agricultural non-point sources, industrial wastewater discharge, and domestic sewage were identified as major pollution sources. Apportionment results revealed that most variables were complicatedly influenced by industrial wastewater discharge and agricultural activities in withered water period and primarily dominated by agricultural runoff in high flow period.

  9. Water Pollution. Environmental Education Curriculum. Revised.

    Science.gov (United States)

    Topeka Public Schools, KS.

    Water is one of the most polluted resources in our environment. Since everyone has the same basic need for pure water, it follows that all people should have a basic knowledge of the causes, results and solutions to the water pollution problem. This unit is designed for use with Level II and III educable mentally retarded students to present…

  10. Effect of housing geometry on the performance of ChemcatcherTM passive sampler for the monitoring of hydrophobic organic pollutants in water

    International Nuclear Information System (INIS)

    Lobpreis, Tomas; Vrana, Branislav; Dominiak, Ewa; Dercova, Katarina; Mills, Graham A.; Greenwood, Richard

    2008-01-01

    Passive sampling of pollutants in water has been gaining acceptance for environmental monitoring. Previously, an integrative passive sampler (the Chemcatcher TM ) was developed and calibrated for the measurement of time weighted average concentrations of hydrophobic pollutants in water. Effects of physicochemical properties and environmental variables (water temperature and turbulence) on kinetic and thermodynamic parameters characterising the exchange of analytes between the sampler and water have been published. In this study, the effect of modification in sampler housing geometry on these calibration parameters was studied. The results obtained for polycyclic aromatic hydrocarbons show that reducing the depth of the cavity in the sampler body geometry increased the exchange kinetics by approximately twofold, whilst having no effect on the correlation between the uptake and offload kinetics of analytes. The use of performance reference compounds thus avoids the need for extensive re-calibration when the sampler body geometry is modified. - The effect of passive sampler geometry on accumulation kinetics of organic pollutants from water was evaluated

  11. Integrative assessment of coastal pollution: Development and evaluation of sediment quality criteria from chemical contamination and ecotoxicological data

    Science.gov (United States)

    Bellas, Juan; Nieto, Óscar; Beiras, Ricardo

    2011-04-01

    Elutriate embryo-larval bioassays with sea-urchins ( Paracentrotus lividus) were conducted concurrently with chemical analyses of sediments and biota as part of an integrative assessment of pollution in highly productive coastal regions. High metal contents and organic compounds in sediments and mussels were found in localised areas from the inner part of the estuaries indicating a clear anthropogenic influence. In particular, average maximum concentrations of 2803 mg Cu/kg dw, 776 mg Pb/kg dw, 2.5 mg Hg/kg dw and 5803 μg ∑ 7PAHs/kg dw were measured in sediments from the most polluted sites. Significant correlations were observed between sediment chemistry and toxicity bioassays. Moreover, the Mantel test revealed a significant correlation ( rM=0.80; pbioassays identified polluted sites and quantified the level of toxicity, providing a cost-effective tool to complement the routine chemical monitoring currently conducted in European coastal waters with ecologically relevant information. This is in line with the recent European legislation that advocates the use of biological tools with the ultimate aim of protecting marine resources from anthropogenic substances that will affect their sensitive early life stages.

  12. Effects of Inevitable Environmental Pollutants.

    Science.gov (United States)

    Howes, Carollee; Krakow, Joanne

    This paper examines the effects of unavoidable pollutants on fetal development in humans. Inevitable pollutants such as radiation, pesticides, gases and lead found in the air, water, and food of our industrialized society are discussed as well as psychological correlates of industrialization and urbanization such as stress, increased noise levels…

  13. Study on spraying water soluble resin to reduce pollution for Fukushima daiichi NPP accident

    International Nuclear Information System (INIS)

    Zhang Qiong; Guo Ruiping; Zhang Chunming; Han Fujuan; Hua Jie; Zhang Jiankui

    2012-01-01

    After Fukushima nuclear accident, Tokyo electric power company used the method of spraying water soluble resin synthesis at the scene of the accident, to restrain and control the spread of the radioactive dust, by forming consolidation layer in pollution area surface. This paper briefly introduced the accident, motivation of spraying water soluble resin, spraying range and implementation process. According to the relevant report on Fukushima nuclear accident, the effect of spraying water soluble resin for reducing pollution was analyzed. The mechanism of reducing pollution for water soluble resin and the application prospect were discussed. Spraying water soluble resin for fixing radioactive dust has reasonable reducing pollution effect. It is worth to use as reference and study in China. (authors)

  14. Remote Sensing of Water Pollution

    Science.gov (United States)

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  15. Water pollution profile of coal washeries

    International Nuclear Information System (INIS)

    Gupta, R.K.; Singh, Gurdeep

    1995-01-01

    Environmental problems in coal mining industry is increased with the demand of good quality of coal through coal washing/beneficiation activities. The coal washeries in general have been identified as one of the serious sources of water pollution particularly of Damodar river. Coal washeries though are designed on close water circuit, most of these however, fail to operate on close water circuit thus resulting in enormous quantity of effluents containing coal fines as well. This apart from posing serious water pollution problem also results into economic losses. The present study attempts to provide an insight into water pollution profile from coal washeries in Jharia coalfield. Various process parameters/unit operations in coal washing are also described. Effluents from various selected coal washeries of Jharia coalfield are sampled and analysed over a period of six months during 1993. Suspended solids, oil and grease and COD in the washery effluents are identified as the three major water quality parameters causing lots of concern for Damodar river pollution. Reasons for unavoidable discharge of effluents containing coal fines are also described. (author). 14 refs., 4 tabs., 2 figs

  16. Assessment of sediment contamination by spermiotoxicity and embryotoxicity bioassays with sea urchins (Paracentrotus lividus) and oysters (Crassostrea gigas).

    Science.gov (United States)

    Geffard, O; Budzinski, H; Augagneur, S; Seaman, M N; His, E

    2001-07-01

    Gametes (sperm) and fertilized eggs (embryos) of the Mediterranean sea urchin, Paracentrotus lividus, and the Japanese oyster, Crassostrea gigas, were used to investigate the toxicity of two marine sediments, one polluted by polycyclic aromatic hydrocarbons (PAH) and the other by heavy metals. The sediment samples were freeze-dried for storage, and three different treatments were used for analysis: whole sediment, unfiltered elutriate, and filtered elutriate. The two sediments were toxic to sea urchin spermatozoa but not to oyster spermatozoa, and embryotoxicity was almost always the more sensitive endpoint for toxicity assessment. As a rule, whole sediment was more toxic than the elutriates by nearly two orders of magnitude. With respect to embryotoxicity, the whole sediments and the elutriates of the PAH-contaminated sediment were more toxic to oyster embryos, whereas the elutriates of the sediment polluted by heavy metals had stronger effects on sea urchin embryos. The results confirm that bioassays with Japanese oyster embryos provide a more sensitive appraisal of toxicity in the marine environment than bioassays with other developmental stages. As a whole, Mediterranean sea urchins and Japanese oysters were similar in overall sensitivity and are therefore both equally suited as bioassay organisms, but tests with oysters are more reproducible because of the better performance of the controls.

  17. Ecotoxicological evaluation of areas polluted by mining activities

    Science.gov (United States)

    García-Lorenzo, M. L.; Martínez-Sánchez, M. J.; Pérez-Sirvent, C.; Molina, J.

    2009-04-01

    Determination of the contaminant content is not enough to evaluate the toxic effects or to characterise contaminated sites, because such a measure does not reflect the ecotoxicological danger in the environment and does not provide information on the effects of the chemical compounds. To estimate the risk of contaminants, chemical methods need to be complemented with biological methods. Therefore, ecotoxicological testing may be a useful approach for assessing the toxicity as a complement to chemical analysis. The aim of this study was to develop a battery of bioassays for the ecotoxicological screening of areas polluted by mining activities. Particularly, the toxicity of water samples, sediments and their pore-water extracts was evaluated by using three assays: bacteria, plants and ostracods. Moreover, the possible relationship between observed toxicity and results of chemical analysis was studied. The studied area, Sierra Minera, is close to the mining region of La Uni

  18. Addressing the recovery of feeding rates in post-exposure feeding bioassays: Cyathura carinata as a case study

    Energy Technology Data Exchange (ETDEWEB)

    Pais-Costa, Antonia Juliana [IMAR—Institute of Marine Research, MARE—Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra (Portugal); Acevedo, Pelayo [SaBio IREC, Instituto de Investigación en Recursos Cinegéticos (UCLM-CSIC-JCCM), Ciudad Real 13005 (Spain); Marques, João Carlos [IMAR—Institute of Marine Research, MARE—Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra (Portugal); Martinez-Haro, Mónica, E-mail: monica.martinezharo@gmail.com [IMAR—Institute of Marine Research, MARE—Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra (Portugal)

    2015-02-15

    Post-exposure bioassays are used in environmental assessment as a cost-effective tool, but the effects of organism's recovery after exposure to pollutant has not yet been addressed in detail. The recoveries of post-exposure feeding rates after being exposed to two sublethal concentrations of cadmium during two different exposure periods (48 h and 96 h) were evaluated under laboratory conditions using the estuarine isopod Cyathura carinata. Results showed that feeding depression was a stable endpoint up to 24 h after cadmium exposure, which is useful for ecotoxicological bioassays. - Highlights: • We studied recovery of post-exposure feeding rates 48–96 h after cadmium exposure. • The assay is based on the isopod Cyathura carinata. • Post-exposure feeding inhibition is a stable sublethal endpoint.

  19. Investigation of animal and algal bioassays for reliable saxitoxin ecotoxicity and cytotoxicity risk evaluation.

    Science.gov (United States)

    Perreault, François; Matias, Marcelo Seleme; Melegari, Silvia Pedroso; Pinto, Catia Regina Silva de Carvalho; Creppy, Edmond Ekué; Popovic, Radovan; Matias, William Gerson

    2011-05-01

    Contamination of water bodies by saxitoxin can result in various toxic effects in aquatic organisms. Saxitoxin contamination has also been shown to be a threat to human health in several reported cases, even resulting in death. In this study, we evaluated the sensitivity of animal (Neuro-2A) and algal (Chlamydomonas reinhardtii) bioassays to saxitoxin effect. Neuro-2A cells were found to be sensitive to saxitoxin, as shown by a 24 h EC50 value of 1.5 nM, which was obtained using a cell viability assay. Conversely, no saxitoxin effect was found in any of the algal biomarkers evaluated, for the concentration range tested (2-128 nM). These results indicate that saxitoxin may induce toxic effects in animal and human populations at concentrations where phytoplankton communities are not affected. Therefore, when evaluating STX risk of toxicity, algal bioassays do not appear to be reliable indicators and should always be conducted in combination with animal bioassays. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Soil ciliate bioassay for the pore water habitat. A missing link between microflora and earthworm testing in soil toxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Berthold, A. [Lab. for Ecotoxicology, Univ. of Veterinary Medicine, Vienna (Austria); Jakl, T. [Chemicals Policy Unit, Federal Ministry of Agriculture, Forestry, Environment and Water Management, Vienna (Austria)

    2002-07-01

    Background, Scope and Goal. The chemical, pesticide and biocide legislation of the European Union assembles a variety of bioassays. Among the ecotoxicological tests involved, the testing strategy for the aquatic compartment builds up on three tests reflecting the main trophic levels (algae, Daphnia, fish). For the soil compartment at least one trophic level for a basic food chain is missing, namely between microflora and earthworms. Protozoa are an ideal missing link as they were shown to be the most prominent faunal contributors to nutrient cycling in soil ecosystems and as they represent the lacking first level consumers as well as the highly diverse microfauna. As protozoa inhabit the soil pore water, they can serve as direct indicators for the solved and thus bioavailable portion of xenobiotics. In order to widen the spectrum of available toxicity tests for a meaningful effect assessment for the soil compartment, a test with the soil ciliate Colpoda inflata (Ciliophora, Protozoa), introduced by Pratt et al. (1997), was improved. Methods. The novel improvements comprise a substantially refined inoculation and counting procedure, as well as the adaptation to yeast as a nutritional source. The test was designed to be rapid and easy to perform, in order to have both a higher degree of standardisation and reproducibility, as well as to be in compliance with international test guidelines. Results and Discussion. Five test substances, cadmium chloride, potassium dichromate, acetone, atrazine, and metolachlor, were used in single-compound, static, short-term exposure (24 h, 48 h) tests to examine the effect on the population growth of C. inflata. The median effective concentrations (EC50) were 0.17 to 0.26 mg/l for Cd, 34 to 63 mg/l for Cr, >3000 mg/l for acetone, 91-112 mg/l for atrazine and 83-119 mg/l for metolachlor. The equilibrium partitioning approach was used to extrapolate the results to total soil exposure and thus enable a sensitivity comparison to

  1. Estimation of water pollution by genetic biomarkers in tilapia and ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... environmental pollution. Acid phosphatase was used to estimate the effect of heavy metals pollutants as indica- ted by the analysis of water samples and gills of Cyprinus carpio (Ozmen et al., 2006). The enzyme was employed in fish liver to study the effects of the extensive dredging in Goteborg harbor ...

  2. Combination of aquatic species and safeners improves the remediation of copper polluted water.

    Science.gov (United States)

    Panfili, Ivan; Bartucca, Maria Luce; Ballerini, Eleonora; Del Buono, Daniele

    2017-12-01

    In the last decades, many anthropogenic activities have resulted in heavy metal contamination of freshwaters and surrounding environments. This poses serious threats to human health. Phytoremediation is a cost-effective technology which is useful for remediating polluted soils and water. Recently, the use of aquatic free-floating plants has been proposed to remediate polluted water. In this context, a study on the capacity of two aquatic plants, Lemna minor (duckweed) and Salvinia auriculata (salvinia), to remediate Cu +2 (Cu) polluted water was carried out. Initially, the species were exposed to different copper concentrations (1, 5, 10, 20 and 50μmolL -1 ) in order to assess Cu +2 toxicity to the plants. In addition, plants were treated with two safeners (benoxacor and dichlormid), with the aim of pointing out any safening effect of these compounds on the aquatic species. Toxicity tests showed that safened plants had a greater Cu resistance, especially at the higher Cu doses. Finally, unsafened and safened plants were tested in the decontamination of water polluted by copper (1.2mgL -1 ). In general, duckweed removed higher amounts of Cu from polluted water than salvinia, and, surprisingly, for both the species the safeners significantly increased the plants' capacity to remove the metal from the polluted waters. Lastly, an HPLC-based method was developed and standardized to monitor the residual amounts of the two safeners in the water. While dichlormid was completely absorbed by duckweed within few days after the treatments, some residual amounts of both safeners were found in salvinia vegetated water after two weeks. In conclusion, the results of this research show that the use of aquatic species in combination with safeners is an attractive and reliable tool to make plants more effective in phytoremediation of water polluted with metals (or other toxic compounds). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. New Photocatalysis for Effective Degradation of Organic Pollutants in Water

    Science.gov (United States)

    Zarei Chaleshtori, M.; Saupe, G. B.; Masoud, S.

    2009-12-01

    The presence of harmful compounds in water supplies and in the discharge of wastewater from chemical industries, power plants, and agricultural sources is a topic of global concern. The processes and technologies available at the present time for the treatment of polluted water are varied that include traditional water treatment processes such as biological, thermal and chemical treatment. All these water treatment processes, have limitations of their own and none is cost effective. Advanced oxidation processes have been proposed as an alternative for the treatment of this kind of wastewater. Heterogeneous photocatalysis has recently emerged as an efficient method for purifying water. TiO2 has generally been demonstrated to be the most active semiconductor material for decontamination water. One significant factor is the cost of separation TiO2, which is generally a powder having a very small particle size from the water after treatment by either sedimentation or ultrafiltration. The new photocatalyst, HTiNbO5, has been tested to determine whether its photocatalytic efficiency is good enough for use in photocatalytic water purification since it has high surface area and relatively large particle size. The larger particle sizes of the porous materials facilitate catalyst removal from a solution, after purification has taken place. It can be separated from water easily than TiO2, a significant technical improvement that might eliminate the tedious final filtration necessary with a slurry. These materials are characterized and tested as water decontamination photocatalysts. The new catalyst exhibited excellent catalytic activity, but with a strong pH dependence on the photo efficiency. These results suggest that elimination of the ion exchange character of the catalyst may greatly improve its performance at various pHs. This new research proposes to study the effects of a topotactic dehydration reaction on these new porous material catalysts.

  4. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with Lupinus luteus L. and associated endophytic bacteria.

    Science.gov (United States)

    Gutiérrez-Ginés, M J; Hernández, A J; Pérez-Leblic, M I; Pastor, J; Vangronsveld, J

    2014-10-01

    In the central part of the Iberian Peninsula there are old sealed landfills containing soils co-contaminated by several heavy metals (Cu, Zn, Pb, Cd, Ni, As, Cr, Fe, Al, Mn) and organic pollutants of different families (hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides and other organochlorinated compounds, phenols and volatile compounds), which this work will address. We have focused on phytoremedial plants that are able to deal with this type of complex pollution, not only species that tolerate the joint effect of heavy metals in the soil, but also those that can take advantage of associated bacteria to efficiently break down organic compounds. This study was carried out with Lupinus luteus and its endophytes in two greenhouse experiments: A) growing in a substrate artificially contaminated with benzo(a)pyrene (BaP), and B) using real co-contaminated landfill soils. Endophytes of roots and shoots were isolated in both bioassays. Plant growth-promotion tests and organic pollutant tolerance and degradation tests were conducted on all strains isolated in bioassay A), and on those proving to be pure cultures from bioassay B). The selected landfill is described as are isolation and test procedures. Results indicate that plants did not show toxicity symptoms when exposed to BaP but did when grown in landfill soil. Some endophytes demonstrated plant growth-promotion capacity and tolerance to BaP and other organic compounds (diesel and PCB commercial mixtures). A few strains may even have the capacity to metabolize those organic pollutants. The overall decline in plant growth-promotion capacity in those strains isolated from the landfill soil experiment, compared with those from the bioassay with BaP, may indicate that lupin endophytes are not adapted to metal concentration in roots and shoots and fail to grow. As a result, most isolated root endophytes must have colonized root tissues from the soil. While preliminary degradation tests

  5. Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms.

    Science.gov (United States)

    Ramos, M C; Quinton, J N; Tyrrel, S F

    2006-01-01

    The large quantities of slurry and manure that are produced annually in many areas in which cattle are raised could be an important source of organic matter and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are analysed. Rainfall simulations at a rate of 70 mm h(-1) were conducted in a sandy loam soil packed into soil flumes (2.5m long x 1m wide) at a bulk density of 1400 kg m(-3), with and without cattle slurry manure applied on the surface. For each simulation, sediment and runoff rates were analysed and in those simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils, reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies an important source of pollution for surface waters especially if rainfall takes place within a short period after application. The concentrations of micro-organisms (presumptive faecal coliforms (PFCs)) found in water runoff ranged from 1.9 x 10(4) to 1.1 x 10(6) PFC 100mL(-1), depending on the initial concentration in the slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a strong relationship between the faecal coliforms transported by runoff and the organic matter in the sediment.

  6. Bioassay battery interlaboratory investigation of emerging contaminants in spiked water extracts e Towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring

    NARCIS (Netherlands)

    Di Paolo, C.; Ottermanns, R.; Keiter, S.; Ait-Aissa, S.; Bluhm, K.; Brack, W.; Breitholz, M.; Buchinger, S.; Carere, M.; Chalon, C.; Cousin, X.; Dulio, V.; Escher, B.I.; Hamers, T.; Jarque, S.; Jonas, A.; Maillot-Marechal, E.; Marneffe, Y.; Nguyen, M.T.; Pandard, P.; Schifferli, A.; Schulze, T.; Seidensticker, S.; Seiler, T.B.; Tang, J.; van der Oost, R.; Vermeirssen, E.; Zounková, R.; Zwart, N.; Hollert, H.

    2016-01-01

    Bioassays are particularly useful tools to link the chemical and ecological assessments in water quality monitoring. Different methods cover a broad range of toxicity mechanisms in diverse organisms, and account for risks posed by non-target compounds and mixtures. Many tests are already applied in

  7. Effects of Abandoned Arsenic Mine on Water Resources Pollution in North West of Iran

    Directory of Open Access Journals (Sweden)

    Esmail Fatehifar

    2011-07-01

    Full Text Available Background: Pollution due to mining activities could have an important role in health andwelfare of people who are living in mining area. When mining operation finishes, environmentof mining area can be influenced by related pollution e.g. heavy metals emission to waterresources. The present study was aimed to evaluate Valiloo abandoned arsenic mine effectson drinking water resources quality and possible health effects on the residents of miningarea in the North West of Iran.Methods: Water samples and some limited composite wheat samples in downstream of miningarea were collected. Water samples were analyzed for chemical parameters according tostandard methods. For determination of arsenic in water samples, Graphite Furnace AtomicAbsorption Spectrometric Method (GFAAS and for wheat samples X – Ray Fluorescence(XRF and Inductively Coupled Plasma Method (ICP were used. Information about possiblehealth effects due to exposure to arsenic was collected through interviews in studied villagesand health center of Herris City.Results: The highest concentrations of arsenic were measured near the mine (as high as 2000μg/L in Valiloo mine opening water. With increasing distance from the mine, concentrationwas decreased. Arsenic was not detectable in any of wheat samples. Fortunately, no healtheffects had been reported between residents of studied area due to exposure to arsenic.Conclusion: Valiloo abandoned arsenic mine has caused release of arsenic to the around environmentof the mine, so arsenic concentration has been increased in the groundwater andalso downstream river that requires proper measures to mitigate spread of arsenic.

  8. Bioassay guideline 1: general guidlines for bioassay programs

    International Nuclear Information System (INIS)

    1980-01-01

    This guideline is the first of a series of documents which elaborate criteria for bioassay programs, to be presented as recommendations to the Atomic Energy Control Board. It specifies which workers require routine bioassays, the accuracy and frequency of measurements, the dose levels at which specific actions must be taken, and the documentation required

  9. Development of acute and chronic sediment bioassays with the harpacticoid copepod Quinquelaophonte sp.

    Science.gov (United States)

    Stringer, Tristan J; Glover, Chris N; Keesing, Vaughan; Northcott, Grant L; Gaw, Sally; Tremblay, Louis A

    2014-01-01

    Reliable environmentally realistic bioassay methodologies are increasingly needed to assess the effects of environmental pollution. This study describes two estuarine sediment bioassays, one acute (96 h) and one chronic (14 d), with the New Zealand harpacticoid copepod Quinquelaophonte sp. utilising behavioural and reproductive endpoints. Spiked sediments were used to expose Quinquelaophonte sp. to three reference compounds representing important categories of estuarine chemical stressors: zinc (a metal), atrazine (a pesticide), and phenanthrene (a polycyclic aromatic hydrocarbon). Acute-to-chronic ratios (ACR) were used to further characterise species responses. Acute sediment (sandy and low total organic content) 96 h EC50 values for the sublethal inhibition of mobility for zinc, atrazine and phenanthrene were 137, 5.4, and 2.6 µg/g, respectively. The chronic EC50 values for inhibition of reproduction (total offspring) were 54.5, 0.0083, and 0.067 µg/g for zinc, atrazine, and phenanthrene, respectively. For phenanthrene, a potentially novel mode of action was identified on reproduction. Quinquelaophonte sp. was found to be more sensitive than several other estuarine species indicating choice of test organism is important to characterising the effects of environmentally relevant levels of contamination. The bioassay sediment results demonstrate the sensitivity and suitability of Quinquelaophonte sp. as a tool for the assessment use of estuarine health. © 2013 Published by Elsevier Inc.

  10. Genotoxicity monitoring of industrial wastes using plant bioassays and management through vermitechnology: A review

    Directory of Open Access Journals (Sweden)

    Sartaj Ahmad Bhat

    2017-10-01

    Full Text Available The main objective of this review was to summarize and present a comprehensive account of the cytotoxic, genotoxic and mutagenic potential of various industrial wastes/sludges using some well-known plant bioassays followed by their bioremediation using vermitechnology. Industries are the main origin of discharges of various types of chemical wastes and are the main causes of environmental degradation. The direct application of industrial sludges could also harm the local biota. The genotoxicity of industrial sludges is assessed using various plant bioassays (for example Allium cepa, Vicia faba and these bioassays are comparatively more sensitive and cost-effective compared to other in-vitro genotoxicity bioassays. In addition, the materials used for toxicity evaluation are easily available and are being routinely used for the monitoring of environmental pollution. In most studies, the increases in root length and mitotic index, as well as the decrease in chromosomal aberrations in post vermicomposted sludges/wastes indicate that earthworms have the ability to reduce the ecotoxicogenetic effects of sludges/wastes. Post vermicompost is considered an excellent material of a homogenous nature as it has reduced levels of contaminants and holds more nutrients over a longer time without affecting the environment. The biotransformation potential of earthworms and their ability to detoxify most of the heavy metals in industrial sludges is because of their strong metabolic system and the involvement of diverse intestinal microflora and chloragocytic cells that reduce toxic forms to nontoxic forms. This unique ability of earthworms confirms the effectiveness of vermitechnology in reducing the toxicity of industrial wastes. Keywords: Allium cepa, Earthworm, Industrial sludge, Toxicity, Vermicomposting

  11. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  12. China's water pollution by persistent organic pollutants

    International Nuclear Information System (INIS)

    Bao Lianjun; Maruya, Keith A.; Snyder, Shane A.; Zeng, Eddy Y.

    2012-01-01

    Available data were reviewed to assess the status of contamination by persistent organic pollutants (POPs), including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), in drinking water sources and coastal waters of China. The levels of POPs in China's waters were generally at the high end of the global range. A comparison of China's regulatory limits indicated that PCBs in rivers and coastal water may pose potential human health risk. Occurrence of DDTs in some rivers of China may also pose health risk to humans using the regulatory limits of DDTs recommended by the European Union. Future monitoring of POPs in China's waters should be directed towards analytes of concern (e.g. PCBs and PCDD/Fs) and to fill data gaps for analytes (e.g. PBDEs, PCDD/Fs, and chlordane) and in watersheds/regions (e.g. West China) where data are scarce. - Highlights: ► Levels of POPs in China's aquatic systems were generally at the high end of the global range. ► New inputs of DDTs, likely related to the use of dicofol and anti-fouling paints, were found. ► Occurrence of PCBs and DDTs in some water bodies pay pose potential human health risk. ► Long-term monitoring of POPs in China's waters is needed to fill data gaps. - Occurrence, potential sources and ecological and human health risk of persistent organic pollutants in China's waters are reviewed.

  13. Bioassay criteria for environmental restoration workers

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Bihl, D.E.

    1993-01-01

    Environmental restoration (ER) work at the U. S. Department of Energy Hanford Site posed questions concerning when to perform bioassay monitoring of workers for potential intakes of radioactivity. Application of criteria originally developed for use inside radionuclide processing facilities to ER work resulted in overly restrictive bioassay requirements. ER work typically involves site characterization or, excavating large quantities of potentially contaminated soil, rather than working with concentrated quantities of radioactivity as in a processing facility. An improved approach, tailored to ER work, provided soil contamination concentrations above which worker bioassay would be required. Soil concentrations were derived assuming acute or chronic intakes of 2% of an Annual Limit on Intake (ALI), or a potential committed effective dose equivalent of 100 mrem, and conservative dust loading of air from the work. When planning ER work, the anticipated soil concentration and corresponding need for bioassay could be estimated from work-site historical records. Once site work commenced, soil sampling and work-place surveys could be used to determine bioassay needs. This approach substantially reduced the required number of bioassay samples with corresponding reductions in analytical costs, schedules, and more flexible work-force management. (Work supported by the US Department of Energy under contract DOE-AC06-76RLO 1830.)

  14. Évaluation in vitro et in vivo des perturbateurs endocriniens chez le poisson zèbre : cas de substances seules et en mélanges

    OpenAIRE

    Serra , Hélène

    2017-01-01

    This PhD thesis aims at assessing the potential of innovative in vitro and in vivo zebrafish based bioassays for biomonitoring of surface water contamination by xeno-estrogens. For this purpose, the bioassays were applied to assess the effect of environmentally relevant surface water pollutants, alone and in simple (artificial) and complex (environmental samples) mixtures. The screening of surface water samples in zebrafish- (ZELH-zfERβ2 cells) and human-based (MELNcells) bioassays revealed q...

  15. Solar photocatalytic cleaning of polluted water

    International Nuclear Information System (INIS)

    Bockelmann, D.

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI) [de

  16. Effects of Wood Pollution on Pore-Water Sulfide Levels and Eelgrass Germination

    Science.gov (United States)

    Ekelem, C.

    2016-02-01

    Historically, sawmills released wood waste onto coastal shorelines throughout the Pacific Northwest of the USA, enriching marine sediments with organic material. The increase in organic carbon boosts the bacterial reduction of sulfate and results in the production of a toxic metabolite, hydrogen sulfide. Hydrogen sulfide is a phytotoxin and can decrease the growth and survival of eelgrass. This is a critical issue since eelgrass, Zostera marina, forms habitat for many species, stabilizes sediment, and plays a role in nutrient cycling and sediment chemistry. The objective of our study was to determine the effects of wood debris on sediment pore-water hydrogen sulfide concentrations and eelgrass germination. To test the impact of wood inputs on sulfide production and seed germination, we conducted a laboratory mesocosm experiment, adding sawdust to marine sediments and measuring the sulfide levels weekly. We subsequently planted seeds in the mesocosms and measured germination rates. Higher concentrations of sawdust led to higher levels of pore-water hydrogen sulfide and drastically slower eelgrass germination rates. Treatments with greater than 10% wood enrichment developed free sulfide concentrations of 0.815 (± 0.427) mM after 118 days, suggesting sediments with greater than 10% wood pollution may have threateningly high pore-water hydrogen sulfide levels. These results can be used to set thresholds for remediation efforts and guide seed distribution in wood polluted areas.

  17. Solution by dilution?--A review on the pollution status of the Yangtze River.

    Science.gov (United States)

    Floehr, Tilman; Xiao, Hongxia; Scholz-Starke, Björn; Wu, Lingling; Hou, Junli; Yin, Daqiang; Zhang, Xiaowei; Ji, Rong; Yuan, Xingzhong; Ottermanns, Richard; Roß-Nickoll, Martina; Schäffer, Andreas; Hollert, Henner

    2013-10-01

    The Yangtze River has been a source of life and prosperity for the Chinese people for centuries and is a habitat for a remarkable variety of aquatic species. But the river suffers from huge amounts of urban sewage, agricultural effluents, and industrial wastewater as well as ship navigation wastes along its course. With respect to the vast amounts of water and sediments discharged by the Yangtze River, it is reasonable to ask whether the pollution problem may be solved by simple dilution. This article reviews the past two decades of published research on organic pollutants in the Yangtze River and several adjacent water bodies connected to the main stream, according to a holistic approach. Organic pollutant levels and potential effects of water and sediments on wildlife and humans, measured in vitro, in vivo, and in situ, were critically reviewed. The contamination with organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans, polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), and others, of water and sediment along the river was described. Especially Wuhan section and the Yangtze Estuary exhibited stronger pollution than other sections. Bioassays, displaying predominantly the endpoints mutagenicity and endocrine disruption, applied at sediments, drinking water, and surface water indicated a potential health risk in several areas. Aquatic organisms exhibited detectable concentrations of toxic compounds like PCBs, OCPs, PBDEs, and PFCs. Genotoxic effects could also be assessed in situ in fish. To summarize, it can be stated that dilution reduces the ecotoxicological risk in the Yangtze River, but does not eliminate it. Keeping in mind an approximately 14 times greater water discharge compared to the major European river Rhine, the absolute pollution mass transfer of the Yangtze River is of severe concern for

  18. Water pollution biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.F. [University of Essex, Colchester (United Kingdom). Dept. of Biology

    1996-12-31

    Chapter 4 of this book describes the effects of major types of pollutants on aquatic life. These are: organic pollution, eutrophication, acidification, toxic chemicals, oil, and radioactivity. The review includes an description of some of the methods of assessing the biological impacts of pollution. 50 refs., 8 figs., 3 tabs.

  19. Microplastic pollution in China's inland water systems: A review of findings, methods, characteristics, effects, and management.

    Science.gov (United States)

    Zhang, Kai; Shi, Huahong; Peng, Jinping; Wang, Yinghui; Xiong, Xiong; Wu, Chenxi; Lam, Paul K S

    2018-07-15

    The pollution of marine environments and inland waters by plastic debris has raised increasing concerns worldwide in recent years. China is the world's largest developing country and the largest plastic producer. In this review, we gather available information on microplastic pollution in China's inland water systems. The results show that microplastics are ubiquitous in the investigated inland water systems, and high microplastic abundances were observed in developed areas. Although similar sampling and analytical methods were used for microplastic research in inland water and marine systems, methods of investigation should be standardized in the future. The characteristics of the detected microplastics suggest secondary sources as their major sources. The biological and ecological effects of microplastics have been demonstrated, but their risks are difficult to determine at this stage due to the discrepancy between the field-collected microplastics and microplastics used in ecotoxicological studies. Although many laws and regulations have already been established to manage and control plastic waste in China, the implementation of these laws and regulations has been ineffective and sometimes difficult. Several research priorities are identified, and we suggest that the Chinese government should be more proactive in tackling plastic pollution problems to protect the environment and fulfill international responsibilities. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Investigation of formaldehyde pollution of tap water and rain water using a novel visual colorimetry.

    Science.gov (United States)

    Murai, K; Okano, M; Kuramitz, H; Hata, N; Kawakami, T; Taguchi, S

    2008-01-01

    The pollution of tap water and rain water with formaldehyde in Toyama Pref., Japan was investigated by means of a simple, rapid and cost-effective visual colorimetry developed by us. The levels of formaldehyde in three tap waters from different sources of dams on mountainside and a well-water pumped in urban area in Toyama Pref. were lower than 0.01 mg L(-1) that was the detection limit of the colorimetry. On the other hand, rain waters were seriously polluted with formaldehyde. Rain waters were sampled from three different sites (urban area, top of hill and industrial area) in Toyama Pref. from autumn to winter in 2006. The levels of formaldehyde in the rain waters ranged from 0.07 to 0.30 mg L(-1). The analytical results by the visual colorimetry were in good agreement with those obtained by GC-MS method. It was confirmed that the colorimetry is excellent for practical use for the determination of formaldehyde. It must be concerned about the pollution of rainwater with formaldehyde, when rain water is applied for tap water and miscellaneous purpose. Copyright IWA Publishing 2008.

  1. Reservoir operation schemes for water pollution accidents in Yangtze River

    Directory of Open Access Journals (Sweden)

    Xiao-kang Xin

    2012-03-01

    Full Text Available After the Three Gorges Reservoir starts running, it can not only take into consideration the interest of departments such as flood control, power generation, water supply, and shipping, but also reduce or eliminate the adverse effects of pollutants by discharge regulation. The evolution of pollutant plumes under different operation schemes of the Three Gorges Reservoir and three kinds of pollutant discharge types were calculated with the MIKE 21 AD software. The feasibility and effectiveness of the reservoir emergency operation when pollution accidents occur were investigated. The results indicate that the emergency operation produces significant effects on the instantaneous discharge type with lesser effects on the constant discharge type, the impact time is shortened, and the concentration of pollutant is reduced. Meanwhile, the results show that the larger the discharge is and the shorter the operation duration is, the more favorable the result is.

  2. BACOPA MONNIERI (L. PENNELL –A GOOD BIOMARKER OF WATER POLLUTION/CONTAMINATION

    Directory of Open Access Journals (Sweden)

    Hussain. K

    2010-09-01

    Full Text Available Effect of water pollution on Bacopa monnieri was studied by culturing their rooted propagules in various polluted water samples and Hoagland nutrient medium artificially contaminated with different micro-level concentrations of HgCl2. Anatomical observations of those plants showed safranin-stained masses deposited in the xylem vessels of stem. The plants treated in chemical solutions which are free from metallic ions, under threshold level of HgCl2, and control plants were devoid of such deposits. Similar deposits were observed in plants cultured in various local water samples. Atomic Absorption Spectrophotometric analyses of these water samples and the bioaccumulation property of the plant detected the presence of Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn at various levels. The occurrence of the localized stained deposits in the xylem vessels of the stem of the plants cultured in polluted/contaminated aqueous medium, eventhough the growth medium contamination is micro-levels, is indicative of high sensitivity of Bacopa monnieri plants towards water pollution irrespective of the chemical nature of the pollutants. Although these stained deposits are not specific to any individual element that causes pollution, detection of water contamination is possible by observing the safranin-stained masses in the xylem vessels of this medicinal plant.

  3. Exploring Water Pollution. Part 3

    Science.gov (United States)

    Rillo, Thomas J.

    1976-01-01

    Lists over 30 outdoor science activities dealing with water formation, erosion, pollution, and other water-related topics. Provides, in addition, a selected bibliography of films, tapes, booklets and pamphlets, and filmstrips as additional reference materials. (CP)

  4. Screening the Toxicity of Selected Personal Care Products Using Embryo Bioassays: 4-MBC, Propylparaben and Triclocarban

    Directory of Open Access Journals (Sweden)

    Tiago Torres

    2016-10-01

    Full Text Available Recently, several emerging pollutants, including Personal Care Products (PCPs, have been detected in aquatic ecosystems, in the ng/L or µg/L range. Available toxicological data is limited, and, for certain PCPs, evidence indicates a potential risk for the environment. Hence, there is an urgent need to gather ecotoxicological data on PCPs as a proxy to improve risk assessment. Here, the toxicity of three different PCPs (4-Methylbenzylidene Camphor (4-MBC, propylparaben and triclocarban was tested using embryo bioassays with Danio rerio (zebrafish and Paracentrotus lividus (sea urchin. The No Observed Effect Concentration (NOEC for triclocarban was 0.256 µg/L for sea urchin and 100 µg/L for zebrafish, whereas NOEC for 4-MBC was 0.32 µg/L for sea urchin and 50 µg/L for zebrafish. Both PCPs impacted embryo development at environmentally relevant concentrations. In comparison with triclocarban and 4-MBC, propylparaben was less toxic for both sea urchin (NOEC = 160 µg/L and zebrafish (NOEC = 1000 µg/L. Overall, this study further demonstrates the sensitivity of embryo bioassays as a high-throughput approach for testing the toxicity of emerging pollutants.

  5. A Bioassay System Using Bioelectric Signals from Small Fish

    Science.gov (United States)

    Terawaki, Mitsuru; Soh, Zu; Hirano, Akira; Tsuji, Toshio

    Although the quality of tap water is generally examined using chemical assay, this method cannot be used for examination in real time. Against such a background, the technique of fish bioassay has attracted attention as an approach that enables constant monitoring of aquatic contamination. The respiratory rhythms of fish are considered an efficient indicator for the ongoing assessment of water quality, since they are sensitive to chemicals and can be indirectly measured from bioelectric signals generated by breathing. In order to judge aquatic contamination accurately, it is necessary to measure bioelectric signals from fish swimming freely as well as to stably discriminate measured signals, which vary between individuals. However, no bioassay system meeting the above requirements has yet been established. This paper proposes a bioassay system using bioelectric signals generated from small fish in free-swimming conditions. The system records signals using multiple electrodes to cover the extensive measurement range required in a free-swimming environment, and automatically discriminates changes in water quality from signal frequency components. This discrimination is achieved through an ensemble classification method using probability neural networks to solve the problem of differences between individual fish. The paper also reports on the results of related validation experiments, which showed that the proposed system was able to stably discriminate between water conditions before and after bleach exposure.

  6. 15 CFR 923.45 - Air and water pollution control requirements.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  7. Impacts of soil and water pollution on food safety and health risks in China.

    Science.gov (United States)

    Lu, Yonglong; Song, Shuai; Wang, Ruoshi; Liu, Zhaoyang; Meng, Jing; Sweetman, Andrew J; Jenkins, Alan; Ferrier, Robert C; Li, Hong; Luo, Wei; Wang, Tieyu

    2015-04-01

    Environmental pollution and food safety are two of the most important issues of our time. Soil and water pollution, in particular, have historically impacted on food safety which represents an important threat to human health. Nowhere has that situation been more complex and challenging than in China, where a combination of pollution and an increasing food safety risk have affected a large part of the population. Water scarcity, pesticide over-application, and chemical pollutants are considered to be the most important factors impacting on food safety in China. Inadequate quantity and quality of surface water resources in China have led to the long-term use of waste-water irrigation to fulfill the water requirements for agricultural production. In some regions this has caused serious agricultural land and food pollution, especially for heavy metals. It is important, therefore, that issues threatening food safety such as combined pesticide residues and heavy metal pollution are addressed to reduce risks to human health. The increasing negative effects on food safety from water and soil pollution have put more people at risk of carcinogenic diseases, potentially contributing to 'cancer villages' which appear to correlate strongly with the main food producing areas. Currently in China, food safety policies are not integrated with soil and water pollution management policies. Here, a comprehensive map of both soil and water pollution threats to food safety in China is presented and integrated policies addressing soil and water pollution for achieving food safety are suggested to provide a holistic approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Screening of multiple hormonal activities in surface water and sediment from the Pearl River system, South China, using effect-directed in vitro bioassays.

