WorldWideScience

Sample records for bioactive peptide production

  1. Peptides: Production, bioactivity, functionality, and applications

    DEFF Research Database (Denmark)

    Hajfathalian, Mona; Ghelichi, Sakhi; García Moreno, Pedro Jesús

    2017-01-01

    Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry...... by-products. The aim of this review is to introduce production methods of hydrolysates and peptides and provide a comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous, and gastrointestinal systems. Moreover, functional and antioxidant properties...... of hydrolysates and isolated peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their use in nutrition and production of pharmaceuticals and nutraceuticals are discussed....

  2. Bioactive Peptides in Animal Food Products

    Directory of Open Access Journals (Sweden)

    Marzia Albenzio

    2017-05-01

    Full Text Available Proteins of animal origin represent physiologically active components in the human diet; they exert a direct action or constitute a substrate for enzymatic hydrolysis upon food processing and consumption. Bioactive peptides may descend from the hydrolysis by digestive enzymes, enzymes endogenous to raw food materials, and enzymes from microorganisms added during food processing. Milk proteins have different polymorphisms for each dairy species that influence the amount and the biochemical characteristics (e.g., amino acid chain, phosphorylation, and glycosylation of the protein. Milk from other species alternative to cow has been exploited for their role in children with cow milk allergy and in some infant pathologies, such as epilepsy, by monitoring the immune status. Different mechanisms concur for bioactive peptides generation from meat and meat products, and their functionality and application as functional ingredients have proven effects on consumer health. Animal food proteins are currently the main source of a range of biologically-active peptides which have gained special interest because they may also influence numerous physiological responses in the organism. The addition of probiotics to animal food products represent a strategy for the increase of molecules with health and functional properties.

  3. Whey Based Bioactive Peptides Used in Animal Products

    Directory of Open Access Journals (Sweden)

    Ayse Demet Karaman

    2016-10-01

    Full Text Available Bioactive peptides come out as a result of the hydrolysis of milk proteins and contain nutritional, functional and biological activities. Nowadays, the utilization of whey proteins to provide various features in the animal products such as meat and milk products and animal production has been increasing. In this compilation, after being introduced some general information about their common characteristics, bioactive peptides will be mentioned about their particularly recent usage in animal products.

  4. Bioactive Peptides in Milk Products. | Tirelli | Journal of Food ...

    African Journals Online (AJOL)

    Some peptides produced in vitro or in vivo by enzymatic hydrolysis of caseins and whey protein can affect some biological functions of the body and therefore they are called bioactive peptides. In this paper the physiological significance of bioactive peptides is reviewed and the analytical methods for their purification and ...

  5. Meat and meat products as a source of bioactive peptides

    Directory of Open Access Journals (Sweden)

    Alfonso Totosaus

    2016-12-01

    Full Text Available Meat is a high protein content food, with great nutritional and biological value. Meat protein hydrolysis begins with the muscle to meat conversion, during meat ageing. After slaughter, endogen enzymes are responsible of meat softening since myofibrillar anchorage proteins are degraded. Protein hydrolysis continues during food preparation. When meat reaches the stomach, pepsin is the first enzyme to interact. As the food travel trough out gastrointestinal tract, pancreatic enzymes degraded the remained protein and the peptidases made the final proteolysis process. The small proteins or peptides are the absorbed to the circulatory system and distributed to the rest of the body. Bioactive peptides activity of meat and meat products is anti-hypertensive mainly, where histidine, carnosine and anserine are the main peptides identified. Another peptide with anti-oxidant activity is glutathione. The content depends on animal species.

  6. Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients.

    Science.gov (United States)

    Lafarga, Tomas; Hayes, Maria

    2014-10-01

    Bioactive peptides are sequences of between 2-30 amino acids in length that impart a positive health effect to the consumer when ingested. They have been identified from a range of foods, including milk and muscle sources including beef, chicken, pork and marine muscles. The myriad of peptides identified from these sources have known antihypertensive, opioid, antioxidant, antithrombotic and other bioactivities. Indeed, bioactive peptides could play a role in the prevention of diseases associated with the development of metabolic syndrome and mental health diseases. The aim of this work is to present an overview of the bioactive peptides identified in muscle proteins and by-products generated during the processing of meat. The paper looks at the isolation, enrichment and characterisation strategies that have been employed to date to generate bioactive peptides and the potential future applications of these peptides in functional foods for the prevention of heart and mental health problems and obesity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.

    Science.gov (United States)

    Arihara, K; Zhou, L; Ohata, M

    Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.

  8. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  9. Bioactive peptides: production, health effects and application as natural supplements for functional foods production

    Directory of Open Access Journals (Sweden)

    S. Mirdamadi

    2017-05-01

    Full Text Available Bioactive peptides, are inactive components within the structure of the protein and when they are released by enzymatic hydrolysis, show different physiological functions. Recently, the identification and characterization of bioactive peptides derived from plant and animal sources and different microorganisms is highly regarded. They are produced during enzymatic hydrolysis by gastrointestinal enzymes or enzymes extracted from microorganisms and plants or by proteolytic starter cultures during fermentation process and exhibit different activities including: opioid, mineral binding, immunomodulatory, antioxidant, antimicrobial, anti-inflammatory, chlosterol lowering and so on. Take advantage of bioactive peptides as components of health is related to bio stability assurance, bioavailability and safety of them. The use of computer-based techniques and the use of various databases completed in laboratory studies,  have provided the possibility of studying the mechanisms of action of different peptides.

  10. Marine Peptides: Bioactivities and Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-06-01

    Full Text Available Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant, immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.

  11. Meat and fermented meat products as a source of bioactive peptides.

    Science.gov (United States)

    Stadnik, Joanna; Kęska, Paulina

    2015-01-01

    Bioactive peptides are short amino acid sequences, that upon release from the parent protein may play different physiological roles, including antioxidant, antihypertensive, antimicrobial, and other bioactivities. They have been identified from a range of foods, including those of animal origin, e.g., milk and muscle sources (with pork, beef, or chicken and various species of fish and marine organism). Bioactive peptides are encrypted within the sequence of the parent protein molecule and latent until released and activated by enzymatic proteolysis, e.g. during gastrointestinal digestion or food processing. Bioactive peptides derived from food sources have the potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an overview of the muscle-derived bioactive peptides, especially those of fermented meats and the potential benefits of these bioactive compounds to human health.

  12. Discovery and characterization of novel bioactive peptides from marine secondary products

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup

    antioxidative, antihypertensive, antimicrobial, immunomodulatory, anticancer and diabetes 2 effects among others. However, majority of the research has been focusing on the peptides derived from hydrolysis with commercial industrial enzymes and the usefulness of these hydrolysates.It could be interesting...... whether digestion of fish secondary tissue with gastrointestinal proteases generates peptides, which also have these health promoting properties either in relation to gastrointestinal digestion or as an alternative to the use of industrial proteases. Furthermore, as a bioactive defense system against...... the bacterial load in the water, fish is expected to possess bio-components as small peptides. It could therefore be relevant whether these naturally occurring peptides exhibit other functional and health promoting bioactive properties.On this background the overall goal of the present PhD research...

  13. Identification and Characterization of Bioactive Peptides of Fermented Goat Milk as a Sources of Antioxidant as a Therapeutic Natural Product

    Science.gov (United States)

    Mahdi, Chanif; Untari, Handayu; Cendrakasih Padaga, Masdiana

    2018-01-01

    The increasing of functional food is rising in line with public awareness for healthy food consumption. Provision of functional food source is developed through enhanced bioactive that has a regulatory function for body. Bioactive peptides in milk is known have variety of beneficial function of the body such as immunomodulator, immunostimulatory, anti-hypertension, anti-hyper cholesterol, as well as a variety of other beneficial function. The aim of this study is to obtain fermentation methods to product functional dairy product contain bioactive peptides and beneficial of fermented goat milk. The result of this study showed that goat milk fermented using 3 % commercial starter able to produce the best yoghurt than using local yoghurt starter. Analysis of protein content showed that the fermentation processing increased the amount of protein in goat milk sample. Using SDS-PAGE showed that the breakdown of protein into fraction of fermented goat milk greater than unfermented goat milk. The result of fractional protein was analyzed by LC MS/MS and showed that there were three kind bioactive sequences of bioactive peptides. Each of which consist of 16 amino acids that safely protected from gastrointestinal animal model that fed by dietary treatment of hypercholesterolemia.

  14. Exploitation of starch industry liquid by-product to produce bioactive peptides from rice hydrolyzed proteins.

    Science.gov (United States)

    Dei Piu', Lucilla; Tassoni, Annalisa; Serrazanetti, Diana Isabella; Ferri, Maura; Babini, Elena; Tagliazucchi, Davide; Gianotti, Andrea

    2014-07-15

    Small peptides show higher antioxidant capacity than native proteins and may be absorbed in the intestine without further digestion. In our study, a protein by-product from rice starch industry was hydrolyzed with commercial proteolytic enzymes (Alcalase, Neutrase, Flavourzyme) and microbial whole cells of Bacillus spp. and the released peptides were tested for antioxidant activity. Among enzymes, Alcalase was the most performing, while microbial proteolytic activity was less efficient. Conversely, the antioxidant activity was higher in the samples obtained by microbial hydrolysis and particularly with Bacillus pumilus AG1. The sequences of low molecular weight antioxidant peptides were determined and analyzed for aminoacidic composition. The results obtained so far suggest that the hydrolytic treatment of this industrial by-product, with selected enzymes and microbial systems, can allow its exploitation for the production of functional additives and supplements rich in antioxidant peptides, to be used in new food formulas for human consumption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities.

    Science.gov (United States)

    Hayes, Maria; Tiwari, Brijesh K

    2015-09-17

    Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  16. Electro-activation of sweet defatted whey: Impact on the induced Maillard reaction products and bioactive peptides.

    Science.gov (United States)

    Kareb, Ourdia; Gomaa, Ahmed; Champagne, Claude P; Jean, Julie; Aïder, Mohammed

    2017-04-15

    Electro-activation was used to add value to sweet defatted whey. This study aimed to investigate and to characterize the bioactive compounds formed under different electro-activation conditions by molecular and proteomic approaches. The effects of electric current intensity (400, 500 or 600mA) and whey concentration (7, 14 or 21% (w/v)) as a function of the electro-activation time (0, 15, 30 or 45min) were evaluated. The targeted dependent variables were the formation of Maillard reaction products (MRPs), protein hydrolysates and glycated compounds. It was shown that the MRPs derived from electro-activated whey at a concentration of 14% had the highest potential of biological activity. SDS-PAGE analyses indicated the formation of hydrolysates and glycated compounds with different molecular weight distributions. FTIR indicated the predominance of intermediate MRPs, such as the Schiff base compounds. LC-MS/MS and proteomics analysis showed the production of multi-functional bioactive peptides due to the hydrolysis of whey proteins. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. BIOACTIVE PEPTIDES OF THE COW MILK WHEY PROTEINS (Bos taurus

    Directory of Open Access Journals (Sweden)

    A. V. Iukalo

    2013-10-01

    Full Text Available Data on the biological functions of milk whey proteins, which are implemented at the level of their proteolytic degradation productsbioactive peptides have been reviewed. The main functions of these proteins is to provide the amino acid nutrition of mammals in the early stages of development, as well as the transport of fatty acids, retinol, involved in the synthesis of lactose, ions of calcium and iron, immune protection, antimicrobial action, etc. However, in recent years, it has been found that milk proteins like casein are precursors of biologically active peptides. Аngiotensin — converting enzyme, opioid peptides which are opiate receptor agonists, anti–microbial peptides, peptides with immunomodulatory and hypocholesterolemic action, and peptides affecting motility have been found among the products of proteolytic degradation of ?-lactoglobulin, ?-laktoalbumin, lactoferrin and milk whey albumin. Also data on the possible participation of peptides from milk whey proteins in the implementation of the biological functions of both the assimilation of calcium, antioxidant effect, the regulation of appetite, anticarcinogenic are provided. The authors assume that the phenomenon of bioactive peptides formation could be considered as an additional function of natural food proteins, which gives advantages to the mammals and has a positive effect on their development in the postnatal period. Ways of bioactive peptides formation, their resistance to action of proteolytic enzymes, the ability to cross into the bloodstream and have biological effects have been also discussed. Up to date, only a few products with bioactive peptides from milk whey proteins are obtained. Further studies of their structure, mechanism of action, ways of formation and methods of isolation are required for their wider use. Formation of functional products based on bioactive peptides from milk whey proteins will allow efficient use of milk whey, which is often a

  18. Plant proteases for bioactive peptides release: A review.

    Science.gov (United States)

    Mazorra-Manzano, M A; Ramírez-Suarez, J C; Yada, R Y

    2017-04-10

    Proteins are a potential source of health-promoting biomolecules with medical, nutraceutical, and food applications. Nowadays, bioactive peptides production, its isolation, characterization, and strategies for its delivery to target sites are a matter of intensive research. In vitro and in vivo studies regarding the bioactivity of peptides has generated strong evidence of their health benefits. Dairy proteins are considered the richest source of bioactive peptides, however proteins from animal and vegetable origin also have been shown to be important sources. Enzymatic hydrolysis has been the process most commonly used for bioactive peptide production. Most commercial enzymatic preparations frequently used are from animal (e.g., trypsin and pepsin) and microbial (e.g., Alcalase® and Neutrase®) sources. Although the use of plant proteases is still relatively limited to papain and bromelain from papaya and pineapple, respectively, the application of new plant proteases is increasing. This review presents the latest knowledge in the use and diversity of plant proteases for bioactive peptides release from food proteins including both available commercial plant proteases as well as new potential plant sources. Furthermore, the properties of peptides released by plant proteases and health benefits associated in the control of disorders such as hypertension, diabetes, obesity, and cancer are reviewed.

  19. Bioinformatics approaches for identifying new therapeutic bioactive peptides in food

    Directory of Open Access Journals (Sweden)

    Nora Khaldi

    2012-10-01

    Full Text Available ABSTRACT:The traditional methods for mining foods for bioactive peptides are tedious and long. Similar to the drug industry, the length of time to identify and deliver a commercial health ingredient that reduces disease symptoms can take anything between 5 to 10 years. Reducing this time and effort is crucial in order to create new commercially viable products with clear and important health benefits. In the past few years, bioinformatics, the science that brings together fast computational biology, and efficient genome mining, is appearing as the long awaited solution to this problem. By quickly mining food genomes for characteristics of certain food therapeutic ingredients, researchers can potentially find new ones in a matter of a few weeks. Yet, surprisingly, very little success has been achieved so far using bioinformatics in mining for food bioactives.The absence of food specific bioinformatic mining tools, the slow integration of both experimental mining and bioinformatics, and the important difference between different experimental platforms are some of the reasons for the slow progress of bioinformatics in the field of functional food and more specifically in bioactive peptide discovery.In this paper I discuss some methods that could be easily translated, using a rational peptide bioinformatics design, to food bioactive peptide mining. I highlight the need for an integrated food peptide database. I also discuss how to better integrate experimental work with bioinformatics in order to improve the mining of food for bioactive peptides, therefore achieving a higher success rates.

  20. Peptide Fractions Obtained from Rice By-Products by Means of an Environment-Friendly Process Show In Vitro Health-Related Bioactivities.

    Science.gov (United States)

    Ferri, Maura; Graen-Heedfeld, Jürgen; Bretz, Karlheinz; Guillon, Fabien; Michelini, Elisa; Calabretta, Maria Maddalena; Lamborghini, Matteo; Gruarin, Nicolò; Roda, Aldo; Kraft, Axel; Tassoni, Annalisa

    2017-01-01

    Recently, the isolation of new health-related bioactive molecules derived from agro-food industrial by-products by means of environment-friendly extraction processes has become of particular interest. In the present study, a protein by-product from the rice starch industry was hydrolysed with five commercial proteolytic enzymes, avoiding the use of solvents or chemicals. The digestion processes were optimised, and the digestates were separated in fractions with four different molecular weight ranges by using a cross-flow membrane filtration technique. Total hydrolysates and fractions were tested in vitro for a wide range of biological activities. For the first time rice-derived peptides were assayed for anti-tyrosinase, anti-inflammatory, cytotoxicity and irritation capacities. Antioxidant and anti-hypertensive activities were also evaluated. Protamex, Alcalase and Neutrase treatments produced peptide fractions with valuable bioactivities without resulting cytotoxic or irritant. Highest levels of bioactivity were detected in Protamex-derived samples, followed by samples treated with Alcalase. Based on the present results, a future direct exploitation of isolated peptide fractions in the nutraceutical, functional food and cosmetic industrial fields may be foreseen.

  1. Peptide Fractions Obtained from Rice By-Products by Means of an Environment-Friendly Process Show In Vitro Health-Related Bioactivities.

    Directory of Open Access Journals (Sweden)

    Maura Ferri

    Full Text Available Recently, the isolation of new health-related bioactive molecules derived from agro-food industrial by-products by means of environment-friendly extraction processes has become of particular interest. In the present study, a protein by-product from the rice starch industry was hydrolysed with five commercial proteolytic enzymes, avoiding the use of solvents or chemicals. The digestion processes were optimised, and the digestates were separated in fractions with four different molecular weight ranges by using a cross-flow membrane filtration technique. Total hydrolysates and fractions were tested in vitro for a wide range of biological activities. For the first time rice-derived peptides were assayed for anti-tyrosinase, anti-inflammatory, cytotoxicity and irritation capacities. Antioxidant and anti-hypertensive activities were also evaluated. Protamex, Alcalase and Neutrase treatments produced peptide fractions with valuable bioactivities without resulting cytotoxic or irritant. Highest levels of bioactivity were detected in Protamex-derived samples, followed by samples treated with Alcalase. Based on the present results, a future direct exploitation of isolated peptide fractions in the nutraceutical, functional food and cosmetic industrial fields may be foreseen.

  2. Therapeutic potential of dairy bioactive peptides: A contemporary perspective.

    Science.gov (United States)

    Sultan, Saira; Huma, Nuzhat; Butt, Masood Sadiq; Aleem, Muhammad; Abbas, Munawar

    2018-01-02

    Dairy products are associated with numerous health benefits. These are a good source of nutrients such as carbohydrates, protein (bioactive peptides), lipids, minerals, and vitamins, which are essential for growth, development, and maintenance of the human body. Accordingly, dairy bioactive peptides are one of the targeted compounds present in different dairy products. Dairy bioactive compounds can be classified as antihypertensive, anti-oxidative, immmunomodulant, anti-mutagenic, antimicrobial, opoid, anti-thrombotic, anti-obesity, and mineral-binding agents, depending upon biological functions. These bioactive peptides can easily be produced by enzymatic hydrolysis, and during fermentation and gastrointestinal digestion. For this reason, fermented dairy products, such as yogurt, cheese, and sour milk, are gaining popularity worldwide, and are considered excellent source of dairy peptides. Furthermore, fermented and non-fermented dairy products are associated with lower risks of hypertension, coagulopathy, stroke, and cancer insurgences. The current review article is an attempt to disseminate general information about dairy peptides and their health claims to scientists, allied stakeholders, and, certainly, readers.

  3. A Review of the Latest Advances in Encrypted Bioactive Peptides from Protein-Rich Waste

    Directory of Open Access Journals (Sweden)

    Ailton Cesar Lemes

    2016-06-01

    Full Text Available Bioactive peptides are considered the new generation of biologically active regulators that not only prevent the mechanism of oxidation and microbial degradation in foods but also enhanced the treatment of various diseases and disorders, thus increasing quality of life. This review article emphasizes recent advances in bioactive peptide technology, such as: (i new strategies for transforming bioactive peptides from residual waste into added-value products; (ii nanotechnology for the encapsulation, protection and release of controlled peptides; and (iii use of techniques of large-scale recovery and purification of peptides aiming at future applications to pharmaceutical and food industries.

  4. StraPep: a structure database of bioactive peptides

    Science.gov (United States)

    Wang, Jian; Yin, Tailang; Xiao, Xuwen; He, Dan; Xue, Zhidong; Jiang, Xinnong; Wang, Yan

    2018-01-01

    Abstract Bioactive peptides, with a variety of biological activities and wide distribution in nature, have attracted great research interest in biological and medical fields, especially in pharmaceutical industry. The structural information of bioactive peptide is important for the development of peptide-based drugs. Many databases have been developed cataloguing bioactive peptides. However, to our knowledge, database dedicated to collect all the bioactive peptides with known structure is not available yet. Thus, we developed StraPep, a structure database of bioactive peptides. StraPep holds 3791 bioactive peptide structures, which belong to 1312 unique bioactive peptide sequences. About 905 out of 1312 (68%) bioactive peptides in StraPep contain disulfide bonds, which is significantly higher than that (21%) of PDB. Interestingly, 150 out of 616 (24%) bioactive peptides with three or more disulfide bonds form a structural motif known as cystine knot, which confers considerable structural stability on proteins and is an attractive scaffold for drug design. Detailed information of each peptide, including the experimental structure, the location of disulfide bonds, secondary structure, classification, post-translational modification and so on, has been provided. A wide range of user-friendly tools, such as browsing, sequence and structure-based searching and so on, has been incorporated into StraPep. We hope that this database will be helpful for the research community. Database URL: http://isyslab.info/StraPep PMID:29688386

  5. BioPepDB: an integrated data platform for food-derived bioactive peptides.

    Science.gov (United States)

    Li, Qilin; Zhang, Chao; Chen, Hongjun; Xue, Jitong; Guo, Xiaolei; Liang, Ming; Chen, Ming

    2018-03-12

    Food-derived bioactive peptides play critical roles in regulating most biological processes and have considerable biological, medical and industrial importance. However, a large number of active peptides data, including sequence, function, source, commercial product information, references and other information are poorly integrated. BioPepDB is a searchable database of food-derived bioactive peptides and their related articles, including more than four thousand bioactive peptide entries. Moreover, BioPepDB provides modules of prediction and hydrolysis-simulation for discovering novel peptides. It can serve as a reference database to investigate the function of different bioactive peptides. BioPepDB is available at http://bis.zju.edu.cn/biopepdbr/ . The web page utilises Apache, PHP5 and MySQL to provide the user interface for accessing the database and predict novel peptides. The database itself is operated on a specialised server.

  6. Bioactive Peptides from Muscle Sources: Meat and Fish

    Directory of Open Access Journals (Sweden)

    Catherine Stanton

    2011-08-01

    Full Text Available Bioactive peptides have been identified in a range of foods, including plant, milk and muscle, e.g., beef, chicken, pork and fish muscle proteins. Bioactive peptides from food proteins offer major potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an outline of the bioactive peptides identified in the muscle protein of meat to date, with a focus on muscle protein from domestic animals and fish. The majority of research on bioactives from meat sources has focused on angiotensin-1-converting enzyme (ACE inhibitory and antioxidant peptides.

  7. Bioactive Compounds in Functional Meat Products

    OpenAIRE

    Ewelina Pogorzelska-Nowicka; Atanas G. Atanasov; Jarosław Horbańczuk; Agnieszka Wierzbicka

    2018-01-01

    Meat and meat products are a good source of bioactive compounds with positive effect on human health such as vitamins, minerals, peptides or fatty acids. Growing food consumer awareness and intensified global meat producers competition puts pressure on creating new healthier meat products. In order to meet these expectations, producers use supplements with functional properties for animal diet and as direct additives for meat products. In the presented work seven groups of key functional cons...

  8. Bioactive Compounds in Functional Meat Products.

    Science.gov (United States)

    Pogorzelska-Nowicka, Ewelina; Atanasov, Atanas G; Horbańczuk, Jarosław; Wierzbicka, Agnieszka

    2018-01-31

    Meat and meat products are a good source of bioactive compounds with positive effect on human health such as vitamins, minerals, peptides or fatty acids. Growing food consumer awareness and intensified global meat producers competition puts pressure on creating new healthier meat products. In order to meet these expectations, producers use supplements with functional properties for animal diet and as direct additives for meat products. In the presented work seven groups of key functional constituents were chosen: (i) fatty acids; (ii) minerals; (iii) vitamins; (iv) plant antioxidants; (v) dietary fibers; (vi) probiotics and (vii) bioactive peptides. Each of them is discussed in term of their impact on human health as well as some quality attributes of the final products.

  9. Marine-Derived Bioactive Peptides with Pharmacological Activities- A Review

    Directory of Open Access Journals (Sweden)

    Sana Rabiei

    2017-10-01

    Full Text Available Some nutritional factors are related to chronic disease. In response to increased concern regarding nutrition and health, the functional and nutraceuticals food markets have been developed. During food digestion, proteins are hydrolyzed and a wide range of peptides are formed. Some of these peptides have special structures which permit them to confer particular biological functions. Marine animals which involve more than half of the world biological varieties are a wide source of bioactive proteins and peptides. Marine derived peptides show various physiologic functions such as anti-oxidant, antimicrobial, anti-cancer, Angiotensin1-Converting Enzyme (ACE glucosidase and a-amylase inhibitory effects in vitro. Before application of marine bioactive peptides as nutraceuticals or functional food ingredients, their efficacy should be approved through pre-clinical animal and then clinical studies. The aim of this study was to review the studies conducted on the pharmacological effect of marine bioactive peptides in animal models and humans.

  10. Constructing bioactive peptides with pH-dependent activities.

    Science.gov (United States)

    Tu, Zhigang; Volk, Melanie; Shah, Khushali; Clerkin, Kevin; Liang, Jun F

    2009-08-01

    Many bioactive peptides are featured by their arginine and lysine rich contents. In this study, lysine and arginine residues in lytic peptides were selectively replaced by histidines. Although resulting histidine-containing lytic peptides had decreased activity, they did show pH-dependent cytotoxicity. The activity of the constructed histidine-containing lytic peptides increased 2-8 times as the solution pH changed from 7.4 to 5.5. More importantly, these histidine-containing peptides maintain the same cell killing mechanism as their parent peptides by causing cell lysis. Both the activity and pH-sensitivity of histidine-containing peptides are tunable by adjusting histidine substitution numbers and positions. This study has presented a general strategy to create bioactive peptides with desired pH-sensitivity to meet the needs of various applications such as cancer treatments.

  11. Efficient production of a bioactive Bevacizumab monoclonal antibody using the 2A self-cleavage peptide in transgenic rice callus

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2016-08-01

    Full Text Available Bevacizumab, a humanized monoclonal antibody (mAb targeting to the vascular endothelial growth factor (VEGF, has been widely used in clinical practice for the treatment of multiple cancers. Bevacizumab was mostly produced by the mammalian cell expression system. We here reported the first plant-derived Bevacizumab by using transgenic rice callus as an alternative gene expression system. Codon-optimized Bevacizumab light chain (BLC and heavy chain (BHC genes were designed, synthesized as a polyprotein with a 2A self-cleavage linker peptide from the Foot-and-mouth disease virus (FMDV, cloned into a plant binary vector under a constitutive maize ubiquitin promoter, and transformed into rice nuclear genome through Agrobacterium-mediated transformation. Southern blot and western blot analyses confirmed the integration and expression of BLC and BHC genes in transgenic rice callus. Enzyme linked immunosorbent assay (ELISA analysis indicated that the rice-derived Bevacizumab mAb was biologically active and the recombinant mAb was expressed at high levels (160.7-242.8 mg kg-1FW in transgenic rice callus. The mAb was purified by using protein A affinity chromatography and the purified antibody was tested for its binding affinity with its target hVEGF antigen by ELISA. Rice callus produced Bevacizumab and a commercial Bevacizumab (Avastin were shown to have similar binding affinity to hVEGF. These results indicated that rice callus produced Bevacizumab could have similar biological activity and might potentially be used as a cost-effective biosimilar molecule in future cancer treatment.

  12. BIOPEP database and other programs for processing bioactive peptide sequences.

    Science.gov (United States)

    Minkiewicz, Piotr; Dziuba, Jerzy; Iwaniak, Anna; Dziuba, Marta; Darewicz, Małgorzata

    2008-01-01

    This review presents the potential for application of computational tools in peptide science based on a sample BIOPEP database and program as well as other programs and databases available via the World Wide Web. The BIOPEP application contains a database of biologically active peptide sequences and a program enabling construction of profiles of the potential biological activity of protein fragments, calculation of quantitative descriptors as measures of the value of proteins as potential precursors of bioactive peptides, and prediction of bonds susceptible to hydrolysis by endopeptidases in a protein chain. Other bioactive and allergenic peptide sequence databases are also presented. Programs enabling the construction of binary and multiple alignments between peptide sequences, the construction of sequence motifs attributed to a given type of bioactivity, searching for potential precursors of bioactive peptides, and the prediction of sites susceptible to proteolytic cleavage in protein chains are available via the Internet as are other approaches concerning secondary structure prediction and calculation of physicochemical features based on amino acid sequence. Programs for prediction of allergenic and toxic properties have also been developed. This review explores the possibilities of cooperation between various programs.

  13. Food-derived bioactive peptides on inflammation and oxidative stress.

    Science.gov (United States)

    Chakrabarti, Subhadeep; Jahandideh, Forough; Wu, Jianping

    2014-01-01

    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.

  14. Milk derived bioactive peptides and their impact on human health – A review

    Directory of Open Access Journals (Sweden)

    D.P. Mohanty

    2016-09-01

    Full Text Available Milk-derived bioactive peptides have been identified as potential ingredients of health-promoting functional foods. These bioactive peptides are targeted at diet-related chronic diseases especially the non-communicable diseases viz., obesity, cardiovascular diseases and diabetes. Peptides derived from the milk of cow, goat, sheep, buffalo and camel exert multifunctional properties, including anti-microbial, immune modulatory, anti-oxidant, inhibitory effect on enzymes, anti-thrombotic, and antagonistic activities against various toxic agents. Majority of those regulate immunological, gastrointestinal, hormonal and neurological responses, thereby playing a vital role in the prevention of cancer, osteoporosis, hypertension and other disorders as discussed in this review. For the commercial production of such novel bioactive peptides large scale technologies based on membrane separation and ion exchange chromatography methods have been developed. Separation and identification of those peptides and their pharmacodynamic parameters are necessary to transfer their potent functional properties into food applications. The present review summarizes the preliminary classes of bioactive milk-derived peptides along with their physiological functions, general characteristics and potential applications in health-care.

  15. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration.

    Science.gov (United States)

    Uzunalli, G; Soran, Z; Erkal, T S; Dagdas, Y S; Dinc, E; Hondur, A M; Bilgihan, K; Aydin, B; Guler, M O; Tekinay, A B

    2014-03-01

    Defects in the corneal stroma caused by trauma or diseases such as macular corneal dystrophy and keratoconus can be detrimental for vision. Development of therapeutic methods to enhance corneal regeneration is essential for treatment of these defects. This paper describes a bioactive peptide nanofiber scaffold system for corneal tissue regeneration. These nanofibers are formed by self-assembling peptide amphiphile molecules containing laminin and fibronectin inspired sequences. Human corneal keratocyte cells cultured on laminin-mimetic peptide nanofibers retained their characteristic morphology, and their proliferation was enhanced compared with cells cultured on fibronectin-mimetic nanofibers. When these nanofibers were used for damaged rabbit corneas, laminin-mimetic peptide nanofibers increased keratocyte migration and supported stroma regeneration. These results suggest that laminin-mimetic peptide nanofibers provide a promising injectable, synthetic scaffold system for cornea stroma regeneration. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Mung bean proteins and peptides: nutritional, functional and bioactive properties

    Directory of Open Access Journals (Sweden)

    Zhu Yi-Shen

    2018-02-01

    Full Text Available To date, no extensive literature review exists regarding potential uses of mung bean proteins and peptides. As mung bean has long been widely used as a food source, early studies evaluated mung bean nutritional value against the Food and Agriculture Organization of the United Nations (FAO/the World Health Organization (WHO amino acids dietary recommendations. The comparison demonstrated mung bean to be a good protein source, except for deficiencies in sulphur-containing amino acids, methionine and cysteine. Methionine and cysteine residues have been introduced into the 8S globulin through protein engineering technology. Subsequently, purified mung bean proteins and peptides have facilitated the study of their structural and functional properties. Two main types of extraction methods have been reported for isolation of proteins and peptides from mung bean flours, permitting sequencing of major proteins present in mung bean, including albumins and globulins (notably 8S globulin. However, the sequence for albumin deposited in the UniProt database differs from other sequences reported in the literature. Meanwhile, a limited number of reports have revealed other useful bioactivities for proteins and hydrolysed peptides, including angiotensin-converting enzyme inhibitory activity, anti-fungal activity and trypsin inhibitory activity. Consequently, several mung bean hydrolysed peptides have served as effective food additives to prevent proteolysis during storage. Ultimately, further research will reveal other nutritional, functional and bioactive properties of mung bean for uses in diverse applications.

  17. Food Derived Bioactive Peptides and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Olga Martínez-Augustin

    2014-12-01

    Full Text Available A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action.

  18. Effect of Gastrointestinal Protease Digestion on Bioactivity of Marine Peptides

    DEFF Research Database (Denmark)

    Jensen, Ida-Johanne; Andersen, Lisa Lystbæk; Ossum, Carlo Gunnar

    2014-01-01

    executed without concerning subsequent digestion after intake and the aim of this work was hence to investigate how the in vitro antioxidative, antihypertensive and caspase activating activities of peptides are affected by digestion with gastrointestinal (GI) proteases. Five different fish protein...... hydrolysates were chosen to study the effect of in vitro digestion on bioactivity. The protein concentration decreased in all samples during digestion and the molecular weight distribution of the peptides shifted towards lower values. Thus, in vitro digestion with GI proteases resulted in a further degradation...... of the peptides obtained by hydrolysis. The antihypertensive effect increased in all samples after digestion with GI proteases whereas the antioxidative capacity decreased. The effect on the caspase activity depended on the proteases used in the preparation of hydrolysates. In conclusion, the caspase activity...

  19. Fungal Secretome Analysis via PepSAVI-MS: Identification of the Bioactive Peptide KP4 from Ustilago maydis

    Science.gov (United States)

    Kirkpatrick, Christine L.; Parsley, Nicole C.; Bartges, Tessa E.; Cooke, Madeline E.; Evans, Wilaysha S.; Heil, Lilian R.; Smith, Thomas J.; Hicks, Leslie M.

    2018-05-01

    Fungal secondary metabolites represent a rich and largely untapped source for bioactive molecules, including peptides with substantial structural diversity and pharmacological potential. As methods proceed to take a deep dive into fungal genomes, complimentary methods to identify bioactive components are required to keep pace with the expanding fungal repertoire. We developed PepSAVI-MS to expedite the search for natural product bioactive peptides and herein demonstrate proof-of-principle applicability of the pipeline for the discovery of bioactive peptides from fungal secretomes via identification of the antifungal killer toxin KP4 from Ustilago maydis P4. This work opens the door to investigating microbial secretomes with a new lens, and could have broad applications across human health, agriculture, and food safety. [Figure not available: see fulltext.

  20. Effect of Different Heat Treatments on In Vitro Digestion of Egg White Proteins and Identification of Bioactive Peptides in Digested Products.

    Science.gov (United States)

    Wang, Xuefen; Qiu, Ning; Liu, Yaping

    2018-04-01

    Chicken eggs are ingested by people after a series of processes, but to date, only a few studies have explored the nutrient variations caused by different heat treatments. In this work, the impacts of different heat treatments (4, 56, 65, and 100 °C on the in vitro digestibility of egg white proteins were investigated by hydrolysis with pepsin or pepsin + pancreatin to simulate human gastrointestinal digestion, and the digested products were identified using Nano-LC-ESI-MS/MS. Egg white proteins treated at 65 °C had the highest in vitro pepsin digestibility value whereas the pepsin + pancreatin digestibility increased significantly (P cooking temperature was raised. The molecular weight distribution of the digested products indicated that, when compared to pepsin-treated samples, pepsin + pancreatin-treated samples contained more low-molecular-weight peptides (m/z egg white digested products, especially in samples treated at 4 and 100 °C. These findings may facilitate a better understanding of nutritive values of egg white proteins and their digested products under different cooking temperatures, such as antibacterial and antioxidant peptides identified in the digestion samples treated, respectively at 4 and 100 °C. This study also provided information for improving the applications of eggs in the food industry as well as a theoretical basis for egg consumption. © 2018 Institute of Food Technologists®.

  1. Food matrix interaction and bioavailability of bioactive peptides

    NARCIS (Netherlands)

    Udenigwe, Chibuike C.; Fogliano, Vincenzo

    2017-01-01

    Several peptides derived from food protein digestion possess regulatory functions that can lead to health promotion. Such peptides can be used as nutraceuticals and their inclusion as active components of functional food products is increasingly gaining attention. However, physiological evidence to

  2. Disulfide Bridges: Bringing Together Frustrated Structure in a Bioactive Peptide.

    Science.gov (United States)

    Zhang, Yi; Schulten, Klaus; Gruebele, Martin; Bansal, Paramjit S; Wilson, David; Daly, Norelle L

    2016-04-26

    Disulfide bridges are commonly found covalent bonds that are usually believed to maintain structural stability of proteins. Here, we investigate the influence of disulfide bridges on protein dynamics through molecular dynamics simulations on the cysteine-rich trypsin inhibitor MCoTI-II with three disulfide bridges. Correlation analysis of the reduced cyclic peptide shows that two of the three disulfide distances (Cys(11)-Cys(23) and Cys(17)-Cys(29)) are anticorrelated within ∼1 μs of bridge formation or dissolution: when the peptide is in nativelike structures and one of the distances shortens to allow bond formation, the other tends to lengthen. Simulations over longer timescales, when the denatured state is less structured, do not show the anticorrelation. We propose that the native state contains structural elements that frustrate one another's folding, and that the two bridges are critical for snapping the frustrated native structure into place. In contrast, the Cys(4)-Cys(21) bridge is predicted to form together with either of the other two bridges. Indeed, experimental chromatography and nuclear magnetic resonance data show that an engineered peptide with the Cys(4)-Cys(21) bridge deleted can still fold into its near-native structure even in its noncyclic form, confirming the lesser role of the Cys(4)-Cys(21) bridge. The results highlight the importance of disulfide bridges in a small bioactive peptide to bring together frustrated structure in addition to maintaining protein structural stability. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Bioactive peptides released from in vitro digestion of human milk with or without pasteurization.

    Science.gov (United States)

    Wada, Yasuaki; Lönnerdal, Bo

    2015-04-01

    Pasteurized donor human milk (HM) serves as the best alternative for breast-feeding when availability of mother's milk is limited. Pasteurization is also applied to mother's own milk for very low birth weight infants, who are vulnerable to microbial infection. Whether pasteurization affects protein digestibility and therefore modulates the profile of bioactive peptides released from HM proteins by gastrointestinal digestion, has not been examined to date. HM with and without pasteurization (62.5 °C for 30 min) were subjected to in vitro gastrointestinal digestion, followed by peptidomic analysis to compare the formation of bioactive peptides. Some of the bioactive peptides, such as caseinophosphopeptide homologues, a possible opioid peptide (or propeptide), and an antibacterial peptide, were present in undigested HM and showed resistance to in vitro digestion, suggesting that these peptides are likely to exert their bioactivities in the gastrointestinal lumen, or be stably transported to target organs. In vitro digestion of HM released a large variety of bioactive peptides such as angiotensin I-converting enzyme-inhibitory, antioxidative, and immunomodulatory peptides. Bioactive peptides were released largely in the same manner with and without pasteurization. Provision of pasteurized HM may be as beneficial as breast-feeding in terms of milk protein-derived bioactive peptides.

  4. Human Milk: Bioactive Proteins/Peptides and Functional Properties.

    Science.gov (United States)

    Lönnerdal, Bo

    2016-06-23

    Breastfeeding has been associated with many benefits, both in the short and in the long term. Infants being breastfed generally have less illness and have better cognitive development at 1 year of age than formula-fed infants. Later in life, they have a lower risk of obesity, diabetes and cardiovascular disease. Several components in breast milk may be responsible for these different outcomes, but bioactive proteins/peptides likely play a major role. Some proteins in breast milk are comparatively resistant towards digestion and may therefore exert their functions in the gastrointestinal tract in intact form or as larger fragments. Other milk proteins may be partially digested in the upper small intestine and the resulting peptides may exert functions in the lower small intestine. Lactoferrin, lysozyme and secretory IgA have been found intact in the stool of breastfed infants and are therefore examples of proteins that are resistant against proteolytic degradation in the gut. Together, these proteins serve protective roles against infection and support immune function in the immature infant. α-lactalbumin, β-casein, κ-casein and osteopontin are examples of proteins that are partially digested in the upper small intestine, and the resulting peptides influence functions in the gut. Such functions include stimulation of immune function, mineral and trace element absorption and defense against infection. © 2016 Nestec Ltd., Vevey/S. Karger AG, Basel.

  5. Bioactive Peptides in Cereals and Legumes: Agronomical, Biochemical and Clinical Aspects

    Directory of Open Access Journals (Sweden)

    Marco Malaguti

    2014-11-01

    Full Text Available Cereals and legumes are key components of a healthy and balanced diet. Accordingly, many national nutritional guidelines emphasize their health promoting properties by placing them at the base of nutritional food pyramids. This concept is further validated by the observed correlation between a lower risk and occurrence of chronic diseases and the adherence to dietary patterns, like the Mediterranean diet, in which cereal grains, legumes and derived products represent a staple food. In the search for a dietary approach to control/prevent chronic degenerative diseases, protein derived bioactive peptides may represent one such source of health-enhancing components. These peptides may already be present in foods as natural components or may derive from hydrolysis by chemical or enzymatic treatments (digestion, hydrolysis or fermentation. Many reports are present in the literature regarding the bioactivity of peptides in vitro and a wide range of activities has been described, including antimicrobial properties, blood pressure-lowering (ACE inhibitory effects, cholesterol-lowering ability, antithrombotic and antioxidant activities, enhancement of mineral absorption/bioavailability, cyto- or immunomodulatory effects, and opioid-like activities. However it is difficult to translate these observed effects to human. In fact, the active peptide may be degraded during digestion, or may not be absorbed or reach the target tissues at a concentration necessary to exert its function. This review will focus on bioactive peptides identified in cereals and legumes, from an agronomical and biochemical point of view, including considerations about requirements for the design of appropriate clinical trials necessary for the assessment of their nutraceutical effect in vivo.

  6. Food Proteins and Bioactive Peptides: New and Novel Sources, Characterisation Strategies and Applications

    Directory of Open Access Journals (Sweden)

    Maria Hayes

    2018-03-01

    Full Text Available By 2050, the world population is estimated to reach 9.6 billion, and this growth continues to require more food, particularly proteins. Moreover, the Westernisation of society has led to consumer demand for protein products that taste good and are convenient to consume, but additionally have nutritional and health maintenance and well-being benefits. Proteins provide energy, but additionally have a wide range of functions from enzymatic activities in the body to bioactivities including those associated with heart health, diabetes-type 2-prevention and mental health maintenance; stress relief as well as a plethora of other health beneficial attributes. Furthermore, proteins play an important role in food manufacture and often provide the binding, water- or oil-holding, emulsifying, foaming or other functional attributes required to ensure optimum sensory and taste benefits for the consumer. The purpose of this issue is to highlight current and new protein sources and their associated functional, nutritional and health benefits as well as best practices for quantifying proteins and bioactive peptides in both a laboratory and industry setting. The bioaccessibility, bioavailability and bioactivities of proteins from dairy, cereal and novel sources including seaweeds and insect protein and how they are measured and the relevance of protein quality measurement methods including the Protein Digestibility Amino Acid Score (PDCAAS and Digestible Indispensable Amino Acid Score (DIAAS are highlighted. In addition, predicted future protein consumption trends and new markets for protein and peptide products are discussed.

  7. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins.

    Science.gov (United States)

    Nongonierma, Alice B; FitzGerald, Richard J

    2018-06-01

    Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.

  8. Degradation of milk-based bioactive peptides by yogurt fermentation bacteria.

    Science.gov (United States)

    Paul, M; Somkuti, G A

    2009-09-01

    To analyse the effect of cell-associated peptidases in yogurt starter culture strains Lactobacillus delbrueckii ssp. bulgaricus (LB) and Streptococcus thermophilus (ST) on milk-protein-based antimicrobial and hypotensive peptides in order to determine their survival in yogurt-type dairy foods. The 11mer antimicrobial and 12mer hypotensive milk-protein-derived peptides were incubated with mid-log cells of LB and ST, which are required for yogurt production. Incubations were performed at pH 4.5 and 7.0, and samples removed at various time points were analysed by reversed-phase high-performance liquid chromatography (RP-HPLC). The peptides remained mostly intact at pH 4.5 in the presence of ST strains and moderately digested by exposure to LB cells. Peptide loss occurred more rapidly and was more extensive after incubation at pH 7.0. The 11mer and 12mer bioactive peptides may be added at the end of the yogurt-making process when the pH level has dropped to 4.5, limiting the overall extent of proteolysis. The results show the feasibility of using milk-protein-based antimicrobial and hypotensive peptides as food supplements to improve the health-promoting qualities of liquid and semi-solid dairy foods prepared by the yogurt fermentation process.

  9. Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion.

    Science.gov (United States)

    Jin, Yan; Yu, Yang; Qi, Yanxia; Wang, Fangjun; Yan, Jiaze; Zou, Hanfa

    2016-06-01

    This study investigated the relationship between peptide profiles and the bioactivity character of yogurt in simulated gastrointestinal trials. A total of 250, 434 and 466 peptides were identified by LC-MS/MS analyses of yogurt, gastric digest and pancreatic digest. Forty peptides of yogurt survived in gastrointestinal digestion. κ-CN and β-CN contributed the diversity of peptides during the fermentation process and gastrointestinal digestion, respectively. The favorite of κ-CN by lactic acid bacteria complemented gut digestion by hydrolyzing κ-CN, the low abundance milk proteins. The potential bioactivities were evaluated by in vitro ACE and DPP-IV inhibition assays. The ACE inhibition rate of the pancreatic digests was ~4 - and ~2 - fold greater than that of yogurt and the gastric digests. The ACE inhibitory peptides generated during gastrointestinal digestion improved the ACE inhibitory activity of the gastric and pancreatic digests. The DPP-IV inhibition rate of the pancreatic digest was ~6 - and ~3 - fold greater than that of yogurt and the gastric digest. The numbers of potential DPP-IV inhibitory peptides were positively correlated to the DPP-IV inhibitory activity of the gastric and pancreatic digests. The present study describes the characters and bioactivities of peptides from yogurt in a simulated gastrointestinal digestion. The number of peptides identified from yogurt and gastrointestinal digests by LC-MS/MS increased in the simulated gastrointestinal trials. The in vitro ACE and DPP-IV inhibition bioactivities revealed that the bioactivity of yogurt was enhanced during gastrointestinal digestion. The correlation between peptides and bioactivity in vitro indicated that not only the peptides amount but also the proportion of peptides with high bioactivities contributed to increased bioactivity during gastrointestinal digestion. The study of peptides identified from yogurt and digests revealed that the number of released peptides was not determined

  10. Bioactive Antimicrobial Peptides as Therapeutics for Corneal Wounds and Infections.

    Science.gov (United States)

    Griffith, Gina L; Kasus-Jacobi, Anne; Pereira, H Anne

    2017-06-01

    Significance: More than 2 million eye injuries and infections occur each year in the United States that leave civilians and military members with reduced or complete vision loss due to the lack of effective therapeutics. Severe ocular injuries and infections occur in varied settings including the home, workplace, and battlefields. In this review, we discuss the potential of developing antimicrobial peptides (AMPs) as therapeutics for the treatment of corneal wounds and infections for which the current treatment options are inadequate. Recent Advances: Standard-of-care employs the use of fluorescein dye for the diagnosis of ocular defects and is followed by the use of antibiotics and/or steroids to treat the infection and reduce inflammation. Recent advances for treating corneal wounds include the development of amniotic membrane therapies, wound chambers, and drug-loaded hydrogels. In this review, we will discuss an innovative approach using AMPs with the dual effect of promoting corneal wound healing and clearing infections. Critical Issues: An important aspect of treating ocular injuries is that treatments need to be effective and administered expeditiously. This is especially important for injuries that occur during combat and in individuals who demonstrate delayed wound healing. To overcome gaps in current treatment modalities, bioactive peptides based on naturally occurring cationic antimicrobial proteins are being investigated as new therapeutics. Future Directions: The development of new therapeutics that can treat ocular infections and promote corneal wound healing, including the healing of persistent corneal epithelial defects, would be of great clinical benefit.

  11. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products.

    Science.gov (United States)

    Cornara, Laura; Biagi, Marco; Xiao, Jianbo; Burlando, Bruno

    2017-01-01

    Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs), and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA), with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.

  12. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products

    Directory of Open Access Journals (Sweden)

    Laura Cornara

    2017-06-01

    Full Text Available Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs, and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA, with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.

  13. Gastrointestinal Endogenous Proteins as a Source of Bioactive Peptides - An In Silico Study

    Science.gov (United States)

    Dave, Lakshmi A.; Montoya, Carlos A.; Rutherfurd, Shane M.; Moughan, Paul J.

    2014-01-01

    Dietary proteins are known to contain bioactive peptides that are released during digestion. Endogenous proteins secreted into the gastrointestinal tract represent a quantitatively greater supply of protein to the gut lumen than those of dietary origin. Many of these endogenous proteins are digested in the gastrointestinal tract but the possibility that these are also a source of bioactive peptides has not been considered. An in silico prediction method was used to test if bioactive peptides could be derived from the gastrointestinal digestion of gut endogenous proteins. Twenty six gut endogenous proteins and seven dietary proteins were evaluated. The peptides present after gastric and intestinal digestion were predicted based on the amino acid sequence of the proteins and the known specificities of the major gastrointestinal proteases. The predicted resultant peptides possessing amino acid sequences identical to those of known bioactive peptides were identified. After gastrointestinal digestion (based on the in silico simulation), the total number of bioactive peptides predicted to be released ranged from 1 (gliadin) to 55 (myosin) for the selected dietary proteins and from 1 (secretin) to 39 (mucin-5AC) for the selected gut endogenous proteins. Within the intact proteins and after simulated gastrointestinal digestion, angiotensin converting enzyme (ACE)-inhibitory peptide sequences were the most frequently observed in both the dietary and endogenous proteins. Among the dietary proteins, after in silico simulated gastrointestinal digestion, myosin was found to have the highest number of ACE-inhibitory peptide sequences (49 peptides), while for the gut endogenous proteins, mucin-5AC had the greatest number of ACE-inhibitory peptide sequences (38 peptides). Gut endogenous proteins may be an important source of bioactive peptides in the gut particularly since gut endogenous proteins represent a quantitatively large and consistent source of protein. PMID:24901416

  14. Gastrointestinal endogenous proteins as a source of bioactive peptides--an in silico study.

    Science.gov (United States)

    Dave, Lakshmi A; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J

    2014-01-01

    Dietary proteins are known to contain bioactive peptides that are released during digestion. Endogenous proteins secreted into the gastrointestinal tract represent a quantitatively greater supply of protein to the gut lumen than those of dietary origin. Many of these endogenous proteins are digested in the gastrointestinal tract but the possibility that these are also a source of bioactive peptides has not been considered. An in silico prediction method was used to test if bioactive peptides could be derived from the gastrointestinal digestion of gut endogenous proteins. Twenty six gut endogenous proteins and seven dietary proteins were evaluated. The peptides present after gastric and intestinal digestion were predicted based on the amino acid sequence of the proteins and the known specificities of the major gastrointestinal proteases. The predicted resultant peptides possessing amino acid sequences identical to those of known bioactive peptides were identified. After gastrointestinal digestion (based on the in silico simulation), the total number of bioactive peptides predicted to be released ranged from 1 (gliadin) to 55 (myosin) for the selected dietary proteins and from 1 (secretin) to 39 (mucin-5AC) for the selected gut endogenous proteins. Within the intact proteins and after simulated gastrointestinal digestion, angiotensin converting enzyme (ACE)-inhibitory peptide sequences were the most frequently observed in both the dietary and endogenous proteins. Among the dietary proteins, after in silico simulated gastrointestinal digestion, myosin was found to have the highest number of ACE-inhibitory peptide sequences (49 peptides), while for the gut endogenous proteins, mucin-5AC had the greatest number of ACE-inhibitory peptide sequences (38 peptides). Gut endogenous proteins may be an important source of bioactive peptides in the gut particularly since gut endogenous proteins represent a quantitatively large and consistent source of protein.

  15. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases.

    Science.gov (United States)

    Ryder, Kate; Bekhit, Alaa El-Din; McConnell, Michelle; Carne, Alan

    2016-10-01

    Five commercially available food-grade microbial protease preparations were evaluated for their ability to hydrolyse meat myofibrillar and connective tissue protein extracts to produce bioactive peptides. A bacterial-derived protease (HT) extensively hydrolysed both meat protein extracts, producing peptide hydrolysates with significant in vitro antioxidant and ACE inhibitor activities. The hydrolysates retained bioactivity after simulated gastrointestinal hydrolysis challenge. Gel permeation chromatography sub-fractionation of the crude protein hydrolysates showed that the smaller peptide fractions exhibited the highest antioxidant and ACE inhibitor activities. OFFGEL electrophoresis of the small peptides of both hydrolysates showed that low isoelectric point peptides had antioxidant activity; however, no consistent relationship was observed between isoelectric point and ACE inhibition. Cell-based assays indicated that the hydrolysates present no significant cytotoxicity towards Vero cells. The results indicate that HT protease hydrolysis of meat myofibrillar and connective tissue protein extracts produces bioactive peptides that are non-cytotoxic, should be stable in the gastrointestinal tract and may contain novel bioactive peptide sequences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identification and Relative Quantification of Bioactive Peptides Sequentially Released during Simulated Gastrointestinal Digestion of Commercial Kefir.

    Science.gov (United States)

    Liu, Yufang; Pischetsrieder, Monika

    2017-03-08

    Health-promoting effects of kefir may be partially caused by bioactive peptides. To evaluate their formation or degradation during gastrointestinal digestion, we monitored changes of the peptide profile in a model of (1) oral, (2) gastric, and (3) small intestinal digestion of kefir. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy analyses revealed clearly different profiles between digests 2/3 and kefir/digest 1. Subsequent ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry identified 92 peptides in total (25, 25, 43, and 30, partly overlapping in kefir and digests 1, 2, and 3, respectively), including 16 peptides with ascribed bioactivity. Relative quantification in scheduled multiple reaction monitoring mode showed that many bioactive peptides were released by simulated digestion. Most prominently, the concentration of angiotensin-converting enzyme inhibitor β-casein 203-209 increased approximately 10 000-fold after combined oral, gastric, and intestinal digestion. Thus, physiological digestive processes may promote bioactive peptide formation from proteins and oligopeptides in kefir. Furthermore, bioactive peptides present in certain compartments of the gastrointestinal tract may exert local physiological effects.

  17. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides.

    Science.gov (United States)

    Yadav, Jay Shankar Singh; Yan, Song; Pilli, Sridhar; Kumar, Lalit; Tyagi, R D; Surampalli, R Y

    2015-11-01

    The byproduct of cheese-producing industries, cheese whey, is considered as an environmental pollutant due to its high BOD and COD concentrations. The high organic load of whey arises from the presence of residual milk nutrients. As demand for milk-derived products is increasing, it leads to increased production of whey, which poses a serious management problem. To overcome this problem, various technological approaches have been employed to convert whey into value-added products. These technological advancements have enhanced whey utilization and about 50% of the total produced whey is now transformed into value-added products such as whey powder, whey protein, whey permeate, bioethanol, biopolymers, hydrogen, methane, electricity bioprotein (single cell protein) and probiotics. Among various value-added products, the transformation of whey into proteinaceous products is attractive and demanding. The main important factor which is attractive for transformation of whey into proteinaceous products is the generally recognized as safe (GRAS) regulatory status of whey. Whey and whey permeate are biotransformed into proteinaceous feed and food-grade bioprotein/single cell protein through fermentation. On the other hand, whey can be directly processed to obtain whey protein concentrate, whey protein isolate, and individual whey proteins. Further, whey proteins are also transformed into bioactive peptides via enzymatic or fermentation processes. The proteinaceous products have applications as functional, nutritional and therapeutic commodities. Whey characteristics, and its transformation processes for proteinaceous products such as bioproteins, functional/nutritional protein and bioactive peptides are covered in this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Microgreens: Production, shelf life, and bioactive components.

    Science.gov (United States)

    Mir, Shabir Ahmad; Shah, Manzoor Ahmad; Mir, Mohammad Maqbool

    2017-08-13

    Microgreens are emerging specialty food products which are gaining popularity and increased attention nowadays. They are young and tender cotyledonary leafy greens that are found in a pleasing palette of colors, textures, and flavors. Microgreens are a new class of edible vegetables harvested when first leaves have fully expanded and before true leaves have emerged. They are gaining popularity as a new culinary ingredient. They are used to enhance salads or as edible garnishes to embellish a wide variety of other dishes. Common microgreens are grown mainly from mustard, cabbage, radish, buckwheat, lettuce, spinach, etc. The consumption of microgreens has nowadays increased due to higher concentrations of bioactive components such as vitamins, minerals, and antioxidants than mature greens, which are important for human health. However, they typically have a short shelf life due to rapid product deterioration. This review aimed to evaluate the postharvest quality, potential bioactive compounds, and shelf life of microgreens for proper management of this specialty produce.

  19. Bioactive dietary peptides and amino acids in inflammatory bowel disease.

    Science.gov (United States)

    Zhang, Hua; Hu, Chien-An A; Kovacs-Nolan, Jennifer; Mine, Yoshinori

    2015-10-01

    Inflammatory bowel disease (IBD), most commonly ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammation of the gastrointestinal tract. Patients affected with IBD experience symptoms including abdominal pain, persistent diarrhea, rectal bleeding, and weight loss. There is no cure for IBD; thus treatments typically focus on preventing complications, inducing and maintaining remission, and improving quality of life. During IBD, dysregulation of the intestinal immune system leads to increased production of pro-inflammatory cytokines, such as TNF-α and IL-6, and recruitment of activated immune cells to the intestine, causing tissue damage and perpetuating the inflammatory response. Recent biological therapies targeting specific inflammatory cytokines or pathways, in particular TNF-α, have shown promise, but not all patients respond to treatment, and some individuals become intolerant to treatment over time. Dietary peptides and amino acids (AAs) have been shown to modulate intestinal immune functions and influence inflammatory responses, and may be useful as alternative or ancillary treatments in IBD. This review focuses on dietary interventions for IBD treatment, in particular the role of dietary peptides and AAs in reducing inflammation, oxidative stress, and apoptosis in the gut, as well as recent advances in the cellular mechanisms responsible for their anti-inflammatory activity.

  20. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins

    Directory of Open Access Journals (Sweden)

    Marwa Yousr

    2015-12-01

    Full Text Available Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF. Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y and tryptophan (W, in sequences identified by LC-MS as WYGPD (EYGF-23 and KLSDW (EYGF-33, contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56 was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69% and IC50 value (3.35 mg/mL. The SDNRNQGY peptide (10 mg/mL had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL. In addition, YPSPV in (EYGF-33 (10 mg/mL had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  1. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins.

    Science.gov (United States)

    Yousr, Marwa; Howell, Nazlin

    2015-12-07

    Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF). Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS) in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y) and tryptophan (W), in sequences identified by LC-MS as WYGPD (EYGF-23) and KLSDW (EYGF-33), contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56) was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69%) and IC50 value (3.35 mg/mL). The SDNRNQGY peptide (10 mg/mL) had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL). In addition, YPSPV in (EYGF-33) (10 mg/mL) had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  2. Improved surface bioactivity of stainless steel substrates using osteocalcin mimetic peptide

    International Nuclear Information System (INIS)

    Hosseini, Samaneh; Naderi-Manesh, Hossein; Vali, Hojatollah; Faghihi, Shahab

    2014-01-01

    Although stainless steel has a good biocompatibility for most clinical cases, the higher tissue response (bone bonding property) is required in orthopedic field. In this study, to improve bone-bonding ability of stainless steel substrates, a specific sequence of osteocalcin mimetic peptide is used as bioactive coating material to biochemically modify the surface of metallic samples. This sequence consists of thirteen amino acids present in the first helix of osteocalcin is synthesized in amidic form and physically adsorbed on the surface of 316LS (316 low carbon surgical grade) stainless steel substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to characterize the surface of peptide coated and uncoated substrates. The bioactivity and bone bonding ability of coated and uncoated substrates are assessed by level of hydroxyapatite formation, using transmission electron microscopy (TEM), energy-dispersive x-ray (EDS), and scanning electron microscopy (SEM). The pre-osteoblast cell attachment and proliferation are also evaluated by MTT assay. The results show that the surface of coated sample is homogenously covered by the peptide and display a rougher surface relative to uncoated sample. TEM images reveal the formation of plate-like hydroxyapatite crystals in the presence of the peptide and an amorphous calcium phosphate phase without the peptide. Pre-osteoblast cells proliferation is significantly higher on the surface of peptide coated substrate, while cell attachment remains unaffected by the peptide coatings. Pre-osteoblast cells also demonstrate a higher degree of spreading on the surface of coated sample. It is believed that osteocalcin mimetic peptide improve surface bioactivity and promote hydroxyapatite crystal formation may lead to increased mineralization and bone formation on the surface of metallic biomedical devices. - Graphical abstract: A peptide sequence located in the first helix of OC is selected based on its

  3. Improved surface bioactivity of stainless steel substrates using osteocalcin mimetic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samaneh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Vali, Hojatollah [Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7 (Canada); Faghihi, Shahab, E-mail: sfaghihi@nigeb.ac.ir [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of)

    2014-02-14

    Although stainless steel has a good biocompatibility for most clinical cases, the higher tissue response (bone bonding property) is required in orthopedic field. In this study, to improve bone-bonding ability of stainless steel substrates, a specific sequence of osteocalcin mimetic peptide is used as bioactive coating material to biochemically modify the surface of metallic samples. This sequence consists of thirteen amino acids present in the first helix of osteocalcin is synthesized in amidic form and physically adsorbed on the surface of 316LS (316 low carbon surgical grade) stainless steel substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to characterize the surface of peptide coated and uncoated substrates. The bioactivity and bone bonding ability of coated and uncoated substrates are assessed by level of hydroxyapatite formation, using transmission electron microscopy (TEM), energy-dispersive x-ray (EDS), and scanning electron microscopy (SEM). The pre-osteoblast cell attachment and proliferation are also evaluated by MTT assay. The results show that the surface of coated sample is homogenously covered by the peptide and display a rougher surface relative to uncoated sample. TEM images reveal the formation of plate-like hydroxyapatite crystals in the presence of the peptide and an amorphous calcium phosphate phase without the peptide. Pre-osteoblast cells proliferation is significantly higher on the surface of peptide coated substrate, while cell attachment remains unaffected by the peptide coatings. Pre-osteoblast cells also demonstrate a higher degree of spreading on the surface of coated sample. It is believed that osteocalcin mimetic peptide improve surface bioactivity and promote hydroxyapatite crystal formation may lead to increased mineralization and bone formation on the surface of metallic biomedical devices. - Graphical abstract: A peptide sequence located in the first helix of OC is selected based on its

  4. Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food.

    Science.gov (United States)

    Agyei, Dominic; Acquah, Caleb; Tan, Kei Xian; Hii, Hieng Kok; Rajendran, Subin R C K; Udenigwe, Chibuike C; Danquah, Michael K

    2018-01-01

    Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (K d ) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.

  5. Bioactive peptides released during of digestion of processed milk

    Science.gov (United States)

    Most of the proteins contained in milk consist of alpha-s1-, alpha-s2-, beta- and kappa-casein, and some of the peptides contained in these caseins may impart health benefits. To determine if processing affected release of peptides, samples of raw (R), homogenized (H), homogenized and pasteurized (...

  6. Antimicrobial Peptide Production and Purification.

    Science.gov (United States)

    Suda, Srinivas; Field, Des; Barron, Niall

    2017-01-01

    Antimicrobial peptides (AMPs) are natural defense compounds which are synthesized as ribosomal gene-encoded pre-peptides and produced by all living organisms. AMPs are small peptides, usually cationic and typically have hydrophobic residues which interact with cell membranes and have either a narrow or broad spectrum of biological activity. AMPs are isolated from the natural host or heterologously expressed in other hosts such as Escherichia coli. The proto-typical lantibiotic Nisin is a widely used AMP that is produced by the food-grade organism Lactococcus lactis. Although AMP production and purification procedures require optimization for individual AMPs, the Nisin production and purification protocol outlined in this chapter can be easily applied with minor modifications for the production and purification of other lantibiotics or AMPs. While Nisin is produced and secreted into the supernatant, steps to recover Nisin from both cell-free supernatant and cell pellet are outlined in detail.

  7. Bioactive Mimetics of Conotoxins and other Venom Peptides

    Directory of Open Access Journals (Sweden)

    Peter J. Duggan

    2015-10-01

    Full Text Available Ziconotide (Prialt®, a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties.

  8. Cucurbitaceae Seed Protein Hydrolysates as a Potential Source of Bioactive Peptides with Functional Properties

    Directory of Open Access Journals (Sweden)

    César Ozuna

    2017-01-01

    Full Text Available Seeds from Cucurbitaceae plants (squashes, pumpkins, melons, etc. have been used both as protein-rich food ingredients and nutraceutical agents by many indigenous cultures for millennia. However, relatively little is known about the bioactive components (e.g., peptides of the Cucurbitaceae seed proteins (CSP and their specific effects on human health. Therefore, this paper aims to provide a comprehensive review of latest research on bioactive and functional properties of CSP isolates and hydrolysates. Enzymatic hydrolysis can introduce a series of changes to the CSP structure and improve its bioactive and functional properties, including the enhanced protein solubility over a wide range of pH values. Small-sized peptides in CSP hydrolysates seem to enhance their bioactive properties but adversely affect their functional properties. Therefore, medium degrees of hydrolysis seem to benefit the overall improvement of bioactive and functional properties of CSP hydrolysates. Among the reported bioactive properties of CSP isolates and hydrolysates, their antioxidant, antihypertensive, and antihyperglycaemic activities stand out. Therefore, they could potentially substitute synthetic antioxidants and drugs which might have adverse secondary effects on human health. CSP isolates and hydrolysates could also be implemented as functional food ingredients, thanks to their favorable amino acid composition and good emulsifying and foaming properties.

  9. Delivery of bioactive peptides and proteins across oral (buccal) mucosa.

    Science.gov (United States)

    Senel, S; Kremer, M; Nagy, K; Squier, C

    2001-06-01

    The identification of an increasing array of highly potent, endogenous peptide and protein factors termed cytokines, that can be efficiently synthesized using recombinant DNA technology, offers exciting new approaches for drug therapy. However, the physico-chemical and biological properties of these agents impose limitations in formulation and development of optimum drug delivery systems as well as on the routes of delivery. Oral mucosa, including the lining of the cheek (buccal mucosa), floor of mouth and underside of tongue (sublingual mucosa) and gingival mucosa, has received much attention in the last decade because it offers excellent accessibility, is not easily traumatized and avoids degradation of proteins and peptides that occurs as a result of oral administration, gastrointestinal absorption and first-pass hepatic metabolism. Peptide absorption occurs across oral mucosa by passive diffusion and it is unlikely that there is a carrier-mediated transport mechanism. The principal pathway is probably via the intercellular route where the major permeability barrier is represented by organized array of neutral lipids in the superficial layers of the epithelium. The relative role of aqueous as opposed to the lipid pathway in drug transport is still under investigation; penetration is not necessarily enhanced by simply increasing lipophilicity, for other effects, such as charge and molecular size, also play an important role in absorption of peptide and protein drugs. Depending on the pharmacodynamics of the peptides, various oral mucosal delivery systems can be designed. Delivery of peptide/protein drugs by conventional means such as solutions has some limitations. The possibility of excluding a major part of drug from absorption by involuntary swallowing and the continuous dilution due to salivary flow limits a controlled release. However these limitations can be overcome by adhesive dosage forms such as gels, films, tablets, and patches. They can localize the

  10. Bioportide: an emergent concept of bioactive cell-penetrating peptides

    Czech Academy of Sciences Publication Activity Database

    Howl, J.; Matou-Nasri, S.; West, D. C.; Farquhar, M.; Slaninová, Jiřina; Ostenson, C. G.; Zorko, M.; Ostlund, P.; Kumar, S.; Langel, U.; McKeating, J.; Jones, S.

    2012-01-01

    Roč. 69, č. 17 (2012), s. 2951-2966 ISSN 1420-682X Institutional research plan: CEZ:AV0Z40550506 Keywords : angiogenesis * bioportide * cell-penetrating peptide * second messenger * insulin secretion Subject RIV: CE - Biochemistry Impact factor: 5.615, year: 2012

  11. Studies on bioactive peptide from Chinese soft-shelled turtle ...

    African Journals Online (AJOL)

    This paper dealt with a novel anti-hypertensive collagen peptide from Chinese soft-shelled turtle (Pelodiscus sinensis), which was an efficient inhibitor of angiotensin converting enzyme (ACE, EC 3.4.15.1). ACE plays an important physiological role in the regulation of blood pressure by virtue of the rennin angiotensin ...

  12. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies...... are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors......, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody...

  13. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering.

    Science.gov (United States)

    Rosellini, Elisabetta; Cristallini, Caterina; Guerra, Giulio D; Barbani, Niccoletta

    2015-01-01

    The aim of this work was the development of new synthetic polymeric systems, functionalized by surface chemical modification with bioactive peptides, for myocardial tissue engineering. Polycaprolactone and a poly(ester-ether-ester) block copolymer synthesized in our lab, polycaprolactone-poly(ethylene oxide)-polycaprolactone (PCL-PEO-PCL), were used as the substrates to be modified. Two pentapeptides, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS) from fibronectin and H-Tyr-Ile-Gly-Ser-Arg-OH (YIGSR) from laminin, were used for the functionalization. Polymeric membranes were obtained by casting from solutions and then functionalized by means of alkaline hydrolysis and subsequent coupling of the bioactive molecules through 1-(3-dimethylaminopropyl)-3-ethylcarbodimide hydrochloride/N-hydroxysuccinimide chemistry. The hydrolysis conditions, in terms of hydrolysis time, temperature, and sodium hydroxide concentration, were optimized for the two materials. The occurrence of the coupling reaction was demonstrated by infrared spectroscopy, as the presence on the functionalized materials of the absorption peaks typical of the two peptides. The peptide surface density was determined by chromatographic analysis and the distribution was studied by infrared chemical imaging. The results showed a nearly homogeneous peptide distribution, with a density above the minimum value necessary to promote cell adhesion. Preliminary in vitro cell culture studies demonstrated that the introduction of the bioactive molecules had a positive effect on improving C2C12 myoblasts growth on the synthetic materials.

  14. Bioactive Antimicrobial Peptides as Therapeutics for Corneal Wounds and Infections

    OpenAIRE

    Griffith, Gina L.; Kasus-Jacobi, Anne; Pereira, H. Anne

    2017-01-01

    Significance: More than 2 million eye injuries and infections occur each year in the United States that leave civilians and military members with reduced or complete vision loss due to the lack of effective therapeutics. Severe ocular injuries and infections occur in varied settings including the home, workplace, and battlefields. In this review, we discuss the potential of developing antimicrobial peptides (AMPs) as therapeutics for the treatment of corneal wounds and infections for which th...

  15. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of); Lim, Yun Kyong; Kook, Joong-Ki [Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Cho, Dong-Lyun [School of Applied Chemical Engineering and Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju (Korea, Republic of); Kim, Byung Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of)

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH{sub 2} of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  16. Extraction and characterization of naturally occurring bioactive peptides from different tissues from Salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup; Nielsen, Henrik Hauch

    2011-01-01

    used. Combination of different extraction conditions such as with/without boiling, with/without inhibitor and variation of pH resulted in a total of 36 extracts. The activity of the extracts was analyzed in vitro for ACE (angiotensin-converting enzyme) inhibiting activity, and anti-oxidative activity...... (Free Radical Scavenging assay). A number of extracts showed high ACE inhibiting and anti-oxidative activity. The extracts were then size fractionated by ultrafiltration using a 10 kDa filter, and relevant fractions below 10 kDa from gills, skin and belly flap were further fractionated by gel...... is therefore to extract and identify naturally occurring bioactive peptides from different tissues from salmon. A number of aqueous extracts were made from gills, skin and belly flap. In order to preserve the bioactivity of the peptides mild extraction procedures as acidic, basic and aqueous solutions were...

  17. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Chia-Cheng; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-08-01

    Many food bioactive peptides with diverse functions have been discovered by studying plant proteins. We have previously identified a 68-residue insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia that exhibits hypoglycemic effects in mice via interaction with IR. By in vitro digestion, we found that mcIRBP-19, spanning residues 50-68 of mcIRBP, enhanced the binding of insulin to IR, stimulated the phosphorylation of PDK1 and Akt, induced the expression of glucose transporter 4, and stimulated both the uptake of glucose in cells and the clearance of glucose in diabetic mice. Furthermore, mcIRBP-19 homologs were present in various plants and shared similar β-hairpin structures and IR kinase-activating abilities to mcIRBP-19. In conclusion, our findings suggested that mcIRBP-19 is a blood glucose-lowering bioactive peptide that exhibits IR-binding potentials. Moreover, we newly identified novel IR-binding bioactive peptides in various plants which belonged to different taxonomic families. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Vegetable foods: a cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities.

    Science.gov (United States)

    García, M C; Puchalska, P; Esteve, C; Marina, M L

    2013-03-15

    Despite less explored than foods from animal origin, plant derived foods also contain biologically active proteins and peptides. Bioactive peptides can be present as an independent entity in the food or, more frequently, can be in a latent state as part of the sequence of a protein. Release from that protein requires protein hydrolysis by enzymatic digestion, fermentation or autolysis. Different methodologies have been used to test proteins and peptides bioactivities. Fractionation, separation, and identification techniques have also been employed for the isolation and identification of bioactive proteins or peptides. In this work, proteins and peptides from plant derived foods exerting antihypertensive, antioxidant, hypocholesterolemic, antithrombotic, and immunostimulating capacities or ability to reduce food intake have been reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Bioactivity of a modified human Glucagon-like peptide-1.

    Directory of Open Access Journals (Sweden)

    Fangfang Xu

    Full Text Available Diabetes has become the third largest cause of death in humans worldwide. Therefore, effective treatment for this disease remains a critical issue. Glucagon-like peptide-1 (GLP-1 plays an important role in glucose homeostasis, and therefore represents a promising candidate to use for the treatment of diabetes. Native GLP-1, however, is quickly degraded in in the circulatory system; which limits its clinical application. In the present study, a chemically-synthesized, modified analogue of human GLP-1 (mGLP-1 was designed. Our analyses indicated that, relative to native GLP-1, mGLP-1 is more resistant to trypsin and pancreatin degradation. mGLP-1 promotes mouse pancreatic β-cell proliferation by up-regulating the expression level of cyclin E, CDK2, Bcl-2 and down-regulating Bax, p21, and stimulates insulin secretion. An oral glucose tolerance test indicated that mGLP-1 significantly improved glucose tolerance in mice. Intraperitoneal injections of mGLP-1 into streptozotocin (STZ-induced type 2 diabetic mice significantly reduced blood sugar levels and stimulated insulin secretion. Oral gavages of mGLP-1 in diabetic mice did not result in significant hypoglycemic activity.

  20. Screening Method for the Discovery of Potential Bioactive Cysteine-Containing Peptides Using 3D Mass Mapping

    NARCIS (Netherlands)

    Van Oosten, L.N.; Pieterse, M.; Pinkse, M.W.H.; Verhaert, P.D.E.M.

    2015-01-01

    Animal venoms and toxins are a valuable source of bioactive peptides with pharmacologic relevance as potential drug leads. A large subset of biologically active peptides discovered up till now contain disulfide bridges that enhance stability and activity. To discover new members of this class of

  1. Polyglutamate directed coupling of bioactive peptides for the delivery of osteoinductive signals on allograft bone

    Science.gov (United States)

    Culpepper, Bonnie K.; Bonvallet, Paul P.; Reddy, Michael S.; Ponnazhagan, Selvarangan; Bellis, Susan L.

    2012-01-01

    Allograft bone is commonly used as an alternative to autograft, however allograft lacks many osteoinductive factors present in autologous bone due to processing. In this study, we investigated a method to reconstitute allograft with osteoregenerative factors. Specifically, an osteoinductive peptide from collagen I, DGEA, was engineered to express a heptaglutamate (E7) domain, which binds the hydroxyapatite within bone mineral. Addition of E7 to DGEA resulted in 9× greater peptide loading on allograft, and significantly greater retention after a 5-day interval with extensive washing. When factoring together greater initial loading and retention, the E7 domain directed a 45-fold enhancement of peptide density on the allograft surface. Peptide-coated allograft was also implanted subcutaneously into rats and it was found that E7DGEA was retained in vivo for at least 3 months. Interestingly, E7DGEA peptides injected intravenously accumulated within bone tissue, implicating a potential role for E7 domains in drug delivery to bone. Finally, we determined that, as with DGEA, the E7 modification enhanced coupling of a bioactive BMP2-derived peptide on allograft. These results suggest that E7 domains are useful for coupling many types of bone-regenerative molecules to the surface of allograft to reintroduce osteoinductive signals and potentially advance allograft treatments. PMID:23182349

  2. Automated genome mining of ribosomal peptide natural products

    Energy Technology Data Exchange (ETDEWEB)

    Mohimani, Hosein; Kersten, Roland; Liu, Wei; Wang, Mingxun; Purvine, Samuel O.; Wu, Si; Brewer, Heather M.; Pasa-Tolic, Ljiljana; Bandeira, Nuno; Moore, Bradley S.; Pevzner, Pavel A.; Dorrestein, Pieter C.

    2014-07-31

    Ribosomally synthesized and posttranslationally modified peptides (RiPPs), especially from microbial sources, are a large group of bioactive natural products that are a promising source of new (bio)chemistry and bioactivity (1). In light of exponentially increasing microbial genome databases and improved mass spectrometry (MS)-based metabolomic platforms, there is a need for computational tools that connect natural product genotypes predicted from microbial genome sequences with their corresponding chemotypes from metabolomic datasets. Here, we introduce RiPPquest, a tandem mass spectrometry database search tool for identification of microbial RiPPs and apply it for lanthipeptide discovery. RiPPquest uses genomics to limit search space to the vicinity of RiPP biosynthetic genes and proteomics to analyze extensive peptide modifications and compute p-values of peptide-spectrum matches (PSMs). We highlight RiPPquest by connection of multiple RiPPs from extracts of Streptomyces to their gene clusters and by the discovery of a new class III lanthipeptide, informatipeptin, from Streptomyces viridochromogenes DSM 40736 as the first natural product to be identified in an automated fashion by genome mining. The presented tool is available at cy-clo.ucsd.edu.

  3. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    Science.gov (United States)

    Amoutzias, Grigoris D.; Chaliotis, Anargyros; Mossialos, Dimitris

    2016-01-01

    Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds. PMID:27092515

  4. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    Directory of Open Access Journals (Sweden)

    Grigoris D. Amoutzias

    2016-04-01

    Full Text Available Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs and polyketides (PKs are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes and type-I polyketide synthases (PKSes-I, respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  5. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  6. Chemical methods for peptide and protein production.

    Science.gov (United States)

    Chandrudu, Saranya; Simerska, Pavla; Toth, Istvan

    2013-04-12

    Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported α-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  7. Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains.

    Science.gov (United States)

    Ebner, Jennifer; Aşçı Arslan, Ayşe; Fedorova, Maria; Hoffmann, Ralf; Küçükçetin, Ahmet; Pischetsrieder, Monika

    2015-03-18

    Kefir has a long tradition in human nutrition due to its presupposed health promoting effects. To investigate the potential contribution of bioactive peptides to the physiological effects of kefir, comprehensive analysis of the peptide profile was performed by nano-ESI-LTQ-Orbitrap MS coupled to nano-ultrahigh-performance liquid chromatography. Thus, 257 peptides were identified, mainly released from β-casein, followed by αS1-, κ-, and αS2-casein. Most (236) peptides were uniquely detected in kefir, but not in raw milk indicating that the fermentation step does not only increase the proteolytic activity 1.7- to 2.4-fold compared to unfermented milk, but also alters the composition of the peptide fraction. The influence of the microflora was determined by analyzing kefir produced from traditional kefir grains or commercial starter culture. Kefir from starter culture featured 230 peptide sequences and showed a significantly, 1.4-fold higher proteolytic activity than kefir from kefir grains with 127 peptides. A match of 97 peptides in both varieties indicates the presence of a typical kefir peptide profile that is not influenced by the individual composition of the microflora. Sixteen of the newly identified peptides were previously described as bioactive, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, immunomodulating, opioid, mineral binding, antioxidant, and antithrombotic effects. The present study describes a comprehensive peptide profile of kefir comprising 257 sequences. The peptide list was used to identify 16 bioactive peptides with ACE-inhibitory, antioxidant, antithrombotic, mineral binding, antimicrobial, immunomodulating and opioid activity in kefir. Furthermore, it was shown that a majority of the kefir peptides were not endogenously present in the raw material milk, but were released from milk caseins by proteases of the microbiota and are therefore specific for the product. Consequently, the proteolytic activity and the

  8. Bioactivities by a crude extract from the Greenlandic Pseudomonas sp. In5 involves the nonribosomal peptides, nunamycin and nunapeptin

    DEFF Research Database (Denmark)

    Frydenlund Michelsen, Charlotte; Jensen, Helle; Venditto, Vincent J.

    2015-01-01

    Bioactive microbial metabolites provide a successful source of novel compounds with pharmaceutical potentials. The bacterium Pseudomonas sp. In5 is a biocontrol strain isolated from a plant disease suppressive soil in Greenland, which produces two antimicrobial nonribosomal peptides (NRPs), nunap......), nunapeptin and nunamycin. In this study, we used in vitro antimicrobial and anticancer bioassays to evaluate the potential bioactivities of both a crude extract derived from Pseudomonas sp. In5 and NRPs purified from the crude extract....

  9. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  10. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  11. Truncation studies of alpha-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity.

    Science.gov (United States)

    Haskell-Luevano, C; Sawyer, T K; Hendrata, S; North, C; Panahinia, L; Stum, M; Staples, D J; Castrucci, A M; Hadley, M F; Hruby, V J

    1996-01-01

    Truncation studies of alpha-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity: PEPTIDES 17(6) 995-1002, 1996.-Systematic analysis of fragment derivatives of the superpotent alpha-MSH analogue. Ac-Ser.Tyr-Ser-Nle4-Glu- His-DPhe7-Arg-Trp-Gly-Lys-Pro-Val-NH2(NDP-MSH), led to the discovery of tripeptide agonists possessing prolonged bioactivity in the frog skin assay. Of particular significance to this discovery was Ac-DPhe-Arg-DTrp-NH2, which was the most potent tripeptide in this series exhibiting sustained melanotropic activity. Different pharmacophore models appear to exist that are dependent on the substructure and stereochemistry of the MSH(6-9) "active site." The tripeptides Ac-DPhe-Arg-Trp-NH2, Ac-DPhe-Arg-DTrp-NH2, and Ac-DPhe-DArg-Trp-NH2 stereo-chemical combinations require only Phe7-Xaa8-Trp9, whereas Ac-DPhe-DArg-DTrp-NH2, Ac-Phe-Arg-DTrp-NH2, and Ac-Phe-Arg-Trp-NH2 additionally require His4 for minimal biological activity. Ac-DPhe-Arg-DTrp-NH2 represents a novel prototype lead for the development of MSH-based peptidomimetic agonists.

  12. Effects of a synthetic bioactive peptide on neurite growth and nerve growth factor release in chondroitin sulfate hydrogels

    OpenAIRE

    Conovaloff, Aaron W.; Beier, Brooke L.; Irazoqui, Pedro P.; Panitch, Alyssa

    2011-01-01

    Previous work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve growth factor diffusivity in chondroitin sulfate gels, but not in control gels of hyaluronic acid. F...

  13. Microbial production of astilbin, a bioactive rhamnosylated flavanonol, from taxifolin

    DEFF Research Database (Denmark)

    Thuan, Nguyen Huy; Malla, Sailesh; Trung, Nguyen Thanh

    2017-01-01

    Flavonoids are plant-based polyphenolic biomolecules with a wide range of biological activities. Glycosylated flavonoids have drawn special attention in the industries as it improves solubility, stability, and bioactivity. Herein, we report the production of astilbin (ATN) from taxifolin (TFN) in...

  14. Marine actinobacteria: an important source of bioactive natural products.

    Science.gov (United States)

    Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon

    2014-07-01

    Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Production of Bioactive Secondary Metabolites by Marine Vibrionaceae

    Directory of Open Access Journals (Sweden)

    Lone Gram

    2011-08-01

    Full Text Available Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS. Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.

  16. Peptides in fermented Finnish milk products

    Directory of Open Access Journals (Sweden)

    Minna Kahala

    1993-09-01

    Full Text Available This study was conducted to investigate the rate of proteolysis and peptide profiles of different Finnish fermented milk products. The highest rate of proteolysis was observed in Biokefir, while the greatest change in the rate of proteolysis was observed in Gefilus®. Differences in starters and manufacturing processes reflected on the peptide profiles of the products. Most of the identified peptides originated from either the N- or C-terminal region of β-casein or from the N-terminal region of αs1-casein.

  17. BG-4, a novel bioactive peptide from Momordica charantia, inhibits lipopolysaccharide-induced inflammation in THP-1 human macrophages

    Science.gov (United States)

    Background: Bitter melon (Momordica charantia) is a commonly used food crop for management of a variety of diseases most notably for control of diabetes, a disease associated with aberrant inflammation. Purpose: To evaluate the anti-inflammatory property of BG-4, a novel bioactive peptide isolated f...

  18. Soluble expression and purification of the recombinant bioactive peptide precursor BPP-1 in Escherichia coli using a cELP-SUMO dual fusion system.

    Science.gov (United States)

    Rao, Shengqi; Zang, Xiangyu; Yang, Zhenquan; Gao, Lu; Yin, Yongqi; Fang, Weiming

    2016-02-01

    A bioactive peptide precursor (BPP-1, 14.3 kDa/115AA), a newly designed polypeptide that may exert a potential antihypertensive effect in vivo, is composed of many different ACE inhibitory peptides and antioxidant peptides tandemly linked according to the restriction sites of gastrointestinal proteases. In this report, we present a novel method to obtain soluble BPP-1 in Escherichia coli using cationic elastin-like polypeptide and SUMO (cELP-SUMO) tags. The cELP-SUMO-tagged fusion protein was expressed in soluble form at 20 °C for 20 h. After purification based on the inverse transition cycling (ITC) method, the purified cELP-SUMO-CFPP fusion protein was subsequently cleaved by a SUMO protease to release the mature BPP-1. After a subsequent simple salt precipitation process, approximately 167.2 mg of recombinant BPP-1 was obtained from 1 l of bacterial culture with at least 92% purity. The molecular mass (Mr) of the recombinant BPP-1 was confirmed by MALDI-TOF MS to equal 14,347. The purified BPP-1 was subjected to simulated gastrointestinal digestion, and the resulting hydrolysates exhibited notable ACE inhibitory and antioxidant activities in vitro. This report provides the first description of the soluble production of a bioactive peptide multimer with potential ACE inhibitory and antioxidant activities in E. coli using a cELP-SUMO tag. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology.

    Science.gov (United States)

    Gogineni, Vedanjali; Hamann, Mark T

    2018-01-01

    The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Enzymatic Release and Characterization of Novel Bioactive Peptides from Milk Proteins

    DEFF Research Database (Denmark)

    De Gobba, Cristian

    -inhibitory, antioxidant and antimicrobial peptides) released from milk proteins by mean of enzyme-catalysed hydrolysis. Goat milk fractions (produced using microfiltration membranes) and bovine casein were used as substrates. The goat milk fractions (retentate, permeate and skimmed milk) were hydrolysed with two...... commercial enzymes. The bovine casein was hydrolysed using the supernatant of a Greenlandic bacterium (Arsukibacterium ikkense), produced in the NOVENIA project, which contains cold-active proteolytic enzymes. The hydrolysates were tested for the relevant bioactivities and active fractions were fractionated...... protein hydrolysates made in other studies. Regarding radical scavenging activity, the bovine casein hydrolysates also showed a positive correlation between extent of hydrolysis and activity, although the difference between the unhydrolysed sample and the hydrolysates was less marked. The goat milk...

  1. Bioactive natural products from novel microbial sources.

    Science.gov (United States)

    Challinor, Victoria L; Bode, Helge B

    2015-09-01

    Despite the importance of microbial natural products for human health, only a few bacterial genera have been mined for the new natural products needed to overcome the urgent threat of antibiotic resistance. This is surprising, given that genome sequencing projects have revealed that the capability to produce natural products is not a rare feature among bacteria. Even the bacteria occurring in the human microbiome produce potent antibiotics, and thus potentially are an untapped resource for novel compounds, potentially with new activities. This review highlights examples of bacteria that should be considered new sources of natural products, including anaerobes, pathogens, and symbionts of humans, insects, and nematodes. Exploitation of these producer strains, combined with advances in modern natural product research methodology, has the potential to open the way for a new golden age of microbial therapeutics. © 2015 New York Academy of Sciences.

  2. Production and characterization Te-peptide by induced autolysis of Saccharomyces cerevisiae.

    Science.gov (United States)

    Morya, V K; Dong, Shin Jae; Kim, Eun-ki

    2014-04-01

    Recently, the interest in mimicking functions of chalcogen-based catalytic antioxidants like selenoenzymes, has been increased. Various attempts had been done with selenium, but very few attempts were carried out with tellurium. Bio-complex formation and characterization of tellurium was not tried earlier by using any organism. The present study was focused on tellurium peptide production, characterization, and bioactivity assessment especially Mimetic to glutathione peroxidase (GPx). The production was achieved by the autolysis of total proteins obtained from Saccharomyces cerevisiae ATCC 7752 grown with inorganic tellurium. The GPx-like activity of the hydrolyzed tellurium peptide was increased when prepared by autolysis, but decreased when prepared by acid hydrolysis. Tellurium peptide produced by autolysis of the yeast cell showed increased GPx-like activity as well as tellurium content. Tellurium peptide showed little toxicity, compared to highly toxic inorganic tellurium. The results showed the potential of tellurium peptide as an antioxidant that can be produced by simple autolysis of yeast cells.

  3. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering.

    Science.gov (United States)

    Luo, Zuyuan; Deng, Yi; Zhang, Ranran; Wang, Mengke; Bai, Yanjie; Zhao, Qiang; Lyu, Yalin; Wei, Jie; Wei, Shicheng

    2015-07-01

    Combination of mesoporous silica materials and bioactive factors is a promising niche-mimetic solution as a hybrid bone substitution for bone tissue engineering. In this work, we have synthesized biocompatible silica-based nanoparticles with abundant mesoporous structure, and incorporated bone-forming peptide (BFP) derived from bone morphogenetic protein-7 (BMP-7) into the mesoporous silica nanoparticles (MSNs) to obtain a slow-release system for osteogenic factor delivery. The chemical characterization demonstrates that the small osteogenic peptide is encapsulated in the mesoporous successfully, and the nitrogen adsorption-desorption isotherms suggest that the peptide encapsulation has no influence on mesoporous structure of MSNs. In the cell experiment, the peptide-laden MSNs (p-MSNs) show higher MG-63 cell proliferation, spreading and alkaline phosphatase (ALP) activity than the bare MSNs, indicating good in vitro cytocompatibility. Simultaneously, the osteogenesis-related proteins expression and calcium mineral deposition disclose enhanced osteo-differentiation of human mesenchymal stem cells (hMSCs) under the stimulation of the p-MSNs, confirming that BFP released from MSNs could significantly promote the osteogenic differentiation of hMSCs, especially at 500μg/mL of p-MSNs concentration. The peptide-modified MSNs with better bioactivity and osteogenic differentiation make it a potential candidate as bioactive material for bone repairing, bone regeneration, and bio-implant coating applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Search for bioactive natural products from medicinal plants of Bangladesh.

    Science.gov (United States)

    Ahmed, Firoj; Sadhu, Samir Kumar; Ishibashi, Masami

    2010-10-01

    In our continuous search for bioactive natural products from natural resources, we explored medicinal plants of Bangladesh, targeting cancer-related tumor necrosis factor-related apoptosis-inducing ligand-signaling pathway, along with some other biological activities such as prostaglandin inhibitory activity, 1,1-diphenyl-2-picrylhydrazyl free-radical-scavenging activity, and cell growth inhibitory activity. Along with this, we describe a short field study on Sundarbans mangrove forests, Bangladesh, in the review.

  5. A Review of Antioxidant Peptides Derived from Meat Muscle and By-Products

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2016-09-01

    Full Text Available Antioxidant peptides are gradually being accepted as food ingredients, supplemented in functional food and nutraceuticals, to positively regulate oxidative stress in the human body against lipid and protein oxidation. Meat muscle and meat by-products are rich sources of proteins and can be regarded as good materials for the production of bioactive peptides by use of enzymatic hydrolysis or direct solvent extraction. In recent years, there has been a growing number of studies conducted to characterize antioxidant peptides or hydrolysates derived from meat muscle and by-products as well as processed meat products, including dry-cured hams. Antioxidant peptides obtained from animal sources could exert not only nutritional value but also bioavailability to benefit human health. This paper reviews the antioxidant peptides or protein hydrolysates identified in muscle protein and by-products. We focus on the procedure for the generation of peptides with antioxidant capacity including the acquisition of crude peptides, the assessment of antioxidant activity, and the purification and identification of the active fraction. It remains critical to perform validation experiments with a cell model, animal model or clinical trial to eliminate safety concerns before final application in the food system. In addition, some of the common characteristics on structure-activity relationship are also reviewed based on the identified antioxidant peptides.

  6. A Review of Antioxidant Peptides Derived from Meat Muscle and By-Products.

    Science.gov (United States)

    Liu, Rui; Xing, Lujuan; Fu, Qingquan; Zhou, Guang-Hong; Zhang, Wan-Gang

    2016-09-20

    Antioxidant peptides are gradually being accepted as food ingredients, supplemented in functional food and nutraceuticals, to positively regulate oxidative stress in the human body against lipid and protein oxidation. Meat muscle and meat by-products are rich sources of proteins and can be regarded as good materials for the production of bioactive peptides by use of enzymatic hydrolysis or direct solvent extraction. In recent years, there has been a growing number of studies conducted to characterize antioxidant peptides or hydrolysates derived from meat muscle and by-products as well as processed meat products, including dry-cured hams. Antioxidant peptides obtained from animal sources could exert not only nutritional value but also bioavailability to benefit human health. This paper reviews the antioxidant peptides or protein hydrolysates identified in muscle protein and by-products. We focus on the procedure for the generation of peptides with antioxidant capacity including the acquisition of crude peptides, the assessment of antioxidant activity, and the purification and identification of the active fraction. It remains critical to perform validation experiments with a cell model, animal model or clinical trial to eliminate safety concerns before final application in the food system. In addition, some of the common characteristics on structure-activity relationship are also reviewed based on the identified antioxidant peptides.

  7. Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo.

    Science.gov (United States)

    Alexander-Bryant, Angela A; Zhang, Haiwen; Attaway, Christopher C; Pugh, William; Eggart, Laurence; Sansevere, Robert M; Andino, Lourdes M; Dinh, Lu; Cantini, Liliana P; Jakymiw, Andrew

    2017-09-01

    Despite significant advances in cancer treatment, the prognosis for oral cancer remains poor in comparison to other cancer types, including breast, skin, and prostate. As a result, more effective therapeutic modalities are needed for the treatment of oral cancer. Consequently, in the present study, we examined the feasibility of using a dual peptide carrier approach, combining an epidermal growth factor receptor (EGFR)-targeting peptide with an endosome-disruptive peptide, to mediate targeted delivery of small interfering RNAs (siRNAs) into EGFR-overexpressing oral cancer cells and induce silencing of the targeted oncogene, cancerous inhibitor of protein phosphatase 2A (CIP2A). Fluorescence microscopy, real-time PCR, Western blot analysis, and in vivo bioimaging of mice containing orthotopic xenograft tumors were used to examine the ability of the dual peptide carrier to mediate specific delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells/tissues. Co-complexation of the EGFR-targeting peptide, GE11R9, with the endosome-disruptive 599 peptide facilitated the specific uptake of siRNAs into oral cancer cells overexpressing EGFR in vitro with optimal gene silencing observed at a 60:30:1 (GE11R9:599:siRNA) molar ratio. Furthermore, when administered systemically to mice bearing xenograft oral tumors, this dual peptide complex mediated increased targeted delivery of siRNAs into tumor tissues in comparison to the 599 peptide alone and significantly enhanced CIP2A silencing. Herein we provide the first report demonstrating the clinical potential of a dual peptide strategy for siRNA-based therapeutics by synergistically mediating the effective targeting and delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Comprehensive solid-phase extraction of multitudinous bioactive peptides from equine plasma and urine for doping detection.

    Science.gov (United States)

    Guan, Fuyu; Robinson, Mary A

    2017-09-08

    The ability to analyze biological samples for multitudinous exogenous peptides with a single analytical method is desired for doping control in horse racing. The key to achieving this goal is the capability of extracting all target peptides from the sample matrix. In the present study, theory of mixed-mode solid-phase extraction (SPE) of peptides from plasma is described, and a generic mixed-mode SPE procedure has been developed for recovering multitudinous exogenous peptides with remarkable sequence diversity, from equine plasma and urine in a single procedure. Both the theory and the developed SPE procedure have led to the development of a novel analytical method for comprehensive detection of multitudinous bioactive peptides in equine plasma and urine using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). Thirty nine bioactive peptides were extracted with strong anion-exchange mixed-mode SPE sorbent, separated on a reversed-phase C 18 column and detected by HRMS and data-dependent tandem mass spectrometry. The limit of detection (LOD) was 10-50 pg mL -1 in plasma for most of the peptides and 100 pg mL -1 for the remaining. For urine, LOD was 20-400 pg mL -1 for most of the peptides and 1-4 ng mL -1 for the others. In vitro degradation of the peptides in equine plasma and urine was examined at ambient temperature; the peptides except those with a D-amino acid at position 2 were unstable not only in plasma but also in urine. The developed method was successful in analysis of plasma and urine samples from horses administered dermorphin. Additionally, dermorphin metabolites were identified in the absence of reference standards. The developed SPE procedure and LC-HRMS method can theoretically detect virtually all peptides present at a sufficient concentration in a sample. New peptides can be readily included in the method to be detected without method re-development. The developed method also generates such data that can be

  9. Effects of truncation of the peptide chain on the secondary structure and bioactivities of palmitoylated anoplin.

    Science.gov (United States)

    Salas, Remmer L; Garcia, Jan Kathryne D L; Miranda, Ana Carmela R; Rivera, Windell L; Nellas, Ricky B; Sabido, Portia Mahal G

    2018-06-01

    Anoplin (GLLKRIKTLL-NH 2 ) is of current interest due to its short sequence and specificity towards bacteria. Recent studies on anoplin have shown that truncation and acylation compromises its antimicrobial activity and specificity, respectively. In this study, truncated analogues (pal-ano-9 to pal-ano-5) of palmitoylated anoplin (pal-anoplin) were synthesized to determine the effects of C-truncation on its bioactivities. Moreover, secondary structure of each analogue using circular dichroism (CD) spectroscopy was determined to correlate with bioactivities. Interestingly, pal-anoplin, pal-ano-9 and pal-ano-6 were helical in water, unlike anoplin. In contrast, pal-ano-8, pal-ano-7 and pal-ano-5, with polar amino acid residues at the C-terminus, were random coil in water. Nevertheless, all the peptides folded into helical structures in 30% trifluoroethanol/water (TFE/H 2 O) except for the shortest analogue pal-ano-5. Hydrophobicity played a significant role in the enhancement of activity against bacteria E. coli and S. aureus as all lipopeptides including the random coil pal-ano-5 were more active than the parent anoplin. Meanwhile, the greatest improvement in activity against the fungus C. albicans was observed for pal-anoplin analogues (pal-ano-9 and pal-ano-6) that were helical in water. Although, hydrophobicity is a major factor in the secondary structure and antimicrobial activity, it appears that the nature of amino acids at the C-terminus also influence folding of lipopeptides in water and its antifungal activity. Moreover, the hemolytic activity of the analogues was found to correlate with hydrophobicity, except for the least hemolytic, pal-ano-5. Since most of the analogues are more potent and shorter than anoplin, they are promising drug candidates for further development. Copyright © 2018. Published by Elsevier Inc.

  10. Megalanthine, a bioactive sesquiterpenoid from Heliotropium megalanthum, its degradation products and their bioactivities.

    Science.gov (United States)

    Macías, Francisco A; Simonet, Ana M; D'Abrosca, Brigida; Maya, Claudia C; Reina, Matías; González-Coloma, Azucena; Cabrera, Raimundo; Giménez, Cristina; Villarroel, Luis

    2009-01-01

    The new bioactive sesquiterpenoid (3R,6E)-2,6,10-trimethyl-3-(3-p-hydroxyphenylpropanoyloxy)-dodeca-6,11-diene-2,10-diol, named megalanthine, was isolated from the resinous exudates of Heliotropium megalanthum. The degradation products of this compound were identified. Several plant-defensive properties (insecticidal, antifungal, and phytotoxic) were evaluated after obtaining positive results in a preliminary etiolated wheat coleoptile bioassay. This bioassay showed the need to have both the phenolic and sesquiterpene moieties of the natural product present to achieve a biological effect. This result was confirmed in phytotoxicity bioassays. Megalanthine was ruled out as a significant plant-plant defense agent because of its lack of stability. The positive results recorded in the antifungal and antifeedant tests suggest, however, that this chemical is relevant in several ecological interactions involving H. megalanthum.

  11. Use of galerina marginata genes and proteins for peptide production

    Science.gov (United States)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2018-04-03

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  12. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2017-03-21

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  13. The development of electro-membrane filtration for the isolation of bioactive peptides: the effect of membrane selection and operating parameters on the transport rate

    NARCIS (Netherlands)

    Bargeman, Gerrald; Koops, G.H.; Houwing, J.; Breebaart, I.; van der Horst, H.C.; Wessling, Matthias

    2002-01-01

    The ability to produce functional food ingredients from natural sources becomes increasingly attractive to the food industry. Antimicrobial (bioactive) ingredients, like peptides and proteins, can be isolated from hydrolysates with membrane filtration and/or chromatography. Electro-membrane

  14. SpirPep: an in silico digestion-based platform to assist bioactive peptides discovery from a genome-wide database.

    Science.gov (United States)

    Anekthanakul, Krittima; Hongsthong, Apiradee; Senachak, Jittisak; Ruengjitchatchawalya, Marasri

    2018-04-20

    Bioactive peptides, including biological sources-derived peptides with different biological activities, are protein fragments that influence the functions or conditions of organisms, in particular humans and animals. Conventional methods of identifying bioactive peptides are time-consuming and costly. To quicken the processes, several bioinformatics tools are recently used to facilitate screening of the potential peptides prior their activity assessment in vitro and/or in vivo. In this study, we developed an efficient computational method, SpirPep, which offers many advantages over the currently available tools. The SpirPep web application tool is a one-stop analysis and visualization facility to assist bioactive peptide discovery. The tool is equipped with 15 customized enzymes and 1-3 miscleavage options, which allows in silico digestion of protein sequences encoded by protein-coding genes from single, multiple, or genome-wide scaling, and then directly classifies the peptides by bioactivity using an in-house database that contains bioactive peptides collected from 13 public databases. With this tool, the resulting peptides are categorized by each selected enzyme, and shown in a tabular format where the peptide sequences can be tracked back to their original proteins. The developed tool and webpages are coded in PHP and HTML with CSS/JavaScript. Moreover, the tool allows protein-peptide alignment visualization by Generic Genome Browser (GBrowse) to display the region and details of the proteins and peptides within each parameter, while considering digestion design for the desirable bioactivity. SpirPep is efficient; it takes less than 20 min to digest 3000 proteins (751,860 amino acids) with 15 enzymes and three miscleavages for each enzyme, and only a few seconds for single enzyme digestion. Obviously, the tool identified more bioactive peptides than that of the benchmarked tool; an example of validated pentapeptide (FLPIL) from LC-MS/MS was demonstrated. The

  15. Bioactive Natural Products of Marine Sponges from the Genus Hyrtios

    Directory of Open Access Journals (Sweden)

    Nourhan Hisham Shady

    2017-05-01

    Full Text Available Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios, reported to have various species such as Hyrtios erectus, Hyrtios reticulatus, Hyrtios gumminae, Hyrtios communis, and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classes including alkaloids, sesterterpenes and sesquiterpenes. This review covers the literature until June 2016, providing a complete survey of all compounds isolated from the genus Hyrtios with their corresponding biological activities whenever applicable.

  16. Bioaccessibility of the Bioactive Peptide Carnosine during in Vitro Digestion of Cured Beef Meat.

    Science.gov (United States)

    Marcolini, Elena; Babini, Elena; Bordoni, Alessandra; Di Nunzio, Mattia; Laghi, Luca; Maczó, Anita; Picone, Gianfranco; Szerdahelyi, Emoke; Valli, Veronica; Capozzi, Francesco

    2015-05-27

    A bioactive compound is a food component that may have an impact on health. Its bioaccessibility, defined as the fraction released from the food matrix into the gastrointestinal tract during digestion, depends on compound stability, interactions with other food components, and supramolecular organization of food. In this study, the effect of pH on the bioaccessibility of the bioactive dipeptide carnosine was evaluated in two commercial samples of the Italian cured beef meat bresaola at two key points of digestion: before the gastric and after the duodenal phases. The digestion process was simulated using an in vitro static system, whereas capillary zone electrophoresis (CZE) and (1)H nuclear magnetic resonance (NMR) were used for quantitative analysis. The gap between the total carnosine content, measured by CZE, and its free diffusible fraction observable by NMR spectroscopy, was 11 and 19% for two independent bresaola products, where such percentages represent the fraction of carnosine not accessible for intestinal absorption because it was adsorbed to the food matrix dispersed in the digestion fluid.

  17. Fruits Bioactive Compounds Characterization from a New Food Product

    Directory of Open Access Journals (Sweden)

    Valentina Mariana RUS

    2014-12-01

    Full Text Available The aim of this study was (I to create a new product, smart bar type which can be consumed as protective food by adults and children (II to characterize the bioactive compounds from the designed food. The bioactive compounds were identified from nuts, raw seeds of almonds, dry cranberries, dry plums and flax seeds. Secoisolariciresinol (683 ppm has been identified as a major compound in flax seeds.  The vitamin C was quantified by HPLC in a concentration of 35.02 mg% in cranberries extract. The total phenolic content varied from 7.1 mg/g for walnut to 71.8 mg/g for cranberries. In addition, the antioxidative capability of phenolic compounds was monitored and evaluated using a colored free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH. Almond showed better results than walnut in the antioxidant capacity test. The results obtained in this study collect information that enables the use of nuts, raw seeds of almonds, dry cranberries, dry plums and flax seeds as raw material for the production of smart bar which may serve as a new product for food market.

  18. Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: an Overview.

    Science.gov (United States)

    Zamora-Sillero, Juan; Gharsallaoui, Adem; Prentice, Carlos

    2018-04-01

    The inadequate management of fish processing waste or by-products is one of the major problems that fish industry has to face nowadays. The mismanagement of this raw material leads to economic loss and environmental problems. The demand for the use of these by-products has led to the development of several processes in order to recover biomolecules from fish by-products. An efficient way to add value to fish waste protein is protein hydrolysis. Protein hydrolysates improve the functional properties and allow the release of peptides of different sizes with several bioactivities such as antioxidant, antimicrobial, antihypertensive, anti-inflammatory, or antihyperglycemic among others. This paper reviews different methods for the production of protein hydrolysates as well as current research about several fish by-products protein hydrolysates bioactive properties, aiming the dual objective: adding value to these underutilized by-products and minimizing their negative impact on the environment.

  19. Bioactive natural products from Chinese marine flora and fauna.

    Science.gov (United States)

    Zhou, Zhen-Fang; Guo, Yue-Wei

    2012-09-01

    In recent decades, the pharmaceutical application potential of marine natural products has attracted much interest from both natural product chemists and pharmacologists. Our group has long been engaged in the search for bioactive natural products from Chinese marine flora (such as mangroves and algae) and fauna (including sponges, soft corals, and mollusks), resulting in the isolation and characterization of numerous novel secondary metabolites spanning a wide range of structural classes and various biosynthetic origins. Of particular interest is the fact that many of these compounds show promising biological activities, including cytotoxic, antibacterial, and enzyme inhibitory effects. By describing representative studies, this review presents a comprehensive summary regarding the achievements and progress made by our group in the past decade. Several interesting examples are discussed in detail.

  20. Bioactive Peptides from Angelica sinensis Protein Hydrolyzate Delay Senescence in Caenorhabditis elegans through Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Qiangqiang Wang

    2016-01-01

    Full Text Available Since excessive reactive oxygen species (ROS is known to be associated with aging and age-related diseases, strategies modulating ROS level and antioxidant defense systems may contribute to the delay of senescence. Here we show that the protein hydrolyzate from Angelica sinensis was capable of increasing oxidative survival of the model animal Caenorhabditis elegans intoxicated by paraquat. The hydrolyzate was then fractionated by ultrafiltration, and the antioxidant fraction (<3 kDa was purified by gel filtration to obtain the antioxidant A. sinensis peptides (AsiPeps, which were mostly composed of peptides with <20 amino acid residues. Further studies demonstrate that AsiPeps were able to reduce the endogenous ROS level, increase the activities of the antioxidant enzymes superoxide dismutase and catalase, and decrease the content of the lipid peroxidation product malondialdehyde in nematodes treated with paraquat or undergoing senescence. AsiPeps were also shown to reduce age pigments accumulation and extend lifespan but did not affect the food-intake behavior of the nematodes. Taken together, our results demonstrate that A. sinensis peptides (AsiPeps are able to delay aging process in C. elegans through antioxidant activities independent of dietary restriction.

  1. Effect of bioactive peptides (BPs) on the development of Pacific white shrimp ( Litopenaeus vannamei Boone, 1931)

    Science.gov (United States)

    Wang, Guangjun; Yu, Ermeng; Li, Zhifei; Yu, Deguang; Wang, Haiying; Gong, Wangbao

    2016-06-01

    The present study was conducted to evaluate the feasibility of replacing fish meal (FM) with bioactive peptides (BPs) in diet of white shrimp ( Litopenaeus vannamei). The changes in growth performance, body composition, non-specific immunity, and water quality were examined after the shrimp were fed four diets, in which 0% (control), 33.3%, 66.7% and 100% of FM was replaced by BPs, respectively. The groups were designated as Con, 1/3BPs, 2/3BPs, and 3/3BPs. A total of 720 shrimp with an initial body weight of 1.46 ± 0.78 g were fed the experimental diets for 56 days. The results revealed that: 1) the weight gain rate (WGR) in 1/3BPs, 2/3BPs, and 3/3BPs was significantly higher than that in Con ( P < 0.05), while no significant difference was found on survival rate and feed conversion ratio (FCR); 2) the whole-body crude protein (CP) and crude lipids (CL) were significantly different among groups, while there was no significant difference between crude ash and phosphorus contents; 3) the levels of acid phosphatase (ACP), lysozyme (LZM), superoxide dismutase (SOD), phenol oxidase (PO) and bactericidal activity increased significantly with the inclusion of BPs; 4) in terms of water quality, no significant difference was found in pH and dissolved oxygen among diets during the whole experimental period. Moreover, even though nitrite and ammonium levels tended to increase with time, there was no significant difference among groups. The results indicated that BPs is an applicable alternative of protein source, which can substitute FM in the diets of L. vannamei; it is able to effectively promote growth performance and improve immunity. Moreover, BPs in the diets had no negative impact on water quality.

  2. Two Novel Bioactive Peptides from Antarctic Krill with Dual Angiotensin Converting Enzyme and Dipeptidyl Peptidase IV Inhibitory Activities.

    Science.gov (United States)

    Ji, Wei; Zhang, Chaohua; Ji, Hongwu

    2017-07-01

    Inhibition of dipeptidyl peptidase IV (DPP-IV) and angiotensin converting enzyme (ACE) are considered useful in managing 2 often associated conditions: diabetes and hypertension. In this study, corolase PP was used to hydrolyze Antarctic krill protein. The hydrolysate (AKH) was isolated by ultrafiltration and purified by size-exclusion chromatography, ion exchange chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC) sequentially. The in vitro inhibitory activities of all AKHs and several fractions obtained against ACE and DPP-IV were assessed. Two peptides, purified with dual-strength inhibitory activity against ACE and DPP-IV, were identified by TOF-MS/MS. Results indicated that not all fractions exhibited dual inhibitory activities of ACE and DPP-IV. The purified peptide Lys-Val-Glu-Pro-Leu-Pro had half-maximal inhibitory concentrations (IC 50 ) of 0.93±0.05 and 0.73±0.04 mg/mL against ACE and DPP-IV, respectively. The other peptide Pro-Ala-Leu had IC 50 values of 0.64±0.05 and 0.88±0.03 mg/mL against ACE and DPP-IV, respectively. This study firstly reported the sequences of dual bioactive peptides from Antarctic krill proteins, further provided new insights into the bioactive peptides responsible for the ACE and DPP-IV inhibitory activities from the Antarctic krill protein hydrolysate to manage hypertension and diabetes. © 2017 Institute of Food Technologists®.

  3. Bioactive peptides released from Saccharomyces cerevisiae under accelerated autolysis in a wine model system.

    Science.gov (United States)

    Alcaide-Hidalgo, J M; Pueyo, E; Polo, M C; Martínez-Rodríguez, A J

    2007-09-01

    The ACE inhibitory activity (IACE) and the oxygen radical absorbance capacity (ORAC-FL) values of yeast peptides isolated from a model wine during accelerated autolysis of Saccharomyces cerevisiae have been studied. Samples were taken at 6, 24, 48, 121, and 144 h of autolysis. Peptide concentration increased throughout autolysis process. Peptides were fractionated into 2 fractions: F1, constituted by hydrophilic peptides, and F2, containing hydrophobic peptides. Both IACE activity and ORAC-FL values increased during 121 h of autolysis, then decreased afterward. Peptide fraction F2 was the main fraction involved in IACE activity and ORAC-FL.

  4. The Complexity of Bioactive Natural Products in Plants

    DEFF Research Database (Denmark)

    Frisch, Tina

    Plants produce a diverse range of bioactive natural products promoting their fitness. These specialized metabolites may serve as chemical defence against herbivores and pathogens and may inhibit the growth and development of competing species. Hydroxynitrile glucosides and glucosinolates are two...... classes of defence compounds, which have diverging properties, but also share common biosynthetic features. Hydroxynitrile glucosides are produced in species across the plant kingdom, whereas glucosinolates are found almost exclusively within the Brassicales, which generally does not contain...... hydroxynitrile glucosides. This division has raised questions regarding possible evolutionary relationships between the biosynthetic pathways. The very rare co-occurrence of hydroxynitrile glucosides and glucosinolates found in Alliaria petiolata (garlic mustard, løgkarse) and Carica papaya (papaya) makes...

  5. EFFECTS OF INCORPORATING NATURAL MINERALS ON PRODUCTION AND BIOACTIVITY OF BIOACTIVE GLASS CERAMICS

    Directory of Open Access Journals (Sweden)

    Franco Matias Stabile

    2016-07-01

    Full Text Available Two glass-ceramics composition were produced from natural minerals. Quartzes and feldspars were pre-selected on the basis of their purities studied by X-ray diffraction (XRD and chemical analysis. Prepared compositions of glasses precursors were two different theoretical leucite (KAlSi₂O₆ /Bioglass 45S5 (L/Bg ratios. Transformations of raw materials mixtures and glass precursors were studied by differential thermal analyses. On the basis of thermal analysis results, glass ceramics were produced and characterized by XRD. Glass-ceramics were composed of two major crystalline phases, leucite and sodium calcium silicate. Bioactivity tests were performed submerging the glass-ceramics into simulated body fluid (SBF for different periods (1, 5 and 10 days. Bioactive behavior was monitored by XRD and scanning electron microscopy (SEM. Studied samples were found to be bioactive, in which hydroxyapatite layer was developed within 5 days of contact with SBF.

  6. Structure, Content, and Bioactivity of Food-Derived Peptides in the Body.

    Science.gov (United States)

    Sato, Kenji

    2018-03-28

    Orally administered peptides are assumed to be degraded into amino acids in the body. However, our recent studies revealed some food-derived prolyl and pyroglutamyl peptides with 2-3 amino acid residues in the blood of humans and animals, while most of the peptides in the endoproteinase digest of food protein are degraded by exopeptidase. Some food-derived dipeptides in the body display in vitro and in vivo biological activities. These facts indicate that the biological activities of food-derived peptides in the body rather than those in food are crucial to understanding the mechanism of the beneficial effects of orally administered peptides.

  7. Characterization of Animal By-Product Hydrolysates to Be Used as Healthy and Bioactive Ingredients in Food

    DEFF Research Database (Denmark)

    Damgaard, Trine Desiree

    The world meat production and consumption has increased rapidly over the last couple of decades, due to population and income growth. In contrast to the meat, the consumption of animal by-products has been declining, leaving large amounts of by-products underutilized. As many by-products are highly...... nutritious as well as being good sources of protein, they represent interesting substrates for the generation of bioactive hydrolysates and peptides. Different porcine and bovine by-products were hydrolysed with a mixture consisting of Alcalase®and Protamex, and tested in relation to antioxidant capacity...... and their “meat factor” effect, i.e. their ability to enhance in vitro iron availability. Hydrolysates of different animal by-products displayed antioxidant capacities as observed by several assays intended to test different antioxidant mechanisms. The radical scavenging capacity of the hydrolysates was found...

  8. Heterologous production of peptides in plants: fusion proteins and beyond.

    Science.gov (United States)

    Viana, Juliane Flávia Cançado; Dias, Simoni Campos; Franco, Octávio Luiz; Lacorte, Cristiano

    2013-11-01

    Recombinant DNA technology has allowed the ectopic production of proteins and peptides of different organisms leading to biopharmaceutical production in large cultures of bacterial, yeasts and mammalian cells. Otherwise, the expression of recombinant proteins and peptides in plants is an attractive alternative presenting several advantages over the commonly used expression systems including reduced production costs, easy scale-up and reduced risks of pathogen contamination. Different types of proteins and peptides have been expressed in plants, including antibodies, antigens, and proteins and peptides of medical, veterinary and industrial applications. However, apart from providing a proof of concept, the use of plants as platforms for heterologous protein and peptide production still depends on key steps towards optimization including the enhancement of expression levels, manipulation of post-transcriptional modifications and improvements in purification methods. In this review, strategies to increase heterologous protein and peptide stability and accumulation are discussed, focusing on the expression of peptides through the use of gene fusions.

  9. Use of Jatropha curcas hull biomass for bioactive compost production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi 110012 (India); Pandey, A.K.; Lata [Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012 (India)

    2009-01-15

    The paper deals with utilization of biomass of Jatropha hulls for production of bioactive compost. In the process of Jatropha oil extraction, a large amount of hull waste is generated. It has been found that the direct incorporation of hull into soil is considerably inefficient in providing value addition to soil due to its unfavorable physicochemical characteristics (high pH, EC and phenolic content). An alternative to this problem is the bioconversion of Jatropha hulls using effective lignocellulolytic fungal consortium, which can reduce the phytotoxicity of the degraded material. Inoculation with the fungal consortium resulted in better compost of jatropha hulls within 1 month, but it takes nearly 4 months for complete compost maturation as evident from the results of phytotoxicity test. Such compost can be applied to the acidic soil as a remedial organic manure to help maintaining sustainability of the agro-ecosystem. Likewise, high levels of cellulolytic enzymes observed during bioconversion indicate possible use of fungi for ethanol production from fermentation of hulls. (author)

  10. Production of Bioactive Compounds by Bacillus subtilis against Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Nalisha, I.

    2006-01-01

    Full Text Available This study aims to investigate the characteristic of bioactive compound produced by Bacillus subtilis against Sclerotium rolfsii and the influence of additive supplements on the antagonistic activity of B. subtilis. The fact that B. subtilis produced an antifungal substance which has inhibitory effect on wide range of fungi, including S. rolfsii, is well known. To learn the effect of pH, temperature and light condition on the production of antifungal compound, B. subtilis was inoculated in Potato Dextrose Broth at various initial pH, temperatures and light conditions, respectively. This antagonist was found to produce antifungal compound that stable at 80C with 58.3 % inhibition on S. rolfsii. The activity was constant within a wide range of pH (3–11. However, treatment with pH11 lead to higher antifungal activity (31.57 % inhibition and it was also found to produce substance that can endure dark condition (46.24 % inhibition with fungicidal effect on S. rolfsii. A series of experiments also been carried out to enhance the antifungal production by supplementing different carbon source preparation into bacterial liquid culture. B. subtilis were grown in minimal medium containing 1 % of oil palm root, Ganoderma lucidum or chitin, respectively prior to bioassay. Crude culture from oil palm root supplemented culture shown significantly reduction in S. rolfsii growth compared to other carbon source crude culture or the antagonism alone, suggesting that this approach may provide improved biocontrol efficiency.

  11. Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products: New Insights Into the Role of Leader and Core Peptides During Biosynthesis

    Science.gov (United States)

    Yang, Xiao; van der Donk, Wilfred A.

    2013-01-01

    Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with a high degree of structural diversity and a wide variety of bioactivities. Understanding the biosynthetic machinery of these RiPPs will benefit the discovery and development of new molecules with potential pharmaceutical applications. In this review, we discuss the features of the biosynthetic pathways to different RiPP classes, and propose mechanisms regarding recognition of the precursor peptide by the posttranslational modification enzymes. We propose that the leader peptides function as allosteric regulators that bind the active form of the biosynthetic enzymes in a conformational selection process. We also speculate how enzymes that generate polycyclic products of defined topologies may have been selected for during evolution. PMID:23666908

  12. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Directory of Open Access Journals (Sweden)

    Laura Montesinos

    Full Text Available Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.

  13. Corn Silk Extract and Its Bioactive Peptide Ameliorated Lipopolysaccharide-Induced Inflammation in Mice via the Nuclear Factor-κB Signaling Pathway.

    Science.gov (United States)

    Ho, Tin-Yun; Li, Chia-Cheng; Lo, Hsin-Yi; Chen, Feng-Yuan; Hsiang, Chien-Yun

    2017-02-01

    Bioactive peptides derived from foods have shown beneficial anti-inflammatory potential. Inhibitory κB kinase-β (IKKβ) plays a crucial role in the activation of nuclear factor-κB (NF-κB), a transcription factor involved in inflammation. Here we applied proteomic and bioinformatics approaches to identify anti-inflammatory peptides that target IKKβ from corn silk. Corn silk extract significantly suppressed lipopolysaccharide (LPS)-induced NF-κB activities [(1.7 ± 0.2)-fold vs (3.0 ± 0.6)-fold, p corn silk also suppressed LPS-induced NF-κB activities [(1.1 ± 0.3)-fold vs 3.3 ± 0.5 fold, p corn silk extract and trypsin hydrolysate significantly inhibited LPS-induced interleukin-1β (IL-1β) production by 58.3 ± 4.5 and 55.1 ± 7.4%, respectively. A novel peptide, FK2, docked into the ATP-binding pocket of IKKβ, was further identified from trypsin hydrolysis of corn silk. FK2 inhibited IKKβ activities, IκB phosphorylation, and subsequent NF-κB activation [(2.3 ± 0.4)-fold vs (5.5 ± 0.4)-fold, p corn silk displayed anti-inflammatory abilities. In addition, we first identified an anti-inflammatory peptide FK2 from corn silk. Moreover, the anti-inflammatory effect of FK2 might be through IKKβ-NF-κB signaling pathways.

  14. Bioactivity characterization of Lactobacillus strains isolated from dairy products

    Science.gov (United States)

    Haghshenas, Babak; Nami, Yousef; Haghshenas, Minoo; Abdullah, Norhafizah; Rosli, Rozita; Radiah, Dayang; Yari Khosroushahi, Ahmad

    2015-01-01

    This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. PMID:26219634

  15. Peptides Displayed as High Density Brush Polymers Resist Proteolysis and Retain Bioactivity

    Science.gov (United States)

    2015-01-01

    We describe a strategy for rendering peptides resistant to proteolysis by formulating them as high-density brush polymers. The utility of this approach is demonstrated by polymerizing well-established cell-penetrating peptides (CPPs) and showing that the resulting polymers are not only resistant to proteolysis but also maintain their ability to enter cells. The scope of this design concept is explored by studying the proteolytic resistance of brush polymers composed of peptides that are substrates for either thrombin or a metalloprotease. Finally, we demonstrate that the proteolytic susceptibility of peptide brush polymers can be tuned by adjusting the density of the polymer brush and offer in silico models to rationalize this finding. We contend that this strategy offers a plausible method of preparing peptides for in vivo use, where rapid digestion by proteases has traditionally restricted their utility. PMID:25314576

  16. Egg-yolk protein by-product as a source of ACE-inhibitory peptides obtained with using unconventional proteinase from Asian pumpkin (Cucurbita ficifolia).

    Science.gov (United States)

    Eckert, Ewelina; Zambrowicz, Aleksandra; Pokora, Marta; Setner, Bartosz; Dąbrowska, Anna; Szołtysik, Marek; Szewczuk, Zbigniew; Polanowski, Antoni; Trziszka, Tadeusz; Chrzanowska, Józefa

    2014-10-14

    operation of large scale technologies and high cost of purification techniques are limiting factors to the commercialization of food-derived bioactive peptides. Research on the isolation of bioactive peptides in order to reduce the processing time and costs is continuously developing. Bioactive peptides can also be released from protein by-products of the food industry, which reduce the substrate expense and production cost as well as provide the added advantage of an efficient waste disposal. Moreover, proteins as precursors of food-derived peptides are well-tolerated by the human body and therefore their application in drug development may reduce costs and duration of toxicological studies during research, development and clinical trials. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative.