    Science.gov (United States)

    Zhao, Jian-Liang; Ying, Guang-Guo; Yang, Bin; Liu, Shan; Zhou, Li-Jun; Chen, Zhi-Feng; Lai, Hua-Jie

    2011-10-01

    This paper reports screening of multiple hormonal activities (estrogenic and androgenic activities, antiestrogenic and antiandrogenic activities) for surface water and sediment from the Pearl River system (Liuxi, Zhujiang, and Shijing rivers) in South China, using in vitro recombinant yeast bioassays. The detection frequencies for estrogenic and antiandrogenic activities were both 100% in surface water and 81 and 93% in sediment, respectively. The levels of estrogenic activity were 0.23 to 324 ng 17β-estradiol equivalent concentration (EEQ)/L in surface water and 0 to 101 ng EEQ/g in sediment. Antiandrogenic activities were in the range of 20.4 to 935 × 10(3) ng flutamide equivalent concentration (FEQ)/L in surface water and 0 to 154 × 10(3) ng FEQ/g in sediment. Moreover, estrogenic activity and antiandrogenic activity in sediment showed good correlation (R(2) = 0.7187), suggesting that the agonists of estrogen receptor and the antagonists of androgen receptor co-occurred in sediment. The detection frequencies for androgenic and antiestrogenic activities were 41 and 29% in surface water and 61 and 4% in sediment, respectively. The levels of androgenic activities were 0 to 45.4 ng dihydrotestosterone equivalent concentration (DEQ)/L in surface water, and the potency was very weak in the only detected sediment site. The levels of antiestrogenic activity were 0 to 1,296 × 10(3) ng tamoxifen equivalent concentration (TEQ)/L in surface water and 0 to 89.5 × 10(3) ng TEQ/g in sediment. The Shijing River displayed higher levels of hormonal activities than the Zhujiang and Liuxi rivers, indicating that the Shijing River had been suffering from heavy contamination with endocrine-disrupting chemicals. The equivalent concentrations of hormonal activities in some sites were greater than the lowest-observed-effect concentrations reported in the literature, suggesting potential adverse effects on aquatic organisms. Copyright © 2011 SETAC.

  9. Benchmarking Water Quality from Wastewater to Drinking Waters Using Reduced Transcriptome of Human Cells.

    Science.gov (United States)

    Xia, Pu; Zhang, Xiaowei; Zhang, Hanxin; Wang, Pingping; Tian, Mingming; Yu, Hongxia

    2017-08-15

    One of the major challenges in environmental science is monitoring and assessing the risk of complex environmental mixtures. In vitro bioassays with limited key toxicological end points have been shown to be suitable to evaluate mixtures of organic pollutants in wastewater and recycled water. Omics approaches such as transcriptomics can monitor biological effects at the genome scale. However, few studies have applied omics approach in the assessment of mixtures of organic micropollutants. Here, an omics approach was developed for profiling bioactivity of 10 water samples ranging from wastewater to drinking water in human cells by a reduced human transcriptome (RHT) approach and dose-response modeling. Transcriptional expression of 1200 selected genes were measured by an Ampliseq technology in two cell lines, HepG2 and MCF7, that were exposed to eight serial dilutions of each sample. Concentration-effect models were used to identify differentially expressed genes (DEGs) and to calculate effect concentrations (ECs) of DEGs, which could be ranked to investigate low dose response. Furthermore, molecular pathways disrupted by different samples were evaluated by Gene Ontology (GO) enrichment analysis. The ability of RHT for representing bioactivity utilizing both HepG2 and MCF7 was shown to be comparable to the results of previous in vitro bioassays. Finally, the relative potencies of the mixtures indicated by RHT analysis were consistent with the chemical profiles of the samples. RHT analysis with human cells provides an efficient and cost-effective approach to benchmarking mixture of micropollutants and may offer novel insight into the assessment of mixture toxicity in water.

  10. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  11. Combining Passive Sampling with Toxicological Characterization of Complex Mixtures of Pollutants from the Aquatic Environment.

    Science.gov (United States)

    Jahnke, Annika; Witt, Gesine; Schäfer, Sabine; Haase, Nora; Escher, Beate I

    The combination of polymer-based passive sampling to collect complex environmental mixtures of pollutants, the transfer of these mixtures into bioassays, and their related toxicological characterization is still in its infancy. However, this approach has considerable potential to improve environmental hazard and risk assessment for two reasons. First, the passive sampler collects a broad range of chemicals representing the fraction of compounds available for diffusion and (bio)uptake, excluding a large part of the matrix; thus, extensive sample cleanup which could discriminate certain compounds can be avoided. Second, the toxicological characterization of samples using bioassays is complementary to chemical (target) analysis within environmental monitoring because it captures all chemicals exerting the same mode of toxic action and acting jointly in mixtures, thus providing a comprehensive picture of their overall combined effects. The scientific literature describes a range of examples from the water phase where passive sampling is usually carried out in the kinetic uptake regime for most chemicals although some may already have reached equilibrium. The composition of the chemical mixture changes from the water phase to the passive sampling material because of kinetic effects and polymer/water partition coefficients which depend on the chemicals' hydrophobicity. In contrast, only a few applications in sediment and biota have been described, but amongst these some pioneering studies have demonstrated the feasibility and potential of this combined approach. This chapter gives an overview of what has been carried out in this research area, focusing on opportunities and challenges, and points out desirable future developments with a focus on the importance of choosing a suitable combination of sampling and dosing to transfer (or re-establish) the environmental mixture into the bioassay.

  12. Evaluation of genotoxicity of liquid effluents from gas washing systems by means of bioassay Trad-MCN

    International Nuclear Information System (INIS)

    Machado, Alessandra Carla Fattori Ergesse; Alves, Edenise Segala

    2007-01-01

    In the gas washing systems the gaseous emissions from a facility are forced through an absorbing liquid preventing pollutants to be dispersed into the atmosphere. In the Centro Tecnologico da Marinha em Sao Paulo/Centro Experimental Aramar (CEA), the gas washing are used to control the emissions from the uranium enrichment facilities. Uranium. fluoride, ammonia and hydrogen fluoride are the main contaminants, all heavily toxic. Biological assays, using plants or other living organisms, have been used to assess genotoxic agents in the environment. Among the bioassays using plants, the Trad-MCN has been used extensively, as it allows the evaluation of liquid or gaseous contaminants. The species Tradescantia pallida (Rose) was exposed in a dynamic system to liquid effluents from CEA. A positive control was the exposure to formaldehyde 10% in water, known as a very toxic solution, and the negative control was the exposure to filtered air. The protocol established by Ma (1983) for hybrid clones and validated for the T. pallida by Guimaraes (2003) was used to perform the Trad-MCN assays. Only preparations containing early tetrads were scored. In that context, the present study objectifies to evaluate, by the Trad-MCN bioassay, the genotoxicity of the solution from the gas washing and, also, evaluate the efficiency of that system. The results obtained show that the T. pallida is a sensitive bioindicator for the pollutants tested and can be useful for in vitro environmental monitoring under controlled conditions. (author)

  13. Evaluation of genotoxicity of liquid effluents from gas washing systems by means of bioassay Trad-MCN

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Alessandra Carla Fattori Ergesse [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). Div. de Monitoracao Ambiental], E-mail: alessandra@ctmsp.mar.mil.br; Alves, Edenise Segala [Instituto de Botanica de Sao Paulo, SP (Brazil). Secao de Anatomia], E-mail: ealves@ibot.sp.gov.br

    2007-07-01

    In the gas washing systems the gaseous emissions from a facility are forced through an absorbing liquid preventing pollutants to be dispersed into the atmosphere. In the Centro Tecnologico da Marinha em Sao Paulo/Centro Experimental Aramar (CEA), the gas washing are used to control the emissions from the uranium enrichment facilities. Uranium. fluoride, ammonia and hydrogen fluoride are the main contaminants, all heavily toxic. Biological assays, using plants or other living organisms, have been used to assess genotoxic agents in the environment. Among the bioassays using plants, the Trad-MCN has been used extensively, as it allows the evaluation of liquid or gaseous contaminants. The species Tradescantia pallida (Rose) was exposed in a dynamic system to liquid effluents from CEA. A positive control was the exposure to formaldehyde 10% in water, known as a very toxic solution, and the negative control was the exposure to filtered air. The protocol established by Ma (1983) for hybrid clones and validated for the T. pallida by Guimaraes (2003) was used to perform the Trad-MCN assays. Only preparations containing early tetrads were scored. In that context, the present study objectifies to evaluate, by the Trad-MCN bioassay, the genotoxicity of the solution from the gas washing and, also, evaluate the efficiency of that system. The results obtained show that the T. pallida is a sensitive bioindicator for the pollutants tested and can be useful for in vitro environmental monitoring under controlled conditions. (author)

  14. Pollution of Lahore canal water in the city premises

    International Nuclear Information System (INIS)

    Hussain, Z.; Baig, M.A.

    1997-01-01

    Water contamination is one of the major environmental pollution problems facing Pakistan because it has a direct impact on the health of human beings and crops. Lahore Canal water is being used both for irrigation and a source of ground water recharge. For the best use of this water, extent of pollution and its effect on soil hydraulic properties needs to be studied. For this purpose, water samples from twenty three sites and soil samples from three sites were collected along the Canal within the city limits of Lahore. The survey of the area from Jallo Park to Mall Road, show that all the abadies/colonies and industries situated on both sides of the canal dump their waste water and garbage in to canal. This result in increase of salinity as well as BOD and COD values which were found maximum at the locations of Herbuns Pura, Mughal Pura Dharam Pura, and Thoker Niaz Baig. (authors)

  15. Study of Water Pollution Early Warning Framework Based on Internet of Things

    Science.gov (United States)

    Chengfang, H.; Xiao, X.; Dingtao, S.; Bo, C.; Xiongfei, W.

    2016-06-01

    In recent years, with the increasing world environmental pollution happening, sudden water pollution incident has become more and more frequently in China. It has posed a serious threat to water safety of the people living in the water source area. Conventional water pollution monitoring method is manual periodic testing, it maybe miss the best time to find that pollution incident. This paper proposes a water pollution warning framework to change this state. On the basis of the Internet of things, we uses automatic water quality monitoring technology to realize monitoring. We calculate the monitoring data with water pollution model to judge whether the water pollution incident is happen or not. Water pollution warning framework is divided into three layers: terminal as the sensing layer, it with the deployment of the automatic water quality pollution monitoring sensor. The middle layer is the transfer network layer, data information implementation is based on GPRS wireless network transmission. The upper one is the application layer. With these application systems, early warning information of water pollution will realize the high-speed transmission between grassroots units and superior units. The paper finally gives an example that applying this pollution warning framework to water quality monitoring of Beijing, China, it greatly improves the speed of the pollution warning responding of Beijing.

  16. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  17. Toxicity of Single and Mixed Contaminants in Seawater Measured with Acute Toxicity Bioassays

    Directory of Open Access Journals (Sweden)

    A.R. Fernandez-Alba

    2002-01-01

    Full Text Available Different types of organic pollutants commonly detected in seawater have been evaluated by acute toxicity bioassays. Vibrio fischeri, Daphnia magna, and Selenastrum capricornotum were selected to test toxic effects of individual compounds and mixtures of these compounds, obtaining EC50 values in the range of 0.001 to 28.9 mg/l. In the case of mixtures, synergistic toxic responses were seen for a clear majority of the cases (>60%. Mixtures containing methyl-tertiary-butyl ether (MTBE exhibit accelerated processes that result in a change in concentration required to produce a toxic effect; for example, in the case of mixtures containing MTBE and Diuron and Dichlofluanid.

  18. 40 CFR 40.140-3 - Federal Water Pollution Control Act.

    Science.gov (United States)

    2010-07-01

    ... such safe water and such elimination or control of water pollution for all native villages in the State... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.140-3 Federal Water Pollution Control Act. (a...

  19. Water pollution causes ultrastructural and functional damages in Pellia neesiana (Gottsche) Limpr.

    Science.gov (United States)

    Basile, Adriana; Sorbo, Sergio; Lentini, Marco; Conte, Barbara; Esposito, Sergio

    2017-09-01

    The aim of this work is to evaluate the effects of freshwater pollution in the heavily contaminated Sarno River (Campania, South Italy), using Pellia neesiana (Pelliaceae Metzgeriales) in order to propose this liverwort as a potential bioindicator, able to record the effects of water pollution, particularly the one related to metal (loid) contamination. Samples of P. neesiana in nylon bags were disposed floating for one week on the waters of Sarno River in three sites characterised by an increasing pollution. As control, some specimens were cultured in vitro in Cd- and Pb-added media, at the same pollutants' levels as measured in the most polluted site. P. neesiana cell ultrastructure was modified and severe alterations were observed in chloroplasts from samples exposed in the most polluted site, and Cd- and Pb-cultured samples. Concurrently, a strong increase in the occurrence of Heat shock proteins 70 (HSP70) was detected in gametophytes following the pollution gradient. In conclusion, ultrastructural damages can be directly related to HSP 70 occurrence in liverwort tissues, and proportional to the degree of pollution present in the river; thus our study suggests P. neesiana as an affordable bioindicator of freshwaters pollution. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Effects of water scarcity and chemical pollution in aquatic ecosystems: State of the art.

    Science.gov (United States)

    Arenas-Sánchez, Alba; Rico, Andreu; Vighi, Marco

    2016-12-01

    Water scarcity is an expanding climate and human related condition, which drives and interacts with other stressors in freshwater ecosystems such as chemical pollution. In this study we provide an overview of the existing knowledge regarding the chemical fate, biological dynamics and the ecological risks of chemicals under water scarcity conditions. We evaluated a total of 15 studies dealing with the combined effects of chemicals and water scarcity under laboratory conditions and in the field. The results of these studies have been elaborated in order to evaluate additive, synergistic or antagonistic responses of the studied endpoints. As a general rule, it can be concluded that, in situations of water scarcity, the impacts of extreme water fluctuations are much more relevant than those of an additional chemical stressor. Nevertheless, the presence of chemical pollution may result in exacerbated ecological risks in some particular cases. We conclude that further investigations on this topic would take advantage on the focus on some specific issues. Experimental (laboratory and model ecosystem) studies should be performed on different biota groups and life stages (diapausing eggs, immature stages), with particular attention to those including traits relevant for the adaptation to water scarcity. More knowledge on species adaptations and recovery capacity is essential to predict community responses to multiple stressors and to assess the community vulnerability. Field studies should be performed at different scales, particularly in lotic systems, in order to integrate different functional dynamics of the river ecosystem. Combining field monitoring and experimental studies would be the best option to reach more conclusive, causal relationships on the effects of co-occurring stressors. Contribution of these studies to develop ecological models and scenarios is also suggested as an improvement for the prospective aquatic risk assessment of chemicals in (semi-)arid areas

  1. Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China

    Directory of Open Access Journals (Sweden)

    Huixuan Li

    2015-07-01

    Full Text Available China’s socioeconomic transitions have dramatically accelerated its economic growth in last three decades, but also companioned with continuous environmental degradation. This study will advance the knowledge of heavy metal water pollution in China from a spatial–temporal perspective. Specifically, this study addressed the following: (1 spatial patterns of heavy metal water pollution levels were analyzed using data of prefecture-level cities from 2004 to 2011; and (2 spatial statistical methods were used to examine the underlying socioeconomic and physical factors behind water pollution including socioeconomic transitions (industrialization, urbanization, globalization and economic development, and environmental characteristic (natural resources, hydrology and vegetation coverage. The results show that only Cr pollution levels increased over the years. The individual pollution levels of the other four heavy metals, As, Cd, Hg, and Pb, declined. High heavy metal water pollution levels are closely associated with both anthropogenic activities and physical environments, in particular abundant mineral resources and industrialization prosperity. On the other hand, economic development and urbanization play important roles in controlling water pollution problems. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and strategies for protecting water sources and controlling water pollution; thus improving the quality of living environments.

  2. Bioassays for Evaluating Water Quality: Screening for total bioactivity to assess water safety

    Science.gov (United States)

    Bioassays are a potential solution for assessing complex samples since they screen for total bioactivity for a given pathway or mode of action (MOA), such as estrogen receptor activation, in the samples. Overall, they can account for the three challenges listed above, and can sim...

  3. Effect of PAC dosage in a pilot-scale PAC-MBR treating micro-polluted surface water.

    Science.gov (United States)

    Hu, Jingyi; Shang, Ran; Deng, Huiping; Heijman, Sebastiaan G J; Rietveld, Luuk C

    2014-02-01

    To address the water scarcity issue and advance the traditional drinking water treatment technique, a powdered activated carbon-amended membrane bioreactor (PAC-MBR) is proposed for micro-polluted surface water treatment. A pilot-scale study was carried out by initially dosing different amounts of PAC into the MBR. Comparative results showed that 2g/L performed the best among 0, 1, 2 and 3g/L PAC-MBR regarding organic matter and ammonia removal as well as membrane flux sustainability. 1g/L PAC-MBR exhibited a marginal improvement in pollutant removal compared to the non-PAC system. The accumulation of organic matter in the bulk mixture of 3g/L PAC-MBR led to poorer organic removal and severer membrane fouling. Molecular weight distribution of the bulk liquid in 2g/L PAC-MBR revealed the synergistic effects of PAC adsorption/biodegradation and membrane rejection on organic matter removal. Additionally, a lower amount of soluble extracellular polymer substances in the bulk can be secured in 21 days operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. STUDY OF WATER POLLUTION EARLY WARNING FRAMEWORK BASED ON INTERNET OF THINGS

    Directory of Open Access Journals (Sweden)

    H. Chengfang

    2016-06-01

    Full Text Available In recent years, with the increasing world environmental pollution happening, sudden water pollution incident has become more and more frequently in China. It has posed a serious threat to water safety of the people living in the water source area. Conventional water pollution monitoring method is manual periodic testing, it maybe miss the best time to find that pollution incident. This paper proposes a water pollution warning framework to change this state. On the basis of the Internet of things, we uses automatic water quality monitoring technology to realize monitoring. We calculate the monitoring data with water pollution model to judge whether the water pollution incident is happen or not. Water pollution warning framework is divided into three layers: terminal as the sensing layer, it with the deployment of the automatic water quality pollution monitoring sensor. The middle layer is the transfer network layer, data information implementation is based on GPRS wireless network transmission. The upper one is the application layer. With these application systems, early warning information of water pollution will realize the high-speed transmission between grassroots units and superior units. The paper finally gives an example that applying this pollution warning framework to water quality monitoring of Beijing, China, it greatly improves the speed of the pollution warning responding of Beijing.

  5. Naegleria fowleri in thermally polluted waters

    Energy Technology Data Exchange (ETDEWEB)

    Kasprzak, W; Mazur, T; Cerva, L

    1982-01-01

    Two complexes of lakes and canals supplying water for two electric power plants, their steam condensors and an adjoining river were investigated by means of culture methods for the presence of Naegleria fowleri in Poland in the period from 1974 to 1980. Sixty-four strains of N. fowleri were isolated, 13 isolates being virulent for mice when instilled intranasally. These strains were found in the steam condensor of the power station A and in waters polluted with warm water of this plant. Pathogenic N. fowleri strains occurred also in an adjoining river connected with the water system of the power plant. The results show the possible role of the steam condensor A as an incubator and regular source of pollution with pathogenic amoebae for its own system of cooling waters and even the adjoining river.

  6. Recruitment and Employment of the Water Pollution Control Specialist.

    Science.gov (United States)

    Sherrard, J. H.; Sherrard, F. A.

    1979-01-01

    Presented are the basic principles of personnel recruitment and employment for the water pollution control field. Attention is given to determination of staffing requirements, effective planning, labor sources, affirmative action, and staffing policies. (CS)

  7. Foreign trade and pollution: the case of South China water quality

    Science.gov (United States)

    Zuo, Hui; Ai, Danxiang; Lin, Yuling

    2017-01-01

    With rapid economic growth, South China has to face the most serious water pollution. However, whether or not such kind of water pollution is mainly caused by foreign trade is questionable. And, how the trade mode will be changed by pollution and corresponding regulation is also uncertain. In this paper, a fully endogenous model, which integrate economic growth, energy use and pollution, is designed to interpret the interrelation among these key variables in South China. Through this model, a new possibility of water environment Kuznets curve change has been investigated. Attribute to mixed two stage feasible general least square estimation method, we conclude that foreign trade has strong influence on environment change rate and the turning point. It can make the virtuous circle of between economic growth and environment improvement come early or later in different circumstances. Export and import play different role in such process and have counter effects on environment.

  8. Bioassay of naturally occurring allelochemicals for phytotoxicity.

    Science.gov (United States)

    Leather, G R; Einhellig, F A

    1988-10-01

    The bioassay has been one of the most widely used tests to demonstrate allelopathic activity. Often, claims that a particular plant species inhibits the growth of another are based entirely on the seed germination response to solvent extracts of the suspected allelopathic plant; few of these tests are of value in demonstrating allelopathy under natural conditions. The veracity of the bioassay for evaluating naturally occurring compounds for phytotoxicity depends upon the physiological and biochemical response capacity of the bioassay organism and the mechanism(s) of action of the allelochemicals. The possibility that more than one allelochemical, acting in concert at very low concentrations, may be responsible for an observed allelopathic effect makes it imperative that bioassays be extremely sensitive to chemical growth perturbation agents. Among the many measures of phytotoxicity of allelochemicals, the inhibition (or stimulation) of seed germination, radicle elongation, and/or seedling growth have been the parameters of choice for most investigations. Few of these assays have been selected with the view towards the possible mechanism of the allelopathic effect.

  9. Land use and water pollution in Puerto Rico

    International Nuclear Information System (INIS)

    Arbona, S.I.

    1991-01-01

    In Puerto Rico, previous water-quality analyses have indicated that most surface-water bodies, as well as ground water, are polluted with both organic and inorganic substances. Contributions to water-quality deterioration come from point and nonpoint sources. These pose a threat on a densely populated island. Urban and industrial development occurred rapidly with a lag in the required infrastructure for expansion. Water pollution has been a by-product of this process and is regarded as the most serious environmental problem on the island. This study examines water-quality parameters in three hydrological basins. It attempts to determine how extensive a problem it is and how the concentration of pollutants compare in different land-use situations. A total of 33 sampling sites distributed among the three watersheds was chosen. Fifteen water-quality parameters were examined. All of the water bodies in spatial association with the land use considered presented detectable concentrations of the selected water-quality parameters

  10. [GIS and scenario analysis aid to water pollution control planning of river basin].

    Science.gov (United States)

    Wang, Shao-ping; Cheng, Sheng-tong; Jia, Hai-feng; Ou, Zhi-dan; Tan, Bin

    2004-07-01

    The forward and backward algorithms for watershed water pollution control planning were summarized in this paper as well as their advantages and shortages. The spatial databases of water environmental function region, pollution sources, monitoring sections and sewer outlets were built with ARCGIS8.1 as the platform in the case study of Ganjiang valley, Jiangxi province. Based on the principles of the forward algorithm, four scenarios were designed for the watershed pollution control. Under these scenarios, ten sets of planning schemes were generated to implement cascade pollution source control. The investment costs of sewage treatment for these schemes were estimated by means of a series of cost-effective functions; with pollution source prediction, the water quality was modeled with CSTR model for each planning scheme. The modeled results of different planning schemes were visualized through GIS to aid decision-making. With the results of investment cost and water quality attainment as decision-making accords and based on the analysis of the economic endurable capacity for water pollution control in Ganjiang river basin, two optimized schemes were proposed. The research shows that GIS technology and scenario analysis can provide a good guidance to the synthesis, integrity and sustainability aspects for river basin water quality planning.

  11. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment.

    Science.gov (United States)

    Li, Yinghui; Huang, Shuaijin; Qu, Xuexin

    2017-10-27

    The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter "Reservoir Area"). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.

  12. Air pollution: worldwide effects on mountain forests

    Science.gov (United States)

    Anne M. Rosenthal; Andrzej Featured: Bytnerowicz

    2004-01-01

    Widespread forest decline in remote areas of the Carpathian Mountains has been linked to air pollution from urban and industrial regions. Besides injuring plant tissues directly, pollutants may deposit to soils and water, drastically changing susceptible ecosystems. Researcher Andrzej Bytnerowicz has developed effective methods for assessing air quality over wildlands...

  13. Simulation of Water Environmental Capacity and Pollution Load Reduction Using QUAL2K for Water Environmental Management

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Yuan, Xingcheng; Ye, Rui; Xia, Bisheng; Wang, Yulei

    2012-01-01

    In recent years, water quality degradation associated with rapid socio-economic development in the Taihu Lake Basin, China, has attracted increasing attention from both the public and the Chinese government. The primary sources of pollution in Taihu Lake are its inflow rivers and their tributaries. Effective water environmental management strategies need to be implemented in these rivers to improve the water quality of Taihu Lake, and to ensure sustainable development in the region. The aim of this study was to provide a basis for water environmental management decision-making. In this study, the QUAL2K model for river and stream water quality was applied to predict the water quality and environmental capacity of the Hongqi River, which is a polluted tributary in the Taihu Lake Basin. The model parameters were calibrated by trial and error until the simulated results agreed well with the observed data. The calibrated QUAL2K model was used to calculate the water environmental capacity of the Hongqi River, and the water environmental capacities of CODCr NH3-N, TN, and TP were 17.51 t, 1.52 t, 2.74 t and 0.37 t, respectively. The results showed that the NH3-N, TN, and TP pollution loads of the studied river need to be reduced by 50.96%, 44.11%, and 22.92%, respectively to satisfy the water quality objectives. Thus, additional water pollution control measures are needed to control and reduce the pollution loads in the Hongqi River watershed. The method applied in this study should provide a basis for water environmental management decision-making. PMID:23222206

  14. Simulation of water environmental capacity and pollution load reduction using QUAL2K for water environmental management.

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Yuan, Xingcheng; Ye, Rui; Xia, Bisheng; Wang, Yulei

    2012-12-07

    In recent years, water quality degradation associated with rapid socio-economic development in the Taihu Lake Basin, China, has attracted increasing attention from both the public and the Chinese government. The primary sources of pollution in Taihu Lake are its inflow rivers and their tributaries. Effective water environmental management strategies need to be implemented in these rivers to improve the water quality of Taihu Lake, and to ensure sustainable development in the region. The aim of this study was to provide a basis for water environmental management decision-making. In this study, the QUAL2K model for river and stream water quality was applied to predict the water quality and environmental capacity of the Hongqi River, which is a polluted tributary in the Taihu Lake Basin. The model parameters were calibrated by trial and error until the simulated results agreed well with the observed data. The calibrated QUAL2K model was used to calculate the water environmental capacity of the Hongqi River, and the water environmental capacities of COD(Cr) NH(3)-N, TN, and TP were 17.51 t, 1.52 t, 2.74 t and 0.37 t, respectively. The results showed that the NH(3)-N, TN, and TP pollution loads of the studied river need to be reduced by 50.96%, 44.11%, and 22.92%, respectively to satisfy the water quality objectives. Thus, additional water pollution control measures are needed to control and reduce the pollution loads in the Hongqi River watershed. The method applied in this study should provide a basis for water environmental management decision-making.

  15. Simulation of Water Environmental Capacity and Pollution Load Reduction Using QUAL2K for Water Environmental Management

    Directory of Open Access Journals (Sweden)

    Yulei Wang

    2012-12-01

    Full Text Available In recent years, water quality degradation associated with rapid socio-economic development in the Taihu Lake Basin, China, has attracted increasing attention from both the public and the Chinese government. The primary sources of pollution in Taihu Lake are its inflow rivers and their tributaries. Effective water environmental management strategies need to be implemented in these rivers to improve the water quality of Taihu Lake, and to ensure sustainable development in the region. The aim of this study was to provide a basis for water environmental management decision-making. In this study, the QUAL2K model for river and stream water quality was applied to predict the water quality and environmental capacity of the Hongqi River, which is a polluted tributary in the Taihu Lake Basin. The model parameters were calibrated by trial and error until the simulated results agreed well with the observed data. The calibrated QUAL2K model was used to calculate the water environmental capacity of the Hongqi River, and the water environmental capacities of CODCr NH3-N, TN, and TP were 17.51 t, 1.52 t, 2.74 t and 0.37 t, respectively. The results showed that the NH3-N, TN, and TP pollution loads of the studied river need to be reduced by 50.96%, 44.11%, and 22.92%, respectively to satisfy the water quality objectives. Thus, additional water pollution control measures are needed to control and reduce the pollution loads in the Hongqi River watershed. The method applied in this study should provide a basis for water environmental management decision-making.

  16. Forewarning model for water pollution risk based on Bayes theory.

    Science.gov (United States)

    Zhao, Jun; Jin, Juliang; Guo, Qizhong; Chen, Yaqian; Lu, Mengxiong; Tinoco, Luis

    2014-02-01

    In order to reduce the losses by water pollution, forewarning model for water pollution risk based on Bayes theory was studied. This model is built upon risk indexes in complex systems, proceeding from the whole structure and its components. In this study, the principal components analysis is used to screen out index systems. Hydrological model is employed to simulate index value according to the prediction principle. Bayes theory is adopted to obtain posterior distribution by prior distribution with sample information which can make samples' features preferably reflect and represent the totals to some extent. Forewarning level is judged on the maximum probability rule, and then local conditions for proposing management strategies that will have the effect of transforming heavy warnings to a lesser degree. This study takes Taihu Basin as an example. After forewarning model application and vertification for water pollution risk from 2000 to 2009 between the actual and simulated data, forewarning level in 2010 is given as a severe warning, which is well coincide with logistic curve. It is shown that the model is rigorous in theory with flexible method, reasonable in result with simple structure, and it has strong logic superiority and regional adaptability, providing a new way for warning water pollution risk.

  17. Water pollution in Rawal lake Islamabad (part-1)

    International Nuclear Information System (INIS)

    Ahmad, I.; Ali, S.; Tariq, M.; Ikram, M.

    2001-01-01

    Water pollution of Rawal Lake, one of the three major drinking water sources (21 MG) to Rawalpindi and Islamabad, by anionic pollutants is reported. Physicochemical analysis of water samples collected during September 1996 - January 1997, was carried out using ASTM and AOAC methods. Water samples from Rawal Lake and its tributaries were collected periodically and analyzed for pH, conductivity, turbidity, alkalinity, TDS, TSS, anions (chlorides, phosphates, nitrates, sulfates) and trace metals. (author)

  18. Toxicological and chemical insights into representative source and drinking water in eastern China.

    Science.gov (United States)

    Shi, Peng; Zhou, Sicong; Xiao, Hongxia; Qiu, Jingfan; Li, Aimin; Zhou, Qing; Pan, Yang; Hollert, Henner

    2018-02-01

    Drinking water safety is continuously threatened by the emergence of numerous toxic organic pollutants (TOPs) in environmental waters. In this study, an approach integrating in vitro bioassays and chemical analyses was performed to explore toxicological profiles of representative source and drinking water from waterworks of the Yangtze River (Yz), Taihu Lake (Th), and the Huaihe River (Hh) basins in eastern China. Overall, 34 of 96 TOPs were detected in all water samples, with higher concentrations in both source and drinking water samples of Hh, and pollutant profiles also differed across different river basins. Non-specific bioassays indicated that source water samples of Hh waterworks showed higher genotoxicity and mutagenicity than samples of Yz and Th. An EROD assay demonstrated dioxin-like toxicity which was detected in 5 of 7 source water samples, with toxin concentration levels ranging from 62.40 to 115.51 picograms TCDD equivalents per liter of water (eq./L). PAHs and PCBs were not the main contributors to observed dioxin-like toxicity in detected samples. All source water samples induced estrogenic activities of 8.00-129.00 nanograms 17β-estradiol eq./L, and estrogens, including 17α-ethinylestradiol and estriol, contributed 40.38-84.15% of the observed activities in examined samples. While drinking water treatments efficiently removed TOPs and their toxic effects, and estrogenic activity was still observed in drinking water samples of Hh. Altogether, this study indicated that the representative source water in eastern China, especially that found in Hh, may negatively affect human health, a finding that demonstrates an urgent requirement for advanced drinking water treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. 40 CFR 40.145-2 - Federal Water Pollution Control Act.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.145-2 Federal Water Pollution Control Act. (a... or control of acid or other mine water pollution; and (2) That the State shall provide legal and...

  20. Efficient algal bioassay based on short-term photosynthetic response

    International Nuclear Information System (INIS)

    Giddings, J.M.; Stewart, A.J.; O'Neill, R.V.; Gardner, R.H.

    1983-01-01

    A procedure is described for measuring the effects of toxicants on algal photosynthesis (carbon-14 bicarbonate (H 14 CO 3 )uptake) in 4-h experiments. The results for individual aromatic compounds and the water-soluble fraction (WSF) of a synthetic oil are presented as examples of applications of the bioassay. The toxicity of the WSF varied among the seven algal species tested, and the responses of some species were pH-dependent. With Selenastrum capricornutum as the test organism, the bioassay results were unaffected by variations in pH from 7.0 to 9.0, light intensity from 40 to 200 μeinsteins m -2 s -1 , culture density up to 0.5 mg chlorophyll a per litre, and agitation up to 100 rpm. The photosynthesis bioassay is simpler and faster (4 h versus 4 to 14 days), uses smaller culture volumes, and requires less space than static culture-growth tests. One person can conveniently test four materials per day, and the entire procedure, including preparation, exposure, and analysis, takes less than two days. The short incubation time reduces bottle effects such as pH changes, accumulation of metabolic products, nutrient depletion, and bacterial growth. Processes that remove or alter the test materials are also minimized. The data presented here indicate that algal photosynthesis is inhibited at toxicant concentrations similar to those that cause acute effects in aquatic animals. A model of a pelagic ecosystem is used to demonstrate that even temporary (seven-day) inhibition of algal photosynthesis can have a measurable impact on other trophic levels, particularly if the other trophic levels are also experiencing toxic effects. 25 references, 6 figures, 1 table

  1. Environment Of Underground Water And Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Sang

    1998-02-15

    This book deals with environment of underground water and pollution, which introduces the role of underground water in hydrology, definition of related study of under water, the history of hydro-geology, basic conception of underground water such as origin of water, and hydrogeologic characteristic of aquifers, movement of underground water, hydrography of underground water and aquifer test analysis, change of an underground water level, and water balance analysis and development of underground water.

  2. Exposure dose assessment using bioassay

    International Nuclear Information System (INIS)

    Suga, Shinichi

    1994-01-01

    Bioassay involves following steps: sampling, pre-treatment, chemical separation and counting of radioactivity. As bioassay samples, urines are usually used, although faecal analysis may be required in some occasions for example to assess intake of non-transferable radioactive materials. Nasal smear is a useful indicator of an inhalation case. Exhalation air is used to estimate the intake of tritiated water. Sample pre-treatment includes evaporation for concentration, wet ashing, dry ashing and co-precipitation. After adding small amount of nitric acid, the sample can be concentrated by 1/10 of initial volume, which may be used to identify γ-emitters. As the pre-treatment of urine, wet ashing is used for example for analysis of Pu, and co-precipitation is used for example for analysis of Sr. Dry ashing by electric furnace is usually adopted for faecal samples. Methods of chemical separation depend on the radionuclide(s) to be analysed. The detection limit depends also on radionuclide, and for example typical detection limits are 0.4Bq / l (volume of urine sample) for 89 Sr or 90 Sr, and 0.01 Bq / l with urine and 0.01 Bq per sample with faeces for 238 Pu, 239 Pu or 241 Am. Simpler methods can be used for some radionuclides: For example, radioactivity concentration of tritium can be determined by liquid scintillation counting of urine or condensed water from exhaled air, and natural uranium in urine can be quantified by using fluorometric method. In some circumstances, gross-α or gross-β analyses are useful for quick estimation. To estimate intakes by inhalation or by ingestion from bioassay results and to assess the committed dose equivalent, commonly available bases are the relevant publications by the ICRP and domestic guides and manuals that conform to the radiation protection regulations. (author)

  3. Water Pollution abatement programme, The Czech republic Pollution abatement analysis and strengthening of water resources management, Odra River Catchment, phase II

    OpenAIRE

    Dagestad, K.; Ratnaweera, H.; Ibrekk, H.O.; Hansen, J.H.; Tridlica, L.; Brezina, P.; Skacel, A.

    1995-01-01

    Odra river is extremely polluted by organic matter, nitrates, ammonia, phosphorus, bacteria, particles, heavy metals and other micro pollutants from municipalities, industries and agriculture. The poor water quality severely affects the ecology and represents a risk to human health. The water has a very limited value of use. This report presents an abatement programme with both technical and accompanying measures. In order to identify the major polluters several multi criteria analysis have b...

  4. Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment.

    Science.gov (United States)

    Chu, Huaqiang; Cao, Dawen; Dong, Bingzhi; Qiang, Zhimin

    2010-03-01

    This work investigated the feasibility of treating micro-polluted surface water for drinking water production with a bio-diatomite dynamic membrane reactor (BDDMR) at lab-scale in continuous-flow mode. Results indicate that the BDDMR was effective in removing COD(Mn), DOC, UV(254), NH(3)-N and trihalomethanes' formation potential (THMFP) at a hydraulic retention time (HRT) of 3.5h due to its high concentrations of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS). The removal of pollutants was mainly ascribed to microbial degradation in BDDMR because the dynamic membrane alone was much less effective in pollutant removal. Though the diatomite particles (5-20microm) were much smaller in size than the aperture of the stainless steel support mesh (74microm), microorganisms and their extracellular polymer substances could bind these particles tightly to form bio-diatomite particles which were completely retained by the support mesh. The analysis of molecular weight (MW) distribution by gel permeation chromatography (GPC) shows that the BDDMR could effectively remove the hydrophilic fraction of dissolved organic materials present in the raw water. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. A contribution on the problem of ground water pollution

    International Nuclear Information System (INIS)

    Zilliox, L.; Muntzer, P.; Kresser, W.

    1982-01-01

    The authors present the underlying physics of processes relevant to the problem of ground water pollution. A series of models are discussed which include two-dimensional diffusion from a point source of pollution in a uniform homogeneous medium and the modifying effect of inhomogeneities, together with displacement processes for miscible liquids in saturated porous media. In conclusion an account of laboratory and theoretical investigations of these diffusion processes in layered media of different permeabilities is given. (J.R.B.)

  6. Water Pollution Control Industry

    Science.gov (United States)

    Environmental Science and Technology, 1974

    1974-01-01

    A special report on the state of the water pollution control industry reveals that due to forthcoming federal requirements, sales and the backlogs should increase; problems may ensue because of shortages of materials and inflation. Included are reports from various individual companies. (MLB)

  7. Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site

    Energy Technology Data Exchange (ETDEWEB)

    Bagur-Gonzalez, Maria Gracia [Univ. of Granada, Faculty of Sciences, Dept. of Analytical Chemistry, Granada (Spain); Univ. of Granada-CSIC, Inst. Andaluz de Ciencias de la Tierra, Faculty of Sciences, Granada (Spain); Estepa-Molina, Carmen [Univ. of Granada, Faculty of Sciences, Dept. of Mineralogy and Petrology, Granada (Spain); Martin-Peinado, Francisco [Univ. of Granada, Faculty of Sciences, Dept. of Soil Science, Granada (Spain); Morales-Ruano, Salvador [Univ. of Granada-CSIC, Inst. Andaluz de Ciencias de la Tierra, Faculty of Sciences, Granada (Spain); Univ. of Granada, Faculty of Sciences, Dept. of Mineralogy and Petrology, Granada (Spain)

    2011-02-15

    We used the different soluble-in-water concentrations of As, Cu, Mn, Pb and Zn from contaminated soils in an abandoned mining area (anthropogenic origin) to assess the phytotoxicity of the abandoned site using the results obtained with a Lactuca sativa L. bioassay. Material and methods The study has been carried out on potentially polluted samples from the Rodalquilar mining district (southern Spain). The area was sampled according to the different metallurgical treatments for gold extraction used in each one: dynamic cyanidation and heap leaching. The saturation extracts were obtained by filtering each saturated paste with a vacuum-extraction pump, in which measurements of metal(loid) concentrations, pH and electrical conductivity were made. The variables evaluated in the bioassay, defined as toxicity indices ranging from -1 (maximum phytotoxicity) to >0 (hormesis), were seed germination (SG) and root elongation (RE) of lettuce seeds. Results and discussion In areas with a low degree of contamination, the most sensitive toxicity index is RE, whereas in highly contaminated areas, both RE and SG are good estimators of soil toxicity. According to these results, samples from the western area showed moderate to low toxicity, which was closely related to water-soluble As concentrations. Samples from the eastern area had a high degree of toxicity in 40% of the soils. Conclusions The comparison of the two indices (SG and RE) defined using the L. sativa L. bioassay indicates that, for areas with a low degree of contamination, the most sensitive toxicity index is RE, whereas in highly contaminated areas, both RE and SG are good estimators of soil phytotoxicity. Unsupervised pattern recognition methods such as HCA and PCA enabled us to conclude that the low/moderate phytotoxicity of the soils is related to the extraction process used for the recovery of gold (mainly dynamic cyanidation in tanks located in the eastern area) and to the As and Pb contents. (orig.)