    Science.gov (United States)

    Przybylski, Rémi; Firdaous, Loubna; Châtaigné, Gabrielle; Dhulster, Pascal; Nedjar, Naïma

    2016-11-15

    Bovine cruor, a slaughterhouse by-product, contains mainly hemoglobin, broadly described as a rich source of antimicrobial peptides. In the current context of food safety, bioactive peptides could be of interest as preservatives in the distribution of food products. The aim of this work was to study the α137-141 fragment of hemoglobin (Thr-Ser-Lys-Tyr-Arg), a small (653Da) and hydrophilic antimicrobial peptide. Its production was fast, with more 65% finally produced at 24h already produced after 30min of hydrolysis with pepsin. Moreover, increasing substrate concentration (from 1 to 8% (w/v)) resulted in a proportional augmentation of α137-141 production (to 807.95±41.03mgL(-1)). The α137-141 application on meat as preservative (0.5%, w/w) reduced the lipid oxidation about 60% to delay meat rancidity. The α137-141 peptide also inhibited the microbial growths under refrigeration during 14days. These antimicrobial effects were close to those of the butylated hydroxytoluene (BHT). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Determination of antioxidant activity of bioactive peptide fractions obtained from yogurt.

    Science.gov (United States)

    Aloğlu, H Sanlıdere; Oner, Z

    2011-11-01

    In this study, physicochemical and microbiological properties of traditional and commercial yogurt samples were determined during 4 wk of storage. Proteolytic activity, which occurs during the storage period of yogurt samples, was also determined. Peptide fractions obtained from yogurts were investigated and the effect of proteolysis on peptide release during storage was determined. The antioxidant activities of peptides released from yogurt water-soluble extracts (WSE) and from HPLC fractions were determined by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. The antioxidant activity of WSE from traditional yogurt was greater than that of WSE from commercial yogurts. In analysis by the ABTS method, mean values increased from 7.697 to 8.739 mM Trolox/g in commercial yogurts, and from 10.115 to 13.182 mM Trolox/g in traditional yogurts during storage. Antioxidant activities of peptides released from HPLC fractions of selected yogurt samples increased 10 to 200 times. In all yogurt samples, the greatest antioxidant activity was shown in the F2 fraction. After further fractionation of yogurt samples, the fractions coded as F2.2, F2.3, F4.3, and F4.4 had the highest antioxidant activity values. Total antioxidant activity of yogurts was low but after purification of peptides by fractionation in HPLC, peptide fractions with high antioxidant activity were obtained. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Novel production method of innovative antiangiogenic and antitumor small peptides in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Setrerrahmane S

    2017-11-01

    Full Text Available Sarra Setrerrahmane,1 Jian Yu,1 Jingchao Hao,1,2 Heng Zheng,3 Hanmei Xu1,3 1The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 2College of Pharmacy & the Provincial Key Laboratory of Natural Drug and Pharmacology, Kunming, Yunnan, 3State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China Background: Developing innovative drugs with potent efficacy, specificity, and high safety remains an ongoing task in antitumor therapy development. In the last few years, peptide drugs have become attractive agents in cancer therapy. HM-3, mainly with antiangiogenic effect, and AP25, with an additional antiproliferative effect, are two peptides designed in our laboratory targeting αvβ3 and α5β1 integrins, respectively. The low molecular weight of the two peptides renders their recombinant expression very difficult, and the complicated structure of AP25 makes its chemical synthesis restricted, which presents a big challenge for its development.Methods: Bifunctional peptides designed by the ligation of HM-3 and AP25, using linkers with different flexibility, were prepared using recombinant DNA technology in Escherichia coli. The fusion peptides were expressed in a modified auto-induction medium based on a mixture of glucose, glycerol, and lactose as carbon substrates and NH4+ as nitrogen source without any amino acid or other elements. Subsequently, the antiangiogenic, antiproliferative, and cell adhesion assays were conducted to evaluate the bioactivity of the two fusion peptides.Results: The peptides were successfully expressed in a soluble form without any induction, which allows the culture to reach higher cell density before protein expression occurs. Human umbilical vein endothelial cell migration assay and chick embryo chorioallantoic membrane assay showed, at low doses, a significantly

  20. Aspergillus niger is a superior expression host for the production of bioactive fungal cyclodepsipeptides.

    Science.gov (United States)

    Boecker, Simon; Grätz, Stefan; Kerwat, Dennis; Adam, Lutz; Schirmer, David; Richter, Lennart; Schütze, Tabea; Petras, Daniel; Süssmuth, Roderich D; Meyer, Vera

    2018-01-01

    Fungal cyclodepsipeptides (CDPs) are non-ribosomally synthesized peptides produced by a variety of filamentous fungi and are of interest to the pharmaceutical industry due to their anticancer, antimicrobial and anthelmintic bioactivities. However, both chemical synthesis and isolation of CDPs from their natural producers are limited due to high costs and comparatively low yields. These challenges might be overcome by heterologous expression of the respective CDP-synthesizing genes in a suitable fungal host. The well-established industrial fungus Aspergillus niger was recently genetically reprogrammed to overproduce the cyclodepsipeptide enniatin B in g/L scale, suggesting that it can generally serve as a high production strain for natural products such as CDPs. In this study, we thus aimed to determine whether other CDPs such as beauvericin and bassianolide can be produced with high titres in A. niger , and whether the generated expression strains can be used to synthesize new-to-nature CDP derivatives. The beauvericin and bassianolide synthetases were expressed under control of the tuneable Tet-on promoter, and titres of about 350-600 mg/L for bassianolide and beauvericin were achieved when using optimized feeding conditions, respectively. These are the highest concentrations ever reported for both compounds, whether isolated from natural or heterologous expression systems. We also show that the newly established Tet-on based expression strains can be used to produce new-to-nature beauvericin derivatives by precursor directed biosynthesis, including the compounds 12-hydroxyvalerate-beauvericin and bromo-beauvericin. By feeding deuterated variants of one of the necessary precursors (d-hydroxyisovalerate), we were able to purify deuterated analogues of beauvericin and bassianolide from the respective A. niger expression strains. These deuterated compounds could potentially be used as internal standards in stable isotope dilution analyses to evaluate and quantify

  1. Commercial ampholytes used for isoelectric focusing may interfere with bioactivity based purification of antimicrobial peptides

    OpenAIRE

    Riazi, Shadi; Dover, Sara; Turovskiy, Yevgeniy; Chikindas, Michael L.

    2007-01-01

    BioRad's Rotofor® system has been frequently used for the purification of proteins and smaller peptides such as bacteriocins. In this study, we report that some commercially available ampholytes used with the Rotofor® isoelectric focusing system possess antimicrobial activity, which may interfere with the purification of bacteriocins and bacteriocin-like substances.

  2. Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum.

    Science.gov (United States)

    Trompette, Aurélien; Claustre, Jean; Caillon, Fabienne; Jourdan, Gérard; Chayvialle, Jean Alain; Plaisancié, Pascale

    2003-11-01

    Intestinal mucus is critically involved in the protection of the mucosa. An enzymatic casein hydrolysate and beta-casomorphin-7, a mu-opioid peptide generated in the intestine during bovine casein digestion, markedly induce mucus discharge. Because shorter mu-opioid peptides have been described, the effects of the opioid peptides in casein, beta-casomorphin-7, -6, -4, -4NH2 and -3, and of opioid neuropeptides met-enkephalin, dynorphin A and (D-Ala2,N-Me-Phe4,glycinol5)enkephalin (DAMGO) on intestinal mucus secretion were investigated. The experiments were conducted with isolated perfused rat jejunum. Mucus secretion under the influence of beta-casomorphins and opioid neuropeptides administered intraluminally or intra-arterially was evaluated using an ELISA for rat intestinal mucus. Luminal administration of beta-casomorphin-7 (1.2 x 10(-4) mol/L) provoked a mucus discharge (500% of controls) that was inhibited by naloxone, a specific opiate receptor antagonist. Luminal beta-casomorphin-6, -4 and -4NH2 did not modify basal mucus secretion, whereas intra-arterial administration of beta-casomorphin-4 (1.2 x 10(-6) mol/L) induced a mucus discharge. In contrast, intra-arterial administration of the nonopioid peptide beta-casomorphin-3 did not release mucus. Among the opioid neuropeptides, intra-arterial infusion of Met-enkephalin or dynorphin-A did not provoke mucus secretion. In contrast, beta-endorphin (1.2 x 10(-8) to 1.2 x 10(-6) mol/L) induced a dose-dependent release of mucus (maximal response at 500% of controls). DAMGO (1.2 x 10(-6) mol/L), a mu-receptor agonist, also evoked a potent mucus discharge. Our findings suggest that mu-opioid neuropeptides, as well as beta-casomorphins after absorption, modulate intestinal mucus discharge. Milk opioid-derived peptides may thus be involved in defense against noxious agents and could have dietary and health applications.

  3. Production, optimisation and characterisation of angiotensin converting enzyme inhibitory peptides from sea cucumber (Stichopus japonicus) gonad.

    Science.gov (United States)

    Zhong, Chan; Sun, Le-Chang; Yan, Long-Jie; Lin, Yi-Chen; Liu, Guang-Ming; Cao, Min-Jie

    2018-01-24

    In this study, production of bioactive peptides with angiotensin converting enzyme (ACE) inhibitory activity from sea cucumber (Stichopus japonicus) gonad using commercial protamex was optimised by response surface methodology (RSM). As a result, the optimal condition to achieve the highest ACE inhibitory activity in sea cucumber gonad hydrolysate (SCGH) was hydrolysis for 1.95 h and E/S of 0.75%. For further characterisation, three individual peptides (EIYR, LF and NAPHMR) were purified and identified. The peptide NAPHMR showed the highest ACE inhibitory activity with IC 50 of 260.22 ± 3.71 μM. NAPHMR was stable against simulated gastrointestinal digestion and revealed no significant cytotoxicity toward Caco-2 cells. Molecular docking study suggested that Arg, His and Asn residues in NAPHMR interact with the S2 pocket or Zn 2+ binding motifs of ACE via hydrogen or π-bonds, potentially contributing to ACE inhibitory effect. Sea cucumber gonad is thus a potential resource to produce ACE inhibitory peptides for preparation of functional foods.

  4. Short communication: Promotion of glucagon-like peptide-2 secretion in dairy calves with a bioactive extract from Olea europaea.

    Science.gov (United States)

    Morrison, S Y; Pastor, J J; Quintela, J C; Holst, J J; Hartmann, B; Drackley, J K; Ipharraguerre, I R

    2017-03-01

    Diarrhea episodes in dairy calves involve profound alterations in the mechanism controlling gut barrier function that ultimately compromise intestinal permeability to macromolecules, including pathogenic bacteria. Intestinal dysfunction models suggest that a key element of intestinal adaptation during the neonatal phase is the nutrient-induced secretion of glucagon-like peptide (GLP)-2 and associated effects on mucosal cell proliferation, barrier function, and inflammatory response. Bioactive molecules found in Olea europaea have been shown to induce the release of regulatory peptides from model enteroendocrine cells. The ability to enhance GLP-2 secretion via the feeding of putative GLP-2 secretagogues is untested in newborn calves. The objectives of this study were to determine whether feeding a bioactive extract from Olea europaea (OBE) mixed in the milk replacer (1) can stimulate GLP-2 secretion beyond the response elicited by enteral nutrients and, thereby, (2) improve intestinal permeability and animal growth as well as (3) reduce the incidence of diarrhea in preweaning dairy calves. Holstein heifer calves (n = 60) were purchased, transported to the research facility, and blocked by body weight and total serum protein and assigned to 1 of 3 treatments. Treatments were control (CON), standard milk replacer (MR) and ad libitum starter; CON plus OBE added into MR at 30 mg/kg of body weight (OBE30); and CON plus OBE added into MR at 60 mg/kg of body weight (OBE60). The concentration of GLP-2 was measured at the end of wk 2. Intestinal permeability was measured at the onset of the study and the end of wk 2 and 6, with lactulose and d-mannitol as markers. Treatments did not affect calf growth and starter intake. Compared with CON, administration of OBE60 increased the nutrient-induced response in GLP-2 by about 1 fold and reduced MR intake during the second week of study. Throughout the study, however, all calves had compromised intestinal permeability and a high

  5. Production of the antimicrobial peptides Caseicin A and B by Bacillus isolates growing on sodium caseinate.

    Science.gov (United States)

    Kent, R M; Guinane, C M; O'Connor, P M; Fitzgerald, G F; Hill, C; Stanton, C; Ross, R P

    2012-08-01

    The aim of this study was to identify Bacillus isolates capable of degrading sodium caseinate and subsequently to generate bioactive peptides with antimicrobial activity. Sodium caseinate (2.5% w/v) was inoculated separately with 16 Bacillus isolates and allowed to ferment overnight. Protein breakdown in the fermentates was analysed using gel permeation-HPLC (GP-HPLC) and screened for peptides (casein. This study highlights the potential to exploit Bacillus sp. or the enzymes they produce for the generation of bioactive antimicrobial peptides from bovine casein. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  6. Glycation and transglutaminase mediated glycosylation of fish gelatin peptides with glucosamine enhance bioactivity.

    Science.gov (United States)

    Hong, Pui Khoon; Gottardi, Davide; Ndagijimana, Maurice; Betti, Mirko

    2014-01-01

    A mixture of novel glycopeptides from glycosylation between cold water fish skin gelatin hydrolysates and glucosamine (GlcN) via transglutaminase (TGase), as well as glycation between fish gelatin hydrolysate and GlcN were identified by their pattern of molecular distribution using MALDI-TOF-MS. Glycated/glycosylated hydrolysates showed superior bioactivity to their original hydrolysates. Alcalase-derived fish skin gelatin hydrolysate glycosylated with GlcN in the presence of TGase at 25°C (FAT25) possessed antioxidant activity when tested in a linoleic acid oxidation system, when measured according to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and when tested at the cellular level with human hepatocarcinoma (HepG2) cells as target cells. In addition, Alcalase-derived glycosylated hydrolysates showed specificity toward the inhibition of Escherichia coli (E. coli). The Flavourzyme-derived glycopeptides prepared at 37°C (FFC37 and FFT37) showed better DPPH scavenging activity than their native hydrolysates. The glycated Flavourzyme-derived hydrolysates were found to act as potential antimicrobial agents when incubated with E. coli and Bacillus subtilis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Bioactive Peptides from Cartilage Protein Hydrolysate of Spotless Smoothhound and Their Antioxidant Activity In Vitro

    Directory of Open Access Journals (Sweden)

    Jing Tao

    2018-03-01

    Full Text Available In the experiment, crude proteins from spotless smoothhound (Mustelus griseus, cartilages were isolated by HCl-Guanidine buffer, and its hydrolysate was prepared using trypsin at pH 8.0, 40 °C with a total enzyme dose of 2.5%. Subsequently, three antioxidant peptides were purified from the hydrolysate using membrane ultrafiltration, anion-exchange chromatography, gel filtration chromatography, and reverse phase high-performance liquid chromatography. The amino acid sequences of isolated peptides were identified as Gly-Ala-Glu-Arg-Pro (MCPE-A; Gly-Glu-Arg-Glu-Ala-Asn-Val-Met (MCPE-B; and Ala-Glu-Val-Gly (MCPE-C with molecular weights of 528.57, 905.00, and 374.40 Da, respectively, using protein amino acid sequence analyzer and mass spectrum. MCPE-A, MCPE-B and MCPE-C exhibited good scavenging activities on 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH• (EC50 3.73, 1.87, and 2.30 mg/mL, respectively, hydroxyl radicals (HO• (EC50 0.25, 0.34, and 0.06 mg/mL, respectively, 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radicals (ABTS+• (EC50 0.10, 0.05, and 0.07 mg/mL, respectively and superoxide anion radicals ( O 2 − • (EC50 0.09, 0.33, and 0.18 mg/mL, respectively. MCPE-B showed similar inhibiting ability on lipid peroxidation with butylated hydroxytoluene (BHT in a linoleic acid model system. Furthermore, MCPE-A, MCPE-B, and MCPE-C could protect H2O2-induced HepG2 cells from oxidative stress by decreasing the content of malonaldehyde (MDA and increasing the levels of superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px, and glutathione reductase (GSH-Rx. Glu, Gly, Met, and Pro in their sequences and low molecular weight could be attributed to the antioxidant activities of three isolated peptides. These results suggested that GAERP (MCPE-A, GEREANVM (MCPE-B, and AEVG (MCPE-C from cartilage protein hydrolysate of spotless smoothhound might serve as potential antioxidants and be used in the pharmaceutical and

  8. Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-06-01

    Full Text Available Host defense peptides (HDPs are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs.

  9. Effects of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride.

    Science.gov (United States)

    Daryaei, A; Jones, E E; Ghazalibiglar, H; Glare, T R; Falloon, R E

    2016-04-01

    The goal was to determine the effect of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride LU132 against Rhizoctonia solani. The incubation temperatures of 20, 25 or 30°C were assessed on the production of T. atroviride conidia under constant light over a 25 and 50 days periods. The resulting conidia were also studied for germination and bioactivity. Conidium production was maximum at 25°C after 20 days. The second peak of conidium production occurred at 45-50 days. Incubation at 25°C after 15 days showed optimum production of T. atroviride LU132. Conidia produced at 30°C gave the greatest germination and bioactivity in comparison with incubation at 20 or 25°C. This study indicates that the temperature at which conidia of T. atroviride are produced affects germination and bioactivity. Formulations based on production of the high conidia yield may not result in optimal bioactivity and there is a trade-off between quantity and quality of T. atroviride LU132 conidia. Conidium production was shown to be a continuous process, and increased under a dark/light regime. This is the first report of bimodal conidium production in a Trichoderma biological control agent (BCA), which is likely to be on 20 days cycle, and is dependent on colony age rather than abiotic factors. Conidia produced after 15 days are likely to be the most suitable for use in commercial production of this strain as a BCA. Most studies on Trichoderma-based BCA have only shown the effect of culture conditions on the high conidia yield regardless of conidium quality. This study is the first report on conidium quality affected by principal culture conditions for Trichoderma biological control formulations. © 2016 The Society for Applied Microbiology.

  10. Expression, Purification and Bioactivities Analysis of Recombinant Active Peptide from Shark Liver

    Directory of Open Access Journals (Sweden)

    Boping Ye

    2009-06-01

    Full Text Available The Active Peptide from Shark Liver (APSL was expressed in E. coli BL21 cells. The cDNA encoding APSL protein was obtained from shark regenerated hepatic tissue by RT-PCR, then it was cloned in the pET-28a expression vector. The expressed fusion protein was purified by Ni-IDA affinity chromatography. SDS-PAGE and HPLC analysis showed the purity of the purified fusion protein was more than 98%. The recombinant APSL (rAPSL was tested for its biological activity both in vitro, by its ability to improve the proliferation of SMMC7721 cells, and in vivo, by its significant protective effects against acute hepatic injury induced by CCl4 and AAP (acetaminophen in mice. In addition, the rAPSL could decrease the blood glucose concentration of mice with diabetes mellitus induced by alloxan. Paraffin sections of mouse pancreas tissues showed that rAPSL (3 mg/kg could effectively protect mouse islets from lesions induced by alloxan, which indicated its potential application in theoretical research and industry.

  11. Effects of an onion by-product on bioactivity and safety markers in healthy rats

    DEFF Research Database (Denmark)

    Roldan-Marin, Eduvigis; Krath, Britta; Poulsen, Morten

    2009-01-01

    Onions are excellent sources of bioactive compounds including fructo-oligosaccharides (FOS) and polyphenols. An onion by-product was characterised in order to be developed as a potentially bioactive food ingredient. Our main aim was to investigate whether the potential health and safety effects...... of this onion by-product were shared by either of two derived fractions, an extract containing the onion FOS and polyphenols and a residue fraction containing mainly cell wall materials. We report here on the effects of feeding these products on markers of potential toxicity, protective enzymes and gut...... environment in healthy rats. Rats were fed during 4 weeks with a diet containing the products or a control feed balanced in carbohydrate. The onion by-product and the extract caused anaemia as expected in rodents for Allium products. No other toxicity was observed, including genotoxicity. Glutathione...

  12. BacHBerry:: BACterial Hosts for production of Bioactive phenolics from bERRY fruits

    DEFF Research Database (Denmark)

    Dudnik, Alexey; Almeida, A. Filipa; Andrade, Ricardo

    2017-01-01

    BACterial Hosts for production of Bioactive phenolics from bERRY fruits (BacHBerry) was a 3-year project funded by the Seventh Framework Programme (FP7) of the European Union that ran between November 2013 and October 2016. The overall aim of the project was to establish a sustainable and economi...

  13. Production of hydroxy marilone C as a bioactive compound from

    Directory of Open Access Journals (Sweden)

    Osama H. El Sayed

    2016-06-01

    Full Text Available Hydroxy marilone C is a bioactive metabolite produced from the culture broth of Streptomyces badius isolated from Egyptian soil. Hydroxy marilone C was purified and fractionated by a silica gel column with a gradient mobile phase dichloromethane (DCM:methanol then Sephadex LH-20 column using methanol as a mobile phase. It was subjected to many procedures such as infrared (IR, nuclear magnetic resonance (NMR, Mass spectroscopy (MS and UV spectroscopy for elucidation of its structure. It was evaluated for antioxidant, cytotoxicity against human alveolar basal epithelial cell line (A-549 and human breast adenocarcinoma cell line (MCF-7 and antiviral activities; showed that the maximum antioxidant activity was 78.8% at 3 mg/ml after 90 min. and the IC50 value against DPPH radical found about 1.5 mg/ml after 60 min. Using MTT assay the effect of the pure compound on the proliferation of A-549 cells and MCF-7 cells was 443 μg/ml and 147.9 μg/ml, respectively, while for detection of antiviral activity using Madin–Darby canine kidney (MDCK cells the maximum cytotoxicity was at 27.9% and IC50 was 128.1 μg/ml. The maximum concentration required for protecting 50% of the virus-infected cells against H1N1 viral cytopathogenicity (EC50 was 33.25% for 80 μg/ml. These results indicated that the hydroxy marilone C has potential antitumor and antiviral activities.

  14. Proteome array identification of bioactive soluble proteins/peptides in matrigel; relevance to stem cell responses

    Science.gov (United States)

    Matrigel and similar commercial products are extracts of the Engelbreth-Holm-Swarm sarcoma that provide a basement-membrane-like attachment factor or gel that is used to grow cells on or in. To ascertain further what proteins may be present in Matrigel, besides its major basement-membrane constitue...

  15. Ghrelin-related peptides do not modulate vasodilator nitric oxide production or superoxide levels in mouse systemic arteries.

    Science.gov (United States)

    Ku, Jacqueline M; Sleeman, Mark W; Sobey, Christopher G; Andrews, Zane B; Miller, Alyson A

    2016-04-01

    The ghrelin gene is expressed in the stomach where it ultimately encodes up to three peptides, namely, acylated ghrelin, des-acylated ghrelin and obestatin, which all have neuroendocrine roles. Recently, the authors' reported that these peptides have important physiological roles in positively regulating vasodilator nitric oxide (NO) production in the cerebral circulation, and may normally suppress superoxide production by the pro-oxidant enzyme, Nox2-NADPH oxidase. To date, the majority of studies using exogenous peptides infer that they may have similar roles in the systemic circulation. Therefore, this study examined whether exogenous and endogenous ghrelin-related peptides modulate NO production and superoxide levels in mouse mesenteric arteries and/or thoracic aorta. Using wire myography, it was found that application of exogenous acylated ghrelin, des-acylated ghrelin or obestatin to mouse thoracic aorta or mesenteric arteries failed to elicit a vasorelaxation response, whereas all three peptides elicited vasorelaxation responses of rat thoracic aorta. Also, none of the peptides modulated mouse aortic superoxide levels as measured by L-012-enhanced chemiluminescence. Next, it was found that NO bioactivity and superoxide levels were unaffected in the thoracic aorta from ghrelin-deficient mice when compared with wild-type mice. Lastly, using novel GHSR-eGFP reporter mice in combination with double-labelled immunofluorescence, no evidence was found for the growth hormone secretagogue receptor (GHSR1a) in the throracic aorta, which is the only functional ghrelin receptor identified to date. Collectively these findings demonstrate that, in contrast to systemic vessels of other species (e.g. rat and human) and mouse cerebral vessels, ghrelin-related peptides do not modulate vasodilator NO production or superoxide levels in mouse systemic arteries. © 2016 John Wiley & Sons Australia, Ltd.

  16. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products.

    Directory of Open Access Journals (Sweden)

    Marnix H Medema

    2014-09-01

    Full Text Available Nonribosomally and ribosomally synthesized bioactive peptides constitute a source of molecules of great biomedical importance, including antibiotics such as penicillin, immunosuppressants such as cyclosporine, and cytostatics such as bleomycin. Recently, an innovative mass-spectrometry-based strategy, peptidogenomics, has been pioneered to effectively mine microbial strains for novel peptidic metabolites. Even though mass-spectrometric peptide detection can be performed quite fast, true high-throughput natural product discovery approaches have still been limited by the inability to rapidly match the identified tandem mass spectra to the gene clusters responsible for the biosynthesis of the corresponding compounds. With Pep2Path, we introduce a software package to fully automate the peptidogenomics approach through the rapid Bayesian probabilistic matching of mass spectra to their corresponding biosynthetic gene clusters. Detailed benchmarking of the method shows that the approach is powerful enough to correctly identify gene clusters even in data sets that consist of hundreds of genomes, which also makes it possible to match compounds from unsequenced organisms to closely related biosynthetic gene clusters in other genomes. Applying Pep2Path to a data set of compounds without known biosynthesis routes, we were able to identify candidate gene clusters for the biosynthesis of five important compounds. Notably, one of these clusters was detected in a genome from a different subphylum of Proteobacteria than that in which the molecule had first been identified. All in all, our approach paves the way towards high-throughput discovery of novel peptidic natural products. Pep2Path is freely available from http://pep2path.sourceforge.net/, implemented in Python, licensed under the GNU General Public License v3 and supported on MS Windows, Linux and Mac OS X.

  17. Oxidative stress and production of bioactive monoterpene indole alkaloids: biotechnological implications.

    Science.gov (United States)

    Matsuura, Hélio Nitta; Rau, Mariana Ritter; Fett-Neto, Arthur Germano

    2014-02-01

    Monoterpene indole alkaloids (MIAs) encompass plant natural products with important pharmacological relevance. They include the anti-tumoral MIAs found in Catharanthus roseus and Camptotheca acuminata. The often low yields of bioactive alkaloids in plants has prompted research to identify the factors regulating MIA production. Oxidative stress is a general response associated with biotic and abiotic stresses leading to several secondary responses, including elicitation of MIA production. These changes in secondary metabolism may take place directly or via second messengers, such as Ca(2+) and reactive oxygen species (ROS). H2O2 is the main ROS that participates in MIA biosynthesis. This review analyzes the links between oxidative stress, elicitation of bioactive MIA production and their potential roles in antioxidant defense, as well as exploring the implications to developing biotechnological strategies relevant for alkaloid supply.

  18. β-Casein(94-123)-derived peptides differently modulate production of mucins in intestinal goblet cells.

    Science.gov (United States)

    Plaisancié, Pascale; Boutrou, Rachel; Estienne, Monique; Henry, Gwénaële; Jardin, Julien; Paquet, Armelle; Léonil, Joëlle

    2015-02-01

    We recently reported the identification of a peptide from yoghurts with promising potential for intestinal health: the sequence (94-123) of bovine β-casein. This peptide, composed of 30 amino acid residues, maintains intestinal homoeostasis through production of the secreted mucin MUC2 and of the transmembrane-associated mucin MUC4. Our study aimed to search for the minimal sequence responsible for the biological activity of β-CN(94-123) by using several strategies based on (i) known bioactive peptides encrypted in β-CN(94-123), (ii) in silico prediction of peptides reactivity and (iii) digestion of β-CN(94-123) by enzymes of intestinal brush border membranes. The revealed sequences were tested in vitro on human intestinal mucus-producing HT29-MTX cells. We demonstrated that β-CN(108-113) (an ACE-inhibitory peptide) and β-CN(114-119) (an opioid peptide named neocasomorphin-6) up-regulated MUC4 expression whereas levels of the secreted mucins MUC2 and MUC5AC remained unchanged. The digestion of β-CN(94-123) by intestinal enzymes showed that the peptides β-CN(94-108) and β-CN(117-123) were present throughout 1·5 to 3 h of digestion, respectively. These two peptides raised MUC5AC expression while β-CN(117-123) also induced a decrease in the level of MUC2 mRNA and protein. In addition, this inhibitory effect was reproduced in airway epithelial cells. In conclusion, β-CN(94-123) is a multifunctional molecule but only the sequence of 30 amino acids has a stimulating effect on the production of MUC2, a crucial factor of intestinal protection.

  19. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review

    Directory of Open Access Journals (Sweden)

    Ana Teixeira

    2014-09-01

    Full Text Available The relevance of food composition for human health has increased consumers’ interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L. are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used. Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.

  20. Natural bioactive compounds from winery by-products as health promoters: a review.

    Science.gov (United States)

    Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A; Garcia-Viguera, Cristina

    2014-09-04

    The relevance of food composition for human health has increased consumers' interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.

  1. Anxiolytic-Like Effect of a Salmon Phospholipopeptidic Complex Composed of Polyunsaturated Fatty Acids and Bioactive Peptides

    Directory of Open Access Journals (Sweden)

    Nabila Belhaj

    2013-10-01

    Full Text Available A phospholipopeptidic complex obtained by the enzymatic hydrolysis of salmon heads in green conditions; exert anxiolytic-like effects in a time and dose-dependent manner, with no affection of locomotor activity. This study focused on the physico-chemical properties of the lipidic and peptidic fractions from this natural product. The characterization of mineral composition, amino acid and fatty acids was carried out. Stability of nanoemulsions allowed us to realize a behavioral study conducted with four different tests on 80 mice. This work highlighted the dose dependent effects of the natural complex and its various fractions over a period of 14 days compared to a conventional anxiolytic. The intracellular redox status of neural cells was evaluated in order to determine the free radicals scavenging potential of these products in the central nervous system (CNS, after mice sacrifice. The complex peptidic fraction showed a strong scavenging property and similar results were found for the complex as well as its lipidic fraction. For the first time, the results of this study showed the anxiolytic-like and neuroprotective properties of a phospholipopeptidic complex extracted from salmon head. The applications on anxiety disorders might be relevant, depending on the doses, the fraction used and the chronicity of the supplementation.

  2. Bioactive activities of natural products against herpesvirus infection.

    Science.gov (United States)

    Son, Myoungki; Lee, Minjung; Sung, Gi-Ho; Lee, Taeho; Shin, Yu Su; Cho, Hyosun; Lieberman, Paul M; Kang, Hyojeung

    2013-10-01

    More than 90% of adults have been infected with at least one human herpesvirus, which establish long-term latent infection for the life of the host. While anti-viral drugs exist that limit herpesvirus replication, many of these are ineffective against latent infection. Moreover, drug-resistant strains of herpesvirus emerge following chemotherapeutic treatment. For example, resistance to acyclovir and related nucleoside analogues can occur when mutations arise in either HSV thymidine kinase or DNA polymerases. Thus, there exists an unmet medical need to develop new anti-herpesvirus agents with different mechanisms of action. In this Review, we discuss the promise of anti-herpetic substances derived from natural products including extracts and pure compounds from potential herbal medicines. One example is Glycyrrhizic acid isolated from licorice that shows promising antiviral activity towards human gammaherpesviruses. Secondly, we discuss anti-herpetic mechanisms utilized by several natural products in molecular level. While nucleoside analogues inhibit replicating herpesviruses in lytic replication, some natural products can disrupt the herpesvirus latent infection in the host cell. In addition, natural products can stimulate immune responses against herpesviral infection. These findings suggest that natural products could be one of the best choices for development of new treatments for latent herpesvirus infection, and may provide synergistic anti-viral activity when supplemented with nucleoside analogues. Therefore, it is important to identify which natural products are more efficacious anti-herpetic agents, and to understand the molecular mechanism in detail for further advance in the anti-viral therapies.

  3. Bioactive compounds from flesh and by-product of fresh-cut watermelon cultivars.

    Science.gov (United States)

    Tarazona-Díaz, Martha Patricia; Viegas, Joana; Moldao-Martins, Margarida; Aguayo, Encarna

    2011-03-30

    The fresh-cut industry produces thousands of tons of waste in non-edible portions that present an environmental and management problem. These by-products could be reused, in particular, to obtain bioactive compounds. In this study, five different fresh-cut watermelon cultivars were assessed for their flesh and by-product bioactive contents. The amount of by-product varied between 31.27 and 40.61% of initial fresh weight (f.w.) depending on the cultivar. Watermelon cultivars were poor sources of total antioxidant, and the content was similar between rind and flesh samples (46.96 vs 43.46 mg ascorbic acid equivalent antioxidant capacity kg(-1) f.w.). However, the rind had a moderate total phenolic content higher than that of the flesh (458 vs 389 mg chlorogenic acid equivalent kg(-1) f.w.) and a much higher content of the amino acid citrulline (3.34 vs 2.33 g kg(-1) f.w.), which has potential bioactive properties. Watermelon rind offers quantitative interest as a natural source of citrulline, particularly Fashion, a dark-skinned, seedless cultivar. More research is required on the efficient extraction of citrulline from watermelon rind and its suitability as an additive to drinks, juices or others products to produce new functional food products with valid health claims. Copyright © 2010 Society of Chemical Industry.

  4. Cloning and expression of synthetic genes encoding angiotensin-I converting enzyme (ACE)-inhibitory bioactive peptides in Bifidobacterium pseudocatenulatum.

    Science.gov (United States)

    Losurdo, Luca; Quintieri, Laura; Caputo, Leonardo; Gallerani, Raffaele; Mayo, Baltasar; De Leo, Francesca

    2013-03-01

    A wide range of biopeptides potentially able to lower blood pressure through inhibition of the angiotensin-I converting enzyme (ACE) is produced in fermented foods by proteolytic starter cultures. This work applies a procedure based on recombinant DNA technologies for the synthesis and expression of three ACE-inhibitory peptides using a probiotic cell factory. ACE-inhibitory genes and their pro-active precursors were designed, synthesized by PCR, and cloned in Escherichia coli; after which, they were cloned into the pAM1 E. coli-bifidobacteria shuttle vector. After E. coli transformation, constructs carrying the six recombinant clones were electrotransferred into the Bifidobacterium pseudocatenulatum M115 probiotic strain. Interestingly, five of the six constructs proved to be stable. Their expression was confirmed by reverse transcription PCR. Furthermore, transformed strains displayed ACE-inhibitory activity linearly correlated to increasing amounts of cell-free cellular lysates. In particular, 50 μg of lysates from constructs pAM1-Pro-BP3 and pAM1-BP2 showed a 50% higher ACE-inhibitory activity than that of the controls. As a comparison, addition of 50 ng of Pro-BP1 and Pro-BP3 synthetic peptides to 50 μg of cell-free extracts of B. pseudocatenulatum M115 wild-type strain showed an average of 67% of ACE inhibition; this allowed estimating the amount of the peptides produced by the transformants. Engineering of bifidobacteria for the production of biopeptides is envisioned as a promising cell factory model system. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Isolation, Bioactivity, and Production of ortho-Hydroxydaidzein and ortho-Hydroxygenistein

    Directory of Open Access Journals (Sweden)

    Te-Sheng Chang

    2014-04-01

    Full Text Available Daidzein and genistein are two major components of soy isoflavones. They exist abundantly in plants and possess multiple bioactivities. In contrast, ortho-hydroxydaidzein (OHD and ortho-hydroxygenistein (OHG, including 6-hydroxydaidzein (6-OHD, 8-hydroxydaidzein (8-OHD, 3'-hydroxydaidzein (3'-OHD, 6-hydroxygenistein (6-OHG, 8-hydroxygenistein (8-OHG, and 3'-hydroxygenistein (3'-OHG, are rarely found in plants. Instead, they are usually isolated from fermented soybean foods or microbial fermentation broth feeding with soybean meal. Accordingly, the bioactivity of OHD and OHG has been investigated less compared to that of soy isoflavones. Recently, OHD and OHG were produced by genetically engineering microorganisms through gene cloning of cytochrome P450 (CYP enzyme systems. This success opens up bioactivity investigation and industrial applications of OHD and OHG in the future. This article reviews isolation of OHD and OHG from non-synthetic sources and production of the compounds by genetically modified microorganisms. Several bioactivities, such as anticancer and antimelanogenesis-related activities, of OHD and OHG, are also discussed.

  6. Bioactive metabolite production by Streptomyces albolongus in favourable environment

    Directory of Open Access Journals (Sweden)

    Myn Uddin

    2013-06-01

    Full Text Available Objectives: Demand for new antibiotic is rising up due to continuous resistance risk against conventional antibiotic.This attempt was taken to find out a novel antimicrobial metabolite.Methods: Chili field antagonistic actinomycetes Streptomyces albolongus was isolated and tested for optimum antimicrobialmetabolite production. Primary screening was done by selective media and antibiotic assay was done by agarcup plate method. Fermented product was recovered by separating funnel using suitable solvent.Results: Maximum antimicrobial metabolite production was found at temperature 35°C and pH 9.0 and on 6th day ofincubation. The medium consisting of corn steep liquor (0.2%, glucose (1.0%, NaCl (0.5%, K2HPO4 (0.1% was screenedout as suitable medium for maximum antimicrobial production. Sucrose was found as the best carbon source amongfour sources. The antimicrobial metabolite was found to be stable at pH and temperature up to 11.0 and 100°C respectively.The active agent was best extracted with chloroform. The antimicrobial spectrum of the metabolite was wideand shows activity against Shigella dysenteriae (AE14612, Shigella sonnei (CRL, ICDDR, B, Salmonella typhi (AE14296,Vibrio cholerae (AE14748, Pseudomonas aeruginosa (CRL, ICDDR, B, Bacillus cereus (BTCC19, Staphylococcus aureus(ATCC6538, Bacillus subtilis (BTTC17 and Bacillus megaterium (BTTC18.Conclusions: The findings of antibacterial activity of S. albolongus against several species of human pathogens includingboth Gram-positive and Gram-negative bacteria indicated that our produced material might be an alternative antimicrobialsubstance to control human diseases. J Microbiol Infect Dis 2013; 3(2: 75-82Key words: Streptomyces albolongus, antimicrobial metabolite, optimum production, antimicrobial spectrum

  7. Atmospheric Precipitations, Hailstone and Rainwater, as a Novel Source of Streptomyces Producing Bioactive Natural Products

    Science.gov (United States)

    Sarmiento-Vizcaíno, Aida; Espadas, Julia; Martín, Jesús; Braña, Alfredo F.; Reyes, Fernando; García, Luis A.; Blanco, Gloria

    2018-01-01

    A cultivation-dependent approach revealed that highly diverse populations of Streptomyces were present in atmospheric precipitations from a hailstorm event sampled in February 2016 in the Cantabrian Sea coast, North of Spain. A total of 29 bioactive Streptomyces strains isolated from small samples of hailstone and rainwater, collected from this hailstorm event, were studied here. Taxonomic identification by 16S rRNA sequencing revealed more than 20 different Streptomyces species, with their closest homologs displaying mainly oceanic but also terrestrial origins. Backward trajectory analysis revealed that the air-mass sources of the hailstorm event, with North Western winds, were originated in the Arctic Ocean (West Greenland and North Iceland) and Canada (Labrador), depending on the altitude. After traveling across the North Atlantic Ocean during 4 days the air mass reached Europe and precipitated as hailstone and rain water at the sampling place in Spain. The finding of Streptomyces species able to survive and disperse through the atmosphere increases our knowledge of the biogeography of genus Streptomyces on Earth, and reinforces our previous dispersion model, suggesting a generalized feature for the genus which could have been essential in his evolution. This unique atmospheric-derived Streptomyces collection was screened for production of bioactive secondary metabolites. Analyses of isolates ethyl acetate extracts by LC-UV-MS and further database comparison revealed an extraordinary diversity of bioactive natural products. One hundred molecules were identified, mostly displaying contrasted antibiotic and antitumor/cytotoxic activities, but also antiparasitic, antiviral, anti-inflammatory, neuroprotector, and insecticide properties. More interestingly, 38 molecules not identified in natural products databases might represent new natural products. Our results revealed for the first time an extraordinary diversity of Streptomyces species in the atmosphere able to

  8. Bioaccessible nutrients and bioactive components from fortified products prepared using finger millet (Eleusine coracana).

    Science.gov (United States)

    Oghbaei, Morteza; Prakash, Jamuna

    2012-08-30

    Finger millet (Eleusine coracana), a staple food in semi-arid parts of the world, is a rich source of nutrients and bioactive components comparable to rice and wheat but with higher fibre content. Unprocessed and processed finger millet (whole flour (WFM), sieved flour (SFM), wafers and vermicelli with altered matrices (added Fe or Zn or reduced fibre)) were analysed for chemical composition, bioaccessible Fe, Zn and Ca, in vitro digestible starch (IVSD) and protein (IVPD) and bioactive components (polyphenols and flavonoids). WFM and SFM flours differed significantly in their composition. Sieving decreased the content of both nutrients and antinutrients in WFM but increased their digestibility/bioaccessibility. WFM products with Zn and Fe showed highest IVPD, whereas SFM products with Fe showed highest IVSD. Products with externally added Fe and Zn showed maximum bioaccessibility of Fe and Zn respectively. WFM had the highest levels of total polyphenols and flavonoids, 4.18 and 15.85 g kg⁻¹ respectively; however, bioaccessibility was highest in SFM vermicelli. The availability of nutrients and bioactive components was influenced by both processing methods and compositional alterations of the food matrix in finger millet products, and bioaccessibility of all constituents was higher in vermicelli (wet matrix) than in wafers (dry matrix). Copyright © 2012 Society of Chemical Industry.

  9. Bioactive compounds in industrial red seaweed used in carrageenan production

    DEFF Research Database (Denmark)

    Naseri, Alireza; Holdt, Susan Løvstad; Jacobsen, Charlotte

    The main seaweed species used in industrial scale for carrageenan production are Kappaphycus alvarezii, Eucheuma denticulatum, Chondrus crispus, Gigartina sp. and also Furcellaria lumbricalis as a source of furcellaran (Danish Agar) is also classified together with carrageenan. The chemical...... compositions of these five industrial red seaweeds were evaluated. Protein, lipid and total phenolic content, total amino acid and composition, fatty acid profile, tocopherol content and pigment composition were analyzed. The results demonstrate that there is potential possibility to develop a method...

  10. Marine Vibrionaceae as a source of bioactive natural products

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Gram, Lone

    an ecological function. Using chemical profiling, vibrio strains were compared on a global scale, revealing that the production of certain compounds is a conserved feature independent of sample locations. Chemical screening techniques such as explorative solid-phase extraction led to the isolation of two novel...... that some strains were capable of producing antibacterial compounds when grown on natural substrates such as chitin or seaweed. One Vibrio coralliilyticus strain was capable of producing the antibacterial compound when using chitin as the sole carbon source and in a live chitin model system, suggesting...... of which possess biological activities attractive for alternative strategies in antibacterial therapy....

  11. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion.

    Science.gov (United States)

    Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Smoczyńska, Paulina; Czaczyk, Katarzyna; Komolka, Patrycja

    2015-03-01

    The modern day consumer tends to choose products with health enhancing properties, enriched in bioactive substances. One such bioactive food component is dietary fibre, which shows a number of physiological properties including the binding of bile acids. Dietary fibre should be contained in everyday, easily accessible food products. Therefore, the aim of this study was to determine sorption capacities of primary bile acid (cholic acid - CA) and secondary bile acids (deoxycholic - DCA and lithocholic acids - LCA) by muffins (BM) and cookies (BC) with bioactive substances and control muffins (CM) and cookies (CC) in two sections of the in vitro gastrointestinal tract. Variations in gut flora were also analysed in the process of in vitro digestion of pastry products in a bioreactor. Enzymes: pepsin, pancreatin and bile salts: cholic acid, deoxycholic acid and lithocholic acid were added to the culture. Faecal bacteria, isolated from human large intestine, were added in the section of large intestine. The influence of dietary fibre content in cookies and concentration of bile acids in two stages of digestion were analysed. Generally, pastry goods with bioactive substances were characterized by a higher content of total fibre compared with the control samples. These products also differ in the profile of dietary fibre fractions. Principal Component Analysis (PCA) showed that the bile acid profile after two stages of digestion depends on the quality and quantity of fibre. The bile acid profile after digestion of BM and BC forms one cluster, and with the CM and CC forms a separate cluster. High concentration of H (hemicellulose) is positively correlated with LCA (low binding effect) and negatively correlated with CA and DCA contents. The relative content of bile acids in the second stage of digestion was in some cases above the content in the control sample, particularly LCA. This means that the bacteria introduced in the 2nd stage of digestion synthesize the LCA.

  12. Interactive influences of bioactive trace metals on biological production in oceanic waters

    International Nuclear Information System (INIS)

    Bruland, K.W.; Donat, J.R.; Hutchins, D.A.

    1991-01-01

    The authors present an overview of the oceanic chemistries of the bioactive trace metals, Mn, Fe, Co, Ni, Cu, and Zn; the authors combine field data with results from laboratory phytoplankton culture-trace metal studies and speculate on the potential influences of these trace metals on oceanic plankton production and species composition. Most field studies have focused on the effects of single metals. However, they propose that synergistic and antagonistic interactions between multiple trace metals could be very important in the oceans. Trace metal antagonisms that may prove particularly important are those between Cu and the potential biolimiting metals Fe, Mn, and Zn. These antagonistic interactions could have the greatest influence on biological productivity in areas of the open ocean isolated from terrestrial inputs, such as the remote high nutrient regions of the Pacific and Antarctic Oceans. The emerging picture of trace metal-biota interactions in these oceanic areas is one in which biology strongly influences distribution and chemical speciation of all these bioactive trace metals. It also seems likely that many of these bioactive trace metals and their speciation may influence levels of primary productivity, species composition, and trophic structure. Future investigations should give more complete consideration to the interactive effects of biologically important trace metals

  13. SOLID-STATE FERMENTATIVE PRODUCTION AND BIOACTIVITY OF FUNGAL CHITOSAN

    Directory of Open Access Journals (Sweden)

    Barry Aigbodion Omogbai

    2013-10-01

    Full Text Available Chitosan production was investigated using a laboratory-scale solid substrate fermentation (SSF technique with four species of fungi: Penicillium expansum, Aspergillus niger, Rhizopus oryzae and Fusarium moniliforme.The peak growth for the organisms was after 16 days. Aspergillus niger had the highest growth with a maximal dry cell biomass of 15.8g/kg after 16 days cultivation on corn straw under solid substrate fermentation. This was closely followed by Rhizopus oryzae (14.6g/kg, Penicillium expansum (13.8g/kg and Fusarium moniliforme (10.6g/kg respectively. The fungus Rhizopus oryzae had the highest chitosan production with a maximum of 8.57g/kg in 16 days under solid substrate fermentation (SSF with a medium containing corn straw. Aspergillus niger showed a modest chitosan yield of 6.8g/kg. Penicillium expansum and Fusarium moniliforme had low chitosan yields of 4.31g/kg and 3.1g/kg respectively. The degree of deacetylation of fungal chitosans ranged between 75.3-91.5% with a viscosity of 3.6-7.2 centipoises (Cp.Chitosan extracted from Rhizopus oryzae was found to have antibacterial activity on some bacterial isolates. At a concentration of 50mg/L, Rhizopus oryzae chitosan paralleled crab chitosan in susceptibility testing against some food-borne bacterial pathogens. Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa and Bacillus subtilis showed inhibition rates of 83.2%, 67.9%, 63.8% and 62.4% respectively in response to 50mg/l Rhizopus oryzae chitosan in 24 h. The rate of inhibition (% increased with increase in chitosan concentration.

  14. A High-Protein Soybean Cultivar Contains Lower Isoflavones and Saponins but Higher Minerals and Bioactive Peptides than a Low-Protein Cultivar

    Science.gov (United States)

    Consumption of soybean products has increased considerably in the last few years, possibly due to the functional properties and the presence of bioactive compounds which bring health benefits to consumers. The process of germination has been shown to increase the concentration of a number of these ...

  15. Occurrence of bioactive sphingolipids in meat and fish products

    DEFF Research Database (Denmark)

    Hellgren, Lars

    2001-01-01

    /neutral glycolipids varied from 1 to 2.9, while in poultry this ratio varied between 5.2 to 19.2 and in red meat it varied from 1.6 to 8.3. The fatty acid composition of sphingomyelin in fish was dominated by C24:1 (Delta (9)) or C22:1 (Delta (9)), while C16:0 and C18:0 were the dominating sphingomyelin species....... Therefore we investigated the contents of sphingomyelin and neutral glycosphingolipids in commonly consumed meat and fish products. Sphingomyelin and glycosphingolipids were found in all foodstuffs studied. The total amount varied between 118 +/- 17 nmol/g (cod) to 589 +/- 39 nmol/g (chicken leg). Generally......, lower amounts of sphingolipids were determined in fish meat than in red meat and poultry, while poultry was the richest source of this class of lipids. However, fish meat contained a relatively high content of neutral glycolipids compared with other types of meat. Thus, in fish the ratio sphingomyelin...

  16. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza.

    Science.gov (United States)

    Shi, Min; Huang, Fenfen; Deng, Changping; Wang, Yao; Kai, Guoyin

    2018-05-10

    Salvia miltiorrhiza (Danshen in Chinese), is a well-known traditional Chinese medicinal plant, which is used as not only human medicine but also health-promotion food. Danshen has been extensively used for the treatment of various cardiovascular and cerebrovascular diseases. As a major group of bioactive constituents from S. miltiorrhiza, water-soluble phenolic acids such as salvianolic acid B possessed good bioactivities including antioxidant, anti-inflammatory, anti-cancer and other health-promoting activities. It is of significance to improve the production of phenolic acids by modern biotechnology approaches to meet the increasing market demand. Significant progresses have been made in understanding the biosynthetic pathway and regulation mechanism of phenolic acids in S.miltiorrhiza, which will facilitate the process of targeted metabolic engineering or synthetic biology. Furthermore, multiple biotechnology methods such as in vitro culture, elicitation, hairy roots, endophytic fungi and bioreactors have been also used to obtain pharmaceutically active phenolic acids from S. miltiorrhiza. In this review, recent advances in bioactivities, biosynthetic pathway and biotechnological production of phenolic acid ingredients were summarized and future prospective was also discussed.

  17. Bioactive Structure of Membrane Lipids and Natural Products Elucidated by a Chemistry-Based Approach.

    Science.gov (United States)

    Murata, Michio; Sugiyama, Shigeru; Matsuoka, Shigeru; Matsumori, Nobuaki

    2015-08-01

    Determining the bioactive structure of membrane lipids is a new concept, which aims to examine the functions of lipids with respect to their three-dimensional structures. As lipids are dynamic by nature, their "structure" does not refer solely to a static picture but also to the local and global motions of the lipid molecules. We consider that interactions with lipids, which are completely defined by their structures, are controlled by the chemical, functional, and conformational matching between lipids and between lipid and protein. In this review, we describe recent advances in understanding the bioactive structures of membrane lipids bound to proteins and related molecules, including some of our recent results. By examining recent works on lipid-raft-related molecules, lipid-protein interactions, and membrane-active natural products, we discuss current perspectives on membrane structural biology. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Microbial quality and bioactive constituents of sweet peppers from sustainable production systems.

    Science.gov (United States)

    Marín, Alicia; Gil, María I; Flores, Pilar; Hellín, Pilar; Selma, María V

    2008-12-10

    Integrated, organic, and soil-less production systems are the principal production practices that have emerged to encourage more sustainable agricultural practices and safer edible plants, reducing inputs of plaguicides, pesticides, and fertilizers. Sweet peppers grown commercially under integrated, organic, and soil-less production systems were compared to study the influence of these sustainable production systems on the microbial quality and bioactive constituents (vitamin C, individual and total carotenoids, hydroxycinnamic acids, and flavonoids). The antioxidant composition of peppers was analyzed at green and red maturity stages and at three harvest times (initial, middle, and late season). Irrigation water, manure, and soil were shown to be potential transmission sources of pathogens to the produce. Coliform counts of soil-less peppers were up to 2.9 log units lower than those of organic and integrated peppers. Soil-less green and red peppers showed maximum vitamin C contents of 52 and 80 mg 100 g(-1) fresh weight (fw), respectively, similar to those grown in the organic production system. Moreover, the highest content of total carotenoids was found in the soil-less red peppers, which reached a maximum of 148 mg 100 g(-1) fw, while slightly lower contents were found in integrated and organic red peppers. Hydroxycinnamic acids and flavonoids represented 15 and 85% of the total phenolic content, respectively. Total phenolic content, which ranged from 1.2 to 4.1 mg 100 g(-1) fw, was significantly affected by the harvest time but not by the production system assayed. Soil-less peppers showed similar or even higher concentrations of bioactive compounds (vitamin C, provitamin A, total carotenoid, hydroxycinnamic acids, and flavonoids) than peppers grown under organic and integrated practices. Therefore, in the commercial conditions studied, soil-less culture was a more suitable alternative than organic or integrated practices, because it improved the microbial

  19. Non-hydrolyzed in digestive tract and blood natural L-carnosine peptide ("bioactivated Jewish penicillin") as a panacea of tomorrow for various flu ailments: signaling activity attenuating nitric oxide (NO) production, cytostasis, and NO-dependent inhibition of influenza virus replication in macrophages in the human body infected with the virulent swine influenza A (H1N1) virus.

    Science.gov (United States)

    Babizhayev, Mark A; Deyev, Anatoliy I; Yegorov, Yegor E

    2013-01-01

    in excessive amounts mediate the overreaction of the host's immune response against the organs or tissues in which viruses are replicating, and this may explain the mechanism of tissue injuries observed in influenza virus infection of various types. In this article, the types of protection of carnosine in its bioavailable non-hydrolyzed forms in formulations are considered against reactive oxygen radical species-dependent injury, peroxynitrite damage, and other types of viral injuries in which impaired immune responses to viral pathogens are usually involved. Carnosine (β-alanyl-L-histidine) shows the pharmacological intracellular correction of NO release, which might be one of the important factors of natural immunity in controlling the initial stages of influenza A virus infection (inhibition of virus replication) and virus-induced regulation of cytokine gene expression. The protective effects of orally applied non-hydrolyzed formulated species of carnosine include at least the direct interaction with NO, inhibition of cytotoxic NO-induced proinflammatory condition, and attenuation of the effects of cytokines and chemokines that can exert profound effects on inflammatory cells. These data are consistent with the hypothesis that natural products, such as chicken soup and chicken breast extracts rich in carnosine and its derivative anserine (β-alanyl-1-methyl-L-histidine), could contribute to the pathogenesis and prevention of influenza virus infections and cold but have a limitation due to the susceptibility to enzymatic hydrolysis of dipeptides with serum carnosinase and urine excretion after oral ingestion of a commercial chicken extract. The formulations of non-hydrolyzed in digestive tract and blood natural carnosine peptide and isopeptide (γ-glutamyl-carnosine) products, manufactured at the cGMP-certified facility and patented by the authors, have promise in the control and prevention of influenza A (H1N1) virus infection, cough, and cold.

  20. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value

    Directory of Open Access Journals (Sweden)

    Anastasia-Varvara Ferlemi

    2016-06-01

    Full Text Available Berry fruits are recognized, worldwide, as “superfoods” due to the high content of bioactive natural products and the health benefits deriving from their consumption. Berry leaves are byproducts of berry cultivation; their traditional therapeutic use against several diseases, such as the common cold, inflammation, diabetes, and ocular dysfunction, has been almost forgotten nowadays. Nevertheless, the scientific interest regarding the leaf composition and beneficial properties grows, documenting that berry leaves may be considered an alternative source of bioactives. The main bioactive compounds in berry leaves are similar as in berry fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. The leaves are one of the richest sources of chlorogenic acid. In various studies, these secondary metabolites have demonstrated antioxidant, anti-inflammatory, cardioprotective, and neuroprotective properties. This review focuses on the phytochemical composition of the leaves of the commonest berry species, i.e., blackcurrant, blackberry, raspberry, bilberry, blueberry, cranberry, and lingonberry leaves, and presents their traditional medicinal uses and their biological activities in vitro and in vivo.

  1. Statistical Research on the Bioactivity of New Marine Natural Products Discovered during the 28 Years from 1985 to 2012

    Science.gov (United States)

    Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie

    2015-01-01

    Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development. PMID:25574736

  2. Effects of an onion by-product on bioactivity and safety markers in healthy rats.

    Science.gov (United States)

    Roldán-Marín, Eduvigis; Krath, Britta N; Poulsen, Morten; Binderup, Mona-Lise; Nielsen, Tom H; Hansen, Max; Barri, Thaer; Langkilde, Søren; Cano, M Pilar; Sánchez-Moreno, Concepción; Dragsted, Lars O

    2009-12-01

    Onions are excellent sources of bioactive compounds including fructo-oligosaccharides (FOS) and polyphenols. An onion by-product was characterised in order to be developed as a potentially bioactive food ingredient. Our main aim was to investigate whether the potential health and safety effects of this onion by-product were shared by either of two derived fractions, an extract containing the onion FOS and polyphenols and a residue fraction containing mainly cell wall materials. We report here on the effects of feeding these products on markers of potential toxicity, protective enzymes and gut environment in healthy rats. Rats were fed during 4 weeks with a diet containing the products or a control feed balanced in carbohydrate. The onion by-product and the extract caused anaemia as expected in rodents for Allium products. No other toxicity was observed, including genotoxicity. Glutathione reductase (GR) and glutathione peroxidase (GPx1) activities in erythrocytes increased when rats were fed with the onion extract. Hepatic gene expression of Gr, Gpx1, catalase, 5-aminolevulinate synthase and NAD(P)H:quinone oxidoreductase was not altered in any group of the onion fed rats. By contrast, gamma-glutamate cysteine ligase catalytic subunit gene expression was upregulated but only in rats given the onion residue. The onion by-products as well as the soluble and insoluble fractions had prebiotic effects as evidenced by decreased pH, increased butyrate production and altered gut microbiota enzyme activities. In conclusion, the onion by-products have no in vivo genotoxicity, may support in vivo antioxidative defence and alter the functionality of the rat gut microbiota.

  3. A novel hydrolytic product from flesh of Mactra veneriformis and its bioactivities in calcium supplement

    Science.gov (United States)

    Wang, Lingchong; Chen, Shiyong; Liu, Rui; Wu, Hao

    2012-09-01

    To prepare calcium-binding peptides, the flesh residue of Mactra Veneriformis was subjected to enzymatic hydrolysis. By comparing the capability of combining calcium of the hydrolyzates, pepsin was confirmed to be the most suitable enzyme for hydrolyzing the flesh residue to release calcium-binding peptides among the seven tested proteases. The pepsin hydrolyzate (PHM) was divided into three fractions according to the molecule weight of its composition, which ranged from 0.5 to 15 kDa. The low-molecule-weight fraction named PHM-3 had the highest capability in combining calcium. The peptides existing in the PHM-3 fraction consisted of higher contents of Glu, Ala and Leu, and could produce one type of calcium-peptide complex by powerfully chelating calcium ions. PHM-3 products could effectively increase calcium absorption and retention while they decreased the calcium excretion in animal tests. Additionally, symptoms caused by low calcium bioavailability in ovariectomized rats, such as bone mineral density reduction and mechanical strength loss could be significantly ameliorated by the hydrolytic products addition in diet.

  4. A novel route to radioiodinated [{sup 123}I]-N-succinimidyl-3-iodobenzoate, a reagent for radioiodination of bioactive peptides

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jammaz, I.; Al-Otaibi, B.; Amartey, J.K. E-mail: amarty@kfshrc.edu.sa

    2002-11-01

    Radiolabeled peptides continue to emerge as potential radiopharmaceuticals for targeting several diseases such as cancer, infection and inflammation and even tissue and organ rejection. The classical method for labeling these molecules has been the electrophilic route. Evidence suggests that most molecules labeled via this route perturb their biological activity. Moreover, this method is not applicable to peptides lacking a tyrosine moiety in their structure. Hence, there is the need to develop alternate methods such as the prosthetic approach. We have optimized a solid-state radioiodination by exchange to produce [{sup 123}I]-metaiodobenzylguanidine ([{sup 123}I]-mIBG). The mIBG served as a precursor to obtain an activated N-succinimidyl ester for efficient coupling to amine functions in peptides, preferably the lysine group(s). The method was used to label a model chemotactic peptide and evaluated in vivo.

  5. New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology

    Directory of Open Access Journals (Sweden)

    Anna Lucia Tornesello

    2017-08-01

    Full Text Available Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc., produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy.

  6. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans

    1990-01-01

    for antibody binding to the immunizing antigen. Antisera to C-peptide 2, stained islet beta-cells on mouse and rat, but not monkey pancreas sections in immunocytochemical analysis. Preabsorption to the synthetic C-peptide 2, but not the synthetic mouse and rat C-peptide 1 abolished staining. In conclusion we......Mice and rats have two functional non-allelic insulin genes. By using a synthetic peptide representing a common sequence in mouse and rat C-peptide 2 as antigen, we have produced rabbit antisera specific for an epitope which is not present in mouse or rat C-peptide 1. Long-term immunization did...... not seem to increase the end point titre as tested in direct ELISA. The specificity of the antiserum was determined by competitive ELISA and histochemistry on pancreas sections. Only the synthetic C-peptide 2, but not the homologous synthetic C-peptide 1 from mouse and rat competed efficiently in ELISA...

  7. Low Water Activity Induces the Production of Bioactive Metabolites in Halophilic and Halotolerant Fungi

    Directory of Open Access Journals (Sweden)

    Nina Gunde-Cimerman

    2010-12-01

    Full Text Available The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice, for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity.

  8. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid.

    Science.gov (United States)

    O'Shea, Eileen F; Cotter, Paul D; Stanton, Catherine; Ross, R Paul; Hill, Colin

    2012-01-16

    The mechanisms by which intestinal bacteria achieve their associated health benefits can be complex and multifaceted. In this respect, the diverse microbial composition of the human gastrointestinal tract (GIT) provides an almost unlimited potential source of bioactive substances (pharmabiotics) which can directly or indirectly affect human health. Bacteriocins and fatty acids are just two examples of pharmabiotic substances which may contribute to probiotic functionality within the mammalian GIT. Bacteriocin production is believed to confer producing strains with a competitive advantage within complex microbial environments as a consequence of their associated antimicrobial activity. This has the potential to enable the establishment and prevalence of producing strains as well as directly inhibiting pathogens within the GIT. Consequently, these antimicrobial peptides and the associated intestinal producing strains may be exploited to beneficially influence microbial populations. Intestinal bacteria are also known to produce a diverse array of health-promoting fatty acids. Indeed, certain strains of intestinal bifidobacteria have been shown to produce conjugated linoleic acid (CLA), a fatty acid which has been associated with a variety of systemic health-promoting effects. Recently, the ability to modulate the fatty acid composition of the liver and adipose tissue of the host upon oral administration of CLA-producing bifidobacteria and lactobacilli was demonstrated in a murine model. Importantly, this implies a potential therapeutic role for probiotics in the treatment of certain metabolic and immunoinflammatory disorders. Such examples serve to highlight the potential contribution of pharmabiotic production to probiotic functionality in relation to human health maintenance. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Effect of processing on polyamine content and bioactive peptides released after in vitro gastrointestinal digestion of infant formulas.

    Science.gov (United States)

    Gómez-Gallego, C; Recio, I; Gómez-Gómez, V; Ortuño, I; Bernal, M J; Ros, G; Periago, M J

    2016-02-01

    This study examined the influence of processing on polyamines and peptide release after the digestion of a commercial infant formula designed for children during the first months of life. Polyamine oxidase activity was not suppressed during the manufacturing process, which implicates that polyamine concentrations were reduced over time and during infant formula self-life. In gel electrophoresis, in vitro gastrointestinal digestion of samples with reduced amount of enzymes and time of digestion shows an increase in protein digestibility, reflected in the increase in nonprotein nitrogen after digestion and the disappearance of β-lactoglobulin and α-lactalbumin bands in gel electrophoresis. Depending on the sample, between 22 and 87 peptides were identified after gastrointestinal digestion. A peptide from β-casein f(98-105) with the sequence VKEAMAPK and antioxidant activity appeared in all of the samples. Other peptides with antioxidant, immunomodulatory, and antimicrobial activities were frequently found, which could have an effect on infant health. The present study confirms that the infant formula manufacturing process determines the polyamine content and peptidic profile after digestion of the infant formula. Because compositional dissimilarity between human milk and infant formula in polyamines and proteins could be responsible for some of the differences in health reported between breast-fed and formula-fed children, these changes must be taken into consideration because they may have a great effect on infant nutrition and development. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Expression in Escherichia coli and purification of bioactive antibacterial peptide ABP-CM4 from the Chinese silk worm, Bombyx mori.

    Science.gov (United States)

    Li, Bao-Cun; Zhang, Shuang-Quan; Dan, Wen-Bing; Chen, Yu-Qing; Cao, Peng

    2007-07-01

    The antibacterial peptide CM4 (ABP-CM4), isolated from Chinese Bombys mori, is a 35-residue cationic, amphipathic alpha-helical peptide that exhibits a broad range of antimicrobial activity. To explore a new approach for the expression of ABP-CM4 in E. coli, the gene ABP-CM4, obtained by recursive PCR (rPCR), was cloned into the vector pET32a to construct a fusion expression plasmid. The fusion protein Trx-CM4 was expressed in soluble form, purified by Ni(2+)-chelating chromatography, and cleaved by formic acid to release recombinant CM4. Purification of rCM4 was achieved by affinity chromatography and reverse-phase HPLC. The purified of recombinant peptide showed antimicrobial activities against E. coli K(12)D(31), Penicillium chrysogenum, Aspergillus niger and Gibberella saubinetii. According to the antimicrobial peptide database (http://aps.unmc.edu/AP/main.html), 116 peptides contain a Met residue, but only 5 peptides contain the AspPro site, indicating a broader application of formic acid than CNBr in cleaving fusion protein. The successful application to the expression of the ABP-CM4 indicates that the system is a low-cost, efficient way of producting milligram quantities of ABP-CM4 that is biologically active.

  11. Microspheres based on biodegradable functionalized poly(alpha-hydroxy) acids for the controlled release of bioactive proteins and peptides

    NARCIS (Netherlands)

    Ghassemi, A.H.

    2011-01-01

    Pharmaceutical peptides/proteins have proven to be potent molecules for the treatment of a great variety of chronic and life threatening diseases. These molecules however demand a suitable formulation for their successful delivery. For formulation and delivery of such molecules the parenteral route

  12. Production of antihypertensive peptides by enzymatic zein hydrolysate from maize-zea mays ssp. mexicana introgression line

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, X.; Qiao, Y.; Qu, M.

    2014-01-01

    Teosintes are essential gene reservoir for maize breeding improvement, among which Zea mays ssp. mexicana has many valuable traits deserved to be transferred into maize genetic background. In this study, one maize-teosinte introgression line SD00100 was selected from the population of Zea mays ssp. mexicana as wild parent. This introgression line manifested the outstanding agricultural traits similar to maize parent Ye 515 and alien genetic material was identified by genomic in situ hybridization (GISH). To produce bioactive peptides with potent angiotensin converting enzyme (ACE) inhibitory activity, zein extracted from endosperm meal was then undergone enzymatic hydrolysis with thermolysin and the hydrolysate was then filtered through a 3 kDa cut-off membrane. ACE inhibitory activity of permeate from Ye 515 and SD00100 was evaluated by RP-HPLC. The IC50 values of the peptides obtained from maize parent and the introgression line were 96.9 micro g/ml and 22.9 micro g/ml, respectively, with significant difference between them. Our results showed that an outstanding inbred maize line was obtained for production of antihypertensive peptides as well as for further development of functional food. (author)

  13. Artificial Neural Network for Production of Antioxidant Peptides Derived from Bighead Carp Muscles with Alcalase

    Directory of Open Access Journals (Sweden)

    Lin Li

    2006-01-01

    Full Text Available Controlled enzymatic modification proteins are currently being used as good sources of bioactive protein ingredients, and hydrolysates derived from bighead carp muscles may serve as antioxidants through the control of the processing-related parameters. The antioxidant ability was evaluated with regard to the scavenging effect on free radical DPPH·, OH· and O2 ·–. Due to the robustness, fault tolerance, high computational speed and self--learning ability, artificial neural network (ANN can be employed to build a predictive model for hydrolysis and optimize the hydrolysis variables: pH, temperature, hydrolysis time, muscle/water ratio and enzyme/substrate ratio (E/S for the production of antioxidant peptides. Optimum conditions to achieve the maximum antioxidant ability were obtained. The hydrolysates, which scavenged most effectively the DPPH·, OH· and O2 ·–, were hydrolyzed for 4.8 h with an activity of alcalase of 4.8 AU/kg, for 6 h with 3.84 AU/kg and for 4.3 h with 4.8 AU/kg, at pH=7.5 and 60 °C. Their respective muscle/water ratio was 1:1.9, 1:1.4 and 1:1. The present study confirmed that ANN could be used to simulate the hydrolysis process and predict hydrolysis conditions under which the hydrolysates could show the most effective scavenging ability on DPPH·, OH· and O2 ·–.

  14. Identification of Secondary Metabolite Gene Clusters in the Pseudovibrio Genus Reveals Encouraging Biosynthetic Potential toward the Production of Novel Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Lynn M. Naughton

    2017-08-01

    Full Text Available Increased incidences of antimicrobial resistance and the emergence of pan-resistant ‘superbugs’ have provoked an extreme sense of urgency amongst researchers focusing on the discovery of potentially novel antimicrobial compounds. A strategic shift in focus from the terrestrial to the marine environment has resulted in the discovery of a wide variety of structurally and functionally diverse bioactive compounds from numerous marine sources, including sponges. Bacteria found in close association with sponges and other marine invertebrates have recently gained much attention as potential sources of many of these novel bioactive compounds. Members of the genus Pseudovibrio are one such group of organisms. In this study, we interrogate the genomes of 21 Pseudovibrio strains isolated from a variety of marine sources, for the presence, diversity and distribution of biosynthetic gene clusters (BGCs. We expand on results obtained from antiSMASH analysis to demonstrate the similarity between the Pseudovibrio-related BGCs and those characterized in other bacteria and corroborate our findings with phylogenetic analysis. We assess how domain organization of the most abundant type of BGCs present among the isolates (Non-ribosomal peptide synthetases and Polyketide synthases may influence the diversity of compounds produced by these organisms and highlight for the first time the potential for novel compound production from this genus of bacteria, using a genome guided approach.

  15. Approach to improve the productivity of bioactive compounds of the cyanobacterium Anabaena oryzae using factorial design

    Directory of Open Access Journals (Sweden)

    Ragaa A. Hamouda

    2017-09-01

    Full Text Available Cyanobacteria are one of the richest sources of biomedical relevant compounds with extensive therapeutic pharmaceutical applications and are also known as producer of intracellular and extracellular metabolites with diverse biological activities. The genus Anabaena sp. is known to produce antimicrobial compounds, like phycocyanin and others. The goal of this study was to optimize the production of these bioactive compounds. The Plackett–Burman experimental design was used to screen and evaluate the important medium components that influence the production of bioactive compounds. In this present study, eight independent factors including NaNO3, K2HPO4, MgSO4·7H2O, CaCl2, citric acid, ammonium ferric citrate, ethylene diamine tetraacetic acid disodium magnesium salt (EDTA-Na2Mg and Na2CO3 were surveyed and the effective variables for algal components production of Anabaena oryzae were determined using two-levels Plackett–Burman design. Results analysis showed that the best medium components were NaNO3 (2.25 g l−1; K2HPO4 (0.02 g l−1; MgSO4 (0.0375 g l−1; CaCl2 (0.018 g l−1; citric acid (0.009 g l−1; ammonium ferric citrate (0.009 g l−1 and EDTA-Na2 (0.0015 g l−1 respectively. The total chlorophyll-a, carotenoids, phenol, tannic acid and flavonoid contents in crude extract of Anabaena oryzae were determined. They were 47.7, 4.11, 0.256, 1.046 and 1.83 μg/ml, respectively. The antioxidant capacity was 62.81%.

  16. Bioactivity and Functionality of Bonghwa Sweetfish

    International Nuclear Information System (INIS)

    Kim, Jae Hun; Lee, Ju Woon; Choi, Jong Il; Song, Beom Seok; Yoon, Yo Han; Sung, Nak Yun; Jeong, Pil Mun

    2010-04-01

    - Smoked sweetfish had higher contents of calories, carbohydrate, protein, fat sodium, and calcium than unsmoked sweetfish - DHA and EPA which are omega-3 fatty acid and have therapeutic effects on arthritis and high blood pressure - Proteins and peptide from sweetfish had various bioactivities such as antioxidation, hypertensive, especially for antiinflammatory, and whitening effects. However no anticancer effect was observed - The proteins and peptide suppressed nitric oxide and cytokines (a-TNF, IL-6, IL-1 beta), and prostaglandin (PGE2) productions, and mRNA related iNOS and cyclooxygenase (COX-2), which are related to inflammation - The proteins and peptide prevented tyrosinase formation, which is related formation of melanin, and also showed preventive effects of melanin synthesis, antioxidation and anti-aging effects. Thus, the proteins and peptides from sweetfish may be useful source for cosmetics

  17. Bioactivity and Functionality of Bonghwa Sweetfish

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hun; Lee, Ju Woon; Choi, Jong Il; Song, Beom Seok; Yoon, Yo Han; Sung, Nak Yun; Jeong, Pil Mun

    2010-04-15

    - Smoked sweetfish had higher contents of calories, carbohydrate, protein, fat sodium, and calcium than unsmoked sweetfish - DHA and EPA which are omega-3 fatty acid and have therapeutic effects on arthritis and high blood pressure - Proteins and peptide from sweetfish had various bioactivities such as antioxidation, hypertensive, especially for antiinflammatory, and whitening effects. However no anticancer effect was observed - The proteins and peptide suppressed nitric oxide and cytokines (a-TNF, IL-6, IL-1 beta), and prostaglandin (PGE2) productions, and mRNA related iNOS and cyclooxygenase (COX-2), which are related to inflammation - The proteins and peptide prevented tyrosinase formation, which is related formation of melanin, and also showed preventive effects of melanin synthesis, antioxidation and anti-aging effects. Thus, the proteins and peptides from sweetfish may be useful source for cosmetics

  18. Effects of bioactive constituents in functional cocoa products on cardiovascular health in humans.

    Science.gov (United States)

    Sarriá, Beatriz; Martínez-López, Sara; Sierra-Cinos, José Luis; Garcia-Diz, Luis; Goya, Luis; Mateos, Raquel; Bravo, Laura

    2015-05-01

    Cocoa manufacturers are producing novel products increasing polyphenols, methylxanthines or dietary fibre to improve purported health benefits. We attempt to explain the contribution of cocoa bioactive compounds to cardiovascular effects observed in previous studies, placing particular emphasis on methylxanthines. We focused on a soluble cocoa product rich in dietary fibre (DFCP) and a product rich in polyphenols (PPCP). Effects of regularly consuming DFCP (providing daily 10.17 g, 43.8 mg and 168.6 mg of total-dietary-fibre, flavanols and methylxanthines, respectively) as well as PPCP (providing daily 3.74 g, 45.3 mg and 109.8 mg of total-dietary-fibre, flavanols and methylxanthines, respectively) on cardiovascular health were assessed in two controlled, cross-over studies in free-living normocholesterolemic and moderately hypercholesterolemic subjects. Both products increased HDL-cholesterol concentrations, whereas only DFCP decreased glucose and IL-1β levels in all subjects. Flavanols appeared to be responsible for the increase in HDL-cholesterol, whereas insoluble-dietary-fibre and theobromine in DFCP were associated with the hypoglycemic and anti-inflammatory effects observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. New bioactive motifs and their use in functionalized self-assembling peptides for NSC differentiation and neural tissue engineering

    Science.gov (United States)

    Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.

    2012-04-01

    Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the

  20. Rice Bioactive Peptide Binding with TLR4 To Overcome H2O2-Induced Injury in Human Umbilical Vein Endothelial Cells through NF-κB Signaling.

    Science.gov (United States)

    Liang, Ying; Lin, Qinlu; Huang, Ping; Wang, Yuqian; Li, Jiajia; Zhang, Lin; Cao, Jianzhong

    2018-01-17

    Reactive oxygen species-induced vessel endothelium injury is crucial in cardiovascular diseases progression. Rice-derived bran bioactive peptides (RBAP) might exert antioxidant effect through unknown mechanisms. Herein, we validated the antioxidant effect and mechanism of RBAP on H 2 O 2 -induced oxidative injury in human umbilical vein endothelial cells (HUVECs). Here, HUVECs were treated with RBAP under H 2 O 2 stimulation; the effects of RBAP on HUVECs oxidative injury were evaluated. H 2 O 2 injury-induced cell morphology changes were ameliorated by RBAP. The effect of H 2 O 2 - on HUVEC apoptosis (percentage of apoptotic cell: 38.00 ± 2.00 in H 2 O 2 group vs 21.07 ± 2.06 in RBAP + H 2 O 2 group, P = 0.0013 compared to H 2 O 2 group), the protein levels of cleaved caspase-3 (relative protein expression: 2.90 ± 0.10 in H 2 O 2 group vs 1.82 ± 0.09 in RBAP + H 2 O 2 group, P < 0.0001 compared to H 2 O 2 group) and p-p65 (relative protein expression: 1.86 ± 0.09 in H 2 O 2 group vs 1.35 ± 0.08 in RBAP + H 2 O 2 group, P < 0.0001 compared to H 2 O 2 group) could be attenuated by RBAP. RBAP exerts its protective function through binding with Toll-like receptor 4 (TLR4). Taken together, RBAP protects HUVECs against H 2 O 2 -induced oxidant injury, which provided the theoretical basis for the molecular mechanism of rice deep processing and exploitation of functional peptides.

  1. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Science.gov (United States)

    Rayan, Anwar; Raiyn, Jamal; Falah, Mizied

    2017-01-01

    Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  2. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Directory of Open Access Journals (Sweden)

    Anwar Rayan

    Full Text Available Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  3. Analyses of marketplace tacrolimus drug product quality: bioactivity, NMR and LC-MS.

    Science.gov (United States)

    Sommers, Cynthia D; Pang, Eric S; Ghasriani, Houman; Berendt, Robert T; Vilker, Vincent L; Keire, David A; Boyne, Michael T

    2013-11-01

    Tacrolimus (FK506) is a potent, narrow therapeutic index, immunosuppressive drug used to avoid organ rejection in patients that have undergone organ transplantation. Recent clinical reports suggested a significant reduction in the tacrolimus concentration/dose ratio in the plasma of liver and kidney recipients when the reference listed drug was substituted with a generic drug. In response to these concerns about switching between tacrolimus from different approved manufacturers during treatment, the FDA initiated purity, potency and quality studies of the innovator and generic tacrolimus products available in the US marketplace. A combination of analytical methods, including mass spectrometry (LC-MS), nuclear magnetic resonance (NMR) and bioactivity assay were developed and validated to assess the quality of tacrolimus. These tests measured the identity, impurities and activity of tacrolimus from active pharmaceutical ingredient (API) sources and with formulated drug product from five different approved manufactures. In addition, some testing was performed on tacrolimus capsules obtained from a non US approved Indian source. The data obtained showed no discernible difference in the impurity profiles and potency between the generic and innovator tacrolimus products. Copyright © 2013. Published by Elsevier B.V.

  4. Search for Hydrophilic Marine Fungal Metabolites: A Rational Approach for Their Production and Extraction in a Bioactivity Screening Context

    Directory of Open Access Journals (Sweden)

    Jean-François Biard

    2011-01-01

    Full Text Available In the search for bioactive natural products, our lab screens hydrophobic extracts from marine fungal strains. While hydrophilic active substances were recently identified from marine macro-organisms, there was a lack of reported metabolites in the marine fungi area. As such, we decided to develop a general procedure for screening of hydrophobic metabolites. The aim of this study was to compare different processes of fermentation and extraction, using six representative marine fungal strains, in order to define the optimized method for production. The parameters studied were (a which polar solvent to select, (b which fermentation method to choose between solid and liquid cultures, (c which raw material, the mycelium or its medium, to extract and (d which extraction process to apply. The biochemical analysis and biological evaluations of obtained extracts led to the conclusion that the culture of marine fungi by agar surface fermentation followed by the separate extraction of the mycelium and its medium by a cryo-crushing and an enzymatic digestion with agarase, respectively, was the best procedure when screening for hydrophilic bioactive metabolites. During this development, several bioactivities were detected, confirming the potential of hydrophilic crude extracts in the search for bioactive natural products.

  5. In vitro digestibility of goat milk and kefir with a new standardised static digestion method (INFOGEST cost action) and bioactivities of the resultant peptides.

    Science.gov (United States)

    Nehir El, Sedef; Karakaya, Sibel; Simsek, Sebnem; Dupont, Didier; Menfaatli, Esra; Eker, Alper Tolga

    2015-07-01

    The hydrolysis degrees of goat milk and kefir during simulated gastrointestinal digestion and some bioactivities of the resulting peptides after fermentation and digestion were studied. A static in vitro digestion method by the COST FA1005 Action INFOGEST was used and goat milk and kefir were partially hydrolyzed during the gastric phase and had above 80% hydrolysis after duodenal digestion. There were no differences between the digestibility of goat milk and kefir (p > 0.05). Goat milk and kefir displayed about 7-fold antioxidant activity after digestion (p 0.05), however, after in vitro digestion calcium-binding capacity of the goat milk and kefir increased 2 and 5 fold, respectively (p < 0.05). Digested goat milk and kefir showed a higher dose-dependent inhibitory effect on α-amylase compared to undigested samples (p < 0.05). α-Glucosidase inhibitory activities and in vitro bile acid-binding capacities of the samples were not determined at the studied concentrations.

  6. Role of Proteins and of Some Bioactive Peptides on the Nutritional Quality of Donkey Milk and Their Impact on Human Health

    Directory of Open Access Journals (Sweden)

    Silvia Vincenzetti

    2017-07-01

    Full Text Available Donkey milk could be considered a good and safer alternative, compared to other types of milk, for infants affected by cow’s milk protein allergy, when breastfeeding is not possible. Interestingly, donkey milk has low allergenicity, mainly due to the low total casein amount, and the content of some whey proteins that act as bioactive peptides. The amount of lysozyme, an antibacterial agent, is 1.0 g/L, similar to human milk. Lactoferrin content is 0.08 g/L, with this protein being involved in the regulation of iron homoeostasis, anti-microbial and anti-viral functions, and protection against cancer development. Lactoperoxidase, another protein with antibacterial function, is present in donkey milk, but in very low quantities (0.11 mg/L. β-lactoglobulin content in donkey milk is 3.75 g/L—this protein is able to bind and transport several hydrophobic molecules. Donkey milk’s α-lactalbumin concentration is 1.8 g/L, very close to that of human milk. α-lactalbumin shows antiviral, antitumor, and anti-stress properties. Therefore, donkey milk can be considered as a set of nutraceuticals properties and a beverage suitable, not only for the growing infants, but for all ages, especially for convalescents and for the elderly.

  7. Multi-Composite Bioactive Osteogenic Sponges Featuring Mesenchymal Stem Cells, Platelet-Rich Plasma, Nanoporous Silicon Enclosures, and Peptide Amphiphiles for Rapid Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Dongmei Fan

    2011-06-01

    Full Text Available A novel bioactive sponge was created with a composite of type I collagen sponges or porous poly(e-caprolactone (PCL scaffolds, platelet-rich plasma (PRP, BMP2-loaded nanoporous silicon enclosure (NSE microparticles, mineralizing peptide amphiphiles (PA, and mesenchymal stem cells (MSC. Primary MSC from cortical bone (CB  tissue proved to form more and larger colony units, as well as produce more mineral matrix under osteogenic differentiation, than MSC from bone marrow (BM. Coating pre-treatments were optimized for maximum cell adhesion and mineralization, while a PRP-based gel carrier was created to efficiently deliver and retain MSC and  microparticles within a porous scaffold while simultaneously promoting cell recruitment, proliferation, and angiogenesis. Components and composite sponges were evaluated for osteogenic differentiation in vitro. Osteogenic sponges were loaded with MSC, PRP, PA, and NSE and implanted subcutaneously in rats to evaluate the formation of bone tissue and angiogenesis in vivo. It was found that the combination of a collagen sponge with CB MSC, PRP, PA, and the BMP2-releasing NSE formed the most bone and was most vascularized by four weeks compared to analogous composites featuring BM MSC or PCL or lacking PRP, PA, and NSE. This study indicates that CB MSC should be considered as an alternative to marrow as a source of stem cells, while the PRP-PA cell and microparticle delivery system may be utilized for diverse tissue engineering applications.

  8. Bioactive Compounds of Blueberries: Post-Harvest Factors Influencing the Nutritional Value of Products

    Directory of Open Access Journals (Sweden)

    Anna Michalska

    2015-08-01

    Full Text Available Blueberries, besides having commonly-recognized taste properties, are also a valuable source of health-promoting bioactive compounds. For several decades, blueberries have gained in popularity all over the world, and recent years have seen not only an increase in fresh consumption, but also in the importance of blueberries for the processing industry. Blueberry processing mostly consists of freezing and juicing. Recently, more attention has been drawn to dewatering and drying, which are promising areas for developing novel blueberry products. Processing affects each biologically-active compound in a different way, and it is still unknown what changes those compounds undergo at the molecular level after the application of different processing technologies. This work presents the most recent state of knowledge about the pre-treatment and processing methods applied to blueberries and their influence on the content of biologically-active compounds. The presentation of methods is preceded by a brief overview of the characteristics of the blueberry species, a description of the chemical composition of the fruit and a short note about the main growing areas, production volumes and the management of fruit crops.

  9. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production.

    Science.gov (United States)

    Koirala, Niranjan; Thuan, Nguyen Huy; Ghimire, Gopal Prasad; Thang, Duong Van; Sohng, Jae Kyung

    2016-05-01

    Among the natural products, flavonoids have been particularly attractive, highly studied and become one of the most important promising agent to treat cancer, oxidant stress, pathogenic bacteria, inflammations, cardio-vascular dysfunctions, etc. Despite many promising roles of flavonoids, expectations have not been fulfilled when studies were extended to the in vivo condition, particularly in humans. Instability and very low oral bioavailability of dietary flavonoids are the reasons behind this. Researches have demonstrated that the methylation of these flavonoids could increase their promise as pharmaceutical agents leading to novel applications. Methylation of the flavonoids via theirs free hydroxyl groups or C atom dramatically increases their metabolic stability and enhances the membrane transport, leading to facilitated absorption and highly increased oral bioavailability. In this paper, we concentrated on analysis of flavonoid methoxides including O- and C-methoxide derivatives in aspect of structure, bioactivities and description of almost all up-to-date O- and C-methyltransferases' enzymatic characteristics. Furthermore, modern biological approaches for synthesis and production of flavonoid methoxides using metabolic engineering and synthetic biology have been focused and updated up to 2015. This review will give a handful information regarding the methylation of flavonoids, methyltransferases and biotechnological synthesis of the same. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Bioactive Compounds of Blueberries: Post-Harvest Factors Influencing the Nutritional Value of Products.

    Science.gov (United States)

    Michalska, Anna; Łysiak, Grzegorz

    2015-08-10

    Blueberries, besides having commonly-recognized taste properties, are also a valuable source of health-promoting bioactive compounds. For several decades, blueberries have gained in popularity all over the world, and recent years have seen not only an increase in fresh consumption, but also in the importance of blueberries for the processing industry. Blueberry processing mostly consists of freezing and juicing. Recently, more attention has been drawn to dewatering and drying, which are promising areas for developing novel blueberry products. Processing affects each biologically-active compound in a different way, and it is still unknown what changes those compounds undergo at the molecular level after the application of different processing technologies. This work presents the most recent state of knowledge about the pre-treatment and processing methods applied to blueberries and their influence on the content of biologically-active compounds. The presentation of methods is preceded by a brief overview of the characteristics of the blueberry species, a description of the chemical composition of the fruit and a short note about the main growing areas, production volumes and the management of fruit crops.

  11. Bioactive Compounds of Blueberries: Post-Harvest Factors Influencing the Nutritional Value of Products

    Science.gov (United States)

    Michalska, Anna; Łysiak, Grzegorz

    2015-01-01

    Blueberries, besides having commonly-recognized taste properties, are also a valuable source of health-promoting bioactive compounds. For several decades, blueberries have gained in popularity all over the world, and recent years have seen not only an increase in fresh consumption, but also in the importance of blueberries for the processing industry. Blueberry processing mostly consists of freezing and juicing. Recently, more attention has been drawn to dewatering and drying, which are promising areas for developing novel blueberry products. Processing affects each biologically-active compound in a different way, and it is still unknown what changes those compounds undergo at the molecular level after the application of different processing technologies. This work presents the most recent state of knowledge about the pre-treatment and processing methods applied to blueberries and their influence on the content of biologically-active compounds. The presentation of methods is preceded by a brief overview of the characteristics of the blueberry species, a description of the chemical composition of the fruit and a short note about the main growing areas, production volumes and the management of fruit crops. PMID:26266408

  12. Improvement of Nutritional and Bioactive Compound Production by Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes), by Spraying Growth Regulators.

    Science.gov (United States)

    Vi, Minhthuan; Yang, Xueqin; Zeng, Xianlu; Chen, Rui'an; Guo, Liqiong; Lin, Junfang; He, Qianyun; Zheng, Qianwang; Wei, Tao

    2018-01-01

    Hericium erinaceus is a popular culinary and medicinal mushroom in China because of its broad beneficial effects. In this study we evaluated the effects of stimulation with 7 growth regulators at 5 different concentrations on improving the production of nutritional and bioactive compounds by H. erinaceus. Results showed that among all the tested regulators, gibberellic acid (GA) increased protein content (165%), free amino acids (100%), polysaccharides (108%), and polyphenols (26%). Spraying nephthyl acetic acid increased polysaccharides and triterpenoids to 4.37 and 17.27 g/100 g, respectively. Spraying chitosan significantly increased polyphenols by 42%. The addition of triacontanol, indole acetic acid, and 2,4-dichlorophenoxyacetic acid improved the production of proteins, free amino acids, polysaccharides, and polyphenols, but not to the extent that GA did. These results indicate that adding certain growth regulators can effectively improve the production of nutritional and bioactive compounds in H. erinaceus.

  13. Uranyl Photocleavage of Phosphopeptides Yields Truncated C-Terminally Amidated Peptide Products

    DEFF Research Database (Denmark)

    Elnegaard, Rasmus L B; Møllegaard, Niels Erik; Zhang, Qiang

    2017-01-01

    photocleavage reaction of a tetraphosphorylated β-casein model peptide. We show that the primary photocleavage products of the uranyl-catalysed reaction are C-terminally amidated. This could be of great interest to the pharmaceutical industry, as efficient peptide amidation reactions are one of the top...

  14. Significance of production of peptide leukotrienes in murine traumatic shock

    International Nuclear Information System (INIS)

    Craft, D.V.; Lefer, D.J.; Hock, C.E.; Lefer, A.M.

    1986-01-01

    The authors studied the formation of a leukotriene metabolite in plasma and bile during traumatic shock. Anesthetized rats subjected to Noble-Collip drum trauma developed a lethal shock state characterized by a survival time of 1.9 +/- 0.3h, a 4.5-fold increase in plasma cathepsin D activity, and a reduction in mean arterial blood pressure to 45 +/- 2 mmHg compared with 108 +/- 5 mmHg in sham-shock controls. Plasma and bile samples were analyzed by reverse-phase high-pressure liquid chromatography (HPLC) for peptide leukotrienes, and their retention times were confirmed by co-elution with radioactive standards, radioimmunoassay (RIA), and UV spectrophotometry. No leukotrienes or metabolites were found in plasma. The major peptide leukotriene from bile was eluted between LTC 4 and LTD 4 and corresponds to a metabolite of LTE 4 , N-acetyl-LTE 4 , which is also produced during endotoxin shock. The metabolite increased nearly sevenfold in traumatic shock compared with sham trauma. The identity of the metabolite was confirmed by UV scan, which revealed a spectrum consistent with a peptide leukotriene and similar to that of previously reported spectra for N-acetyl-LTE 4 . In conclusion, peptide leukotrienes are rapidly cleared from the blood and appear in the bile as N-acetyl-LTE 4 , a metabolite of the peptide leukotrienes. These findings support a role of the peptide leukotrienes in the pathogenesis of traumatic shock

  15. Tailoring nanostructure and bioactivity of 3D printable hydrogels with self-assemble Peptides Amphiphile (PA) for promoting bile duct formation.

    Science.gov (United States)

    Yan, Ming; Lewis, Phillip L; Shah, Ramille N

    2018-05-31

    3D-printing has expanded our ability to produce reproducible and more complex scaffold architectures for tissue engineering applications. In order to enhance the biological response within these 3D printed scaffolds incorporating nanostructural features and/or specific biological signaling may be an effective means to optimize tissue regeneration. Peptides Amphiphiles (PAs) are a versatile supramolecular biomaterial with tailorable nanostructural and biochemical features. PAs are widely used in tissue engineering applications such as angiogenesis, neurogenesis, and bone regeneration. Thus, the addition of PAs is a potential solution that can greatly expand the utility of 3D bio-printing hydrogels in the field of regenerative medicine. In this paper, we firstly developed a 3D printable thiolated-gelatin bioink supplemented with PAs to tailor the bioactivity and nanostructure which allows for the incorporation of cells. The bioink can be printed at 4 °C and stabilized to last a long time (>1 month) in culture at 37 °C by via a dual secondary cross-linking strategy using calcium ions and homobifunctional maleiminde-poly (ethylene glycol). Rheological properties of inks were characterized and were suitable for printing multi-layered structures. We additionally demonstrated enhanced functionality of ink formulations by utilizing a laminin-mimetic IKVAV-based PA system within a 3D-printable ink containing cholangiocytes. Viability and functional staining showed that the IKVAV PA nanofibers stimulated cholangioctyes to form functional tubular structures, which was not observed in other ink formulations. . © 2018 IOP Publishing Ltd.

  16. Cyclic Sulfamidate Enabled Syntheses of Amino Acids, Peptides, Carbohydrates, and Natural Products

    Science.gov (United States)

    This article reviews the emergence of cyclic sulfamidates as versatile intermediatesfor the synthesis of unnatural amino acids, chalcogen peptides, modified sugars, drugs and drug candidates, and important natural products.

  17. DMPD: The atrial natriuretic peptide regulates the production of inflammatorymediators in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11890659 The atrial natriuretic peptide regulates the production of inflammatorymed...tml) (.csml) Show The atrial natriuretic peptide regulates the production of inflammatorymediators in macrop...hages. PubmedID 11890659 Title The atrial natriuretic peptide regulates the produ

  18. Effect of UV-C radiation on bioactive compounds of pineapple (Ananas comosus L. Merr.) by-products.

    Science.gov (United States)

    Freitas, Ana; Moldão-Martins, Margarida; Costa, Helena S; Albuquerque, Tânia G; Valente, Ana; Sanches-Silva, Ana

    2015-01-01

    The industrial processing of pineapple generates a high quantity of by-products. To reduce the environmental impact of these by-products and the inherent cost of their treatment, it is important to characterise and valorise these products, converting them into high added value products. Ultra-violet radiation is one of the main sustainable sanitation techniques for fruits. Since this radiation can induce plant stress which can promote the biosynthesis of bioactive compounds, it is important to evaluate its effect in fruits. The amounts of vitamins (C and E) and carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein, lycopene, neoxanthin, violaxanthin and zeaxanthin) in pineapple by-products (core and rind) were analysed before and after treatment with UV radiation. All treated and untreated pineapple by-products contained β-carotene as the main carotenoid (rind, 2537-3225 µg; and core, 960-994 µg 100 g(-1) DW). Pineapple rind also contained lutein (288-297 µg 100 g(-1) DW) and α-carotene (89-126 µg 100 g(-1) DW). The results provide evidence of the potential of pineapple by-products as a source of bioactive compounds with antioxidant activity, which can be used by pharmaceutical, cosmetics and food industries. In addition, UV-C was shown to be a treatment that can add nutritional value to pineapple by-products. © 2014 Society of Chemical Industry.

  19. Micropropagation of Agave salmiana: Means to Production of Antioxidant and Bioactive Principles.

    Science.gov (United States)

    Puente-Garza, César A; Gutiérrez-Mora, Antonia; García-Lara, Silverio

    2015-01-01

    Maguey, Agave salmiana, is an important plant for the "pulque" beverage and functional food industries; however, it has several constraints for elite and homogeneous plant production. In this study, a micropropagation process was established to generate in vitro plants. The effect of the method on metabolite content and antioxidant (AOX) activity in regenerated plants was evaluated. Young germinated plantlets were micropropagated from axillary shoots using Murashige and Skoog medium supplemented with L2 vitamins, 0.04 mg/L 2,4-dichlorophenoxyacetic acid and 10 mg/L 6-benzylaminopurine. Total soluble sugars from the aqueous fraction and total phenolic acids, total saponins, and AOX activity of the methanol fraction were determined in wild-type (WT) plants, in in vitro (IN) plants, and ex vitro acclimated plants (EN). The results showed that IN plants have a 50% lower soluble sugar content compared to WT, and EN. The total phenolic acids content was at least 30% higher in micropropagated (IN) and regenerated (EN) plants compared to WT. The total saponin content in IN, and EN plants was 36 and 25 times higher compared to WT. The AOX capacity of IN plants was on average three times higher compared to other treatments. However, no correlation was found between the AOX activity and total phenolic acids or total saponins. A negative and significant correlation (r = -0.927; p = 0.003) was found between the AOX activity and the total soluble sugars content. Micropropagated plants of A. salmiana have a different phytochemical content and bioactivity after the in vitro process compared to WT plants. The micropropagation process could be used as a platform for phytochemical enhancement of Agave plants.

  20. The polyphasic description of a Desmodesmus spp. isolate with the potential of bioactive compounds production

    Directory of Open Access Journals (Sweden)

    El Semary, NA.

    2011-01-01

    Full Text Available A polyphasic approach was applied to describe a colony-forming Desmodesmus species collected from the Nile River, Maadi area, Helwan district, Egypt. The isolate grows best at moderate temperature and relatively high light intensity. The phenotypic features revealed the presence of both unicellular and colonial forms of the isolate and the latter form was either 2-4 celled. Cells were 4-6 mm ± 0.5 at their widest point and 11-15 mm ± 0.48 in their length with spiny projections that encircled the cells. Cells were heavily-granulated and enclosed within common mucilaginous sheath. Colonial forms were developed through production of daughter cells within mother cell. Molecular analysis using 18S rRNA gene showed some similarity to its nearest relative (Desmodesmus communis whereas the phylogenetic analyses clustered it together with other Desmodesmus spp. and away from Scenedesmus spp. from the database. However, the use of ITS-2 as a phylotaxonomic marker proved to be more resolving and confirmed the generic identity of the isolate as Desmodesmus spp. The fatty acid composition revealed the presence of saturated palmitic fatty acid as the most abundant component followed by monounsaturated palmitoleic acid whereas the polyunsaturated fatty acids were in relatively low abundance. The palmitoleic acid in particular is suggested to be involved in active defense mechanism. The phytochemical screening revealed the presence of alkaloids and saponins and absence of tannins. Fractions of methanolic extracts showed antimicrobial activities against pathogenic bacterial strains including multi-drug resistant ones. This study documents the presence of this strain in the River Nile and highlights its biotechnological potential as a source of bioactive compounds.

  1. Micropropagation of Agave salmiana: Means to production of antioxidant and bioactive principles.

    Directory of Open Access Journals (Sweden)

    César Armando Puente-Garza

    2015-11-01

    Full Text Available Maguey, Agave salmiana, is an important plant for the pulque beverage and functional food industries; however, it has several constraints for elite and homogeneous plant production. In this study, a micropropagation process was established to generate in vitro plants. The effect of the method on metabolite content and antioxidant (AOX activity in regenerated plants was evaluated. Young germinated plantlets were micropropagated from axillary shoots using Murashige and Skoog medium supplemented with L2 vitamins, 0.04 mg/L 2,4-dichlorophenoxyacetic acid and 10 mg/L 6-benzylaminopurine. Total soluble sugars from the aqueous fraction and total phenolic acids, total saponins, and AOX activity of the methanol fraction were determined in wild type (WT plants, in in vitro (IN plants, and ex vitro acclimated plants (EN. The results showed that IN plants have a 50% lower soluble sugar content compared to WT and EN. The total phenolic acids content was at least 30% higher in micropropagated (IN and regenerated (EN plants compared to WT. The total saponin content in IN and EN plants was 36 and 25 times higher compared to WT. The AOX capacity of IN plants was on average three times higher compared to other treatments. However, no correlation was found between the AOX activity and total phenolic acids or total saponins. A negative and significant correlation (r = -0.927; p = 0.003 was found between the AOX activity and the total soluble sugars content. Micropropagated plants of A. salmiana have a different phytochemical content and bioactivity after the in vitro process compared to wild plants. The micropropagation process could be used as a platform for phytochemical enhancement of Agave plants.

  2. Peptidome characterization and bioactivity analysis of donkey milk.

    Science.gov (United States)

    Piovesana, Susy; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2015-04-24

    Donkey milk is an interesting commercial product for its nutritional values, which make it the most suitable mammalian milk for human consumption, and for the bioactivity associated with it and derivative products. To further mine the characterization of donkey milk, an extensive peptidomic study was performed. Two peptide purification strategies were compared to remove native proteins and lipids and enrich the peptide fraction. In one case the whole protein content was precipitated by organic solvent using cold acetone. In the other one the precipitation of the most abundant milk proteins, caseins, was performed under acidic conditions by acetic acid at pH4.6, instead. The procedures were compared and proved to be partially complementary. Considered together they provided 1330 peptide identifications for donkey milk, mainly coming from the most abundant proteins in milk. The bioactivity of the isolated peptides was also investigated, both by angiotensin-converting-enzyme inhibitory and antioxidant activity assays and by bioinformatics, proving that the isolated peptides did have the tested biological activities. The rationale behind this study is that peptides in food matrices often play an important biological role and, despite the extensive study of the protein composition of different samples, they remain poorly characterized. In fact, in a typical shotgun proteomics study endogenous peptides are not properly characterized. In proteomics workflows one limiting point is the isolation process: if it is specific for the purification of proteins, it often comprises a precipitation step which aims at isolating pure protein pellets and remove unwonted interferent compounds. In this way endogenous peptides, which are not effectively precipitated as well as proteins, are removed too and not analyzed at the end of the process. Moreover, endogenous peptides do often originate from precursor proteins, but in phenomena which are independent of the shotgun digestion

  3. Functional food productions: release the potential of bioactive compounds through food processing

    Science.gov (United States)

    Epidemiological studies of bioactive compounds from plant-based foods have consistently pointed to undisputed benefits of consumption of plant-based foods on human health particularly regarding cardiovascular diseases and cancers. However, in order to attain the dosage required from these studies, p...

  4. Marine bioactives and potential application in sports.

    Science.gov (United States)

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D'Orazio, Nicolantonio

    2014-04-30

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  5. Bioactive substances

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.

    Chemistry related to certain bioactive molecules, from Indian Ocean Region, developed into drugs or which served as models for the synthesis of more effective bioactive substances or in use in fundamental studies of physiological and biochemical...

  6. The antibacterial peptide ABP-CM4: the current state of its production and applications.

    Science.gov (United States)

    Li, Jian Feng; Zhang, Jie; Xu, Xing Zhou; Han, Yang Yang; Cui, Xian Wei; Chen, Yu Qing; Zhang, Shuang Quan

    2012-06-01

    The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous efforts to develop new antibiotics with new modes of actions. Antibacterial peptide CM4 (ABP-CM4) is a small cationic peptide with broad-spectrum activities against bacteria, fungi, and tumor cells, which may possibly be used as a promising candidate for a new antibiotic. For pharmaceutical applications, a large quantity of antimicrobial peptides needs to be produced economically. In this communication, the progress in the structural characteristics, heterologous production, and biological evaluation of ABP-CM4 are reviewed.

  7. Alzheimer's disease against peptides products of enzymatic cleavage APP protein: Biological, pathobiological and physico-chemical properties of fibrillating peptides.

    Science.gov (United States)

    Marszałek, Małgorzata

    2017-05-17

    Various peptides products of enzymatic cleavage of key for Alzheimer's disease Amyloid Precursor Protein (APP) are well known, but still are matter of scientific debate. The Aβ type products are especially challenging for experimental and medical research. This paper outlines several, still poorly known, biological and medical processes such as peptides biology, i.e., formation, biodistribution, translocation, transport and finally removal from brain compartments and body fluids like Intracellular Fluid (ICF), Cerebrospinal Fluid (CSF), Interstitial Fluid (ISF), blood serum or urine. In addition, the following studies concerning AD patients might prove challenging and simultaneously promising: peptides translocation through Blood-Brain - Barrier (BBB) and Blood-Cerebrospinal Fluid Barrier (BCSFB) and their removal from the brain according to a new concept of glymphatic system; - diagnostic difficulties that stem from physico-chemical properties and the nature of proteins or fibrillating peptides itself like low concentration, short half-live and from experimental-technical problems as well like high adsorption or low solubility of Aβ, tau or amylin. The study of diagnostic parameters is very important, as it may better reflect early changes before the disease develops; one such parameter is the Aβ42/Aβ40 ratio, or the ratio with the total tau concentration combination and other new biomarkers like Aβ1-38; other factors include oxidative stress and inflammation process proteins, complement factor H, alpha-2-macroglobulin, or clusterin. The study of various forms of pathological amyloid deposits that emerge in different but specific brain regions AD patients seems to be crucial as well. The composition of the first initial pathological, pre-fibrillating monomers of fibrillating peptides and their role in AD development and disease progression have been described as well. They are even more challenging for science and simultaneously might be more promising in

  8. Evaluation of Agro-Industrial Co-Products as Source of Bioactive Compounds: Fiber, Antioxidants and Prebiotic

    Directory of Open Access Journals (Sweden)

    Hernández-Alcántara Annel M

    2016-12-01

    Full Text Available Agro-industrial co-products derived of fruit processing represents an important source of bioactive compounds as fiber, antioxidants and prebiotics. The objective of this work was to determine the content of fiber, antioxidant capacity and prebiotic activity of three flours obtained from commonly co-products (banana peel, apple peel, and carrot bagasse. The results showed a higher total fiber content in carrot bagasse, and lower in apple peel. Significantly differences were found in antioxidant activity. Fruit co-products flours were a suitable carbon source increasing specific growth rate with a reduction in duplication time as compared to glucose. The prebiotic activity was positive in the three co-products, all flours survived at pH 1.0 and showed resistance to simulated gastric acid for about 60 min. Banana peel, apple peel and carrot bagasse showed to be a good source of bioactive compounds as fiber and antioxidants and can be used as prebiotics for lactic acid bacteria.

  9. Implementation of communication-mediating domains for non-ribosomal peptide production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; San-Bento, Rita; Nielsen, Jens

    2010-01-01

    Saccharomyces cerevisiae has in several cases been proven to be a suitable host for the production of natural products and was recently exploited for the production of non-ribosomal peptides. Synthesis of non-ribosomal peptides (NRPs) is mediated by NRP synthetases (NRPSs), modular enzymes, which...... are often organized in enzyme complexes. In these complexes, partner NRPSs interact via communication-mediating domains (COM domains). In order to test whether functional interaction between separate NRPS modules is possible in yeast we constructed a yeast strain expressing two modules with compatible COM...

  10. The human VGF-derived bioactive peptide TLQP-21 binds heat shock 71 kDa protein 8 (HSPA8on the surface of SH-SY5Y cells.

    Directory of Open Access Journals (Sweden)

    Shamim Akhter

    Full Text Available VGF (non-acronymicis a secreted chromogranin/secretogranin that gives rise to a number of bioactive peptides by a complex proteolysis mechanism. VGF-derived peptides exert an extensive array of biological effects in energy metabolism, mood regulation, pain, gastric secretion function, reproduction and, perhaps, cancer. It is therefore surprising that very little is known about receptors and binding partners of VGF-derived peptides and their downstream molecular mechanisms of action. Here, using affinity chromatography and mass spectrometry-based protein identification, we have identified the heat shock cognate 71 kDa protein A8 (HSPA8as a binding partner of human TLQP-21 on the surface of human neuroblastomaSH-SY5Y cells. Binding of TLQP-21 to membrane associated HSPA8 in live SH-SY5Y cells was further supported by cross-linking to live cells. Interaction between HSPA8 and TLQP-21 was confirmed in vitro by label-free Dynamic Mass Redistribution (DMR studies. Furthermore, molecular modeling studies show that TLQP-21 can be docked into the HSPA8 peptide binding pocket. Identification of HSPA8 as a cell surface binding partner of TLQP-21 opens new avenues to explore the molecular mechanisms of its physiological actions, and of pharmacological modulation thereof.

  11. Discovery of Novel Lipid Profiles in PCOS: Do Insulin and Androgen Oppositely Regulate Bioactive Lipid Production?

    Science.gov (United States)

    Li, Shengxian; Chu, Qianqian; Ma, Jing; Sun, Yun; Tao, Tao; Huang, Rong; Liao, Yu; Yue, Jiang; Zheng, Jun; Wang, Lihua; Xue, Xinli; Zhu, Mingjiang; Kang, Xiaonan; Yin, Huiyong; Liu, Wei

    2017-03-01

    Polycystic ovary syndrome (PCOS) is a complex syndrome showing clinical features of an endocrine/metabolic disorder, including hyperinsulinemia and hyperandrogenism. Polyunsaturated fatty acids (PUFAs) and their derivatives, both tightly linked to PCOS and obesity, play important roles in inflammation and reproduction. This study aimed to investigate serum lipid profiles in newly diagnosed patients with PCOS using lipidomics and correlate these features with the hyperinsulinemia and hyperandrogenism associated with PCOS and obesity. Thirty-two newly diagnosed women with PCOS and 34 controls were divided into obese and lean subgroups. A PCOS rat model was used to validate results of the human studies. Serum lipid profiles, including phospholipids, free fatty acids (FFAs), and bioactive lipids, were analyzed using gas chromatography-mass spectrometry (MS) and liquid chromatography-MS. Elevation in phosphatidylcholine and a concomitant decrease in lysophospholipid were found in obese patients with PCOS vs lean controls. Obese patients with PCOS had decreased PUFA levels and increased levels of long-chain saturated fatty acids vs lean controls. Serum bioactive lipids downstream of arachidonic acid were increased in obese controls, but reduced in both obese and lean patients with PCOS vs their respective controls. Patients with PCOS showed abnormal levels of phosphatidylcholine, FFAs, and PUFA metabolites. Circulating insulin and androgens may have opposing effects on lipid profiles in patients with PCOS, particularly on the bioactive lipid metabolites derived from PUFAs. These clinical observations warrant further studies of the molecular mechanisms and clinical implications of PCOS and obesity. Copyright © 2017 by the Endocrine Society

  12. Preventive and therapeutic potential of peptides from cereals against cancer.

    Science.gov (United States)

    Ortiz-Martinez, Margarita; Winkler, Robert; García-Lara, Silverio

    2014-12-05

    Epidemiological studies have shown that regular consumption of food based on whole-grain cereals and their products is associated with reduced risks of various types of degenerative chronic diseases. Food proteins are considered an important source of nutraceutical peptides and amino acids that can exert biological functions to promote health and prevent disease, including cancer. There have been several reports on peptides with anti-tumour activity in recent years. Plant-derived peptides, such as rapeseed, amaranth and soybean lunasin have received main attention. In this review, we extend this vision to analyse the evidence of current advances in peptides in cereals such as wheat, maize, rice, barley, rye and pseudocereals compared with soybean. We also show evidence of several mechanisms through which bioactive peptide exerts anti-tumour activity. Finally, we report the current status of major strategies for the fractionation, isolation and characterisation of bioactive peptides in cereals. In recent reports, it has been shown that peptides are an interesting alternative in the search for new treatments for cancer. One of the most studied sources of these peptides is food proteins; however, a review that includes more recent findings for cereals as a potential source of bioactive peptides in the treatment of cancer, the techniques for their isolation and characterisation and the assays used to prove their bioactivity is not available. This review can be used as a tool in the search for new sources of anti-cancer peptides. The authors have no conflicts of interest, financial or otherwise. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Legume bioactive compounds: influence of rhizobial inoculation

    Directory of Open Access Journals (Sweden)

    Luis R. Silva

    2017-04-01

    Full Text Available Legumes consumption has been recognized as beneficial for human health, due to their content in proteins, fiber, minerals and vitamins, and their cultivation as beneficial for sustainable agriculture due to their ability to fix atmospheric nitrogen in symbiosis with soil bacteria known as rhizobia. The inoculation with these baceria induces metabolic changes in the plant, from which the more studied to date are the increases in the nitrogen and protein contents, and has been exploited in agriculture to improve the crop yield of several legumes. Nevertheless, legumes also contain several bioactive compounds such as polysaccharides, bioactive peptides, isoflavones and other phenolic compounds, carotenoids, tocopherols and fatty acids, which makes them functional foods included into the nutraceutical products. Therefore, the study of the effect of the rhizobial inoculation in the legume bioactive compounds content is gaining interest in the last decade. Several works reported that the inoculation of different genera and species of rhizobia in several grain legumes, such as soybean, cowpea, chickpea, faba bean or peanut, produced increases in the antioxidant potential and in the content of some bioactive compounds, such as phenolics, flavonoids, organic acids, proteins and fatty acids. Therefore, the rhizobial inoculation is a good tool to enhance the yield and quality of legumes and further studies on this field will allow us to have plant probiotic bacteria that promote the plant growth of legumes improving their functionality.

  14. Bioactive Components in The Meat and Their Functional Properties: A Literature Study

    Directory of Open Access Journals (Sweden)

    Khothibul Umam Al Awwaly

    2017-03-01

    Full Text Available Consumer awareness in meat and meat products is generally recognized as a good source of food, with high biological value protein, B group vitamins, minerals and minor elements like several other bioactive compounds that are beneficial to the human body. But in many cases, a processing error is affecting the bioactive compounds of functional foods and consumer impression are relatively negative to some levels of substances in meat such as fat, cholesterol, saturated fatty acids, salt and other substances, which however also involves a diseases of western society such as cardiovascular diseases, respiratory, carcinogenesis, obesity, impaired immune system and accelerate the aging process. Hence there is a need for adequate information related to favorable nutritional value of meat that has not been widely disclosed. Bioactive components in the meat can be anserin, karnosin and bioactive peptides. The generation of bioactive components in the meat in the form of bioactive peptides can be done in three ways: (1 aging or storage of meat, (2 meat fermentation, and (3 the enzyme treatment. Functional properties of bioactive components in meat varies greatly as an antioxidant, antihypertensive, antimicrobial, anticancer and immunomodulatory.

  15. Variation in bioactive content in broccoli (Brassica oleracea var. italica) grown under conventional and organic production systems.

    Science.gov (United States)

    Valverde, Juan; Reilly, Kim; Villacreces, Salvador; Gaffney, Michael; Grant, James; Brunton, Nigel

    2015-04-01

    Broccoli and other cruciferous vegetables contain a number of bioactive compounds, in particular glucosinolates and polyphenols, which are proposed to confer health benefits to the consumer. Demand for organic crops is at least partly based on a perception that organic crops may contain higher levels of bioactive compounds; however, insufficient research has been carried out to either support or refute such claims. In this study we examined the effect of conventional, organic, and mixed cultivation practices on the content of total phenolics, total flavonoids, and total and individual glucosinolates in two varieties of broccoli grown over 2 years in a split-plot factorial systems comparison trial. Levels of total phenolics and total flavonoids showed a significant year-on-year variation but were not significantly different between organic and conventional production systems. In contrast, levels of the indolyl glucosinolates glucobrassicin and neoglucobrassicin were significantly higher (P broccoli florets; however, other investigated compounds were unaffected by production practices. © 2014 Society of Chemical Industry.

  16. In vitro production and antifungal activity of peptide ABP-dHC-cecropin A.

    Science.gov (United States)

    Zhang, Jiaxin; Movahedi, Ali; Xu, Junjie; Wang, Mengyang; Wu, Xiaolong; Xu, Chen; Yin, Tongming; Zhuge, Qiang

    2015-04-10

    The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, testing of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve expression of this peptide in E. coli, ABP-dHC-cecropin A was cloned into a pSUMO vector and transformed into E. coli, resulting in the production of a pSUMO-ABP-dHC-cecropin A fusion protein. The soluble form of this protein was then purified by Ni-IDA chromatography, yielding a total of 496-mg protein per liter of fermentation culture. The SUMO-ABP-dHC-cecropin A fusion protein was then cleaved using a SUMO protease and re-purified by Ni-IDA chromatography, yielding a total of 158-mg recombinant ABP-dHC-cecropin A per liter of fermentation culture at a purity of ≥94%, the highest yield reported to date. Antifungal activity assays performed using this purified recombinant peptide revealed strong antifungal activity against both Candida albicans and Neurospora crassa, as well as Rhizopus, Fusarium, Alternaria, and Mucor species. Combined with previous analyses demonstrating strong antibacterial activity against a number of important bacterial pathogens, these results confirm the use of ABP-dHC-cecropin A as a broad-spectrum antimicrobial peptide, with significant therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity.

    Directory of Open Access Journals (Sweden)

    Patricia Martorell

    Full Text Available BACKGROUND: Cocoa and cocoa-based products contain different compounds with beneficial properties for human health. Polyphenols are the most frequently studied, and display antioxidant properties. Moreover, protein content is a very interesting source of antioxidant bioactive peptides, which can be used therapeutically for the prevention of age-related diseases. METHODOLOGY/PRINCIPAL FINDINGS: A bioactive peptide, 13L (DNYDNSAGKWWVT, was obtained from a hydrolyzed cocoa by-product by chromatography. The in vitro inhibition of prolyl endopeptidase (PEP was used as screening method to select the suitable fraction for peptide identification. Functional analysis of 13L peptide was achieved using the transgenic Caenorhabditis elegans strain CL4176 expressing the human Aβ₁₋₄₂ peptide as a pre-clinical in vivo model for Alzheimer's disease. Among the peptides isolated, peptide 13L (1 µg/mL showed the highest antioxidant activity (P≤0.001 in the wild-type strain (N2. Furthermore, 13L produced a significant delay in body paralysis in strain CL4176, especially in the 24-47 h period after Aβ₁₋₄₂ peptide induction (P≤0.0001. This observation is in accordance with the reduction of Aβ deposits in CL4176 by western blot. Finally, transcriptomic analysis in wild-type nematodes treated with 13L revealed modulation of the proteosomal and synaptic functions as the main metabolic targets of the peptide. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the cocoa 13L peptide has antioxidant activity and may reduce Aβ deposition in a C. elegans model of Alzheimer's disease; and therefore has a putative therapeutic potential for prevention of age-related diseases. Further studies in murine models and humans will be essential to analyze the effectiveness of the 13L peptide in higher animals.

  18. Increased production of peptide deformylase eliminates retention of formylmethionine in bovine somatotropin overproduced in Escherichia coli.

    Science.gov (United States)

    Warren, W C; Bentle, K A; Schlittler, M R; Schwane, A C; O'Neil, J P; Bogosian, G

    1996-10-03

    In Escherichia coli and most other microorganisms, peptide synthesis is started at methionine start codons which are read only by N-formyl-methionine-tRNA. The formyl group is normally removed from the N-terminal Met residue of the peptide by peptide deformylase (PDF). However, it has been observed that overproduction of proteins in recombinant bacteria often yields protein products which are incompletely deformylated. Certain proteins could be poor substrates for PDF and exhibit incomplete deformylation, particularly when they are overproduced. Strains of E. coli which overproduce bovine somatotropin (BST) have a significant fraction of the BST with the formyl group retained. The PDF gene was isolated and positioned into a BST production vector in such a way that the BST and PDF genes were coexpressed. In strains containing this coexpression vector, the levels of PDF were increased and formylated BST was undetectable.

  19. Insulin-like peptide 5 is a microbially regulated peptide that promotes hepatic glucose production

    DEFF Research Database (Denmark)

    Lee, Ying Shiuan; De Vadder, Filipe; Tremaroli, Valentina

    2016-01-01

    expression in the brain was higher in CONV-R versus GF mice. We also observed that colonic Insl5 expression was suppressed by increasing the energy supply in GF mice by colonization or high-fat feeding. We did not observe any differences in food intake, gut transit or oral glucose tolerance between Insl5......-/- and wild-type mice. However, we showed impaired intraperitoneal glucose tolerance in Insl5-/- mice. We also observed improved insulin tolerance and reduced hepatic glucose production in Insl5-/- mice. CONCLUSIONS: We have shown that colonic Insl5 expression is regulated by the gut microbiota and energy...... availability. We propose that INSL5 is a hormone that could play a role in promoting hepatic glucose production during periods of energy deprivation....

  20. Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia.

    Science.gov (United States)

    Delgado, R; Carlin, A; Airaghi, L; Demitri, M T; Meda, L; Galimberti, D; Baron, P; Lipton, J M; Catania, A

    1998-06-01

    Inflammatory processes contribute to neurodegenerative disease, stroke, encephalitis, and other central nervous system (CNS) disorders. Activated microglia are a source of cytokines and other inflammatory agents within the CNS and it is therefore important to control glial function in order to preserve neural cells. Melanocortin peptides are pro-opiomelanocortin-derived amino acid sequences that include alpha-melanocyte-stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH). These peptides have potent and broad anti-inflammatory effects. We tested effects of alpha-MSH (1-13), alpha-MSH (11-13), and ACTH (1-24) on production of tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) in a cultured murine microglial cell line (N9) stimulated with lipopolysaccharide (LPS) plus interferon gamma (IFN-gamma). Melanocortin peptides inhibited production of these cytokines and NO in a concentration-related fashion, probably by increasing intracellular cAMP. When stimulated with LPS + IFN-gamma, microglia increased release of alpha-MSH. Production of TNF-alpha, IL-6, and NO was greater in activated microglia after innmunoneutralization of endogenous alpha-MSH. The results suggest that alpha-MSH is an autocrine factor in microglia. Because melanocortin peptides inhibit production of pro-inflammatory mediators by activated microglia they might be useful in treatment of inflammatory/degenerative brain disorders.

  1. [Elaboration of Pseudo-natural Products Using Artificial In Vitro Biosynthesis Systems].

    Science.gov (United States)

    Goto, Yuki

    2018-01-01

    Peptidic natural products often consist of not only proteinogenic building blocks but also unique non-proteinogenic structures such as macrocyclic scaffolds and N-methylated backbones. Since such non-proteinogenic structures are important structural motifs that contribute to diverse bioactivity, we have proposed that peptides with non-proteinogenic structures should be attractive candidates as artificial bioactive peptides mimicking natural products, or so-called pseudo-natural products. We previously devised an engineered translation system for pseudo-natural peptides, referred to as the flexible in vitro translation (FIT) system. This system enabled "one-pot" synthesis of highly diverse pseudo-natural peptide libraries, which can be rapidly screened by mRNA display technology for the discovery of pseudo-natural peptides with diverse bioactivities.

  2. Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity.

    Science.gov (United States)

    Aswad, Miran; Rayan, Mahmoud; Abu-Lafi, Saleh; Falah, Mizied; Raiyn, Jamal; Abdallah, Ziyad; Rayan, Anwar

    2018-01-01

    The aim was to index natural products for less expensive preventive or curative anti-inflammatory therapeutic drugs. A set of 441 anti-inflammatory drugs representing the active domain and 2892 natural products representing the inactive domain was used to construct a predictive model for bioactivity-indexing purposes. The model for indexing the natural products for potential anti-inflammatory activity was constructed using the iterative stochastic elimination algorithm (ISE). ISE is capable of differentiating between active and inactive anti-inflammatory molecules. By applying the prediction model to a mix set of (active/inactive) substances, we managed to capture 38% of the anti-inflammatory drugs in the top 1% of the screened set of chemicals, yielding enrichment factor of 38. Ten natural products that scored highly as potential anti-inflammatory drug candidates are disclosed. Searching the PubMed revealed that only three molecules (Moupinamide, Capsaicin, and Hypaphorine) out of the ten were tested and reported as anti-inflammatory. The other seven phytochemicals await evaluation for their anti-inflammatory activity in wet lab. The proposed anti-inflammatory model can be utilized for the virtual screening of large chemical databases and for indexing natural products for potential anti-inflammatory activity.

  3. Stimulation of Interleukin-10 Production by Acidic β-Lactoglobulin-Derived Peptides Hydrolyzed with Lactobacillus paracasei NCC2461 Peptidases

    OpenAIRE

    Prioult, Guénolée; Pecquet, Sophie; Fliss, Ismail

    2004-01-01

    We have previously demonstrated that Lactobacillus paracasei NCC2461 may help to prevent cow's milk allergy in mice by inducing oral tolerance to β-lactoglobulin (BLG). To investigate the mechanisms involved in this beneficial effect, we examined the possibility that L. paracasei induces tolerance by hydrolyzing BLG-derived peptides and liberating peptides that stimulate interleukin-10 (IL-10) production. L. paracasei peptidases have been shown to hydrolyze tryptic-chymotryptic peptides from ...

  4. Mechanisms of plastein formation, and prospective food and nutraceutical applications of the peptide aggregates

    Directory of Open Access Journals (Sweden)

    Min Gong

    2015-03-01

    Full Text Available Plastein is a protease-induced peptide aggregate with prospective application in enhancing the nutritional quality of proteins and debittering protein hydrolysates. These properties are yet to be applied in product development possibly due to economic considerations (production cost vs. product yields. This paper reviews currently proposed mechanisms of plastein formation including condensation, transpeptidation and physical interaction of aggregating peptides. Emerging findings indicate that plastein possesses bioactivities, thereby expanding its prospective application. The role of proteases in inducing peptide interaction in plastein remains unclear. Understanding the protease function will facilitate the development of efficient proteases and scalable industrial processes for plastein production.

  5. Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis.