  8. Use of multiple water surface flow constructed wetlands for non-point source water pollution control.

    Science.gov (United States)

    Li, Dan; Zheng, Binghui; Liu, Yan; Chu, Zhaosheng; He, Yan; Huang, Minsheng

    2018-05-02

    Multiple free water surface flow constructed wetlands (multi-FWS CWs) are a variety of conventional water treatment plants for the interception of pollutants. This review encapsulated the characteristics and applications in the field of ecological non-point source water pollution control technology. The roles of in-series design and operation parameters (hydraulic residence time, hydraulic load rate, water depth and aspect ratio, composition of influent, and plant species) for performance intensification were also analyzed, which were crucial to achieve sustainable and effective contaminants removal, especially the retention of nutrient. The mechanism study of design and operation parameters for the removal of nitrogen and phosphorus was also highlighted. Conducive perspectives for further research on optimizing its design/operation parameters and advanced technologies of ecological restoration were illustrated to possibly interpret the functions of multi-FWS CWs.

  9. Mine water pollution in Scotland. Nature, extent and preventative strategies

    Energy Technology Data Exchange (ETDEWEB)

    Younger, P.L. [Water Resource Systems Research Laboratory, Department of Civil Engineering, University of Newcastle, NE1 7RU Newcastle Upon Tyne (United Kingdom)

    2001-01-29

    Scotland was one of the world's first industrialised countries, and has therefore also been one of the first countries to experience wholesale post-industrial dereliction. Water pollution arising from abandoned mines, particularly abandoned coal mines, is second only to sewage as a source of freshwater pollution nation-wide, and in many coalfield catchments it is the pre-eminent source. Most of the pollution is due to net-alkaline ferruginous waters emerging from deep mines. Scrutiny of records from 80 deep mine discharges reveals that iron concentrations in these waters are only likely to exceed 20 mg/l, and the pH to be below 6.5, where the discharge emerges within 0.5 km of the outcrop of the shallowest mined seam. The bulk of mature near-outcrop mine water discharges in Scotland have<50 mg/l total Fe, and concentrations>100 mg/l are only likely where a marine bed lies within 25 m of the worked seam. Where the nearest marine bed is more than 80 m above or below the seam, then the total iron will be less than 4 mg/l, and in most cases less than 1 mg/l. Net-acidic mine waters are far more rare than net-alkaline waters in Scotland, and are most commonly associated with unreclaimed spoil heaps (bings). Both net-alkaline and net-acidic discharges have detrimental effects on the hydrochemistry and biological integrity of receiving waters. Scotland has recently pioneered the use of pre-emptive pump-and-treat solutions to prevent mine water pollution, and has also experienced the successful introduction of passive treatment technology for both abandoned and active workings.

  10. Water pollution and environmental governance systems of the Tai and Chao Lake Basins in China in an international perspective

    NARCIS (Netherlands)

    Lei Qiu; M.P. van Dijk (Meine Pieter); H. Wang (Huimin)

    2015-01-01

    markdownabstractThe Tai and Chao Lake basins are currently facing a serious water pollution crisis associated with the absence of an effective environmental governance system. The water pollution and the water governance system of the two basins will be compared. The reasons for water pollution in

  11. Drinking water pollution and risks for human health

    International Nuclear Information System (INIS)

    Bressa, G.

    1999-01-01

    The hypothesis that most human tumors are caused by toxic substances found in the environment, and that their onset is therefore basically predictable, is earning wider and wider consent. The results of experimental studies carried out on animals have shown that some of the chemical pollutants found in drinking water possess cancerogenous activity. Their origin and can vary a lot because most public water supplies come from rivers, lakes, or from groundwater tables, and, therefore, contain pollutants from agricultural land waste water, from industrial waste and from deliberate or accidental inputs. As a consequence, this kind of pollution can involve some risks for human health as a result of both direct use of tainted water or indirect use through food [it

  12. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    Science.gov (United States)

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  13. Amoco-US Environmental Protection Agency, pollution prevention project, Yorktown, Virginia: Surface water data

    International Nuclear Information System (INIS)

    Baloo, S.

    1991-08-01

    The report summarizes the surface water sampling program at the Amoco Refinery at Yorktown, Virginia. This was undertaken as a part of the joint project between Amoco Corporation and the United States Environmental Protection Agency to review pollution prevention alternatives at a petroleum refinery. The surface water data provides a snapshot of surface water pollutant generation and discharge from the refinery. Different process units contribute to the total wastewater flow of 460 GPM in the refinery. Water in the ditch system, which is non-process water, is free of organic contamination. Oil and grease, phenols, ammonia and sulfides are the significant components measured in the process wastewater. The concentrations of organics in most water streams leaving the individual process units are relatively low, in the 1-5 parts per million (ppm) range. A few individual streams such as the crude desalter brine and tank water draws have high pollutant loadings. Concentrations of metals in the refinery wastewater are very low. The wastewater treatment plant is very effective in reducing the pollutant loading in the water with overall removal efficiencies greater than 99% for most organics and inorganics

  14. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques.

    Science.gov (United States)

    Mohammed, Muzaffer; Clement, Travis C; Aslan, Kadir

    2014-12-02

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400-800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72-24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally.

  15. Water pollution from abandoned mines

    OpenAIRE

    Iversen, E.; Johannessen, M.

    1987-01-01

    The report provides a country-wide overview of abandoned pyrite mines where operations have been fairly extensive. The water pollution situation is assessed on the basis of reported investigations, inspections and chemical analyses from the individual areas. In cases where larger watercourses (Orkla, Gaula), and the upper stretch of the Glåma are affected the situation appears to be adequately described. However abandoned mine areas may also cause local pollution problems, and here documentat...

  16. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment

    Directory of Open Access Journals (Sweden)

    Yinghui Li

    2017-10-01

    Full Text Available The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter “Reservoir Area”. However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1 model, and build a new GM (1,1 model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1 model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.

  17. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment

    Science.gov (United States)

    Huang, Shuaijin; Qu, Xuexin

    2017-01-01

    The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter “Reservoir Area”). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area. PMID:29077006

  18. Testing water pollution in a two layer aquifer

    OpenAIRE

    García León, Manuel; Lin Ye, Jue

    2011-01-01

    Water bodies around urban areas may be polluted with chemical elements from urban or industrial activities. We study the case of underground water pollution. This is a serious problem, since under- ground water is high qualified drinkable water in a world where this natural resource is increasingly reduced. This study is focused on a two-layer aquifer. If the superficial layer is contaminated, the deeper layer could be spoiled as well. This contribution checks the equality of the mean or c...

  19. A biomimetic absorbent for removal of trace level persistent organic pollutants from water

    International Nuclear Information System (INIS)

    Liu Huijuan; Qu Jiuhui; Dai Ruihua; Ru Jia; Wang Zijian

    2007-01-01

    A novel biomimetic absorbent containing the lipid triolein was developed for removing persistent organic pollutants (POPs) from water. The structural characteristics of the absorbent were obtained by SEM and a photoluminescence method. Under optimum preparation conditions, triolein was perfectly embedded in the cellulose acetate (CA) spheres, the absorbent was stable and no triolein leaked into the water. Dieldrin, endrin, aldrin and heptachlor epoxide were effectively removed by the CA-triolein absorbent in laboratory batch experiments. This suggests that CA-triolein absorbent may serve as a good absorbent for those selected POPs. Triolein in the absorbent significantly increased the absorption capacity, and lower residual concentrations of POPs were achieved when compared to the use of cellulose acetate absorbent. The absorption rate for lipophilic pollutants was very fast and exhibited some relationship with the octanol-water partition coefficient of the analyte. The absorption mechanism is discussed in detail. - Triolein-embedded absorbent was developed and it could remove lipophilic pollutants from water effectively

  20. Effect of duration of exposure to polluted air environment on lung function in subjects exposed to crude oil spill into sea water.

    Science.gov (United States)

    Meo, Sultan Ayoub; Al-Drees, Abdul Majeed; Rasheed, Shahzad; Meo, Imran Mu; Khan, Muhammad Mujahid; Al-Saadi, Muslim M; Alkandari, Jasem Ramadan

    2009-01-01

    Oil spill in sea water represents a huge environmental disaster for marine life and humans in the vicinity. The aim was to investigate the effect of duration of exposure to polluted air environment on lung function in subjects exposed to crude oil spill into sea water. The present study was conducted under the supervision of Department of Physiology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, during the period July 2003 - December 2004. This was a comparative study of spirometry in 31 apparently healthy, non smoking, male workers, exposed to crude oil spill environment during the oil cleaning operation. The exposed group was matched with similar number of male, non smoking control subjects. Pulmonary function test was performed by using an electronic spirometer. Subjects exposed to polluted air for periods longer than 15 days showed a significant reduction in Forced Vital Capacity (FVC), Forced Expiratory Volume in First Second (FEV1), Forced Expiratory Flow in 25-25% (FEF25-75%) and Maximal Voluntary Ventilation (MVV). Air environment polluted due to crude oil spill into sea water caused impaired lung function and this impairment was associated with dose response effect of duration of exposure to air polluted by crude oil spill into sea water.

  1. Storm water pollution prevention plan for the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Environmental Protection Agency (EPA) published the final storm water regulation on November 16, 1990. The storm water regulation is included in the National Pollutant Discharge Elimination System (NPDES) regulations. An NPDES permit was issued for the Y-12 Plant on April 28, 1995, and was effective on July 1, 1995. The permit requires that a Storm Water Pollution Prevention Plan (SWP3) be developed by December 28, 1995, and be fully implemented by July 1, 1996; this plan has been developed to fulfill that requirement. The outfalls and monitoring points described in this plan contain storm water discharges associated with industrial activities as defined in the NPDES regulations. For storm water discharges associated with industrial activity, including storm water discharges associated with construction activity, that are not specifically monitored or limited in this permit, Y-12 Plant personnel will meet conditions of the General Storm Water Rule 1200-4-10. This document presents the programs and physical controls that are in place to achieve the following objectives: ensure compliance with Section 1200-4-10-.04(5) of the TDEC Water Quality Control Regulations and Part 4 of the Y-12 Plant NPDES Permit (TN0002968); provide operating personnel with guidance relevant to storm water pollution prevention and control requirements for their facility and/or project; and prevent or reduce pollutant discharge to the environment, in accordance with the Clean Water Act (CWA) and the Tennessee Water Quality Control Act.

  2. Storm water pollution prevention plan for the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1995-09-01

    The Environmental Protection Agency (EPA) published the final storm water regulation on November 16, 1990. The storm water regulation is included in the National Pollutant Discharge Elimination System (NPDES) regulations. An NPDES permit was issued for the Y-12 Plant on April 28, 1995, and was effective on July 1, 1995. The permit requires that a Storm Water Pollution Prevention Plan (SWP3) be developed by December 28, 1995, and be fully implemented by July 1, 1996; this plan has been developed to fulfill that requirement. The outfalls and monitoring points described in this plan contain storm water discharges associated with industrial activities as defined in the NPDES regulations. For storm water discharges associated with industrial activity, including storm water discharges associated with construction activity, that are not specifically monitored or limited in this permit, Y-12 Plant personnel will meet conditions of the General Storm Water Rule 1200-4-10. This document presents the programs and physical controls that are in place to achieve the following objectives: ensure compliance with Section 1200-4-10-.04(5) of the TDEC Water Quality Control Regulations and Part 4 of the Y-12 Plant NPDES Permit (TN0002968); provide operating personnel with guidance relevant to storm water pollution prevention and control requirements for their facility and/or project; and prevent or reduce pollutant discharge to the environment, in accordance with the Clean Water Act (CWA) and the Tennessee Water Quality Control Act

  3. Acute toxicity over Ceriodaphnia silvestrii and Daphnia magna: Bioassays with water samples from a dam under the influence of uranium mine and with manganese

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Carla R.; Nascimento, Heliana de Azevedo Franco do; Silverio, Emilia Gabriela Costa; Bruschi, Armando Luis; Roque, Claudio Vitor; Nascimento, Marcos Roberto L.; Bonifacio, Rodrigo Leandro, E-mail: carlarolimferrari@yahoo.com.br, E-mail: hazevedo@cnen.gov.br, E-mail: emiliagcsilverio@hotmail.com, E-mail: abruschi@cnen.gov.br, E-mail: cvroque@cnen.gov.br, E-mail: pmarcos@cnen.gov.br, E-mail: rodrigo@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Rodgher, Suzelei [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sao Jose dos Campos, SP (Brazil). Dep. de Engenharia Ambiental

    2015-07-01

    Treated effluents from uranium mine with acid mine drainage can impact receiving water bodies. AMD is relevant from the environmental view due to the large volume of effluents generated, known to affect aquatic biota. Studies show that one of the main problems of treated effluents released by UTM/INB on the catchment basin of Ribeirao das Antas is associated to high Mn values in water samples. In this context, acute 48-h toxicity tests with Mn were conducted with Ceriodaphnia silvestrii and Daphnia magna to determine the No Observed Effect Concentration (NOEC) and the Observed Effect Concentration (OEC) in laboratory bioassays and to verify the potential toxicity of the Mn in face of concentrations found in water samples from the Antas Dam, which receives treated effluents from UTM/INB. In this study, preliminary results of acute toxicity for C. silvestrii indicated OEC values between 9.0 and 10.0 mg Mn/L and NOEC < 3.0 mg Mn/L. For D. magna, OEC and NOEC concentrations were ≥ 30 mg Mn/L and ≤ 80 mg Mn/L, respectively. It was verified that Mn concentrations determined in environmental samples registered the highest value at 1.75 mg Mn/L, below the OEC concentrations recorded for both species. Since manganese occurs in the composition of the effluent that may contain other stable and radioactive elements, complementary ecotoxicological tests must be conducted, aiming at the assessment of synergistic and antagonistic effects of the chemical mixture that makes up the radioactive effluents that are treated and released at the Antas Dam. Such bioassays are underway in the Radioecology Laboratory at LAPOC/CNEN. (author)

  4. Acute toxicity over Ceriodaphnia silvestrii and Daphnia magna: Bioassays with water samples from a dam under the influence of uranium mine and with manganese

    International Nuclear Information System (INIS)

    Ferrari, Carla R.; Nascimento, Heliana de Azevedo Franco do; Silverio, Emilia Gabriela Costa; Bruschi, Armando Luis; Roque, Claudio Vitor; Nascimento, Marcos Roberto L.; Bonifacio, Rodrigo Leandro; Rodgher, Suzelei

    2015-01-01

    Treated effluents from uranium mine with acid mine drainage can impact receiving water bodies. AMD is relevant from the environmental view due to the large volume of effluents generated, known to affect aquatic biota. Studies show that one of the main problems of treated effluents released by UTM/INB on the catchment basin of Ribeirao das Antas is associated to high Mn values in water samples. In this context, acute 48-h toxicity tests with Mn were conducted with Ceriodaphnia silvestrii and Daphnia magna to determine the No Observed Effect Concentration (NOEC) and the Observed Effect Concentration (OEC) in laboratory bioassays and to verify the potential toxicity of the Mn in face of concentrations found in water samples from the Antas Dam, which receives treated effluents from UTM/INB. In this study, preliminary results of acute toxicity for C. silvestrii indicated OEC values between 9.0 and 10.0 mg Mn/L and NOEC < 3.0 mg Mn/L. For D. magna, OEC and NOEC concentrations were ≥ 30 mg Mn/L and ≤ 80 mg Mn/L, respectively. It was verified that Mn concentrations determined in environmental samples registered the highest value at 1.75 mg Mn/L, below the OEC concentrations recorded for both species. Since manganese occurs in the composition of the effluent that may contain other stable and radioactive elements, complementary ecotoxicological tests must be conducted, aiming at the assessment of synergistic and antagonistic effects of the chemical mixture that makes up the radioactive effluents that are treated and released at the Antas Dam. Such bioassays are underway in the Radioecology Laboratory at LAPOC/CNEN. (author)

  5. Water pollution by radioactive materials

    International Nuclear Information System (INIS)

    Bovard, P.

    1976-01-01

    Within the frame of the definition of a philosophy and politics of waste disposal and site selection, an analysis is made of the main elements of radioactive pollution of waters: sources of radioactivity, radionuclides classified according to their hazard, waste processing, disposal criteria and transfer processes in the compartments: water, suspended sediments, deposited sediments, biomass [fr

  6. Evaluation of the effects of water hardness and chemical pollutants on the zooplankton community in uranium mining lakes with acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, H.; Ferrari, C.; Nascimento, M.R. [Brazilian Nulcear Energy Commission/Pocos de Caldas Laboratory (Brazil); Rodgher, S. [Universidade Estadual Paulista Julio de Mesquita Filho/Science and Technology Institute (Brazil); Wisniewski, M.J. [Alfenas Federal University/Limnology Laboratory (Brazil)

    2014-07-01

    Several mining lakes are characterized by the inorganic pollution of its waters, known as acid mine drainage (AMD). The current study was developed in order to evaluate the effect of water hardness and chemical pollutants on the richness and density of the zoo-planktonic community species. A seasonal study was conducted in a uranium mining lake affected by AMD. In environmental conditions of extremely high hardness water values (960.3 to 1284,9 mg/l), zoo-planktonic species have indicated resistance to the combined effect of elevated average concentrations of chemical pollutants such as Al (81.9 mg/l), Zn (15.5 mg/l), Mn (102.8 mg/l), U (2.9 mg/l) and low pH values (average = 3.8). Thus, in environments of extreme chemical conditions, such as a uranium mining lake affected by AMD, the hardness showed to be the best predictor of the zoo-planktonic community richness, indicating a protective effect of ions Ca{sup +2} over in special to Bosminopsis deitersi, Bosmina sp., Keratella americana and K. cochlearis. Document available in abstract form only. (authors)

  7. Soil and water pollution in a banana production region in tropical Mexico.

    Science.gov (United States)

    Geissen, Violette; Ramos, Franzisco Que; de J Bastidas-Bastidas, Pedro; Díaz-González, Gilberto; Bello-Mendoza, Ricardo; Huerta-Lwanga, Esperanza; Ruiz-Suárez, Luz E

    2010-10-01

    The effects of abundant Mancozeb (Mn, Zn-bisdithiocarbamate) applications (2.5 kg ha⁻¹week⁻¹ for 10 years) on soil and surface-, subsurface- and groundwater pollution were monitored in a banana production region of tropical Mexico. In soils, severe manganese accumulation was observed, wheras the main metabolite ethylenethiourea was near the detection limit. Surface and subsurface water was highly polluted with ethylenethiourea, the main metabolite of Mancozeb (22.5 and 4.3 μg L⁻¹, respectively), but not with manganese. In deep ground water, no ethylenethiourea was detected. The level of pollution in the region presents a worrisome risk for aquatic life and for human health.

  8. Effect of the Changes of Respiratory Tract Model on the Uranium Bioassay Data

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Taeeun; Noh, Siwan; Kim, Meeryeong; Lee, Jaiki [Hanyang Univ., Seoul (Korea, Republic of); Lee, Jongil; Kim, Jang Lyul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The HRTM, however, was revised based on the recent experimental data in OIR (Occupational Intakes of Radionuclides) draft report of ICRP. The changes of respiratory tract model are predicted to directly affect bioassay data like retention and excretion functions. Lung retention function is especially important to internal exposure assessment for workers related to fuel manufacturing because the place could be contaminated by uranium. In addition, faecel samples are recommended to be used for in-vitro bioassay of uranium because of very slow excretion via urine. More reliable assessments for the workers in fuel manufacturing could be achieved by recalculation of bioassay data for uranium and the comparing study using original and revised HRTM. In this study, therefore, the lung retention and faecal excretion functions for inhalation of UO{sub 2} and U{sub 3}O{sub 8} were recalculated using revised HRTM and the results were compared with those of original HRTM. In this study the lung retention and faecal excretion functions for inhalation of UO{sub 2} and U{sub 3}O{sub 8} were calculated based on original and revised HRTM. The results show that the revised HRTM increases lung retention and uptakes to alimentary tract which cause the more faecal excretion. The results in this study confirm the effect of the changes of respiratory tract model on the uranium bioassay data although the more study is needed to apply to practical fields.

  9. Nitrate removal from polluted water by using a vegetated floating system.

    Science.gov (United States)

    Bartucca, Maria Luce; Mimmo, Tanja; Cesco, Stefano; Del Buono, Daniele

    2016-01-15

    Nitrate (NO3(-)) water pollution is one of the most prevailing and relevant ecological issues. For instance, the wide presence of this pollutant in the environment is dramatically altering the quality of superficial and underground waters. Therefore, we set up a floating bed vegetated with a terrestrial herbaceous species (Italian ryegrass) with the aim to remediate hydroponic solutions polluted with NO3(-). The floating bed allowed the plants to grow and achieve an adequate development. Ryegrass was not affected by the treatments. On the contrary, plant biomass production and total nitrogen content (N-K) increased proportionally to the amount of NO3(-) applied. Regarding to the water cleaning experiments, the vegetated floating beds permitted to remove almost completely all the NO3(-) added from the hydroponic solutions with an initial concentration of 50, 100 and 150 mg L(-1). Furthermore, the calculation of the bioconcentration factor (BCF) indicated this species as successfully applicable for the remediation of solutions polluted by NO3(-). In conclusion, the results highlight that the combination of ryegrass and the floating bed system resulted to be effective in the remediation of aqueous solutions polluted by NO3(-). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Reporter gene bioassays in environmental analysis.

    Science.gov (United States)

    Köhler, S; Belkin, S; Schmid, R D

    2000-01-01

    In parallel to the continuous development of increasingly more sophisticated physical and chemical analytical technologies for the detection of environmental pollutants, there is a progressively more urgent need also for bioassays which report not only on the presence of a chemical but also on its bioavailability and its biological effects. As a partial fulfillment of that need, there has been a rapid development of biosensors based on genetically engineered bacteria. Such microorganisms typically combine a promoter-operator, which acts as the sensing element, with reporter gene(s) coding for easily detectable proteins. These sensors have the ability to detect global parameters such as stress conditions, toxicity or DNA-damaging agents as well as specific organic and inorganic compounds. The systems described in this review, designed to detect different groups of target chemicals, vary greatly in their detection limits, specificity, response times and more. These variations reflect on their potential applicability which, for most of the constructs described, is presently rather limited. Nevertheless, present trends promise that additional improvements will make microbial biosensors an important tool for future environmental analysis.

  11. Bio-assessment of water pollution in coal belt

    International Nuclear Information System (INIS)

    Mishra, P.K.

    1998-01-01

    Water pollution in coal belt has attracted attention of scientists as well as general people. Implication of water pollution on bio-system is still a more important issue and a lot of information has been accumulated. Apart from conventional methods of pollution monitoring, bio-monitoring is comparatively a new approach and a proper methodology is still in pipeline. The present study reviews various methods of bio-monitoring and compare various methodologies suggested at population level with conventional methods. The results indicated that the bio-assessment methodology can be a tool and hence be developed. (author)

  12. Isolation of Crude Oil from Polluted Waters Using Biosurfactants Pseudomonas Bacteria: Assessment of Bacteria Concentration Effects

    Directory of Open Access Journals (Sweden)

    A. Khalifeh

    2013-04-01

    Full Text Available Biological decomposition techniques and isolation of environmental pollutions using biosurfactants bacteria are effective methods of environmental protection. Surfactants are amphiphilic compounds that are produced by local microorganisms and are able to reduce the surface and the stresses between surfaces. As a result, they will increase solubility, biological activity, and environmental decomposition of organic compounds. This study analyzes the effects of biosurfactants on crude oil recovery and its isolation using pseudomonas sea bacteria species. Preparation of biosurfactants was done in glass flasks and laboratory conditions. Experiments were carried out to obtain the best concentration of biosurfactants for isolating oil from water and destroying oil-in-water or water-in-oil emulsions in two pH ranges and four saline solutions of different concentrations. The most effective results were gained when a concentration of 0.1% biosurfactants was applied.

  13. Modelling Common Agricultural Policy-Water Framework Directive interactions and cost-effectiveness of measures to reduce nitrogen pollution.

    Science.gov (United States)

    Mouratiadou, Ioanna; Russell, Graham; Topp, Cairistiona; Louhichi, Kamel; Moran, Dominic

    2010-01-01

    Selecting cost-effective measures to regulate agricultural water pollution to conform to the Water Framework Directive presents multiple challenges. A bio-economic modelling approach is presented that has been used to explore the water quality and economic effects of the 2003 Common Agricultural Policy Reform and to assess the cost-effectiveness of input quotas and emission standards against nitrate leaching, in a representative case study catchment in Scotland. The approach combines a biophysical model (NDICEA) with a mathematical programming model (FSSIM-MP). The results indicate only small changes due to the Reform, with the main changes in farmers' decision making and the associated economic and water quality indicators depending on crop price changes, and suggest the use of target fertilisation in relation to crop and soil requirements, as opposed to measures targeting farm total or average nitrogen use.

  14. Log bioassay of residual effectiveness of insecticides against bark beetles

    Science.gov (United States)

    Richard H. Smith

    1982-01-01

    Residual effectiveness of nine insecticides applied to bark was tested against western, mountain, and Jeffrey pine beetles. Ponderosa and Jeffrey pine trees were treated and logs cut from them 2 to 13 months later, and bioassayed with the three beetles. The insecticides were sprayed at the rate of 1 gal (3.8 l) per 40- or 80-ft² (3.6 or 7.2 m²) bark surface at varying...

  15. Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm

    Science.gov (United States)

    Zhang, Shou-ping; Xin, Xiao-kang

    2017-07-01

    Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.

  16. Factors influencing the efficiency of radiation-induced degradation of water pollutants

    International Nuclear Information System (INIS)

    Getoff, Nikola

    2002-01-01

    The efficiency of the radiation-induced degradation of water pollutants depends on several factors, such as kind and energy of radiation, absorbed dose, dose rate, pollutant concentration as well as synergistic effects of radiation and ozone or/and catalysts (e.g. TiO 2 ) and of the molecular structure of the pollutants. The role of the individual factors is illustrated by examples. The application of pulse radiolysis in addition to chemical analysis for elucidation of reaction mechanisms and optimization of the degradation treatment is also mentioned

  17. Effect of mercury and arsenic from industrial effluents on the drinking water and comparison of the water quality of polluted and non-polluted areas: a case study of Peshawar and Lower Dir.

    Science.gov (United States)

    Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah

    2013-02-01

    The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed.

  18. Socio–economic benefits and pollution levels of water resources ...

    African Journals Online (AJOL)

    Communities are dependent on wetlands resources for income generation. However, anthropogenic activities that result into pollution of water are one of the major public health problems. Assessment of socio–economic activities and pollution levels of domestic water sources in Gulu Municipality, Pece wetland was done.

  19. Use of solar energy for disinfection of polluted water

    OpenAIRE

    Y. Jamil; M.R. Ahmad; K. Ali; A. Habeeb; M. Hassan

    2009-01-01

    Polluted water is causing serious health problems especially in the rural areas of Pakistan. People have limited access to safe water supply and many diseases like diarrhea and gastrointestinal diseases are transmitted by consumption of polluted water. We have investigated the potential of using solar energy to pasteurize water. Low cost indigenously available materials have been utilized to design and fabricate a solar box type pasteurizer having a capacity of three liters. The p...

  20. An application of Landsat and computer technology to potential water pollution from soil erosion

    Science.gov (United States)

    Campbell, W. J.

    1981-01-01

    Agricultural activity has been recognized as the primary source of nonpoint source water pollution. Water quality planners have needed information that is timely, accurate, easily reproducible, and relatively inexpensive to utilize to implement 'Best Management Practices' for water quality. In this paper, a case study shows how the combination of satellite data, which can give accurate land-cover/land-use information, and a computerized geographic information system, can assess nonpoint pollution at a regional scale and be cost effective.

  1. The pollution of water by nitrates of chemical fertilizers

    International Nuclear Information System (INIS)

    Halwani, Jalal

    1998-01-01

    The following article is a literature review that summarizes results from field studies devoted to chemical analysis of water in Lebanon. Agricultural practices and the use of fertilizers may affect surface waters, ground water and drinking water. Much attention has been given to their environmental consequences, especially those related to water pollution by Nitrates and human health. The Nitrate content should not exceed in drinking water more than 50 mg/l for adults and 25 mg/l for children and pregnant women. Studies suggest incorporation of quick remedial measures to combat pollution in marine environments

  2. Regulations for the peat production water pollution control

    International Nuclear Information System (INIS)

    Savolainen, M.; Heikkinen, K.; Ihme, R.

    1996-01-01

    The regulations for peat production water pollution control include the latest information on anti-pollution constructions applicable to peat production including field ditches, sedimentation basins, overland flow areas, forest soil saturation, evaporation basins, chemicalization, detention of runoff and artificial flood plains. Information on subsurface drainage in peat mining is also given. The regulations deal with environmental viewpoints, planning of water protection and information on how to build, use and maintain anti-pollution constructions. Special attention is given to the soil conditions, because they play an important role in the building of different constructions. (orig.) (48 refs.)

  3. Case-specific comparison of water pollution control alternatives in peat production

    International Nuclear Information System (INIS)

    Savolainen, M.; Kaasinen, A.; Heikkinen, K.; Ihme, R.; Kaemae, T.; Alasaarela, E.

    1996-01-01

    The present practice water pollution control in peat production and the elements of planning were analyzed, the water purification methods were classified and their weaknesses estimated. Furthermore, the cost of the water purification constructions was estimated and their significance for the watercourses evaluated. 54 peat production plans were chosen from the catchment areas of the rivers Iijoki, Siikajoki and Pyhaejoki. The suitability of the chosen water pollution control methods was evaluated on the basis of the plans and, further, on the basis of field surveys. The suitability of the purification methods to practical water pollution control was assessed by making plans for 15 peat mining areas. There is a need to develop the planning and implementation of water pollution control in peat mining. The methods that are used do not always work in the expected way in practice. Despite this planning is compatible with the water protection program and the regulations that are in force. The study gives a good idea of how to update the planning instructions for water pollution control. The accompanying report includes plan for 11 peat mining areas. (orig.)

  4. Herbicide impact on Hormosira banksii gametes measured by fluorescence and germination bioassays

    International Nuclear Information System (INIS)

    Seery, Cliff R.; Gunthorpe, Leanne; Ralph, Peter J.

    2006-01-01

    The innovative bioassay described here involves chlorophyll a fluorescence measurements of gametes from the macroalgae, Hormosira banksii, where gametes (eggs) were exposed to Diuron, Irgarol and Bromacil. Response was assessed as percent inhibition from control of effective quantum yield (ΔF/Fm') of photosystem II, herein referred to as % PSII Inhibition. This was measured with the dual-channelled pulse amplitude modulated (PAM) fluorometer, ToxY-PAM. The fluorescence bioassay was run simultaneously with an established H. banksii germination bioassay to compare sensitivity, precision, and time-to-result. The fluorescence bioassay gave highly sensitive results evidenced by EC 5 s (% PSII Inhibition) for Diuron, Irgarol and Bromacil being three, four and three orders of magnitude (respectively) lower than EC 5 s generated from the germination bioassays. Precision of the fluorescence bioassay was demonstrated with low coefficient of variations (<30%) for all three toxicants. With regard to time, the fluorescence bioassay gave results within 6 h, as opposed to more than 50 h for the germination bioassay. - Chlorophyll a fluorescence measurements form the basis of a macroalgal bioassay with many advantages over germination-based methods

  5. Water quality assessment by pollution-index method in the coastal waters of Hebei Province in western Bohai Sea, China.

    Science.gov (United States)

    Liu, Shuguang; Lou, Sha; Kuang, Cuiping; Huang, Wenrui; Chen, Wujun; Zhang, Jianle; Zhong, Guihui

    2011-10-01

    Sources of pollution discharges and water quality samples at 27 stations in 2006 in the coastal waters of Hebei Province, western Bohai Sea, have been analyzed in this study. Pollutant loads from industrial sewages have shown stronger impact on the water environment than those from the general sewages. Analysis indicates that pollution of COD is mainly resulted from land-based point pollutant sources. For phosphate concentration, non-point source pollution from coastal ocean (fishing and harbor areas) plays an important role. To assess the water quality conditions, Organic Pollution Index and Eutrophication Index have been used to quantify the level of water pollution and eutrophication conditions. Results show that pollution was much heavier in the dry season than flood season in 2006. Based on COD and phosphate concentrations, results show that waters near Shahe River, Douhe River, Yanghe River, and Luanhe River were heavily polluted. Water quality in the Qinhuangdao area was better than those in the Tangshan and Cangzhou areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Rapid bioassay for oil-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, J. [ALS Environmental, Edmonton, AB (Canada); Oosterbroek, L. [HydroQual, Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation described a study conducted to develop a rapid bioassay for soils contaminated with oil. The bioassay method was designed for a weight of evidence (WoE) approach and eco-contact guideline derivation protocol. Microtox bioassays were conducted on cyclodextrin extracts of soil quantified by solvent extraction and gas chromatography. The method was demonstrated using straight {beta}-cyclodextrin soil extracts and activated {beta}-cyclodextrin soil extracts. An analysis of the methods showed that the activation step weakens or breaks the cyclodextrin and polycyclic hydrocarbon (PHC) inclusion complex. The released PHC became toxic to the microtox organism. Results from the bioassays were then correlated with earthworm reproduction bioassay results. tabs., figs.

  7. Integration of laboratory bioassays into the risk-based corrective action process

    International Nuclear Information System (INIS)

    Edwards, D.; Messina, F.; Clark, J.

    1995-01-01

    Recent data generated by the Gas Research Institute (GRI) and others indicate that residual hydrocarbon may be bound/sequestered in soil such that it is unavailable for microbial degradation, and thus possibly not bioavailable to human/ecological receptors. A reduction in bioavailability would directly equate to reduced exposure and, therefore, potentially less-conservative risk-based cleanup soil goals. Laboratory bioassays which measure bioavailability/toxicity can be cost-effectively integrated into the risk-based corrective action process. However, in order to maximize the cost-effective application of bioassays several site-specific parameters should be addressed up front. This paper discusses (1) the evaluation of parameters impacting the application of bioassays to soils contaminated with metals and/or petroleum hydrocarbons and (2) the cost-effective integration of bioassays into a tiered ASTM type framework for risk-based corrective action

  8. The Synergic Characteristics of Surface Water Pollution and Sediment Pollution with Heavy Metals in the Haihe River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Peiru Kong

    2018-01-01

    Full Text Available Aquatic environmental deterioration is becoming a serious problem due to rapid urbanization and economic development, particularly in developing countries. As two important components of the aquatic environment, water quality and sediment pollution are widely considered to be concerns; however, they are considered separately in most cases. The relationship between water quality and sediment pollution with heavy metals has been little addressed. In this study, the Haihe River Basin (HRB, one of the most polluted areas in China, was used as a case study, and the eutrophication index (EI and the potential ecological risk index (RI were employed to evaluate water quality and sediment pollution of heavy metals, respectively. The results showed that generally in the HRB, the water quality was poor, while the risk of heavy metal pollution was relatively low. Surface water quality was mainly influenced by sewage discharges from human daily life, and heavy metal pollution was affected by industry structure, in that the areas with resource/energy consumption industries and high-pollution industries often have high risks of heavy metal pollution Synergic pollution from water eutrophication and sediment pollution with heavy metals was found, especially in the central areas of the HRB, and it was largely dependent on the type of human activities. In the places with intensive human activities, such as secondary industry, eutrophication occurred simultaneously with heavy metal pollution, other than in less human-affected areas. These findings are useful for planning aquatic environment protections and river ecosystem management.

  9. GROUNDWATER, DRINKING WATER, ARSENIC POLLUTION, NORTH DAG

    Directory of Open Access Journals (Sweden)

    T. O. Abdulmutalimova

    2012-01-01

    Full Text Available In this article we studied the chemical particularities of ground water of the North Daghestan, using by population as drinking water. In particular we examined the problem of arsenic pollution.

  10. An Ontology-Underpinned Emergency Response System for Water Pollution Accidents

    Directory of Open Access Journals (Sweden)

    Xiaoliang Meng

    2018-02-01

    Full Text Available With the unceasing development and maturation of environment geographic information system, the response to water pollution accidents has been digitalized through the combination of monitoring sensors, management servers, and application software. However, most of these systems only achieve the basic and general geospatial data management and functional process tasks by adopting mechanistic water-quality models. To satisfy the sustainable monitoring and real-time emergency response application demand of the government and public users, it is a hotspot to study how to make the water pollution information being semantic and make the referred applications intelligent. Thus, the architecture of the ontology-underpinned emergency response system for water pollution accidents is proposed in this paper. This paper also makes a case study for usability testing of the water ontology models, and emergency response rules through an online water pollution emergency response system. The system contributes scientifically to the safety and sustainability of drinking water by providing emergency response and decision-making to the government and public in a timely manner.

  11. Water pollution and thermal power stations

    International Nuclear Information System (INIS)

    Maini, A.; Harapanahalli, A.B.

    1993-01-01

    There are a number of thermal power stations dotting the countryside in India for the generation of electricity. The pollution of environment is continuously increasing in the country with the addition of new coal based power stations and causing both a menace and a hazard to the biota. The paper reviews the problems arising out of water pollution from the coal based thermal power stations. (author). 2 tabs

  12. Deep challenges for China's war on water pollution.

    Science.gov (United States)

    Han, Dongmei; Currell, Matthew J; Cao, Guoliang

    2016-11-01

    China's Central government has released an ambitious plan to tackle the nation's water pollution crisis. However, this is inhibited by a lack of data, particularly for groundwater. We compiled and analyzed water quality classification data from publicly available government sources, further revealing the scale and extent of the crisis. We also compiled nitrate data in shallow and deep groundwater from a range of literature sources, covering 52 of China's groundwater systems; the most comprehensive national-scale assessment yet. Nitrate pollution at levels exceeding the US EPA's maximum contaminant level (10 mg/L NO 3 N) occurs at the 90th percentile in 25 of 36 shallow aquifers and 10 out of 37 deep or karst aquifers. Isotopic compositions of groundwater nitrate (δ 15 N and δ 18 O NO3 values ranging from -14.9‰ to 35.5‰ and -8.1‰ to 51.0‰, respectively) indicate many nitrate sources including soil nitrogen, agricultural fertilizers, untreated wastewater and/or manure, and locally show evidence of de-nitrification. From these data, it is clear that contaminated groundwater is ubiquitous in deep aquifers as well as shallow groundwater (and surface water). Deep aquifers contain water recharged tens of thousands of years before present, long before widespread anthropogenic nitrate contamination. This groundwater has therefore likely been contaminated due to rapid bypass flow along wells or other conduits. Addressing the issue of well condition is urgently needed to stop further pollution of China's deep aquifers, which are some of China's most important drinking water sources. China's new 10-point Water Pollution Plan addresses previous shortcomings, however, control and remediation of deep groundwater pollution will take decades of sustained effort. Copyright © 2016. Published by Elsevier Ltd.

  13. Drugs in Your Drinking Water: Removing Pharmaceutical Pollution

    Science.gov (United States)

    Richardson, K.

    2017-12-01

    Pharmaceuticals, mostly estrogen-based hormones and antibiotics, are increasingly polluting waterways and contaminating municipal drinking water sources. A 2008 study funded by the American Water Works Association Research Foundation and the WateReuse Foundation tested 19 drinking water treatment plants across the United States. The study found pharmaceuticals and metabolites at all of the locations tested. These plants provide drinking water for over 28 million Americans - yet only five states test for pharmaceuticals. A 2007 US Government Accountability Office study of male smallmouth bass showed ovarian tissue in their gonads and concluded the combination of EDCs (Endocrine Disrupting Chemicals) likely caused the feminization of the male fish. The purpose of this project is to determine whether bivalves can effectively remove pharmaceuticals as well as other CECs (Contaminants of Emerging Concern).Pharmaceuticals, specifically ibuprofen, were found to be resistant to chemical and mechanical filtration methods, such as coffee grounds and activated carbon, so biological filtration methods are used. Three types of common mollusks (Sphaeriidae `fingernail clams', freshwater mussels, scallops) will be used to assess the potential for biological remediation of the chemical pollutants. Fifteen specimens of each species will be used - a total of 45 individuals. Each group of five will be introduced to either an NSAID (ibuprofen), oil (vegetable) or hormone (estrogen, pending approval). This creates an array of 3 species and 3 contaminants, for a 3x3 grid of nine sample groups. Water is contaminated with pollutant levels similar to EPA measurements. The concentration will be measured before and after the introduction of the specimens using a UV spectrophotometer, at regular time intervals. As mollusks are capable of filtering up to two liters of water a day, the 37.8 liter tanks are filtered at a rate of 10 liters a day. A successful trial of bivalves reducing and

  14. Pollution Impact and Alternative Treatment for Produced Water

    Science.gov (United States)

    Hedar, Yusran; Budiyono

    2018-02-01

    Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  15. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  16. Effects of thermal pollution on marine life

    International Nuclear Information System (INIS)

    Peres, J.M.