    Science.gov (United States)

    Lin, Kai; Zhang, Lan-Wei; Han, Xue; Xin, Liang; Meng, Zhao-Xu; Gong, Pi-Min; Cheng, Da-You

    2018-07-15

    Yak milk casein was selected as a potential precursor of bioactive peptides based on in silico analysis. Most notable among these are the angiotensin I-converting enzyme (ACE) inhibitory peptides. First, yak milk casein has high homology with cow milk casein by homologous analysis. The potential of yak milk casein for the releasing bioactive peptides was evaluated by determining the frequency of occurrence of fragments with a given activity. Through the BIOPEP database analysis, there are many bioactive peptides in yak milk casein sequences. Then, an in silico proteolysis using single or combined enzymes to obtained ACE inhibitory peptides was investigated. Cytotoxicity analysis using the online toxic prediction tool ToxinPred revealed that all in silico proteolysis derived ACE inhibitory peptides are non-cytotoxic. Overall, the present study highlights a in silico proteolysis approach to assist the yak milk casein releasing ACE inhibitory peptides and provides a guidance for the actual hydrolysis of proteins for the production of bioactive peptides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Bioactivities and Chemical Constituents of Essential Oil Extracted from Artemisia anethoides Against Two Stored Product Insects.

    Science.gov (United States)

    Liang, Jun-Yu; Wang, Wen-Ting; Zheng, Yan-Fei; Zhang, Di; Wang, Jun-Long; Guo, Shan-Shan; Zhang, Wen-Juan; Du, Shu-Shan; Zhang, Ji

    2017-01-01

    The chemical constituents of the essential oil extracted from Artemisia anethoides and the bioactivities of essential oil against Tribolium castaneum and Lasioderma serricorne were investigated. The main components of the essential oil were 1,8-cineole (36.54%), 2-isopropyl-5-methyl-3-cyclohexen-1-one (10.40%), terpinen-4-ol (8.58%), 2-isopropyltoluene (6.20) and pinocarveol (5.08%). The essential oil of A. anethoides possessed contact and fumigant toxicities against T. castaneum adults (LD 50 = 28.80 μg/adult and LC 50 = 13.05 mg/L air, respectively) and against L. serricorne (LD 50 = 24.03 μg/adult and LD 50 = 8.04 mg/L air, respectively). The crude oil showed repellent activity against T. castaneum and L. serricorne. Especially, the percentage repellency of essential oil was same level with DEET (positive control) against T. castaneum. The results indicated that the essential oil of A. anethoides had the potential to be developed as insecticide and repellent for control of T. castaneum and L. serricorne.

  7. Production of peptides as generic drugs: a patent landscape of octreotide.

    Science.gov (United States)

    Sabatino, Giuseppina; Guryanov, Ivan; Rombecchi, Andrea; Zanon, Jacopo; Ricci, Antonio; Cabri, Walter; Papini, Anna Maria; Rovero, Paolo

    2016-01-01

    New low-cost strategies and enhancement of the already described methods to manufacture peptide molecules on an industrial scale are highly requested, particularly for peptides such as octreotide, which, along with goserelin and leuprolide, dominate the global peptide market. A number of patents related to the production of octreotide can be found, concerning both solution and solid-phase synthesis. Thus, there is a need to revise the existing synthetic approaches in order to organize them in a more comprehensible way. The octreotide patent landscape could help improvement of the methods for manufacturing of octreotide in industrial scale, leading to the appearance of innovative approaches. The pharmaceutical value of octreotide can be seen from its high market percentage among other peptide drugs. The complex chemical structure of octreotide represents the main challenge for its industrial production. Two synthetic steps are crucial in the preparation of octreotide: (i) threoninol attachment or on resin formation working in solid-phase and (ii) disulphide bond formation to achieve cyclic structure. Analysis of various patents filed to date allows us to see the trend in simplification of the synthetic approaches from the labor intensive syntheses in solution to the more versatile and rapid solid-phase methods.

  8. Recombinant amyloid beta-peptide production by coexpression with an affibody ligand

    Directory of Open Access Journals (Sweden)

    Dobson Christopher M

    2008-10-01

    Full Text Available Abstract Background Oligomeric and fibrillar aggregates of the amyloid β-peptide (Aβ have been implicated in the pathogenesis of Alzheimer's disease (AD. The characterization of Aβ assemblies is essential for the elucidation of the mechanisms of Aβ neurotoxicity, but requires large quantities of pure peptide. Here we describe a novel approach to the recombinant production of Aβ. The method is based on the coexpression of the affibody protein ZAβ3, a selected affinity ligand derived from the Z domain three-helix bundle scaffold. ZAβ3 binds to the amyloidogenic central and C-terminal part of Aβ with nanomolar affinity and consequently inhibits aggregation. Results Coexpression of ZAβ3 affords the overexpression of both major Aβ isoforms, Aβ(1–40 and Aβ(1–42, yielding 4 or 3 mg, respectively, of pure 15N-labeled peptide per liter of culture. The method does not rely on a protein-fusion or -tag and thus does not require a cleavage reaction. The purified peptides were characterized by NMR, circular dichroism, SDS-PAGE and size exclusion chromatography, and their aggregation propensities were assessed by thioflavin T fluorescence and electron microscopy. The data coincide with those reported previously for monomeric, largely unstructured Aβ. ZAβ3 coexpression moreover permits the recombinant production of Aβ(1–42 carrying the Arctic (E22G mutation, which causes early onset familial AD. Aβ(1–42E22G is obtained in predominantly monomeric form and suitable, e.g., for NMR studies. Conclusion The coexpression of an engineered aggregation-inhibiting binding protein offers a novel route to the recombinant production of amyloidogenic Aβ peptides that can be advantageously employed to study the molecular basis of AD. The presented expression system is the first for which expression and purification of the aggregation-prone Arctic variant (E22G of Aβ(1–42 is reported.

  9. Recombinant amyloid beta-peptide production by coexpression with an affibody ligand

    Science.gov (United States)

    Macao, Bertil; Hoyer, Wolfgang; Sandberg, Anders; Brorsson, Ann-Christin; Dobson, Christopher M; Härd, Torleif

    2008-01-01

    Background Oligomeric and fibrillar aggregates of the amyloid β-peptide (Aβ) have been implicated in the pathogenesis of Alzheimer's disease (AD). The characterization of Aβ assemblies is essential for the elucidation of the mechanisms of Aβ neurotoxicity, but requires large quantities of pure peptide. Here we describe a novel approach to the recombinant production of Aβ. The method is based on the coexpression of the affibody protein ZAβ3, a selected affinity ligand derived from the Z domain three-helix bundle scaffold. ZAβ3 binds to the amyloidogenic central and C-terminal part of Aβ with nanomolar affinity and consequently inhibits aggregation. Results Coexpression of ZAβ3 affords the overexpression of both major Aβ isoforms, Aβ(1–40) and Aβ(1–42), yielding 4 or 3 mg, respectively, of pure 15N-labeled peptide per liter of culture. The method does not rely on a protein-fusion or -tag and thus does not require a cleavage reaction. The purified peptides were characterized by NMR, circular dichroism, SDS-PAGE and size exclusion chromatography, and their aggregation propensities were assessed by thioflavin T fluorescence and electron microscopy. The data coincide with those reported previously for monomeric, largely unstructured Aβ. ZAβ3 coexpression moreover permits the recombinant production of Aβ(1–42) carrying the Arctic (E22G) mutation, which causes early onset familial AD. Aβ(1–42)E22G is obtained in predominantly monomeric form and suitable, e.g., for NMR studies. Conclusion The coexpression of an engineered aggregation-inhibiting binding protein offers a novel route to the recombinant production of amyloidogenic Aβ peptides that can be advantageously employed to study the molecular basis of AD. The presented expression system is the first for which expression and purification of the aggregation-prone Arctic variant (E22G) of Aβ(1–42) is reported. PMID:18973685

  10. SHP-1, a novel peptide isolated from seahorse inhibits collagen release through the suppression of collagenases 1 and 3, nitric oxide products regulated by NF-kappaB/p38 kinase.

    Science.gov (United States)

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Se-Kwon

    2010-01-01

    Considerable efforts have been taken to identify natural peptides as potential bioactive substances. In this study, novel peptide (SHP-1) derived from seahorse (Hippocampus, Syngnathidae) hydrolysate was explored for its inhibitory effects on collagen release in arthritis with the investigation of its underlying mechanism of action. The efficacy of SHP-1 was determined on cartilage protective effects such as inhibition of collagen and GAG release. SHP-1 was able to suppress not only the expression of collagenases 1 and 3, but also the production of NO via down-regulation of iNOS. However, it presented an irrelevant effect on the level of GAG release in chondrocytic and osteoblastic cells. Inhibition of collagen release by SHP-1 is associated with restraining the phosphorylation of NF-kappaB and p38 kinase cascade. Therefore, it could be suggested that SHP-1 has a potential to be used in arthritis treatment.

  11. Antioxidant activity of a novel synthetic hexa-peptide derived from an enzymatic hydrolysate of duck skin by-products.

    Science.gov (United States)

    Lee, Seung-Jae; Cheong, Sun Hee; Kim, Yon-Suk; Hwang, Jin-Woo; Kwon, Hyuck-Ju; Kang, Seo-Hee; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2013-12-01

    A peptide was synthesized on the basis of our previous study from solid phase peptide synthesis using ASP48S (Peptron Inc.) and identified by the reverse phase high-performance liquid chromatography (HPLC) using a Vydac Everest C18 column. The molecular mass of the peptide found to be 693.90 Da, and the amino acid sequences of the peptide was Trp-Tyr-Pro-Ala-Ala-Pro. The purpose of this study was to evaluate antioxidant effects of the peptide by electron spin resonance (ESR) spectrometer, and on t-BHP-induced liver cells damage in Chang cells. The antioxidative activity of the peptide was evaluated by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, alkyl and superoxide radical scavenging activity using an ESR spectrometer. The half maximal inhibitory concentration (IC50) value of the peptide for hydroxyl, DPPH, alkyl, and superoxide radical scavenging activity were 45.2, 18.5, 31.5, and 33.4 μM, respectively. In addition, the peptide inhibited productions of cell death against t-BHP-induced liver cell damage in Chang cells. It was presumed to be peptide involved in regulating the apoptosis-related gene expression in the cell environment. The present results indicate that the peptide substantially contributes to antioxidative properties in liver cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Nanotech: propensity in foods and bioactives.

    Science.gov (United States)

    Kuan, Chiu-Yin; Yee-Fung, Wai; Yuen, Kah-Hay; Liong, Min-Tze

    2012-01-01

    Nanotechnology is seeing higher propensity in various industries, including food and bioactives. New nanomaterials are constantly being developed from both natural biodegradable polymers of plant and animal origins such as polysaccharides and derivatives, peptides and proteins, lipids and fats, and biocompatible synthetic biopolyester polymers such as polylactic acid (PLA), polyhydroxyalkonoates (PHA), and polycaprolactone (PCL). Applications in food industries include molecular synthesis of new functional food compounds, innovative food packaging, food safety, and security monitoring. The relevance of bioactives includes targeted delivery systems with improved bioavailability using nanostructure vehicles such as association colloids, lipid based nanoencapsulator, nanoemulsions, biopolymeric nanoparticles, nanolaminates, and nanofibers. The extensive use of nanotechnology has led to the need for parallel safety assessment and regulations to protect public health and adverse effects to the environment. This review covers the use of biopolymers in the production of nanomaterials and the propensity of nanotechnology in food and bioactives. The exposure routes of nanoparticles, safety challenges, and measures undertaken to ensure optimal benefits that outweigh detriments are also discussed.

  13. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  14. Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins

    DEFF Research Database (Denmark)

    Abdel-Hamid, Mahmoud; Otte, Jeanette; De Gobba, Cristian

    2017-01-01

    was hydrolysed using papain, pepsin or trypsin. The papain hydrolysate showed the highest ACE-inhibitory activity and radical scavenging capacity and was fractionated by size exclusion chromatography (SEC) and characterized by LC-MS analysis. A SEC-fraction with intermediate peptide size showed very high ACE...

  15. A simple and rapid method for calixarene-based selective extraction of bioactive molecules from natural products.

    Science.gov (United States)

    Segneanu, Adina-Elena; Damian, Daniel; Hulka, Iosif; Grozescu, Ioan; Salifoglou, Athanasios

    2016-03-01

    Natural products derived from medicinal plants have gained an important role in drug discovery due to their complex and abundant composition of secondary metabolites, with their structurally unique molecular components bearing a significant number of stereo-centers exhibiting high specificity linked to biological activity. Usually, the extraction process of natural products involves various techniques targeting separation of a specific class of compounds from a highly complex matrix. Aiding the process entails the use of well-defined and selective molecular extractants with distinctly configured structural attributes. Calixarenes conceivably belong to that class of molecules. They have been studied intensely over the years in an effort to develop new and highly selective receptors for biomolecules. These macrocycles, which display remarkable structural architectures and properties, could help usher a new approach in the efficient separation of specific classes of compounds from complex matrices in natural products. A simple and rapid such extraction method is presented herein, based on host-guest interaction(s) between a calixarene synthetic receptor, 4-tert-butyl-calix[6]arene, and natural biomolecular targets (amino acids and peptides) from Helleborus purpurascens and Viscum album. Advanced physicochemical methods (including GC-MS and chip-based nanoESI-MS analysis) suggest that the molecular structure and specifically the calixarene cavity size are closely linked to the nature of compounds separated. Incorporation of biomolecules and modification of the macrocyclic architecture during separation were probed and confirmed by scanning electronic microscopy and atomic force microscopy. The collective results project calixarene as a promising molecular extractant candidate, facilitating the selective separation of amino acids and peptides from natural products.

  16. Bioactive wound healing, bioaesthetics and biosurgery: three pillars of product development. Interview with Geoff MacKay.

    Science.gov (United States)

    MacKay, Geoff

    2006-03-01

    Tissue regeneration specialist company Organogenesis Inc. was one of the first biotech companies formed. Incorporated in 1985, the company was originally a spin-off from a research program at MIT. For the first 10-15 years, Organogenesis was heavily research based, but then gradually moved into development. The company's flagship product is Apligraf--a living, bilayered skin construct with two FDA-approved indications: diabetic foot ulcers and venous leg ulcers. As Apligraf neared the market, it was necessary to 'graft' a manufacturing capability onto the company. As a consequence the company moved south from Massachusetts's cradle of biotechnology to Canton, MA, USA. Having experienced many of the highs and lows that characterize the biotech industry, the company is now consolidating its position as a center of expertise in commercializing living, cell-based products. The company has now built a sales, marketing and reimbursement team with the unique skill set to integrate novel technology into the US healthcare system. President & Chief Executive Officer Geoff MacKay takes great pride in the leading role that Organogenesis is playing in ushering in the field of tissue regeneration. Here, he discusses with Regenerative Medicine's Elisa Manzotti the 'three pillars' of the Organogenesis pipeline: bioactive wound healing, bioaesthetics and biosurgery. He focuses both on the rewards, and the trials and tribulations, of the commercialization of living cell-based technology.

  17. A Simplified Method to Estimate Sc-CO2 Extraction of Bioactive Compounds from Different Matrices: Chili Pepper vs. Tomato By-Products

    Directory of Open Access Journals (Sweden)

    Francesca Venturi

    2017-04-01

    Full Text Available In the last few decades, the search for bioactive compounds or “target molecules” from natural sources or their by-products has become the most important application of the supercritical fluid extraction (SFE process. In this context, the present research had two main objectives: (i to verify the effectiveness of a two-step SFE process (namely, a preliminary Sc-CO2 extraction of carotenoids followed by the recovery of polyphenols by ethanol coupled with Sc-CO2 in order to obtain bioactive extracts from two widespread different matrices (chili pepper and tomato by-products, and (ii to test the validity of the mathematical model proposed to describe the kinetics of SFE of carotenoids from different matrices, the knowledge of which is required also for the definition of the role played in the extraction process by the characteristics of the sample matrix. On the basis of the results obtained, it was possible to introduce a simplified kinetic model that was able to describe the time evolution of the extraction of bioactive compounds (mainly carotenoids and phenols from different substrates. In particular, while both chili pepper and tomato were confirmed to be good sources of bioactive antioxidant compounds, the extraction process from chili pepper was faster than from tomato under identical operating conditions.

  18. Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking

    Directory of Open Access Journals (Sweden)

    Mahta Mirzaei

    2018-04-01

    Full Text Available Kluyveromyces marxianus protein hydrolysates were prepared by two different sonicated-enzymatic (trypsin and chymotrypsin hydrolysis treatments to obtain antioxidant and ACE-inhibitory peptides. Trypsin and chymotrypsin hydrolysates obtained by 5 h, exhibited the highest antioxidant and ACE-inhibitory activities. After fractionation using ultrafiltration and reverse phase high performance liquid chromatography (RP-HPLC techniques, two new peptides were identified. One fragment (LL-9, MW = 1180 Da with the amino acid sequence of Leu-Pro-Glu-Ser-Val-His-Leu-Asp-Lys showed significant ACE inhibitory activity (IC50 = 22.88 μM while another peptide fragment (VL-9, MW = 1118 Da with the amino acid sequence of Val-Leu-Ser-Thr-Ser-Phe-Pro-Pro-Lys showed the highest antioxidant and ACE inhibitory properties (IC50 = 15.20 μM, 5568 μM TE/mg protein. The molecular docking studies revealed that the ACE inhibitory activities of VL-9 is due to interaction with the S2 (His513, His353, Glu281 and S′1 (Glu162 pockets of ACE and LL-9 can fit perfectly into the S1 (Thr345 and S2 (Tyr520, Lys511, Gln281 pockets of ACE. Keywords: K. marxianus, Bioactive peptides, Antioxidant, ACE inhibitory, Protein hydrolysate

  19. Blackberry Vinegar Produced By Successive Acetification Cycles: Production, Characterization And Bioactivity Parameters

    Directory of Open Access Journals (Sweden)

    Mário Antônio Alves da Cunha

    Full Text Available ABSTRACT: Blackberry vinegar was produced in successive acetification cycles and content of total phenolics, anthocyanins and antioxidant activity were evaluated along the production. Firstly, blackberry wine was obtained in bench-scale bioreactor, being verified 0.39 g/g ethanol yield, 1.78 g/L.h volumetric productivity and 76% efficiency. After, three successive acetification cycles were conducted efficiently in grapia barrel with average acetic acid production of 51.6 g/L, 72.2 % acetic acid yield and 0.4 g/L.h volumetric productivity. Appreciable contents of polyphenolic compounds, anthocyanins and high antioxidant activity were observed in the raw material, wine and vinegar obtained in each cycle of acetic acid transformation. Acetic acid transformation led the small reduction of antioxidant activity compared to alcoholic fermentation, but the antioxidant potential was maintained along the cycles. The content of total phenolics and anthocyanins also suffered a reduction in step of acetification.

  20. AN INFLUENCE OF SPONTANEOUS MICROFLORA OF FERMENTED HORSEMEAT PRODUCTS ON THE FORMATION OF BIOLOGICALLY ACTIVE PEPTIDES

    Directory of Open Access Journals (Sweden)

    I. M. Chernukha

    2017-01-01

    Full Text Available At present, different methods are used to accumulate functional peptides in meat raw materials, including the use of spontaneous microflora during autolysis, the use of the microbial enzymes (the application of starter cultures and the use of the non-microbial enzymes (enzymes of animals and plant origin. Each method has its own specific characteristics of an impact on raw materials, which requires their detail study. This paper examines an effect of spontaneous microflora of fermented meat products from horsemeat on formation of biologically active peptides. Using the T-RFLP analysis, it was established that in air dried and uncooked smoked sausages produced with the use of the muscle tissue of horsemeat as a raw material, a significant proportion of microflora was presented by lactic acid microorganisms. The highest content of lactic acid microflora was observed in sample 1 (52.45 %, and the least in sample 3 (29.62 %. Sample 2 had the medium percent content of microflora compared to samples 1 and 3 — 38.82 %. It is necessary to note that about 25 % of microflora was unculturable; i.e., it had metabolic processes but did not grow on culture media. In the samples, the representatives of Actinobacteria and Pseudomonadales were found. Pathogenic and conditionally pathogenic microflora was not detected. Not only quantitative but also qualitative changes were observed in the studied samples. For example, in samples 1 and 2, the fractions of amilo-1,6-glucosidase, fast-type muscle myosin-binding-protein C; glucose-6-phosphate isomerase; fast skeletal muscle troponin I, phosphoglycerate kinase, pyruvate kinase and skeletal muscle actin were found, which were absent or reduced in sample 3. Therefore, in the studied product, good preservation of the main spectra of muscle proteins was observed, and the identified fractions, apparently, can be sources of new functional peptides. Not only quantitative but also qualitative changes were observed in the

  1. Encapsulation for preservation of functionality and targeted delivery of bioactive food components

    NARCIS (Netherlands)

    de Vos, Paul; Faas, Marijke M.; Spasojevic, Milica; Sikkema, Jan

    There has been a tremendous increase in the number of food products containing bioactive components with a health promoting or disease preventing effect. Bioactive food components can be divided into bioactive molecules and bioactive living cells (probiotics). Both bioactive molecules and bioactive

  2. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    Science.gov (United States)

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Marine Sponge Derived Natural Products between 2001 and 2010: Trends and Opportunities for Discovery of Bioactives

    Science.gov (United States)

    Mehbub, Mohammad Ferdous; Lei, Jie; Franco, Christopher; Zhang, Wei

    2014-01-01

    Marine sponges belonging to the phylum Porifera (Metazoa), evolutionarily the oldest animals are the single best source of marine natural products. The present review presents a comprehensive overview of the source, taxonomy, country of origin or geographical position, chemical class, and biological activity of sponge-derived new natural products discovered between 2001 and 2010. The data has been analyzed with a view to gaining an outlook on the future trends and opportunities in the search for new compounds and their sources from marine sponges. PMID:25196730

  4. Total synthesis and related studies of large, strained, and bioactive natural products

    Science.gov (United States)

    HIRAMA, Masahiro

    2016-01-01

    Our chemical syntheses and related scientific investigations of natural products with complex architectures and powerful biological activities are described, focusing on the very large 3 nm-long polycyclic ethers called the ciguatoxins, highly strained and labile chromoprotein antitumor antibiotics featuring nine-membered enediyne cores, and extremely potent anthelmintic macrolides called the avermectins. PMID:27725470

  5. Bioactivity of essential oil from Artemisia stolonifera (Maxim.) Komar. and its main compounds against two stored-product insects.

    Science.gov (United States)

    Zhang, Wen-Juan; Yang, Kai; You, Chun-Xue; Wang, Ying; Wang, Cheng-Fang; Wu, Yan; Geng, Zhu-Feng; Su, Yang; Du, Shu-Shan; Deng, Zhi-Wei

    2015-01-01

    Artemisia stolonifera, a perennial herb, is widely distrbuted in China. The aim of this study was to analyze the essential oil from the aerial parts of Artemisia stolonifera, as well as to evaluate the bioactivity of the oil and its main constituents. The essential oil was analyzed by gas chromatography-flame ionization detector and gas chromatography-mass spectrometry that allowed characterizing 22 compounds. The main components were eucalyptol (32.93%), β-pinene (8.18%), camphor (6.12%) and terpinen-4-ol (6.11%), and obtained from the essential oil after a further isolation. During the contact toxicity tests, the essential oil (LD50 = 8.60 μg/adult) exhibited stronger toxicity against Tribolium castaneum adults than those isolated constituents, however, camphor and terpinen-4-ol showed 1 and 2 times toxicity against Lasioderma serricorne adults than the essential oil (LD50 = 12.68 μg/adult) with LD50 values of 11.30 and 5.42 μg/adult, respectively. In the fumigant toxicity tests, especially on Tribolium castaneum, the essential oil (LC50 = 1.86 mg/L air) showed almost the same level toxicity as positive control, methyl bromide (LC50 = 1.75 mg/L air). Moreover, the essential oil and its four isolated constituents also exhibited strong repellency against two stored-product insects.

  6. Evaluation of growth, metabolism and production of potentially bioactive components during fermentation of barley with Lactobacillus reuteri.

    Science.gov (United States)

    Pallin, Anton; Agback, Peter; Jonsson, Hans; Roos, Stefan

    2016-08-01

    Eighteen bacterial isolates from millet, buckwheat and rye flour were identified as Lactobacillus reuteri. Genomic fingerprinting (rep-PCR) revealed that they represented five strains and phylogenetic analyses using multi locus sequence analysis (MLSA) showed that all clustered with strains of rodent origin. Two strains (SU12-3 and SU18-3) from different phylogenetic clades were used in fermentations of six varieties of barley, both untreated and heat-treated (with inactivated indigenous enzymes) flour. They were compared with two probiotic strains of human origin (DSM 17938 and ATCC PTA 6475), one previously isolated sourdough strain (LTH 5531) and one strain of Lactobacillus plantarum (36E). Analyses of growth (CFU) and metabolism (1H-NMR) revealed differences at species level, with L. plantarum showing a higher capacity to assimilate nutrients without help of the cereal enzymes. Similarities were observed between L. reuteri strains isolated from sourdough, while the greatest differences between L. reuteri strains were observed between strains 6475 and 17938. Multivariate analysis of the metabolic profiles revealed clear clustering according to flour treatment, species of bacteria and barley variety and to some extent also bacterial strain. Possible bioactive compounds such as γ-aminobutyric acid (GABA), 1,3- propanediol (sign of reuterin production) and histamine were identified and quantified. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Suppression of multiple bioactivities of interleukin-1 and interleukin-2 production by U937 conditioned medium

    International Nuclear Information System (INIS)

    Wiblin, R.T.; Edmonds, K.; Ellner, J.J.

    1986-01-01

    The human macrophage-like cell line U937 spontaneously produces a factor which blocks interleukin-1 (IL-1) activity for mouse thymocytes but not mitosis of T-lymphoblastoid cells. The authors examined the effects of U937 conditioned medium (CM) on other IL-1 activities and on interleukin-2 (IL-2) production. U937 was cultured at 5 x 10 6 /ml in RPMI-1640 at 37 0 C for 5 days. The resulting CM inhibited the mitogenic response of C3H/HeJ mouse thymocytes to an IL-1 standard, with an inhibitory of activity of 6.64 U/ml (1 U = reciprocal dilution producing 50% inhibition of maximal response). Similarly, CM inhibited (10.12 U/ml) the fibroblast stimulation promoter activity of IL-1. The effect of CM on IL-2 production was assessed in a direct assay in which IL-2 production by γ-irradiated (12,000 rads) MLA-144 lymphosarcoma cells was assayed as 3 H-thymidine incorporation in CTLL-20 cells. The suppressive activity of CM was 4.95 U/ml; CM did not interfere with the response of CTLL-20 to IL-2. These studies establish that U937 produces factors with multiple, related biological activities; U937 CM blocks IL-2 dependent (thymocyte mitogenesis) and IL-2 independent (fibroblast proliferation) IL-1 activities and interferes with production of, but not response to, IL-2. U937 is an excellent model to study growth inhibitory properties of mononuclear phagocytes

  8. Innovative generation of delivery systems containing bioactive compounds to finally be incorporated into food products.

    OpenAIRE

    Giammarino, Domenico

    2017-01-01

    The oxidation of polyunsaturated fatty acids present in food could produce 4-hydroxy-2-nonenal and 4-hydroxy-2-hexenal which are reactive hidroxyalkenals that affect the quality and the safety of products. These compounds, absorbed through the diet, have toxic pathways inducing several diseases such as Alzheimer's disease, cataract, diabetes, cancer and atherosclerosis. In the present study three fresh cheeses with modified fat were obtained by adding emulsions containing soybean oil and diff...

  9. Seaweed Bioactivity

    DEFF Research Database (Denmark)

    Zaharudin, Nazikussabah Binti

    . In conclusion, two brown seaweeds, Laminaria digitata and Undaria pinnatifida, inhibited α-amylase and α-glucosidase activities due to their content of several bioactive components with a potential use for future functional foods. Their effects on the postprandial insulin response and the in vitro findings...

  10. PSEUDOAFFINITY CHROMATOGRAPHY ENRICHMENT OF GLYCATED PEPTIDES FOR MONITORING ADVANCED GLYCATION END PRODUCTS (AGES IN METABOLIC DISORDERS

    Directory of Open Access Journals (Sweden)

    Rajasekar R. Prasanna

    2016-09-01

    Full Text Available Advanced Glycation End (AGE products are produced due to diabetic progression and they are responsible for many complications in the diabetic disorder. The diabetic progression is measured, particularly following glycated hemoglobin using specific antibodies. However, the most abundant protein in blood, human serum albumin, is also found to be glycated which has a much shorter half life and gives information on short term glycemic control. In addition, glycated albumins are considered as markers of diabetic complications such as nephropathy, peripheral vascular calcification and also in Alzheimer’s disease. The glycation proceeds from the interaction between aldehyde group of sugar and the free amino group of the protein, resulting in the formation of Schiff’s base, which undergoes a series of modifications leading to generation of imidazoyl derivatives of amino acids known as Amadori rearrangement products. The imidazoyl derivatives from arginine and lysine are the most prominent modifications observed in proteins in the presence of reducing sugar and these imidazoyl derivatives have an affinity towards certain transition metal ions. Based on our earlier exhaustive work on trapping the histidine peptides using transition metal ion, Cu(II linked to imino-diacetate complex, we explored Cu(II immobilized metal affinity chromatography (IMAC as a potential tool for specific detection of glycated peptides of human serum albumin. Our results clearly demonstrate that Cu(II IMAC is able to detect glycated peptides very efficiently while the non-glycated forms were not retained on the Cu (II column as confirmed by LC-MS/MS analysis. We further discuss the utility of IMAC technology to enrich the detection of AGE products in plasma. We anticipate that these studies may provide valuable information on understanding disease pathologies and the potential of AGE products as biomarkers of various diseases including neurodegenerative, renal and

  11. Identification, Bioactivity, and Productivity of Actinomycins from the Marine-Derived Streptomyces heliomycini

    Directory of Open Access Journals (Sweden)

    Dongyang Wang

    2017-06-01

    Full Text Available In the process of profiling the secondary metabolites of actinobacteria isolated from the Saudi coastal habitats for production of antibiotics and anti-cancer drugs, the cultures of strain WH1 that was identified as Streptomyces heliomycini exhibited strong antibacterial activity against Staphylococcus aureus. By means of MS and NMR techniques, the active compounds were characterized as actinomycins X0β, X2, and D, respectively. The research on the productivity of this strain for actinomycins revealed that the highest production of actinomycins X0β, X2, and D was reached in the medium MII within 5% salinity and pH 8.5. In this optimized condition, the fermentation titers of actinomycins X0β, X2, and D were 107.6 ± 4.2, 283.4 ± 75.3, and 458.0 ± 76.3 mg/L, respectively. All the three actinomycins X0β, X2, and D showed potent cytotoxicities against the MCF-7, K562, and A549 tumor cell lines, in which actinomycin X2 was the most active against the three tumor cell lines with the IC50 values of 0.8–1.8 nM. Both actinomycins X2 and D showed potent antibacterial activities against S. aureus and the methicillin-resistant S. aureus, Bacillus subtilis, and B. cereus and the actinomycin X2 was more potent.

  12. Chemical Composition and Bioactivity of Essential Oil of Atalantia guillauminii against Three Species Stored Product Insects.

    Science.gov (United States)

    Yang, Kai; You, Chun-Xue; Wang, Cheng-Fang; Lei, Ning; Guo, Shan-Shan; Geng, Zhu-Feng; Du, Shu-Shan; Ma, Ping; Deng, Zhi-Wei

    2015-01-01

    The toxic and repellent activities of the essential oil extracted from the leaves of Atalantia guillauminii Swingle were evaluated against three stored product insects, red flour beetles (Tribolium castaneum), cigarette beetles (Lasioderma serricorne) and booklice (Liposcelis bostrychophila). The essential oil obtained by hydrodistillation was investigated by GC-MS. The main constituents of the essential oil were β-thujene (27.18%), elemicin (15.03%), eudesma-3, 7(11)-diene (9.64%), followed by (-)-4-terpeniol (6.70%) and spathulenol (5.25%). The crude oil showed remarkable contact toxicity against T. castaneum, L. serricorne adults and L. bostrychophila with LD50 values of 17.11, 24.07 µg/adult and 55.83 µg/cm(2) respectively and it also displayed strong fumigant toxicity against T. castaneum, L. serricorne adults with LC50 values of 17.60 and 12.06 mg/L respectively, while weak fumigant toxicity against L. bostrychophila with a LC50 value of 16.75 mg/L. Moreover, the essential oil also exhibited the same level repellency against the three stored product insects, relative to the positive control, DEET. At the same concentrations, the essential oil was more repellent to T. castaneum than to L. serricorne. Thus, the essential oil of A. guillauminii may be potential to be developed as a new natural fumigant/repellent in the control of stored product insects.

  13. A proteomic survey of nonribosomal peptide and polyketide biosynthesis in actinobacteria

    Science.gov (United States)

    Actinobacteria such as streptomycetes are renowned for their ability to produce bioactive natural products including nonribosomal peptides (NRPs) and polyketides (PKs). The advent of genome sequencing has revealed an even larger genetic repertoire for secondary metabolism with most of the small mole...

  14. Chiral thiazoline and thiazole building blocks for the synthesis of peptide-derived natural products.

    Science.gov (United States)

    Just-Baringo, Xavier; Albericio, Fernando; Alvarez, Mercedes

    2014-01-01

    Thiazoline and thiazole heterocycles are privileged motifs found in numerous peptide-derived natural products of biological interest. During the last decades, the synthesis of optically pure building blocks has been addressed by numerous groups, which have developed a plethora of strategies to that end. Efficient and reliable methodologies that are compatible with the intricate and capricious architectures of natural products are a must to further develop their science. Structure confirmation, structure-activity relationship studies and industrial production are fields of paramount importance that require these robust methodologies in order to successfully bring natural products into the clinic. Today's chemist toolbox is assorted with many powerful methods for chiral thiazoline and thiazole synthesis. Ranging from biomimetic approaches to stereoselective alkylations, one is likely to find a suitable method for their needs.

  15. Production of phytotoxic cationic α-helical antimicrobial peptides in plant cells using inducible promoters.

    Directory of Open Access Journals (Sweden)

    Nuri Company

    Full Text Available Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes.

  16. Effects of medium components and culture conditions on mycelial biomass and the production of bioactive ingredients in submerged culture of Xylaria nigripes (Ascomycetes), a Chinese medicinal fungus.

    Science.gov (United States)

    Chen, Jian-Zhi; Lo, Hui-Chen; Lin, Fang-Yi; Chang, Shih-Liang; Hsieh, Changwei; Liang, Zeng-Chin; Ho, Wai-Jane; Hsu, Tai-Hao

    2014-01-01

    The optimal culture conditions were investigated to maximize the production of mycelial biomass and bioactive ingredients in submerged cultivation of Xylaria nigripes, a Chinese medicinal fungus. The one-factor-at-a-time method was used to explore the effects of medium components, including carbon, nitrogen, mineral sources, and initial pH of the medium and environmental factors, such as culture temperature and rotation speed, on mycelial growth and production of bioactive ingredients. The results indicated that the optimal culture temperature and rotation speed were 25°C and 100 rpm in a medium with 20 g fructose, 6 g yeast extract, and 2 g magnesiun sulfate heptahydrate as carbon, nitrogen, and mineral sources, respectively, in 1 L distilled water with an initial medium pH of 5.5. With optimal medium components and conditions of cultivation, the maximal production of mycelial biomass was 6.64 ± 0.88 g/L, with maximal production of bioactive ingredients such as extracellular polysaccharides (2.36 ± 0.18 mg/mL), intracellular polysaccharides (2.38 ± 0.07 mg/g), adenosine (43.27 ± 2.37 mg/g), total polyphenols (36.57 ± 1.36 mg/g), and triterpenoids (31.29 ± 1.17 mg/g) in a shake flask culture. These results suggest that different bioactive ingredients including intracellular polysaccharides, adenosine, total polyphenols and triterpenoids in mycelia and extracellular polysaccharides in broth can be obtained from one simple medium for submerged cultivation of X. nigripes.

  17. Exploration of avocado by-products as natural sources of bioactive compounds

    Science.gov (United States)

    Tremocoldi, Maria Augusta; Rosalen, Pedro Luiz; Franchin, Marcelo; Massarioli, Adna Prado; Denny, Carina; Daiuto, Érica Regina; Paschoal, Jonas Augusto Rizzato; Melo, Priscilla Siqueira

    2018-01-01

    This study aimed to evaluate the antioxidant, anti-inflammatory, and cytotoxic properties and phenolic composition of peel and seed of avocado varieties Hass and Fuerte using green solvents. Ethanol soluble compounds were identified in peel and seed of both varieties using HPLC-MS/MS and quantified using HPLC-DAD. Agro-industrial by-products of both varieties exhibited high radical scavenging activity against synthetic free radicals (DPPH and ABTS) and reactive oxygen species (peroxyl, superoxide, and hypochlorous acid) and high ability to reduce Fe3+ to Fe2+. The main compounds with significant contribution to the antioxidant activity determined by online HPLC-ABTS●+ analyses were procyanidin B2 and epicatechin in the peel and trans-5-O-caffeoyl-D-quinic acid, procyanidin B1, catechin, and epicatechin in the seed. Peel of Fuerte significantly suppressed TNF-α and nitric oxide (NO) release (459.3 pg/mL and 8.5 μM, respectively), possibly because of the high phenolic content and antioxidant activity detected. Avocado agro-industrial by-products can be used for food and pharmaceutical purposes due to their antioxidant and anti-inflammatory properties. PMID:29444125

  18. New strategies for the use of Linum usitatissimum cell factories for the production of bioactive compounds.

    Science.gov (United States)

    Almagro, Lorena; García-Pérez, Pascual; Belchí-Navarro, Sarai; Sánchez-Pujante, Pedro Joaquín; Pedreño, M A

    2016-02-01

    In this work, suspension-cultured cells of Linum usitatissimum L. were used to evaluate the effect of two types of cyclodextrins, β-glucan and (Z)-3-hexenol separately or in combination on phytosterol and tocopherol production. Suspension-cultured cells of L. usitatissimum were able to produce high levels of phytosterols in the presence of 50 mM methylated-β-cyclodextrins (1325.96 ± 107.06 μg g dry weight(-1)) separately or in combination with β-glucan (1278.57 ± 190.10 μg g dry weight(-1)) or (Z)-3-hexenol (1507.88 ± 173.02 μg g dry weight(-1)), being cyclodextrins able to increase both the secretion and accumulation of phytosterols in the spent medium, whereas β-glucan and (Z)-3-hexenol themselves only increased its intracellular accumulation. Moreover, the phytosterol values found in the presence of hydroxypropylated-β-cyclodextrins were lower than those found in the presence of methylated-β-cyclodextrins in all cases studied. However, the results showed that the presence of methylated-β-cyclodextrins did not increase the tocopherols production and only an increase in tocopherol levels was observed when cells were elicited with 50 mM hydroxypropylated-β-cyclodextrins in combination with β-glucan (174 μg g dry weight(-1)) or (Z)-3-hexenol (257 μg g dry weight(-1)). Since the levels of tocopherol produced in the combined treatment were higher than the sum of the individual treatments, a synergistic effect between both elicitors was assumed. To sum up, flax cell cultures elicited with cyclodextrins alone or in combination with β-glucan or (Z)-3-hexenol were able produce phytosterols and tocopherols, and therefore, these elicited suspension-cultured cells of L. usitatissimum can provide an alternative system, which is at the same time more sustainable, economical and ecological for their production. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Red Algae (Rhodophyta from the Coast of Madagascar: Preliminary Bioactivity Studies and Isolation of Natural Products

    Directory of Open Access Journals (Sweden)

    Marie Pascaline Rahelivao

    2015-07-01

    Full Text Available Several species of red algae (Rhodophyta from the coastal regions of Madagascar have been investigated for their natural products. The most abundant compound was cholesterol (5 in combination with a series of oxidized congeners. The brominated indoles 1–3 along with the sesquiterpene debilone (4 have been isolated from Laurencia complanata. For the first time, debilone (4 has been obtained from a marine plant. From the methanol extract of Calloseris sp., we have achieved the second isolation of the unusual A-ring contracted steroids (−-2-ethoxycarbonyl-2β-hydroxy-A-nor-cholest-5-en-4-one (9 and phorbasterone B (10. The crude extracts of Laurencia complanata exhibited antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Streptococcus pneumoniae, and Candida albicans.

  20. Bioactivity of Phytosterols and Their Production in Plant in Vitro Cultures.

    Science.gov (United States)

    Miras-Moreno, Begoña; Sabater-Jara, Ana Belén; Pedreño, M A; Almagro, Lorena

    2016-09-28

    Phytosterols are a kind of plant metabolite belonging to the triterpene family. These compounds are essential biomolecules for human health, and so they must be taken from foods. β-Sitosterol, campesterol, and stigmasterol are the main phytosterols found in plants. Phytosterols have beneficial effects on human health since they are able to reduce plasma cholesterol levels and have antiinflammatory, antidiabetic, and anticancer activities. However, there are many difficulties in obtaining them, since the levels of these compounds produced from plant raw materials are low and their chemical synthesis is not economically profitable for commercial exploitation. A biotechnological alternative for their production is the use of plant cell and hairy root cultures. This review is focused on the biosynthesis of phytosterols and their function in both plants and humans as well as the different biotechnological strategies to increase phytosterol biosynthesis. Special attention is given to describing new methodologies based on the use of recombinant DNA technology to increase the levels of phytosterols.

  1. Red Algae (Rhodophyta) from the Coast of Madagascar: Preliminary Bioactivity Studies and Isolation of Natural Products.

    Science.gov (United States)

    Rahelivao, Marie Pascaline; Gruner, Margit; Andriamanantoanina, Hanta; Andriamihaja, Bakolinirina; Bauer, Ingmar; Knölker, Hans-Joachim

    2015-07-07

    Several species of red algae (Rhodophyta) from the coastal regions of Madagascar have been investigated for their natural products. The most abundant compound was cholesterol (5) in combination with a series of oxidized congeners. The brominated indoles 1-3 along with the sesquiterpene debilone (4) have been isolated from Laurencia complanata. For the first time, debilone (4) has been obtained from a marine plant. From the methanol extract of Calloseris sp., we have achieved the second isolation of the unusual A-ring contracted steroids (-)-2-ethoxycarbonyl-2β-hydroxy-A-nor-cholest-5-en-4-one (9) and phorbasterone B (10). The crude extracts of Laurencia complanata exhibited antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Streptococcus pneumoniae, and Candida albicans.

  2. Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products.

    Science.gov (United States)

    Bobinaitė, Ramunė; Pataro, Gianpiero; Lamanauskas, Nerijus; Šatkauskas, Saulius; Viškelis, Pranas; Ferrari, Giovanna

    2015-09-01

    The influence of Pulsed Electric Field (PEF) pre-treatment of blueberry fruits (Vaccinium myrtillus L.), both on the extraction yield and antioxidant properties of juice obtained by pressing and on the on the recovery of bioactive compounds from berry by-products (press cake) by extraction with solvent, was investigated. PEF treatments carried out at field strengths of 1, 3, and 5 kV/cm and an energy input of 10 kJ/kg achieved a cell disintegration index (Z p ) of 0.70, 0.80, and 0.87, respectively. Mechanical pressing (1.32 bar for 8 min) of PEF-treated berries (1, 3, and 5 kV/cm at 10 kJ/kg) significantly increased the juice yield (+28 %) compared with the untreated sample. The juice obtained from PEF pre-treated berries also had a significantly higher total phenolic content (+43 %), total anthocyanin content (+60 %) and antioxidant activity (+31 %). However, PEF treatment intensity higher than 1 kV/cm did not significantly improve the quantitative or qualitative characteristics of the juice. Compared to the untreated sample, higher amounts of total phenolics (+63 %), total athocyanins (+78 %) and antioxidant activity (+65 %) were detected in the press cake extracts. PEF treatment of higher intensity resulted in better extractability of bioactive compounds from blueberry press cake. The results obtained from this study demonstrate the potential of PEF as a mild pre-treatment method to improve the efficiency of the industrial processing of berry fruits.

  3. Recombinant production of peptide C-terminal α-amides using an engineered intein

    DEFF Research Database (Denmark)

    Albertsen, Louise; Shaw, Allan C; Norrild, Jens Chr.

    2013-01-01

    is that they contain a C-terminal that is α-amidated, and this amidation is crucial for biological function. A challenge is to generate such peptides by recombinant means and particularly in a production scale. Here, we have examined an intein-mediated approach to generate a PYY derivative in a larger scale. Initially......, we experienced challenges with hydrolysis of the intein fusion protein, which was reduced by a T3C mutation in the intein. Subsequently, we further engineered the intein to decrease the absolute size and improve the relative yield of the PYY derivative, which was achieved by substituting 54 residues...

  4. Production of intracellular selenium-enriched polysaccharides from thin stillage by Cordyceps sinensis and its bioactivities.

    Science.gov (United States)

    Yang, Shengli; Zhang, Hui

    2016-01-01

    Thin stillage was used as the substrate to produce intracellular selenium-enriched polysaccharides (ISPS) from Cordyceps sinensis to increase the value of agricultural coproducts. Fermentation parameters were optimized using response surface methodology (RSM) to improve the production of ISPS. Then, the effects of ISPS on the antioxidant activities in vitro, as well as the glycosylated serum protein concentration, malondialdehyde level, and total antioxidant capacity of streptozotocin-induced diabetic rats were studied. The optimized conditions were as follows: sodium selenite concentration, 33.78 µg/L; incubation time, 8.24 days; and incubation temperature, 26.69°C. A maximum yield of 197.35 mg/g ISPS was obtained from the validation experiments, which was quite close to the predicted maximum yield of 198.6839 mg/g. FT-IR spectra indicated that ISPS has been successfully selenylation modified with similar structure to polysaccharide of intracellular polysaccharides. The in vitro scavenging effects of 1.0 mg/mL ISPS on hydroxyl, superoxide, and 1,1-diphenyl-2-picrylhydrazyl radicals were 74.62±4.05, 71.45±3.63, and 79.48±4.75%, respectively. The reducing power of ISPS was 0.45±0.01 (absorbance at 700 nm). Fasting blood glucose and glycosylated serum protein of group C (rats with diabetes that received drinking water with ISPS) were significantly lower than those of group B (rats with diabetes) (P<0.01) after treatment was administered for 2 and 4 weeks. Serum malonaldehyde content of group C was significantly lower than that of group B at 4 weeks (P<0.01). At 4 weeks, malonaldehyde contents in heart, liver, and kidney tissues of group C were significantly lower than those of group B; however, malonaldehyde content in pancreas tissue of group C was not significantly different. Total antioxidant capacities in liver, pancreas and kidney tissues of group C were significantly higher than those of group B, but total antioxidant capacity in heart tissue was not

  5. Production of intracellular selenium-enriched polysaccharides from thin stillage by Cordyceps sinensis and its bioactivities

    Directory of Open Access Journals (Sweden)

    Shengli Yang

    2016-02-01

    Full Text Available Background: Thin stillage was used as the substrate to produce intracellular selenium-enriched polysaccharides (ISPS from Cordyceps sinensis to increase the value of agricultural coproducts. Methods: Fermentation parameters were optimized using response surface methodology (RSM to improve the production of ISPS. Then, the effects of ISPS on the antioxidant activities in vitro, as well as the glycosylated serum protein concentration, malondialdehyde level, and total antioxidant capacity of streptozotocin-induced diabetic rats were studied. Results: The optimized conditions were as follows: sodium selenite concentration, 33.78 µg/L; incubation time, 8.24 days; and incubation temperature, 26.69°C. A maximum yield of 197.35 mg/g ISPS was obtained from the validation experiments, which was quite close to the predicted maximum yield of 198.6839 mg/g. FT-IR spectra indicated that ISPS has been successfully selenylation modified with similar structure to polysaccharide of intracellular polysaccharides. The in vitro scavenging effects of 1.0 mg/mL ISPS on hydroxyl, superoxide, and 1,1-diphenyl-2-picrylhydrazyl radicals were 74.62±4.05, 71.45±3.63, and 79.48±4.75%, respectively. The reducing power of ISPS was 0.45±0.01 (absorbance at 700 nm. Fasting blood glucose and glycosylated serum protein of group C (rats with diabetes that received drinking water with ISPS were significantly lower than those of group B (rats with diabetes (P<0.01 after treatment was administered for 2 and 4 weeks. Serum malonaldehyde content of group C was significantly lower than that of group B at 4 weeks (P<0.01. At 4 weeks, malonaldehyde contents in heart, liver, and kidney tissues of group C were significantly lower than those of group B; however, malonaldehyde content in pancreas tissue of group C was not significantly different. Total antioxidant capacities in liver, pancreas and kidney tissues of group C were significantly higher than those of group B, but total

  6. Endophyte Chaetomium globosum D38 Promotes Bioactive Constituents Accumulation and Root Production in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Xin Zhai

    2018-01-01

    Full Text Available Salvia miltiorrhiza is known for tanshinones and salvianolic acids, which have been shown to have a protective effect against ROS, especially for cardiovascular diseases and other various ailments of human organs. Due to the low yield of tanshinones and their analogs in S. miltiorrhiza, multiple stimulation strategies have been developed to improve tanshinones production in plant tissue cultures. Endophytic fungi have been reported to form different relationships with their host plants, including symbiotic, mutualistic, commensalistic, and parasitic interactions. Thus we take the assumption that endophytic fungi may be a potential microbial tool for secondary metabolism promotion in medicinal plants. We recently isolated Chaetomium globosum D38 from the roots of S. miltiorrhiza and our study aimed to examine the effects of this live endophytic fungus D38 and its elicitor on the accumulation of tanshinones in the hairy root cultures of S. miltiorrhiza. Our results revealed that C. globosum D38 mainly colonized in the intercellular gap of xylem parenchyma cells of S. miltiorrhiza hairy roots during the long term co-existence without any toxicity. Moreover, both of the live fungus and its mycelia extract could increase the production of tanshinones, especially for dihydrotanshinone I and cryptotanshinone. The effect of the mycelia extract was much stronger than that of the live fungus on tanshinones synthesis, which significantly increased the transcriptional activity of those key genes in tanshinone biosynthetic pathway. Furthermore, the live C. globosum D38 could also be made into biotic fertilizer used for S. miltiorrhiza seedlings culture, which not only significantly promoted the growth of the host plant, but also notably enhanced the accumulation of tanshinones and salvianolic acids. We thus speculated that, in the soil environment D38 could form bitrophic and mutual beneficial interactions with the host and enhance the plant growth and its

  7. EVALUATION OF ERRORS OF NUTRIENTS AND BIOACTIVE SUBSTANCES IN ANIMAL FEED PRODUCTION

    Directory of Open Access Journals (Sweden)

    .

    2015-01-01

    Full Text Available The definition of feed nutrients assumes the following: assessment of its chemical composition; estimate of the amount contained therein of digestible nutrients; estimate of the amount of energy released by them. We estimate the chemical composition of the components of the indices, which balanced diet. This seemingly simple requirement is not always fulfilled. In the practice of forage production are cases when during the chemical analysis of the finished feed is a discrepancy between the estimated and actual nutritional value, and with the same probability of deviation from the declared value of both in one and in the other direction. The database of contemporary programs for compiling feed rations contained digestibility coefficients of nutrients for all types of raw materials for all kinds of animals from the program of special factors, allow to balance feed rations on digestibility of nutrients and energy value component count. The paper proposes a mathematical tool for assessing the margin of variation of content of biologically active substances in the party regarding the premix recipe data. The reasons for the variations are considered random error methods of quantitative chemical analysis of biologically active substances (BAS and random error estimates of the masses of carriers of active substances when they are dosed into the mixer.

  8. Acute effect on satiety, resting energy expenditure, respiratory quotient, glucagon-like peptide-1, free fatty acids, and glycerol following consumption of a combination of bioactive food ingredients in overweight subjects.

    Science.gov (United States)

    Rondanelli, Mariangela; Opizzi, Annalisa; Perna, Simone; Faliva, Milena; Solerte, Sebastiano Bruno; Fioravanti, Marisa; Klersy, Catherine; Edda, Cava; Maddalena, Paolini; Luciano, Scavone; Paola, Ceccarelli; Emanuela, Castellaneta; Claudia, Savina; Donini, Lorenzo Maria

    2013-01-01

    A combination of bioactive food ingredients (capsaicinoids, epigallocatechin gallate, piperin, and l-carnitine, CBFI) may promote satiety and thermogenesis. The study was conducted in order to assess whether there is any effect on satiety, resting energy expenditure (REE), respiratory quotient, glucagon-like peptide-1 (GLP-1), free fatty acids (FFA) and glycerol release, following a standardized mixed meal with or without single consumption of a CBFI. An 8-week randomized double-blind placebo-controlled trial. Dietetic and Metabolic Unit, Azienda di Servizi alla Persona, University of Pavia and "Villa delle Querce" Clinical Rehabilitation Institute, Rome, Italy. Thirty-seven overweight adults (body mass index [BMI]: 25-35). Nineteen overweight subjects were included in the supplemented group (14 women, 5 men; age 46.4 ± 6.4; BMI: 30.5 ± 3.3) and 18 in the placebo group (13 women, 5 men; age 40.8 ± 11.5; BMI: 30.1 ± 2.6). Satiety was assessed using 100-mm visual analogue scales (VAS) and the area under the curve was calculated. All measured parameters increased significantly in comparison with baseline in response to meal, both with CBFI and with placebo. However, throughout the study day, the supplemented group experienced a significantly greater increase than the placebo group in their sensation of satiety following acute administration of the supplement. CBFI may therefore be of great value in the treatment of overweight patients by increasing satiety and stimulating thermogenesis.

  9. Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Akira Yoshimi

    2018-04-01

    Full Text Available A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata. It consists of 10 amino acid residues, including five N-methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae. The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb. The remaining seven genes in the cluster, excluding the regulatory gene kkR, were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae, gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata. Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae, although there may be unknown factors limiting productivity in this species.

  10. Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae.

    Science.gov (United States)

    Yoshimi, Akira; Yamaguchi, Sigenari; Fujioka, Tomonori; Kawai, Kiyoshi; Gomi, Katsuya; Machida, Masayuki; Abe, Keietsu

    2018-01-01

    A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata . It consists of 10 amino acid residues, including five N -methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS) gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae . The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb). The remaining seven genes in the cluster, excluding the regulatory gene kkR , were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae , gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata . Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae , although there may be unknown factors limiting productivity in this species.

  11. Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt.

    Science.gov (United States)

    Sah, B N P; Vasiljevic, T; McKechnie, S; Donkor, O N

    2014-08-01

    Search for bioactive peptides is intensifying because of the risks associated with the use of synthetic therapeutics, thus peptide liberation by lactic acid bacteria and probiotics has received a great focus. However, proteolytic capacity of these bacteria is strain specific. The study was conducted to establish proteolytic activity of Lactobacillus acidophilus (ATCC® 4356™), Lactobacillus casei (ATCC® 393™) and Lactobacillus paracasei subsp. paracasei (ATCC® BAA52™) in yogurt. Crude peptides were separated by high-speed centrifugation and tested for antioxidant and antimutagenic activities. The degree of proteolysis highly correlated with these bioactivities, and its value (11.91%) for samples containing all the cultures was double that of the control. Liberated peptides showed high radical scavenging activities with 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), IC50 1.51 and 1.63mg/ml, respectively and strong antimutagenicity (26.35%). These probiotics enhanced the generation of bioactive peptides and could possibly be commercially applied in new products, or production of novel anticancer peptides. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  12. Bioactive proteins from pipefishes

    Directory of Open Access Journals (Sweden)

    E. Rethna Priya

    2013-01-01

    Full Text Available Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment. Methods: Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains. Results: Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm. In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm. Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups. Conclusions: It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  13. Bioactive proteins from pipefishes

    Directory of Open Access Journals (Sweden)

    E. Rethna Priya

    2013-08-01

    Full Text Available Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment. Methods: Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains. Results: Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm. In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm. Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups. Conclusions: It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  14. Synthetic protein scaffolds based on peptide motifs and cognate adaptor domains for improving metabolic productivity

    Directory of Open Access Journals (Sweden)

    Anselm H.C. Horn

    2015-11-01

    Full Text Available The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity.

  15. Insect proteins as a potential source of antimicrobial peptides in livestock production

    DEFF Research Database (Denmark)

    Józefiak, A; Engberg, Ricarda Margarete

    2017-01-01

    in the nutrition of different livestock. The great potential for the use of AMPs in animal production is primarily associated with the growing problem of antibiotics resistance, which has triggered the search for alternatives to antibiotics in livestock production. The review presents the current knowledge...... been identified in different organisms, including plants, fungi, bacteria and animals. Insects are a primary source of AMPs which are considered as not resulting in the development of natural bacterial resistance. In general, they are characterized as heat-stable with no adverse effects on eukaryotic...... cells. These characteristics contribute to the potential use of these proteins in human and veterinary medicine and in animal nutrition. Depending on their mode of action, insect AMPs may be applied as single peptides, as a complex of different AMPs and as an active fraction of insect proteins...

  16. Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials.

    Science.gov (United States)

    Wang, San-Lang; Chang, Tao-Jen; Liang, Tzu-Wen

    2010-06-01

    A chitosanase and a protease were purified from the culture supernatant of Serratia sp. TKU016 with shrimp shell as the sole carbon/nitrogen source. The molecular masses of the chitosanase and protease determined by SDS-PAGE were approximately 65 and 53 kDa, respectively. The chitosanase was inhibited completely by Mn2+, but the protease was enhanced by all of tested divalent metals. The optimum pH, optimum temperature, pH stability, and thermal stability of the chitosanase and protease were (pH 7, 50 degrees C, pH 6-7, <50 degrees C) and (pH 8-10, 40 degrees C, pH 5-10, <50 degrees C), respectively. SDS (2 mM) had stimulatory effect on TKU016 protease activity. The result demonstrates that TKU016 protease is SDS-resistant protease and probably has a rigid structure. Besides, TKU016 culture supernatant (2% SPP) incubated for 2 days has the highest antioxidant activity, the DPPH scavenging ability was about 76%. With this method, we have shown that shrimp shell wastes can be utilized and it's effective in the production of enzymes, antioxidants, peptide and reducing sugar, facilitating its potential use in biological applications and functional foods.

  17. Optimization of nonribosomal peptides production by a psychrotrophic fungus: Trichoderma velutinum ACR-P1.

    Science.gov (United States)

    Sharma, Richa; Singh, Varun P; Singh, Deepika; Yusuf, Farnaz; Kumar, Anil; Vishwakarma, Ram A; Chaubey, Asha

    2016-11-01

    Trichoderma is an anamorphic filamentous fungal genus with immense potential for production of small valuable secondary metabolites with indispensable biological activities. Microbial dynamics of a psychrotrophic strain Trichoderma velutinum ACR-P1, isolated from unexplored niches of the Shiwalik region, bestowed with rich biodiversity of microflora, was investigated for production of nonribosomal peptides (NRPs) by metabolite profiling by intact-cell mass spectrometry (ICMS) employing matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometer. Being the first report on NRPs production by T. velutinum, studies on optimization of growth conditions by Response Surface Methodology (RSM) for production of NRPs by ACR-P1 was carried out strategically. Multifold enhancement in the yield of NRPs belonging to subfamily SF4 with medium chain of amino acid residues having m/z 1437.9, 1453.9, and 1452.0 at pH 5.9 at 20 °C and of subfamily SF1 with long-chain amino acid residues having m/z 1770.2, 1784.2, 1800.1, 1802.1, and 1815.1 was achieved at pH 7.0 at 25 °C. Complexities of natural mixtures were thus considerably reduced under respective optimized culture conditions accelerating the production of novel microbial natural products by saving time and resources.

  18. Structure Elucidation and Activity of Kolossin A, the D-/L-Pentadecapeptide Product of a Giant Nonribosomal Peptide Synthetase.

    Science.gov (United States)

    Bode, Helge B; Brachmann, Alexander O; Jadhav, Kirtikumar B; Seyfarth, Lydia; Dauth, Christina; Fuchs, Sebastian W; Kaiser, Marcel; Waterfield, Nick R; Sack, Holger; Heinemann, Stefan H; Arndt, Hans-Dieter

    2015-08-24

    The largest continuous bacterial nonribosomal peptide synthetase discovered so far is described. It consists of 15 consecutive modules arising from an uninterrupted, fully functional gene in the entomopathogenic bacterium Photorhabdus luminescens. The identification of its cryptic biosynthesis product was achieved by using a combination of genome analysis, promoter exchange, isotopic labeling experiments, and total synthesis of a focused collection of peptide candidates. Although it belongs to the growing class of D-/ L-peptide natural products, the encoded metabolite kolossin A was found to be largely devoid of antibiotic activity and is likely involved in interspecies communication. A stereoisomer of this peculiar natural product displayed high activity against Trypanosoma brucei rhodesiense, a recalcitrant parasite that causes the deadly disease African sleeping sickness. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Verification of the production of peptide leukotrienes (LT) in traumatic shock

    International Nuclear Information System (INIS)

    Hock, C.E.; Craft, D.V.; Lefer, D.J.; Lefer, A.M.

    1986-01-01

    Both lipoxygenase inhibition and leukotriene receptor antagonism have been demonstrated to provide significant protection in traumatic shock. Despite these findings, leukotrienes have not been found in circulating blood in Noble-Collip drum induced traumatic shock using radioimmunoassay techniques. Anesthetized rats subjected to Noble-Collip drum trauma developed a shock state characterized by a significant reduction in mean arterial blood pressure, a 4.5 fold increase in plasma cathepsin D activity, a 3-fold increase in myocardial depressant factor activity and a mean survival time of 1.9 +/- 0.3 hours. Plasma and bile samples were analyzed by reverse phase high pressure liquid chromatography to determine LT production in this shock model. No detectable peptide leukotrienes or their metabolites were found in plasma. The major peptide leukotriene from bile eluted between LTC 4 and LTD 4 and corresponds to a metabolite of LTE 4 , N-acetyl-LTE 4 . This metabolite increased from 6 +/- 3 to 41 +/- 4 units in traumatic shock when compared to sham trauma (p 4 , LTD 4 and LTE 4 (10 μg/kg/h) also resulted in the metabolism of > 90% of the parent LT to this metabolite in bile. Therefore, plasma LTs accumulate in the bile following trauma in rats. Moreover, LTC 4 , LTD 4 and LTE 4 apparently are rapidly metabolized to N-acetyl LTE 4 . These findings further support a role for leukotrienes in the pathogenesis of traumatic shock in rats

  20. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  1. Synthetic emmprin peptides with chitobiose substitution stimulate MMP-2 production by fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzumiya Junji

    2011-07-01

    Full Text Available Abstract Background Emmprin, a glycoprotein containing two Ig domains, is enriched on tumor cell surfaces and stimulates matrix metalloproteinase (MMP production by adjacent stromal cells. Its first Ig domain (ECI contains the biologically active site. The dependence of emmprin activity on N-glycosylation is controversial. We investigated whether synthetic ECI with the shortest sugar is functionally active. Methods The whole ECI peptides carrying sugar chains, a chitobiose unit or N-linked core pentasaccharide, were synthesized by the thioester method and added to fibroblasts to examine whether they stimulate MMP-2 production. Results ECI carrying a chitobiose unit, ECI-(GlcNAc 2, but not ECI without a chitobiose unit or the chitobiose unit alone, dose-dependently stimulated MMP-2 production by fibroblasts. ECI with longer chitobiose units, ECI-[(Man3(GlcNAc2], also stimulated MMP-2 production, but the extent of its stimulation was lower than that of ECI-(GlcNAc2. Conclusions Our results indicate that ECI can mimic emmprin activity when substituted with chitobiose, the disaccharide with which N-glycosylation starts.

  2. Microbial Transformation of Bioactive Compounds and Production of ortho-Dihydroxyisoflavones and Glycitein from Natural Fermented Soybean Paste

    Directory of Open Access Journals (Sweden)

    Changhyun Roh

    2014-12-01

    Full Text Available Recently, there has been a great deal of remarkable interest in finding bioactive compounds from nutritional foods to replace synthetic compounds. In particular, ortho-dihydroxyisoflavones and glycitein are of growing scientific interest owing to their attractive biological properties. In this study, 7,8-ortho-dihydroxyisoflavone, 6,7-ortho-dihydroxyisoflavone, 3',4'-ortho-dihydroxyisoflavone and 7,4'-dihydroxy-6-methoxyisoflavone were characterized using microorganism screened from soybean Doenjang. Three ortho-dihydroxyisoflavones and glycitein were structurally elucidated by 1H-NMR and GC-MS analysis. Furthermore, bacterial strains from soybean Doenjang with the capacity of biotransformation were screened. The bacterial strain, identified as Bacillus subtilis Roh-1, was shown to convert daidzein into ortho-dihydroxyisoflavones and glycitein. Thus, this study has, for the first time, demonstrated that a bacterial strain had a substrate specificity for multiple modifications of the bioactive compounds.

  3. Alzheimer’s disease against peptides products of enzymatic cleavage APP protein: Biological, pathobiological and physico-chemical properties of fibrillating peptides

    Directory of Open Access Journals (Sweden)

    Małgorzata Marszałek

    2017-05-01

    Full Text Available Various peptides products of enzymatic cleavage of key for Alzheimer’s disease Amyloid Precursor Protein (APP are well known, but still are matter of scientific debate. The Aβ type products are especially challenging for experimental and medical research. This paper outlines several, still poorly known, biological and medical processes such as peptides biology, i.e., formation, biodistribution, translocation, transport and finally removal from brain compartments and body fluids like Intracellular Fluid (ICF, Cerebrospinal Fluid (CSF, Interstitial Fluid (ISF, blood serum or urine. In addition, the following studies concerning AD patients might prove challenging and simultaneously promising: peptides translocation through Blood-Brain – Barrier (BBB and Blood–Cerebrospinal Fluid Barrier (BCSFB and their removal from the brain according to a new concept of glymphatic system; – diagnostic difficulties that stem from physico-chemical properties and the nature of proteins or fibrillating peptides itself like low concentration, short half-live and from experimental-technical problems as well like high adsorption or low solubility of Aβ, tau or amylin. The study of diagnostic parameters is very important, as it may better reflect early changes before the disease develops; one such parameter is the Aβ42/Aβ40 ratio, or the ratio with the total tau concentration combination and other new biomarkers like Aβ1-38; other factors include oxidative stress and inflammation process proteins, complement factor H, alpha-2-macroglobulin, or clusterin. The study of various forms of pathological amyloid deposits that emerge in different but specific brain regions AD patients seems to be crucial as well. The composition of the first initial pathological, pre-fibrillating monomers of fibrillating peptides and their role in AD development and disease progression have been described as well. They are even more challenging for science and simultaneously might be

  4. Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein.

    Science.gov (United States)

    Hall, Felicia; Johnson, Philip E; Liceaga, Andrea

    2018-10-01

    Food-derived bioactive peptides have gained attention for their role in preventing chronic diseases. Edible insects are viable sources of bioactive peptides owing to their high protein content and sustainable production. In this study, whole crickets (Gryllodes sigillatus) were alcalase-hydrolyzed to a degree of hydrolysis (DH) ranging from 15 to 85%. Antioxidant activity, angiotensin converting enzyme (ACE), and dipeptidyl peptidase-4 (DPP-IV)- inhibition of the cricket protein hydrolysates (CPH) were evaluated before and after simulated gastrointestinal digestion (SGD). Antioxidant activity was similar among CPH, whereas ACE and DPP-IV inhibition was greater (p < 0.05) in CPH with 60-85% DH. Bioactivity improved after SGD. CPH allergenicity was evaluated using human shrimp-allergic sera. All sera positively reacted to tropomyosin in the unhydrolyzed cricket and CPH with 15-50% DH, whereas 60-85% DH showed no reactivity. In conclusion, CPH (60-85% DH) had the greatest bioactive potential and lowest reactivity to tropomyosin, compared with other CPH and the unhydrolyzed control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. “Gold” Pressed Essential Oil: An Essay on the Volatile Fragment from Citrus Juice Industry By-Products Chemistry and Bioactivity

    Directory of Open Access Journals (Sweden)

    V. N. Kapsaski-Kanelli

    2017-01-01

    Full Text Available Present essay explores the potentials of Citrus juice industry’s by-products as alternative bioactive natural products resources. Four crude Cold Pressed Essential Oils (CPEOs, derived from orange, lemon, grapefruit, and mandarin, were studied. All CPEOs were subjected to water distillation, in order to obtain the volatile fragment, which was further fractionated with respect to distillation period in two parts, concluding to eight samples. These samples along with the four original CPEOs were assessed in relation to their phytochemical content and their repellent and larvicidal properties against Asian Tiger Mosquito. The volatiles recovery rates ranged from 74% to 88% of the CPEO. Limonene presented a significant increase in all samples ranging from 8% to 52% of the respective CPEO’s content and peaked in mandarin’s 2nd volatile fragment which comprised 97% of the essential oil. The refinement process presented clear impacts on both bioassays: a significant increase in larvicidal potency was observed, annotated best by the improvement by 1100% and 1300% of the grapefruit volatile fractions; repellence testing provided only one significant result, the decrease of landings by 50% as a response to mandarin’s second volatile fraction. The applied methodology thus may be considered for the improvement of Citrus juice industry’s by-products chemistry and bioactivity.

  6. Production of the Novel Two-Peptide Lantibiotic Lichenicidin by Bacillus licheniformis DSM 13

    Science.gov (United States)

    Dischinger, Jasmin; Josten, Michaele; Szekat, Christiane; Sahl, Hans-Georg; Bierbaum, Gabriele

    2009-01-01

    Background Lantibiotics are small microbial peptide antibiotics that are characterized by the presence of the thioether amino acids lanthionine and methyllanthionine. Lantibiotics possess structural genes which encode inactive prepeptides. During maturation, the prepeptide undergoes posttranslational modifications including the introduction of rare amino acids as lanthionine and methyllanthione as well as the proteolytic removal of the leader. The structural gene (lanA) as well as the other genes which are involved in lantibiotic modification (lanM, lanB, lanC, lanP), regulation (lanR, lanK), export (lanT(P)) and immunity (lanEFG) are organized in biosynthetic gene clusters. Methodology/Principal Findings Sequence comparisons in the NCBI database showed that Bacillus licheniformis DSM 13 harbours a putative lantibiotic gene cluster which comprises two structural genes (licA1, licA2) and two modification enzymes (licM1, licM2) in addition to 10 ORFs that show sequence similarities to proteins involved in lantibiotic production. A heat labile antimicrobial activity was detected in the culture supernatant and a heat stabile activity was present in the isopropanol cell wash extract of this strain. In agar well diffusion assays both fractions exhibited slightly different activity spectra against Gram-positive bacteria. In order to demonstrate the connection between the lantibiotic gene cluster and one of the antibacterial activities, two Bacillus licheniformis DSM 13 mutant strains harbouring insertions in the structural genes of the modification enzymes licM1 and licM2 were constructed. These strains were characterized by a loss of activity in the isopropanol extract and substractive MALDI-TOF predicted masses of 3020.6 Da and 3250.6 Da for the active peptides. Conclusions/Significance In conclusion, B. licheniformis DSM 13 produces an antimicrobial substance that represents the two-peptide lantibiotic lichenicidin and that shows activity against a wide range of Gram

  7. Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13.

    Directory of Open Access Journals (Sweden)

    Jasmin Dischinger

    Full Text Available BACKGROUND: Lantibiotics are small microbial peptide antibiotics that are characterized by the presence of the thioether amino acids lanthionine and methyllanthionine. Lantibiotics possess structural genes which encode inactive prepeptides. During maturation, the prepeptide undergoes posttranslational modifications including the introduction of rare amino acids as lanthionine and methyllanthione as well as the proteolytic removal of the leader. The structural gene (lanA as well as the other genes which are involved in lantibiotic modification (lanM, lanB, lanC, lanP, regulation (lanR, lanK, export (lanT(P and immunity (lanEFG are organized in biosynthetic gene clusters. METHODOLOGY/PRINCIPAL FINDINGS: Sequence comparisons in the NCBI database showed that Bacillus licheniformis DSM 13 harbours a putative lantibiotic gene cluster which comprises two structural genes (licA1, licA2 and two modification enzymes (licM1, licM2 in addition to 10 ORFs that show sequence similarities to proteins involved in lantibiotic production. A heat labile antimicrobial activity was detected in the culture supernatant and a heat stabile activity was present in the isopropanol cell wash extract of this strain. In agar well diffusion assays both fractions exhibited slightly different activity spectra against Gram-positive bacteria. In order to demonstrate the connection between the lantibiotic gene cluster and one of the antibacterial activities, two Bacillus licheniformis DSM 13 mutant strains harbouring insertions in the structural genes of the modification enzymes licM1 and licM2 were constructed. These strains were characterized by a loss of activity in the isopropanol extract and substractive MALDI-TOF predicted masses of 3020.6 Da and 3250.6 Da for the active peptides. CONCLUSIONS/SIGNIFICANCE: In conclusion, B. licheniformis DSM 13 produces an antimicrobial substance that represents the two-peptide lantibiotic lichenicidin and that shows activity against a wide

  8. Production of antibacterial peptide from bee venom via a new strategy for heterologous expression.

    Science.gov (United States)

    Hou, Chunsheng; Guo, Liqiong; Lin, Junfang; You, Linfeng; Wu, Wuhua

    2014-12-01

    Honey bee is important economic insect that not only pollinates fruits and crops but also provides products with various physiological activities. Bee venom is a functional agent that is widely applied in clinical treatment and pharmacy. Secapin is one of these agents that have a significant role in therapy. The functions of secapin from the bee venom have been documented, but little information is known about its heterologous expression under natural condition. Moreover, few scholars verified experimentally the functions of secapin from bee venom in vitro. In this study, we successfully constructed a heterologous expression vector, which is different from conventional expression system. A transgenic approach was established for transformation of secapin gene from the venom of Apis mellifera carnica (Ac-sec) into the edible fungi, Coprinus cinereus. Ac-sec was encoded by a 234 bp nucleotide that contained a signal peptide domain and two potential phosphorylation sites. The sequence exhibited highly homology with various secapins characterized from honey bee and related species. Southern blot data indicated that Ac-sec was present as single or multiple copy loci in the C. cinereus genome. By co-transformation and double-layer active assay, Ac-sec was expressed successfully in C. cinereus and the antibacterial activity of the recombinants was identified, showing notable antibacterial activities on different bacteria. Although Ac-sec is from the venom of Apidae, phylogenetic analysis demonstrated that Ac-sec was more closely related to that of Vespid than to bee species from Apidae. The molecular characteristics of Ac-sec and the potential roles of small peptides in biology were discussed.

  9. Effects of Illumination Pattern during Cultivation of Fruiting Body and Bioactive Compound Production by the Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes).

    Science.gov (United States)

    Wu, Chiu-Yeh; Liang, Zeng-Chin; Tseng, Chin-Yin; Hu, Shu-Hui

    2016-01-01

    We investigated the effects of light intensity in the 3 cultivation stages separately-the mycelium colonization stage, the primordial initiation stage, and the fruiting stage (in order)-on fruiting body and bioactive compound production by Cordyceps militaris. In the mycelium colonization stage, rice substrates were incubated in a spawn running room at 23°C. During the primordial initiation stage, C. militaris was grown at 18°C and illuminated 12 hours/day. In the fruiting stage the temperature was 23°C, with illumination provided 12 hours/day. The highest fruiting body yield and biological efficiency were 4.06 g dry weight/bottle and 86.83%, respectively, under 1750 ± 250 lux during the second and third stages. The cordycepin content was highest during the second and third stages under 1250 ± 250 lux. The mannitol and polysaccharide contents were highest under 1250 ± 250 and 1750 ± 250 lux during the primordial initiation stage and the fruiting stage, respectively. Thus, with controlled lighting, C. militaris can be cultivated in rice-water medium to increase fruiting body yield and bioactive compound production.

  10. The order of expression is a key factor in the production of active transglutaminase in Escherichia coli by co-expression with its pro-peptide

    Directory of Open Access Journals (Sweden)

    Liu Song

    2011-12-01

    Full Text Available Abstract Background Streptomyces transglutaminase (TGase is naturally synthesized as zymogen (pro-TGase, which is then processed to produce active enzyme by the removal of its N-terminal pro-peptide. This pro-peptide is found to be essential for overexpression of soluble TGase in E. coli. However, expression of pro-TGase by E. coli requires protease-mediated activation in vitro. In this study, we developed a novel co- expression method for the direct production of active TGase in E. coli. Results A TGase from S. hygroscopicus was expressed in E. coli only after fusing with the pelB signal peptide, but fusion with the signal peptide induced insoluble enzyme. Therefore, alternative protocol was designed by co-expressing the TGase and its pro-peptide as independent polypeptides under a single T7 promoter using vector pET-22b(+. Although the pro-peptide was co-expressed, the TGase fused without the signal peptide was undetectable in both soluble and insoluble fractions of the recombinant cells. Similarly, when both genes were expressed in the order of the TGase and the pro-peptide, the solubility of TGase fused with the signal peptide was not improved by the co-expression with its pro-peptide. Interestingly, active TGase was only produced by the cells in which the pro-peptide and the TGase were fused with the signal peptide and sequentially expressed. The purified recombinant and native TGase shared the similar catalytic properties. Conclusions Our results indicated that the pro-peptide can assist correct folding of the TGase inter-molecularly in E. coli, and expression of pro-peptide prior to that of TGase was essential for the production of active TGase. The co-expression strategy based on optimizing the order of gene expression could be useful for the expression of other functional proteins that are synthesized as a precursor.

  11. Antioxidant activity and sensory characteristics of Maillard reaction products derived from different peptide fractions of soybean meal hydrolysate.

    Science.gov (United States)

    Yu, Min; He, Shudong; Tang, Mingming; Zhang, Zuoyong; Zhu, Yongsheng; Sun, Hanju

    2018-03-15

    Four peptide fractions PF1 (>5;kDa), PF2 (3-5;kDa), PF3 (1-3;kDa), PF4 (Maillard reaction products (MRPF1, MRPF2, MRPF3 and MRPF4) were evaluated, respectively. Peptides with low molecular weight showed higher contribution to the changes of pH, colour and browning intensity during Maillard reaction. The DPPH radical-scavenging activity of PF4 was significantly improved after Maillard reaction. Aroma volatiles and PLSR analysis suggested MRPF3 had the best sensory characteristics with higher contents of umami amino acids and lower of bitter amino acids, therefore it could be deduced that the umami and meaty characteristics were correlated with the peptides of 1-3;kDa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Production and characterization of a new antibacterial peptide obtained from Aeribacillus pallidus SAT4

    Directory of Open Access Journals (Sweden)

    Syed Aun Muhammad

    2015-12-01

    Full Text Available A novel thermophilic bacterial strain of the genus Aeribacillus was isolated from Thar Dessert Pakistan. This strain showed significant antibacterial activity against Micrococcus luteus, Staphylococcus aureus, and Pseudomonas aeruginosa. The strain coded as ‘SAT4’ resembled with Aeribacillus pallidus in the morphological, biochemical and molecular tests. The production of antibacterial metabolites by SAT4 was optimized. These active metabolites were precipitated by 50% ammonium sulphate and purified through sephadex G-75 gel permeation chromatography and reverse phase HPLC. The molecular weight of 37 kDa was examined by SDS-PAGE. The structural elucidation of the purified product was studied by FTIR, 1H and 13C NMR. The X-ray diffractions study showed that the crystals belonged to the primitive orthorhombic lattice (a = 12.137, b = 13.421, c = 14.097 Å and 3D structure (proposed name: Aeritracin was determined. This new peptide antibacterial molecule can get a position in pharmaceutical and biotechnological industrial research.

  13. Production and characterization of a new antibacterial peptide obtained from Aeribacillus pallidus SAT4.

    Science.gov (United States)

    Muhammad, Syed Aun; Ahmed, Safia

    2015-12-01

    A novel thermophilic bacterial strain of the genus Aeribacillus was isolated from Thar Dessert Pakistan. This strain showed significant antibacterial activity against Micrococcus luteus , Staphylococcus aureus , and Pseudomonas aerugin osa. The strain coded as 'SAT4' resembled with Aeribacillus pallidus in the morphological, biochemical and molecular tests. The production of antibacterial metabolites by SAT4 was optimized. These active metabolites were precipitated by 50% ammonium sulphate and purified through sephadex G-75 gel permeation chromatography and reverse phase HPLC. The molecular weight of 37 kDa was examined by SDS-PAGE. The structural elucidation of the purified product was studied by FTIR, 1 H and 13 C NMR. The X-ray diffractions study showed that the crystals belonged to the primitive orthorhombic lattice ( a  = 12.137, b  = 13.421, c  = 14.097 Å) and 3D structure (proposed name: Aeritracin) was determined. This new peptide antibacterial molecule can get a position in pharmaceutical and biotechnological industrial research.

  14. Marine Peptides and Their Anti-Infective Activities

    OpenAIRE

    Kang, Hee Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-01-01

    Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal,...

  15. Production of bioactive soluble interleukin-15 in complex with interleukin-15 receptor alpha from a conditionally-replicating oncolytic HSV-1.

    Directory of Open Access Journals (Sweden)

    David C Gaston

    Full Text Available Oncolytic type-1 herpes simplex viruses (oHSVs lacking the γ134.5 neurovirulence gene are being evaluated for treatment of a variety of malignancies. oHSVs replicate within and directly kill permissive cancer cells. To augment their anti-tumor activity, oHSVs have been engineered to express immunostimulatory molecules, including cytokines, to elicit tumor-specific immune responses. Interleukin-15 (IL-15 holds potential as an immunotherapeutic cytokine because it has been demonstrated to promote both natural killer (NK cell-mediated and CD8(+ T cell-mediated cytotoxicity against cancer cells. The purpose of these studies was to engineer an oHSV producing bioactive IL-15. Two oHSVs were constructed encoding murine (mIL-15 alone (J100 or with the mIL-15 receptor α (mIL-15Rα, J100D to determine whether co-expression of these proteins is required for production of bioactive mIL-15 from oHSV. The following were demonstrated: i both oHSVs retain replication competence and cytotoxicity in permissive tumor cell lines. ii Enhanced production of mIL-15 was detected in cell lysates of neuro-2a cells following J100D infection as compared to J100 infection, suggesting that mIL-15Rα improved mIL-15 production. iii Soluble mIL-15 in complex with mIL-15Rα was detected in supernates from J100D-infected, but not J100-infected, neuro-2a, GL261, and CT-2A cells. These cell lines vary in permissiveness to oHSV replication and cytotoxicity, demonstrating soluble mIL-15/IL-15Rα complex production from J100D was independent of direct oHSV effects. iv The soluble mIL-15/IL-15Rα complex produced by J100D was bioactive, stimulating NK cells to proliferate and reduce the viability of syngeneic GL261 and CT-2A cells. v J100 and J100D were aneurovirulent inasmuch as no neuropathologic effects were documented following direct inoculation into brains of CBA/J mice at up to 1x10(7 plaque forming units. The production of mIL-15/mIL-15Rα from multiple tumor lines, as well

  16. Optimization of the recombinant production and purification of a self-assembling peptide in Escherichia coli

    NARCIS (Netherlands)

    Rad-Malekshahi, Mazda; Flement, Matthias; Hennink, Wim E.; Mastrobattista, Enrico

    2014-01-01

    Background: Amphiphilic peptides are important building blocks to generate nanostructured biomaterials for drug delivery and tissue engineering applications. We have shown that the self-assembling peptide SA2 (Ac-AAVVLLLWEE) can be recombinantly produced in E. coli when fused to the small

  17. Biologically Active and Antimicrobial Peptides from Plants

    Science.gov (United States)

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  18. Biologically Active and Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    Carlos E. Salas

    2015-01-01

    Full Text Available Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  19. High-Yield Production in Escherichia coli of Fungal Immunomodulatory Protein Isolated from Flammulina velutipes and Its Bioactivity Assay in Vivo

    Directory of Open Access Journals (Sweden)

    Shenkui Liu

    2013-01-01

    Full Text Available A fungal immunomodulatory protein isolated from Flammulina velutipes (FIP-fve has structural similarity to the variable region of the immunoglobulin heavy chain. In the present study, the recombinant bioactive FIP-fve protein with a His-tag in N-terminal of recombinant protein was expressed in transetta (DE3 at a high level under the optimized culturing conditions of 0.2 mM IPTG and 28 °C. The efficiency of the purification was improved with additional ultrasonication to the process of lysozyme lysis. The yield of the bioactive FIP-fve protein with 97.1% purity reached 29.1 mg/L with a large quantity for industrial applications. Enzyme-linked immunosorbent assay showed a maximum increase in interleukin-2 (IL-2 and gamma interferon (IFN-γ for the mice serum group of 5 mg/kg body mass (p < 0.01 with three doses of His-FIP-fve. However, the production of IL-4 had no apparent difference compared to the control.

  20. Nettle (Urtica dioica L.) extracts as functional ingredients for production of chocolates with improved bioactive composition and sensory properties.

    Science.gov (United States)

    Belščak-Cvitanović, Ana; Komes, Draženka; Durgo, Ksenija; Vojvodić, Aleksandra; Bušić, Arijana

    2015-12-01

    Pursuant to the tendencies of producing functional foods, attractive to a wide range of consumers, in this study chocolates enriched with freeze dried (FD) and concentrated (CE) nettle extracts were formulated, and their polyphenolic and antioxidant capacity stability evaluated during 12 months of storage. A simple aqueous extraction procedure of nettle was developed, and the defined extract evaluated for its cytotoxic and antioxidant/prooxidant activity on human colon cancer cell line (SW 480). An increase in total polyphenolic content, chlorogenic acid and flavonoid derivatives (originating from nettle extract) contents was achieved in enriched chocolates. Implementation of FD extract enabled higher increase of polyphenolic content in comparison to CE extract. During storage, fluctuations of polyphenolic content were observed, but the final bioactive parameters did not differ (or increased) from the initial ones. Nettle enriched chocolates exhibited more intense bitterness and astringency, while dark chocolates were preferred over milk and semisweet ones.

  1. Strategies for designing novel functional meat products.

    Science.gov (United States)

    Arihara, Keizo

    2006-09-01

    In recent years, much attention has been paid to physiological functions of foods due to increasing concerns for health. Although there has been limited information of physiological functions of meat until recently, several attractive meat-based bioactive compounds, such as carnosine, anserine, l-carnitine, conjugated linoleic acid, have been studied. Emphasizing these activities is one possible approach for improving the health image of meat and developing functional meat products. This article provides potential benefits of representative meat-based bioactive compounds on human health and an overview of meat-based functional products. Strategies for designing novel functional meat products utilizing bioactive peptides and/or probiotic bacteria, is also discussed. This article focuses particularly on the possibility of meat protein-derived bioactive peptides, such as antihypertensive peptides. There are still some hurdles in developing and marketing novel functional meat products since such products are unconventional and consumers in many countries recognize meat and meat products to be bad for health. Along with accumulation of scientific data, there is an urgent need to inform consumers of the exact functional value of meat and meat products including novel functional foods.

  2. Cosmeceutical product consisting of biomimetic peptides: antiaging effects in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Gazitaeva ZI

    2017-01-01

    Full Text Available Zarema I Gazitaeva,1 Anna O Drobintseva,2 Yongji Chung,3 Victoria O Polyakova,2 Igor M Kvetnoy2 1Institute of Beauty Fijie, Moscow, 2Department of Pathomorphology, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg, Russian Federation; 3Caregen Co., Ltd. Research Center, Seoul, South Korea Background: Biomimetic peptides are synthetic compounds that are identical to amino acid sequence synthesized by an organism and can interact with growth factor receptors and provide antiaging clinical effects.Purpose: The purpose of this study was to investigate the effects of biomimetic peptides on the repair processes in the dermis using a model of cell cultures and in vivo.Patients and methods: Five female volunteers were subjected to the injection of biomimetic peptides 1 month prior to the abdominoplasty procedure. Cell culture, immunocytochemistry, and confocal microscopy methods were used in this study.Results: Biomimetic peptides regulate the synthesis of proteins Ki-67, type I procollagen, AP-1, and SIRT6 in cell cultures of human fibroblasts. They contribute to the activation of regeneration processes and initiation of mechanisms that prevent aging. Intradermal administration of complex of biomimetic peptides produces a more dense arrangement of collagen fibers in the dermis and increased size of the fibers after 2 weeks. The complex of biomimetic peptides was effective in the in vivo experiments, where an increase in the proliferative and synthetic activities of fibroblasts was observed.Conclusion: This investigation showed that the studied peptides have biological effects, testifying the stimulation of reparative processes in the skin under their control. Keywords: biomimetic peptides, skin aging, collagen, reparation processes, mesotherapy

  3. Characterization, production, and purification of leucocin H, a two-peptide bacteriocin from Leuconostoc MF215B.

    Science.gov (United States)

    Blom, H; Katla, T; Holck, A; Sletten, K; Axelsson, L; Holo, H

    1999-07-01

    Leuconostoc MF215B was found to produce a two-peptide bacteriocin referred to as leucocin H. The two peptides were termed leucocin Halpha and leucocin Hbeta. When acting together, they inhibit, among others, Listeria monocytogenes, Bacillus cereus, and Clostridium perfringens. Production of leucocin H in growth medium takes place at temperatures down to 6 degrees C and at pH below 7. The highest activity of leucocin H in growth medium was demonstrated in the late exponential growth phase. The bacteriocin was purified by precipitation with ammonium sulfate, ion-exchange (SP Sepharose) and reverse phase chromatography. Upon purification, specific activity increased 10(5)-fold, and the final specific activity was 2 x 10(7) BU/OD280. Amino acid composition analyses of leucocin Halpha and leucocin Hbeta indicated that both peptides consisted of around 40 amino acid residues. Their N-termini were blocked for Edman degradation, and the methionin residues of leucocin Hbeta did not respond to Cyanogen Bromide (CNBr) cleavage. Absorbance at 280 nm indicated the presence of tryptophan residues and tryptophan-fracturing opened for partial sequencing by Edman degradation. From leucocin Halpha, the sequence of 20 amino acids was obtained; from leucocin Hbeta the sequence of 28 amino acid residues was obtained. No sequence homology to other known bacteriocins could be demonstrated. It also appeared that the two peptides themselves shared little or no sequence homology. The presence of soy oil did not affect the activity of leucocin H in agar.

  4. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols.

    Science.gov (United States)

    Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-06-05

    This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications.

  5. Bioactive Components in Fish Venoms

    Science.gov (United States)

    Ziegman, Rebekah; Alewood, Paul

    2015-01-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  6. The impact of grape skin bioactive functionality information on the acceptability of tea infusions made from wine by-products.

    Science.gov (United States)

    Cheng, Vern Jou; Bekhit, Alaa El-Din A; Sedcole, Richard; Hamid, Nazimah

    2010-05-01

    The effect of information on the health benefits of bio-active compounds on the acceptability of 5 tea infusions made from grape skins generated from wine processing waste (from Vitis vinifera var. Pinot Noir and Pinot Gris) was investigated. Samples of tea infusions with natural additives (PNHGT25 and PGGT50) and without additives (control PN, control PG, and PNPG50) were evaluated by 45 in-home consumer panels (30 female, 15 male) before and after information on the health benefits of grape skins were provided. Information significantly increased the overall acceptability, overall aroma, flavor, and aftertaste of the infusions. The results obtained showed a clear tendency toward increased purchase intention (by 29%) when information on the health benefits of the tea infusion samples was provided to consumers. Interactions existed between gender/infusion samples and stage of information on the purchase intention. Females recorded a significant increase (by 53%) in purchase intention, whereas no change in the males' purchase intention was found after information was provided.

  7. An operon for production of bioactive gibberellin A4 phytohormone with wide distribution in the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola.

    Science.gov (United States)

    Nagel, Raimund; Turrini, Paula C G; Nett, Ryan S; Leach, Jan E; Verdier, Valérie; Van Sluys, Marie-Anne; Peters, Reuben J

    2017-05-01

    Phytopathogens have developed elaborate mechanisms to attenuate the defense response of their host plants, including convergent evolution of complex pathways for production of the GA phytohormones, which were actually first isolated from the rice fungal pathogen Gibberella fujikuroi. The rice bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) has been demonstrated to contain a biosynthetic operon with cyclases capable of producing the universal GA precursor ent-kaurene. Genetic (knock-out) studies indicate that the derived diterpenoid serves as a virulence factor for this rice leaf streak pathogen, serving to reduce the jasmonic acid-mediated defense response. Here the functions of the remaining genes in the Xoc operon are elucidated and the distribution of the operon in X. oryzae is investigated in over 100 isolates. The Xoc operon leads to production of the bioactive GA 4 , an additional step beyond production of the penultimate precursor GA 9 mediated by the homologous operons recently characterized from rhizobia. Moreover, this GA biosynthetic operon was found to be widespread in Xoc (> 90%), but absent in the other major X. oryzae pathovar. These results indicate selective pressure for production of GA 4 in the distinct lifestyle of Xoc, and the importance of GA to both fungal and bacterial pathogens of rice. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. International standards for monoclonal antibodies to support pre- and post-marketing product consistency: Evaluation of a candidate international standard for the bioactivities of rituximab.

    Science.gov (United States)

    Prior, Sandra; Hufton, Simon E; Fox, Bernard; Dougall, Thomas; Rigsby, Peter; Bristow, Adrian

    2018-01-01

    The intrinsic complexity and heterogeneity of therapeutic monoclonal antibodies is built into the biosimilarity paradigm where critical quality attributes are controlled in exhaustive comparability studies with the reference medicinal product. The long-term success of biosimilars will depend on reassuring healthcare professionals and patients of consistent product quality, safety and efficacy. With this aim, the World Health Organization has endorsed the need for public bioactivity standards for therapeutic monoclonal antibodies in support of current controls. We have developed a candidate international potency standard for rituximab that was evaluated in a multi-center collaborative study using participants' own qualified Fc-effector function and cell-based binding bioassays. Dose-response curve model parameters were shown to reflect similar behavior amongst rituximab preparations, albeit with some differences in potency. In the absence of a common reference standard, potency estimates were in poor agreement amongst laboratories, but the use of the candidate preparation significantly reduced this variability. Our results suggest that the candidate rituximab standard can support bioassay performance and improve data harmonization, which when implemented will promote consistency of rituximab products over their life-cycles. This data provides the first scientific evidence that a classical standardization exercise allowing traceability of bioassay data to an international standard is also applicable to rituximab. However, we submit that this new type of international standard needs to be used appropriately and its role not to be mistaken with that of the reference medicinal product.

  9. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis.

    Science.gov (United States)

    Lafarga, Tomas; O'Connor, Paula; Hayes, Maria

    2014-09-01

    Angiotensin-I-converting enzyme (ACE-I, EC 3.4.15.1), renin (EC 3.4.23.15), and dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) play key roles in the control of hypertension and the development of type-2 diabetes and other diseases associated with metabolic syndrome. The aim of this work was to utilize known in silico methodologies, peptide databases and software including ProtParam (http://web.expasy.org/protparam/), Basic Local Alignment Tool (BLAST), ExPASy PeptideCutter (http://web.expasy.org/peptide_cutter/) and BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/pl/biopep) to assess the release of potentially bioactive DPP-IV, renin and ACE-I inhibitory peptides from bovine and porcine meat proteins including hemoglobin, collagen and serum albumin. These proteins were chosen as they are found commonly in meat by-products such as bone, blood and low-value meat cuts. In addition, the bioactivities of identified peptides were confirmed using chemical synthesis and in vitro bioassays. The concentration of peptide required to inhibit the activity of ACE-I and DPP-IV by 50% was determined for selected, active peptides. Novel ACE-I and DPP-IV inhibitory peptides were identified in this study using both in silico analysis and a literature search to streamline enzyme selection for peptide production. These novel peptides included the ACE-I inhibitory tri-peptide Ile-Ile-Tyr and the DPP-IV inhibitory tri-peptide Pro-Pro-Leu corresponding to sequences f (182-184) and f (326-328) of both porcine and bovine serum albumin which can be released following hydrolysis with the enzymes papain and pepsin, respectively. This work demonstrates that meat proteins are a suitable resource for the generation of bioactive peptides and further demonstrates the usefulness of in silico methodologies to streamline identification and generation of bioactive peptides. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Contribution of crosslinking products in the flavour enhancer processing: the new concept of Maillard peptide in sensory characteristics of Maillard reaction systems.

    Science.gov (United States)

    Karangwa, Eric; Murekatete, Nicole; Habimana, Jean de Dieu; Masamba, Kingsley; Duhoranimana, Emmanuel; Muhoza, Bertrand; Zhang, Xiaoming

    2016-06-01

    In this study, the flavour-enhancing properties of the Maillard reaction products (MRPs) for different systems consisted of different peptides (sunflower, SFP; corn, CP and soyabean SP) with, xylose and cysteine were investigated. Maillard systems from peptides of sunflower, corn and soyabean with xylose and cysteine were designated as PXC, MCP and MSP, respectively. The Maillard systems were prepared at pH of 7.4 using temperature of 120C for 2 h. Results showed that all systems were significantly different in all sensory attributes. The highest scores for mouthfulness and continuity were observed for MCP with the lowest peptides distribution between 1000 and 5000 Da, known as Maillard peptide. This revealed that the MCP with the lowest Maillard peptide content had the strongest "Kokumi" effect compared to the other MRPsand demonstrated that "kokumi effect" of MRPs was contributed by not only the "Maillard peptide" defined by the molecular weight (1000-5000 Da). Results on sensory evaluation after fractionation of PXC followed by enzymatic hydrolysis showed no significant differences between PXC, P-PXC and their hydrolysates. This observation therefore confirmed that the presence of other contributors attributed to the "Kokumi" effect rather than the Maillard peptide. It can be deduced that the unhydrolyzed crosslinking products might have contributed to the "Kokumi" effect of MRPs. The structures of four probable crosslinking compounds were proposed and the findings have provided new insights in the sensory characteristics of xylose, cysteine and sunflower peptide MRPs.

  11. Optimisation of potassium chloride nutrition for proper growth, physiological development and bioactive component production in Prunella vulgaris L.

    Directory of Open Access Journals (Sweden)

    Yuhang Chen

    Full Text Available Prunella vulgaris L. is an important medicinal plant with a variety of pharmacological activities, but limited information is available about its response to potassium chloride (KCl supplementation. P. vulgaris seedlings were cultured in media with four different KCl levels (0, 1.00, 6.00 and 40.00 mM. Characteristics relating to the growth, foliar potassium, water and chlorophyll content, photosynthesis, transpiration, nitrogen metabolism, bioactive constituent concentrations and yield were determined after three months. The appropriate KCl concentration was 6.00 mM to result in the highest values for dry weight, shoot height, spica and root weight, spica length and number in P. vulgaris. The optimum KCl concentration resulted in a maximum net photosynthetic rate (Pn that could be associated with the highest chlorophyll content and fully open stomata conductance. A supply of surplus KCl resulted in a higher concentration of foliar potassium and negatively correlated with the biomass. Plants that were treated with the appropriate KCl level showed a greater capacity for nitrate assimilation. The Pn was significantly and positively correlated with nitrate reductase (NR and glutamine synthetase (GS activities and was positively correlated with leaf-soluble protein and free amino acid (FAA contents. Both KCl starvation (0 mM and high KCl (40.00 mM led to water loss through a high transpiration rate and low water absorption, respectively, and resulted in increased concentrations of ursolic acid (UA, oleanolic acid (OA and flavonoids, with the exception of rosmarinic acid (RA. Moreover, the optimum concentration of KCl significantly increased the yields of RA, UA, OA and flavonoids. Our findings suggested that significantly higher plant biomass; chlorophyll content; Pn; stronger nitrogen anabolism; lower RA, UA, OA and flavonoid accumulation; and greater RA, UA, OA and flavonoid yields in P. vulgaris could be expected in the presence of the

  12. Stability of Chokeberry Bioactive Polyphenols during Juice Processing and Stabilization of a Polyphenol-Rich Material from the By-Product

    Directory of Open Access Journals (Sweden)

    Diana Behsnilian

    2012-09-01

    Full Text Available Chokeberries (Aronia melanocarpa are nowadays believed to exhibit potential cardioprotective and antidiabetic effects principally due to their high content in bioactive phenolic compounds. The stability of the phenolic compounds was studied during different stages of a juice production line and a method for the valorization of pomace was evaluated. Samples were taken from a commercial juice production plant, extracted and analyzed for phenolic constituents and antioxidant potential. Prototypes of functional food ingredients were produced from the pomace by wet milling and micro-milling. Alongside juice processing, the contents of phenolic berry constituents did not vary to a great extent and the overall antioxidant activity increased by about 34%. A high quality juice and a by-product still rich in polyphenols resulted from the process. The phenolic compounds content and the overall antioxidant activity remained stable when milling and micro-milling the pomace. During coarse milling, extractability of total phenolic compounds increased significantly (40% to 50%. Nanosized materials with averaged particle sizes (x50,0 of about 90 nm were obtained by micro-milling. These materials showed significantly enhanced extractability of total phenolic compounds (25% and total phenolic acid (30%, as well as antioxidant activity (35%, with unchanged contents of total procyanidins and anthocyanins contents.

  13. Nutrient Optimization Using Response Surface Methodology for Simultaneous Biomass and Bioactive Compound Production by Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes).

    Science.gov (United States)

    Ofosu, Fred K; Yu, Xiaobin; Wang, Qiang; Li, Hanguang

    2016-01-01

    Due to the unpleasant side effects of long-term use of commercially available drugs, the discovery and development of natural therapeutic agents to prevent life-debilitating diseases is urgently needed. In the present study, the optimization of medium composition for maximum mycelial biomass and bioactive compounds production by Hericium erinaceus was studied using response surface methodology based on a central composite design. Under the optimal conditions and at a pH of 5.41 ± 0.28, the maximum mycelial biomass and exopolysaccharide production reached 25.0 ± 1.38 g/L and 1.73 ± 0.06 g/L, respectively, compared with 22.65 ± 0.10 g/L and 1.56 ± 0.23 g/L in the basal medium, after 7 days of cultivation. Furthermore, we report for the first time the production of adenosine, both intra- and extracellularly in submerged cultures of H. erinaceus. Although most of the adenosine detected existed in the culture medium, the highest intracellular and extracellular adenosine concentrations of 150.84 ± 1.87 mg/L and 142.48 ± 3.78 mg/L were achieved after 7 and 6 days of cultivation, respectively.

  14. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides.

    Science.gov (United States)

    Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E

    2018-03-01

    High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. Graphical Abstract ᅟ.

  15. 2,5-diketopiperazines in food and beverages: Taste and bioactivity.

    Science.gov (United States)

    Borthwick, Alan D; Da Costa, Neil C

    2017-03-04

    2,5-Diketopiperazines (2,5-DKPs) have been found to occur in a wide range of food and beverages, and display an array of chemesthetic effects (bitter, astringent, metallic, and umami) that can contribute to the taste of a variety of foods. These smallest cyclic peptides also occur as natural products and have been found to display a variety of bioactivities from antibacterial, antifungal, to anthroprotective effects and have the potential to be used in the development of new functional foods. An overview of the synthesis of these small chiral molecules and their molecular properties is presented. The occurrence, taste, and bioactivity of all simple naturally occurring 2,5-DKPs to date have been reviewed and those found in food from yeasts, fungi, and bacteria that have been used in food preparation or contamination, as well as metabolites of sweeteners and antibiotics added to food are also reviewed.

  16. Determination of bovine lactoferrin in dairy products by ultra-high performance liquid chromatography–tandem mass spectrometry based on tryptic signature peptides employing an isotope-labeled winged peptide as internal standard

    International Nuclear Information System (INIS)

    Zhang, Jingshun; Lai, Shiyun; Cai, Zengxuan; Chen, Qi; Huang, Baifen; Ren, Yiping

    2014-01-01

    Highlights: • A UHPLC–MS/MS method for quantification of bovine lactoferrin was developed. • Tryptic fragment LRPVAAEIYGTK was chosen as signature peptide of bovine lactoferrin. • A winged peptide containing isotopically-labeled signature peptide was designed as internal standard. • The method for determining lactoferrin does not discriminate between the different forms of lactoferrin. • Meet the growing demand to quantify bovine lactoferrin in different dairy products. - Abstract: A new and sensitive determination method was developed for bovine lactoferrin in dairy products including infant formulas based on the signature peptide by ultra high-performance liquid chromatography and triple-quadrupole tandem mass spectrometry under the multiple reaction monitoring mode. The simple pretreatment procedures included the addition of a winged peptide containing the isotope-labeled signature peptide as internal standard, followed by an enzymatic digestion with trypsin. The signature peptide was chosen and identified from the tryptic hydrolyzates of bovine lactoferrin by ultra high-performance liquid chromatography and quadrupole-time-of-flight tandem mass spectrometry based on sequence database search. Analytes were separated on an ACQUITY UPLC BEH 300 C18 column and monitored by MS/MS in seven minutes. Quantitative result bias due to matrix effect and tryptic efficiency was corrected through the use of synthetic isotope-labeled standards. The limit of detection and limit of quantification were 0.3 mg/100 g and 1.0 mg/100 g, respectively. Bovine lactoferrin within the concentration range of 10–1000 nmol L −1 showed a strong linear relationship with a linear correlation coefficient (r) of >0.998. The intra- and inter-day precision of the method were RSD < 6.5% and RSD < 7.1%, respectively. Excellent repeatability (RSD < 6.4%) substantially supported the application of this method for the determination of bovine lactoferrin in dairy samples. The present

  17. Determination of bovine lactoferrin in dairy products by ultra-high performance liquid chromatography–tandem mass spectrometry based on tryptic signature peptides employing an isotope-labeled winged peptide as internal standard

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingshun [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051 (China); Lai, Shiyun [Beingmate Research Institute, Beingmate Baby and Child Food Co., Ltd., Hangzhou 310007 (China); Cai, Zengxuan [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051 (China); Chen, Qi [Beingmate Research Institute, Beingmate Baby and Child Food Co., Ltd., Hangzhou 310007 (China); Huang, Baifen [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051 (China); Ren, Yiping, E-mail: renyiping@263.net [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051 (China)

    2014-06-01

    Highlights: • A UHPLC–MS/MS method for quantification of bovine lactoferrin was developed. • Tryptic fragment LRPVAAEIYGTK was chosen as signature peptide of bovine lactoferrin. • A winged peptide containing isotopically-labeled signature peptide was designed as internal standard. • The method for determining lactoferrin does not discriminate between the different forms of lactoferrin. • Meet the growing demand to quantify bovine lactoferrin in different dairy products. Abstract: A new and sensitive determination method was developed for bovine lactoferrin in dairy products including infant formulas based on the signature peptide by ultra high-performance liquid chromatography and triple-quadrupole tandem mass spectrometry under the multiple reaction monitoring mode. The simple pretreatment procedures included the addition of a winged peptide containing the isotope-labeled signature peptide as internal standard, followed by an enzymatic digestion with trypsin. The signature peptide was chosen and identified from the tryptic hydrolyzates of bovine lactoferrin by ultra high-performance liquid chromatography and quadrupole-time-of-flight tandem mass spectrometry based on sequence database search. Analytes were separated on an ACQUITY UPLC BEH 300 C18 column and monitored by MS/MS in seven minutes. Quantitative result bias due to matrix effect and tryptic efficiency was corrected through the use of synthetic isotope-labeled standards. The limit of detection and limit of quantification were 0.3 mg/100 g and 1.0 mg/100 g, respectively. Bovine lactoferrin within the concentration range of 10–1000 nmol L⁻¹ showed a strong linear relationship with a linear correlation coefficient (r) of >0.998. The intra- and inter-day precision of the method were RSD < 6.5% and RSD < 7.1%, respectively. Excellent repeatability (RSD < 6.4%) substantially supported the application of this method for the determination of bovine lactoferrin in dairy samples. The present method

  18. Annotating and Interpreting Linear and Cyclic Peptide Tandem Mass Spectra.

    Science.gov (United States)

    Niedermeyer, Timo Horst Johannes

    2016-01-01

    Nonribosomal peptides often possess pronounced bioactivity, and thus, they are often interesting hit compounds in natural product-based drug discovery programs. Their mass spectrometric characterization is difficult due to the predominant occurrence of non-proteinogenic monomers and, especially in the case of cyclic peptides, the complex fragmentation patterns observed. This makes nonribosomal peptide tandem mass spectra annotation challenging and time-consuming. To meet this challenge, software tools for this task have been developed. In this chapter, the workflow for using the software mMass for the annotation of experimentally obtained peptide tandem mass spectra is described. mMass is freely available (http://www.mmass.org), open-source, and the most advanced and user-friendly software tool for this purpose. The software enables the analyst to concisely annotate and interpret tandem mass spectra of linear and cyclic peptides. Thus, it is highly useful for accelerating the structure confirmation and elucidation of cyclic as well as linear peptides and depsipeptides.

  19. Venomics-Accelerated Cone Snail Venom Peptide Discovery

    Science.gov (United States)

    Himaya, S. W. A.

    2018-01-01

    Cone snail venoms are considered a treasure trove of bioactive peptides. Despite over 800 species of cone snails being known, each producing over 1000 venom peptides, only about 150 unique venom peptides are structurally and functionally characterized. To overcome the limitations of the traditional low-throughput bio-discovery approaches, multi-omics systems approaches have been introduced to accelerate venom peptide discovery and characterisation. This “venomic” approach is starting to unravel the full complexity of cone snail venoms and to provide new insights into their biology and evolution. The main challenge for venomics is the effective integration of transcriptomics, proteomics, and pharmacological data and the efficient analysis of big datasets. Novel database search tools and visualisation techniques are now being introduced that facilitate data exploration, with ongoing advances in related omics fields being expected to further enhance venomics studies. Despite these challenges and future opportunities, cone snail venomics has already exponentially expanded the number of novel venom peptide sequences identified from the species investigated, although most novel conotoxins remain to be pharmacologically characterised. Therefore, efficient high-throughput peptide production systems and/or banks of miniaturized discovery assays are required to overcome this bottleneck and thus enhance cone snail venom bioprospecting and accelerate the identification of novel drug leads. PMID:29522462

  20. Venomics-Accelerated Cone Snail Venom Peptide Discovery

    Directory of Open Access Journals (Sweden)

    S. W. A. Himaya

    2018-03-01

    Full Text Available Cone snail venoms are considered a treasure trove of bioactive peptides. Despite over 800 species of cone snails being known, each producing over 1000 venom peptides, only about 150 unique venom peptides are structurally and functionally characterized. To overcome the limitations of the traditional low-throughput bio-discovery approaches, multi-omics systems approaches have been introduced to accelerate venom peptide discovery and characterisation. This “venomic” approach is starting to unravel the full complexity of cone snail venoms and to provide new insights into their biology and evolution. The main challenge for venomics is the effective integration of transcriptomics, proteomics, and pharmacological data and the efficient analysis of big datasets. Novel database search tools and visualisation techniques are now being introduced that facilitate data exploration, with ongoing advances in related omics fields being expected to further enhance venomics studies. Despite these challenges and future opportunities, cone snail venomics has already exponentially expanded the number of novel venom peptide sequences identified from the species investigated, although most novel conotoxins remain to be pharmacologically characterised. Therefore, efficient high-throughput peptide production systems and/or banks of miniaturized discovery assays are required to overcome this bottleneck and thus enhance cone snail venom bioprospecting and accelerate the identification of novel drug leads.

  1. Production and characterization of polyclonal antibody against a synthetic peptide from β-actin protein

    Directory of Open Access Journals (Sweden)

    Nazila Amini

    2014-06-01

    Full Text Available Objective(s:Antibodies against actin, as one of the most widely studied structural and multifunctional housekeeping proteins in eukaryotic cells, are used as internal loading controls in western blot analyses. The aim of this study was to produce polyclonal antibody against a synthetic peptide derived from N-terminal region of β-actin protein to be used as a protein loading control in western blot and other assay systems. Materials and Methods: A synthetic peptide derived from β-actin protein was designed and conjugated to Keyhole limpet hemocyanin (KLH (and used to immunize a white New Zealand rabbit. The antibody was purified from serum by affinity chromatography column. The purity of the antibody was determined by SDS-PAGE and its ability to recognize the immunizing peptide was measured by ELISA. The reactivity of the antibody with β-actin protein in a panel of different cell lysates was then evaluated by western blot. In addition, the reactivity of the antibody with the corresponding protein was also evaluated by Immunocytochemistry and Immunohistochemistry in different samples. Results: The antibody could recognize the immunizing peptide in ELISA. It could also recognize            β-actin protein in western blot as well as in immunocytochemistry and immunohistochemistry. Conclusion: Our data suggest that this antibody may be used as an internal control in western blot analyses as well as in other immunological applications such as ELISA,immunocytochemistry and immunohistochemistry.

  2. CycloBranch: De Novo Sequencing of Nonribosomal Peptides from Accurate Product Ion Mass Spectra

    Czech Academy of Sciences Publication Activity Database

    Novák, Jiří; Lemr, Karel; Schug, K. A.; Havlíček, Vladimír

    2015-01-01

    Roč. 26, č. 10 (2015), s. 1780-1786 ISSN 1044-0305 R&D Projects: GA ČR(CZ) GAP206/12/1150 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : De novo sequencing * Nonribosomal peptides * Linear Subject RIV: CE - Biochemistry Impact factor: 3.031, year: 2015

  3. Prediction, production and characterization of post-translationally modified antimicrobial peptides

    NARCIS (Netherlands)

    van Heel, Auke Johan

    2016-01-01

    Pathogenic bacteria are rapidly becoming resistant to the currently used antibiotics therefore we need novel antibiotics, preferably with new mechanisms of action. One potential source are the so called antimicrobial peptides that are produced by many different organisms. To gain access to these

  4. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples.

    Science.gov (United States)

    Keller, Max; Kuhn, Kilian K; Einsiedel, Jürgen; Hübner, Harald; Biselli, Sabrina; Mollereau, Catherine; Wifling, David; Svobodová, Jaroslava; Bernhardt, Günther; Cabrele, Chiara; Vanderheyden, Patrick M L; Gmeiner, Peter; Buschauer, Armin

    2016-03-10

    Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.

  5. Production of Hypoallergenic Antibacterial Peptides from Defatted Soybean Meal in Membrane Bioreactor: A Bioprocess Engineering Study with Comprehensive Product Characterization

    Directory of Open Access Journals (Sweden)

    Arij it Nath

    2017-01-01

    Full Text Available Hypoallergenic antibacterial low-molecular-mass peptides were produced from defatted soybean meal in a membrane bioreactor. In the fi rst step, soybean meal proteins were digested with trypsin in the bioreactor, operated in batch mode. For the tryptic digestion of soybean meal protein, optimum initial soybean meal concentration of 75 g/L, temperature of 40 °C and pH=9.0 were determined. Aft er enzymatic digestion, low-molecular-mass peptides were purifi ed with cross-fl ow fl at sheet membrane (pore size 100 μm and then with tubular ceramic ultrafi ltration membrane (molecular mass cut-off 5 kDa. Eff ects of transmembrane pressure and the use of a static turbulence promoter to reduce the concentration polarization near the ultrafi ltration membrane surface were examined and their positive eff ects were proven. For the fi ltration with ultrafi ltration membrane, transmembrane pressure of 3•105 Pa with 3-stage discontinuous diafi ltration was found optimal. The molecular mass distribution of purifi ed peptides using ultrafi ltration membrane was determined by a liquid chromatography–electrospray ionization quadrupole time-of-fl ight mass spectrometry setup. More than 96 % of the peptides (calculated as relative frequency from the ultrafi ltration membrane permeate had the molecular mass M≤1.7 kDa and the highest molecular mass was found to be 3.1 kDa. The decrease of allergenic property due to the tryptic digestion and membrane fi ltration was determined by an enzyme-linked immunosorbent assay and it was found to exceed 99.9 %. It was also found that the peptides purifi ed in the ultrafi ltration membrane promoted the growth of Pediococcus acidilactici HA6111-2 and they possessed antibacterial activity against Bacillus cereus.

  6. Valorisation of tuna processing waste biomass for recovery of functional and antioxidant peptides using enzymatic hydrolysis and membrane fractionation process.

    Science.gov (United States)

    Saidi, Sami; Ben Amar, Raja

    2016-10-01

    The enzymatic hydrolysis using Prolyve BS coupled to membrane process (Ultrafiltration (UF) and nanofiltration (NF)) is a means of biotransformation of tuna protein waste to Tuna protein hydrolysate (TPH) with higher added values. This method could be an effective solution for the production of bioactive compounds used in various biotechnological applications and minimizing the pollution problems generated by the seafood processing industries. The amino acid composition, functional and antioxidant properties of produced TPH were evaluated. The results show that the glutamic acid, aspartic acid, glycine, alaline, valine and leucine were the major amino acids detected in the TPH profile. After membrane fractionation process, those major amino acids were concentrated in the NF retentate (NFR). The NFR and NF permeate (NFP) have a higher protein solubility (>95 %) when compared to TPH (80 %). Higher oil and water binding capacity were observed in TPH and higher emulsifying and foam stability was found in UF retentate. The NFP showed the highest DPPH radical scavenging activity (65 %). The NFR contained antioxidant amino acid (30.3 %) showed the highest superoxide radical and reducing power activities. The TPH showed the highest iron chelating activity (75 %) compared to other peptide fractions. The effect of the membrane fractionation on the molecular weight distribution of the peptide and their bioactivities was underlined. We concluded that the TPH is a valuable source of bioactive peptides and their peptide fractions may serve as useful ingredients for application in food industry and formulation of nutritional products.

  7. Application of Asian pumpkin (Cucurbita ficifolia) serine proteinase for production of biologically active peptides from casein.

    Science.gov (United States)

    Dąbrowska, Anna; Szołtysik, Marek; Babij, Konrad; Pokora, Marta; Zambrowicz, Aleksandra; Chrzanowska, Józefa

    2013-01-01

    The main objective of this study was to determine potential application of a serine proteinase derived from Asian pumpkin for obtaining biologically active peptides from casein. The course of casein hydrolysis by three doses of the enzyme (50, 150, 300 U/mg of protein) was monitored for 24 hours by the determinations of: hydrolysis degree DH (%), free amino group content (μmole Gly/g), RP HPLC peptide profiles and by polyacrylamide gel electrophoresis. In all hydrolyzates analyzed antioxidant activities were determined using three tests: the ability to reduce iron ions in FRAP test, the ability to scavenge free radicals in DPPH test, and Fe(2+) chelating activity. The antimicrobial activity of obtained peptide fractions was determined as the ability to inhibit the growth of Escherichia coli, Bacillus cereus and Pseudomonas fluorescens in a diffusion plate test. The deepest degradation, expressed as the DH [%] and the free amino group content (67% and 7528 µmole Gly/mg, respectively), was noted in samples hydrolyzed with 300 U/ml of enzyme for 24 hours, while in other samples the determined values were about three and two times lower. The results were in agreement with the peptide profiles obtained by RP HPLC. The highest antioxidative activities determined in all tests were seen for the casein hydrolysate obtained with 300 U/mg protein of serine proteinase after 24 h of reaction (2.15 µM Trolox/mg, 96.15 µg Fe(3+)/mg, 814.97 µg Fe(2+)/mg). Antimicrobial activity was presented in three preparations. In other samples no antimicrobial activity was detected.

  8. Nutrients and bioactive substances in aquatic organisms

    International Nuclear Information System (INIS)

    Devadasan, K.; Mukundan, M.K.; Antony, P.D.; Viswanathan Nair, P.G.; Perigreen, P.A.; Joseph, Jose

    1994-01-01

    The International Symposium on Nutrients and Bioactive Substances in Aquatic Organisms, was held during 16-17 September 1993 by the Society of Fisheries Technologists (India) to review the progress of research in this area in India and elsewhere. The papers presented indicate that scientific productivity in this field is substantial and that some of the bioactive materials isolated from aquatic organisms have potential application in human health, nutrition and therapy. The symposium focussed attention on toxicants, nutrients and bioactive substances in aquatic organisms in general, and also on pollution of aquatic systems due to thermal effluents. Paper relevant to INIS database is indexed separately. (M.K.V.)

  9. Functional characterization of a three-component regulatory system involved in quorum sensing-based regulation of peptide antibiotic production in Carnobacterium maltaromaticum

    Directory of Open Access Journals (Sweden)

    Quadri Luis EN

    2006-10-01

    Full Text Available Abstract Background Quorum sensing is a form of cell-to-cell communication that allows bacteria to control a wide range of physiological processes in a population density-dependent manner. Production of peptide antibiotics is one of the processes regulated by quorum sensing in several species of Gram-positive bacteria, including strains of Carnobacterium maltaromaticum. This bacterium and its peptide antibiotics are of interest due to their potential applications in food preservation. The molecular bases of the quorum sensing phenomenon controlling peptide antibiotic production in C. maltaromaticum remain poorly understood. The present study was aimed at gaining a deeper insight into the molecular mechanism involved in quorum sensing-mediated regulation of peptide antibiotic (bacteriocin production by C. maltaromaticum. We report the functional analyses of the CS (autoinducer-CbnK (histidine protein kinase-CbnR (response regulator three-component regulatory system and the three regulated promoters involved in peptide antibiotic production in C. maltaromaticum LV17B. Results CS-CbnK-CbnR system-dependent activation of carnobacterial promoters was demonstrated in both homologous and heterologous hosts using a two-plasmid system with a β-glucuronidase (GusA reporter read-out. The results of our analyses support a model in which the CbnK-CbnR two-component signal transduction system is necessary and sufficient to transduce the signal of the peptide autoinducer CS into the activation of the promoters that drive the expression of the genes required for production of the carnobacterial peptide antibiotics and the immunity proteins that protect the producer bacterium. Conclusions The CS-CbnK-CbnR triad forms a three-component regulatory system by which production of peptide antibiotics by C. maltaromaticum LV17B is controlled in a population density-dependent (or cell proximity-dependent manner. This regulatory mechanism would permit the bacterial

  10. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates.

    Science.gov (United States)

    Guan, Haining; Diao, Xiaoqin; Jiang, Fan; Han, Jianchun; Kong, Baohua

    2018-04-15

    Enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure conditions was studied and the effects of hydrolysis on antioxidant and antihypertensive activities were investigated. As observed, high hydrostatic pressure (80-300MPa) enhanced the hydrolytic efficiency of Corolase PP and decreased the surface hydrophobicity of the hydrolysates. Hydrolysates obtained at 200MPa for 4h had higher bioactivities (reducing power, ABTS radical-scavenging and ACE inhibitory activities). The molecular weight (MW) determination indicated that hydrolysis at high hydrostatic pressure could increase the production of small peptides (hydrostatic pressure combined with Corolase PP treatments could be used as a potential technology to produce bioactive peptides from soy protein isolate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Oxidative metabolism of 5-o-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria.

    Science.gov (United States)

    dos Santos, Michel D; Martins, Patrícia R; dos Santos, Pierre A; Bortocan, Renato; Iamamoto, Y; Lopes, Norberto P

    2005-09-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimic the various reactions of cytochrome P450 enzymes systems in the oxidation and oxygenation of various drugs and biologically active compounds. This paper reports an HPLC-MS-MS investigation of chlorogenic acid (CGA) oxidation by iodosylbenzene using iron(III) tetraphenylporphyrin chloride as catalyst. The oxidation products have been detected by sequential MS analyses. In addition, CGA was submitted to an in vitro metabolism assay employing isolated rat liver mitochondria. The single oxidized product obtained from mitochondrial metabolism corresponds to the major product formed by the metalloporphyrin-catalyzed reaction. These results indicate that biomimetic oxidation reactions, in addition to in vitro metabolism assays employing isolated organs/organelles, could replace some in vivo metabolism studies, thus minimizing the problems related to the use of a large number of living animals in experimental research.

  12. High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery.

    Science.gov (United States)

    Turchetto, Jeremy; Sequeira, Ana Filipa; Ramond, Laurie; Peysson, Fanny; Brás, Joana L A; Saez, Natalie J; Duhoo, Yoan; Blémont, Marilyne; Guerreiro, Catarina I P D; Quinton, Loic; De Pauw, Edwin; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large

  13. Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli.

    Directory of Open Access Journals (Sweden)

    Julie K Klint

    Full Text Available Disulfide-rich peptides are the dominant component of most animal venoms. These peptides have received much attention as leads for the development of novel therapeutic agents and bioinsecticides because they target a wide range of neuronal receptors and ion channels with a high degree of potency and selectivity. In addition, their rigid disulfide framework makes them particularly well suited for addressing the crucial issue of in vivo stability. Structural and functional characterization of these peptides necessitates the development of a robust, reliable expression system that maintains their native disulfide framework. The bacterium Escherichia coli has long been used for economical production of recombinant proteins. However, the expression of functional disulfide-rich proteins in the reducing environment of the E. coli cytoplasm presents a significant challenge. Thus, we present here an optimised protocol for the expression of disulfide-rich venom peptides in the periplasm of E. coli, which is where the endogenous machinery for production of disulfide-bonds is located. The parameters that have been investigated include choice of media, induction conditions, lysis methods, methods of fusion protein and peptide purification, and sample preparation for NMR studies. After each section a recommendation is made for conditions to use. We demonstrate the use of this method for the production of venom peptides ranging in size from 2 to 8 kDa and containing 2-6 disulfide bonds.

  14. In Vitro Human Umbilical Vein Endothelial Cells Response to Ionic Dissolution Products from Lithium-Containing 45S5 Bioactive Glass

    Science.gov (United States)

    Haro Durand, Luis A.; Vargas, Gabriela E.; Vera-Mesones, Rosa; Baldi, Alberto; Zago, María P.; Fanovich, María A.; Boccaccini, Aldo R.; Gorustovich, Alejandro

    2017-01-01

    Since lithium (Li+) plays roles in angiogenesis, the localized and controlled release of Li+ ions from bioactive glasses (BGs) represents a promising alternative therapy for the regeneration and repair of tissues with a high degree of vascularization. Here, microparticles from a base 45S5 BG composition containing (wt %) 45% SiO2, 24.5% Na2O, 24.5% CaO, and 6% P2O5, in which Na2O was partially substituted by 5% Li2O (45S5.5Li), were obtained. The results demonstrate that human umbilical vein endothelial cells (HUVECs) have greater migratory and proliferative response and ability to form tubules in vitro after stimulation with the ionic dissolution products (IDPs) of the 45S5.5Li BG. The results also show the activation of the canonical Wnt/β-catenin pathway and the increase in expression of proangiogenic cytokines insulin like growth factor 1 (IGF1) and transforming growth factor beta (TGFβ). We conclude that the IDPs of 45S5.5Li BG would act as useful inorganic agents to improve tissue repair and regeneration, ultimately stimulating HUVECs behavior in the absence of exogenous growth factors. PMID:28773103

  15. Purification and Biochemical Characterization of a Neutral Serine Protease from Trichoderma harzianum. Use in Antibacterial Peptide Production from a Fish By-Product Hydrolysate.