    1976-01-01

    After a short review of the conditions and importance of the releases of heated water from fossil- or nuclear- fueled power plants, the two-fold consequences of thermal pollution are stated: consequences from the transit damaging, by thermal stress and/or mechanical effects, planctonic organisms attracted in the stream, and consequences from heating of the receiving environment. Other related effect on marine populations should not be neglected: effects of antifouling (chlorine mostly) and anticorrosion products; synergic action of raised temperature and chemical pollutants. In the present state of knowledge, the hazards of thermal pollution in the marine environment should not be overestimated so far as effluent dilution and diffusion are sufficient, which implies that the site be selected in an area where coastal circulation is strong enough and the disposal procedures be improved [fr

  17. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.

  18. Ecotoxicological bioassays of sediment leachates in a river bed flanked by decommissioned pesticide plants in Nantong City, East China.

    Science.gov (United States)

    Zhou, Yan; Wang, Fenghe; Wan, Jinzhong; He, Jian; Li, Qun; Qiang Chen; Gao, Jay; Lin, Yusuo; Zhang, Shengtian

    2017-03-01

    Traditionally, the toxicity of river contaminants is analyzed chemically or physically through river bed sediments. The biotoxicity of polluted sediment leachates has not caught our attention. This study aims to overcome this deficiency through a battery of biotests which were conducted to monitor comprehensive toxicity of sediment leachates for the Yaogang River in East Jiangsu Province of China, which is in close proximity to former pesticide plants. The general physical and chemical parameters of major pollutants were analyzed from river bed sediments collected at five strategic locations. The ecotoxicity analyses undertaken include overall fish (adult zebrafish) acute toxicity, luminescent bacteria (Vibrio fischeri) bioassay, and zebrafish embryo toxicity assay. Compared with the control group, sediment leachates increased the lethality, inhibited the embryos hatching and induced development abnormalities of zebrafish embryos, and inhibited the luminescence of V. fischeri. The results show that sediment leachates may assume various toxic effects, depending on the test organism. This diverse toxicity to aquatic organisms reflects their different sensitivity to sediment leachates. It is found clearly that V. fischeri was the organism which was characterized by the highest sensitivity to the sediment leachates. The complicated toxicity of leachates was not caused by one single factor but by multiple pollutants together. This indicates the need of estimations of sediment leachate not only taking into account chemical detection but also of applying the biotests to the problem. Thus, multigroup bioassays are necessary to realistically evaluate river ecological risks imposed by leachates.

  19. The Impact of Vegetative Slope on Water Flow and Pollutant Transport through Embankments

    Directory of Open Access Journals (Sweden)

    Liting Sheng

    2017-06-01

    Full Text Available Embankments are common structures along rivers or lakes in riparian zones in plain areas. They should have natural slopes instead of slopes covered by concrete or other hard materials, in order to rebuild sustainable ecosystems for riparian zones. This study was conducted to evaluate the effects of vegetative slopes on water flow and pollutant transport through the embankments. Three embankments with different slope treatments (a bare slope, a slope covered in centipede grass, a slope covered in tall fescue were examined, and three inflow applications of pollute water with different concentration of total nitrogen (TN and total phosphorus (TP used to simulate different agricultural non-point pollution levels. The results showed that the water flux rates of the three embankments were relatively stable under all inflow events, and almost all values were higher than 80%. The embankments with vegetative slopes had better nitrogen removal than the bare slope under all events, and the one with tall fescue slope was best, but the benefits of vegetative slopes decreased with increasing inflow concentration. Moreover, there were no significant differences between the embankments on phosphorus removal, for which the reductions were all high (above 90% with most loads remaining in the front third of embankment bodies. Overall, the embankments with vegetative slopes had positive effects on water exchange and reducing non-point pollutant into lake or river water, which provides a quantitative scientific basis for the actual layout of lakeshores.

  20. China's water pollution by persistent organic pollutants.

    Science.gov (United States)

    Bao, Lian-Jun; Maruya, Keith A; Snyder, Shane A; Zeng, Eddy Y

    2012-04-01

    Available data were reviewed to assess the status of contamination by persistent organic pollutants (POPs), including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), in drinking water sources and coastal waters of China. The levels of POPs in China's waters were generally at the high end of the global range. A comparison of China's regulatory limits indicated that PCBs in rivers and coastal water may pose potential human health risk. Occurrence of DDTs in some rivers of China may also pose health risk to humans using the regulatory limits of DDTs recommended by the European Union. Future monitoring of POPs in China's waters should be directed towards analytes of concern (e.g. PCBs and PCDD/Fs) and to fill data gaps for analytes (e.g. PBDEs, PCDD/Fs, and chlordane) and in watersheds/regions (e.g. West China) where data are scarce. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Analysis of asymmetries in air pollution with water resources, and energy consumption in Iran.

    Science.gov (United States)

    Ashouri, Mohammad Javad; Rafei, Meysam

    2018-04-17

    Iran should pay special attention to its excessive consumption of energy and air pollution due to the limited availability of water resources. This study explores the effects of the consumption of energy and water resources on air pollution in Iran from 1971 to 2014. It utilizes the non-linear autoregressive distributed lag approach to establish a robust relationship between the variables which show that both long- and short-run coefficients are asymmetrical. The positive and negative aspects of the long-run coefficients of energy consumption and water resources were found to be 0.19, - 1.63, 0.18, and 2.36, respectively, while only the negative ones were significant for energy consumption. Based on the cumulative effects, it can be established that there are important and significant differences in the responses of air pollution to positive and negative changes in water productivity and energy consumption. In particular, CO 2 gas emissions are affected by negative changes in H 2 O productivity both in terms of the total and the GDP per unit of energy use in Iran. In regard to short-run results, considerable asymmetric effects occur on all the variables for CO 2 emissions. Based on the results obtained, some recommendations are presented, which policymakers can adopt in efforts to address the issues of pollution and consumption.

  2. Screening of hormone-like activities in bottled waters available in Southern Spain using receptor-specific bioassays.

    Science.gov (United States)

    Real, Macarena; Molina-Molina, José-Manuel; Jiménez-Díaz, Inmaculada; Arrebola, Juan Pedro; Sáenz, José-María; Fernández, Mariana F; Olea, Nicolás

    2015-01-01

    Bottled water consumption is a putative source of human exposure to endocrine-disrupting chemicals (EDCs). Research has been conducted on the presence of chemicals with estrogen-like activity in bottled waters and on their estrogenicity, but few data are available on the presence of hormonal activities associated with other nuclear receptors (NRs). The aim of this study was to determine the presence of endocrine activities dependent on the activation of human estrogen receptor alpha (hERa) and/or androgen receptor (hAR) in water in glass or plastic bottles sold to consumers in Southern Spain. Hormone-like activities were evaluated in 29 bottled waters using receptor-specific bioassays based on reporter gene expression in PALM cells [(anti-)androgenicity] and cell proliferation assessment in MCF-7 cells [(anti-)estrogenicity] after optimized solid phase extraction (SPE). All of the water samples analyzed showed hormonal activity. This was estrogenic in 79.3% and anti-estrogenic in 37.9% of samples and was androgenic in 27.5% and anti-androgenic in 41.3%, with mean concentrations per liter of 0.113pM 17β-estradiol (E2) equivalent units (E2Eq), 11.01pM anti-estrogen (ICI 182780) equivalent units (ICI 182780Eq), 0.33pM methyltrienolone (R1881) equivalent units (R1881Eq), and 0.18nM procymidone equivalent units (ProcEq). Bottled water consumption contributes to EDC exposure. Hormone-like activities observed in waters from both plastic and glass bottles suggest that plastic packaging is not the sole source of contamination and that the source of the water and bottling process may play a role, among other factors. Further research is warranted on the cumulative effects of long-term exposure to low doses of EDCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Exposure Patterns and Health Effects Associated with Swimming and Surfing in Polluted Marine Waters

    Science.gov (United States)

    Grant, S. B.

    2007-05-01

    Marine bathing beaches are closed to the public whenever water quality fails to meet State and Federal standards. In this talk I will explore the science (and lack thereof!) behind these beach closures, including the health effects data upon which standards are based, shortcomings of the current approach used for testing and notification, and the high degree of spatial and temporal heterogeneity associated with human exposure to pollutants in these systems. The talk will focus on examples from Huntington Beach, where the speaker has conducted research over the past several years.

  4. In situ and laboratory bioassays to evaluate the impact of effluent discharges on receiving aquatic ecosystems

    International Nuclear Information System (INIS)

    Smolders, R.; Bervoets, L.; Blust, R.

    2004-01-01

    Effluents are a main source of direct and often continuous input of pollutants into aquatic ecosystems with long-term implications on ecosystem functioning. Therefore, the study of the effects of effluent exposure on organisms, populations or communities within the framework of impact assessment has a high ecological relevance. The aim of this study was to assess the toxicological impact of two effluents, one household wastewater treatment effluent (Effluent 1) and one industrial effluent (Effluent 2), on the receiving aquatic ecosystem using two test species under both in situ and laboratory conditions. Zebra mussel (Dreissena polymorpha) and common carp (Cyprinus carpio) were exposed under laboratory conditions in an online monitoring flow-through system (receiving different concentrations of Effluent 2) and under in situ conditions along the pollution gradient established by these two effluent discharges. Bioassays focussed on growth and condition related endpoints (i.e. condition, growth, lipid budget), since these are key functional processes within organisms and populations. Under laboratory conditions, increasing concentrations of the industrial effluent (Effluent 2) had a negative effect on both zebra mussel and carp energy reserves and condition. Under in situ conditions, the same negative impact of Effluent 2 was observed for zebra mussels, while Effluent 1 had no apparent effect on exposed zebra mussels. Carp growth and condition, on the other hand, were significantly increased at the discharge sites of both effluents when compared to the reference site, probably due to differences in food availability. The results indicate that a combination of in situ and laboratory exposures can illustrate how ecological processes influence bioassay studies. The incorporation of indirect, ecological effects, like changes in food availability, provides considerable benefit in understanding and predicting effects of effluents on selected species under realistic exposure

  5. In situ and laboratory bioassays to evaluate the impact of effluent discharges on receiving aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Smolders, R. [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium)]. E-mail: roel.smolders@ua.ac.be; Bervoets, L. [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Blust, R. [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2004-11-01

    Effluents are a main source of direct and often continuous input of pollutants into aquatic ecosystems with long-term implications on ecosystem functioning. Therefore, the study of the effects of effluent exposure on organisms, populations or communities within the framework of impact assessment has a high ecological relevance. The aim of this study was to assess the toxicological impact of two effluents, one household wastewater treatment effluent (Effluent 1) and one industrial effluent (Effluent 2), on the receiving aquatic ecosystem using two test species under both in situ and laboratory conditions. Zebra mussel (Dreissena polymorpha) and common carp (Cyprinus carpio) were exposed under laboratory conditions in an online monitoring flow-through system (receiving different concentrations of Effluent 2) and under in situ conditions along the pollution gradient established by these two effluent discharges. Bioassays focussed on growth and condition related endpoints (i.e. condition, growth, lipid budget), since these are key functional processes within organisms and populations. Under laboratory conditions, increasing concentrations of the industrial effluent (Effluent 2) had a negative effect on both zebra mussel and carp energy reserves and condition. Under in situ conditions, the same negative impact of Effluent 2 was observed for zebra mussels, while Effluent 1 had no apparent effect on exposed zebra mussels. Carp growth and condition, on the other hand, were significantly increased at the discharge sites of both effluents when compared to the reference site, probably due to differences in food availability. The results indicate that a combination of in situ and laboratory exposures can illustrate how ecological processes influence bioassay studies. The incorporation of indirect, ecological effects, like changes in food availability, provides considerable benefit in understanding and predicting effects of effluents on selected species under realistic exposure

  6. Earthworms and Soil Pollutants

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Tamae

    2011-11-01

    Full Text Available Although the toxicity of metal contaminated soils has been assessed with various bioassays, more information is needed about the biochemical responses, which may help to elucidate the mechanisms involved in metal toxicity. We previously reported that the earthworm, Eisenia fetida, accumulates cadmium in its seminal vesicles. The bio-accumulative ability of earthworms is well known, and thus the earthworm could be a useful living organism for the bio-monitoring of soil pollution. In this short review, we describe recent studies concerning the relationship between earthworms and soil pollutants, and discuss the possibility of using the earthworm as a bio-monitoring organism for soil pollution.

  7. Herbicide impact on Hormosira banksii gametes measured by fluorescence and germination bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Seery, Cliff R. [Institute for Water and Environmental Resource Management, Department of Environmental Sciences, University of Technology, Sydney, Westbourne Street, Gore Hill, 2065 NSW (Australia); Gunthorpe, Leanne [Primary Industries Research Victoria (PIRVic), VIC (Australia); Ralph, Peter J. [Institute for Water and Environmental Resource Management, Department of Environmental Sciences, University of Technology, Sydney, Westbourne Street, Gore Hill, 2065 NSW (Australia)]. E-mail: peter.ralph@uts.edu.au

    2006-03-15

    The innovative bioassay described here involves chlorophyll a fluorescence measurements of gametes from the macroalgae, Hormosira banksii, where gametes (eggs) were exposed to Diuron, Irgarol and Bromacil. Response was assessed as percent inhibition from control of effective quantum yield ({delta}F/Fm') of photosystem II, herein referred to as % PSII Inhibition. This was measured with the dual-channelled pulse amplitude modulated (PAM) fluorometer, ToxY-PAM. The fluorescence bioassay was run simultaneously with an established H. banksii germination bioassay to compare sensitivity, precision, and time-to-result. The fluorescence bioassay gave highly sensitive results evidenced by EC{sub 5}s (% PSII Inhibition) for Diuron, Irgarol and Bromacil being three, four and three orders of magnitude (respectively) lower than EC{sub 5}s generated from the germination bioassays. Precision of the fluorescence bioassay was demonstrated with low coefficient of variations (<30%) for all three toxicants. With regard to time, the fluorescence bioassay gave results within 6 h, as opposed to more than 50 h for the germination bioassay. - Chlorophyll a fluorescence measurements form the basis of a macroalgal bioassay with many advantages over germination-based methods.

  8. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident.

    Science.gov (United States)

    Zhao, Xue-Min; Yao, Ling-Ai; Ma, Qian-Li; Zhou, Guang-Jie; Wang, Li; Fang, Qiao-Li; Xu, Zhen-Cheng

    2018-03-01

    In early January 2012, the Longjiang River was subjected to a serious cadmium (Cd) pollution accident, which led to negatively environmental and social impacts. A series of measures of emergency treatment were subsequently taken to reduce water Cd level. However, little information was available about the change of Cd level in environmental matrices and long-term effect of this pollution accident to aquatic ecosystem. Thus, this study investigated the distribution of Cd in water and sediment of this river for two years since pollution accident, as well as assessed its ecological risk to aquatic ecosystem of Longjiang River. The results showed that it was efficient for taking emergency treatment measures to decrease water Cd concentration to below the threshold value of national drinking water quality standard of China. There was high risk (HQ > 1) to aquatic ecosystem in some of reaches between February and July 2012, but low or no risk (HQ polluted reaches increased after pollution accident and emergency treatments in 2012, but decreased in 2013. During flood period, the sediment containing high concentration of Cd in Longjiang River was migrated to downstream Liujiang River. Cd content in sediment was reduced to background level after two years of the pollution accident occurrence. The study provides basic information about Cd levels in different media after pollution accident, which is helpful in evaluating the effectiveness of emergency treatments and the variation of ecological risk, as well as in conducting water management and conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Development of K-bioassay for the efficient potassium fertilization of citrus tree

    Energy Technology Data Exchange (ETDEWEB)

    U, Jang Kual [Cheju National University, Cheju (Korea, Republic of); Han, Hae Ryong [Cheju National University, Cheju (Korea, Republic of); Moon, Duk Young; Kim, Chang Myung; Lim, Han Cheol; Moon, Do Kyung [Cheju Citrus Research Institute, Cheju (Korea, Republic of); Song, Sung Jun [Cheju National Univerisity, Cheju (Korea, Republic of)

    1994-12-31

    a Similar to the {sup 42} K uptake, {sup 86} Rb uptake by the roots of Hordeum distichum grown in the hydroponic culture was negatively correlated with the concentration of K supplied previously, showing that {sup 86} Rb can be used for the K-bioassay. {sup 86} Rb having longer half life(18.86 day) than {sup 42} K(12.36 hr) allowed the use of larger number of root samples. {sup 86} Rb uptake of 3 years old Citrus unshiu Marc. grown in water culture decreased drastically with the increase of K concentration of the culture solution, thus demonstrating that the nutrition status of K for citrus trees can be diagnosed by K-bioassay using {sup 86} Rb tracer. {sup 86} Rb uptake by the excised roots of Hordeum distichum correlated with the exchangeable K in soil. The amount of exchangeable K in soil for the optimal plant growth can be determined by its relationship. {sup 42} K- and {sup 86} Rb-uptake by the Hordeum distichum roots were markedly inhibited by 5 x 10{sup -3} M KCN in the bioassay solution, indicating that uptake is metabolically controlled. There was no significant relationship between K content in citrus leaves and K concentration in the water-culture medium. It is concluded that K-bioassay is a potentially useful tool for determining of K requirement in citrus trees. (author)

  10. The main factors of water pollution in Danube River basin

    Directory of Open Access Journals (Sweden)

    Carmen Gasparotti

    2014-05-01

    Full Text Available The paper proposed herewith aims to give an overview on the pollution along the Danube River. Water quality in Danube River basin (DRB is under a great pressure due to the diverse range of the human activities including large urban center, industrial, agriculture, transport and mining activities. The most important aspects of the water pollution are: organic, nutrient and microbial pollution, , hazardous substances, and hydro-morphological alteration. Analysis of the pressures on the Danube River showed that a large part of the Danube River is subject to multiple pressures and there are important risks for not reaching good ecological status and good chemical status of the water in the foreseeable future. In 2009, the evaluation based on the results of the Trans National Monitoring Network showed for the length of water bodies from the Danube River basin that 22% achieved good ecological status or ecological potential and 45% river water bodies achieved good chemical status. Another important issue is related to the policy of water pollution.

  11. Pollution Impact and Alternative Treatment for Produced Water

    Directory of Open Access Journals (Sweden)

    Hedar Yusran

    2018-01-01

    Full Text Available Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  12. The characteristics and evaluation of water pollution in Ganjiang Tail River

    Science.gov (United States)

    Liu, W. J.; Li, Z. B.; Zou, D. S.; Ren, C. J.; Pei, Q. B.

    2017-08-01

    The water quality in Ganjiang River has an important impact on the ecological environment of Poyang Lake, because Ganjiang River is an important water supply of Poyang Lake. In this paper, the electrical conductivity (ED), turbidity (NTU), suspended solids (SS), total phosphorus (NP), total nitrogen (NT), ammonia nitrogen (NH4-N), nitrate nitrogen (NO3-N), and chemical oxygen demand quantity (COD) have been considered as indicators of water quality while performing an assessment of water in Ganjiang River. We evaluated and analyzed comprehensively the quality of surface and underground water by using the Water Quality Identification Index Method. The sample water was retrieved every 50 days from eight monitoring points located in three sections of downstream Ganjiang River in Nanchang city; the study was conducted from September 10, 2015 to June 1, 2016. The results indicate that the pollution index of northern, central, and southern tributaries in Ganjiang River downstream are 3.807, 3.567, and 3.795, respectively; these results were obtained by performing the primary pollutants quality identification index method (PP-WQI); the pollution index for the same tributaries was found to be 3.8077, 3.5003, 3.7465, respectively when we performed comprehensive water quality identification index method (CWQI). The water pollution grades are between level 3 and level 4. The main pollutants are COD, TN, and SS; moreover, there is a linear relationship between the pollution index in groundwater and surface water. The water quality is the best in the central branch, and worst in the south; the water quality is moderate in the north. Furthermore, the water of upstream is better than that of downstream. Finally, the water quality is worst in summer but best in winter.

  13. Primary productivity C-14 and algal assay in the study of water pollution effects in the Citarum River and Jatiluhur Reservoir

    International Nuclear Information System (INIS)

    Mahbub, B.

    1983-01-01

    Water quality of the Citarum River and the Jatiluhur Reservoir in Indonesia was evaluated using C-14 radioisotope. A close relationship between the abiotic (physical and chemical) and the biotic (algal growth potential, primary productivity, chlorophylla and diversity index of planktonic and benthic macroinvertebrate) parameters was obtained. Algal growth potential to abiotic parameters relationship has the highest correlation coefficient and can be used as a pollution indicator. The other biotic parameters do not show clear relationship with the abiotic parameters. The Citarum water quality is the lowest in those locations which receive human and industrial waste from Bandung and its environment. This water cannot be used for drinking purposes and fishery. The water quality in other locations of the river, however, meets the criteria for agriculture. Agricultural waste does not show any drastic effect on the water quality profile due to non-polluted characteristics of its sources

  14. Self-Propelled Micromotors for Cleaning Polluted Water

    Science.gov (United States)

    2013-01-01

    We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction–diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water. PMID:24180623

  15. Biogas from organically high polluted industrial waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Sixt, H

    1985-06-01

    Organically high polluted waste water sets special claims for an economical purification and the process treatment. Up to now these waste waters are being purified by anaerobic processes with simultaneous biogas generation. The fourstep anaerobic degradation is influenced by a lot of important parameters. Extensive researchers in the field of anaerobic microbiology has improved the knowledge of the fundamental principles. Parallel the reactor technology is developed worldwide. In general it seems that the fixed-film-reactor with immobilized bacteria has the best future to purify organically high polluted industrial waste water with short retention times under stable operation conditions.

  16. Tackling non-point source water pollution in British Columbia : an action plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    British Columbia`s approach to water quality management is discussed. The BC efforts include regulating `end of pipe` point discharges from industrial and municipal outfalls. The major remaining cause of water pollution is from non-point sources (NPS). NPS water pollution is caused by the release of pollutants from different and diffuse sources, mostly unregulated and associated with urbanization, agriculture and other forms of land development. The importance of dealing with such problems on an immediate basis to avoid a decline in water quality in the province is emphasized. Major sources of water pollution in British Columbia include: land development, agriculture, storm water runoff, onsite sewage systems, forestry, atmospheric deposition, and marine activities. 3 tabs.

  17. Estimation of contribution ratios of pollutant sources to a specific section based on an enhanced water quality model.

    Science.gov (United States)

    Cao, Bibo; Li, Chuan; Liu, Yan; Zhao, Yue; Sha, Jian; Wang, Yuqiu

    2015-05-01

    Because water quality monitoring sections or sites could reflect the water quality status of rivers, surface water quality management based on water quality monitoring sections or sites would be effective. For the purpose of improving water quality of rivers, quantifying the contribution ratios of pollutant resources to a specific section is necessary. Because physical and chemical processes of nutrient pollutants are complex in water bodies, it is difficult to quantitatively compute the contribution ratios. However, water quality models have proved to be effective tools to estimate surface water quality. In this project, an enhanced QUAL2Kw model with an added module was applied to the Xin'anjiang Watershed, to obtain water quality information along the river and to assess the contribution ratios of each pollutant source to a certain section (the Jiekou state-controlled section). Model validation indicated that the results were reliable. Then, contribution ratios were analyzed through the added module. Results show that among the pollutant sources, the Lianjiang tributary contributes the largest part of total nitrogen (50.43%), total phosphorus (45.60%), ammonia nitrogen (32.90%), nitrate (nitrite + nitrate) nitrogen (47.73%), and organic nitrogen (37.87%). Furthermore, contribution ratios in different reaches varied along the river. Compared with pollutant loads ratios of different sources in the watershed, an analysis of contribution ratios of pollutant sources for each specific section, which takes the localized chemical and physical processes into consideration, was more suitable for local-regional water quality management. In summary, this method of analyzing the contribution ratios of pollutant sources to a specific section based on the QUAL2Kw model was found to support the improvement of the local environment.

  18. Cleaning of polluted water using biological techniques

    International Nuclear Information System (INIS)

    Nielsen, M.

    1992-01-01

    Ground-water at many Danish locations has been polluted by organic substances. This pollution has taken place in relation to leaks or spills of, for example, petrol from leaky tanks or oil separators. The article describes a new biological technique for the purification of ground-water polluted by petrol and diesel oils leaked at a petrol station. The technique involves decompostion by bacteria. During decompostion the biomass in the filter increases and carbon dioxide and water is produced, so there is no waste product from this process. The two units consist of an oil-separator which separates the diesel oil and petrol from the water, and a bio-filter which is constructed as an aired-through inverted filter to which nutrient salts are continually added. The filter-material used is in the form of plastic rings on which the oil-decomposing bacteria grow and reproduce themselves. The system is further described. It is claimed that the bio-filter can decompose 7 kg of petrol and diesel oil in one week, larger ones decompose more. The servicelife of the system is expected to be 4-6 years. Current installation costs are 20.000 - 100.000 Danish kroner, according to size. (AB)

  19. Total pollution effect of urban surface runoff.

    Science.gov (United States)

    Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue

    2009-01-01

    For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.

  20. Criminalistic analysis of water pollution in Dagestan

    Directory of Open Access Journals (Sweden)

    G. A. Agarzaeva

    2009-01-01

    Full Text Available Drinkable water in Republic of Dagestan is not correspond the demand of the norm of sanitary. Article 250 of Criminal code foresees the responsibility for pollution of water is necessary for correcting because of efficacious use.

  1. Urbanization, Water Pollution, and Public Policy.

    Science.gov (United States)

    Carey, George W.; And Others

    Reviewed in this report is a study concerned with water pollution as it relates to urbanization within the Regional Plan Association's set of 21 contiguous New York, New Jersey and Connecticut counties centered upon the numerous bay and estuarial reaches of the Port of New York and New Jersey. With a time frame covering a decade of water quality…

  2. Astyanax fasciatus as bioindicator of water pollution of Rio dos Sinos, RS, Brazil

    Directory of Open Access Journals (Sweden)

    U. H. SCHULZ

    Full Text Available The effects of an increasing downriver pollution gradient on the reproductive system of Astyanax fasciatus were investigated in the Rio dos Sinos, RS. The comparison of mean oocyte diameters, gonadal indices and gonado-somatic relationships of specimens captured in polluted areas with individuals from unpolluted reference sites revealed a significant decrease of these parameters with increasing water pollution. High loads of organic and industrial sewage are considered responsible for these effects. Condition factors showed an inverse relationship, and increased significantly in downriver polluted areas. The declining gonadal indices showed that energy was allocated to somatic growth. The results of the study recommend the use of A. fasciatus in biomonitoring essays.

  3. Astyanax fasciatus as bioindicator of water pollution of Rio dos Sinos, RS, Brazil

    Directory of Open Access Journals (Sweden)

    SCHULZ U. H.

    2001-01-01

    Full Text Available The effects of an increasing downriver pollution gradient on the reproductive system of Astyanax fasciatus were investigated in the Rio dos Sinos, RS. The comparison of mean oocyte diameters, gonadal indices and gonado-somatic relationships of specimens captured in polluted areas with individuals from unpolluted reference sites revealed a significant decrease of these parameters with increasing water pollution. High loads of organic and industrial sewage are considered responsible for these effects. Condition factors showed an inverse relationship, and increased significantly in downriver polluted areas. The declining gonadal indices showed that energy was allocated to somatic growth. The results of the study recommend the use of A. fasciatus in biomonitoring essays.

  4. Occurrence, composition and ecological restoration of organic pollutants in water environment of South Canal, China

    Science.gov (United States)

    Wang, Y. Z.; Lin, C.; Zhou, X. S.; Zhang, Y.; Han, C. G.

    2017-08-01

    Ecological restoration of polluted river water was carried out in South Canal by adding microbial water purifying agents and biological compound enzymes. The objective of present study was to investigate the ecological restoration effect of organic pollutants by this efficient immobilized microbial technologies, analysis the occurrence and composition of organic pollutants including fifteen persistent organochlorine pesticides (OCPs), seventeen polycyclic aromatic hydrocarbons (PAHs) and eighteen organophosphorus pesticides (OPPs) both in natural water environment and ecological restoration area of South Canal, China. Results showed that the total concentrations of OCPs ranged from 1.11 to 1.78 ng·L-1, PAHs from 52.76 to 60.28 ng·L-1, and OPPs from 6.51 to 17.50 ng·L-1. Microbial water purifying agents and biological compound enzymes essentially had no effects on biological degradation of OCPs and PAHs in the river, but could remove OPPs with degradation rates ranging from 19.6% to 62.8% (35.2% in average). Degradation mechanisms of microbial water purifying agents and biological compound enzymes on OCPs, PAHs and OPPs remained to be further studied. This technology has a certain value in practical ecological restoration of organic pollutants in rivers and lakes.

  5. Evaluation of an hPXR reporter gene assay for the detection of aquatic emerging pollutants: screening of chemicals and application to water samples

    Energy Technology Data Exchange (ETDEWEB)

    Creusot, Nicolas; Kinani, Said; Maillot-Marechal, Emmanuelle; Porcher, Jean-Marc; Ait-Aissa, Selim [Unite Ecotoxicologie, INERIS, Verneuil-en-Halatte (France); Balaguer, Patrick [IRCM-UM1-CRLC Val d' Aurelle, INSERM U896, Montpellier (France); Tapie, Nathalie; LeMenach, Karyn; Budzinski, Helene [ISM/LPTC-UMR 5255 CNRS Universite Bordeaux 1, Talence (France)

    2010-01-15

    Many environmental endocrine-disrupting compounds act as ligands for nuclear receptors. Among these receptors, the human pregnane X receptor (hPXR) is well described as a xenobiotic sensor to various classes of chemicals, including pharmaceuticals, pesticides, and steroids. To assess the potential use of PXR as a sensor for aquatic emerging pollutants, we employed an in vitro reporter gene assay (HG5LN-hPXR cells) to screen a panel of environmental chemicals and to assess PXR-active chemicals in (waste) water samples. Of the 57 compounds tested, 37 were active in the bioassay and 10 were identified as new PXR agonists: triazin pesticides (promethryn, terbuthryn, terbutylazine), pharmaceuticals (fenofibrate, bezafibrate, clonazepam, medazepam) and non co-planar polychlorobiphenyls (PCBs; PCB101, 138, 180). Furthermore, we detected potent PXR activity in two types of water samples: passive polar organic compounds integrative sampler (POCIS) extracts from a river moderately impacted by agricultural and urban inputs and three effluents from sewage treatment works (STW). Fractionation of POCIS samples showed the highest PXR activity in the less polar fraction, while in the effluents, PXR activity was mainly associated with the dissolved water phase. Chemical analyses quantified several PXR-active substances (i.e., alkylphenols, hormones, pharmaceuticals, pesticides, PCBs, bisphenol A) in POCIS fractions and effluent extracts. However, mass-balance calculations showed that the analyzed compounds explained only 0.03% and 1.4% of biological activity measured in POCIS and STW samples, respectively. In effluents, bisphenol A and 4-tert-octylphenol were identified as main contributors of instrumentally derived PXR activities. Finally, the PXR bioassay provided complementary information as compared to estrogenic, androgenic, and dioxin-like activity measured in these samples. This study shows the usefulness of HG5LN-hPXR cells to detect PXR-active compounds in water samples

  6. Impacts on quality-induced water scarcity: drivers of nitrogen-related water pollution transfer under globalization from 1995 to 2009

    Science.gov (United States)

    Wan, Liyang; Cai, Wenjia; Jiang, Yongkai; Wang, Can

    2016-07-01

    Globalization enables the transfer of impacts on water availability. We argue that the threat should be evaluated not only by decrease of quantity, but more importantly by the degradation of water quality in exporting countries. Grouping the world into fourteen regions, this paper establishes a multi-region input-output framework to calculate the nitrogen-related grey water footprint and a water quality-induced scarcity index caused by pollution, for the period of 1995 to 2009. It is discovered that grey water embodied in international trade has been growing faster than total grey water footprint. China, the USA and India were the three top grey water exporters which accounted for more than half the total traded grey water. Dilemma rose when China and India were facing highest grey water scarcity. The EU and the USA were biggest grey water importers that alleviated their water stress by outsourcing water pollution. A structural decomposition analysis is conducted to study the drivers to the evolution of virtual flows of grey water under globalization during the period of 1995 to 2009. The results show that despite the technical progress that offset the growth of traded grey water, structural effects under globalization including both evolution in the globalized economic system and consumption structure, together with consumption volume made a positive contribution. It is found that the structural effect intensified the pollution-induced water scarcity of exporters as it generally increased all nations’ imported grey water while resulting in increases in only a few nations’ exported grey water, such as Brazil, China and Indonesia. At last, drawing from the ‘cap-and-trade’ and ‘boarder-tax-adjustment’ schemes, we propose policy recommendations that ensure water security and achieve environmentally sustainable trade from both the sides of production and consumption.

  7. Careers in Water Pollution Control.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    Described are the activities, responsibilities, and educational and training requirements of the major occupations directly concerned with water pollution control. Also provided is an overview of employment trends, salaries, and projected demand for employees. Included in the appendix is a list of colleges and universities which offer…

  8. Water Pollution in School Curricula.

    Science.gov (United States)

    Blum, Abraham

    1979-01-01

    Water pollution curriculum units of four environmental secondary science programs in Britain, Germany, Israel, and the United States are examined. Comparisons reveal the use of quite different approaches in central topic selection, use of the laboratory and other media, controversial issues, and teacher-student roles. (CS)

  9. Exploring Water Pollution. Part II

    Science.gov (United States)

    Rillo, Thomas J.

    1975-01-01

    This is part two of a three part article related to the science activity of exploring environmental problems. Part one dealt with background information for the classroom teacher. Presented here is a suggested lesson plan on water pollution. Objectives, important concepts and instructional procedures are suggested. (EB)

  10. Genotoxic effects of water pollution on two fish species living in Karasu River, Erzurum, Turkey.

    Science.gov (United States)

    Yazıcı, Zehra; Sişman, Turgay

    2014-11-01

    Karasu River, which is the only river in the Erzurum plain, is the source of the Euphrates River (Eastern Anatolia of Turkey). The river is in a serious environmental situation as a result of pollution by agricultural and industrial sewage and domestic discharges. The present study aims to evaluate genotoxic effects of toxic metals in chub, Leuciscus cephalus, and transcaucasian barb, Capoeta capoeta, collected from contaminated site of the Karasu River, in comparison with fish from an unpolluted reference site. Heavy metal concentrations in surface water of the river were determined. The condition factor (CF) was taken as a general biomarker of the health of the fish, and genotoxicity assays such as micronucleus (MN) and other nuclear abnormalities (NA) were carried out on the fish species studied. MN and NA such as kidney-shaped nucleus, notched nucleus, binucleated, lobed nucleus, and blebbed nucleus were assessed in peripheral blood erythrocytes, gill epithelial cells, and liver cells of the fish. A significant decrease in CF values associated with a significant elevation in MN and NA frequencies was observed in fish collected from the polluted sites compared with those from the reference site. Results of the current study show the significance of integrating a set of biomarkers to identify the effects of anthropogenic pollution. High concentrations of heavy metals have a potential genotoxic effects, and the toxicity is possibly related to industrial, agricultural, and domestic activities.

  11. Bioassays for risk assessment of coal conversion products

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, S.; Sinder, C.; Pfeifer, F.; Klein, J. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1999-07-01

    Traditional as well as biotechnological processing coal leads to complex mixtures of products. Besides chemical and physical characterization, which provides the information for product application, there is a need for bioassays to monitor properties that are probably toxic, mutagenic or cancerogenic. Investigations carried out focused on the selection, adaptation and validation of bioassays for the sensitive estimation of toxic effects. Organisms like bacteria, Daphnia magna and Scenedesmus subspicatus, representing different complexities in the biosphere, were selected as test systems for ecotoxicological and mutagenicity studies. The results obtained indicate that bioassays are, in principle, suitable tools for characterization and evaluation of coal-derived substances and bioconversion products. Using coal products, coal-relevant model compounds and bioconversion products, data for risk assessment are presented. (orig.)

  12. Hygienic study of barrier function of local water purification facilities in respect to chemical pollutants agrochemicals and surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Il' in, I E

    1984-08-01

    Contamination of water reservoirs is presently a multicomponent phenomenon because pesticides, fertilizers, petroleum products, dyes and surfactants may all be present in water. Efficiency of commonly-employed water purification methods was evaluated: sedimentation, chlorination, filtering, and its related effect or representative groups of agricultural chemicals. The most vulnerable link in the rural water purification system was the filtration; in presence of surfactants, the filtration effectiveness was reduced by 40-50%. The effectiveness of this hauling function of surfactants was related to chemical structure of the polluting compounds and to homologous characteristics of the detergents. The effectiveness of the precipitation of chemical impurities from polluted water depended on their solubility in water. 1 figure.

  13. Evaluation and modeling of the parameters affecting fluoride toxicity level in aquatic environments by bioassay method

    Directory of Open Access Journals (Sweden)

    Hamid Reza Shamsollahi

    2014-04-01

    Full Text Available Background: Fluoride exists in various forms in nature and water resources. , The rising level of fluoride in water resources due to discharge of industrial effluents can cause toxicity in aquatic organisms. To prevent toxicity, it is necessary to determine maximum fluoride toxicity as well as effluent discharge limits. The aim of this study was to determine the maximum fluoride toxicity and the factors affecting fluoride toxicity to provide a model in order to determine the effluent discharge limits. Methods: Daphnia magna bioassay in the absence of confounding factors was used to determine the maximum level of fluoride toxicity. Then, bioassay was repeated in the presence of the confounding factors (hardness, temperature and exposure time to determine their effects. Results: In the absence of intervening factors, fluoride LC50 levels determined after 24, 48 and 72 hours exposure were 4.9, 46.5 and 38.7 mg/l, respectively.. Also, the influence of confounding factors on LC50 values was reported significant by Minitab software. Conclusion: Increasing the water hardness reduced fluoride toxicity, and increasing the water temperature and exposure time increased fluoride toxicity in aquatic environments. Therefore, while determining the wastewater discharge limit in terms of fluoride concentration, it is essential to take the effect of confounding factors on fluoride toxicity into account in order to prevent toxicity in the open water resources.

  14. The Overview Of Water Pollution In The World

    Directory of Open Access Journals (Sweden)

    Van Vang Le

    2017-08-01

    Full Text Available Water is a precious resource but not everyone is aware of it. More than 1 billion people are missing about 20 to 50 liters of clean water each day to cater for basic needs such as eating and bathing. The phenomenon of oil exploration ocean shipping and petroleum-contaminated wastes is one of the causes of water pollution. It is estimated that about 1 billion tons of oil are transported by sea each year. Part of this volume about 0.1 to 0.3 is thrown into the sea in a relatively legal way the washing of oil tankers with seawater. The shipwreck is relatively regular disposal of lubricant or accidental dropping gasoline. The permeation rate of petroleum is seven times that of water which will cause the groundwater to become contaminated. About 1.6 million tons of hydrocarbons are discharged by rivers of industrialized nations. From the above causes we see that human consciousness is the main cause of pollution of water environment. Resources are not endless with the exploitation of an indiscriminate wing rampant run for market economy benefits without the appropriate treatment the water pollution is a certain matter. The importance is inevitable if people are unaware of the importance of water for life in the near future the resources will be exhausted.

  15. Bioassay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Bioassay Laboratory is an accredited laboratory capable of conducting standardized and innovative environmental testing in the area of aquatic ecotoxicology. The...

  16. Larval development ratio test with the calanoid copepod Acartia tonsa as a new bioassay to assess marine sediment quality.

    Science.gov (United States)

    Buttino, Isabella; Vitiello, Valentina; Macchia, Simona; Scuderi, Alice; Pellegrini, David

    2018-03-01

    The copepod Acartia tonsa was used as a model species to assess marine sediment quality. Acute and chronic bioassays, such as larval development ratio (LDR) and different end-points were evaluated. As a pelagic species, A. tonsa is mainly exposed to water-soluble toxicants and bioassays are commonly performed in seawater. However, an interaction among A. tonsa eggs and the first larval stages with marine sediments might occur in shallow water environments. Here we tested two different LDR protocols by incubating A. tonsa eggs in elutriates and sediments coming from two areas located in Tuscany Region (Central Italy): Livorno harbour and Viareggio coast. The end-points analyzed were larval mortality (LM) and development inhibition (DI) expressed as the percentage of copepods that completed the metamorphosis from nauplius to copepodite. Aims of this study were: i) to verify the suitability of A. tonsa copepod for the bioassay with sediment and ii) to compare the sensitivity of A. tonsa exposed to different matrices, such as water and sediment. A preliminary acute test was also performed. Acute tests showed the highest toxicity of Livorno's samples (two out of three) compared to Viareggio samples, for which no effect was observed. On the contrary, LDR tests with sediments and elutriates revealed some toxic effects also for Viareggio's samples. Results were discussed with regards to the chemical characterization of the samples. Our results indicated that different end-points were affected in A. tonsa, depending on the matrices to which the copepods were exposed and on the test used. Bioassays with elutriates and sediments are suggested and LDR test could help decision-makers to identify a more appropriate management of dredging materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Marine pollution

    International Nuclear Information System (INIS)

    Albaiges, J.

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants

  18. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    International Nuclear Information System (INIS)

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota

  19. Overview of the anaerobic toxicity caused by organic forest industry wastewater pollutants.

    NARCIS (Netherlands)

    Sierra-Alvarez, R.; Field, J.A.; Kortekaas, S.; Lettinga, G.

    1994-01-01

    Numerous types of organic environmental pollutants are encountered in forest industry effluents which potentially could inhibit consortia of anaerobic bacteria. The purpose of this study was to collect anaerobic bioassay data from the literature to better estimate the impact of these pollutants on

  20. SURFACE WATER POLLUTION WITH HEAVY METALS IN THE LOWER CATCHMENT OF JIU RIVER BASIN, ACCORDING TO THE WATER FRAMEWORK DIRECTIVE (2000/60/EC

    Directory of Open Access Journals (Sweden)

    ADINA SANDA ŞERBAN

    2011-03-01

    Full Text Available Surface water pollution with heavy metals in the lower catchment of Jiu river basin, according to the Water Framework Directive (2000/60/EC. The Water Framework Directive establishes a single transparent, effective and coherent water policy by defining a strategy to combat pollution by requiring specific action programs.Chemical pollution of surface water presents a threat to the aquatic environment with acute and chronic toxicity to aquatic organisms, accumulation in the ecosystem and losses of habitats and biodiversity, as well as a threat to human health (art.1 from Directive 2008/105/EC regarding the environmental quality standards for water policy.The purpose of this study is to evaluate the chemical status for surface water bodies in the lower catchment of Jiu river basin. The assessment was made taking into account the water impact of four heavy metals: cadmium (Cd, nickel (Ni, mercury (Hg and lead (Pb.

  1. Biomarkers and bioassays as alternative screening methods for the presence and effects of PCDD, PCDF and PCB

    International Nuclear Information System (INIS)

    Bosveld, A.T.C.B.; Berg, M.V.

    1994-01-01

    Polyhalogenated aromatic hydrocarbons (PHAH) are wide spread, highly toxic, environmental contaminants. As such they pose risks for both humans and wildlife. For risk assessment purposes, concentrations are generally analyzed by HRGC-HR/LRMS. With the analytical data, mixture toxicity is calculated using the TEF concept. With this method only the defined congeners are taken into account and additivity for all congeners is assumed, whereas synergistic and antagonistic effects for several PCDD/F in combination with PCB have also been reported. To avoid these problems and high analytical costs, bioassays can be used for screening purposes. Cytochrome P 450 1 A 1 induction and vitamin A and thyroid hormone levels are shown to be useful markers for PHAH exposure. When bioassays based on cytochrome P 450 1 A 1 induction, in cultured cells, in multi-well culturing plates, are used, 2,3,7,8-TCDD detection limits <0.2 pg are possible. As such these bioassays are highly sensitive, cost effective and time saving. This application can be used as a pre-screening method to determine total ''dioxin'' content of environmental samples. (orig.)

  2. Contribution of Nutrient Pollution to Water Scarcity in the Water-Rich Northeastern United States

    Science.gov (United States)

    Hale, R. L.; Lopez, C.; Vorosmarty, C. J.

    2015-12-01

    Most studies of water stress focus on water-scarce regions such as drylands. Yet, even water-rich regions can be water stressed due to local water withdrawals that exceed supply or due to water pollution that makes water unusable. The northeastern United States (NE) is a water-rich region relative to the rest of the country, as it concentrates about 50% of total renewable water of the country. Yes the NE features relatively high water withdrawals, ~50 km3/yr, for thermo-power generation, agriculture, and industry, as well as to support a human population of about 70 million. At the same time, rivers and streams in the NE suffer from nutrient pollution, largely from agricultural and urban land uses. We asked: to what extent is the NE water stressed, and how do water withdrawals and water quality each contribute to water scarcity across the NE? We used information on county-level water withdrawals and runoff to calculate a water scarcity index (WSI) for 200 hydrologic units across the NE from 1987 to 2002. We used data on surface water concentrations of nitrogen to calculate the additional water necessary to dilute surface water pollution to weak, moderate, and strong water quality standards derived from the literature. Only considering withdrawals, we found that approximately 10% of the NE was water stressed. Incorporating a moderate water quality standard, 25% of the NE was water stressed. We calculated a dilution burden by sectors of water users and found that public utilities faced 41% of the total dilution burden for the region, followed by irrigation users at 21%. Our results illustrate that even water rich regions can experience water stress and even scarcity, where withdrawals exceed surface water supplies. Water quality contributes to water stress and can change the spatial patterns of water stress across a region. The common approach to address scarcity has required the use of inter-basin water transfers, or in the case of water quality-caused scarcity

  3. Ecotechnology: basis of a new immission concept in water pollution control.

    Science.gov (United States)

    Benndorf, J

    2005-01-01

    Beyond the traditional load reduction also an ecosystem-internal mechanism can be used to minimise the effects of water pollution. The control of the internal mechanisms is achieved through the optimisation of the ecosystem structure. This ecotechnology principle is based on the idea to reduce as much as possible the gap between the current (suboptimal) structural status and the optimum structure by intentional manipulations. The spectrum of such manipulations is very broad. A few examples are demonstrated. They comprise physical (e.g. stream morphology), chemical (e.g. enhancing the redox potential at the sediment-water interface) and biological (e.g. enhancing stocks of predatory fishes) control measures. It can be supposed that a new immission concept including the ecotechnology principle could be much more adequate to the demand of modern water pollution control than the traditional emission and imission concepts.

  4. Body ion loss as a bioindicator of water quality impaired by coal mining

    International Nuclear Information System (INIS)

    Grippo, R.S.; Dunson, W.A.

    1994-01-01

    Protection of surface waters receiving discharges from coal mines is currently based on performance standards set by the EPA after passage of the Clean Water Act. These standards were technology-driven and reflect the Best Achievable Control Technology (BAT) available at the time of promulgation. Changes proposed as part of the upcoming reauthorization of the US Clean Water Act suggest that such technology-based standards may be reevaluated in light of more recent information on the toxicological effect of mine discharges on aquatic biota. The authors present here a physiological-based method for evaluating the site-specific toxicity of mine-derived discharges into receiving waters. They tested the usefulness of the body ion loss rate bioassay by exposing fathead minnows, brook charr and stoneflies to coal mine-impacted waters (elevated acidity and trace metals) in the field and to artificial mine water (AMW) in the laboratory. Body ion loss rate was significantly correlated with levels of mine pollution in the field. Body ion loss measured in AMW revealed strong interactions between metals and acid. Because the test animals exhibited differing levels of sensitivity to mine discharge, the selection of an appropriate organism for the body ion loss bioassay may vary depending on the (1) physical characteristics, (2) chemical characteristics and (3) pre-existing level of mine impact of the receiving waters

  5. 77 FR 14837 - Bioassay at Uranium Mills

    Science.gov (United States)

    2012-03-13

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0057] Bioassay at Uranium Mills AGENCY: Nuclear Regulatory..., ``Bioassay at Uranium Mills.'' This guide describes a bioassay program acceptable to the NRC staff for uranium mills and applicable portions of uranium conversion facilities where the possibility of exposure...

  6. CONSTRUCTED WETLAND TECHNOLOGY TO PREVENT WATER RESOURCES POLLUTION

    Directory of Open Access Journals (Sweden)

    Zeki Gökalp

    2016-07-01

    Full Text Available Discharge of untreated waste waters into surface waters creates significant pollution in these resources. Wastewaters are most of the time discharged into seas, rivers and other water bodies without any treatments due to high treatment costs both in Turkey and throughout the world. Constructed wetlands, also called as natural treatment systems, are used as an alternative treatment system to conventional high-cost treatment systems because of their low construction, operation and maintenance costs, energy demands, easy operation and low sludge generation. Today, constructed wetland systems are largely used to treat domestic wastewaters, agricultural wastewaters, industrial wastewater and runoff waters and ultimately to prevent water pollution and to improve water quality of receiving water bodies. In present study, currently implemented practices in design, construction, operation and maintenance of constructed wetlands were assessed and potential mistakes made in different phases these systems were pointed out and possible solutions were proposed to overcome these problems.

  7. Effect of Water Pollution on Blood Elements in the Human Population of Hail, KSA

    Directory of Open Access Journals (Sweden)

    Elsayed Shokr AM

    2017-02-01

    Full Text Available The relationship between contaminated drinking water with trace elements and thyroid diseases hypertension, liver functions disorder and kidney functions disorder was studied in this research. The thyroid diseases hypertension, liver functions disorder and kidney functions disorder are due to contaminant drinking water with trace elements. The present study concerned with water toxicity. The heavy metals belonging to the most important pollutants. A strong relationship between contaminated drinking water with heavy metals from some of the stations of water shopping in Hail, KSA and thyroid diseases hypertension, liver functions disorder and kidney functions disorder has been identified in this study. These diseases are apparently related to contaminant drinking water with heavy metals such as Pb, Cd, Cu, Mo, Zn, Ni, Mn, Co and Cr. kidney functions disorder is related to contaminate drinking water with lead and cadmium, liver functions disorder to copper and molybdenum, and thyroid functions disorder to iodide, copper, and cadmium. Long-term exposure to lead, cadmium, zinc, iron, and arsenic in drinking-water is mainly related to primarily in the form of thyroid, liver, and kidney functions disorder. Studies of these diseases suggest that abnormal incidence in specific areas is related to toxic materials in the groundwater and thereby led to the contamination of drinking water in these areas. The result of this study showed that increase in the thyroid hormones, and liver functions test as AST and ALT enzymes. Also, there were increase in the hypertension and kidney functions test as creatinine and uric acid. These increases due to the pollution of drinking water by heavy metals.

  8. System of environmental and economic accounting for water pollution and the result analysis

    Science.gov (United States)

    Tan, Yarong

    2017-10-01

    With the gradual acceleration of China's industrialization process, the environmental pollution caused by industrial production is more and more serious, especially water pollution. To construct a System of Environmental and Economic Accounting for water pollution, to a certain extent, can promote the green development of national economy in China. The System of Environmental and Economic Accounting for water pollution is analyzed and studied in this paper.

  9. Modelling water fluxes for the analysis of diffuse pollution at the river basin scale

    NARCIS (Netherlands)

    Wit, de M.; Meinardi, C.R.; Wendland, F.; Kunkel, R.

    2000-01-01

    Diffuse pollution is a significant and sometimes even major component of surface water pollution. Diffuse inputs of pollutants to the surface water are related to runoff of precipitation. This means that the analysis of diffuse pollutant fluxes from the land surface to the surface water requires an

  10. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H.; Singer, Brett C.

    2014-03-01

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase

  11. Effects of Pollution on Marine Organisms.

    Science.gov (United States)

    Mearns, Alan J; Reish, Donald J; Oshida, Philip S; Morrison, Ann Michelle; Rempel-Hester, Mary Ann; Arthur, Courtney; Rutherford, Nicolle; Pryor, Rachel

    2017-10-01

    This review covers selected 2016 articles on the biological effects of pollutants and human physical disturbances on marine and estuarine plants, animals, ecosystems and habitats. The review, based largely on journal articles, covers field and laboratory measurement activities (bioaccumulation of contaminants, field assessment surveys, toxicity testing and biomarkers) as well as pollution issues of current interest including endocrine disrupters, emerging contaminants, wastewater discharges, dredging and disposal etc. Special emphasis is placed on effects of oil spills and marine debris due largely to the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico. Several topical areas reviewed in the past (ballast water and ocean acidification) were dropped this year. The focus of this review is on effects, not pollutant fate and transport. There is considerable overlap across subject areas (e.g.some bioaccumulation papers may be cited in other topical categories). Please use keyword searching of the text to locate related but distributed papers. Use this review only as a guide and please consult the original papers before citing them.

  12. Water quality assessment of the Borska Reka river using the WPI (Water Pollution Index method

    Directory of Open Access Journals (Sweden)

    Milijašević Dragana

    2011-01-01

    Full Text Available The Borska Reka river (47 km long, 373 km2 of basin area is located in eastern Serbia and it is the biggest tributary of the river Veliki Timok. It is also one of the most polluted watercourses in Serbia. Using the data of the Republic Hydrometeorological Service of Serbia, the paper analyzes water pollution using the combined physical-chemical WPI index (water pollution index over two periods: 1993-1996 and 2006-2009. The analysis of parameters showed significantly increased values of heavy metals (especially iron and manganese which are indicators of inorganic pollution (primarily because of mining, but also increased values of organic pollution indicators (Biological Oxygen Demand-BOD5, ammonium, coliform germs, as the result of uncontrolled domestic wastewater discharge.

  13. Pervious concrete physical characteristics and effectiveness in stormwater pollution reduction.

    Science.gov (United States)

    2016-04-01

    The objective of this research was to investigate the physical/chemical and water flow characteristics of various previous concrete : mixes made of different concrete materials and their effectiveness in attenuating water pollution. Four pervious con...

  14. Scenario-targeted toxicity assessment through multiple endpoint bioassays in a soil posing unacceptable environmental risk according to regulatory screening values.

    Science.gov (United States)

    Rodriguez-Ruiz, A; Etxebarria, J; Boatti, L; Marigómez, I

    2015-09-01

    Lanestosa is a chronically polluted site (derelict mine) where the soil (Lanestosa (LA) soil) exceeds screening values (SVs) of regulatory policies in force (Basque Country; Europe) for Zn, Pb and Cd. A scenario-targeted toxicity assessment was carried out on the basis of a multi-endpoint bioassay approach. Acute and chronic toxicity bioassays were conducted with selected test species (Vibrio fischeri, Dictyostelium discoideum, Lactuca sativa, Raphanus sativus and Eisenia fetida) in combination with chemical analysis of soils and elutriates and with bioaccumulation studies in earthworms. Besides, the toxicity profile was compared with that of the mine runoff (RO) soil and of a fresh artificially polluted soil (LAAPS) resembling LA soil pollutant profile. Extractability studies in LA soil revealed that Pb, Zn and Cd were highly available for exchange and/or release into the environment. Indeed, Pb and Zn were accumulated in earthworms and LA soil resulted to be toxic. Soil respiration, V. fischeri, vegetative and developmental cycles of D. discoideum and survival and juvenile production of E. fetida were severely affected. These results confirmed that LA soil had unacceptable environmental risk and demanded intervention. In contrast, although Pb and Zn concentrations in RO soil revealed also unacceptable risk, both metal extractability and toxicity were much lower than in LA soil. Thus, within the polluted site, the need for intervention varied between areas that posed dissimilar risk. Besides, since LAAPS, with a high exchangeable metal fraction, was the most toxic, ageing under in situ natural conditions seemingly contributed to attenuate LA soil risk. As a whole, combining multi-endpoint bioassays with scenario-targeted analysis (including leaching and ageing) provides reliable risk assessment in soils posing unacceptable environmental risk according to SVs, which is useful to optimise the required intervention measures.

  15. Developing a multi-pollutant conceptual framework for the selection and targeting of interventions in water industry catchment management schemes.

    Science.gov (United States)

    Bloodworth, J W; Holman, I P; Burgess, P J; Gillman, S; Frogbrook, Z; Brown, P

    2015-09-15

    In recent years water companies have started to adopt catchment management to reduce diffuse pollution in drinking water supply areas. The heterogeneity of catchments and the range of pollutants that must be removed to meet the EU Drinking Water Directive (98/83/EC) limits make it difficult to prioritise areas of a catchment for intervention. Thus conceptual frameworks are required that can disaggregate the components of pollutant risk and help water companies make decisions about where to target interventions in their catchments to maximum effect. This paper demonstrates the concept of generalising pollutants in the same framework by reviewing key pollutant processes within a source-mobilisation-delivery context. From this, criteria are developed (with input from water industry professionals involved in catchment management) which highlights the need for a new water industry specific conceptual framework. The new CaRPoW (Catchment Risk to Potable Water) framework uses the Source-Mobilisation-Delivery concept as modular components of risk that work at two scales, source and mobilisation at the field scale and delivery at the catchment scale. Disaggregating pollutant processes permits the main components of risk to be ascertained so that appropriate interventions can be selected. The generic structure also allows for the outputs from different pollutants to be compared so that potential multiple benefits can be identified. CaRPow provides a transferable framework that can be used by water companies to cost-effectively target interventions under current conditions or under scenarios of land use or climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Risk analysis of emergent water pollution accidents based on a Bayesian Network.

    Science.gov (United States)

    Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie

    2016-01-01

    To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Residuals Management and Water Pollution Control Planning.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This pamphlet addresses the problems associated with residuals and water quality especially as it relates to the National Water Pollution Control Program. The types of residuals and appropriate management systems are discussed. Additionally, one section is devoted to the role of citizen participation in developing management programs. (CS)

  18. Chemical composition of water hyacinth (Eichhronia Crassipes) a comparison indication of heavy metal pollution in egyptian water bodies. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-sabour, M F [Soil pollution unit, Soil and water Department. Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); Abdel-Haleem, A S [Hot Lab. Center, Atomic Energy Authority, Cairo (Egypt); Zohny, E [Physics Department, Faculty of Science, Cairo University, Beni-Sweif Branch, Cairo (Egypt)

    1996-03-01

    Water hyacinth is tested as an indicator for pollution in egyptian fresh surface waters. Chemical composition of water hyacinth as affected area of collection (water bodies) was studied and the suitability of this plant as a biological indicator for water pollution is discussed. Water hyacinth samples were collected three times per year for two years (1991-1993). Sample sites include one location in the river nile (at Helwan area), one site in Ismaillia canal, (at Mostrod industrial area), and one site in Abo-Zabal drain (at Abo-Zabal city). The concentration of 19 major major and trace elements in plant samples were determined by prompt gamma-ray neutron activation analysis. Results indicated that plant parts as well as location have a significant effect on elements content. Water hyacinth roots showed high affinity for accumulation of trace elements. 5 tabs.

  19. Chemical composition of water hyacinth (Eichhronia Crassipes) a comparison indication of heavy metal pollution in egyptian water bodies. Vol. 4

    International Nuclear Information System (INIS)

    Abdel-sabour, M.F.; Abdel-Haleem, A.S.; Zohny, E.

    1996-01-01

    Water hyacinth is tested as an indicator for pollution in egyptian fresh surface waters. Chemical composition of water hyacinth as affected area of collection (water bodies) was studied and the suitability of this plant as a biological indicator for water pollution is discussed. Water hyacinth samples were collected three times per year for two years (1991-1993). Sample sites include one location in the river nile (at Helwan area), one site in Ismaillia canal, (at Mostrod industrial area), and one site in Abo-Zabal drain (at Abo-Zabal city). The concentration of 19 major major and trace elements in plant samples were determined by prompt gamma-ray neutron activation analysis. Results indicated that plant parts as well as location have a significant effect on elements content. Water hyacinth roots showed high affinity for accumulation of trace elements. 5 tabs

  20. Bioassay programs for radiation protection

    International Nuclear Information System (INIS)

    1979-01-01

    This report discusses the rationale for the establishment of bioassay programs as a means of protection for radiation workers in the nuclear industry. The bioassay program of the Radiation Protection Bureau is described for the years 1966-1978 and plans for future changes are outlined. (auth)

  1. Assessment of Water Quality and Identification of Polluted Risky Regions Based on Field Observations & GIS in the Honghe River Watershed, China

    Science.gov (United States)

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie; Liu, Yuanmin; Deng, Cai; Nie, Ning

    2015-01-01

    Water quality assessment at the watershed scale requires not only an investigation of water pollution and the recognition of main pollution factors, but also the identification of polluted risky regions resulted in polluted surrounding river sections. To realize this objective, we collected water samplings from 67 sampling sites in the Honghe River watershed of China with Grid GIS method to analyze six parameters including dissolved oxygen (DO), ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), total nitrogen (TN) and total phosphorus (TP). Single factor pollution index and comprehensive pollution index were adopted to explore main water pollutants and evaluate water quality pollution level. Based on two evaluate methods, Geo-statistical analysis and Geographical Information System (GIS) were used to visualize the spatial pollution characteristics and identifying potential polluted risky regions. The results indicated that the general water quality in the watershed has been exposed to various pollutants, in which TP, NO2-N and TN were the main pollutants and seriously exceeded the standard of Category III. The zones of TP, TN, DO, NO2-N and NH3-N pollution covered 99.07%, 62.22%, 59.72%, 37.34% and 13.82% of the watershed respectively, and they were from medium to serious polluted. 83.27% of the watershed in total was polluted by comprehensive pollutants. These conclusions may provide useful and effective information for watershed water pollution control and management. PMID:25768942

  2. Nonpoint source water pollution abatement and the feasibility of voluntary programs

    Science.gov (United States)

    Sawicki, David S.; Judd, Lynne B.

    1983-09-01

    This article details a case study of a voluntary, decentralized institutional arrangement for nonpint source water pollution control used in the Root River watershed in southeastern Wisconsin. This watershed was chosen because of its mix of urban, agricultural, and urbanizing land uses. The project objectives were to monitor and draw conclusions about the effectiveness of a voluntary, decentralized institutional system, to specify deficiencies of the approach and suggest means to correct them, and to use the conclusions to speculate about the need for regulations regarding nonpoint source pollution control or the appropriateness of financial incentives for nonpoint source control. Institutional factors considered include diversity of land uses in the watershed, educational needs, economic conditions, personality, water quality, number of agencies involved, definition of authority, and bureaucratic requirements

  3. Zooplankton variability in polluted and unpolluted waters off Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Gajbhiye, S.N.; Desai, B.N.

    Zooplankton abundance in the waters around Bombay was studied at Versova, Bombay Harbour (less polluted), Mahim and Thana (highly polluted) from October 1977 to December 1978. A rich zooplankton population was observed throughout the period of study...

  4. Air pollution effects on Quercus Ilex plants

    International Nuclear Information System (INIS)

    Pavone, P.; Salmeri, C.; Spampinato, G.; Fallico, R.; Ferrante, M.

    1996-01-01

    To test air pollution effects on natural forest vegetation, the soil chemistry and the floristic composition of two Quercus ilex L. woods in the Hyblean region (S-E Sicily), unequally exposed to air pollutants are compared. Acidification phenomena are investigated by the soil chemical changes between the trunk base areas, affected by stem flow water, and the surrounding soil, only influenced by canopy drip. Soil chemical changes, floristic poorness and direct damage to the Q. ilex leaves are only detected in the Climiti Mountains holm-oak woods, located near the Siracusa petrochemical complex, while they do not appear at Cava d'Ispica, sited far from any industry and seldom exposed to winds carrying pollutants

  5. Toward an effective adsorbent for polar pollutants: Formaldehyde adsorption by activated carbon

    International Nuclear Information System (INIS)

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-01-01

    Highlights: • Activated carbon fiber with mild activation condition is useful as adsorbent for polar pollutants. • Diverse variations are investigated for developing an effective adsorbent. • Surface functional group is the most important factor for capacity as a adsorbent. • Surface functional groups on ACFs are investigated using micro-ATR FTIR. -- Abstract: Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital

  6. Calculation of the surface water pollution index in the evaluation of environmental component of product life cycle

    Directory of Open Access Journals (Sweden)

    Олег Аскольдович Проскурнин

    2015-05-01

    Full Text Available The assessment feasibility of the combined effect of the product life cycle on the environment is grounded. As an example, the pollution of surface waters at the production stage is considered in the article. A mechanism of ranking indicators of surface water pollution according to their importance is proposed. An algorithm for checking the consistency of the statistical expert judgment in determining weight coefficient for the indicators of pollution, based on the use of the concordance coefficient, is given

  7. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  8. Soil and water pollution in a banana production region in tropical Mexico

    OpenAIRE

    Geissen, V.; Que Ramos, F.; Bastidas-Bastidas, de, P.J.; Díaz-González, G.; Bello-Mendoza, R.; Huerta-Lwanga, E.; Ruiz-Suárez, L.E.

    2010-01-01

    The effects of abundant Mancozeb (Mn, Zn— bisdithiocarbamate) applications (2.5 kg ha-1week-1 for 10 years) on soil and surface-, subsurface- and groundwater pollution were monitored in a banana production region of tropical Mexico. In soils, severe manganese accumulation was observed, wheras the main metabolite ethylenethiourea was near the detection limit. Surface and subsurface water was highly polluted with ethylenethiourea, the main metabolite of Mancozeb (22.5 and 4.3 lg L-1, respective...

  9. Nitrate pollution and surface water chemistry in Shimabara, Nagasaki Prefecture, Japan

    Science.gov (United States)

    Nakagawa, K.; Amano, H.

    2017-12-01

    Shimabara city has been experiencing serious nitrate pollution in groundwater. To evaluate nitrate pollution and water chemistry in surface water, water samples were collected at 42 sampling points in 15 rivers in Shimabara including a part of Unzen city from January to February 2017. Firstly, spatial distribution of water chemistry was assessed by describing stiff and piper-trilinear diagrams using major ions concentrations. Most of the samples showed Ca-HCO3 or Ca-(NO3+SO4) water types. It corresponds to groundwater chemistry. Some samples were classified into characteristic water types such as Na-Cl, (Na+K)-HCO3, and Ca-Cl. These results indicate sea water mixing and anthropogenic pollution. At the upstream of Nishi-river, although water chemistry showed Ca-HCO3, ions concentrations were higher than that of the other rivers. It indicates that this site was affected by the peripheral anthropogenic activities. Secondly, nitrate-pollution assessment was performed by using NO3-, NO2-, coprostanol (5β(H)-Cholestan-3β-ol), and cholestanol (5α(H)-Cholestan-3β-ol). NO2-N was detected at the 2 sampling points and exceeded drinking standard 0.9 mg L-1 for bottle-fed infants (WHO, 2011). NO3-N + NO2-N concentrations exceeded Japanese drinking standard 10 mg L-1 at 18 sampling points. The highest concentration was 27.5 mg L-1. Higher NO3-N levels were observed in the rivers in the northern parts of the study area. Coprostanol has been used as a fecal contamination indicator, since it can be found in only feces of higher animals. Coprostanol concentrations at 8 sampling points exceeded 700 ng L-1 (Australian drinking water standard). Coprostanol has a potential to distinguish the nitrate pollution sources between chemical fertilizer or livestock wastes, since water samples with similar NO3-N + NO2-N concentration showed distinct coprostanol concentration. The sterols ratio (5β/ (5β+5α)) exceeded 0.5 at 18 sampling points. This reveals that fecal pollution has occurred.

  10. Kaschnitz, Enzensberger, and Sandig: The Ecopoetics of Water Pollution

    OpenAIRE

    Charlotte Melin

    2016-01-01

    This ecocritical reading of Marie Luise Kaschnitz’s poetic cycle “Rückkehr nach Frankfurt” ‘Return to Frankfurt’ (1945/46), Hans Magnus Enzensberger’s epic poem Der Untergang der Titanic ‘ The Sinking of the Titanic ’ (1978), and a 21st-century poem by Ulrike Almut Sandig analyzes key shifts in poetic representations of water pollution. The essay explores underlying cultural and political attitudes about water that define literary depictions of its pollution. It argue...

  11. Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2015-01-01

    This is the first global assessment of nitrogen-related water pollution in river basins with a specification of the pollution by economic sector, and by crop for the agricultural sector. At a spatial resolution of 5 by 5 arc minute, we estimate anthropogenic nitrogen (N) loads to freshwater,

  12. Water Pollution Abstracts. Volume 43, Number 4, Abstracts 645-849.

    Science.gov (United States)

    WATER POLLUTION, *ABSTRACTS, PURIFICATION, WASTES(INDUSTRIAL), CONTROL, SEWAGE, WATER SUPPLIES, PUBLIC HEALTH, PETROLEUM PRODUCTS, DEGRADATION, DAMS...ESTUARIES, PLANKTON, PHOTOSYNTHESIS, VIRUSES, SEA WATER , MICROBIOLOGY, UNITED KINGDOM.

  13. Biological methods used to assess surface water quality

    Directory of Open Access Journals (Sweden)

    Szczerbiñska Natalia

    2015-12-01

    Full Text Available In accordance with the guidelines of the Water Framework Directive 2000/60 (WFD, both ecological and chemical statuses determine the assessment of surface waters. The profile of ecological status is based on the analysis of various biological components, and physicochemical and hydromorphological indicators complement this assessment. The aim of this article is to present the biological methods used in the assessment of water status with a special focus on bioassay, as well as to provide a review of methods of monitoring water status. Biological test methods include both biomonitoring and bioanalytics. Water biomonitoring is used to assess and forecast the status of water. These studies aim to collect data on water pollution and forecast its impact. Biomonitoring uses organisms which are characterized by particular vulnerability to contaminants. Bioindicator organisms are algae, fungi, bacteria, larval invertebrates, cyanobacteria, macroinvertebrates, and fish. Bioanalytics is based on the receptors of contaminants that can be biologically active substances. In bioanalytics, biosensors such as viruses, bacteria, antibodies, enzymes, and biotests are used to assess degrees of pollution.

  14. [Assessment of Cyto- and Genotoxicity of Underground Waters from the Far Eastern Center on Radioactive Waste Treatment Site].

    Science.gov (United States)

    Oudalova, A A; Pyatkova, S V; Geras'kin, S A; Kiselev, S M; Akhromeev, S V

    2016-01-01

    This study has been completed in the frames of activities on the environment assessment in the vicinity of the Far Eastern center (FEC) on radioactive waste treatment (a branch of Fokino, Sysoev Bay). Underground waters collected at the FEC technical site were surveyed both with instrumental techniques and bioassays. Concentrations of some chemicals (ranged to the third hazard category) in the samples collected are over the permitted limits. Activities of 137Cs and 90Sr in waters amount up to 3.8 and 16.2 Bq/l, correspondingly. The integral pollution index is over 1 in all the samples and could amount up to 165. The Allium-test application allows the detection of the sample points where underground waters have an enhanced mutagenic potential. Dependencies between biological effects and pollution levels are analyzed. The findings obtained could be used for the monitoring optimized and decision making on rehabilitation measures to decrease negative influence of the enterprise on the environment.

  15. Pollution effects on fisheries — potential management activities

    Science.gov (United States)

    Sindermann, C. J.

    1980-03-01

    Management of ocean pollution must be based on the best available scientific information, with adequate consideration of economic, social, and political realities. Unfortunately, the best available scientific information about pollution effects on fisheries is often fragmentary, and often conjectural; therefore a primary concern of management should be a critical review and assessment of available factual information about effects of pollutants on fish and shellfish stocks. A major problem in any such review and assessment is the separation of pollutant effects from the effects of all the other environmental factors that influence survival and well-being of marine animals. Data from long-term monitoring of resource abundance, and from monitoring of all determinant environmental variables, will be required for analyses that lead to resolution of the problem. Information must also be acquired about fluxes of contaminants through resource-related ecosystems, and about contaminant effects on resource species as demonstrated in field and laboratory experiments. Other possible management activities include: (1) encouragement of continued efforts to document clearly the localized and general effects of pollution on living resources; (2) continued pressure to identify and use reliable biological indicators of environmental degradation (indicators of choice at present are: unusually high levels of genetic and other anomalies in the earliest life history stages; presence of pollution-associated disease signs, particularly fin erosion and ulcers, in fish; and biochemical/physiological changes); and (3) major efforts to reduce inputs of pollutants clearly demonstrated to be harmful to living resources, from point sources as well as ocean dumping. Such pollution management activities, based on continuous efforts in stock assessment, environmental assessment, and experimental studies, can help to insure that rational decisions will be made about uses and abuses of coastal

  16. Method of and device for detecting oil pollutions on water surfaces

    Science.gov (United States)

    Belov, Michael Leonidovich [Moscow, RU; Gorodnichev, Victor Aleksandrovich [Moscow, RU; Kozintsev, Valentin Ivanovich [Moscow, RU; Smimova, Olga Alekseevna [Moscow, RU; Fedotov, Yurii Victorovich [Moscow, RU; Khroustaleva, Anastasiva Michailovnan [Moscow, RU

    2008-08-26

    Detection of oil pollution on water surfaces includes providing echo signals obtained from optical radiation of a clean water area at two wavelengths, optically radiating an investigated water area at two wavelengths and obtaining echo signals from the optical radiation of the investigated water area at the two wavelengths, comparing the echo signals obtained from the radiation of the investigated area at two wavelengths with the echo signals obtained from the radiation of the clean water area, and based on the comparison, determining presence or absence of oil pollution in the investigated water area.

  17. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    Science.gov (United States)

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  18. Harmful Algal Blooms in Asia: an insidious and escalating water pollution phenomenon with effects on ecological and human health

    Directory of Open Access Journals (Sweden)

    Patricia M Glibert

    2014-02-01

    Full Text Available Harmful Algal Blooms (HABs, those proliferations of algae that causeenvironmental, economic, or human health problems, are increasing in frequency,duration, and geographic extent due to nutrient pollution. The scale of the HABproblem in Asia has escalated in recent decades in parallel with the increase in useof agricultural fertilizer, the development of aquaculture, and a growing population.Three examples, all from China but illustrative of the diversity of events and theirecological, economic, and human health effects throughout Asia, are highlightedhere. These examples include inland (Lake Tai or Taihu as well as offshore (EastChina Sea and Yellow Sea waters. The future outlook for controlling these bloomsis bleak. The effects of advancing industrialized agriculture and a continually growingpopulation will continue to result in more nutrient pollution and more HABs—-and more effects - in the foreseeable future.

  19. Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China.

    Science.gov (United States)

    Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan

    2013-08-01

    Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.

  20. Purification of polluted water with spent mushroom (Agaricus bisporus) substrate: from agricultural waste to biosorbent of phenanthrene, Cd and Pb.

    Science.gov (United States)

    García-Delgado, C; Alonso-Izquierdo, M; González-Izquierdo, M; Yunta, F; Eymar, E

    2017-07-01

    The present research was aimed to (i) report the recycling of spent A. bisporus substrate (SAS) to remove heavy metals (Cd and Pb) and phenanthrene (Phe) from polluted water and (ii) assess the possibility to use the treated water for irrigation. Batch experiments were carried out to assess, firstly, the effect of interaction time between pollutants with SAS and, secondly, the pH of the polluted water. Then a biofilter was designed by using pressurized glass columns. Chemical parameters such as pH, electrical conductivity and content of Pb, Cd, Phe, nutrients (NPK) and Cl - were determined. Equilibrium for contaminants was quickly reached (1-2 h). The pH of the polluted water was the key factor for pollutants' adsorption. The polluted water's pH was increased after biofilter interaction. Phe was not detected in any fraction. Pb and Cd sorption rates were higher than 99%. The pollutant concentrations were within the permitted range to be used for agriculture purposes. Purified water showed significant concentrations of NPK, indicating its potential use as fertilizer. The SAS shows potential to be used as Phe, Pb and Cd biosorbent and the resulting treated water can be used for irrigation according to pollutant contents and agronomical evaluation.

  1. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  2. Water Quality Protection from Nutrient Pollution: Case ...

    Science.gov (United States)

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  3. Regulating water pollution in China and the European Union in terms of agricultural pollution

    NARCIS (Netherlands)

    Dai, Liping

    2015-01-01

    Regulatory instruments, are the most commonly used policy instruments in both China and the EU. This article explores how China and the EU establish their water quality objectives by regulation and how they design implementation strategies, with a particular focus of agricultural water pollution

  4. Chemical modelling as a management tool for water pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Limpitlaw, D. [University of the Witwatersrand, Johannesburg (South Africa). Dept. of Mining Engineering

    1996-12-31

    In a colliery currently being re-mined by opencast methods, the coal seam was originally extracted using bord and pillar mining. Depressions in the seam floor have facilitated the formation of large underground water bodies. This water has become acidic and contaminated by heavy metals. Mine water is treated by a liming plant and then released into evaporation pans. Seepage from the pans enters a natural wetlands. The de-watering of old workings ahead of mining periodically subjects the liming plant to large quantities of low quality water, and a nett export of salts such as sulphate occurs. As the mine is situated in a sensitive river catchment, this pollution is unacceptable. A chemical speciation program developed by the US Environmental Protection Agency was used to analyse effluent from the liming plant and wetland. Liming plant effluent water was found to vary greatly due to the conditions prevalent in the different water bodies. The liming plant and wetland were periodically subjected to pollution loads beyond the wetland`s assimilative capacity, resulting failure of the system. Despite this, the software provided evidence of the wetland`s pollution-ameliorating potential. 8 refs., 12 figs.

  5. Investigation of the adsorption properties and structures of porous materials for adsorptive removal of pollutants from water

    OpenAIRE

    ZAHRA ABBASI

    2017-01-01

    Adsorption is a low cost and effective method for the removal of non-biodegradable and harmful pollutants from water which has been widely used in industry. Porous and nanoporous materials such as metal organic frameworks (MOFs) and fly ash wastes were used as adsorbents for the removal of pollutants from water. The study showed MOF adsorbent could be fabricated as beads for easy handling and recycling due to the very low buoyancy. Temperature of heat treatment had significant effect on adsor...

  6. Regulations for the peat production water pollution control; Turvetuotannon vesiensuojeluohjeisto

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, M.; Heikkinen, K.; Ihme, R. [ed.] [VTT Communities and Infrastructure, Espoo (Finland)

    1996-12-31

    The regulations for peat production water pollution control include the latest information on anti-pollution constructions applicable to peat production including field ditches, sedimentation basins, overland flow areas, forest soil saturation, evaporation basins, chemicalization, detention of runoff and artificial flood plains. Information on subsurface drainage in peat mining is also given. The regulations deal with environmental viewpoints, planning of water protection and information on how to build, use and maintain anti-pollution constructions. Special attention is given to the soil conditions, because they play an important role in the building of different constructions. (orig.) (48 refs.)

  7. Polychlorinated Biphenyls Water Pollution along the River Nile, Egypt

    Directory of Open Access Journals (Sweden)

    Ayman Mohamed Megahed

    2015-01-01

    Full Text Available Ten polychlorinated biphenyl (PCB congeners were determined in water samples collected along the River Nile using gas chromatography-electron capture detector (GC-ECD. PCB concentrations ranged from 14 to 20 μg/L, which were higher than those reported in previous studies, indicating serious PCB pollution in the River Nile. PCB congener profiles varied depending on the sampling sties. PCB-138 was the predominant congener accounting for more than 18% of total PCBs. The composition of PCB congeners in the water revealed that highly chlorinated PCB technical mixtures such as Aroclor 1254 was the main PCB production historically used in Egypt. An increasing trend in PCB levels from the upper stream to the Nile estuaries was observed. The calculated flux of PCBs indicated that 6.8 tons of PCBs is dumped into the Mediterranean Sea each year from the River Nile. The hazard quotients and carcinogenic risk caused by PCB pollution in the River Nile were above the acceptable level indicating that PCBs in the River Nile water pose adverse health effects for all age groups. Our findings revealed that PCBs possess a serious risk to the Egyptian population that depends mainly on the River Nile as a source of water. Thus, stricter legislation and regulatory controls should be applied to reduce the risk of PCBs in Egypt.

  8. Polychlorinated Biphenyls Water Pollution along the River Nile, Egypt.

    Science.gov (United States)

    Megahed, Ayman Mohamed; Dahshan, Hesham; Abd-El-Kader, Mahdy A; Abd-Elall, Amr Mohamed Mohamed; Elbana, Mariam Hassan; Nabawy, Ehab; Mahmoud, Hend A

    2015-01-01

    Ten polychlorinated biphenyl (PCB) congeners were determined in water samples collected along the River Nile using gas chromatography-electron capture detector (GC-ECD). PCB concentrations ranged from 14 to 20 μg/L, which were higher than those reported in previous studies, indicating serious PCB pollution in the River Nile. PCB congener profiles varied depending on the sampling sties. PCB-138 was the predominant congener accounting for more than 18% of total PCBs. The composition of PCB congeners in the water revealed that highly chlorinated PCB technical mixtures such as Aroclor 1254 was the main PCB production historically used in Egypt. An increasing trend in PCB levels from the upper stream to the Nile estuaries was observed. The calculated flux of PCBs indicated that 6.8 tons of PCBs is dumped into the Mediterranean Sea each year from the River Nile. The hazard quotients and carcinogenic risk caused by PCB pollution in the River Nile were above the acceptable level indicating that PCBs in the River Nile water pose adverse health effects for all age groups. Our findings revealed that PCBs possess a serious risk to the Egyptian population that depends mainly on the River Nile as a source of water. Thus, stricter legislation and regulatory controls should be applied to reduce the risk of PCBs in Egypt.