    Science.gov (United States)

    Aissaoui, Neyssene; Chobert, Jean-Marc; Haertlé, Thomas; Marzouki, M Nejib; Abidi, Ferid

    2017-06-01

    This study reports the purification and biochemical characterization of an extracellular neutral protease from the fungus Trichoderma harzianum. The protease (Th-Protease) was purified from the culture supernatant to homogeneity by a three-step procedure with 14.2% recovery and 9.06-fold increase in specific activity. The purified enzyme appeared as a single protein band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a molecular mass of about 20 kDa. The optimum pH and temperature for the proteolytic activity were pH 7.0 and 40 °C, respectively. The enzyme was then investigated for its potential application in the production of antibacterial peptides. Interestingly, Scorpaena notata viscera protein hydrolysate prepared using the purified serine protease (Th-Protease) showed remarkable in vitro antibacterial activities. A peptide with a high antibacterial activity was further purified by a three-step procedure, and its sequence was identified as FPIGMGHGSRPA. The result of this study offers a promising alternative to produce natural antibacterial peptides from fish protein hydrolysate.

  16. Enhancement of thermo-stability and product tolerance of Pseudomonas putida nitrile hydratase by fusing with self-assembling peptide.

    Science.gov (United States)

    Liu, Yi; Cui, Wenjing; Liu, Zhongmei; Cui, Youtian; Xia, Yuanyuan; Kobayashi, Michihiko; Zhou, Zhemin

    2014-09-01

    Self-assembling amphipathic peptides (SAPs) are the peptides that can spontaneously assemble into ordered nanostructures. It has been reported that the attachment of SAPs to the N- or C-terminus of an enzyme can benefit the thermo-stability of the enzyme. Here, we discovered that the thermo-stability and product tolerance of nitrile hydratase (NHase) were enhanced by fusing with two of the SAPs (EAK16 and ELK16). When the ELK16 was fused to the N-terminus of β-subunit, the resultant NHase (SAP-NHase-2) became an active inclusion body; EAK16 fused NHase in the N-terminus of β-subunit (SAP-NHase-1) and ELK16 fused NHase in the C-terminus of β-subunit (SAP-NHase-10) did not affect NHase solubility. Compared with the deactivation of the wild-type NHase after 30 min incubation at 50°C, SAP-NHase-1, SAP-NHase-2 and SAP-NHase-10 retained 45%, 30% and 50% activity; after treatment in the buffer containing 10% acrylamide, the wild-type retained 30% activity, while SAP-NHase-1, SAP-NHase-2 and SAP-NHase-10 retained 52%, 42% and 55% activity. These SAP-NHases with enhanced thermo-stability and product tolerance would be helpful for further industrial applications of the NHase. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...... in decompensated disease. In contrast, their biological effects on the cerebral hemodynamics are poorly understood. In this mini-review, we summarize the hemodynamic effects of the natriuretic peptides with a focus on the cerebral hemodynamics. In addition, we will discuss its potential implications in diseases...... where alteration of the cerebral hemodynamics plays a role such as migraine and acute brain injury including stroke. We conclude that a possible role of the peptides is feasible as evaluated from animal and in vitro studies, but more research is needed in humans to determine the precise response...

  18. Generation of soluble microbial products by bio-activated carbon filter during drinking water advanced treatment and its influence on spectral characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Hong, E-mail: song.wei0326@163.com [National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Chen, Xin, E-mail: 742702437@qq.com [National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang, Dong, E-mail: zhdongtj7021@sina.com [National Engineering Research Center of Urban Water Resources, Shanghai National Engineering Research Center of Urban Water Resources Co. Ltd, Shanghai 200082 (China); Chen, Hong-bin, E-mail: hbctxc@tongji.edu.cn [National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2016-11-01

    In order to improve our understanding of bio-activated carbon (BAC) filter, the water quality of influent and effluent treated with BAC in a drinking water treatment plant (DWTP) of Shanghai during 2015 was valued. Combining the results from UV{sub 254}, SUVA{sub 254}, dissolved organic carbon (DOC) and scanning electron microscopic (SEM), it is found that performance of BAC treatment will be affected by characteristics of activated carbon (AC), which is relevant to the type of activated carbon (including shape and operating time) in this study. Fluorescence excitation–emission matrix (FEEM) shows that the humification index (HIX) and index of recent autochthonous contribution (BIX) is a reliable indicator to descript the variation of dissolved organic matter (DOM) during BAC process. The pattern of variation in BIX and HIX implies that soluble microbial products (SMPs) are formed and humic-like substances are removed during BAC treatment, which is also confirmed by the change of peaks of FEEM in BAC effluent. Large, positive correlations between SUVA{sub 254} and disinfection by-products formation potential yield (DBPFP yield) demonstrate that UV-absorbing DOM is directly related to the generation of DBPs. Poor correlations of HIX with DBPFP suggest that non-humic substances with UV-absorbing properties play an important role in the generation of DBPs in water with low SUVA{sub 254}. Finally, strong but negative correlations between BIX and DBPFP suggest that vigorous microbial metabolism of BAC results in a decrease in DBPFP. However, the DBPFP yield will be enhanced for the generation of SMPs by BAC, especially in summer. - Highlights: • SMPs can be produced by BAC during drinking water advanced treatment. • BAC can reduce DBPFP, while there are risks associated with increasing DBPFP yield. • SUVA{sub 254} is strongly correlated with the DBPFP yields. • BIX is strongly correlated with DBPFP and THMFP, but weakly with HAAFP.

  19. Generation of soluble microbial products by bio-activated carbon filter during drinking water advanced treatment and its influence on spectral characteristics

    International Nuclear Information System (INIS)

    Shen, Hong; Chen, Xin; Zhang, Dong; Chen, Hong-bin

    2016-01-01

    In order to improve our understanding of bio-activated carbon (BAC) filter, the water quality of influent and effluent treated with BAC in a drinking water treatment plant (DWTP) of Shanghai during 2015 was valued. Combining the results from UV_2_5_4, SUVA_2_5_4, dissolved organic carbon (DOC) and scanning electron microscopic (SEM), it is found that performance of BAC treatment will be affected by characteristics of activated carbon (AC), which is relevant to the type of activated carbon (including shape and operating time) in this study. Fluorescence excitation–emission matrix (FEEM) shows that the humification index (HIX) and index of recent autochthonous contribution (BIX) is a reliable indicator to descript the variation of dissolved organic matter (DOM) during BAC process. The pattern of variation in BIX and HIX implies that soluble microbial products (SMPs) are formed and humic-like substances are removed during BAC treatment, which is also confirmed by the change of peaks of FEEM in BAC effluent. Large, positive correlations between SUVA_2_5_4 and disinfection by-products formation potential yield (DBPFP yield) demonstrate that UV-absorbing DOM is directly related to the generation of DBPs. Poor correlations of HIX with DBPFP suggest that non-humic substances with UV-absorbing properties play an important role in the generation of DBPs in water with low SUVA_2_5_4. Finally, strong but negative correlations between BIX and DBPFP suggest that vigorous microbial metabolism of BAC results in a decrease in DBPFP. However, the DBPFP yield will be enhanced for the generation of SMPs by BAC, especially in summer. - Highlights: • SMPs can be produced by BAC during drinking water advanced treatment. • BAC can reduce DBPFP, while there are risks associated with increasing DBPFP yield. • SUVA_2_5_4 is strongly correlated with the DBPFP yields. • BIX is strongly correlated with DBPFP and THMFP, but weakly with HAAFP.

  20. Production of the bioactive compounds violacein and indolmycin is conditional in a maeA mutant of Pseudoalteromonas luteoviolacea S4054 lacking the malic enzyme

    Directory of Open Access Journals (Sweden)

    Mariane S. Thøgersen

    2016-09-01

    Full Text Available It has previously been reported that some strains of the marine bacterium Pseudoalteromonas luteoviolacea produce the purple bioactive pigment violacein as well as the antibiotic compound indolmycin, hitherto only found in Streptomyces. The purpose of the present study was to determine the relative role of each of these two compounds as antibacterial compounds in P. luteoviolacea S4054. Using Tn10 transposon mutagenesis, a mutant strain that was significantly reduced in violacein production in mannose-containing substrates was created. Full genome analyses revealed that the vio-biosynthetic gene cluster was not interrupted by the transposon; instead the insertion was located to the maeA gene encoding the malic enzyme. Supernatant of the mutant strain inhibited Vibrio anguillarum and Staphylococcus aureus in well diffusion assays and in MIC assays at the same level or even more pronounced as the wild type strain. The mutant strain killed V. anguillarum in co-culture experiments as efficiently as the wild type. Using UHPLC-UV/Vis analyses, we quantified violacein and indolmycin, and the mutant strain only produced 7-10% the amount of violacein compared to the wildtype strain. In contrast, the amount of indolmycin produced by the mutant strain was about 300% that of the wildtype. Since inhibition of V. anguillarum and S. aureus by the mutant strain was similar to that of the wild type, it is concluded that violacein is not the major antibacterial compound in P. luteoviolacea. We furthermore propose that production of violacein and indolmycin may be metabolically linked and that yet unidentified antibacterial compound(s may be play a role in the antibacterial activity of P. luteoviolacea.

  1. Second messenger production in avian medullary nephron segments in response to peptide hormones.

    Science.gov (United States)

    Goldstein, D L; Reddy, V; Plaga, K

    1999-03-01

    We examined the sites of peptide hormone activation within medullary nephron segments of the house sparrow (Passer domesticus) kidney by measuring rates of hormone-induced generation of cyclic nucleotide second messenger. Thin descending limbs, thick ascending limbs, and collecting ducts had baseline activity of adenylyl cyclase that resulted in cAMP accumulation of 207 +/- 56, 147 +/- 31, and 151 +/- 41 fmol. mm-1. 30 min-1, respectively. In all segments, this activity increased 10- to 20-fold in response to forskolin. Activity of adenylyl cyclase in the thin descending limb was stimulated approximately twofold by parathyroid hormone (PTH) but not by any of the other hormones tested [arginine vasotocin (AVT), glucagon, atrial natriuretic peptide (ANP), or isoproterenol, each at 10(-6) M]. Thick ascending limb was stimulated two- to threefold by both AVT and PTH; however, glucagon and isoproterenol had no effect, and ANP stimulated neither cAMP nor cGMP accumulation. Adenylyl cyclase activity in the collecting duct was stimulated fourfold by AVT but not by the other hormones; likewise, ANP did not stimulate cGMP accumulation in this segment. These data support a tubular action of AVT and PTH in the avian renal medulla.

  2. Production of the blood pressure lowing peptides from brown alga ( Undaria pinnatifida)

    Science.gov (United States)

    Minoru, Sato; Takashi, Oba; Takao, Hosokawa; Toshiyasu, Yamaguchi; Toshiki, Nakano; Tadao, Saito; Koji, Muramoto; Takashi, Kahara; Katsura, Funayama; Akio, Kobayashi; Takahisa, Nakano

    2005-07-01

    Brown alga ( Undaria pinnatifida) was treated with alginate lyase and hydrolyzed using 17 kinds of proteases and the inhibitory activity of the hydrolysates for the angiotensin-I-converting enzyme (ACE) was measured. Four hydrolysates with potent ACE-inhibitory activity were administered singly and orally to spontaneously hypertensive rats (SHRs). The systolic blood pressure of SHRs decreases significantly after single oral administration of the brown alga hydrolysates by protease S ‘Amano’ (from Bacillus stearothermophilus) at the concentration of 10 (mg protein) (kg body weight)-1. In the 17 weeks of feeding experiment, 7-week-old SHRs were fed standard diet supplemented with the brown alga hydrolysates for 10 weeks. In SHRs fed 1.0 and 0.1% brown alga hydrolysates, elevating of systolic bloodpressure was significantly suppressed for 7 weeks. To elucidate the active components, the brown alga hydrolysates were fractionated by 1-butanol extraction and HPLC on a reverse-phase column. Seven kinds of ACE-inhibitory peptides were isolated and identified by amino acid composition analysis, sequence analysis, and LC-MS with the results Val-Tyr, Ile-Tyr, Ala-Trp, Phe-Tyr, Val-Trp, Ile-Trp, and Leu-Trp. Each peptide was determined to have an antihypertensive effect after a single oral administration in SHRs. The brown alga hydrolysates were also confirmed to decrease the blood pressure in humans.

  3. The role of peptides derived from Spirulina maxima in downregulation of FcεRI-mediated allergic responses.

    Science.gov (United States)

    Vo, Thanh-Sang; Ngo, Dai-Hung; Kang, Kyong-Hwa; Park, Sun-Joo; Kim, Se-Kwon

    2014-11-01

    Spirulina has been found suitable for use as a bioactive additive. It is an excellent source of protein that can be hydrolyzed into bioactive peptides. Two peptides LDAVNR (P1) and MMLDF (P2) purified from enzymatic hydrolysate of Spirulina maxima have been reported to be effective against early atherosclerotic responses. In this study, the intracellular mechanism involved in the downregulation of these peptides on high-affinity IgE receptor-mediated allergic reaction was further investigated. RBL-2H3 mast cells were pretreated with P1 or P2 and sensitized with dinitrophenyl-specific IgE antibody before stimulation of antigen dinitrophenyl-BSA. It was revealed that P1 and P2 exhibited significant inhibition on mast-cell degranulation via decreasing histamine release and intracellular Ca(2+) elevation. The inhibitory activity of P1 was found due to blockade of calcium- and microtubule-dependent signaling pathways. Meanwhile, the inhibition of P2 was involved in suppression of phospholipase Cγ activation and reactive oxygen species production. Moreover, the suppressive effects of P1 and P2 on generation of IL-4 were evidenced via depression of nuclear factor-κB translocation. These findings indicate that peptides P1 and P2 from S. maxima may be promising candidates of antiallergic therapeutics, contributing to development of bioactive food ingredients for amelioration of allergic diseases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents.

    Science.gov (United States)

    Vella, Filomena Monica; Laratta, Bruna; La Cara, Francesco; Morana, Alessandra

    2018-05-01

    The underutilised forest and industrial biomass of Castanea sativa (Mill.) is generally discarded during post-harvest and food processing, with high impact on environmental quality. The searching on alternative sources of natural antioxidants from low-cost supplies, by methods involving environment-friendly techniques, has become a major goal of numerous researches in recent times. The aim of the present study was the set-up of a biomolecules extraction procedure from chestnut leaves, burs and shells and the assessing of their potential antioxidant activity. Boiling water was the best extraction solvent referring to polyphenols from chestnut shells and burs, whereas the most efficient for leaves resulted 60% ethanol at room temperature. Greatest polyphenol contents were 90.35, 60.01 and 17.68 mg gallic acid equivalents g -1 in leaves, burs and shells, respectively. Moreover, flavonoids, tannins and antioxidant activity were assessed on the best extract obtained from each chestnut by-product.

  5. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  6. Antagonistic interactions and production of halocin antimicrobial peptides among extremely halophilic prokaryotes isolated from the solar saltern of Sfax, Tunisia.

    Science.gov (United States)

    Ghanmi, Fadoua; Carré-Mlouka, Alyssa; Vandervennet, Manon; Boujelben, Ines; Frikha, Doniez; Ayadi, Habib; Peduzzi, Jean; Rebuffat, Sylvie; Maalej, Sami

    2016-05-01

    Thirty-five extremely halophilic microbial strains isolated from crystallizer (TS18) and non-crystallizer (M1) ponds in the Sfax solar saltern in Tunisia were examined for their ability to exert antimicrobial activity. Antagonistic assays resulted in the selection of eleven strains that displayed such antimicrobial activity and they were further characterized. Three cases of cross-domain inhibition (archaea/bacteria or bacteria/archaea) were observed. Four archaeal strains exerted antimicrobial activity against several other strains. Three strains, for which several lines of evidence suggested the antimicrobial activity was, at least in part, due to peptide/protein agents (Halobacterium salinarum ETD5, Hbt. salinarum ETD8, and Haloterrigena thermotolerans SS1R12), were studied further. Optimal culture conditions for growth and antimicrobial production were determined. Using DNA amplification with specific primers, sequencing and RT-PCR analysis, Hbt. salinarum ETD5 and Hbt. salinarum ETD8 were shown to encode and express halocin S8, a hydrophobic antimicrobial peptide targeting halophilic archaea. Although the gene encoding halocin H4 was amplified from the genome of Htg. thermotolerans SS1R12, no transcript could be detected and the antimicrobial activity was most likely due to multiple antimicrobial compounds. This is also the first report that points to four different strains isolated from different geographical locations with the capacity to produce identical halocin S8 proteins.

  7. HSQC-TOCSY Fingerprinting for Prioritization of Polyketide- and Peptide-Producing Microbial Isolates.

    Science.gov (United States)

    Buedenbender, Larissa; Habener, Leesa J; Grkovic, Tanja; Kurtböke, D İpek; Duffy, Sandra; Avery, Vicky M; Carroll, Anthony R

    2018-04-27

    Microbial products are a promising source for drug leads as a result of their unique structural diversity. However, reisolation of already known natural products significantly hampers the discovery process, and it is therefore important to incorporate effective microbial isolate selection and dereplication protocols early in microbial natural product studies. We have developed a systematic approach for prioritization of microbial isolates for natural product discovery based on heteronuclear single-quantum correlation-total correlation spectroscopy (HSQC-TOCSY) nuclear magnetic resonance profiles in combination with antiplasmodial activity of extracts. The HSQC-TOCSY experiments allowed for unfractionated microbial extracts containing polyketide and peptidic natural products to be rapidly identified. Here, we highlight how this approach was used to prioritize extracts derived from a library of 119 ascidian-associated actinomycetes that possess a higher potential to produce bioactive polyketides and peptides.

  8. HIF-1α is essential for effective PMN bacterial killing, antimicrobial peptide production and apoptosis in Pseudomonas aeruginosa keratitis.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Berger

    Full Text Available Hypoxia-inducible factor (HIF-1α, is a transcription factor that controls energy metabolism and angiogenesis under hypoxic conditions, and a potent regulator of innate immunity. The studies described herein examined the role of HIF-1α in disease resolution in BALB/c (resistant, cornea heals mice after ocular infection with Pseudomonas (P. aeruginosa. Furthermore, the current studies focused on the neutrophil (PMN, the predominant cell infiltrate in keratitis. Using both siRNA and an antagonist (17-DMAG, the role of HIF-1α was assessed in P. aeruginosa-infected BALB/c mice. Clinical score and slit lamp photography indicated HIF-1α inhibition exacerbated disease and corneal destruction. Real time RT-PCR, immunohistochemistry, ELISA, Greiss and MPO assays, bacterial load, intracellular killing, phagocytosis and apoptosis assays further tested the regulatory role of HIF-1α. Despite increased pro-inflammatory cytokine expression and increased MPO levels after knocking down HIF-1α expression, in vivo studies revealed a decrease in NO production and higher bacterial load. In vitro studies using PMN provided evidence that although inhibition of HIF-1α did not affect phagocytosis, both bacterial killing and apoptosis were significantly affected, as was production of antimicrobial peptides. Overall, data provide evidence that inhibition of HIF-1α converts a normally resistant disease response to susceptible (corneal thinning and perforation after induction of bacterial keratitis. Although this inhibition does not appear to affect PMN transmigration or phagocytosis, both in vivo and in vitro approaches indicate that the transcriptional factor is essential for effective bacterial killing, apoptosis and antimicrobial peptide production.

  9. Lithium chloride increases the production of amyloid-beta peptide independently from its inhibition of glycogen synthase kinase 3.

    Science.gov (United States)

    Feyt, Christine; Kienlen-Campard, Pascal; Leroy, Karelle; N'Kuli, Francisca; Courtoy, Pierre J; Brion, Jean-Pierre; Octave, Jean-Noël

    2005-09-30

    Glycogen synthase kinase 3 (GSK3) is able to phosphorylate tau at many sites that are found to be phosphorylated in paired helical filaments in Alzheimer disease. Lithium chloride (LiCl) efficiently inhibits GSK3 and was recently reported to also decrease the production of amyloid-beta peptide (Abeta) from its precursor, the amyloid precursor protein. Therefore, lithium has been proposed as a combined therapeutic agent, inhibiting both the hyperphosphorylation of tau and the production of Abeta. Here, we demonstrate that the inhibition of GSK3 by LiCl induced the nuclear translocation of beta-catenin in Chinese hamster ovary cells and rat cultured neurons, in which a decrease in tau phosphorylation was observed. In both cellular models, a nontoxic concentration of LiCl increased the production of Abeta by increasing the beta-cleavage of amyloid precursor protein, generating more substrate for an unmodified gamma-secretase activity. SB415286, another GSK3 inhibitor, induced the nuclear translocation of beta-catenin and slightly decreased Abeta production. It is concluded that the LiCl-mediated increase in Abeta production is not related to GSK3 inhibition.

  10. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  11. Discovery of Bioactive Metabolites in Biofuel Microalgae That Offer Protection against Predatory Bacteria

    Directory of Open Access Journals (Sweden)

    Christopher eBagwell

    2016-04-01

    Full Text Available Microalgae could become an important resource for addressing increasing global demand for food, energy, and commodities while helping to reduce atmospheric greenhouse gases. Even though Chlorophytes are generally regarded safe for human consumption, there is still much we do not understand about the metabolic and biochemical potential of microscopic algae. The aim of this study was to evaluate biofuel candidate strains of Chlorella and Scenedesmus for the potential to produce bioactive metabolites when grown under nutrient depletion regimes intended to stimulate production of triacylglycerides (TAG. Strain specific combinations of macro- and micro-nutrient restricted growth media did stimulate neutral lipid accumulation by microalgal cultures. However, cultures that were restricted for iron consistently and reliably tested positive for cytotoxicity by in vivo bioassays. The addition of iron back to these cultures resulted in the disappearance of the bioactive components by LC/MS fingerprinting and loss of cytotoxicity by in vivo bioassay. Incomplete NMR characterization of the most abundant cytotoxic fractions suggested that small molecular weight peptides and glycosides could be responsible for Chlorella cytotoxicity. Experiments were conducted to determine if the bioactive metabolites induced by Fe-limitation in Chlorella sp. cultures would elicit protection against Vampirovibrio chlorellavorus, an obligate predator of Chlorella. Introduction of V. chlorellavorus resulted in a 72% decrease in algal biomass in the experimental controls after 7 days. Conversely, only slight losses of algal biomass were measured for the iron limited Chlorella cultures (0 - 9 %. This study demonstrates a causal linkage between iron bioavailability and bioactive metabolite production in strains of Chlorella and Scenedesmus. Further study of this phenomenon could contribute to the development of new strategies to extend algal production cycles in open, outdoor

  12. Alpha radioisotopes Ac-225 and Bi-213: a production and labelling of antibodies and peptides for clinical use

    Energy Technology Data Exchange (ETDEWEB)

    Bruchertseifer, Frank, E-mail: frank.bruchertseifer@ec.europa.eu [European Commission, Joint Research Centre, Karlsruhe (Germany)

    2017-07-01

    Full text: In various preclinical and clinical works the potential of the alpha emitters {sup 225}Ac and {sup 213}Bi as therapeutic radionuclides for application in targeted alpha therapy of cancer and infectious diseases was demonstrated. Both alpha emitters are available with high specific activity from established radionuclide generators. Their favorable chemical and physical properties have led to the conduction of a large number of preclinical studies and several clinical trials, demonstrating the feasibility, safety and therapeutic efficacy of targeted alpha therapy with {sup 225}Ac and {sup 213}Bi. This presentation will give an overview about the methods for the production of {sup 225}Ac and {sup 213}Bi, the {sup 225}Ac/{sup 213}Bi radionuclide generator systems, labelling of peptides and antibodies with {sup 225}Ac and {sup 213}Bi and relevant in vivo and in vitro works. (author)

  13. Rat health status affects bioavailability, target tissue levels, and bioactivity of grape seed flavanols

    NARCIS (Netherlands)

    Margalef, M.; Pons, Z.; Iglesias-Carres, L.; Quinones, M.; Bravo, F.I.; Arola-Arnal, A.; Muguerza, B.

    2017-01-01

    SCOPE: Studying the flavanol metabolism is essential to identify bioactive compounds, as beneficial effects of flavanols have been attributed to their metabolic products. However, host-related factors, including pathological conditions, may affect flavanol metabolism and, thus, their bioactivity.

  14. Advances on Bioactive Polysaccharides from Medicinal Plants.

    Science.gov (United States)

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  15. Enteral peptide formulas inhibit radiation induced enteritis and apoptosis in intestinal epithelial cells and suppress the expression and function of Alzheimer's and cell division control gene products

    International Nuclear Information System (INIS)

    Cope, F.O.; Issinger, O.G.; McArdle, A.H.; Shapiro, J.; Tomei, L.D.

    1991-01-01

    Studies have shown that patients receiving enteral peptide formulas prior to irradiation have a significantly reduced incidence of enteritis and express a profound increase in intestinal cellularity. Two conceptual approaches were taken to describe this response. First was the evaluation in changes in programmed intestinal cell death and secondly the evaluation of a gene product controlling cell division cycling. This study provided a relationship between the ratio of cell death to cell formulations. The results indicate that in the canine and murine models, irradiation induces expression of the Alzheimer's gene in intestinal crypt cells, while the incidence of apoptosis in apical cells is significantly increased. The use of peptide enteral formulations suppresses the expression of the Alzheimer's gene in crypt cells, while apoptosis is eliminated in the apical cells of the intestine. Concomitantly, enteral peptide formulations suppress the function of the CK-II gene product in the basal and baso-lateral cells of the intestine. These data indicate that although the mitotic index is significantly reduced in enterocytes, this phenomenon alone is not sufficient to account for the peptide-induced radio-resistance of the intestine. The data also indicate a significant reduction of normal apoptosis in the upper lateral and apical cells of the intestinal villi. Thus, the ratio of cell death to cell replacement is significantly decreased resulting in an increase in villus height and hypertrophy of the apical villus cells. Thus, peptide solutions should be considered as an adjunct treatment both in radio- and chemotherapy

  16. Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-kappaB activation, and induces human osteoblastic and chondrocytic differentiation.

    Science.gov (United States)

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Se-Kwon

    2010-03-30

    Ongoing efforts to search for naturally occurring, bioactive substances for the amelioration of arthritis have led to the discovery of natural products with substantial bioactive properties. The seahorse (Hippocampus kuda Bleeler), a telelost fish, is one source of known beneficial products, yet has not been utilized for arthritis research. In the present work, we have purified and characterized a bioactive peptide from seahorse hydrolysis. Among the hydrolysates tested, pronase E-derived hydrolysate exhibited the highest alkaline phosphatase (ALP) activity, a phenotype marker of osteoblast and chondrocyte differentiation. After its separation from the hydrolysate by several purification steps, the peptide responsible for the ALP activity was isolated and its sequence was identified as LEDPFDKDDWDNWK (1821Da). We have shown that the isolated peptide induces differentiation of osteoblastic MG-63 and chondrocytic SW-1353 cells by measuring ALP activity, mineralization and collagen synthesis. Our results indicate that the peptide acts during early to late stages of differentiation in MG-63 and SW-1353 cells. We also assessed the concentration dependence of the peptide's inhibition of MMP (-1, -3 and -13), iNOS and COX-2 expression after treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), a common form of phorbol ester. The peptide also inhibited NO production in MG-63 and SW-1353 cells. To elucidate the mechanisms by which the peptide acted, we examined its effects on TPA-induced MAPKs/NF-kappaB activation and determined that the peptide treatment significantly reduced p38 kinase/NF-kappaB in MG-63 cells and MAPKs/NF-kappaB in SW-1353 cells.

  17. Role of calcium in effects of atrial natriuretic peptide on aldosterone production in adrenal glomerulosa cells

    International Nuclear Information System (INIS)

    Chartier, L.; Schiffrin, E.L.

    1987-01-01

    Atrial natriuretic peptide (ANP) inhibits the stimulation of aldosterone secretion by isolated adrenal glomerulosa cells produced by angiotensin II (ANG II), ACTH, and potassium. The effect of ANP on the dose-response curve of aldosterone stimulated by ANG II, ACTH, and potassium on isolated rat adrenal glomerulosa cells was studied. In the presence of ANP the maximal response of aldosterone output stimulated by ANG II or potassium decreased and the half-maximum (EC 50 ) of the response to ACTH was displaced to the right. Because these effects resemble those of calcium-channel blockers, the authors investigated the effect of different concentrations of nifedipine, a dihydropyridine calcium-channel blocker, on the dose-response curve of aldosterone stimulated by ANG II, ACTH, and potassium. Nifedipine produced effects similar to ANP. The maximal response of aldosterone stimulated by ANG II and potassium was decreased and the dose-response curve to ACTH was displaced to the right. ANP decreased the maximal response of aldosterone to the dihydropyridine derivative BAY K8644, a calcium-channel activator, without change in its EC 50 . In contrast, nifedipine displaced the dose-response curve to BAY K8644 to the right as expected of a competitive inhibitor. The effect of ANP and nifedipine on basal and stimulated 45 Ca influx into isolated rat adrenal glomerulosa cells was studied. ANP may act on the rat adrenal glomerulosa cells at least in part by interference with calcium entry

  18. Heterologous production of non-ribosomal peptide LLD-ACV in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; Chen, Xiao; Huang, Le

    2009-01-01

    production of ACV was observed. To improve ACV synthesis, several factors were investigated. Codon optimization of the 5′ end of pcbAB did not significantly increase ACV production. However, a 30-fold enhancement was achieved by lowering the cultivation temperature from 30 to 20 °C. When ACVS and PPTase...... encoding genes were integrated into the yeast genome, a 6-fold decrease in ACV production was observed indicating that gene copy number was one of the rate-limiting factors for ACV production in yeast....

  19. Integrated automation for continuous high-throughput synthetic chromosome assembly and transformation to identify improved yeast strains for industrial production of peptide sweetener brazzein

    Science.gov (United States)

    Production and recycling of recombinant sweetener peptides in industrial biorefineries involves the evaluation of large numbers of genes and proteins. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly synthesize, clone, and express heterologous gene ope...

  20. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas

    DEFF Research Database (Denmark)

    Holst, J J; Poulsen, Steen Seier

    1986-01-01

    We developed specific antibodies and RIAs for glucagon-like peptides 1 and 2 (GLP-1 and GLP-2), two predicted products of the glucagon gene, and studied the occurrence, nature, and secretion of immunoreactive GLP-1 and GLP-2 in pig pancreas and small intestine. Immunoreactive GLP-1 and GLP-2 were...

  1. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  2. Comparative metabolism of [14C]benzene to excretable products and bioactivation to DNA-binding derivatives in maternal and neonatal mice

    International Nuclear Information System (INIS)

    Iba, M.M.; Ghosal, A.; Snyder, R.

    2001-01-01

    Lactating adult female mice treated with a single dose of 880 mg/kg i.p. [ 14 C]benzene, and their 2-day-old sucklings similarly treated or nursed by their treated dams were compared in terms of their ability to metabolize benzene to urinary products or reactive intermediates as assessed by covalently-bound benzene derivatives in whole blood or liver DNA. Six metabolite fractions were identified in the urine of sucklings by high performance liquid chromatographic (HPLC) analysis at 5 h following intraperitoneal (direct) treatment with benzene. Three of the metabolite fractions co-chromatographed with authentic phenol, phenyl glucuronide, and muconic acid, and contributed 11, 6.9 and 0.6%, respectively, to the total urinary benzene metabolites. Two of the fractions were unidentified. The sixth and most polar fraction consisted of multiple metabolites, 21% of which were conjugates, and accounted for 72% of the total urinary metabolites. A similar metabolite profile was observed in 24-h urine samples from treated dams with the exception that one of the unidentified fractions in the sucklings was absent and levels of the metabolites were quantitatively higher than those observed in sucklings 5 h following their treatment with benzene. Furthermore, 78% of the most polar fraction from the dams consisted of conjugates compared with 21% of that from the sucklings. The metabolite pattern in urine of sucklings nursed by treated dams was qualitatively similar to, but quantitatively different from the pattern in treated dams. Five hours following intraperitoneal treatment with benzene, covalent binding of the compound to DNA (expressed as pmol benzene equivalents/mg DNA) in sucklings was slightly higher in whole blood (1.15±0.07) than in liver (0.77±0.07), whereas in the dam, it was slightly lower in whole blood (0.88±0.48) than in liver (1.63±0.61). Twenty four hours following benzene exposure in sucklings of benzene-treated dams, DNA binding by the compound in whole

  3. Effect of nanoparticles binding ß-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Orlando A

    2013-04-01

    Full Text Available Antonina Orlando,1 Francesca Re,1 Silvia Sesana,1 Ilaria Rivolta,1 Alice Panariti,1 Davide Brambilla,2 Julien Nicolas,2 Patrick Couvreur,2 Karine Andrieux,2 Massimo Masserini,1 Emanuela Cazzaniga1 1Department of Health Sciences, University of Milano-Bicocca, Monza, Italy; 2Institut Galien Paris Sud, University Paris-Sud, Châtenay-Malabry, France Background: As part of a project designing nanoparticles for the treatment of Alzheimer’s disease, we have synthesized and characterized a small library of nanoparticles binding with high affinity to the β-amyloid peptide and showing features of biocompatibility in vitro, which are important properties for administration in vivo. In this study, we focused on biocompatibility issues, evaluating production of nitric oxide by cultured human umbilical vein endothelial cells and macrophages, used as models of cells which would be exposed to nanoparticles after systemic administration. Methods: The nanoparticles tested were liposomes and solid lipid nanoparticles carrying phosphatidic acid or cardiolipin, and PEGylated poly(alkyl cyanoacrylate nanoparticles (PEG-PACA. We measured nitric oxide production using the Griess method as well as phosphorylation of endothelial nitric oxide synthase and intracellular free calcium, which are biochemically related to nitric oxide production. MTT viability tests and caspase-3 detection were also undertaken. Results: Exposure to liposomes did not affect the viability of endothelial cells at any concentration tested. Increased production of nitric oxide was detected only with liposomes carrying phosphatidic acid or cardiolipin at the highest concentration (120 µg/mL, together with increased synthase phosphorylation and intracellular calcium levels. Macrophages exposed to liposomes showed a slightly dose-dependent decrease in viability, with no increase in production of nitric oxide. Exposure to solid lipid nanoparticles carrying phosphatidic acid decreased viability in

  4. The pharmacokinetics and pharmacodynamics of progastrin-derived peptides

    DEFF Research Database (Denmark)

    Hansen, Carsten Palnaes

    2003-01-01

    The elimination of progastrin-derived peptides was a first-order process, also at supraphysiological concentrations in plasma. The site of extraction was dependent on the molecular size of the peptides and not on their bioactivity. Apart from the kidneys and brain, where the extraction...

  5. Nonribosomal Peptide Synthetase Genes pesL and pes1 Are Essential for Fumigaclavine C Production in Aspergillus fumigatus

    DEFF Research Database (Denmark)

    O'Hanlon, Karen A.; Gallagher, Lorna; Schrettl, Markus

    2012-01-01

    The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end produc...

  6. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica

    Energy Technology Data Exchange (ETDEWEB)

    Özarslan, Ali Can, E-mail: alicanozarslan@gmail.com; Yücel, Sevil, E-mail: syucel@yildiz.edu.tr

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering. - Highlights: • Production of 3-D bioactive glass scaffolds from different silica sources • The effect of biosilica from rice hull ash on the bioactive glass scaffold • Sr additive impact on the bioactivity and biodegradability properties of scaffolds.

  7. Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces.

    Science.gov (United States)

    Martin, Lewis J; Akhavan, Behnam; Bilek, Marcela M M

    2018-01-24

    Surface functionalization of an implantable device with bioactive molecules can overcome adverse biological responses by promoting specific local tissue integration. Bioactive peptides have advantages over larger protein molecules due to their robustness and sterilizability. Their relatively small size presents opportunities to control the peptide orientation on approach to a surface to achieve favourable presentation of bioactive motifs. Here we demonstrate control of the orientation of surface-bound peptides by tuning electric fields at the surface during immobilization. Guided by computational simulations, a peptide with a linear conformation in solution is designed. Electric fields are used to control the peptide approach towards a radical-functionalized surface. Spontaneous, irreversible immobilization is achieved when the peptide makes contact with the surface. Our findings show that control of both peptide orientation and surface concentration is achieved simply by varying the solution pH or by applying an electric field as delivered by a small battery.

  8. Production and Characterization of Glass-Ceramic Materials for Potential Use in Dental Applications: Thermal and Mechanical Properties, Microstructure, and In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    Francesco Baino

    2017-12-01

    Full Text Available Multicomponent silicate glasses and their corresponding glass-ceramic derivatives were prepared and tested for potential applications in dentistry. The glasses were produced via a melting-quenching process, ground and sieved to obtain fine-grained powders that were pressed in the form of small cylinders and thermally treated to obtain sintered glass-ceramic samples. X-ray diffraction investigations were carried out on the materials before and after sintering to detect the presence of crystalline phases. Thermal analyses, mechanical characterizations (assessment of bending strength, Young’s modulus, Vickers hardness, fracture toughness, and in vitro bioactivity tests in simulated body fluid were performed. On the basis of the acquired results, different potential applications in the dental field were discussed for the proposed glass-ceramics. The use of such materials can be suggested for either restorative dentistry or dental implantology, mainly depending on their peculiar bioactive and mechanical properties. At the end of the work, the feasibility of a novel full-ceramic bilayered implant was explored and discussed. This implant, comprising a highly bioactive layer expected to promote osteointegration and another one mimicking the features of tooth enamel, can have an interesting potential for whole tooth substitution.

  9. Gene design, fusion technology and TEV cleavage conditions influence the purification of oxidized disulphide-rich venom peptides in Escherichia coli.

    Science.gov (United States)

    Sequeira, Ana Filipa; Turchetto, Jeremy; Saez, Natalie J; Peysson, Fanny; Ramond, Laurie; Duhoo, Yoan; Blémont, Marilyne; Fernandes, Vânia O; Gama, Luís T; Ferreira, Luís M A; Guerreiro, Catarina I P I; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are large, complex libraries of bioactive, disulphide-rich peptides. These peptides, and their novel biological activities, are of increasing pharmacological and therapeutic importance. However, recombinant expression of venom peptides in Escherichia coli remains difficult due to the significant number of cysteine residues requiring effective post-translational processing. There is also an urgent need to develop high-throughput recombinant protocols applicable to the production of reticulated peptides to enable efficient screening of their drug potential. Here, a comprehensive study was developed to investigate how synthetic gene design, choice of fusion tag, compartment of expression, tag removal conditions and protease recognition site affect levels of solubility of oxidized venom peptides produced in E. coli. The data revealed that expression of venom peptides imposes significant pressure on cysteine codon selection. DsbC was the best fusion tag for venom peptide expression, in particular when the fusion was directed to the bacterial periplasm. While the redox activity of DsbC was not essential to maximize expression of recombinant fusion proteins, redox activity did lead to higher levels of correctly folded target peptides. With the exception of proline, the canonical TEV protease recognition site tolerated all other residues at its C-terminus, confirming that no non-native residues, which might affect activity, need to be incorporated at the N-terminus of recombinant peptides for tag removal. This study reveals that E. coli is a convenient heterologous host for the expression of soluble and functional venom peptides. Using the optimal construct design, a large and diverse range of animal venom peptides were produced in the µM scale. These results open up new possibilities for the high-throughput production of recombinant disulphide-rich peptides in E. coli.

  10. Production and characterization of a new antibacterial peptide obtained from Aeribacillus pallidus SAT4

    OpenAIRE

    Muhammad, Syed Aun; Ahmed, Safia

    2015-01-01

    A novel thermophilic bacterial strain of the genus Aeribacillus was isolated from Thar Dessert Pakistan. This strain showed significant antibacterial activity against Micrococcus luteus, Staphylococcus aureus, and Pseudomonas aeruginosa. The strain coded as ‘SAT4’ resembled with Aeribacillus pallidus in the morphological, biochemical and molecular tests. The production of antibacterial metabolites by SAT4 was optimized. These active metabolites were precipitated by 50% ammonium sulphate and p...

  11. Optimization of process parameters for the production of collagen peptides from fish skin (Epinephelus malabaricus) using response surface methodology and its characterization.

    Science.gov (United States)

    Hema, G S; Joshy, C G; Shyni, K; Chatterjee, Niladri S; Ninan, George; Mathew, Suseela

    2017-02-01

    The study optimized the hydrolysis conditions for the production of fish collagen peptides from skin of Malabar grouper ( Epinephelus malabaricus ) using response surface methodology. The hydrolysis was done with enzymes pepsin, papain and protease from bovine pancreas. Effects of process parameters viz: pH, temperature, enzyme substrate ratio and hydrolysis time of the three different enzymes on degree of hydrolysis were investigated. The optimum response of degree of hydrolysis was estimated to be 10, 20 and 28% respectively for pepsin, papain and protease. The functional properties of the product developed were analysed which showed changes in the properties from proteins to peptides. SDS-PAGE combined with MALDI TOF method was successfully applied to determine the molecular weight distribution of the hydrolysate. The electrophoretic pattern indicated that the molecular weights of peptides formed due to hydrolysis were nearly 2 kDa. MALDI TOF spectral analysis showed the developed hydrolysate contains peptides having molecular weight in the range below 2 kDa.

  12. Microfluidic production of bioactive fibrin micro-beads embedded in crosslinked collagen used as an injectable bulking agent for urinary incontinence treatment.

    Science.gov (United States)

    Vardar, E; Larsson, H M; Allazetta, S; Engelhardt, E M; Pinnagoda, K; Vythilingam, G; Hubbell, J A; Lutolf, M P; Frey, P

    2018-02-01

    Endoscopic injection of bulking agents has been widely used to treat urinary incontinence, often due to urethral sphincter complex insufficiency. The aim of the study was to develop a novel injectable bioactive collagen-fibrin bulking agent restoring long-term continence by functional muscle tissue regeneration. Fibrin micro-beads were engineered using a droplet microfluidic system. They had an average diameter of 140 μm and recombinant fibrin-binding insulin-like growth factor-1 (α 2 PI 1-8 -MMP-IGF-1) was covalently conjugated to the beads. A plasmin fibrin degradation assay showed that 72.5% of the initial amount of α 2 PI 1-8 -MMP-IGF-1 loaded into the micro-beads was retained within the fibrin micro-beads. In vitro, the growth factor modified fibrin micro-beads enhanced cell attachment and the migration of human urinary tract smooth muscle cells, however, no change of the cellular metabolic activity was seen. These bioactive micro-beads were mixed with genipin-crosslinked homogenized collagen, acting as a carrier. The collagen concentration, the degree of crosslinking, and the mechanical behavior of this bioactive collagen-fibrin injectable were comparable to reference samples. This novel injectable showed no burst release of the growth factor, had a positive effect on cell behavior and may therefore induce smooth muscle regeneration in vivo, necessary for the functional treatment of stress and other urinary incontinences. Urinary incontinence is involuntary urine leakage, resulting from a deficient function of the sphincter muscle complex. Yet there is no functional cure for this devastating condition using current treatment options. Applied physical and surgical therapies have limited success. In this study, a novel bioactive injectable bulking agent, triggering new muscle regeneration at the injection site, has been evaluated. This injectable consists of cross-linked collagen and fibrin micro-beads, functionalized with bound insulin-like growth factor

  13. Divergent unprotected peptide macrocyclisation by palladium-mediated cysteine arylation.

    Science.gov (United States)

    Rojas, Anthony J; Zhang, Chi; Vinogradova, Ekaterina V; Buchwald, Nathan H; Reilly, John; Pentelute, Bradley L; Buchwald, Stephen L

    2017-06-01

    Macrocyclic peptides are important therapeutic candidates due to their improved physicochemical properties in comparison to their linear counterparts. Here we detail a method for a divergent macrocyclisation of unprotected peptides by crosslinking two cysteine residues with bis-palladium organometallic reagents. These synthetic intermediates are prepared in a single step from commercially available aryl bis-halides. Two bioactive linear peptides with cysteine residues at i , i + 4 and i , i + 7 positions, respectively, were cyclised to introduce a diverse array of aryl and bi-aryl linkers. These two series of macrocyclic peptides displayed similar linker-dependent lipophilicity, phospholipid affinity, and unique volume of distributions. Additionally, one of the bioactive peptides showed target binding affinity that was predominantly affected by the length of the linker. Collectively, this divergent strategy allowed rapid and convenient access to various aryl linkers, enabling the systematic evaluation of the effect of appending unit on the medicinal properties of macrocyclic peptides.

  14. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Directory of Open Access Journals (Sweden)

    Vishal Prashar

    Full Text Available BACKGROUND: It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS. In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. PRINCIPAL FINDINGS: We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. CONCLUSIONS/SIGNIFICANCE: The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  15. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Science.gov (United States)

    Prashar, Vishal; Bihani, Subhash; Das, Amit; Ferrer, Jean-Luc; Hosur, Madhusoodan

    2009-11-17

    It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  16. CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Dong-Hee Kim

    2014-05-01

    Full Text Available Ultraviolet (UV exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1 activity. A 9-mer peptide, CopA3 (CopA3 was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 μM, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

  17. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788 ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  18. Natural bioactive compounds: antibiotics | Dezfully | Journal of ...

    African Journals Online (AJOL)

    Antibiotics are powerful therapeutic agents that are produced by diverse living organisms. Over the last several decades, natural bioactive products particularly antibiotics have continued to play a significant role in drug discovery and has expanded the process for developing drugs with high degree of therapeutic index and ...

  19. Extraction, Isolation And Characterization Of Bioactive Compounds ...

    African Journals Online (AJOL)

    Natural products from medicinal plants, either as pure compounds or as standardized extracts, provide unlimited opportunities for new drug leads because of the ... The analysis of bioactive compounds present in the plant extracts involving the applications of common phytochemical screening assays, chromatographic ...

  20. An altered gp100 peptide ligand with decreased binding by TCR and CD8alpha dissects T cell cytotoxicity from production of cytokines and activation of NFAT

    Directory of Open Access Journals (Sweden)

    Niels eSchaft

    2013-09-01

    Full Text Available Altered peptide ligands (APLs provide useful tools to study T cell activation and potentially direct immune responses to improve treatment of cancer patients. To better understand and exploit APLs, we studied the relationship between APLs and T cell function in more detail. Here, we tested a broad panel of gp100(280-288 APLs with respect to T cell cytotoxicity, production of cytokines and activation of Nuclear Factor of Activated T cells (NFAT by human T cells gene-engineered with a gp100-HLA-A2-specific TCRalpha/beta. We demonstrated that gp100-specific cytotoxicity, production of cytokines, and activation of NFAT were not affected by APLs with single amino acid substitutions, except for an APL with an amino acid substitution at position 3 (APL A3, which did not elicit any T cell response. A gp100 peptide with a double amino acid mutation (APL S4S6 elicited T cell cytotoxicity and production of IFNgamma, and to a lesser extent TNFalpha, IL-4, and IL-5, but not production of IL-2 and IL-10, or activation of NFAT. Notably, TCR-mediated functions showed decreases in sensitivities for S4S6 versus gp100 wt peptide, which were minor for cytotoxicity but at least a 1000-fold more prominent for the production of cytokines. TCR-engineered T cells did not bind A3-HLA-A2, but did bind S4S6-HLA-A2 although to a lowered extent compared to wt peptide-HLA-A2. Moreover, S4S6-induced T cell function demonstrated an enhanced dependency on CD8alpha. Taken together, most gp100 APLs functioned as agonists, but A3 and S4S6 peptides acted as a null ligand and partial agonist, respectively. Our results further suggest that TCR-mediated cytotoxicity can be dissected from production of cytokines and activation of NFAT, and that the agonist potential of peptide mutants relates to the extent of binding by TCR and CD8alpha. These findings may facilitate the design of APLs to advance the study of T cell activation and their use for therapeutic applications.

  1. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures.

    Science.gov (United States)

    Li, Guo-Zhong; Vissers, Johannes P C; Silva, Jeffrey C; Golick, Dan; Gorenstein, Marc V; Geromanos, Scott J

    2009-03-01

    A novel database search algorithm is presented for the qualitative identification of proteins over a wide dynamic range, both in simple and complex biological samples. The algorithm has been designed for the analysis of data originating from data independent acquisitions, whereby multiple precursor ions are fragmented simultaneously. Measurements used by the algorithm include retention time, ion intensities, charge state, and accurate masses on both precursor and product ions from LC-MS data. The search algorithm uses an iterative process whereby each iteration incrementally increases the selectivity, specificity, and sensitivity of the overall strategy. Increased specificity is obtained by utilizing a subset database search approach, whereby for each subsequent stage of the search, only those peptides from securely identified proteins are queried. Tentative peptide and protein identifications are ranked and scored by their relative correlation to a number of models of known and empirically derived physicochemical attributes of proteins and peptides. In addition, the algorithm utilizes decoy database techniques for automatically determining the false positive identification rates. The search algorithm has been tested by comparing the search results from a four-protein mixture, the same four-protein mixture spiked into a complex biological background, and a variety of other "system" type protein digest mixtures. The method was validated independently by data dependent methods, while concurrently relying on replication and selectivity. Comparisons were also performed with other commercially and publicly available peptide fragmentation search algorithms. The presented results demonstrate the ability to correctly identify peptides and proteins from data independent acquisition strategies with high sensitivity and specificity. They also illustrate a more comprehensive analysis of the samples studied; providing approximately 20% more protein identifications, compared to

  2. Microencapsulation of bioactives for food applications.

    Science.gov (United States)

    Dias, Maria Inês; Ferreira, Isabel C F R; Barreiro, Maria Filomena

    2015-04-01

    Health issues are an emerging concern to the world population, and therefore the food industry is searching for novel food products containing health-promoting bioactive compounds, with little or no synthetic ingredients. However, there are some challenges in the development of functional foods, particularly in which the direct use of some bioactives is involved. They can show problems of instability, react with other food matrix ingredients or present strong odour and/or flavours. In this context, microencapsulation emerges as a potential approach to overcome these problems and, additionally, to provide controlled or targeted delivery or release. This work intends to contribute to the field of functional food development by performing a comprehensive review on the microencapsulation methods and materials, the bioactives used (extracts and isolated compounds) and the final application development. Although several studies dealing with microencapsulation of bioactives exist, they are mainly focused on the process development and the majority lack proof of concept for final applications. These factors, together with the lack of regulation, in Europe and in the United States, delay the development of new functional foods and, consequently, their market entry. In conclusion, the potential of microencapsulation to protect bioactive compounds ensuring their bioavailability is shown, but further studies are required, considering both its applicability and incentives by regulatory agencies.

  3. Marine Peptides and Their Anti-Infective Activities

    Directory of Open Access Journals (Sweden)

    Hee Kyoung Kang

    2015-01-01

    Full Text Available Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish from 2006 to the present.

  4. Peptide Vaccines for Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Rory C. F. De Brito

    2018-05-01

    Full Text Available Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  5. Peptide Vaccines for Leishmaniasis.

    Science.gov (United States)

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  6. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  7. Recent progress in fluorine-18 labelled peptide radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Okarvi, S.M. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia)

    2001-07-01

    The application of biologically active peptides labelled with positron-emitting nuclides has emerged as a useful and interesting field in nuclear medicine. Small synthetic receptor-binding peptides are currently the preferred agents over proteins and antibodies for diagnostic imaging of various tumours. Due to the smaller size of peptides, both higher target-to-background ratios and rapid blood clearance can often be achieved with radiolabelled peptides. Hence, short-lived positron emission tomography (PET) isotopes are potential candidates for labelling peptides. Among a number of positron-emitting nuclides, fluorine-18 appears to be the best candidate for labelling bioactive peptides by virtue of its favourable physical and nuclear characteristics. The major disadvantage of labelling peptides with {sup 18}F is the laborious and time-consuming preparation of the {sup 18}F labelling agents. In recent years, various techniques have been developed which allow efficient labelling of peptides with {sup 18}F without affecting their receptor-binding properties. Moreover, the development of a variety of prosthetic groups has facilitated the efficient and site-specific labelling of peptides with {sup 18}F. The {sup 18}F-labelled peptides hold enormous clinical potential owing to their ability to quantitatively detect and characterise a wide variety of human diseases when using PET. Recently, a number of {sup 18}F-labelled bioactive peptides have shown great promise as diagnostic imaging agents. This review presents the recent developments in {sup 18}F-labelled biologically active peptides used in PET. (orig.)

  8. Recent progress in fluorine-18 labelled peptide radiopharmaceuticals

    International Nuclear Information System (INIS)

    Okarvi, S.M.

    2001-01-01

    The application of biologically active peptides labelled with positron-emitting nuclides has emerged as a useful and interesting field in nuclear medicine. Small synthetic receptor-binding peptides are currently the preferred agents over proteins and antibodies for diagnostic imaging of various tumours. Due to the smaller size of peptides, both higher target-to-background ratios and rapid blood clearance can often be achieved with radiolabelled peptides. Hence, short-lived positron emission tomography (PET) isotopes are potential candidates for labelling peptides. Among a number of positron-emitting nuclides, fluorine-18 appears to be the best candidate for labelling bioactive peptides by virtue of its favourable physical and nuclear characteristics. The major disadvantage of labelling peptides with 18 F is the laborious and time-consuming preparation of the 18 F labelling agents. In recent years, various techniques have been developed which allow efficient labelling of peptides with 18 F without affecting their receptor-binding properties. Moreover, the development of a variety of prosthetic groups has facilitated the efficient and site-specific labelling of peptides with 18 F. The 18 F-labelled peptides hold enormous clinical potential owing to their ability to quantitatively detect and characterise a wide variety of human diseases when using PET. Recently, a number of 18 F-labelled bioactive peptides have shown great promise as diagnostic imaging agents. This review presents the recent developments in 18 F-labelled biologically active peptides used in PET. (orig.)

  9. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-01

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.

  10. Structural and functional comparisons and production of recombinant crustacean hyperglycemic hormone (CHH) and CHH-like peptides from the mud crab Scylla olivacea.

    Science.gov (United States)

    Chang, Chih-Chun; Tsai, Kuo-Wei; Hsiao, Nai-Wan; Chang, Cheng-Yen; Lin, Chih-Lung; Watson, R Douglas; Lee, Chi-Ying

    2010-05-15

    Sco-CHH and Sco-CHH-L (CHH-like peptide), two structural variants of the crustacean hyperglycemic hormone family identified in the mud crab (Scylla olivacea), are presumably alternatively spliced gene products. In this study, Sco-CHH and Sco-CHH-L were isolated from the tissues using high performance liquid chromatography. Identity of the native peptides was confirmed using mass spectrometric (MS) analyses of purified materials and of trypsin-digested peptide fragments. Additionally, characterizations using circular dichroism (CD) spectrometry revealed that the 2 peptides have similar CD spectral profiles, showing they are composed mainly of alpha-helices, and are similarly thermo-stable with a melting temperature of 74-75 degrees C. Results of bioassays indicated that Sco-CHH exerted hyperglycemic and molt-inhibiting activity, whereas Sco-CHH-L did not. Further, recombinant Sco-CHH-Gly (rSco-CHH-Gly, a glycine extended Sco-CHH) and Sco-CHH-L (rSco-CHH-L) were produced using an Escherichia coli expression system, refolded, and purified. rSco-CHH-Gly was further alpha-amidated at the C-terminal end to produce rSco-CHH. MS analyses of enzyme-digested peptide fragments of rSco-CHH-Gly and rSco-CHH-L showed that the two peptides share a common disulfide bond pattern: C7-C43, C23-C39, and C26-C52. Circular dichroism analyses and hyperglycemic assay revealed that rSco-CHH and rSco-CHH-L resemble their native counterparts, in terms of CD spectral profiles, melting curve profiles, and biological activity. rSco-CHH-Gly has a lower alpha-helical content (32%) than rSco-CHH (47%), a structural deviation that may be responsible for the significant decrease in the biological activity of rSco-CHH-Gly. Finally, modeled structure of Sco-CHH and Sco-CHH-L indicated that they are similarly folded, each with an N-terminal tail region and 4 alpha-helices. Putative surface residues located in corresponding positions of Sco-CHH and Sco-CHH-L but with side chains of different properties

  11. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  12. Production of an Engineered Killer Peptide in Nicotiana benthamiana by Using a Potato virus X Expression System

    OpenAIRE

    Donini, Marcello; Lico, Chiara; Baschieri, Selene; Conti, Stefania; Magliani, Walter; Polonelli, Luciano; Benvenuto, Eugenio

    2005-01-01

    The decapeptide killer peptide (KP) derived from the sequence of a single-chain, anti-idiotypic antibody acting as a functional internal image of a microbicidal, broad-spectrum yeast killer toxin (KT) was shown to exert a strong microbicidal activity against human pathogens. With the aim to exploit this peptide to confer resistance to plant pathogens, we assayed its antimicrobial activity against a broad spectrum of phytopathogenic bacteria and fungi. Synthetic KP exhibited antimicrobial acti...

  13. Isolation and characterisation of in vitro and cellular free radical scavenging peptides from corn peptide fractions.

    Science.gov (United States)

    Wang, Liying; Ding, Long; Wang, Ying; Zhang, Yan; Liu, Jingbo

    2015-02-16

    Corn gluten meal, a corn processing industry by-product, is a good source for the preparation of bioactive peptides due to its special amino acid composition. In the present study, the in vitro and cellular free radical scavenging activities of corn peptide fractions (CPFs) were investigated. Results indicated that CPF1 (molecular weight less than 1 kDa) and CPF2 (molecular weight between 1 and 3 kDa) exhibited good hydroxyl radical, superoxide anion radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Meanwhile, the in vitro radical scavenging activity of CPF1 was slightly higher than that of CPF2. Both CPF1 and CPF2 also exhibited significant cytoprotective effects and intracellular reactive oxygen species scavenging activity in Caco-2 cells exposed to hydrogen peroxide (H2O2). The amino acid composition analysis revealed that the CPF were rich in hydrophobic amino acids, which comprised of more than 45% of total amino acids. An antioxidant peptide sequence of Tyr-Phe-Cys-Leu-Thr (YFCLT) was identified from CPF1 using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI TOF/TOF MS). The YFCLT exhibited excellent ABTS radical scavenging activity with a 50% effective concentration (EC50) value of 37.63 µM, which was much lower than that of Trolox. In conclusion, corn gluten meal might be a good source to prepare antioxidant peptides.

  14. Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens.

    Science.gov (United States)

    Tanhaiean, Abass; Azghandi, Marjan; Razmyar, Jamshid; Mohammadi, Elyas; Sekhavati, Mohammad Hadi

    2018-06-08

    Over the last decades, poultry industry faced to the rapid emergence of multidrug-resistant bacteria as a global concern. Antimicrobial peptide (AMPs) known as potential antibiotic alternative and were considered as a new antimicrobial agent. Current methods of production and purification of AMPs have several limitations such as: costly, time-consuming and killing the producing host cells in recombinant form. In the present study, a chimeric peptide derived from camel lactoferrin was produced in Escherichia coli periplasmic space using a pET-based expression system and its antibacterial activity was determined on some avian pathogens in vitro. A carboxy-terminal polyhistidine tag was used for purification by Ni 2+ affinity chromatography with an average yield of 0.42 g/L. The His-tagged chimeric peptide showed different range of antimicrobial activity against clinically isolated avian pathogens with low chicken blood hemolysis activity and high serum stability. Overall, the results of this investigation showed the recombinant chimeric peptide was successfully expressed in pET-based expression system and could be considered as a proper alternative for some currently used antibiotics in poultry industry and drugs veterinary medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The Anti-Inflammatory Effect of Human Telomerase-Derived Peptide on P. gingivalis Lipopolysaccharide-Induced Inflammatory Cytokine Production and Its Mechanism in Human Dental Pulp Cells

    Directory of Open Access Journals (Sweden)

    Yoo-Jin Ko

    2015-01-01

    Full Text Available Porphyromonas gingivalis is considered with inducing pulpal inflammation and has lipopolysaccharide (LPS as an inflammatory stimulator. GV1001 peptide has anticancer and anti-inflammation activity due to inhibiting activation of signaling molecules after penetration into the various types of cells. Therefore, this study examined inhibitory effect of GV1001 on dental pulp cells (hDPCs stimulated by P. gingivalis LPS. The intracellular distribution of GV1001 was analyzed by confocal microscopy. Real-time RT-PCR was performed to determine the expression levels of TNF-α and IL-6 cytokines. The role of signaling by MAP kinases (ERK and p38 was explored using Western blot analysis. The effect of GV1001 peptide on hDPCs viability was measured by MTT assay. GV1001 was predominantly located in hDPC cytoplasm. The peptide inhibited P. gingivalis LPS-induced TNF-α and IL-6 production in hDPCs without significant cytotoxicity. Furthermore, GV1001 treatment markedly inhibited the phosphorylation of MAP kinases (ERK and p38 in LPS-stimulated hDPCs. GV1001 may prevent P. gingivalis LPS-induced inflammation of apical tissue. Also, these findings provide mechanistic insight into how GV1001 peptide causes anti-inflammatory actions in LPS-stimulated pulpitis without significantly affecting cell viability.

  16. Simultaneous Delivery of Highly Diverse Bioactive Compounds from Blend Electrospun Fibers for Skin Wound Healing.

    Science.gov (United States)

    Peh, Priscilla; Lim, Natalie Sheng Jie; Blocki, Anna; Chee, Stella Min Ling; Park, Heyjin Chris; Liao, Susan; Chan, Casey; Raghunath, Michael

    2015-07-15

    Blend emulsion electrospinning is widely perceived to destroy the bioactivity of proteins, and a blend emulsion of water-soluble and nonsoluble molecules is believed to be thermodynamically unstable to electrospin smoothly. Here we demonstrate a method to retain the bioactivity of disparate fragile biomolecules when electrospun. Using bovine serum albumin as a carrier protein; water-soluble vitamin C, fat soluble vitamin D3, steroid hormone hydrocortisone, peptide hormone insulin, thyroid hormone triiodothyronine (T3), and peptide epidermal growth factor (EGF) were simultaneously blend-spun into PLGA-collagen nanofibers. Upon release, vitamin C maintained the ability to facilitate Type I collagen secretion by fibroblasts, EGF stimulated skin fibroblast proliferation, and insulin potentiated adipogenic differentiation. Transgenic cell reporter assays confirmed the bioactivity of vitamin D3, T3, and hydrocortisone. These factors concertedly increased keratinocyte and fibroblast proliferation while maintaining keratinocyte basal state. This method presents an elegant solution to simultaneously deliver disparate bioactive biomolecules for wound healing applications.

  17. Production of Poly(ε-Caprolactone)/Hydroxyapatite Composite Scaffolds with a Tailored Macro/Micro-Porous Structure, High Mechanical Properties, and Excellent Bioactivity.

    Science.gov (United States)

    Kim, Jong-Woo; Shin, Kwan-Ha; Koh, Young-Hag; Hah, Min Jin; Moon, Jiyoung; Kim, Hyoun-Ee

    2017-09-22

    We produced poro-us poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite scaffolds for bone regeneration, which can have a tailored macro/micro-porous structure with high mechanical properties and excellent in vitro bioactivity using non-solvent-induced phase separation (NIPS)-based 3D plotting. This innovative 3D plotting technique can create highly microporous PCL/HA composite filaments by inducing unique phase separation in PCL/HA solutions through the non-solvent-solvent exchange phenomenon. The PCL/HA composite scaffolds produced with various HA contents (0 wt %, 10 wt %, 15 wt %, and 20 wt %) showed that PCL/HA composite struts with highly microporous structures were well constructed in a controlled periodic pattern. Similar levels of overall porosity (~78 vol %) and pore size (~248 µm) were observed for all the PCL/HA composite scaffolds, which would be highly beneficial to bone tissue regeneration. Mechanical properties, such as ultimate tensile strength and compressive yield strength, increased with an increase in HA content. In addition, incorporating bioactive HA particles into the PCL polymer led to remarkable enhancements in in vitro apatite-forming ability.