  9. Water Pollution Control Across the Nation

    Science.gov (United States)

    Environmental Science and Technology, 1973

    1973-01-01

    Reviewed are accomplishments, problems, and frustrations faced by individual states in meeting requirements of P.L. 92-500, Federal Water Pollution Control Act Amendments of 1972. State Environmental officials complain the new law may be a hindrance to established cleanup programs. Statistics and charts are given. (BL)

  10. Vehicle for removing pollutants, especially oil, from the surface of waters

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, J

    1968-11-28

    A vessel for removing pollutants from the surface of water consists of wings extending transversally from the axis of the vessel. The wings are partially immersed in the water and are arranged at an angle, so that when the vessel is in motion, the oil is driven over the upper edge of the wing into a separation chamber. The chamber has a circular cross section and ends in an opening in the hull of the ship, where the polluting oil is collected. The opening and the channel have such a shape that the mixture of water and pollutant enters the opening in a turbulent stream. (8 claims)

  11. The use of bacteria for detecting toxic effects of pollutants in soil and water

    Science.gov (United States)

    Obiakor, Maximilian; Wilson, Susan; Tighe, Matthew; Pereg, Lily

    2017-04-01

    Microbial abundance and diversity are essential for sustaining soil structure and function and have been strongly linked to human health and wellbeing. Antimony (Sb) in the environment can present an ecological hazard and depending on concentration can be lethal. The toxic effects of Sb(III) and Sb(V) on the model soil bacterium Azospirillum brasilense Sp7 were assessed in exposure-dose-response assays and water samples from an Sb contaminated creek were analyzed for bacterial mortality. In both cases, Sb(III) and Sb(V) greatly affected the survival of A. brasilense Sp7 cells. The Sb(III) had a greater toxic effect than Sb(V) at all concentrations tested. Critical concentrations of Sb also caused variant colonies to appear, indicating both acute and sub-lethal effects, which were dose and time dependent. This work demonstrates the usefulness of A. brasilense as an indicator species to detect harmful effects of an environmental pollutant of emerging concern.

  12. Bioassay method for Uranium in urine by Delay Neutron counting; Metoda Bioassay Uranium dalam urin dengan pencacahan Netron Kasip

    Energy Technology Data Exchange (ETDEWEB)

    Suratman,; Purwanto,; Sukarman-Aminjoyo, [Yogyakarta Nuclear Research Centre, National Atomic Energy Agency, Yogyakarta (Indonesia)

    1996-04-15

    A bioassay method for uranium in urine by neutron counting has been studied. The aim of this research is to obtain a bioassay method for uranium in urine which is used for the determination of internal dose of radiation workers. The bioassay was applied to the artificially uranium contaminated urine. The weight of the contaminant was varied. The uranium in the urine was irradiated in the Kartini reactor core, through pneumatic system. The delayed neutron was counted by BF3 neutron counter. Recovery of the bioassay was between 69.8-88.8 %, standard deviation was less than 10 % and the minimum detection was 0.387 {mu}g.

  13. Ecotoxicological Assessment of Water and Sediment Pollution of the Iskar River bellow Samokov

    Directory of Open Access Journals (Sweden)

    Ivan Diadovski

    2005-04-01

    Full Text Available A system of integral ecological indices has been worked out to assess the level of pollution of water and sediments with hazardous substances. A model for the dynamics of the integral index for water and sediments pollution is proposed. This index was applied for ecotoxicological assessment of water and sediments pollution of the Iskar river bellow Samokov. A modification method on time series analysis is applied.

  14. Mine water pollution studies in Chapha Incline, Umaria Coalfield, Eastern Madhya Pradesh, India

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, V.; Banerjee, A.K. [Hari Singh Gour University, Sagar (India). Dept. of Chemistry

    1992-06-01

    Mining effects physical and chemical changes in the mine environment resulting in water pollution. Based on the geological distribution the coal mines in the state of Madhya Pradesh, the Coalfield can be categorised into three basins Northern, Southern and Satpura. The Northern belt lies along the Sone Valley whilst the Southern one lies within Mahanadi Valley and the Satpura basin lies south of the alluvial tract. Mine water pollution study reported in this paper is concerned with Chapha Incline, Umaria Coalfield in Eastern Madhya Pradesh. The water analysis was carried out on representative samples obtained from the site on pre-Monsoon and post-monsoon seasons, and reference samples were obtained from the area in the vicinity of the site of investigation. The samples were analysed in the laboratory for determining water quality parameters including trace element detection and microbial analyses. The chemical analysis results of mine water are presented in the form of Durov diagrams. 10 refs., 3 figs., 4 tabs.

  15. Main types of environmental pollution the contributory causes, the effects on environment and the suggested remedial measures

    International Nuclear Information System (INIS)

    Hussain, M.

    1995-01-01

    In this article the main types of environmental pollution, the contributory causes, the effects on environment and suggested remedial measures have been described. The fundamental types of environmental pollution are land pollution, water pollution and air pollution. Many artificial and natural factors contribute towards land pollution. Several remedial measures have suggested in this article, some of them are provision of clean water by municipal agencies, toxic wastes or nuclear wastes should not disposed off in the sea. (A.B.)

  16. Treatment of oil pollution on water

    International Nuclear Information System (INIS)

    Haywood, K.H.; Haywood, P.C.; Haywood, K.S.

    1991-01-01

    Oil or other polluting material on or near the surface of a body of water is treated by a device comprising a tube having a slot through which fluid within the tube emerges. A cover directs the emerging fluid over the curved outer surface of the tube. The fluid may be water or a mixture of water and a dispersant. The device may be provided with fins. Some or all of the treated water may be collected in a tank and some or all may be returned to the sea. The device may be rendered buoyant by a pair of floats or may be part of a larger sea-going vessel. (Author)

  17. Kaschnitz, Enzensberger, and Sandig: The Ecopoetics of Water Pollution

    Directory of Open Access Journals (Sweden)

    Charlotte Melin

    2016-01-01

    Full Text Available This ecocritical reading of Marie Luise Kaschnitz’s poetic cycle “Rückkehr nach Frankfurt” ‘Return to Frankfurt’ (1945/46, Hans Magnus Enzensberger’s epic poem Der Untergang der Titanic ‘ The Sinking of the Titanic ’ (1978, and a 21st-century poem by Ulrike Almut Sandig analyzes key shifts in poetic representations of water pollution. The essay explores underlying cultural and political attitudes about water that define literary depictions of its pollution. It argues that these texts register a conceptual turn away from aesthetic appreciation of water in terms of its culturally rich, purifying properties and toward scientific understanding that emphasizes the social and legal dimensions of water pollution. Ecocritical interpretation of such works, thus, enables deeper understanding of ongoing transformations in the lyric genre. The concluding interpretation of Sandig’s text points to the increasing presence of unnatural elements in representations of the environment as symptomatic of broader literary changes. It argues that developments in German nature poetry since 1945 have increasingly led poets to experiment with expressive possibilities for lyric poetry that foreground cathartic responses to human and environmental history.

  18. ANALYSIS OF SEA WATER POLLUTION IN COASTAL MARINE DISTRICT TUBAN TO THE QUALITY STANDARDS OF SEA WATER WITH USING STORET METHOD

    Directory of Open Access Journals (Sweden)

    Perdana Ixbal Spanton

    2017-05-01

    Full Text Available The sea water is a component that interacts with the terrestrial environment, where sewage from the land will lead to the sea. Waste containing these pollutants will enter into coastal waters and marine ecosystems. Partially soluble in water, partially sinks to the bottom and was concentrated sediment, and partly into the body tissues of marine organisms. This study was conducted to determine the level of pollution of sea water on the coast in the district of Tuban. This research was conducted in the Coastal Water Tuban, East Java. The main material used in research on Analysis of Water Pollution in Coastal Sea on Tuban. The method used in this research is using storet method and compared to the quality standards of the Environment Decree No. 51 in 2004. Based on the analysis of testing at five sampling point’s seawater around Bodies Tuban, obtained by sea water quality measurement results either in physics, chemistry, and microbiology varied. The level of pollution of sea water around Coastal Tuban obtained by using Storet Method average value of analysis is -4.2 included in class B are lightly blackened, while using values obtained Pollution Index average pollution index of 3.60 is included in the category lightly blackened. Keywords: Analysis of the pollution level of seawater on the coast in Tuban, Quality Standards of Sea Water, Storet Method.

  19. Tackling non-point source water pollution in British Columbia: An action plan

    Energy Technology Data Exchange (ETDEWEB)

    1998-01-01

    Efforts to protect British Columbia water quality by regulating point discharges from municipal and industrial sources have generally been successful, and it is recognized that the major remaining cause of water pollution in the province is from non-point sources. These sources are largely unregulated and associated with urbanization, agriculture, and other forms of land development. The first part of this report reviews the provincial commitment to clean water, the effects of non-point-source (NPS) pollution, and the management of NPS in the province. Part 2 describes the main causes of NPS in British Columbia: Land development, agriculture, stormwater runoff, on-site sewage systems, forestry and range activities, atmospheric deposition, and boating/marine activities. Finally, it presents key components of the province's NPS action plan: Education and training, prevention at site, land use planning and co-ordination, assessment and reporting, economic incentives, legislation and regulation, and implementation.

  20. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation.

    Science.gov (United States)

    Bori, Jaume; Vallès, Bettina; Ortega, Lina; Riva, Maria Carme

    2016-09-01

    In this study chemical analyses and ecotoxicity tests were applied for the assessment of a heavily hydrocarbon-contaminated soil prior and after the application of a remediation procedure that consisted in the stimulation of soil autochthonous populations of hydrocarbon degraders in static-ventilated biopiles. Terrestrial bioassays were applied in mixtures of test soils and artificial control soil and studied the survival and reproduction of Eisenia fetida and the avoidance response of E. fetida and Folsomia candida. Effects on aquatic organisms were studied by means of acute tests with Vibrio fischeri, Raphidocelis subcapitata, and Daphnia magna performed on aqueous elutriates from test soils. The bioremediation procedure led to a significant reduction in the concentration of hydrocarbons (from 34264 to 3074 mg kg(-1), i.e., 91 % decrease) and toxicity although bioassays were not able to report a percentage decrease of toxicity as high as the percentage reduction. Sublethal tests proved the most sensitive terrestrial bioassays and avoidance tests with earthworms and springtails showed potential as monitoring tools of hydrocarbon remediation due to their high sensitivity and short duration. The concentrations of hydrocarbons in water extracts from test soils were 130 and 100 μg L(-1) before and after remediation, respectively. Similarly to terrestrial tests, most aquatic bioassays detected a significant reduction in toxicity, which was almost negligible at the end of the treatment. D. magna survival was the most affected by soil elutriates although toxicity to the crustacean was associated to the salinity of the samples rather than to the concentration of hydrocarbons. Ecotoxicity tests with aqueous soil elutriates proved less relevant in the assessment of hydrocarbon-contaminated soils due to the low hydrosolubility of hydrocarbons and the influence of the physicochemical parameters of the aquatic medium.

  2. Environmental health research in the UK and European Union : research priorities in water and air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Ince, M; Wheatley, A [Loughborough Univ. of Technology (United Kingdom). Dept. of Civil Engineering

    1997-12-31

    The contents are involvement of the European community, integration of research and development programmes ; surface water quality and pollution incidents; surface water pollution in the UK ; eutrophication ; drinking water quality ; causes and current treatment for removal of pollutants ; future causes of water pollution ; and , water and wastewater research.

  3. Environmental health research in the UK and European Union : research priorities in water and air pollution control

    International Nuclear Information System (INIS)

    Ince, M.; Wheatley, A.

    1996-01-01

    The contents are involvement of the European community, integration of research and development programmes ; surface water quality and pollution incidents; surface water pollution in the UK ; eutrophication ; drinking water quality ; causes and current treatment for removal of pollutants ; future causes of water pollution ; and , water and wastewater research

  4. Assessment of WQI and Microbial pollution for two water treatment plants in Baghdad city

    Directory of Open Access Journals (Sweden)

    Mohammed AliAl-Hashimi

    2017-03-01

    Full Text Available Tigris River is the main water source for all water treatment plants in Baghdad city. In current study, Water Quality Index (WQI and microbial pollution was obtained for two water treatment plants and their networks in Baghdad city Al-Karama and Al-Wathba WTP for both raw and treated water, In order to assess water suitability as a source of domestic water supply. Physical, chemical, and Microbialparameters werestudied fora period of four months (March-June, 2014. The parameters which were taken into account for the present work are pH, turbidity (Nephelometric Turbidity Unit, Total Alkalinity (TA, Electrical Conductivity (EC, Calcium (Ca++, Magnesium (Mg++, Total Hardness (TH, Total Dissolved Solids (TDS,Chloride (Cl-, and Most Probable Number (MPN method as microbial pollution indicator. The results indicate that WQI for untreated Tigris water was classified as "unfit for human consumption" at both WTPs intakes and along study period and after water passing through the sequence treatment units in WTPs its quality is gradually increased and finally, the treated water quality ranged from "Good" to " Moderately polluted" at both All-Karama and Al-Wathba WTPs. In networks the quality of water ranged between "Good" to "moderately polluted" in Al-Karama WTP network and between "Moderately polluted" to "severely polluted" in Al-Wathba WTP network. For Microbiological pollution, MPN throughout the period of study was between (0-150 cell/100ml at Al-Karama WTP and between (0- 240 cell/100ml at Al-Wathba WTP. The highest value obtained was (240 cell/100ml at raw water in Al- Wathba WTP intake in June, while the lowest value obtained was (0 cell/100ml at all chlorinated samples.

  5. Assessment of pollution in road runoff using a Bufo viridis biological assay

    International Nuclear Information System (INIS)

    Dorchin, A.; Shanas, U.

    2010-01-01

    Road runoff is a major source of environmental pollution, significantly threatening nearby aquatic habitats. Chemical analyses indicate high pollutant concentrations in the road's 'first flush', but bioassays are more advantageous for addressing the cumulative effects of the numerous pollutants within the runoff. We used Bufo viridis embryos and larvae to assess the toxicity of road runoff from two major highways in Israel. We show, for the first time, that exposure to midseason runoff not only has an adverse effect on growth and development rates of B. viridis larvae but can also lead to increased rates of morphological deformations. Seasonal first flushes, despite having higher metal concentrations, did not adversely affect the toad larvae, apparently due to a counter effect of organic matter that potentially served as a supplementary energy resource. Road runoff can be a major cause for a qualitative decrease in the quality of aquatic habitats threatening amphibians in Israel. - Highway runoff has detrimental effects on the development of B. viridis larvae.

  6. Spatio-Temporal Patterns and Source Identification of Water Pollution in Lake Taihu (China

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-03-01

    Full Text Available Various multivariate methods were used to analyze datasets of river water quality for 11 variables measured at 20 different sites surrounding Lake Taihu from 2006 to 2010 (13,200 observations, to determine temporal and spatial variations in river water quality and to identify potential pollution sources. Hierarchical cluster analysis (CA grouped the 12 months into two periods (May to November, December to the next April and the 20 sampling sites into two groups (A and B based on similarities in river water quality characteristics. Discriminant analysis (DA was important in data reduction because it used only three variables (water temperature, dissolved oxygen (DO and five-day biochemical oxygen demand (BOD5 to correctly assign about 94% of the cases and five variables (petroleum, volatile phenol, dissolved oxygen, ammonium nitrogen and total phosphorus to correctly assign >88.6% of the cases. In addition, principal component analysis (PCA identified four potential pollution sources for Clusters A and B: industrial source (chemical-related, petroleum-related or N-related, domestic source, combination of point and non-point sources and natural source. The Cluster A area received more industrial and domestic pollution-related agricultural runoff, whereas Cluster B was mainly influenced by the combination of point and non-point sources. The results imply that comprehensive analysis by using multiple methods could be more effective for facilitating effective management for the Lake Taihu Watershed in the future.

  7. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water Pollution...

  8. Early life developmental effects of marine persistent organic pollutants on the sea urchin Psammechinus miliaris

    NARCIS (Netherlands)

    Drs Anselmo, H.M.R.; Koerting, L.; Devito, S.; Berg, van den J.H.J.; Dubbeldam, M.; Kwadijk, C.J.A.F.; Murk, A.J.

    2011-01-01

    A new 16-day echinoid early life stage (ELS) bioassay was developed to allow for prolonged observation of possible adverse effects during embryogenesis and larval development of the sea urchin Psammechinus miliaris. Subsequently, the newly developed bioassay was applied to study the effects of key

  9. Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters

    NARCIS (Netherlands)

    Lay-Ekuakille, A.; Palamara, I.; Caratelli, D.; Morabito, F.C.

    2013-01-01

    Subterranean waters are often polluted by industrial and anthropic effluents that are drained in subsoil. To prevent and control pollution, legislations of different developed countries require an online monitoring measurement, especially for detecting organic solvents (chlorinated and unchlorinated

  10. Physical and chemical changes in water pollutants caused by ionizing radiations

    International Nuclear Information System (INIS)

    Vacek, K.

    1978-01-01

    Ionization and excitation as primary effects of ionizing radiation form secondary activated intermediary products (H and OH radicals and hydrated electrons esub(aq) - ) in water systems, which act on all in substances present in water. Physical and chemical changes speeding the sludge sedimentation in waste-water show complex dependences. It is, however, possible to prove them even at low radiation doses (0.07 to 0.35 kJ/kg). Chemical effects can be observed at higher radiation doses (1 to 10 kJ/kg) and are based on oxidative destruction of pollutants. Some of these reactions may be based on chain mechanisms (phenol oxidizing in water), but there are limited chances for application of these chain mechanisms in waste-water systems. Slight damage of biologically important macromolecules leads to changes, or even stops biological processes. Therefore, biological effects of ionizing radiation have the most remarkable impact. The utilization of these reactions in water management may be possible in suppressing biological ochration (ochre sedimentation) in wells and for ensuring hygienic conditions of sludge in waste-water processing for agrotechnical purposes. (author)

  11. Investigation of independence in inter-animal tumor-type occurrences within the NTP rodent-bioassay database

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, K.T. [Lawrence Livermore National Lab., CA (United States); Seilkop, S. [Analytical Sciences, Inc., Durham, NC (United States)

    1993-05-01

    Statistically significant elevation in tumor incidence at multiple histologically distinct sites is occasionally observed among rodent bioassays of chemically induced carcinogenesis. If such data are to be relied on (as they have, e.g., by the US EPA) for quantitative cancer potency assessment, their proper analysis requires a knowledge of the extent to which multiple tumor-type occurrences are independent or uncorrelated within individual bioassay animals. Although difficult to assess in a statistically rigorous fashion, a few significant associations among tumor-type occurrences in rodent bioassays have been reported. However, no comprehensive studies of animal-specific tumor-type occurrences at death or sacrifice have been conducted using the extensive set of available NTP rodent-bioassay data, on which most cancer-potency assessment for environmental chemicals is currently based. This report presents the results of such an analysis conducted on behalf of the National Research Council`s Committee on Risk Assessment for Hazardous Air Pollutants. Tumor-type associations among individual animals were examined for {approximately}2500 to 3000 control and {approximately}200 to 600 treated animals using pathology data from 62 B6C3F1 mouse studies and 61 F/344N rat studies obtained from a readily available subset of the NTP carcinogenesis bioassay database. No evidence was found for any large correlation in either the onset probability or the prevalence-at-death or sacrifice of any tumor-type pair investigated in control and treated rats and niece, although a few of the small correlations present were statistically significant. Tumor-type occurrences were in most cases nearly independent, and departures from independence, where they did occur, were small. This finding is qualified in that tumor-type onset correlations were measured only indirectly, given the limited nature of the data analyzed.

  12. A versatile and low-cost open source pipetting robot for automation of toxicological and ecotoxicological bioassays.

    Science.gov (United States)

    Steffens, Sebastian; Nüßer, Leonie; Seiler, Thomas-Benjamin; Ruchter, Nadine; Schumann, Mark; Döring, Ricarda; Cofalla, Catrina; Ostfeld, Avi; Salomons, Elad; Schüttrumpf, Holger; Hollert, Henner; Brinkmann, Markus

    2017-01-01

    In the past decades, bioassays and whole-organism bioassay have become important tools not only in compliance testing of industrial chemicals and plant protection products, but also in the monitoring of environmental quality. With few exceptions, such test systems are discontinuous. They require exposure of the biological test material in small units, such as multiwell plates, during prolonged incubation periods, and do not allow online read-outs. It is mostly due to these shortcomings that applications in continuous monitoring of, e.g., drinking or surface water quality are largely missing. We propose the use of pipetting robots that can be used to automatically exchange samples in multiwell plates with fresh samples in a semi-static manner, as a potential solution to overcome these limitations. In this study, we developed a simple and low-cost, versatile pipetting robot constructed partly using open-source hardware that has a small footprint and can be used for online monitoring of water quality by means of an automated whole-organism bioassay. We tested its precision in automated 2-fold dilution series and used it for exposure of zebrafish embryos (Danio rerio)-a common model species in ecotoxicology-to cadmium chloride and permethrin. We found that, compared to conventional static or semi-static exposure scenarios, effects of the two chemicals in zebrafish embryos generally occurred at lower concentrations, and analytically verified that the increased frequency of media exchange resulted in a greater availability of the chemical. In combination with advanced detection systems this custom-made pipetting robot has the potential to become a valuable tool in future monitoring strategies for drinking and surface water.

  13. A versatile and low-cost open source pipetting robot for automation of toxicological and ecotoxicological bioassays.

    Directory of Open Access Journals (Sweden)

    Sebastian Steffens

    Full Text Available In the past decades, bioassays and whole-organism bioassay have become important tools not only in compliance testing of industrial chemicals and plant protection products, but also in the monitoring of environmental quality. With few exceptions, such test systems are discontinuous. They require exposure of the biological test material in small units, such as multiwell plates, during prolonged incubation periods, and do not allow online read-outs. It is mostly due to these shortcomings that applications in continuous monitoring of, e.g., drinking or surface water quality are largely missing. We propose the use of pipetting robots that can be used to automatically exchange samples in multiwell plates with fresh samples in a semi-static manner, as a potential solution to overcome these limitations. In this study, we developed a simple and low-cost, versatile pipetting robot constructed partly using open-source hardware that has a small footprint and can be used for online monitoring of water quality by means of an automated whole-organism bioassay. We tested its precision in automated 2-fold dilution series and used it for exposure of zebrafish embryos (Danio rerio-a common model species in ecotoxicology-to cadmium chloride and permethrin. We found that, compared to conventional static or semi-static exposure scenarios, effects of the two chemicals in zebrafish embryos generally occurred at lower concentrations, and analytically verified that the increased frequency of media exchange resulted in a greater availability of the chemical. In combination with advanced detection systems this custom-made pipetting robot has the potential to become a valuable tool in future monitoring strategies for drinking and surface water.

  14. Assessment of heavy metal pollution in drinking water due to mining ...

    African Journals Online (AJOL)

    Mining and smelting activities are the main causes for the increasing pollution of heavy metals from water sources. The toxicity of these heavy metals from the mining, milling and smelting companies can cause harmful and even lethal effects on the human health. The objective of this study was to investigate the level of As, ...

  15. Public Information for Water Pollution Control.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    This publication is a handbook for water pollution control personnel to guide them towards a successful public relations program. This handbook was written to incorporate the latest methods of teaching basic public information techniques to the non-professional in this area. Contents include: (1) a rationale for a public information program; (2)…

  16. Application of cyclodextrin nanoporous polymers in the removal of organic pollutants from water

    OpenAIRE

    2009-01-01

    M.Sc. The removal of organic pollutants from industrial and municipal water is a great challenge to water providers worldwide. Some of these pollutants are very toxic and pose serious health risks to both humans and animals. Additionally, the presence of organic pollutants in the water often leads to the corrosion of turbines used for power generation at power stations. This obviously makes the power generation process less efficient and thus has cost implications, especially for the end u...

  17. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  18. Using the soil and water assessment tool to estimate dissolved inorganic nitrogen water pollution abatement cost functions in central portugal.

    Science.gov (United States)

    Roebeling, P C; Rocha, J; Nunes, J P; Fidélis, T; Alves, H; Fonseca, S

    2014-01-01

    Coastal aquatic ecosystems are increasingly affected by diffuse source nutrient water pollution from agricultural activities in coastal catchments, even though these ecosystems are important from a social, environmental and economic perspective. To warrant sustainable economic development of coastal regions, we need to balance marginal costs from coastal catchment water pollution abatement and associated marginal benefits from coastal resource appreciation. Diffuse-source water pollution abatement costs across agricultural sectors are not easily determined given the spatial heterogeneity in biophysical and agro-ecological conditions as well as the available range of best agricultural practices (BAPs) for water quality improvement. We demonstrate how the Soil and Water Assessment Tool (SWAT) can be used to estimate diffuse-source water pollution abatement cost functions across agricultural land use categories based on a stepwise adoption of identified BAPs for water quality improvement and corresponding SWAT-based estimates for agricultural production, agricultural incomes, and water pollution deliveries. Results for the case of dissolved inorganic nitrogen (DIN) surface water pollution by the key agricultural land use categories ("annual crops," "vineyards," and "mixed annual crops & vineyards") in the Vouga catchment in central Portugal show that no win-win agricultural practices are available within the assessed BAPs for DIN water quality improvement. Estimated abatement costs increase quadratically in the rate of water pollution abatement, with largest abatement costs for the "mixed annual crops & vineyards" land use category (between 41,900 and 51,900 € tDIN yr) and fairly similar abatement costs across the "vineyards" and "annual crops" land use categories (between 7300 and 15,200 € tDIN yr). Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  20. Development and validation of microbial bioassay for quantification of Levofloxacin in pharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Nishant A. Dafale

    2015-02-01

    Full Text Available The aim of this study was to develop and validate a simple, sensitive, precise and cost-effective one-level agar diffusion (5+1 bioassay for estimation of potency and bioactivity of Levofloxacin in pharmaceutical preparation which has not yet been reported in any pharmacopoeia. Among 16 microbial strains, Bacillus pumilus ATCC-14884 was selected as the most significant strain against Levofloxacin. Bioassay was optimized by investigating several factors such as buffer pH, inoculums concentration and reference standard concentration. Identification of Levofloxacin in commercial sample Levoflox tablet was done by FTIR spectroscopy. Mean potency recovery value for Levofloxacin in Levoflox tablet was estimated as 100.90%. A validated bioassay method showed linearity (r2=0.988, precision (Interday RSD=1.05%, between analyst RSD=1.02% and accuracy (101.23%, RSD=0.72%. Bioassay was correlated with HPLC using same sample and estimated potencies were 100.90% and 99.37%, respectively. Results show that bioassay is a suitable method for estimation of potency and bioactivity of Levofloxacin pharmaceutical preparations. Keywords: Levofloxacin, Antibiotic resistance, Microbiological bioassay, HPLC, Pharmacopoeia

  1. Management of Water for Consumption and Pollution in the Yitenga ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Management of Water for Consumption and Pollution in the Yitenga Basin, Burkina ... The first phase, funded under the project, 102474 Community of Practice in ... Gestion de l'eau de consommation et de la pollution dans le bassin versant de ...

  2. Health Effects of Air Pollution

    Science.gov (United States)

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  3. Monitoring of pesticides water pollution-The Egyptian River Nile.

    Science.gov (United States)

    Dahshan, Hesham; Megahed, Ayman Mohamed; Abd-Elall, Amr Mohamed Mohamed; Abd-El-Kader, Mahdy Abdel-Goad; Nabawy, Ehab; Elbana, Mariam Hassan

    2016-01-01

    Persistent organic pollutants represent about 95 % of the industrial sector effluents in Egypt. Contamination of the River Nile water with various pesticides poses a hazardous risk to both human and environmental compartments. Therefore, a large scale monitoring study was carried on pesticides pollution in three geographical main regions along the River Nil water stream, Egypt. Organochlorine and organophosphorus pesticides were extracted by liquid-liquid extraction and analyzed by GC-ECD. Organochlorine pesticides mean concentrations along the River Nile water samples were 0.403, 1.081, 1.209, 3.22, and 1.192 μg L -1 for endrin, dieldrin, p, p'-DDD, p, p'-DDT, and p, p'-DDE, respectively. Dieldrin, p, p'-DDT, and p, p'-DDE were above the standard guidelines of the World Health Organization. Detected organophosphorus pesticides were Triazophos (2.601 μg L -1 ), Quinalphos (1.91 μg L -1 ), fenitrothion (1.222 μg L -1 ), Ethoprophos (1.076 μg L -1 ), chlorpyrifos (0.578 μg L -1 ), ethion (0.263 μg L -1 ), Fenamiphos (0.111 μg L -1 ), and pirimiphos-methyl (0.04 μg L -1 ). Toxicity characterization of organophosphorus pesticides according to water quality guidelines indicated the hazardous risk of detected chemicals to the public and to the different environmental compartments. The spatial distribution patterns of detected pesticides reflected the reverse relationship between regional temperature and organochlorine pesticides distribution. However, organophosphorus was distributed according to the local inputs of pollutant compounds. Toxicological and water quality standards data revealed the hazardous risk of detected pesticides in the Egyptian River Nile water to human and aquatic life. Thus, our monitoring data will provide viewpoints by which stricter legislation and regulatory controls can be admitted to avoid River Nile pesticide water pollution.

  4. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  5. [Investigation on pattern and methods of quality control for Chinese materia medica based on dao-di herbs and bioassay - bioassay for Coptis chinensis].

    Science.gov (United States)

    Yan, Dan; Xiao, Xiao-he

    2011-05-01

    Establishment of bioassay methods is the technical issues to be faced with in the bioassay of Chinese materia medica. Taking the bioassay of Coptis chinensis Franch. as an example, the establishment process and application of the bioassay methods (including bio-potency and bio-activity fingerprint) were explained from the aspects of methodology, principle of selection, experimental design, method confirmation and data analysis. The common technologies were extracted and formed with the above aspects, so as to provide technical support for constructing pattern and method of the quality control for Chinese materia medica based on the dao-di herbs and bioassay.

  6. Characteristics of bacterial community in cloud water at Mt Tai: similarity and disparity under polluted and non-polluted cloud episodes

    Science.gov (United States)

    Wei, Min; Xu, Caihong; Chen, Jianmin; Zhu, Chao; Li, Jiarong; Lv, Ganglin

    2017-04-01

    Bacteria are widely distributed in atmospheric aerosols and are indispensable components of clouds, playing an important role in the atmospheric hydrological cycle. However, limited information is available about the bacterial community structure and function, especially for the increasing air pollution in the North China Plain. Here, we present a comprehensive characterization of bacterial community composition, function, variation, and environmental influence for cloud water collected at Mt Tai from 24 July to 23 August 2014. Using Miseq 16S rRNA gene sequencing, the highly diverse bacterial community in cloud water and the predominant phyla of Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes were investigated. Bacteria that survive at low temperature, radiation, and poor nutrient conditions were found in cloud water, suggesting adaption to an extreme environment. The bacterial gene functions predicted from the 16S rRNA gene using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) suggested that the pathways related to metabolism and disease infections were significantly correlated with the predominant genera. The abundant genera Acinetobacter, Stenotrophomonas, Pseudomonas, and Empedobacter originated from a wide range of habitats including cloud condensation nuclei and ice nuclei active species, opportunistic pathogens, and functional species, demonstrating the importance of ecology and health in cloud water. Cluster analysis including hierarchical cluster (Hcluster) and principal coordinate analysis (PCoA) indicated a significant disparity between polluted and non-polluted samples. Linear discriminant analysis effect size (LEfSe) demonstrated that potential pathogens were enriched in the polluted cloud samples, whereas the diverse ecological function groups were significant in the non-polluted samples. Discrepant community structure determined by redundancy analysis (RDA) indicated that the major ions in

  7. The Water Quality Study and Sources of Pollution in Alur Ilmu, UKM

    International Nuclear Information System (INIS)

    Nurul Afina Abd Mutalib; Othman Abdul Karim

    2015-01-01

    The Alur Ilmu UKM is a large storm water channel that serves to store water and flows into Langat River. The primary objective of this study are to identify the water quality and pollution levels, the sources of which may cause pollution and to measures the control pollution that occurs in the area. Water sampling was carried out in order to determine the quality of water. The sampling water was taken during no-rain and after rainfall. The area includes UKM Forest Reserve (Hutan Pendidikan Alam - HPA), Student Cafeteria (Teres Eko Niaga), Restaurant of Fakulti Sains dan Teknologi (FST), Student Centre (Pusanika), Fakulti Pendidikan Islam (FPI) and UKM Mosque. Eight water quality parameters for example consisting of Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), pH, Turbidity, Total Suspended Solids (TSS), Total Kjeldahl Nitrogen (TKN), Temperature, Oil and Grease were measured. The results shows that the water quality are in a class III and IV according to Water quality Index (WQI) and the water meet the standard B that set out in the Regulations of the Environmental Quality (Sewage and Effluent). (author)

  8. Degradation of pollutants and elimination of pathogens of waste water by adsorption of accelerated electrons

    International Nuclear Information System (INIS)

    Martinez M, I.

    1991-10-01

    This report presents a position of the pollutants degradation of the industrial residual waters, it intends a method that consists on making pass residual water, treated biologically by a packed column with activated carbon. The carbon retains the pollutants and the water goes out with a purity that allows the reuse. In simultaneous form to the adsorption of pollutants are made pass electrons through the column of carbon, the electrons will destroy to the polluting adsorbed in the carbon; the pollutants degrade until CO 2 that escapes as gas. The active sites of the carbon are empty and clever to be occupied by other pollutants. This process is continuous and it is repeated while water is passing by the column and electrons through this. (Author)

  9. The Intervention of Adult Education in Surface Water Pollution in the ...

    African Journals Online (AJOL)

    The vulnerability of surface water in the Niger-Delta Region of Nigeria to frequent oil spills and has other pollutants have had negative effects on the fragile mangrove ecosystem, wildlife, aquatic resources and most importantly on man. It is in this regard that the intervention of adult education came into being to see that the ...

  10. Aerospace methods for the study of water resources and their pollution

    Energy Technology Data Exchange (ETDEWEB)

    Kupriianov, V V; Usachev, V F [eds.

    1981-01-01

    Papers are presented on such topics as the use of satellite remote sensing data to study meltage runoff in mountain basins, the investigation of the dynamics of snow cover, the use of satellite multispectral photography to study snow meltage fronts, and the evaluation of the pollution of snow cover in industrial regions on the basis of remote sensing data. Also considered are the determination of the albedo and brightness coefficients of snow cover, the use of remote sensing to study subsurface water and tectonic structures, the investigation of the thermal pollution of rivers on the basis of infrared aerial photography, remote sensing methods for monitoring water quality, and microwave sensing methods for the investigation of water resources and their pollution.

  11. Analysis of Surface Water Pollution in the Kinta River Using Multivariate Technique

    International Nuclear Information System (INIS)

    Hamza Ahmad Isiyaka; Hafizan Juahir

    2015-01-01

    This study aims to investigate the spatial variation in the characteristics of water quality monitoring sites, identify the most significant parameters and the major possible sources of pollution, and apportion the source category in the Kinta River. 31 parameters collected from eight monitoring sites for eight years (2006-2013) were employed. The eight monitoring stations were spatially grouped into three independent clusters in a dendrogram. A drastic reduction in the number of monitored parameters from 31 to eight and nine significant parameters (P<0.05) was achieved using the forward stepwise and backward stepwise discriminate analysis (DA). Principal component analysis (PCA) accounted for more than 76 % in the total variance and attributes the source of pollution to anthropogenic and natural processes. The source apportionment using a combined multiple linear regression and principal component scores indicates that 41 % of the total pollution load is from rock weathering and untreated waste water, 26 % from waste discharge, 24 % from surface runoff and 7 % from faecal waste. This study proposes a reduction in the number of monitoring stations and parameters for a cost effective and time management in the monitoring processes and multivariate technique can provide a simple representation of complex and dynamic water quality characteristics. (author)

  12. Pollution characteristics and water quality in the Visakhapatnam harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; Raju, G.R.K.; Babu, T.B.

    The impact of organic pollution on the quality of waters in the Visakhapatnam harbour has been studied over a year at 8 stations. The enrichment of nutrients in these waters enhances the eutrophication. The construction of outer harbour retards...

  13. Environmental pollution-effects on national development

    International Nuclear Information System (INIS)

    Mahyuddin bin Ramli; Mohd Fadzil bin Mohd Idris

    1994-01-01

    Environmental pollution is among the major issues highlighted in many discussion between the Government and Non-Government officials whether in the developed or developing countries. The problems becoming worsen when not many people are concerned on its detrimental effects on the future generations. The increasing number of forest activities without proper replanting will also expose to flood problems, soil erosion, landslides and many more as results of environmental impacts. The urbanization process, couple with the rapid industrial development, without having proper planning and inadequate pollutions control, may also create a long term disasters. Penang island territory has been experiencing the most highly physical development growth in this country. Hence, environmental problems are becoming the major issues. This paper will discuss on the various environmental problem, particularly in Penang and possible remedials to be taken by the state and federal authority to overcome the problems. The type of pollutions such as air and water pollutions, acid rain and of course the reduction of ozone layer. Besides that the increase of heat in our climate will also be of our concern in the process of urbanization

  14. Identification of hotspots and trends of fecal surface water pollution in developing countries

    Science.gov (United States)

    Reder, Klara; Flörke, Martina; Alcamo, Joseph

    2015-04-01

    Water is the essential resource ensuring human life on earth, which can only prosper when water is available and accessible. But of importance is not only the quantity of accessible water but also its quality, which in case of pollution may pose a risk to human health. The pollutants which pose a risk to human health are manifold, covering several groups such as pathogens, nutrients, human pharmaceuticals, heavy metals, and others. With regards to human health, pathogen contamination is of major interest as 4% of all death and 5.7% of disability or ill health in the world can be attributed to poor water supply, sanitation and personal and domestic hygiene. In developing countries, 2.6 billion people lacked access to improved sanitation in 2011. The lack of sanitation poses a risk to surface water pollution which is a threat to human health. A typical indicator for pathogen pollution is fecal coliform bacteria. The objective our study is to assess fecal pollution in the developing regions Africa, Asia and Latin America using the large-scale water quality model WorldQual. Model runs were carried-out to calculate in-stream concentrations and the respective loadings reaching rivers for the time period 1990 to 2010. We identified hotspots of fecal coliform loadings and in-stream concentrations which were further analyzed and ranked in terms of fecal surface water pollution. Main findings are that loadings mainly originate from the domestic sector, thus loadings are high in highly populated areas. In general, domestic loadings can be attributed to the two subsectors domestic sewered and domestic non sewered. The spatial distribution of both sectors varies across catchments. Hotspot pattern of in-stream concentrations are similar to the loadings pattern although they are different in seasonality. As the dilution varies with climate its dilution capacity is high during seasons with high precipitation, which in turn decreases the in-stream concentrations. The fecal

  15. Polymeric Nanoparticles as a Metolachlor Carrier: Water-Based Formulation for Hydrophobic Pesticides and Absorption by Plants.

    Science.gov (United States)

    Tong, Yujia; Wu, Yan; Zhao, Caiyan; Xu, Yong; Lu, Jianqing; Xiang, Sheng; Zong, Fulin; Wu, Xuemin

    2017-08-30

    Pesticide formulation is highly desirable for effective utilization of pesticide and environmental pollution reduction. Studies of pesticide delivery system such as microcapsules are developing prosperously. In this work, we chose polymeric nanoparticles as a pesticide delivery system and metolachlor was used as a hydrophobic pesticide model to study water-based mPEG-PLGA nanoparticle formulation. Preparation, characterization results showed that the resulting nanoparticles enhanced "water solubility" of hydrophobic metolachlor and contained no organic solvent or surfactant, which represent one of the most important sources of pesticide pollution. After the release study, absorption of Cy5-labeled nanoparticles into rice roots suggested a possible transmitting pathway of this metolachlor formulation and increased utilization of metolachlor. Furthermore, the bioassay test demonstrated that this nanoparticle showed higher effect than non-nano forms under relatively low concentrations on Oryza sativa, Digitaria sanguinalis. In addition, a simple cytotoxicity test involving metolachlor and metolachlor-loaded nanoparticles was performed, indicating toxicity reduction of the latter to the preosteoblast cell line. All of these results showed that those polymeric nanoparticles could serve as a pesticide carrier with lower environmental impact, comparable effect, and effective delivery.

  16. Pollution characterization of waste water of an industrial zone - Example of a dairy water clarification

    International Nuclear Information System (INIS)

    Hazourli, S.; Ziati, M.; Boudiba, L.; Fedaoui, D.

    2009-01-01

    The objective of this study is the estimation of the polluting load generated by domestic effluents added to those of various industries in one of the most important industrial zone in Africa. Analysis of waste water showed strong and irregular pollution which is prejudicial for the aquatic receiving medium (river, sea). This pollution is confirmed among others by COD/BOD ratio which may attain the value of 1.8. Pre-treatment by coagulation floculation of waste water used in a dairy belonging to this industrial zone showed a considerable reduction of the initial pollution by a systematic decreasing of pollution parameters. Aluminium sulphates and iron chloride tested in this experience have reduced considerably all the studied parameters; the organic charge has received a very significant reduction up to 99%. The discharge of treated effluent in the surrounding river or its use for recycling aims is then possible for this industry. However, the formed sludge can be the subject of a suitable treatment for possible agricultural, avicolous valorisation or other. (author)

  17. A Semi-Infinite Interval-Stochastic Risk Management Model for River Water Pollution Control under Uncertainty

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2017-05-01

    Full Text Available In this study, a semi-infinite interval-stochastic risk management (SIRM model is developed for river water pollution control, where various policy scenarios are explored in response to economic penalties due to randomness and functional intervals. SIRM can also control the variability of the recourse cost as well as capture the notion of risk in stochastic programming. Then, the SIRM model is applied to water pollution control of the Xiangxihe watershed. Tradeoffs between risks and benefits are evaluated, indicating any change in the targeted benefit and risk level would yield varied expected benefits. Results disclose that the uncertainty of system components and risk preference of decision makers have significant effects on the watershed's production generation pattern and pollutant control schemes as well as system benefit. Decision makers with risk-aversive attitude would accept a lower system benefit (with lower production level and pollutant discharge; a policy based on risk-neutral attitude would lead to a higher system benefit (with higher production level and pollutant discharge. The findings can facilitate the decision makers in identifying desired product generation plans in association with financial risk minimization and pollution mitigation.

  18. Ground water pollution by roof runoff infiltration evidenced with multi-tracer experiments.

    Science.gov (United States)

    Ammann, Adrian A; Hoehn, Eduard; Koch, Sabine

    2003-03-01

    The infiltration of urban roof runoff into well permeable subsurface material may have adverse effects on the ground water quality and endanger drinking water resources. Precipitation water from three different roofs of an industrial complex was channelled to a pit and infiltrated into a perialpine glaciofluvial gravel-and-sand aquifer. A shaft was constructed at the bottom of the pit and equipped with an array of TDR probes, lysimeters and suction cups that allowed measuring and sampling soil water at different depths. A fast infiltration flow was observed during natural rainfall events and during artificial infiltration experiments. For a better understanding of the behaviour of contaminants, experiments were conducted with cocktails of compounds of different reactivity (ammonium, strontium, atratone) and of non-reactive tracers (uranine, bromide, naphthionate), which represent different classes of pollutants. The experiment identified cation exchange reactions influencing the composition of the infiltrating water. These processes occurred under preferential flow conditions in macropores of the material. Measuring concentration changes under the controlled inflow of tracer experiments, the pollution potential was found to be high. Non-reactive tracers exhibited fast breakthrough and little sorption.

  19. Assessment of pollution in road runoff using a Bufo viridis biological assay.

    Science.gov (United States)

    Dorchin, A; Shanas, U

    2010-12-01

    Road runoff is a major source of environmental pollution, significantly threatening nearby aquatic habitats. Chemical analyses indicate high pollutant concentrations in the road's "first flush", but bioassays are more advantageous for addressing the cumulative effects of the numerous pollutants within the runoff. We used Bufo viridis embryos and larvae to assess the toxicity of road runoff from two major highways in Israel. We show, for the first time, that exposure to midseason runoff not only has an adverse effect on growth and development rates of B. viridis larvae but can also lead to increased rates of morphological deformations. Seasonal first flushes, despite having higher metal concentrations, did not adversely affect the toad larvae, apparently due to a counter effect of organic matter that potentially served as a supplementary energy resource. Road runoff can be a major cause for a qualitative decrease in the quality of aquatic habitats threatening amphibians in Israel. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Integrated survey of water pollution in the Suquía River basin (Córdoba, Argentina).

    Science.gov (United States)

    Monferrán, Magdalena Victoria; Galanti, Lucas Nicolás; Bonansea, Rocío Inés; Amé, María Valeria; Wunderlin, Daniel Alberto

    2011-02-01

    We report a combined two-year seasonal monitoring of Suquía River basin using both chemical parameters and biomarkers measured in Jenynsia multidentata, aiming to correlate external levels of contaminants with the response of oxidative stress biomarkers in this fish. Identified pollution sources correspond to city sewage as well as agricultural and small industry activities downstream from Córdoba city. Physicochemical parameters integrated into a water quality index (WQI) were measured in Suquía River during dry and wet seasons. Ag, Mn, Cu, Cr, Ni, Fe, Pb and Zn were also monitored in water and sediment samples. Biomarkers include detoxication and antioxidant enzymes: catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR). Enzymes showed a pollution dependent response, with increased activities in fish collected close to the sewage exit and progressive drop further downstream, matching changes in the Water Quality index. The combined use of biomarkers with water quality parameters allowed both the identification of pollution sources and the evaluation of effects of contaminants on the aquatic biota.

  1. Municipal wastewater characteristics in Thailand and effects of soft intervention measures in households on pollutant discharge reduction.

    Science.gov (United States)

    Tsuzuki, Y; Koottatep, T; Jiawkok, S; Saengpeng, S

    2010-01-01

    In developing countries with large Millennium Development Goals (MDGs) sanitation indicator, pollutant discharge reduction function of wastewater treatment systems should be considered. In this paper, pollutant generations per capita (PGCs) and pollutant discharges per capita (PDCs) are estimated as a base dataset for wastewater management in Thailand. PDCs of black water, i.e. toilet wastewater, are found to be much smaller than PGCs of black water. However, PDCs of gray water, i.e. municipal wastewater other than toilet wastewater are large. Gray water is often discharged without treatment and contributes much to ambient water deterioration. Moreover, possible 5-day biological oxygen demand (BOD5) discharge reductions with "soft interventions", i.e. measurements in households to reduce wastewater pollutant discharge such as using a paper filter or a plastic net in kitchen sinks and so on, are estimated as 39, 21 and 34% for BOD5, total Kjeldahl nitrogen (TKN) and phosphate (PO4-P), respectively. For the estimation, environmental accounting housekeeping (EAH) books of domestic wastewater, spreadsheets with pollutant discharges by water usages and possible effects of "soft interventions" are applied. The framework of this study with "soft intervention" effects on pollutant discharge reductions should enhance wastewater management especially in the areas under development of wastewater treatment systems.

  2. Pollutant Concentrations in the Rime and Fog Water

    Czech Academy of Sciences Publication Activity Database

    Fišák, Jaroslav; Tesař, Miroslav; Fottová, D.

    2008-01-01

    Roč. 3, č. 1 (2008), S68-S73 ISSN 1801-5395 R&D Projects: GA AV ČR IAA3042301; GA AV ČR 1QS200420562 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z20600510 Keywords : fog water * rime water * pollutant concentration Subject RIV: DG - Athmosphere Sciences, Meteorology

  3. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junjie Ma

    2018-02-01

    Full Text Available Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  4. LEVEL OF TOXICITY WATER AREA «TULENIY» AS A RESULT OF BIOASSAY

    Directory of Open Access Journals (Sweden)

    A. F. Sokolsky

    2014-01-01

    Full Text Available Aim. To determine the toxicity of marine waters area " tuleniy ".Location. Area " tuleniy ".Methods. Determining the level of toxicity of marine waters area "seal" method for biological testing was conducted according tothe guidelines approved by the Ministry of natural resources (guidance on the definition of ..., 2002; Dolzhenko, 1978. Guide prepared by the Center for Russian register of hydraulic structures and the state water cadastre of the MNR of Russia jointly with specialists of the Institute Committee of Russia and the UNION of ecological problems of the Ministry of Ukraine. The basis of the proposed system of marine toxicity biotests based on the results of generalization of experimental research based on the problem of pollution of water bodies and numerous literature data, making it possible to identify features of the response of aquatic organisms of different taxonomic groups to toxic impurities of different nature and origin. Experimental studies were conducted on the culture of marine unicellular algae Phaeodactylum tricornutum on planktonic crustacea Acartia tonsa, the larvae of the chironomid Chironomus gr.salinarius and juvenile guppies Poecillia reticulata Peters.Results. Comparative analysis of the results of research from 2001 to 2006 showed no acute toxic effect on the test object zooplankton and phytoplanton.Main conclusions. Throughout the study period (2001-2003, 2005-2006, you must allocate the spring of 2002, when it was recorded,the average of the lowest five years of research, the level of toxicity of water for the analyzed area.Considering the results of biological testing of the surveyed area by periods, it should be noted that the average level of toxicity of the waters did not undergo significant changes and were on the same level, not exceeding 17,6% (table. 1. According to the classification shown in table 2, the water in the surveyed area is assessed as "non-toxic".

  5. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-01-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492

  6. A new bioassay for the ecotoxicological testing of VOCs on groundwater invertebrates and the effects of toluene on Niphargus inopinatus

    Energy Technology Data Exchange (ETDEWEB)

    Avramov, Maria; Schmidt, Susanne I. [Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, D-85764 Neuherberg (Germany); Griebler, Christian, E-mail: christian.griebler@helmholtz-muenchen.de [Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, D-85764 Neuherberg (Germany)

    2013-04-15

    Highlights: ► A new bioassay for testing the toxicity of VOCs on groundwater fauna is presented. ► Results on the toxicity of toluene to Niphargus inopinatus are now available. ► Henry equilibrium needs to be considered when bioassays with VOCs are designed. ► Methodological aspects related to “difficult-to-test substances” are discussed. -- Abstract: A protocol was developed for testing the ecotoxicological effects of volatile organic compounds (VOCs) on groundwater invertebrates. Test substance volatility was addressed in a “closed from start to analysis”-design. Since manifestation of toxic effects may be delayed in ‘slower metabolizing’ organisms such as groundwater fauna, a time-independent (TI-) approach was adopted. Toluene was used as a model substance and its toxicity to the groundwater amphipod Niphargus inopinatus was assessed as an example. The method evaluation process considered various methodological issues such as partitioning of the toxicant between the water and the gas phase (Henry equilibrium), the possible depletion of oxygen in closed test vials, as well as microbial biodegradation of the test substance. For N. inopinatus, an LC{sub 50},{sub 14} {sub days} of 46.6 mg L{sup −1} toluene was obtained. The ultimate LC{sub 50} value was estimated at 23.3 mg L{sup −1} toluene. No oxygen depletion occurred in the test vials and Henry equilibrium was found to be established after 6 h. The new test system proposed now awaits broad practical application.

  7. Modeling the risk of water pollution by pesticides from imbalanced data.

    Science.gov (United States)

    Trajanov, Aneta; Kuzmanovski, Vladimir; Real, Benoit; Perreau, Jonathan Marks; Džeroski, Sašo; Debeljak, Marko

    2018-04-30

    The pollution of ground and surface waters with pesticides is a serious ecological issue that requires adequate treatment. Most of the existing water pollution models are mechanistic mathematical models. While they have made a significant contribution to understanding the transfer processes, they face the problem of validation because of their complexity, the user subjectivity in their parameterization, and the lack of empirical data for validation. In addition, the data describing water pollution with pesticides are, in most cases, very imbalanced. This is due to strict regulations for pesticide applications, which lead to only a few pollution events. In this study, we propose the use of data mining to build models for assessing the risk of water pollution by pesticides in field-drained outflow water. Unlike the mechanistic models, the models generated by data mining are based on easily obtainable empirical data, while the parameterization of the models is not influenced by the subjectivity of ecological modelers. We used empirical data from field trials at the La Jaillière experimental site in France and applied the random forests algorithm to build predictive models that predict "risky" and "not-risky" pesticide application events. To address the problems of the imbalanced classes in the data, cost-sensitive learning and different measures of predictive performance were used. Despite the high imbalance between risky and not-risky application events, we managed to build predictive models that make reliable predictions. The proposed modeling approach can be easily applied to other ecological modeling problems where we encounter empirical data with highly imbalanced classes.

  8. Organic/inorganic hybrid filters based on dendritic and cyclodextrin "nanosponges" for the removal of organic pollutants from water.

    Science.gov (United States)

    Arkas, Michael; Allabashi, Roza; Tsiourvas, Dimitris; Mattausch, Eva-Maria; Perfler, Reinhard

    2006-04-15

    Long-alkyl chain functionalized poly(propylene imine) dendrimer, poly(ethylene imine) hyperbranched polymer, and beta-cyclodextrin derivatives, which are completely insoluble in water, have the property of encapsulating organic pollutants from water. Ceramic porous filters can be impregnated with these compounds resulting in hybrid organic/ inorganic filter modules. These hybrid filter modules were tested for the effective purification of water, by continuous filtration experiments, employing a variety of water pollutants. It has been established that polycyclic aromatic hydrocarbons (PAHs) can be removed very efficiently (more than 95%), and final concentrations of several ppb (microg/ L) are easily obtained. Representatives of the pollutant group of trihalogen methanes (THMs), monoaromatic hydrocarbons (BTX), and pesticides (simazine) can also be removed (>80%), although the filters are saturated considerably faster in these cases.

  9. Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium

    Directory of Open Access Journals (Sweden)

    Ali Ebadi

    2017-11-01

    Full Text Available Bacteria able to produce biosurfactants can use petroleum-based hydrocarbons as a carbon source. Herein, four biosurfactant-producing Pseudomonas aeruginosa strains, isolated from oil-contaminated saline soil, were combined to form a bacterial consortium. The inoculation of the consortium to contaminated soil alleviated the adverse effects of salinity on biodegradation and increased the rate of degradation of petroleum hydrocarbon approximately 30% compared to the rate achieved in non-treated soil. In saline condition, treatment of polluted soil with the consortium led to a significant boost in the activity of dehydrogenase (approximately 2-fold. A lettuce seedling bioassay showed that, following the treatment, the soil's level of phytotoxicity was reduced up to 30% compared to non-treated soil. Treatment with an appropriate bacterial consortium can represent an effective means of reducing the adverse effects of salinity on the microbial degradation of petroleum and thus provides enhancement in the efficiency of microbial remediation of oil-contaminated saline soils.

  10. Spatial Regression and Prediction of Water Quality in a Watershed with Complex Pollution Sources.

    Science.gov (United States)

    Yang, Xiaoying; Liu, Qun; Luo, Xingzhang; Zheng, Zheng

    2017-08-16

    Fast economic development, burgeoning population growth, and rapid urbanization have led to complex pollution sources contributing to water quality deterioration simultaneously in many developing countries including China. This paper explored the use of spatial regression to evaluate the impacts of watershed characteristics on ambient total nitrogen (TN) concentration in a heavily polluted watershed and make predictions across the region. Regression results have confirmed the substantial impact on TN concentration by a variety of point and non-point pollution sources. In addition, spatial regression has yielded better performance than ordinary regression in predicting TN concentrations. Due to its best performance in cross-validation, the river distance based spatial regression model was used to predict TN concentrations across the watershed. The prediction results have revealed a distinct pattern in the spatial distribution of TN concentrations and identified three critical sub-regions in priority for reducing TN loads. Our study results have indicated that spatial regression could potentially serve as an effective tool to facilitate water pollution control in watersheds under diverse physical and socio-economical conditions.

  11. Modeling Water Pollution of Soil

    Directory of Open Access Journals (Sweden)

    V. Doležel

    2008-01-01

    Full Text Available The government of the Czech Republic decided that in the location to the west of Prague, capital city of the Czech Republic, some deep mines should be closed because of their low efficiency of coal mined i.e. small amounts and low quality of the coal extracted in the final stage of mining. The locations near Prague influenced the decision to do maintenance on the abandoned mines, as the thread of soil pollution was unacceptably high in the neighborhood of the capital city. Before the mines were closed it was necessary to separate existed extensive horizontal location of salt water below a clay layer in order not to deteriorate the upper fresh water. The salt water could not be allowed to pollute the upper layer with the fresh water, as many wells in villages in the neighborhood of the former mines would be contaminated. Two horizontal clay layers (an insulator and a semi-insulator separated the two horizons containing salt water and fresh water. Before starting deep mining, vertical shafts had to be constructed with concrete linings to enable the miners to access the depths. The salt water was draining away throughout the existence of the mine. The drainage was designed very carefully to avoid possible infiltration of salt water into the upper horizon. Before the mines were abandoned it was necessary to prevent contact between the two kinds of waters in the shafts. Several options were put forward, the most efficient of which appeared to be one that proposed filling the shafts with spoil soil and creating a joint seal made of disparate material at the interface between the salt water and fresh water to create a reliable stopper. The material for the spoil soil was delivered from deposits located not far from the shafts. This material consisted of a variety of grains of sand, big boulders of slate, slaty clay, sandstone, etc.. Chemical admixtures were considered to improve the flocculation of the filling material. The stopper was positioned at a

  12. Studies on Erythropoietin Bioassay Method

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kyoung Sam; Ro, Heung Kyu; Lee, Mun Ho [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1975-09-15

    It is the purpose of this paper to design the most preferable method of erythropoietin bioassay in Korea. Bioassay utilizing polycythemic mice are currently in general use for the indirect determination of erythropoietin. Assay animals are usually prepared either by transfusion or by exposure to reduced oxygen tension in specially constructed chamber. We prepared the polycythemic mice by the specially constructed hypobaric chamber. We observed weights and hematocrits of the mice in the hypobaric chamber, then hematocrits and 72 hours {sup 59}Fe red cell uptake ratio of the polycythemic mice induced by hypoxia after removal from the hypobaric chamber. We designed the method of erythropoietin bioassay according to the results obtained by above experiments. Then we measured the 72 hours {sup 59}Fe red cell uptake ratio of the polycythemic mice with normal saline, normal plasma and anemic plasma according to the method we designed. The results are followed:1) The hematocrits of the mice in hypobaric chamber increased to 74% in 11 days. It is preferable to maintain the pressure of the chamber to 400 mmHg for first 4 days then 300 mmHg for last 10 days to reduce the death rate and time consuming in hypobaric chamber. 2) After removal from the hypobaric chamber, the 72 hours {sup 59}Fe red cell uptake ratio decreased rapidly and maintained the lowest level from the fourth day to tenth day. 3) We design the method of erythropoietin bioassay according to the results of above experiment and to the half life of erythropoietin. 4) The Korean product {sup 59}Fe is mixture of {sup 55}Fe and {sup 59}Fe. And the {sup 59}Fe red cell uptake ratio in normal mice was far less with Korean product {sup 59}Fe than with pure {sup 59}Fe of foreign product. So it is desirable to use pure {sup 59}Fe in this method of erythropoietin bioassay. 5) Considering the cost, the technique, the time consuming and the sensitivity it is the most preferable method of erythropoietin bioassay in Korea

  13. Management of polluted waters from a repository at Forsmark

    International Nuclear Information System (INIS)

    Ridderstolpe, Peter; Straae, Daniel

    2007-05-01

    During both the construction and the deposition phase of the final repository, several kinds of polluted waters will occur that must be handled. The waters under consideration in this report are (1) sanitary wastewater, (2) drainage water from the repository, (3) leachate from the rock stockpile and (4) storm water. The aim of this report has been to produce an overview of the different flows of polluted waters and their properties, as well as to propose adequate strategies for their treatment. The report is part of SKB's environmental impact assessment work, but is also meant to be a usable tool in further planning. The sanitary wastewater clearly is the polluted water that possesses the greatest potential risk to human health and the environment. On the other hand it is fully treatable, which means that nuisance and negative environmental impact can be avoided. It is during the construction phase that the largest amounts of both water and pollutants are to be expected. Therefore, the prevailing conditions during construction phase are proposed to be used for dimensioning of technical solutions as well as for environmental impact assessments. The study of different techniques for treatment of sanitary wastewater has included a method called 'open wastewater planning'. The method helps its users to consider the local physical conditions and the prerequisites of the planned activities, as well as the legislative, practical and economical demands. The work comprises three different technical solutions that have been outlined on system level, all of which responds to the national environmental legislation as well as what has been considered as reasonable practical and economical demands. Before the final decision is made, it is recommended that the alternatives are evaluated from a broad perspective by SKB, taking into consideration the value of recycling and goodwill. Discharged leachate from the rock stockpile is expected to contain the greatest amount of nitrogen

  14. Subsurface soil and water pollution by diesel fuel at Bozdarevac railway station near Belgrade and remedial measures

    International Nuclear Information System (INIS)

    Vujasinovic, S.; Matic, D.I.

    1991-01-01

    An excessive pollution of ground water and the hydrogeologic environment by naphtha and its derivatives spilled on the surface has been recorded in Yugoslavia. The similar accidents in Serbia (Obrenovac, Uzicka Pozega, Beograd-Makis, Beograd-Danube railway station, Leskovac, Bozdarevac, etc.) have increased in number in the last several years. Transportation of naphtha and its derivatives, either by road or river, from the refineries to the consumers is obviously contributing much to the environmental pollution hazard. For the wide range of use and the specific effect on ground water, this pollutant can be taken for one of the first order. This paper discusses a case example. (Author)

  15. Evaluation of policy measures and methods to reduce diffuse water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Ute; Doehler, Helmut; Eurich-Menden, Brigitte; Goemann, Horst; Jaeger, Peter; Kreins, Peter; Moeller, Christine; Prigge, Achim; Ristenpart, Erik; Schultheiss, Ute

    2006-11-15

    After considerable improvements of wastewater treatment, the loads of nutrients and plant protection agents, deriving from agriculture and heavy metals from urban drainages effluents as well as from erosion of agricultural soils are the main sources of nutrients and harmful substances in the loads of water bodies. The targets of the project were on the one hand the analysis of the political and legislative framework of both policy fields and on the other hand the evaluation of several, selected water protection measures with regard to their contribution to reduce water pollution, their economical effects as well as their political enforceability. The focus was laid on diffuse water pollution caused by agriculture. As main reasons for the diffuse water pollution stagnating at high level, the analysis of the political framework identified a lack of implementation discipline of water law, followed by the fragmented and insufficient water protection legislation itself and the previous design of the common agricultural policy slanted towards increasing productivity. For the future co-operation of agricultural and water authorities in implementation of their reforms and better definition of 'Good Farming Practice' are recommended. The second investigation level focuses on the analysis and assessment of selected measures to reduce the input of nutrients and plant protection agents. This part was done with help of calculation models focussing on the specific cost/benefit ratios for water protection. In detail the following measures have been analysed: decoupling of direct payments, coupling of livestock farming to areas, tax on mineral nitrogen, pesticide levy, buffer stripes alongside of watercourses, all season crop cover on arable land, soil cultivation procedures, changing the use of arable land, optimisation of animal nutrition, optimisation of manure storage and application, co-operative agreements, education and training. Co-operations and water protection

  16. CONSTRUCTED WETLAND TECHNOLOGY TO PREVENT WATER RESOURCES POLLUTION

    OpenAIRE

    Zeki Gökalp; Sedat Karaman; Ismail Taş; Halil Kirnak

    2016-01-01

    Discharge of untreated waste waters into surface waters creates significant pollution in these resources. Wastewaters are most of the time discharged into seas, rivers and other water bodies without any treatments due to high treatment costs both in Turkey and throughout the world. Constructed wetlands, also called as natural treatment systems, are used as an alternative treatment system to conventional high-cost treatment systems because of their low construction, operation and maintenance c...

  17. Soil bioassays as tools for sludge compost quality assessment

    International Nuclear Information System (INIS)

    Domene, Xavier; Sola, Laura; Ramirez, Wilson; Alcaniz, Josep M.; Andres, Pilar

    2011-01-01

    Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment. Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.

  18. Case-specific comparison of water pollution control alternatives in peat production; Turvetuotannon vesiensuojeluvaihtoehtojen tapauskohtainen vertailu

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, M.; Kaasinen, A.; Heikkinen, K.; Ihme, R.; Kaemae, T.; Alasaarela, E.

    1996-12-31

    The present practice water pollution control in peat production and the elements of planning were analyzed, the water purification methods were classified and their weaknesses estimated. Furthermore, the cost of the water purification constructions was estimated and their significance for the watercourses evaluated. 54 peat production plans were chosen from the catchment areas of the rivers Iijoki, Siikajoki and Pyhaejoki. The suitability of the chosen water pollution control methods was evaluated on the basis of the plans and, further, on the basis of field surveys. The suitability of the purification methods to practical water pollution control was assessed by making plans for 15 peat mining areas. There is a need to develop the planning and implementation of water pollution control in peat mining. The methods that are used do not always work in the expected way in practice. Despite this planning is compatible with the water protection program and the regulations that are in force. The study gives a good idea of how to update the planning instructions for water pollution control. The accompanying report includes plan for 11 peat mining areas. (orig.)

  19. Results of bulk sediment analysis and bioassay testing on selected sediments from Oakland Inner Harbor and Alcatraz disposal site, San Francisco, California

    International Nuclear Information System (INIS)

    Word, J.Q.; Ward, J.A.; Woodruff, D.L.

    1990-09-01

    The Battelle/Marine Sciences Laboratory (MSL) was contracted by the US Army Corps of Engineers, San Francisco District, to perform bulk sediment analysis and oyster larvae bioassays (elutriate) on sediments from Inner Oakland Harbor, California. Analysis of sediment characteristics by MSL indicated elevated priority pollutants, PAHs, pesticides, metals, organotins, and oil and grease concentrations, when compared to Alcatraz Island Dredged Material Disposal Site sediment concentrations. Larvae of the Pacific oyster, Crassostrea gigas, were exposed to seawater collected from the Alcatraz Island Site water, and a series of controls using water and sediments collected from Sequim Bay, Washington. Exposure of larvae to the Alcatraz seawater and the 50% and 100% elutriate concentrations from each Oakland sediment resulted in low survival and a high proportion of abnormal larvae compared to Sequim Bay control exposures. MSL identified that field sample collection, preservation, and storage protocols used by Port of Oakland contractors were inconsistent with standard accepted practices. 23 refs., 10 figs., 40 tabs

  20. Characterization of quality of sediments from Paranaguá Bay (Brazil) by combined in vitro bioassays and chemical analyses.

    Science.gov (United States)

    Rizzi, Juliane; Pérez-Albaladejo, Elisabet; Fernandes, Denise; Contreras, Javier; Froehner, Sandro; Porte, Cinta

    2017-07-01

    The present study characterizes the quality of sediments from the Paranaguá Estuarine Complex (South Brazil). Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) were determined in sediment samples together with a series of different in vitro bioassays. The fish hepatoma cell line (PLHC-1) was used to determine the presence of cytotoxic compounds and CYP1A- and oxidative stress-inducing agents in sediment extracts. Ovarian microsomal fractions from sea bass (Dicentrarchus labrax) were used to detect the presence of endocrine disrupters that interfered with the synthesis of estrogens (ovarian CYP19). Despite the relatively low levels of pollutants and no evidence of negative effects based on guideline levels, sediments collected close to harbors were enriched with CYP1A-inducing agents and they showed higher cytotoxicity. In contrast, sediments from internal areas inhibited CYP19 activity, which suggests the presence of endocrine disrupters at these sites. Overall, the selected bioassays and the chemistry data led to the identification of potentially impacted areas along the Paranaguá Estuarine Complex that would require further action to improve their environmental quality. Environ Toxicol Chem 2017;36:1811-1819. © 2016 SETAC. © 2016 SETAC.

  1. Adaptive hierarchical grid model of water-borne pollutant dispersion

    Science.gov (United States)

    Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.

    Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.

  2. Current status of surface water pollution in Punjab

    International Nuclear Information System (INIS)

    Bashir, M.T.; Ghauri, Moin-ud-Din

    2001-01-01

    Eleven years investigations (1988-99) on river Ravi revealed that U.C. canal with a capacity of 220 m/sup 3//s at the tail and Q.B. Link canal with capacity of 410 m/sup 3//s are mainly responsible for higher flows during dry season. A decreasing trend has been observed in the DO levels indicating increasing pollution. An increasing trend has been observed in BOD, SS, TDS and Indicators. Even with the discharge of pollution from U.C. canal, Hudiara Nullah and Lahore city BOD at Balkoi was unexpectedly low. Problems confronting environment engineers regarding surface water pollution control has been highlighted and their solutions has been recommended. (author)

  3. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials

    Directory of Open Access Journals (Sweden)

    M. T. Amin

    2014-01-01

    Full Text Available The rapidly increasing population, depleting water resources, and climate change resulting in prolonged droughts and floods have rendered drinking water a competitive resource in many parts of the world. The development of cost-effective and stable materials and methods for providing the fresh water in adequate amounts is the need of the water industry. Traditional water/wastewater treatment technologies remain ineffective for providing adequate safe water due to increasing demand of water coupled with stringent health guidelines and emerging contaminants. Nanotechnology-based multifunctional and highly efficient processes are providing affordable solutions to water/wastewater treatments that do not rely on large infrastructures or centralized systems. The aim of the present study is to review the possible applications of the nanoparticles/fibers for the removal of pollutants from water/wastewater. The paper will briefly overview the availability and practice of different nanomaterials (particles or fibers for removal of viruses, inorganic solutes, heavy metals, metal ions, complex organic compounds, natural organic matter, nitrate, and other pollutants present in surface water, ground water, and/or industrial water. Finally, recommendations are made based on the current practices of nanotechnology applications in water industry for a stand-alone water purification unit for removing all types of contaminants from wastewater.

  4. A Rapid and Simple Bioassay Method for Herbicide Detection

    Directory of Open Access Journals (Sweden)

    Xiu-Qing Li

    2008-01-01

    Full Text Available Chlamydomonas reinhardtii, a unicellular green alga, has been used in bioassay detection of a variety of toxic compounds such as pesticides and toxic metals, but mainly using liquid culture systems. In this study, an algal lawn--agar system for semi-quantitative bioassay of herbicidal activities has been developed. Sixteen different herbicides belonging to 11 different categories were applied to paper disks and placed on green alga lawns in Petri dishes. Presence of herbicide activities was indicated by clearing zones around the paper disks on the lawn 2-3 days after application. The different groups of herbicides induced clearing zones of variable size that depended on the amount, mode of action, and chemical properties of the herbicides applied to the paper disks. This simple, paper-disk-algal system may be used to detect the presence of herbicides in water samples and act as a quick and inexpensive semi-quantitative screening for assessing herbicide contamination.

  5. Responses in sediment bioassays used in the Netherlands: can observed toxicity be explained by routinely monitored priority pollutants?

    NARCIS (Netherlands)

    Lahr, J.; Maas-Diepeveen, J.L.; Stuijfzand, S.C.; Leonards, P.E.G.; Drueke, J.M.; Luecker, S.; Espeldoorn, A.

    2003-01-01

    In order to identify the cause of toxicity in sediments and suspended matter, a large number of samples with different degrees of contamination was taken at various locations in The Netherlands. Standard acute bioassays were carried out with the bacterium Vibrio fischeri, the rotifer Brachionus

  6. Hierarchical responses to organic contaminants in aquatic ecotoxicological bioassays: from microcystins to biodegradation

    OpenAIRE

    Montenegro, Katia

    2008-01-01

    In this thesis I explore the ecotoxicological responses of aquatic organisms at different hierarchical levels to organic contaminants by means of bioassays. The bioassays use novel endpoints or approaches to elucidate the effects of exposure to contaminants and attempt to give mechanistic explanations that could be used to interpret effects at higher hierarchical scales. The sensitivity of population growth rate in the cyanobacteria species Microcystis aeruginosa to the herbicide glyp...

  7. Reducing surface water pollution through the assessment of the cost-effectiveness of BMPs at different spatial scales.

    Science.gov (United States)

    Panagopoulos, Y; Makropoulos, C; Mimikou, M

    2011-10-01

    Two kinds of agricultural Best Management Practices (BMPs) were examined with respect to cost-effectiveness (CE) in reducing sediment, nitrates-nitrogen (NO(3)-N) and total phosphorus (TP) losses to surface waters of the Arachtos catchment in Western Greece. The establishment of filter strips at the edge of fields and a non-structural measure, namely fertilization reduction in alfalfa, combined with contour farming and zero-tillage in corn and reduction of animal numbers in pastureland, were evaluated. The Soil and Water Assessment Tool (SWAT) model was used as the non-point-source (NPS) estimator, while a simple economic component was developed estimating BMP implementation cost as the mean annual expenses needed to undertake and operate the practice for a 5-year period. After each BMP implementation, the ratio of their CE in reducing pollution was calculated for each Hydrologic Response Unit (HRU) separately, for each agricultural land use type entirely and for the whole catchment. The results at the HRU scale are presented comprehensively on a map, demonstrating the spatial differentiation of CE ratios across the catchment that enhances the identification of locations where each BMP is most advisable for implementation. Based on the analysis, a catchment management solution of affordable total cost would include the expensive measure of filter strips in corn and only in a small number of pastureland fields, in combination with the profitable measure of reducing fertilization to alfalfa fields. When examined for its impact on river loads at the outlet, the latter measure led to a 20 tn or 8% annual decrease of TP from the baseline with savings of 15€/kg of pollutant reduction. Filter strips in corn fields reduced annual sediments by 66 Ktn or 5%, NO(3)-N by 71 tn or 9.5% and TP by 27 tn or 10%, with an additional cost of 3.1 €/tn, 3.3 €/kg and 8.1 €/kg of each pollutant respectively. The study concludes that considerable reductions of several

  8. Acid mine drainage: mining and water pollution issues in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The importance of protecting water quality and some of the problems associated with mineral development are described. Negative impacts of mining operations such as sedimentation, water disturbances, and water pollution from waste rock and tailings are considered. Mining wastes, types of water pollution from mining, the legacy of acid mine drainage, predicting acid mine drainage, preventing and mitigating acid mine drainage, examples from the past, and cyanide heap-leaching are discussed. The real costs of mining at the Telkwa open pit coal mine are assessed. British Columbia mines that are known for or are potentially acid generating are shown on a map. 32 refs., 10 figs.

  9. Bioassay responses and effects on benthos after pilot remediations in the delta of the rivers Rhine and Meuse

    International Nuclear Information System (INIS)

    Besten, Pieter J. den; Brink, Paul J. van den

    2005-01-01

    Chemical and biological monitoring was carried out for 5 years following pilot remediations at two locations in the Rhine-Meuse delta. The remediations consisted of partial excavation of the contaminated sediments, followed by applying a clean layer of sandy material on top. After the remediation, a new silty sediment top layer was formed exhibiting a lower toxicity in five sediment/sediment pore water bioassays. Compared to the unremediated sites, lower metal and PAH concentrations were found at the remediated sites, but in one location at the same time elevated HCH, PCB and HCB levels were recorded. One year after the remediation, the differences became smaller, although effects-based classification showed that the remediated site showed a higher quality up to the last year. In both remediated sites a rapid recolonization of nematodes, oligochaetes and chironomids was observed, while the recolonization by bivalves was slower. A few years after the remediation the differences decrease. - Capping contaminated sediments can be an effective remediation measure in two large river deltas

  10. Bioassay responses and effects on benthos after pilot remediations in the delta of the rivers Rhine and Meuse

    Energy Technology Data Exchange (ETDEWEB)

    Besten, Pieter J. den [Institute for Inland Water Management and Waste Water Treatment (RIZA), Ministry of Transport, Public Works and Water Management, PO Box 17, 8200 AA Lelystad (Netherlands)]. E-mail: p.dbesten@riza.rws.minvenw.nl; Brink, Paul J. van den [Alterra Green World Research, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen (Netherlands)

    2005-07-15

    Chemical and biological monitoring was carried out for 5 years following pilot remediations at two locations in the Rhine-Meuse delta. The remediations consisted of partial excavation of the contaminated sediments, followed by applying a clean layer of sandy material on top. After the remediation, a new silty sediment top layer was formed exhibiting a lower toxicity in five sediment/sediment pore water bioassays. Compared to the unremediated sites, lower metal and PAH concentrations were found at the remediated sites, but in one location at the same time elevated HCH, PCB and HCB levels were recorded. One year after the remediation, the differences became smaller, although effects-based classification showed that the remediated site showed a higher quality up to the last year. In both remediated sites a rapid recolonization of nematodes, oligochaetes and chironomids was observed, while the recolonization by bivalves was slower. A few years after the remediation the differences decrease. - Capping contaminated sediments can be an effective remediation measure in two large river deltas.

  11. Farmers, Trust, and the Market Solution to Water Pollution: The Role of Social Embeddedness in Water Quality Trading

    Science.gov (United States)

    Mariola, Matt J.

    2012-01-01

    Water quality trading (WQT) is a market arrangement in which a point-source water polluter pays farmers to implement conservation practices and claims the resulting benefits as credits toward meeting a pollution permit. Success rates of WQT programs nationwide are highly variable. Most of the literature on WQT is from an economic perspective…

  12. Assessing water pollution level and gray water footprint of anthropogenic nitrogen in agricultural system

    Science.gov (United States)

    Huang, Guorui; Chen, Han; Yu, Chaoqing

    2017-04-01

    Water pollution has become a global problem which is one of the most critical issues of today's water treatment. At a spatial resolution of 10km, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for major cropping systems from 1955 to 2014, estimate the anthropogenic nitrogen loads to fresh, and calculate the resultant grey water footprints and N-related water pollution level in China. The accumulated annual Nitrogen loads to fresh from agricultural system is 0.38Tg in 1955 and 4.42Tg in 2014, while the grey water footprints vary from 1.53 billion m3 to 17.67 billion m3, respectively. N loads in north of China contributes much more on the N leaching because of the high fertilizer but in south of China, it is mainly focused on the N runoff because of the heavy rain. There are more than 25% of grids with WPL>1 (exceed the water capacity of assimilation), which is mainly located on the North China Plain.

  13. Green seaweed Ulva as a monitor for pollution in coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Levine, H.G.

    1983-01-01

    Methods have been developed which capitalize on the capacity of Ulva to function as a bioindicator of pollution in coastal waters. Studies have been performed evaluating the growth of both Ulva tissue discs and Ulva germlings as they relate to physical and chemical parameters of the environment. The Ulva tissue disc method for the in situ monitoring of organic load (nitrogen and phosphorus) in coastal waters was demonstrated to be marginally effective. The in situ differential growth reponse of parthenogenetically developed germlings fulfilled the monitoring objective, but multi-faceted environmental considerations introduced complications which reduced the feasibility of the germling deployment method for routine monitoring. The assessment of Ulva as a bioaccumulator was undertaken. Use of Ulva as an in situ sampling device has demonstrated appreciable success. This in situ monitor can provide concentrated samples of environmental pollutants. Analytical techniques have been employed to extract information on trace metals, pesticides, PCBs and other accumulated organohalides. Ulva is a bioacumulator which, by all standards, has much to recommend it. Precedures have been developed to reduce much of the inherent biological varation. Ulva has world-wide occurrence, and is therefore capable of providing a standard for comparison of data. This alga merits consideration as an international monitor for pollutants in the marine environment.

  14. Technology of environmental pollution control

    International Nuclear Information System (INIS)

    Shaheen, E.I.

    1992-01-01

    This book aims to be a comprehensive reference for technological advances in pollution control and abatement and pollution regulations. The first chapter, 'The dilemma of environmental pollution' summarises pollution legislation in the United States and discusses worldwide interest in pollution abatement. Chapter 2 describes some recent environmental disasters and discusses the major air pollutants and their harmful effects. Chapters 3 and 4 assess the various techniques for air pollution control and water pollution control. Chapter 5 is devoted to oil pollution impact and abatement. Solid waste management and methods of solid waste disposal are discussed in chapter 6, and noise pollution, its harmful effects and its control are dealt within chapter 7. Appendices contain a glossary, a summary of the US Clean Air Act and the US drinking water regulations and reference figures and tables relating to energy and the environment. Individual chapters contain many references

  15. Identification and assessment of hazardous compounds in drinking water.

    Science.gov (United States)

    Fawell, J K; Fielding, M

    1985-12-01

    The identification of organic chemicals in drinking water and their assessment in terms of potential hazardous effects are two very different but closely associated tasks. In relation to both continuous low-level background contamination and specific, often high-level, contamination due to pollution incidents, the identification of contaminants is a pre-requisite to evaluation of significant hazards. Even in the case of the rapidly developing short-term bio-assays which are applied to water to indicate a potential genotoxic hazard (for example Ames tests), identification of the active chemicals is becoming a major factor in the further assessment of the response. Techniques for the identification of low concentrations of organic chemicals in drinking water have developed remarkably since the early 1970s and methods based upon gas chromatography-mass spectrometry (GC-MS) have revolutionised qualitative analysis of water. Such techniques are limited to "volatile" chemicals and these usually constitute a small fraction of the total organic material in water. However, in recent years there have been promising developments in techniques for "non-volatile" chemicals in water. Such techniques include combined high-performance liquid chromatography-mass spectrometry (HPLC-MS) and a variety of MS methods, involving, for example, field desorption, fast atom bombardment and thermospray ionisation techniques. In the paper identification techniques in general are reviewed and likely future developments outlined. The assessment of hazards associated with chemicals identified in drinking and related waters usually centres upon toxicology - an applied science which involves numerous disciplines. The paper examines the toxicological information needed, the quality and deployment of such information and discusses future research needs. Application of short-term bio-assays to drinking water is a developing area and one which is closely involved with, and to some extent dependent on

  16. Use of a germination bioassay to test compost maturity in Tekelan Village

    Science.gov (United States)

    Oktiawan, Wiharyanto; Zaman, Badrus; Purwono

    2018-02-01

    Livestock waste from cattle farms in Tekelan village, Getasan Subdistrict, Semarang Regency can be grouped into three types, namely solid waste, slurry and waste water. Solid waste (cow dung) was processed into compost, while slurry and waste water were used to make liquid fertilizer. This compost was used as a component of planting media in horticultural crops and potted plants production. We evaluated the toxicity (phytochemical and ecotoxicological) test of compost by using germination index (GI). Vigna radiata seeds are sown on filter paper dampened with compost extract for different times. GI was calculated by relative germination (G) and relative radical length (L). The germination index (GI) = G / G0 x L / L0 x 100, where G0 and L0 are values obtained by distilled water as a control. The results showed that germination bioassay and radical length using aquades and groundwater in Tekelan village did not affect the radical length of Vigna radiata . Technically, groundwater in Tekelan village can be used as a germination bioassay control. The cow dung compost substrate appears to have a major influence on compost toxicity. Mature compost was produced on day 14 with a GI of 104.03.