  18. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... peptides has only been elucidated during the last decade. The cellular synthesis including amino acid modifications and proteolytic cleavages has proven considerably more complex than initially perceived. Consequently, the elimination phase of the peptide products in circulation is not yet well....... An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  19. Evaluation of some residual bioactivities of microencapsulated Phaseolus lunatus protein fraction with carboxymethylated flamboyant (Delonix regia gum/sodium alginate

    Directory of Open Access Journals (Sweden)

    Mukthar Sandovai-Peraza

    2014-12-01

    Full Text Available Recent studies have shown the beneficial effect of peptides, an unexploited source could be Phaseolus lunatus being an important raw material for those functional products in order to improve their utilization. In addition to improve the beneficial effect of bioactive peptides the microencapsulation could be a way to protect the peptides against the environment to which they are exposed. P. lunatus protein fraction (<10 kDa of weight was encapsulated using a blend of carboxymethylated flamboyant gum (CFG and sodium alginate (SA at different concentrations of CaCl2 and hardening times. After in vitro digestion of microcapsules the residual activity, in the intestinal system, both inhibition of agiotensin-converting enzyme (I-ACE and antioxidant activity obtained were in a range of 0.019-0.136 mg/mL and 570.64-813.54 mM of TEAC respectively. The microencapsulation employed CFG/SA blends could be used controlled delivery of peptide fractions with potential use as a nutraceutical or therapeutic agents.

  20. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  1. Bioactive technologies for hemocompatibility.

    Science.gov (United States)

    Tanzi, Maria Cristina

    2005-07-01

    The contact of any biomaterial with blood gives rise to multiple pathophysiologic defensive mechanisms such as activation of the coagulation cascade, platelet adhesion and activation of the complement system and leukocytes. The reduction of these events is of crucial importance for the successful clinical performance of a cardiovascular device. This can be achieved by improving the hemocompatibility of the device materials or by pharmacologic inhibition of the key enzymes responsible for the activation of the cascade reactions, or a combination of both. Different strategies have been developed during the last 20 years, and this article attempts to review the most significant, by dividing them into three main categories: bioinert or biopassive, biomimetic and bioactive strategies. With regard to bioactive strategies, particular attention is given to heparin immobilization and recent related technologies. References from both scientific literature and commercial sites are provided. Future development and studies are suggested.

  2. Bioactive compounds in seaweed; functional food applications and legislation

    DEFF Research Database (Denmark)

    Holdt, Susan Løvstad; Kraan, Stefan

    2011-01-01

    Seaweed is more than the wrap that keeps rice together in sushi. Seaweed biomass is already used for a wide range of other products in food, including stabilising agents. Biorefineries with seaweed as feedstock are attracting worldwide interest and include low-volume, high value-added products...... and vice versa. Scientific research on bioactive compounds in seaweed usually takes place on just a few species and compounds. This paper reviews worldwide research on bioactive compounds, mainly of nine genera or species of seaweed, which are also available in European temperate Atlantic waters, i...... described in this review. This applies either to the choice of high value-added bioactive products to be exploited in an available species or to the choice of seaweed species when a bioactive compound is desired. Data are presented in tables with species, effect and test organism (if present) with examples...

  3. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  4. Silk-Silk Interactions between Silkworm Fibroin and Recombinant Spider Silk Fusion Proteins Enable the Construction of Bioactive Materials.

    Science.gov (United States)

    Nilebäck, Linnea; Chouhan, Dimple; Jansson, Ronnie; Widhe, Mona; Mandal, Biman B; Hedhammar, My

    2017-09-20

    Natural silk is easily accessible from silkworms and can be processed into different formats suitable as biomaterials and cell culture matrixes. Recombinant DNA technology enables chemical-free functionalization of partial silk proteins through fusion with peptide motifs and protein domains, but this constitutes a less cost-effective production process. Herein, we show that natural silk fibroin (SF) can be used as a bulk material that can be top-coated with a thin layer of the recombinant spider silk protein 4RepCT in fusion with various bioactive motifs and domains. The coating process is based on a silk assembly to achieve stable interactions between the silk types under mild buffer conditions. The assembly process was studied in real time by quartz crystal microbalance with dissipation. Coatings, electrospun mats, and microporous scaffolds were constructed from Antheraea assama and Bombyx mori SFs. The morphology of the fibroin materials before and after coating with recombinant silk proteins was analyzed by scanning electron microscopy and atomic force microscopy. SF materials coated with various bioactive 4RepCT fusion proteins resulted in directed antibody capture, enzymatic activity, and improved cell attachment and spreading, respectively, compared to pristine SF materials. The herein-described procedure allows a fast and easy route for the construction of bioactive materials.

  5. Bioactive compounds and antioxidant capacity of extruded snack-type products developed from novel formulations of lentil and nutritional yeast flours.

    Science.gov (United States)

    Ciudad-Mulero, María; Barros, Lillian; Fernandes, Ângela; Berrios, José De J; Cámara, Montaña; Morales, Patricia; Fernández-Ruiz, Virginia; Ferreira, Isabel C F R

    2018-02-21

    Pulses are well known to be gluten-free functional foods that provide a rich source of nutritional and healthy compounds with antioxidant-promoting activity. In the present study, the bioactive compounds, dietary fibre, arabinoxylans, individual phenolic compounds and tocopherols, were evaluated in different lentil flours (raw and extruded at 140 and 160 °C) formulated with nutritional yeasts, along with the changes induced by the extrusion process. The total dietary fibre and arabinoxylan content significantly (p extruded lentil flours. The decreases of total phenolic and individual phenolic compounds were directly related to the extrusion temperature; total phenolics and catechin hexoside exhibited a larger decrease in the lentil flours formulated with higher content of nutritional yeast (12 and 16%). The antioxidant activity results, determined using different assays, reflected the important effect of extrusion processing and food ingredients.

  6. A Novel Peptide from Soybean Protein Isolate Significantly Enhances Resistance of the Organism under Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Heran Ma

    Full Text Available Recent studies have indicated that protein hydrolysates have broad biological effects. In the current study we describe a novel antioxidative peptide, FDPAL, from soybean protein isolate (SPI. The aim of this study was to purify and characterize an antioxidative peptide from SPI and determine its antioxidative mechanism. LC-MS/MS was used to isolate and identify the peptide from SPI. The sequence of the peptide was determined to be Phe-Asp-Pro-Ala-Leu (FDPAL, 561 Da. FDPAL can cause significant enhancement of resistance to oxidative stress both in cells as well as simple organisms. In Caenorhabditis elegans (C. elegans, FDPAL can up-regulate the expression of certain genes associated with resistance. The antioxidant activity of this peptide can be attributed to the presence of a specific amino acid sequence. Results from our work suggest that FDPAL can facilitate potential applications of proteins carrying this sequence in the nutraceutical, bioactive material and clinical medicine areas, as well as in cosmetics and health care products.

  7. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.; Jap, Bing K.

    2005-04-06

    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLa cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins

  8. Marine Peptides as Potential Agents for the Management of Type 2 Diabetes Mellitus-A Prospect.

    Science.gov (United States)

    Xia, En-Qin; Zhu, Shan-Shan; He, Min-Jing; Luo, Fei; Fu, Cheng-Zhan; Zou, Tang-Bin

    2017-03-23

    An increasing prevalence of diabetes is known as a main risk for human health in the last future worldwide. There is limited evidence on the potential management of type 2 diabetes mellitus using bioactive peptides from marine organisms, besides from milk and beans. We summarized here recent advances in our understanding of the regulation of glucose metabolism using bioactive peptides from natural proteins, including regulation of insulin-regulated glucose metabolism, such as protection and reparation of pancreatic β-cells, enhancing glucose-stimulated insulin secretion and influencing the sensitivity of insulin and the signaling pathways, and inhibition of bioactive peptides to dipeptidyl peptidase IV, α-amylase and α-glucosidase activities. The present paper tried to understand the underlying mechanism involved and the structure characteristics of bioactive peptides responsible for its antidiabetic activities to prospect the utilization of rich marine organism proteins.

  9. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  10. Sponge-derived Kocuria and Micrococcus spp. as sources of the new thiazolyl peptide antibiotic kocurin.

    Science.gov (United States)

    Palomo, Sara; González, Ignacio; de la Cruz, Mercedes; Martín, Jesús; Tormo, José Rubén; Anderson, Matthew; Hill, Russell T; Vicente, Francisca; Reyes, Fernando; Genilloud, Olga

    2013-03-28

    Forty four marine actinomycetes of the family Microccocaceae isolated from sponges collected primarily in Florida Keys (USA) were selected from our strain collection to be studied as new sources for the production of bioactive natural products. A 16S rRNA gene based phylogenetic analysis showed that the strains are members of the genera Kocuria and Micrococcus. To assess their biosynthetic potential, the strains were PCR screened for the presence of secondary metabolite genes encoding nonribosomal synthetase (NRPS) and polyketide synthases (PKS). A small extract collection of 528 crude extracts generated from nutritional microfermentation arrays was tested for the production of bioactive secondary metabolites against clinically relevant strains (Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii and Candida albicans). Three independent isolates were shown to produce a new anti-MRSA bioactive compound that was identified as kocurin, a new member of the thiazolyl peptide family of antibiotics emphasizing the role of this family as a prolific resource for novel drugs.

  11. Bioactive Lipids in Dairy Fat

    DEFF Research Database (Denmark)

    Hellgren, Lars; Nordby, Pernille

    2017-01-01

    Milk fat is the most important energy source for the newborn infant beside its important role as energy source, milk fat also contain a range of bioactive lipids, that potentially can modulate the immune response and metabolic regulation in the child. In this chapter we review the literature on b...... on bioactive dairy fatty acids: conjugated linoleic acid, branched chained and odd chained fatty acids, as well as bioactive complex lipids such as sphingomyelin and gangliosides....

  12. Identification of the IGF-1 processing product human Ec/rodent Eb peptide in various tissues: Evidence for its differential regulation after exercise-induced muscle damage in humans.

    Science.gov (United States)

    Vassilakos, George; Philippou, Anastassios; Koutsilieris, Michael

    2017-02-01

    Insulin-like growth factor-1 (IGF-1) is a pleiotropic factor expressed in various tissues and plays a critical role in skeletal muscle physiology. Alternative splicing of the IGF-1 gene gives rise to different precursor polypeptides (isoforms) which could undergo post-translational cleavage, generating the common mature IGF-1 peptide and different carboxyl terminal extension (E-) peptides, with the fate of the latter being, so far, unknown. The objective if this study was to identify the IGF-1Ec forms or processing product(s), other than mature IGF-1, generated in different human and rodent tissues and particularly in human skeletal muscle after exercise-induced damage. Protein lysates from a wide range of human and rodent tissues were immunoblotted with a rabbit anti-human Ec polyclonal antibody raised against the last 24 amino acids of the C-terminal of the Ec peptide. This antibody can recognize the Ec peptide, both as part of IGF-1Ec and alone, and also the corresponding rodent forms, due to the high homology that the human Ec shares with the rodent Eb. We were able to confirm, for the first time, that the human Ec peptide and its rodent homologous Eb peptide are produced simultaneously with their precursor protein (pro-IGF-1Ec/Eb) in vivo, in a wide range of tissues (e.g. muscle, liver, heart). Proprotein convertase furin digestion of human muscle and liver protein lysates confirmed that the higher molecular form, pro-IGF-1Ec, can be cleaved to produce the free Ec peptide. Furthermore, initial evidence is provided that Ec peptide is differentially regulated during the process of muscle regeneration after exercise-induced damage in humans. The findings of this study possibly imply that the post-translational modification of the IGF-1Ec pro-peptide may regulate the bioavailability and activity of the processing product(s). Copyright © 2016. Published by Elsevier Ltd.

  13. Exenatide, a Glucagon-like Peptide-1 Receptor Agonist, Acutely Inhibits Intestinal Lipoprotein Production in Healthy Humans

    NARCIS (Netherlands)

    Xiao, Changting; Bandsma, Robert H. J.; Dash, Satya; Szeto, Linda; Lewis, Gary F.

    Objective-Incretin-based therapies for the treatment of type 2 diabetes mellitus improve plasma lipid profiles and postprandial lipemia, but their exact mechanism of action remains unclear. Here, we examined the acute effect of the glucagon-like peptide-1 receptor agonist, exenatide, on intestinal

  14. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids

    Directory of Open Access Journals (Sweden)

    Richardson Anthony J

    2013-01-01

    Full Text Available Abstract Background The products of protein breakdown in the human colon are considered to be detrimental to gut health. Amino acid catabolism leads to the formation of sulfides, phenolic compounds and amines, which are inflammatory and/or precursors to the formation of carcinogens, including N-nitroso compounds. The aim of this study was to investigate the kinetics of protein breakdown and the bacterial species involved. Results Casein, pancreatic casein hydrolysate (mainly short-chain peptides or amino acids were incubated in vitro with suspensions of faecal bacteria from 3 omnivorous and 3 vegetarian human donors. Results from the two donor groups were similar. Ammonia production was highest from peptides, followed by casein and amino acids, which were similar. The amino acids metabolized most extensively were Asp, Ser, Lys and Glu. Monensin inhibited the rate of ammonia production from amino acids by 60% (P = 0.001, indicating the involvement of Gram-positive bacteria. Enrichment cultures were carried out to investigate if, by analogy with the rumen, there was a significant population of asaccharolytic, obligately amino acid-fermenting bacteria (‘hyper-ammonia-producing’ bacteria; HAP in the colon. Numbers of bacteria capable of growth on peptides or amino acids alone averaged 3.5% of the total viable count, somewhat higher than the rumen. None of these were HAP, however. The species enriched included Clostridium spp., one of which was C. perfringens, Enterococcus, Shigella and Escherichia coli. Conclusions Protein fermentation by human faecal bacteria in the absence of sugars not only leads to the formation of hazardous metabolic products, but also to the possible proliferation of harmful bacteria. The kinetics of protein metabolism were similar to the rumen, but HAP bacteria were not found.

  15. Broad spectrum bioactive sunscreens.

    Science.gov (United States)

    Velasco, Maria Valéria Robles; Sarruf, Fernanda Daud; Salgado-Santos, Idalina Maria Nunes; Haroutiounian-Filho, Carlos Alberto; Kaneko, Telma Mary; Baby, André Rolim

    2008-11-03

    The development of sunscreens containing reduced concentration of chemical UV filters, even though, possessing broad spectrum effectiveness with the use of natural raw materials that improve and infer UV absorption is of great interest. Due to the structural similarities between polyphenolic compounds and organic UV filters, they might exert photoprotection activity. The objective of the present research work was to develop bioactive sunscreen delivery systems containing rutin, Passiflora incarnata L. and Plantago lanceolata extracts associated or not with organic and inorganic UV filters. UV transmission of the sunscreen delivery system films was performed by using diffuse transmittance measurements coupling to an integrating sphere. In vitro photoprotection efficacy was evaluated according to the following parameters: estimated sun protection factor (SPF); Boot's Star Rating category; UVA/UVB ratio; and critical wavelength (lambda(c)). Sunscreen delivery systems obtained SPF values ranging from 0.972+/-0.004 to 28.064+/-2.429 and bioactive compounds interacted with the UV filters positive and negatively. This behavior may be attributed to: the composition of the delivery system; the presence of inorganic UV filter and quantitative composition of the organic UV filters; and the phytochemical composition of the P. incarnata L. and P. lanceolata extracts. Among all associations of bioactive compounds and UV filters, we found that the broad spectrum sunscreen was accomplished when 1.68% (w/w) P. incarnata L. dry extract was in the presence of 7.0% (w/w) ethylhexyl methoxycinnamate, 2.0% (w/w) benzophenone-3 and 2.0% (w/w) TiO(2). It was demonstrated that this association generated estimated SPF of 20.072+/-0.906 and it has improved the protective defense against UVA radiation accompanying augmentation of the UVA/UVB ratio from 0.49 to 0.52 and lambda(c) from 364 to 368.6nm.

  16. Molecular tools for the construction of peptide-based materials.

    Science.gov (United States)

    Ramakers, B E I; van Hest, J C M; Löwik, D W P M

    2014-04-21

    Proteins and peptides are fundamental components of living systems where they play crucial roles at both functional and structural level. The versatile biological properties of these molecules make them interesting building blocks for the construction of bio-active and biocompatible materials. A variety of molecular tools can be used to fashion the peptides necessary for the assembly of these materials. In this tutorial review we shall describe five of the main techniques, namely solid phase peptide synthesis, native chemical ligation, Staudinger ligation, NCA polymerisation, and genetic engineering, that have been used to great effect for the construction of a host of peptide-based materials.

  17. Bioprospecting of Novel and Bioactive Compounds from Marine Actinomycetes Isolated from South China Sea Sediments.

    Science.gov (United States)

    Yang, Na; Song, Fuhang

    2018-02-01

    Marine actinomycetes are less investigated compared to terrestrial strains as potential sources of natural products. To date, few investigations have been performed on culturable actinomycetes associated with South China Sea sediments. In the present study, twenty-eight actinomycetes were recovered from South China Sea sediments after dereplication by traditional culture-dependent method. The 16S rRNA gene sequences analyses revealed that these strains related to five families and seven genera. Twelve representative strains possessed at least one of the biosynthetic genes coding for polyketide synthase I, II, and nonribosomal peptide synthetase. Four strains had anti-Mycobacterium phlei activities and five strains had activities against methicillin-resistant Staphylococcus aureus. 10 L-scale fermentation of strains Salinispora sp. NHF45, Nocardiopsis sp. NHF48, and Streptomyces sp. NHF86 were carried out for novel and bioactive compounds discovery. Finally, we obtained a novel α-pyrone compound from marine Nocardiopsis sp. NHF48, an analogue of paulomenol from marine Streptomyces sp. NHF86 and a new source of rifamycin B, produced by Salinispora sp. NHF45. The present study concluded that marine actinomycetes, which we isolated from South China Sea sediments, will be a suitable source for the development of novel and bioactive compounds.

  18. What peptides these deltorphins be.

    Science.gov (United States)

    Lazarus, L H; Bryant, S D; Cooper, P S; Salvadori, S

    1999-02-01

    The deltorphins are a class of highly selective delta-opioid heptapeptides from the skin of the Amazonian frogs Phyllomedusa sauvagei and P. bicolor. The first of these fascinating peptides came to light in 1987 by cloning of the cDNA of from frog skins, while the other members of this family were identified either by cDNA or isolation of the peptides. The distinctive feature of deltorphins is the presence of a naturally occurring D-enantiomer at the second position in their common N-terminal sequence, Tyr-D-Xaa-Phe, comparable to dermorphin, which is the prototype of a group of mu-selective opioids from the same source. The D-amino acid and the anionic residues, either Glu or Asp, as well as their unique amino acid compositions are responsible for the remarkable biostability, high delta-receptor affinity, bioactivity and peptide conformation. This review summarizes a decade of research from many laboratories that defined which residues and substituents in the deltorphins interact with the delta-receptor and characterized pharmacological and physiological activities in vitro and in vivo. It begins with a historical description of the topic and presents general schema for the synthesis of peptide analogues of deltorphins A, B and C as a means to document the methods employed in producing a myriad of analogues. Structure activity studies of the peptides and their pharmacological activities in vitro are detailed in abundantly tabulated data. A brief compendium of the current level of knowledge of the delta-receptor assists the reader to appreciate the rationale for the design of these analogues. Discussion of the conformation of these peptides addresses how structure leads to further hypotheses regarding ligand receptor interaction. The review ends with a broad discussion of the potential applications of these peptides in clinical and therapeutic settings.

  19. CD4+ T cell-derived novel peptide Thp5 induces interleukin-4 production in CD4+ T cells to direct T helper 2 cell differentiation.

    Science.gov (United States)

    Khan, Mohd Moin; Chatterjee, Samit; Dwivedi, Ved Prakash; Pandey, Nishant Kumar; Singh, Yogesh; Tousif, Sultan; Bhavesh, Neel Sarovar; Van Kaer, Luc; Das, Jyoti; Das, Gobardhan

    2012-01-20

    The differentiation of naïve CD4(+) T cells into T helper 2 (Th2) cells requires production of the cytokine IL-4 in the local microenvironment. It is evident that naïve/quiescently activated CD4(+) T cells produce the IL-4 that drives Th2 cell differentiation. Because early production of IL-4 in naïve T cells leads to preferential Th2 cell differentiation, this process needs to be tightly regulated so as to avoid catastrophic and misdirected Th2 cell differentiation. Here, we show that Thp5, a novel peptide with structural similarity to vasoactive intestinal peptide, regulates production of early IL-4 in newly activated CD4(+) T cells. Induction of IL-4 in CD4(+) T cells by Thp5 is independent of the transcription factor STAT6 but dependent on ERK1/2 signaling. Furthermore, cytokines (IL-12 and TGF-β) that promote the differentiation of Th1 or Th17 cells inhibit Thp5 induction, thus suppressing Th2 cell differentiation. We further showed that Thp5 enhances Th2 responses and exacerbates allergic airway inflammation in mice. Taken together, our findings reveal that early activated CD4(+) T cells produce Thp5, which plays a critical role as a molecular switch in the differentiation of Th cells, biasing the response toward the Th2 cell phenotype.

  20. The Evaluation and Utilization of Marine-derived Bioactive Compounds with Anti-obesity Effect.

    Science.gov (United States)

    Jin, Qiu; Yu, Huahua; Li, Pengcheng

    2018-01-01

    Obesity is a global epidemic throughout the world. There is thus increasing interest in searching for natural bioactive compounds with anti-obesity effect. A number of marine compounds have been regarded as potential sources of bioactive compounds and are associated with an anti-obesity effect. Marine-derived compounds with anti-obesity effect and their current applications, methods and indicators for the evaluation of anti-obesity activity are summarized in this review. in order to make contributions to the development of marine-derived functional food against obesity. In this review, an overview of marine-derived compounds with anti-obesity effect, including marine polysaccharides, marine lipid, marine peptides, marine carotenoids is intensively made with an emphasis on their efficacy and mechanism of action. Meanwhile, methods and indicators for the evaluation of anti-obesity activity are discussed. We summarize these methods into three categories: in vitro assay (including adsorption experiments and enzyme inhibitory assay), cell line study, animal experiments and clinical experiments. In addition, a brief introduction of the current applications of marine bioactive compounds with anti-obesity activity is discussed. Marine environment is a rich source of both biological and chemical diversity. In the past decades, numerous novel compounds with anti-obesity activity have been obtained from marine organisms, and many of them have been applied to industrial production such as functional foods and pharmaceuticals. Further studies are needed to explore the above-mentioned facts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Utilisation of rapeseed protein isolates for production of peptides with angiotensin I-converting enzyme (ACE-inhibitory activity

    Directory of Open Access Journals (Sweden)

    Vioque, Javier

    2004-12-01

    Full Text Available ACE activity is related to increased arterial pressure and coronary diseases. A rapeseed protein isolate was hydrolyzed with the protease Alcalase in order to investigate the possible presence of ACE inhibitory peptides in the resulting hydrolysates. Hydrolysis for 30 min yielded a hydrolysate with the highest ACE inhibitory activity. Two fractions of this hydrolysate obtained by Biogel P2 gel filtration chromatography were used for further purification of ACE inhibitory peptides. Three fractions with ACE inhibitory activity were purified by reverse-phase HPLC of Biogel P2 f ractions. This demonstrates that rapeseed protein hydrolysates represent a good source of ACE inhibitory peptides .La actividad de ECA está relacionada con una presión arterial alta y enfermedades cardíacas. Un aislado proteico de colza se hidrolizó con alcalasa para estudiar la posible presencia de péptidos inhibidores de ECA en el hidrolizado. La hidrólisis durante 30 min produjo el hidrolizado con la mayor actividad inhibidora de ECA. Dos fracciones de este hidrolizado, obtenidas por cromatografía de filtración en gel Biogel P2, se usaron para la purificación de péptidos inhibidores de ECA. Tres fracciones con actividad inhibidora de ECA se purificaron mediante HPLC en fase reversa de las fracciones obtenidas mediante Biogel P2. Esto demuestra que los hidrolizados proteicos de colza representan una buena fuente de péptidos inhibidores de ECA.

  2. Cyclic peptide therapeutics: past, present and future.

    Science.gov (United States)

    Zorzi, Alessandro; Deyle, Kaycie; Heinis, Christian

    2017-06-01

    Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for the development of therapeutics. Over 40 cyclic peptide drugs are currently in clinical use and around one new cyclic peptide drug enters the market every year on average. The vast majority of clinically approved cyclic peptides are derived from natural products, such as antimicrobials or human peptide hormones. New powerful techniques based on rational design and in vitro evolution have enabled the de novo development of cyclic peptide ligands to targets for which nature does not offer solutions. A look at the cyclic peptides currently under clinical evaluation shows that several have been developed using such techniques. This new source for cyclic peptide ligands introduces a freshness to the field, and it is likely that de novo developed cyclic peptides will be in clinical use in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Double quick, double click reversible peptide "stapling".

    Science.gov (United States)

    Grison, Claire M; Burslem, George M; Miles, Jennifer A; Pilsl, Ludwig K A; Yeo, David J; Imani, Zeynab; Warriner, Stuart L; Webb, Michael E; Wilson, Andrew J

    2017-07-01

    The development of constrained peptides for inhibition of protein-protein interactions is an emerging strategy in chemical biology and drug discovery. This manuscript introduces a versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation using BID and RNase S peptides as models. Dibromomaleimide is used to constrain BID and RNase S peptide sequence variants bearing cysteine (Cys) or homocysteine ( h Cys) amino acids spaced at i and i + 4 positions by double substitution. The constraint can be readily removed by displacement of the maleimide using excess thiol. This new constraining methodology results in enhanced α-helical conformation (BID and RNase S peptide) as demonstrated by circular dichroism and molecular dynamics simulations, resistance to proteolysis (BID) as demonstrated by trypsin proteolysis experiments and retained or enhanced potency of inhibition for Bcl-2 family protein-protein interactions (BID), or greater capability to restore the hydrolytic activity of the RNAse S protein (RNase S peptide). Finally, use of a dibromomaleimide functionalized with an alkyne permits further divergent functionalization through alkyne-azide cycloaddition chemistry on the constrained peptide with fluorescein, oligoethylene glycol or biotin groups to facilitate biophysical and cellular analyses. Hence this methodology may extend the scope and accessibility of peptide stapling.

  4. Developing a Dissociative Nanocontainer for Peptide Drug Delivery

    Directory of Open Access Journals (Sweden)

    Patrick Kelly

    2015-10-01

    Full Text Available The potency, selectivity, and decreased side effects of bioactive peptides have propelled these agents to the forefront of pharmacological research. Peptides are especially promising for the treatment of neurological disorders and pain. However, delivery of peptide therapeutics often requires invasive techniques, which is a major obstacle to their widespread application. We have developed a tailored peptide drug delivery system in which the viral capsid of P22 bacteriophage is modified to serve as a tunable nanocontainer for the packaging and controlled release of bioactive peptides. Recent efforts have demonstrated that P22 nanocontainers can effectively encapsulate analgesic peptides and translocate them across blood-brain-barrier (BBB models. However, release of encapsulated peptides at their target site remains a challenge. Here a Ring Opening Metathesis Polymerization (ROMP reaction is applied to trigger P22 nanocontainer disassembly under physiological conditions. Specifically, the ROMP substrate norbornene (5-Norbornene-2-carboxylic acid is conjugated to the exterior of a loaded P22 nanocontainer and Grubbs II Catalyst is used to trigger the polymerization reaction leading to nanocontainer disassembly. Our results demonstrate initial attempts to characterize the ROMP-triggered release of cargo peptides from P22 nanocontainers. This work provides proof-of-concept for the construction of a triggerable peptide drug delivery system using viral nanocontainers.

  5. History and trends of bioactive glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Dutra Zanotto, Edgar

    2016-05-01

    The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development. © 2016 Wiley Periodicals, Inc.

  6. Ultrasound assisted extraction of bioactive compounds

    Directory of Open Access Journals (Sweden)

    Helena Drmić

    2010-01-01

    Full Text Available Many novel and innovative techniques are nowadays researched and explored in order to replace or improve classical, thermal processing technologies. One of newer technique is technique of minimal food processing, under what we assume ultrasound processing. Ultrasound technology can be very useful for minimal food processing because transmission of acoustic energy through product is fast and complete, which allows reduction in total processing time, and therefore lower energy consumption. Industrial processing is growing more and more waste products, and in desire of preservation of global recourses and energy efficiency, several ways of active compounds extraction techniques are now explored. The goal is to implement novel extraction techniques in food and pharmaceutical industry as well in medicine. Ultrasound assisted extraction of bioactive compounds offers increase in yield, and reduction or total avoiding of solvent usage. Increase in temperature of treatment is controlled and restricted, thereby preserving extracted bioactive compounds. In this paper, several methods of ultrasound assisted extraction of bioactive compounds from plant materials are shown. Ultrasound can improve classic mechanisms of extraction, and thereby offer novel possibilities of commercial extraction of desired compounds. Application of sonochemistry (ultrasound chemistry is providing better yield in desired compounds and reduction in treatment time.

  7. Peptide receptor radionuclide therapy of neuroendocrine tumours

    International Nuclear Information System (INIS)

    Bodei, L.; Giammarile, F.

    2009-01-01

    Neuroendocrine tumours are considered relatively rare tumours that have the characteristic property of secreting bioactive substances, such as amines and hormones. They constitute a heterogeneous group, characterized by good prognosis, but important disparities of the evolutionary potential. In the aggressive forms, the therapeutic strategies are limited. The metabolic or internal radiotherapy, using radiolabelled peptides, which can act at the same time on the primary tumour and its metastases, constitutes a tempting therapeutic alternative, currently in evolution. The prospects are related to the development of new radiopharmaceuticals, with the use of other peptide analogues whose applications will overflow the framework of the neuro-endocrine tumours. (authors)

  8. Analysis of peptide uptake and location of root hair-promoting peptide accumulation in plant roots.

    Science.gov (United States)

    Matsumiya, Yoshiki; Taniguchi, Rikiya; Kubo, Motoki

    2012-03-01

    Peptide uptake by plant roots from degraded soybean-meal products was analyzed in Brassica rapa and Solanum lycopersicum. B. rapa absorbed about 40% of the initial water volume, whereas peptide concentration was decreased by 75% after 24 h. Analysis by reversed-phase HPLC showed that number of peptides was absorbed by the roots during soaking in degraded soybean-meal products for 24 h. Carboxyfluorescein-labeled root hair-promoting peptide was synthesized, and its localization, movement, and accumulation in roots were investigated. The peptide appeared to be absorbed by root hairs and then moved to trichoblasts. Furthermore, the peptide was moved from trichoblasts to atrichoblasts after 24 h. The peptide was accumulated in epidermal cells, suggesting that the peptide may have a function in both trichoblasts and atrichoblasts. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  9. Production and evaluation of antibodies and phage display-derived peptide ligands for immunomagnetic separation of Mycobacterium bovis.

    Science.gov (United States)

    Stewart, Linda D; McNair, James; McCallan, Lyanne; Thompson, Suzan; Kulakov, Leonid A; Grant, Irene R

    2012-05-01

    This study describes the development and optimization of an immunomagnetic separation (IMS) method to isolate Mycobacterium bovis cells from lymph node tissues. Gamma-irradiated whole M. bovis AF2122/97 cells and ethanol-extracted surface antigens of such cells were used to produce M. bovis-specific polyclonal and monoclonal antibodies in rabbits and mice. They were also used to generate M. bovis-specific peptide ligands by phage display biopanning. The various antibodies and peptide ligands obtained were used to coat MyOne tosyl-activated Dynabeads (Life Technologies), singly or in combination, and evaluated for IMS. Initially, M. bovis capture from Middlebrook 7H9 broth suspensions (concentration range, 10 to 10(5) CFU/ml) was evaluated by IMS combined with an M. bovis-specific touchdown PCR. IMS-PCR results and, subsequently, IMS-culture results indicated that the beads with greatest immunocapture capability for M. bovis in broth were those coated simultaneously with a monoclonal antibody and a biotinylated 12-mer peptide. These dually coated beads exhibited minimal capture (mean of 0.36% recovery) of 12 other Mycobacterium spp. occasionally encountered in veterinary tuberculosis (TB) diagnostic laboratories. When the optimized IMS method was applied to various M. bovis-spiked lymph node matrices, it demonstrated excellent detection sensitivities (50% limits of detection of 3.16 and 57.7 CFU/ml of lymph node tissue homogenate for IMS-PCR and IMS-culture, respectively). The optimized IMS method therefore has the potential to improve isolation of M. bovis from lymph nodes and hence the diagnosis of bovine tuberculosis.

  10. A sucrose-derived scaffold for multimerization of bioactive peptides.

    Science.gov (United States)

    Rao, Venkataramanarao; Alleti, Ramesh; Xu, Liping; Tafreshi, Narges K; Morse, David L; Gillies, Robert J; Mash, Eugene A

    2011-11-01

    A spherical molecular scaffold bearing eight terminal alkyne groups was synthesized in one step from sucrose. One or more copies of a tetrapeptide azide, either N(3)(CH(2))(5)(CO)-His-DPhe-Arg-Trp-NH(2) (MSH4) or N(3)(CH(2))(5)(CO)-Trp-Met-Asp-Phe-NH(2) (CCK4), were attached to the scaffold via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Competitive binding assays using Eu-labeled probes based on the superpotent ligands Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH(2) (NDP-α-MSH) and Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH(2) (CCK8) were used to study the interactions of monovalent and multivalent MSH4 and CCK4 constructs with Hek293 cells engineered to overexpress MC4R and CCK2R. All of the monovalent and multivalent MSH4 constructs exhibited binding comparable to that of the parental ligand, suggesting that either the ligand spacing was inappropriate for multivalent binding, or MSH4 is too weak a binder for a second 'anchoring' binding event to occur before the monovalently-bound construct is released from the cell surface. In contrast with this behavior, monovalent CCK4 constructs were significantly less potent than the parental ligand, while multivalent CCK4 constructs were as or more potent than the parental ligand. These results are suggestive of multivalent binding, which may be due to increased residence times for monovalently bound CCK4 constructs on the cell surface relative to MSH4 constructs, the greater residence time being necessary for the establishment of multivalent binding. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Bioactivity Assessment of Indian Origin-Mangrove Actinobacteria against Candida albicans.

    Science.gov (United States)

    Pavan Kumar, J G S; Gomathi, Ajitha; Gothandam, K M; Vasconcelos, Vitor

    2018-02-12

    Actinobacteria is found to have a potent metabolic activity against pathogens. The present study reveals the assessment of potent antifungal secondary metabolites from actinobacteria isolated from Indian marine mangrove sediments. The samples were collected from the coastal regions of Muthupet, Andaman and the Nicobar Islands. Identification was carried out using 16S rRNA analysis and biosynthetic genes (Polyketide synthase type I/II and Non-ribosomal peptide synthase) were screened. Actinobacteria were assayed for their antifungal activity against 16 clinical Candida albicans and the compound analysis was performed using gas chromatography-mass spectrometry GC-MS. The 31 actinobacterial strains were isolated and 16S rRNA gene sequencing revealed that this ecosystem is rich on actinobacteria, with Streptomyces as the predominant genus. The PCR based screening of biosynthetic genes revealed the presence of PKS-I in six strains, PKS-II in four strains and NRPS in 11 strains. The isolated actinobacteria VITGAP240 and VITGAP241 (two isolates) were found to have a potential antifungal activity against all the tested C. albicans . GC-MS results revealed that the actinobacterial compounds were belonging to heterocyclic, polyketides and peptides. Overall, the strains possess a wide spectrum of antifungal properties which affords the production of significant bioactive metabolites as potential antibiotics.

  12. Antibacterial and cytotoxic bioactivity of marine Actinobacteria from Loreto Bay National Park, Mexico

    OpenAIRE

    Cardoso-Martínez, Faviola; Becerril-Espinosa, Amayaly; Barrila-Ortíz, Celso; Torres-Beltrán, Mónica; Ocampo-Alvarez, Héctor; Iñiguez-Martínez, Ana M.; Soria-Mercado, Irma E.

    2015-01-01

    Abstract Production of bioactive compounds is intimately linked to the ecology of the producing organisms. Taking this into account, the objective of this study was to evaluate the bioactive properties of isolated Actinobacteria from sea sediments of a high biodiversity zone; under the hypothesis that the ecological characteristics of this site stimulate the presence of unique and bioactive strains that can be screened for new compounds with antibiotic and anticancer properties. The elected z...

  13. Production of the antimicrobial peptide UBI 29-41 labelled with 99mTc by an indirect method

    International Nuclear Information System (INIS)

    Nevares, Noemi; Crudo, Jose L.; Zapata, Miguel; Castiglia, Silvia G. de

    2003-01-01

    The infection processes are a major problem in human health causing a high number of human deaths all around the world. Diagnostic imaging in nuclear medicine is an attractive option in the detection of infection processes due to its sensitivity. The antimicrobial peptides are very important in the development of new radiopharmaceuticals, since their antimicrobial activity towards a great variety of microorganisms have been proven. The aim of this work was to obtain the antimicrobial peptide UBI 29-41 labelled with technetium 99 m, by an indirect method via NHS-Hynic and tricine as a coligand, and evaluate its stability and its ability to discriminate between infection and inflammation sites. The radiochemical purity of the labeling procedure was 95.5±1,2 %. The cysteine challenge showed a great stability of the 99mTc UBI-Hynic, and the stability in human serum showed that the 81% of the radioactivity remained bounded to UBI-Hynic at 48 hs of incubation. The bio distribution's studies showed main elimination via kidney of 99mTc UBI-Hynic and the target/non target ratio was 1,81 for infected mice and 1,16 for inflamed mice. (author)

  14. Digestion proteomics: tracking lactoferrin truncation and peptide release during simulated gastric digestion.

    Science.gov (United States)

    Grosvenor, Anita J; Haigh, Brendan J; Dyer, Jolon M

    2014-11-01

    The extent to which nutritional and functional benefit is derived from proteins in food is related to its breakdown and digestion in the body after consumption. Further, detailed information about food protein truncation during digestion is critical to understanding and optimising the availability of bioactives, in controlling and limiting allergen release, and in minimising or monitoring the effects of processing and food preparation. However, tracking the complex array of products formed during the digestion of proteins is not easily accomplished using classical proteomics. We here present and develop a novel proteomic approach using isobaric labelling to mapping and tracking protein truncation and peptide release during simulated gastric digestion, using bovine lactoferrin as a model food protein. The relative abundance of related peptides was tracked throughout a digestion time course, and the effect of pasteurisation on peptide release assessed. The new approach to food digestion proteomics developed here therefore appears to be highly suitable not only for tracking the truncation and relative abundance of released peptides during gastric digestion, but also for determining the effects of protein modification on digestibility and potential bioavailability.

  15. Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide.

    Science.gov (United States)

    Boyhan, Diane; Daniell, Henry

    2011-06-01

    Current treatment for type I diabetes includes delivery of insulin via injection or pump, which is highly invasive and expensive. The production of chloroplast-derived proinsulin should reduce cost and facilitate oral delivery. Therefore, tobacco and lettuce chloroplasts were transformed with the cholera toxin B subunit fused with human proinsulin (A, B, C peptides) containing three furin cleavage sites (CTB-PFx3). Transplastomic lines were confirmed for site-specific integration of transgene and homoplasmy. Old tobacco leaves accumulated proinsulin up to 47% of total leaf protein (TLP). Old lettuce leaves accumulated proinsulin up to 53% TLP. Accumulation was so stable that up to ~40% proinsulin in TLP was observed even in senescent and dried lettuce leaves, facilitating their processing and storage in the field. Based on the yield of only monomers and dimers of proinsulin (3 mg/g leaf, a significant underestimation), with a 50% loss of protein during the purification process, one acre of tobacco could yield up to 20 million daily doses of insulin per year. Proinsulin from tobacco leaves was purified up to 98% using metal affinity chromatography without any His-tag. Furin protease cleaved insulin peptides in vitro. Oral delivery of unprocessed proinsulin bioencapsulated in plant cells or injectable delivery into mice showed reduction in blood glucose levels similar to processed commercial insulin. C-peptide should aid in long-term treatment of diabetic complications including stimulation of nerve and renal functions. Hyper-expression of functional proinsulin and exceptional stability in dehydrated leaves offer a low-cost platform for oral and injectable delivery of cleavable proinsulin. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  16. Production and characterization of two major Aspergillus oryzae secreted prolyl endopeptidases able to efficiently digest proline-rich peptides of gliadin.

    Science.gov (United States)

    Eugster, Philippe J; Salamin, Karine; Grouzmann, Eric; Monod, Michel

    2015-12-01

    Prolyl endopeptidases are key enzymes in the digestion of proline-rich proteins. Fungal extracts rich in prolyl endopeptidases produced by a species such as Aspergillus oryzae used in food fermentation would be of particular interest for the development of an oral enzyme therapy product in patients affected by intolerance to gluten. Two major A. oryzae secreted prolyl endopeptidases of the MEROPS S28 peptidase family, AoS28A and AoS28B, were identified when this fungus was grown at acidic pH in a medium containing soy meal protein or wheat gliadin as the sole source of nitrogen. AoS28B was produced by 12 reference A. oryzae strains used in food fermentation. AoS28A was secreted by six of these 12 strains. This protease is the orthologue of the previously characterized Aspergillus fumigatus (AfuS28) and Aspergillus niger (AN-PEP) prolyl endopeptidases which are encoded by genes with a similar intron-exon structure. Large amounts of secreted AoS28A and AoS28B were obtained by gene overexpression in A. oryzae. AoS28A and AoS28B are endoproteases able to cleave N-terminally blocked proline substrates. Both enzymes very efficiently digested the proline-rich 33-mer of gliadin, the most representative immunotoxic peptide deriving from gliadin, with some differences in terms of specificity and optimal pH. Digestion of the gliadin peptide in short peptides with both enzymes was found to occur from its N terminus.

  17. Bioactive Glasses: Where Are We and Where Are We Going?

    Directory of Open Access Journals (Sweden)

    Francesco Baino

    2018-03-01

    Full Text Available Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today’s achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.

  18. Bioactive Glasses: Where Are We and Where Are We Going?

    Science.gov (United States)

    Baino, Francesco; Hamzehlou, Sepideh; Kargozar, Saeid

    2018-03-19

    Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today's achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.

  19. Semisynthesis and bioactive evaluation of oxidized products from 20(S)-ginsenoside Rg3, Rh2, protopanaxadiol (PPD) and their 20(R)-epimers as cytotoxic agents.

    Science.gov (United States)

    Yang, Jie; Li, Xuwen; Sun, Ting; Gao, Yan; Chen, Yanxin; Jin, Yongri; Li, Yang

    2016-02-01

    A series of oxidized products have been systematically semisynthesized from 20(S)-ginsenoside Rg3, Rh2, 20(S)-protopanaxadiol (PPD) and their 20(R)-epimers and the majority of these products were evaluated for their cytotoxic activity against HeLa cells and HepG2 cells by MTT assay for the first time. Twenty-two products were obtained and elucidated based on comprehensive (1)H NMR, (13)C NMR, two-dimensional (2D) NMR, and mass spectral data and the results reported in previous literature. All the four ocotillol type saponins (20S,24R(δ86, δ85); 20S,24S(δ87, δ88); 20R,24R(δ86, δ86); 20R,24S(δ86, δ87) were obtained. In addition, eight compounds (3, 8, 9, 10, 15, 16, 19 and 22) with the cyclized side chain were firstly identified. Most of the tested compounds possessed cytotoxicity to a certain degree against the two types of cells which implied these oxidized products could play a certain role on anti-cancer functions of the raw materials in vivo. Meanwhile, the results proved that the configurations at C-20 or C-24 and the number of glycosyl at C-3 have important influence on the cytotoxicity. The products 1, 2, 11-17, 20 and 22 should possess great activities and deserved further investigation as potential cytotoxic agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The stationary phase sigma factor, RpoS, regulates the production of a carbapenem antibiotic, a bioactive prodigiosin and virulence in the enterobacterial pathogen Serratia sp. ATCC 39006.

    Science.gov (United States)

    Wilf, Nabil M; Salmond, George P C

    2012-03-01

    Serratia sp. ATCC 39006 (S39006) is a Gram-negative bacterium that is virulent in plant (potato) and invertebrate animal (Caenorhabditis elegans) models. It produces two secondary metabolite antibiotics, a prodigiosin and a carbapenem, and the exoenzymes pectate lyase and cellulase. We showed previously that deletion of the RNA chaperone Hfq abolished antibiotic production and attenuated virulence in both animal and plant hosts. Hfq and dependent small RNAs (sRNAs) are known to regulate the post-transcriptional expression of rpoS, which encodes σ(S), the stationary phase sigma factor subunit of RNA polymerase. An S39006 hfq deletion mutant showed decreased transcript levels of rpoS. Therefore, in this study we investigated whether the phenotypes regulated by Hfq were mediated through its control of rpoS. Whereas loss of Hfq abolished prodigiosin and carbapenem production and attenuated virulence in both C. elegans and potato, characterization of an S39006 rpoS mutant showed unexpectedly elevated prodigiosin and carbapenem production. Furthermore, the rpoS mutant exhibited attenuated animal pathogenesis, but not plant pathogenesis. Additionally, a homologue of the Hfq-dependent sRNA, RprA, was identified and shown to regulate prodigiosin production in a manner consistent with its role in positively regulating translation of rpoS mRNA. Combined, these results demonstrate that Hfq regulation of secondary metabolism and plant pathogenesis is independent of RpoS and establishes RpoS and RprA as regulators of antibiotic production.

  1. Bioactive glasses: Frontiers and challenges

    Directory of Open Access Journals (Sweden)

    Larry L. Hench

    2015-11-01

    Full Text Available Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980’s it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are: a discovery; b clinical application; c tissue regeneration; and d innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  2. Preparation of high bioactivity multilayered bone-marrow mesenchymal stem cell sheets for myocardial infarction using a 3D-dynamic system.

    Science.gov (United States)

    Wang, Yingwei; Zhang, Jianhua; Qin, Zixi; Fan, Zepei; Lu, Cheng; Chen, Baoxin; Zhao, Jupeng; Li, Xiaojuan; Xiao, Fei; Lin, Xi; Wu, Zheng

    2018-05-01

    Cell sheet techniques offer a promising future for myocardial infarction (MI) therapy; however, insufficient nutrition supply remains the major limitation in maintaining stem cell bioactivity in vitro. In order to enhance cell sheet mechanical strength and bioactivity, a decellularized porcine pericardium (DPP) scaffold was prepared by the phospholipase A2 method, and aspartic acid was used as a spacer arm to improve the vascular endothelial growth factor crosslink efficiency on the DPP scaffold. Based on this scaffold, multilayered bone marrow mesenchymal stem cell sheets were rapidly constructed, using RAD16-I peptide hydrogel as a temporary 3D scaffold, and cell sheets were cultured in either the 3D-dynamic system (DCcs) or the traditional static condition (SCcs). The multilayered structure, stem cell bioactivity, and ultrastructure of DCcs and SCcs were assessed. The DCcs exhibited lower apoptosis, lower differentiation, and an improved paracrine effect after a 48 h culture in vitro compared to the SCcs. Four groups were set to evaluate the cell sheet effect in rat MI model: sham group, MI control group, DCcs group, and SCcs group. The DCcs group improved cardiac function and decreased the infarcted area compared to the MI control group, while no significant improvements were observed in the SCcs group. Improved cell survival, angiogenesis, and Sca-1 + cell and c-kit + cell amounts were observed in the DCcs group. In conclusion, the DCcs maintained higher stem cell bioactivity by using the 3D-dynamic system to provide sufficient nutrition, and transplanting DCcs significantly improved the cardiac function and angiogenesis. This study provides an efficient method to prepare vascular endothelial growth factor covalent decellularized pericardium scaffold with aspartic acid, and a multilayered bone marrow mesenchymal stem cell (BMSC) sheet is constructed on it using a 3D-dynamic system. The dynamic nutrition supply showed a significant benefit on BMSC bioactivity

  3. Fabrication and bioactivity behavior of HA/bioactive glass composites in the presence of calcium hexaboride

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassyouni, Gehan T.; Beherei, Hanan H. [Biomaterials Dept., National Research Centre (NRC), Dokki, Cairo (Egypt); Mohamed, Khaled R., E-mail: kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre (NRC), Dokki, Cairo (Egypt); Kenawy, Sayed H. [Ceramics Dept., National Research Centre (NRC), Dokki, Cairo (Egypt)

    2016-06-01

    In the current study, composites were prepared using both the synthesized nano-sized hydroxyapatite (HA), bioactive glass (BG) powders (obtained by the traditional melt-quenching route) together with the purchased nano-sized calcium hexaboride (CB) with different ratios and were fired at 1250 °C. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy; scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM) techniques and compressive strength. The mechanical testing was to designate the role of the CB in improving the mechanical property of the prepared composites. In vitro bioactivity of the prepared composites was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °°C for 10 days. The effect of different ratios of the three components (CB, HA & BG) on the bioactivity properties was assessed to explore the possibility of enhancing such property to perform in vitro imitations of in vivo conditions in the future. It can be pointed out that the Si-HA content in the composition showed outstanding in vitro bioactivity than pure hydroxyapatite which could be attributed to the excellent bioactivity of the synthesized composites. - Highlights: • The prepared of nano-composites containing CB, HA and BG powders were achieved. • The addition of CB powder enhanced the compressive strength for all the composites. • The composites containing high BG and CB contents improved formation of bone-like apatite layer.

  4. Fabrication and bioactivity behavior of HA/bioactive glass composites in the presence of calcium hexaboride

    International Nuclear Information System (INIS)

    El-Bassyouni, Gehan T.; Beherei, Hanan H.; Mohamed, Khaled R.; Kenawy, Sayed H.

    2016-01-01

    In the current study, composites were prepared using both the synthesized nano-sized hydroxyapatite (HA), bioactive glass (BG) powders (obtained by the traditional melt-quenching route) together with the purchased nano-sized calcium hexaboride (CB) with different ratios and were fired at 1250 °C. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy; scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM) techniques and compressive strength. The mechanical testing was to designate the role of the CB in improving the mechanical property of the prepared composites. In vitro bioactivity of the prepared composites was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °°C for 10 days. The effect of different ratios of the three components (CB, HA & BG) on the bioactivity properties was assessed to explore the possibility of enhancing such property to perform in vitro imitations of in vivo conditions in the future. It can be pointed out that the Si-HA content in the composition showed outstanding in vitro bioactivity than pure hydroxyapatite which could be attributed to the excellent bioactivity of the synthesized composites. - Highlights: • The prepared of nano-composites containing CB, HA and BG powders were achieved. • The addition of CB powder enhanced the compressive strength for all the composites. • The composites containing high BG and CB contents improved formation of bone-like apatite layer.

  5. [Synthetic Studies of Bioactive Heterocyclic Natural Products and Fused Heterocyclic Compounds Based on the Thermal Electrocyclic or Azaelectocyclic Reaction of 6π-Electron or Aza-6π-electron Systems].

    Science.gov (United States)

    Hibino, Satoshi

    2016-01-01

    Since 1979, synthetic studies of bioactive heterocyclic natural products and condensed heteroaromatic compounds based on the thermal electrocyclic reaction of 6π-electron or aza-6π-electron systems incorporating the double bond of the principal aromatic or heteroaromatic ring have been conducted by our research group. In this review, five types of electrocyclic and azaelectrocyclic reaction are described: 1) the synthesis of the carbazole alkaloids hyellazole and 6-chlorohyellazole through the electrocyclic reaction of 2,3-bisalkenylindoles; 2) synthetic studies of the pyridocarbazole alkaloids ellipticine and olivacine through the electrocyclic reactions of the indole-2,3- and pyridine-3,4-quinodimethane intermediates; 3) synthetic studies of polysubstituted carbazole alkaloids through the allene-mediated electrocyclic reactions involving the indole 2,3-bond; 4) synthetic studies of fused pyridine rings through the azaelectrocyclic reaction of the 1-aza-6π-electron system using the oxime or oxime ether; and 5) synthetic studies of fused pyridine rings through the azaelectrocyclic reaction of the 2-aza-6π-electron system using a carbodiimide or isocyanate.

  6. Soluble γ-secretase modulators selectively inhibit the production of the 42-amino acid amyloid β peptide variant and augment the production of multiple carboxy-truncated amyloid β species.

    Science.gov (United States)

    Wagner, Steven L; Zhang, Can; Cheng, Soan; Nguyen, Phuong; Zhang, Xulun; Rynearson, Kevin D; Wang, Rong; Li, Yueming; Sisodia, Sangram S; Mobley, William C; Tanzi, Rudolph E

    2014-02-04

    Alzheimer's disease (AD) is characterized pathologically by an abundance of extracellular neuritic plaques composed primarily of the 42-amino acid amyloid β peptide variant (Aβ42). In the majority of familial AD (FAD) cases, e.g., those harboring mutations in presenilin 1 (PS1), there is a relative increase in the levels of Aβ42 compared to the levels of Aβ40. We previously reported the characterization of a series of aminothiazole-bridged aromates termed aryl aminothiazole γ-secretase modulators or AGSMs [Kounnas, M. Z., et al. (2010) Neuron 67, 769-780] and showed their potential for use in the treatment of FAD [Wagner, S. L., et al. (2012) Arch. Neurol. 69, 1255-1258]. Here we describe a series of GSMs with physicochemical properties improved compared to those of AGSMs. Specific heterocycle replacements of the phenyl rings in AGSMs provided potent molecules with improved aqueous solubilities. A number of these soluble γ-secretase modulators (SGSMs) potently lowered Aβ42 levels without inhibiting proteolysis of Notch or causing accumulation of amyloid precursor protein carboxy-terminal fragments, even at concentrations approximately 1000-fold greater than their IC50 values for reducing Aβ42 levels. The effects of one potent SGSM on Aβ peptide production were verified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, showing enhanced production of a number of carboxy-truncated Aβ species. This SGSM also inhibited Aβ42 peptide production in a highly purified reconstituted γ-secretase in vitro assay system and retained the ability to modulate γ-secretase-mediated proteolysis in a stably transfected cell culture model overexpressing a human PS1 mutation validating the potential for use in FAD.

  7. Influence of Disulfide Connectivity on Structure and Bioactivity of α-Conotoxin TxIA

    Directory of Open Access Journals (Sweden)

    Yong Wu

    2014-01-01

    Full Text Available Cone snails express a sophisticated arsenal of small bioactive peptides known as conopeptides or conotoxins (CTxs. Through evolutionary selection, these peptides have gained the ability to interact with a range of ion channels and receptors, such as nicotinic acetylcholine receptors (nAChRs. Here, we used reversed-phase high performance liquid chromatography (RP-HPLC and electrospray ionization-mass spectrometry (ESI-MS to explore the venom peptide diversity of Conus textile, a species of cone snail native to Hainan, China. One fraction of C. textile crude venom potently blocked α3β2 nAChRs. Subsequent purification, synthesis, and tandem mass spectrometric analysis demonstrated that the most active compound in this fraction was identical to α-CTx TxIA, an antagonist of α3β2 nAChRs. Then three disulfide isoforms of α-CTx TxIA were synthesized and their activities were investigated systematically for the first time. As we observed, disulfide isomerisation was particularly important for α-CTx TxIA potency. Although both globular and ribbon isomers showed similar retention times in RP-HPLC, globular TxIA potently inhibited α3β2 nAChRs with an IC50 of 5.4 nM, while ribbon TxIA had an IC50 of 430 nM. In contrast, beads isomer had little activity towards α3β2 nAChRs. Two-step oxidation synthesis produced the highest yield of α-CTx TxIA native globular isomer, while a one-step production process based on random oxidation folding was not suitable. In summary, this study demonstrated the relationship between conotoxin activity and disulfide connectivity on α-CTx TxIA.

  8. Peptide regulators of peripheral taste function.

    Science.gov (United States)

    Dotson, Cedrick D; Geraedts, Maartje C P; Munger, Steven D

    2013-03-01

    The peripheral sensory organ of the gustatory system, the taste bud, contains a heterogeneous collection of sensory cells. These taste cells can differ in the stimuli to which they respond and the receptors and other signaling molecules they employ to transduce and encode those stimuli. This molecular diversity extends to the expression of a varied repertoire of bioactive peptides that appear to play important functional roles in signaling taste information between the taste cells and afferent sensory nerves and/or in processing sensory signals within the taste bud itself. Here, we review studies that examine the expression of bioactive peptides in the taste bud and the impact of those peptides on taste functions. Many of these peptides produced in taste buds are known to affect appetite, satiety or metabolism through their actions in the brain, pancreas and other organs, suggesting a functional link between the gustatory system and the neural and endocrine systems that regulate feeding and nutrient utilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Glucagon-Like Peptide-1 Secreting Cell Function as well as Production of Inflammatory Reactive Oxygen Species Is Differently Regulated by Glycated Serum and High Levels of Glucose

    Directory of Open Access Journals (Sweden)

    Alessandra Puddu

    2014-01-01

    Full Text Available Glucagon-like peptide-1 (GLP-1, an intestinal hormone contributing to glucose homeostasis, is synthesized by proglucagon and secreted from intestinal neuroendocrine cells in response to nutrients. GLP-1 secretion is impaired in type 2 diabetes patients. Here, we aimed at investigating whether diabetic toxic products (glycated serum (GS or high levels of glucose (HG may affect viability, function, and insulin sensitivity of the GLP-1 secreting cell line GLUTag. Cells were cultured for 5 days in presence or absence of different dilutions of GS or HG. GS and HG (alone or in combination increased reactive oxygen species (ROS production and upregulated proglucagon mRNA expression as compared to control medium. Only HG increased total production and release of active GLP-1, while GS alone abrogated secretion of active GLP-1. HG-mediated effects were associated with the increased cell content of the prohormone convertase 1/3 (PC 1/3, while GS alone downregulated this enzyme. HG upregulated Glucokinase (GK and downregulated SYNTHAXIN-1. GS abrogated SYNTHAXIN-1 and SNAP-25. Finally, high doses of GS alone or in combination with HG reduced insulin-mediated IRS-1 phosphorylation. In conclusion, we showed that GS and HG might regulate different pathways of GLP-1 production in diabetes, directly altering the function of neuroendocrine cells secreting this hormone.

  10. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex.

    Science.gov (United States)

    Park, Kyungho; Ikushiro, Hiroko; Seo, Ho Seong; Shin, Kyong-Oh; Kim, Young Il; Kim, Jong Youl; Lee, Yong-Moon; Yano, Takato; Holleran, Walter M; Elias, Peter; Uchida, Yoshikazu

    2016-03-08

    We recently identified a previously unidentified sphingosine-1-phosphate (S1P) signaling mechanism that stimulates production of a key innate immune element, cathelicidin antimicrobial peptide (CAMP), in mammalian cells exposed to external perturbations, such as UVB irradiation and other oxidative stressors that provoke subapoptotic levels of endoplasmic reticulum (ER) stress, independent of the well-known vitamin D receptor-dependent mechanism. ER stress increases cellular ceramide and one of its distal metabolites, S1P, which activates NF-κB followed by C/EBPα activation, leading to CAMP production, but in a S1P receptor-independent fashion. We now show that S1P activates NF-κB through formation of a previously unidentified signaling complex, consisting of S1P, TRAF2, and RIP1 that further associates with three stress-responsive proteins; i.e., heat shock proteins (GRP94 and HSP90α) and IRE1α. S1P specifically interacts with the N-terminal domain of heat shock proteins. Because this ER stress-initiated mechanism is operative in both epithelial cells and macrophages, it appears to be a universal, highly conserved response, broadly protective against diverse external perturbations that lead to increased ER stress. Finally, these studies further illuminate how ER stress and S1P orchestrate critical stress-specific signals that regulate production of one protective response by stimulating production of the key innate immune element, CAMP.

  11. The production and crystallization of the human leukocyte antigen class II molecules HLA-DQ2 and HLA-DQ8 complexed with deamidated gliadin peptides implicated in coeliac disease

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Kate N.; Reid, Hugh H.; Borg, Natalie A.; Broughton, Sophie E.; Huyton, Trevor [The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800 (Australia); Anderson, Robert P. [Autoimmunity and Transplantation Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3050 (Australia); Department of Gastroenterology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050 (Australia); McCluskey, James [Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010 (Australia); Rossjohn, Jamie, E-mail: jamie.rossjohn@med.monash.edu.au [The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800 (Australia)

    2007-12-01

    The production and crystallization of human leukocyte antigen class II molecules HLA-DQ2 and HLA-DQ8 in complex with deamidated gliadin peptides is reported. Crystals of HLA-DQ2{sup PQPELPYPQ} diffracted to 3.9 Å, while the HLA-DQ8{sup EGSFQPSQE} crystals diffracted to 2.1 Å, allowing structure determination by molecular replacement. The major histocompatibility complex (MHC) class II molecules HLA-DQ2 and HLA-DQ8 are key risk factors in coeliac disease, as they bind deamidated gluten peptides that are subsequently recognized by CD4{sup +} T cells. Here, the production and crystallization of both HLA-DQ2 and HLA-DQ8 in complex with the deamidated gliadin peptides DQ2 α-I (PQPELPYPQ) and DQ8 α-I (EGSFQPSQE), respectively, are reported.

  12. Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria.

    Science.gov (United States)

    Borrero, Juan; Jiménez, Juan J; Gútiez, Loreto; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2011-10-20

    Replacement of the leader sequence (LS) of the bacteriocin enterocin A (LS(entA)) by the signal peptides (SP) of the protein Usp45 (SP(usp45)), and the bacteriocins enterocin P (SP(entP)), and hiracin JM79 (SP(hirJM79)) permits the production, secretion, and functional expression of EntA by different lactic acid bacteria (LAB). Chimeric genes encoding the SP(usp45), the SP(entP), and the SP(hirJM79) fused to mature EntA plus the EntA immunity genes (entA+entiA) were cloned into the expression vectors pNZ8048 and pMSP3545, under control of the inducible P(nisA) promoter, and in pMG36c, under control of the constitutive P(32) promoter. The amount, antimicrobial activity, and specific antimicrobial activity of the EntA produced by the recombinant Lactococcus lactis, Enterococcus faecium, E. faecalis, Lactobacillus sakei and Pediococcus acidilactici hosts varied depending on the signal peptide, the expression vector, and the host strain. However, the antimicrobial activity and the specific antimicrobial activity of the EntA produced by most of the LAB transformants was lower than expected from their production. The supernatants of the recombinant L. lactis NZ9000 (pNZUAI) and L. lactis NZ9000 (pNZHAI), overproducers of EntA, showed a 1.2- to 5.1-fold higher antimicrobial activity than that of the natural producer E. faecium T136 against different Listeria spp. Copyright © 2011 Elsevier B.V. All rights reserved.