  17. Structuring a risk-based bioassay program for uranium usage in university laboratories

    Science.gov (United States)

    Dawson, Johnne Talia

    Bioassay programs are integral in a radiation safety program. They are used as a method of determining whether individuals working with radioactive material have been exposed and have received a resulting dose. For radionuclides that are not found in nature, determining an exposure is straightforward. However, for a naturally occurring radionuclide like uranium, it is not as straightforward to determine whether a dose is the result of an occupational exposure. The purpose of this project is to address this issue within the University of Nevada, Las Vegas's (UNLV) bioassay program. This project consisted of two components that studied the effectiveness of a bioassay program in determining the dose for an acute inhalation of uranium. The first component of the plan addresses the creation of excretion curves, utilizing MATLAB that would allow UNLV to be able to determine at what time an inhalation dose can be attributed to. The excretion curves were based on the ICRP 30 lung model, as well as the Annual Limit Intake (ALI) values located in the Nuclear Regulatory Commission's 10CFR20 which is based on ICRP 30 (International Commission on Radiological Protection). The excretion curves would allow UNLV to be able to conduct in-house investigations of inhalation doses without solely depending on outside investigations and sources. The second component of the project focused on the creation of a risk based bioassay program to be utilized by UNLV that would take into account bioassay frequency that depended on the individual. Determining the risk based bioassay program required the use of baseline variance in order to minimize the investigation of false positives among those individuals who undergo bioassays for uranium work. The proposed program was compared against an evaluation limit of 10 mrem per quarter, an investigational limit of 125 mrem per quarter, and the federal/state requirement of 1.25 rem per quarter. It was determined that a bioassay program whose bioassay

  18. Water pollution monitoring in Tirrenian Sea 1991-1993

    International Nuclear Information System (INIS)

    Scipioni, A.; Napoli, M.; Cavolo, F.

    1996-01-01

    A marine environmental research programme is in course of carrying out for some years in a definite coastal zone of the southern Tirrenian Sea in order to point out possible significant pollutions, identify their origin and study the appropriate preventive and protective measures. In the first stage of the programme the analysis of the actual water quality was done, by evaluation of several indicators (temperature, conductivity, pH, turbidity and suspended sediments, dissolved oxygen, chlorophyll a, nutrients concentration, bacteriological parameters) at three different distances from the shore: 50 m, 500 m and 1 mile. The analysis of the collected values shows that the actual water quality is on the whole quite satisfactory, except for some restricted areas in which a bacteriological pollution, due to high concentrations of coliforms and Streptococcus faecalis, has been pointed out

  19. Calibration and field performance of membrane-enclosed sorptive coating for integrative passive sampling of persistent organic pollutants in water

    International Nuclear Information System (INIS)

    Vrana, Branislav; Paschke, Albrecht; Popp, Peter

    2006-01-01

    Membrane-enclosed sorptive coating (MESCO) is a miniaturised monitoring device that enables integrative passive sampling of persistent, hydrophobic organic pollutants in water. The system combines the passive sampling with solventless preconcentration of organic pollutants from water and subsequent desorption of analytes on-line into a chromatographic system. Exchange kinetics of chemicals between water and MESCO was studied at different flow rates of water, in order to characterize the effect of variable environmental conditions on the sampler performance, and to identify a method for in situ correction of the laboratory-derived calibration data. It was found that the desorption of chemicals from MESCO into water is isotropic to the absorption of the analytes onto the sampler under the same exposure conditions. This allows for the in situ calibration of the uptake of pollutants using elimination kinetics of performance reference compounds and more accurate estimates of target analyte concentrations. A field study was conducted to test the sampler performance alongside spot sampling. A good agreement of contaminant patterns and water concentrations was obtained by the two sampling techniques. - A robust calibration method of a passive sampling device for monitoring of persistent organic pollutants in water is described

  20. Water pollution control legislation in Israel: understanding implementation processes from an actor-centered approach

    NARCIS (Netherlands)

    Hophmayer Tokich, Sharon

    2013-01-01

    In the State of Israel, advanced legislation for the management of scarce water resources, including legislation to prevent water pollution, were put in place in the early stages of the State’s formation. Despite that, on-going uncontrolled pollution has deteriorated the quality of water sources for

  1. Effect of Soil Filtration and Ozonation in the Change of Baseline Toxicity in Wastewater Spiked with Organic Micro-pollutants

    KAUST Repository

    Gan, Alexander

    2012-07-01

    Bioassays for baseline toxicity, which measure toxicants’ non-specific effects, have been shown in previous studies to effectively correlate with the increased presence of pharmaceuticals, personal care products, endocrine-disrupting compounds, and other synthetic organics in treated sewage effluent. This study investigated how the baseline toxicity of anthropogenic compounds-spiked wastewater changed during the treatment of biofiltration and ozone oxidation, as measured by the bioluminescence inhibition of the Vibrio fischeri bacterium. The water quality parameters of dissolved organic carbon, seven common anions, and fluorescence spectroscopy were used to corroborate and collate with the toxicity results. Water quality was evaluated on two bench-scale soil filtration columns, which were configured for pre-ozonation and post-ozonation. Both systems’ soil aerobically removed similar amounts of dissolved organic carbon, and the reduction ranged between 57.7% and 62.1% for the post-ozonation and pre-ozonation systems, respectively. Biological removal of DOC, protein-like, humic-like, and soluble microbial product-like material was highest in the first 28.5 cm of each 114 cm-long system. While bioluminescence inhibition showed that ozonation was effective at lowering baseline toxicity, this study’s bioassay procedure was a very poor indicator of soil filtration treatment; both system’s effluents were significantly more toxic than their non-ozonated influents.

  2. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    Directory of Open Access Journals (Sweden)

    Ruibin Zhang

    2014-09-01

    Full Text Available In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  3. Establishing principal soil quality parameters influencing earthworms in urban soils using bioassays

    International Nuclear Information System (INIS)

    Hankard, Peter K.; Bundy, Jacob G.; Spurgeon, David J.; Weeks, Jason M.; Wright, Julian; Weinberg, Claire; Svendsen, Claus

    2005-01-01

    Potential contamination at ex-industrial sites means that, prior to change of use, it will be necessary to quantify the extent of risks to potential receptors. To assess ecological hazards, it is often suggested to use biological assessment to augment chemical analyses. Here we investigate the potential of a commonly recommended bioassay, the earthworm reproduction test, to assess the status of urban contaminated soils. Sample points at all study sites had contaminant concentrations above the Dutch soil criteria Target Values. In some cases, the relevant Intervention Values were exceeded. Earthworm survival at most points was high, but reproduction differed significantly in soil from separate patches on the same site. When the interrelationships between soil parameters and reproduction were studied, it was not possible to create a good model of site soil toxicity based on single or even multiple chemical measurements of the soils. We thus conclude that chemical analysis alone is not sufficient to characterize soil quality and confirms the value of biological assays for risk assessment of potentially contaminated soils. - Bioassays must be applied for the risk assessment complexly-polluted sites to complement chemical analysis of soils

  4. The impact of Land use Change on Water Pollution Index of Kali Madiun Sub-watershed

    Directory of Open Access Journals (Sweden)

    Pranatasari Dyah Susanti

    2017-07-01

    Full Text Available Land use change is one of the effects of population growth and increased human activities. Land use change that overlooked the rule of ecosystem sustainability has a propensity to adversely affect the environment, including the decline of water quality. Kali Madiun is a sub-watershed of Bengawan Solo Watershed that allegedly endured the impacts of land use change. This study aimed to investigate the impacts of land use change on the water quality index of Kali Madiun Sub-watershed. Land use change analysis was done by overlay analysis of spatial data including the maps of land use in 2010 and 2015. Samples were the surface water in the upper, middle and lower part of Kali Madiun Sub-Watershed. Water quality analysis was carried out by comparing the results of water quality parameter assessment based on Government Regulation No. 82 of 2001, while water quality index was figured out by an assessment based on the Decree of the Minister of Environment No. 115 of 2003. The results indicated that during the five years observation, there were land use changes in the upper, middle and lower part of Kali Madiun Sub-watershed. Several parameters increased in 2010 to 2015, namely: TDS, BOD, COD, nitrate, detergents, oils and greases. Pollution index shifted from slightly polluted in 2010 into moderately polluted in 2015. We propose a strategy to solve these problems by the involvement of stakeholders and the participation of local community in managing both domestic and industrial wastes. Also, it should be supported by palpable regulations related to land conversion. Furthermore, it is expected that the effort will reduce the potential of pollution and improve the water quality.

  5. THE MOST IMPORTANT POLLUTANTS OF EASTERN SLOVAKIA WATERS

    Directory of Open Access Journals (Sweden)

    Tatiana Hrušková

    2014-10-01

    Full Text Available As the area of the Slovak Republic is 49,036 km², there are many potential contaminants that can affect its population. In the socialist era the town of Strážske located in the Košice Municipal Region was the centre of production of polychlorinated biphenyls (PCB inter alia and nowadays about 3,500 metric tonnes of PCB are persisting there and present the greatest PCB environmental risk in the central Europe. The heavy metal contamination in Slovakia is caused by the natural background as well as by the former mining activities. In Slovakia there are about 17 thousand old mining works, i.e. adits, stocks, and impoundments. Contamination of the ground and surface waters in the Spiš–Gemer Ore Mountain (SGOM area is caused by mine drainage. Arsenic, antimony, copper, mercury, cadmium, and zinc are the main pollutants of natural waters. All contaminated areas are currently monitored according to the national and EU legislation and nutrient load reduction programmes. As a result of this the level of inorganic and organic micropollutants in surface water and water reservoirs will be reduced together with the negative impact of water pollution on the environment in Eastern Slovakia region.

  6. Research on water pollution induced by coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q.; Dong, D.; Fu, Y.; Bai, X.; Sun, Z. [China University of Mining and Technology, Xuzhou (China). Dept of Resource Exploitation Engineering

    2002-01-01

    Water environment problems induced by mining were studied. Influences of coal mining on runoff of rivers and on water sources were discussed. And the forming mechanism of acid water was analysed. The result shows that the mining activity is gradually changing the co-environment of adjacent areas, especially the water. With the water sources being continually polluted, the underground water has some poisonous or harmful ions in the process of dynamic exchange of water. The falling level of water table results in an increase of depression cone, and the seepage of rivers and the increasing range of acid water have more or less influence on water sources. All these are threatening the normal life of human beings. 11 refs., 2 figs.

  7. Political economy of transnational water pollution: what do the LMB data (1985-2000) say?

    Science.gov (United States)

    Guo, Rongxing; Yang, Kaizhong

    2003-10-01

    On the basis of the cross-section and time-series data of the Lower Mekong Basin (LMB)--including large sections of Thailand, Lao PDR, Vietnam, and Cambodia, we find little evidence in support of the environmental Kuznets curve (EKC) hypothesis. Instead, our regressions support the general views that water pollution had been positively related to income level and that, as a result of the end of the Cold War era, it had been significantly reduced in the 1990s vis-à-vis the 1980s. In most circumstances, water resources were more seriously polluted in the transnational border areas than in the other areas. Specifically, the estimated coefficients on the political boundary dummies show that political influence on transnational water pollution was more significant in areas near "the international border along which the river runs" (denoted by BORDER2) than in places near "the international border across which the river runs" (denoted by BORDER1). The estimated coefficients on the ASEAN dummy present some information about the positive role of the Association for Southeast Asian Nations (ASEAN) membership in the reduction of transnational water pollution. Finally, the country-specific dummies are found to present conflicting information about the transnational differences of water pollution, although Thailand is found to have the least water pollution in the LMB.

  8. [Study on the types and water pollution driving forces of the typical and medium-small-sized cities in the southern China based on the analysis of water environment].

    Science.gov (United States)

    Jiao, Shi-Xing; Wang, La-Chun; Huo, Yu; Chen, Chang-Chun; Teng, Juan

    2009-07-15

    According to the major pollution sources of urban water environment, 10 indexes such as industrial sewage quantity were closen to establish evaluation indexes system about the types and influencing factors of the typical and medium-small-sized cities in the southern China. Case studies of 16 typical and medium-small-sized cities were taken in Jiangsu, Zhejiang, Hubei and Anhui provinces. Combined with SPSS 11.0 cluster analysis results, city types were divided in reference to the values of water resources comprehensive pollution indexes and economical development indexes. The driving forces about city water environment pollution were studied by principal component analysis method. The result indicates that the 16 cities belong to two categories and four sub-categories, which are rich economy as well as light pollution of water environment and poor economy as well as heavy pollution of water environment. The influencing factors of water environment pollution are in sequence of industrial water pollution, agricultural no-point source pollution and urban domestic water pollution. The main factors of water environment pollution influenced I category cities, II as well as IV category cities and III category cities are industrial water pollution, urban domestic pollution and agricultural no-point source pollution respectively.

  9. Water Pollution, Environmental Science Curriculum Guide Supplement.

    Science.gov (United States)

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  10. Surface water pollution and water quality studies at Prestea Goldfields Limited (P. G. L.) Prestea, Ghana

    International Nuclear Information System (INIS)

    Ampong, Charles Horace

    1993-11-01

    Prestea is a mining community developed around Prestea Goldfields Limited, which is engaged in mining Sulphide gold ores known to give rise to several environmental problems like air pollution in the form of emissions of arsenic or arsenous oxides, with concurrent production of large amounts of Sulphur dioxide. As a result of extensive mining since 1929 using underground methods, involving about 18 million tons of ore, an estimated 3.5 - 4 million tons of tailings have been left on the surface in the vicinity of both current and historic treatment sites. Since the mine is located in an area of heavy rainfall, incessant rain will flush contaminants from tailings dumps and waste sites into the downstream environment and subsequently into surface waters. Water supply for the population in the area is derived from rivers and streams flowing in the area, supplemented by boreholes and spring water. Not much is known with respect to pollution levels along the rivers and streams which serve as water for domestic uses by settlers along these river banks and around. It therefore became necessary to carry out studies to ascertain the pollution levels of various water resources and to make some suggestions to guide pollution of these waters and uses of them as well. Water sampling was carried out in the rivers and streams. A spring water and well water were also sampled as reference data to ascertain background levels of pollutants. The work highlights activities of the mine and that of the surrounding inhabitants which are likely to result in the pollution of surface waters. It also discusses results of water samples within the area, Sample analysis included determination of parameters like pH, Temperature, Conductivity, Alkalinity, Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Total Solids (TS), Total hardness, Cyanide and Sulphate concentrations among others. Concentrations of some heavy metals were also determined. Based on standards prevailing in the country

  11. Laboratory algal bioassays using PAM fluorometry: effects of test conditions on the determination of herbicide and field sample toxicity.

    Science.gov (United States)

    Sjollema, Sascha B; van Beusekom, Sebastiaan A M; van der Geest, Harm G; Booij, Petra; de Zwart, Dick; Vethaak, A Dick; Admiraal, Wim

    2014-05-01

    Pulse Amplitude Modulation (PAM) fluorometry, based on chlorophyll a fluorescence, is a frequently used technique in algal bioassays to assess toxicity of single compounds or complex field samples. Several test conditions can influence the test results, and because a standardized test protocol is currently lacking, linking the results of different studies is difficult. Therefore, the aim of the present study was to gain insight into the effects of test conditions of laboratory algal bioassays using PAM fluorometry on the outcome of toxicity tests. To this purpose, we described the results from several pilot studies on test development in which information is provided on the effects of the main test factors during the pretest phase, the test preparation, the exposure period, and the actual measurement. The experiments were focused on individual herbicides and complex field samples and included the effects of culturing conditions, cell density, solvent concentration, exposure time, and the presence of actinic light. Several of these test conditions were found to influence the outcome of the toxicity test, and the presented information provides important background information for the interpretation of toxicity results and describes which test conditions should be taken into account when using an algal bioassay with PAM fluorometry. Finally, the application of PAM fluorometry in algal toxicity testing is discussed. © 2014 SETAC.

  12. Radioactive pollution of the Chernobyl cooling pond bottom sediments. I. Water-physical properties, chemical compound and radioactive pollution of pore water

    Directory of Open Access Journals (Sweden)

    L. S. Pirnach

    2011-03-01

    Full Text Available First results of complex research of the Chernobyl cooling pond bottom sediments are presented. The general problematic is considered. Information about vertical distribution of bottom sediments water-physical properties, and also ionic compound and radioactive pollution 137Cs and 90Sr of pore water is received. The inventory of bottom sediments pore water activity is calculated. Strong correlations between concentration in pore water 137Cs, K +, NH4 + within the selected sediments columns are found out. Results of researches are intended for the forecast of radioecological situation change in the cooling pond water-soil complex during drying-up.

  13. Use of solar energy for disinfection of polluted water

    Directory of Open Access Journals (Sweden)

    Y. Jamil

    2009-05-01

    Full Text Available Polluted water is causing serious health problems especially in the rural areas of Pakistan. People have limited access to safe water supply and many diseases like diarrhea and gastrointestinal diseases are transmitted by consumption of polluted water. We have investigated the potential of using solar energy to pasteurize water. Low cost indigenously available materials have been utilized to design and fabricate a solar box type pasteurizer having a capacity of three liters. The performance study of the pasteurizer was performed during the month of May 2008. The designed pasteurizer maintained water temperature in the range of60 oC to 70 oC continuously for more than an hour which is enough for deactivation of coliform bacteria. The maximum water temperature on a clear sunny day was found to be 67 oC, corresponding to an ambient temperature of40 oC. With the pasteurizer facing south, a very little repositioning was required. The low cost and operational simplicity of the pasteurizer make it affordable and usable. It is more useful in rural areas where other sources of energy like electricity and gas are not easily available

  14. Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Li, Dawei; Qu, Lulu; Zhai, Wenlei; Xue, Jinqun; Fossey, John S; Long, Yitao

    2011-05-01

    A novel facile method for on-site detection of substituted aromatic pollutants in water using thin layer chromatography (TLC) combined with surface-enhanced Raman spectroscopy (SERS) was explored. Various substituted aromatics in polluted water were separated by a convenient TLC protocol and then detected using a portable Raman spectrometer with the prepared silver colloids serving as SERS-active substrates. The effects of operating conditions on detection efficacy were evaluated, and the application of TLC-SERS to on-site detection of artificial and real-life samples of aromatics/polluted water was systematically investigated. It was shown that commercially available Si 60-F(254) TLC plates were suitable for separation and displayed low SERS background and good separation efficiency, 2 mM silver colloids, 20 mM NaCl (working as aggregating agent), 40 mW laser power, and 50 s intergration time were appropriate for the detection regime. Furthermore, qualitative and quantitative detection of most of substituted aromatic pollutants was found to be readily accomplished using the developed TLC-SERS technique, which compared well with GC-MS in terms of identification ability and detection accuracy, and a limit of detection (LOD) less than 0.2 ppm (even at ppb level for some analytes) could be achieved under optimal conditions. The results reveal that the presented convenient method could be used for the effective separation and detection of the substituted aromatic pollutants of water on site, thus reducing possible influences of sample transportation and contamination while shortening the overall analysis time for emergency and routine monitoring of the substituted aromatics/polluted water.

  15. INTEGRATION OF RS/GIS FOR SURFACE WATER POLLUTION RISK MODELING. CASE STUDY: AL-ABRASH SYRIAN COASTAL BASIN

    Directory of Open Access Journals (Sweden)

    Y. Yaghi

    2017-09-01

    Full Text Available Recently the topic of the quality of surface water (rivers – lakes and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP and non-point Source pollution (NPSP. Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.

  16. Integration of Rs/gis for Surface Water Pollution Risk Modeling. Case Study: Al-Abrash Syrian Coastal Basin

    Science.gov (United States)

    Yaghi, Y.; Salim, H.

    2017-09-01

    Recently the topic of the quality of surface water (rivers - lakes) and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP) and non-point Source pollution (NPSP). Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers) and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.

  17. Climate change effects on enchytraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation.

    Science.gov (United States)

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2015-10-01

    Climate change may alter physical, chemical and biological properties of ecosystems, affecting organisms but also the fate of chemical pollutants. This study aimed to find out how changes in climate conditions (air temperature, soil moisture content) affect the toxicity of metal-polluted soils to the soft-bodied soil organism Enchytraeus crypticus, linking enchytraeid performance with changes in soil available and body metal concentrations. Bioassays with E. crypticus were performed under different combinations of air temperature (20 and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) in dilution series of three metal-polluted soils (mine tailing, forest and watercourse). After 21 d exposure, enchytraeid reproduction was determined, and soil available (extracted with 0.01 M CaCl2) and body Cd, Cu, Pb and Zn concentrations in surviving adults were determined. In general, Cd, Pb and Zn availability decreased upon incubation under the different climate scenarios. In the watercourse soil, with initially higher available metal concentrations (678 µg Cd kg(-1), 807 µg Pb kg(-1) and 31,020 µg Zn kg(-1)), decreases were greatest at 50% WHC probably due to metal immobilization as carbonates. Enchytraeid reproduction was negatively affected by higher available metal concentrations, with reductions up to 98% in the watercourse soil compared to the control soil at 30% WHC. Bioaccumulation of Cd, Pb and Zn was higher when drier conditions were combined with the higher temperature of 25 °C. Changes in metal bioavailability and bioaccumulation explained the toxicity of soil polluted by metal mine wastes to enchytraeids under changing environmental conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    Science.gov (United States)

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-02-01

    Full Text Available Water pollution has become one of the leading causes of human health problems. Low molecular weight pollutants, even at trace concentrations in water sources, have aroused global attention due to their toxicity after long-time exposure. There is an increased demand for appropriate methods to detect these pollutants in aquatic systems. Aptamers, single-stranded DNA or RNA, have high affinity and specificity to each of their target molecule, similar to antigen-antibody interaction. Aptamers can be selected using a method called Systematic Evolution of Ligands by EXponential enrichment (SELEX. Recent years we have witnessed great progress in developing aptamer selection and aptamer-based sensors for low molecular weight pollutants in water sources, such as tap water, seawater, lake water, river water, as well as wastewater and its effluents. This review provides an overview of aptamer-based methods as a novel approach for detecting low molecular weight pollutants in water sources.

  20. Advances in Magnetically Separable Photocatalysts: Smart, Recyclable Materials for Water Pollution Mitigation

    Directory of Open Access Journals (Sweden)

    Gcina Mamba

    2016-06-01

    Full Text Available Organic and inorganic compounds utilised at different stages of various industrial processes are lost into effluent water and eventually find their way into fresh water sources where they cause devastating effects on the ecosystem due to their stability, toxicity, and non-biodegradable nature. Semiconductor photocatalysis has been highlighted as a promising technology for the treatment of water laden with organic, inorganic, and microbial pollutants. However, these semiconductor photocatalysts are applied in powdered form, which makes separation and recycling after treatment extremely difficult. This not only leads to loss of the photocatalyst but also to secondary pollution by the photocatalyst particles. The introduction of various magnetic nanoparticles such as magnetite, maghemite, ferrites, etc. into the photocatalyst matrix has recently become an area of intense research because it allows for the easy separation of the photocatalyst from the treated water using an external magnetic field. Herein, we discuss the recent developments in terms of synthesis and photocatalytic properties of magnetically separable nanocomposites towards water treatment. The influence of the magnetic nanoparticles in the optical properties, charge transfer mechanism, and overall photocatalytic activity is deliberated based on selected results. We conclude the review by providing summary remarks on the successes of magnetic photocatalysts and present some of the future challenges regarding the exploitation of these materials in water treatment.

  1. Industrial Development and Challenges of Water Pollution in Coastal Areas: The Case of Surat, India

    Science.gov (United States)

    Bansal, Neeru

    2018-03-01

    Industrialisation plays an important role in the economic development of a country, however, pollution is the inevitable price paid for this development. Surat, a major industrial hub in western India, is located on the bank of the river Tapi and extends up to the Arabian Sea. The city is characterised by the presence of a number of creeks (known as ‘khadis’ in local language). This paper focusses on the industrial development in Surat and the challenges faced by the city due to water pollution. A constant deterioration in the quality of surface water resources has been observed due to discharge of treated or partially treated effluents from the industries. The problem of water pollution becomes critical due to increase in frequency of flooding, risks faced by the city due to climate change and the ineffective environmental governance. The paper provides insights into the challenges faced by the city and the learnings can lead to adoption of policy initiatives and other measures which can effectively address these challenges.

  2. Establishment of a bioassay for the toxicity evaluation and quality control of Aconitum herbs

    International Nuclear Information System (INIS)

    Qin, Yi; Wang, Jia-bo; Zhao, Yan-ling; Shan, Li-mei; Li, Bao-cai; Fang, Fang; Jin, Cheng; Xiao, Xiao-he

    2012-01-01

    Highlights: ► A new bioassay was optimized to evaluate the toxicity of Aconitum herbs. ► Characterizing total toxicity is its unique advantage over chemical analysis methods. ► The application of this bioassay promotes the safe use of Aconitum herbs in clinic. - Abstract: Currently, no bioassay is available for evaluating the toxicity of Aconitum herbs, which are well known for their lethal cardiotoxicity and neurotoxicity. In this study, we established a bioassay to evaluate the toxicity of Aconitum herbs. Test sample and standard solutions were administered to rats by intravenous infusion to determine their minimum lethal doses (MLD). Toxic potency was calculated by comparing the MLD. The experimental conditions of the method were optimized and standardized to ensure the precision and reliability of the bioassay. The application of the standardized bioassay was then tested by analyzing 18 samples of Aconitum herbs. Additionally, three major toxic alkaloids (aconitine, mesaconitine, and hypaconitine) in Aconitum herbs were analyzed using a liquid chromatographic method, which is the current method of choice for evaluating the toxicity of Aconitum herbs. We found that for all Aconitum herbs, the total toxicity of the extract was greater than the toxicity of the three alkaloids. Therefore, these three alkaloids failed to account for the total toxicity of Aconitum herbs. Compared with individual chemical analysis methods, the chief advantage of the bioassay is that it characterizes the total toxicity of Aconitum herbs. An incorrect toxicity evaluation caused by quantitative analysis of the three alkaloids might be effectively avoided by performing this bioassay. This study revealed that the bioassay is a powerful method for the safety assessment of Aconitum herbs.

  3. A Recourse-Based Type-2 Fuzzy Programming Method for Water Pollution Control under Uncertainty

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2017-11-01

    Full Text Available In this study, a recourse-based type-2 fuzzy programming (RTFP method is developed for supporting water pollution control of basin systems under uncertainty. The RTFP method incorporates type-2 fuzzy programming (TFP within a two-stage stochastic programming with recourse (TSP framework to handle uncertainties expressed as type-2 fuzzy sets (i.e., a fuzzy set in which the membership function is also fuzzy and probability distributions, as well as to reflect the trade-offs between conflicting economic benefits and penalties due to violated policies. The RTFP method is then applied to a real case of water pollution control in the Heshui River Basin (a rural area of China, where chemical oxygen demand (COD, total nitrogen (TN, total phosphorus (TP, and soil loss are selected as major indicators to identify the water pollution control strategies. Solutions of optimal production plans of economic activities under each probabilistic pollutant discharge allowance level and membership grades are obtained. The results are helpful for the authorities in exploring the trade-off between economic objective and pollutant discharge decision-making based on river water pollution control.

  4. A monitoring of chemical contaminants in waters used for field irrigation and livestock watering in the Veneto region (Italy), using bioassays as a screening tool.

    Science.gov (United States)

    De Liguoro, Marco; Bona, Mirco Dalla; Gallina, Guglielmo; Capolongo, Francesca; Gallocchio, Federica; Binato, Giovanni; Di Leva, Vincenzo

    2014-03-01

    In this study, 50 livestock watering sources (ground water) and 50 field irrigation sources (surface water) from various industrialised areas of the Veneto region were monitored for chemical contaminants. From each site, four water samples (one in each season) were collected during the period from summer 2009 through to spring 2010. Surface water samples and ground water samples were first screened for toxicity using the growth inhibition test on Pseudokirchneriella subcapitata and the immobilisation test on Daphnia magna, respectively. Then, based on the results of these toxicity tests, 28 ground water samples and 26 surface water samples were submitted to chemical analysis for various contaminants (insecticides/acaricides, fungicides, herbicides, metals and anions) by means of UPLC-MS(n) HPLC-MS(n), AAS and IEC. With the exception of one surface water sample where the total pesticides concentration was greater than 4 μg L(-1), positive samples (51.9 %) showed only traces (nanograms per liter) of pesticides. Metals were generally under the detection limit. High concentrations of chlorines (up to 692 mg L(-1)) were found in some ground water samples while some surface water samples showed an excess of nitrites (up to 336 mg L(-1)). Detected levels of contamination were generally too low to justify the toxicity recorded in bioassays, especially in the case of surface water samples, and analytical results painted quite a reassuring picture, while tests on P. subcapitata showed a strong growth inhibition activity. It was concluded that, from an ecotoxicological point of view, surface waters used for field irrigation in the Veneto region cannot be considered safe.

  5. A new technology for harnessing the dye polluted water and dye collection in the chemical factory

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new technology for harnessing the dye polluted water and dyecollection was developed. It is based on the enhanced evaporation by using solar, wind, and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2) polluted water circulating system (pumping-spraying-collecting); (3) heating system; (4) workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind, and air temperature energy). In case, when there is no roof for the carrier system, thepolluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard for discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits.

  6. Soil-water salinity pollution: extent, management and potential impacts on agricultural sustain ability

    International Nuclear Information System (INIS)

    Javid, M.A.; Ali, K.; Javed, M.; Mahmood, A.

    1999-01-01

    One of the significant environmental hazards of irrigated agriculture is the accumulation of salts in the soil. The presence of large quantities of certain soluble salts badly affects the physical, chemical, biological and fertility characteristics of the soils. This pollution of soil salinity and its toxic degradation directly affects plants, hence impacting the air filters of nature. The soil and water salinity has adversely reduced the yield of our major agricultural crops to an extent that agricultural sustainability is being threatened. Salinity has also dwindled the survival of marine life, livestock, in addition to damaging of construction works. The problem can be estimated from the fact that out of 16.2 m.ha of irrigated land of Pakistan, 6.3 . ha are salt affected in the Indus Plain. The state of water pollution can further be assessed from the fact that presently about 106 MAF of water is diverted from the rivers into the canals of the Indus Plain which contains 28 MT of salts. Due to soil and water pollution more than 40,000 ha of good irrigated land goes out of cultivation every year. This it has drastically reduced the potential of our agricultural lands. Hence, an estimated annual loss of Rs. 14,000 million has been reported due to this soil-water salinity pollution in Pakistan. Some management options to mitigate the soil - water salinity pollution are proposed. (author)

  7. Solar photocatalytic cleaning of polluted water. Solare Reinigung verschmutzter Waesser mittels Photokatalyse

    Energy Technology Data Exchange (ETDEWEB)

    Bockelmann, D

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI)

  8. Genotoxicity of water from the Songhua River, China, in 1994-1995 and 2002-2003: Potential risks for human health

    International Nuclear Information System (INIS)

    Liu Jiaren; Dong Hongwei; Tang Xuanle; Sun Xiangrong; Han Xiaohui; Chen Bingqing; Sun Changhao; Yang Baofeng

    2009-01-01

    A previous study showed that the cancer mortalities are higher for residents who lived nearby the Songhua River heavily polluted by organic contamination. It is important to determine its risk of carcinogenic potential. Short-term genotoxic bio-assays using Salmonella, Sister Chromatid Exchange (SCE), and Micronuclei (MN) assays were employed to examine the genotoxic activity of ether extracts of water samples taken from the Songhua River. The results of the Salmonella bioassay indicated that there were indirect frame-shift mutagens in the water samples. A dose-response relationship for the SCE and MN assays was obtained. These results showed that organic extracts of water samples have genotoxic activity and the risk of carcinogenic potential to human health. The mutagenesis of water samples had changed compared to the results in 1994-1995. An increasing trend of risk of carcinogenic potential in the Songhua River after ten years should be noted and needs to be studied further. - Organic extracts of water samples taken from the Songhua River have genotoxic activity and the risk of carcinogenic potential to human health

  9. A Study on Water Pollution Source Localization in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-01-01

    Full Text Available The water pollution source localization is of great significance to water environment protection. In this paper, a study on water pollution source localization is presented. Firstly, the source detection is discussed. Then, the coarse localization methods and the localization methods based on diffusion models are introduced and analyzed, respectively. In addition, the localization method based on the contour is proposed. The detection and localization methods are compared in experiments finally. The results show that the detection method using hypotheses testing is more stable. The performance of the coarse localization algorithm depends on the nodes density. The localization based on the diffusion model can yield precise localization results; however, the results are not stable. The localization method based on the contour is better than the other two localization methods when the concentration contours are axisymmetric. Thus, in the water pollution source localization, the detection using hypotheses testing is more preferable in the source detection step. If concentration contours are axisymmetric, the localization method based on the contour is the first option. And, in case the nodes are dense and there is no explicit diffusion model, the coarse localization algorithm can be used, or else the localization based on diffusion models is a good choice.

  10. Water Pollution Search | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  11. Bioassays with caged hyalella azteca to determine in situ toxicity downstream of two Saskatchewan, Canada, uranium operations.

    Science.gov (United States)

    Robertson, Erin L; Liber, Karsten

    2007-11-01

    The main objectives of this in situ study were to evaluate the usefulness of an in situ bioassay to determine if downstream water bodies at the Key Lake and Rabbit Lake uranium operations (Saskatchewan, Canada) were toxic to Hyalella azteca and, if toxicity was observed, to differentiate between the contribution of surface water and sediment contamination to in situ toxicity. These objectives were achieved by performing 4-d in situ bioassays with laboratory-reared H. azteca confined in specially designed, paired, surface water and sediment exposure chambers. Results from the in situ bioassays revealed significant mortality, relative to the respective reference site, at the exposure sites at both Key Lake (p water and sediment exposure chambers at either Key Lake (p = 0.232) or Rabbit Lake (p = 0.072). This suggests that surface water (the common feature of both types of exposure chambers) was the primary cause of in situ mortality of H. azteca at both operations, although this relationship was stronger at Key Lake. At Key Lake, the primary cause of aquatic toxicity to H. azteca did not appear to be correlated with the variables measured in this study, but most likely with a pulse of organic mill-process chemicals released during the time of the in situ study-a transient event that was caused by a problem with the mill's solvent extraction process. The suspected cause of in situ toxicity to H. azteca at Rabbit Lake was high levels of uranium in surface water, sediment, and pore water.

  12. Pre-service primary school teachers’ abilities in explaining water and air pollution scientifically

    Science.gov (United States)

    Lukmannudin; Sopandi, W.; Sujana, A.; Sukardi, R.

    2018-05-01

    The purpose of this study is to determine the ability of pre-service primary school teachers (PSPST) in explaining the phenomenon of water and air pollution scientifically. The research method used descriptive method of analysis with qualitative approach. The respondents were PSPTP at 4th semester. This study used a four-tier instrument diagnostic test. The number of subjects was 84 PSPTP at Universitas Pendidikan Indonesia, Kampus Daerah Sumedang. The results demonstrate the ability of PSPST in explaining water and air pollution scientifically. The results show that only 6% of PSPST who are able to explain the phenomenon of water pollution and only 4% of PSPST who are able to explain the phenomenon of air pollution. The fact should be attention for PSPST because these understanding are crucial in the process of learning activities in the classroom.

  13. Water Quality Trading when Nonpoint Pollution Loads are Stochastic

    OpenAIRE

    Ghosh, Gaurav; Shortle, James

    2009-01-01

    We compare two tradable permit markets in their ability to meet a stated environmental target at least cost when some polluters have stochastic and non-measurable emissions. The environmental target is of the safety-first type, which requires probabilistic emissions control. One market is built around the trading ratio, which defines the substitution rate between stochastic and deterministic pollution, and is modeled on existing markets for water quality trading. The other market is built aro...

  14. A specific bioassay for the inhibition of flowering.

    Science.gov (United States)

    Blake, J

    1972-06-01

    A bioassay for the inhibition of flowering involving the in vitro culture of excised, partially-induced, apices of Viscaria candida is described. This bioassay has been used to detect flowering inhibition in extracts from Kalanchoe blossfeldiana.

  15. Assessment of water pollution by airborne measurement of chlorophyll

    Science.gov (United States)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1972-01-01

    Remote measurement of chlorophyll concentrations to determine extent of water pollution is discussed. Construction and operation of radiometer to provide measurement capability are explained. Diagram of equipment is provided.

  16. Industrial water pollution: characterization, classification, measurements; Pollution industrielle de l`eau: caracterisation, classification, mesure

    Energy Technology Data Exchange (ETDEWEB)

    Boeglin, J.C. [Institut de Recherches Hydrologiques, IRH-environnement, 54 - Nancy (France)]|[Institut de Promotion Industrielle, IPI-environnement indistriel, 68 - Colmar (France)]|[Centre International de l`eau de Nancy, 54 (France)

    1999-01-01

    In this work is described: 1)the characterization of the industrial wastes pollution and the study of their harmfulness and effects on the environment 2)a classification of the pollution for the different industries 3)the measurements and control of the industrial pollution. (authors) 5 refs.

  17. US Army Radiological Bioassay and Dosimetry: The RBD software package

    International Nuclear Information System (INIS)

    Eckerman, K.F.; Ward, R.C.; Maddox, L.B.

    1993-01-01

    The RBD (Radiological Bioassay and Dosimetry) software package was developed for the U. S. Army Material Command, Arlington, Virginia, to demonstrate compliance with the radiation protection guidance 10 CFR Part 20 (ref. 1). Designed to be run interactively on an IBM-compatible personal computer, RBD consists of a data base module to manage bioassay data and a computational module that incorporates algorithms for estimating radionuclide intake from either acute or chronic exposures based on measurement of the worker's rate of excretion of the radionuclide or the retained activity in the body. In estimating the intake,RBD uses a separate file for each radionuclide containing parametric representations of the retention and excretion functions. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent. For a given nuclide, if measurements exist for more than one type of assay, an auxiliary module, REPORT, estimates the intake by applying weights assigned in the nuclide file for each assay. Bioassay data and computed results (estimates of intake and committed dose equivalent) are stored in separate data bases, and the bioassay measurements used to compute a given result can be identified. The REPORT module creates a file containing committed effective dose equivalent for each individual that can be combined with the individual's external exposure

  18. Endogenous enforcement and effectiveness of China's pollution levy system

    OpenAIRE

    Hua Wang; Wheeler, David

    2000-01-01

    The authors investigate two aspects of China's pollution levy system, which was first implemented about 20 years ago. First, they analyze what determines differences in enforcement of the pollution levy in various urban areas. They find that collection of the otherwise uniform pollution levy is sensitive to differences in economic development and environmental quality. Air and water pollution levies are higher in areas that are heavily polluted. Second, they analyze the impact of pollution ch...

  19. Use of a modified microplate bioassay method to investigate antibacterial activity in the Peruvian medicinal plant Peperomia galioides.

    Science.gov (United States)

    Langfield, Richard D; Scarano, Frank J; Heitzman, Mary E; Kondo, Miwako; Hammond, Gerald B; Neto, Catherine C

    2004-10-01

    A versatile microplate bioassay for quick and sensitive determination of antibacterial activity was developed for use in screening medicinal plants and identification of their active principles. This assay can be used to determine minimum inhibitory concentrations for small quantities of organic or water-soluble plant extracts. Bioassay-guided fractionation of the stem and leaves of Peperomia galioides using this method found fractions containing grifolin and grifolic acid, which inhibited growth of Staphylococcus aureus and Staphylococcus epidermidis.

  20. Externality costs by emission. F. Land use and water pollution impacts

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This section discusses the environmental impacts associated with solid and liquid combustion wastes and cooling system discharges from nuclear, coal, oil, and gas fired power plants. This chapter also presents data for land use requirements for these types of power plants. Coal, oil and nuclear power plants also generate a variety of solid wastes from power generation and maintenance operations. These solid wastes must be disposed of in landfills, which may have a variety of adverse effects on surface water, groundwater, and land use. Power plants also require significant amounts of land for plant sites, fuel storage, transmission lines, and waste disposal. Large fossil fuel and nuclear plants require large quantities of water for cooling and maintenance. The removal from and return of cooling water to rivers, streams and lakes may have adverse effects on fish populations and other aspects of aquatic ecosystems. other water impacts include pollution of surface water from coal storage pile and plant site run-off, and wastewater discharges of acids, organics, suspended solids and metals derived from boiler or cooling system maintenance procedures