WorldWideScience

Sample records for bioactive natural product-like

  1. Marine actinobacteria: an important source of bioactive natural products.

    Science.gov (United States)

    Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon

    2014-07-01

    Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Bioactive natural products from Chinese marine flora and fauna.

    Science.gov (United States)

    Zhou, Zhen-Fang; Guo, Yue-Wei

    2012-09-01

    In recent decades, the pharmaceutical application potential of marine natural products has attracted much interest from both natural product chemists and pharmacologists. Our group has long been engaged in the search for bioactive natural products from Chinese marine flora (such as mangroves and algae) and fauna (including sponges, soft corals, and mollusks), resulting in the isolation and characterization of numerous novel secondary metabolites spanning a wide range of structural classes and various biosynthetic origins. Of particular interest is the fact that many of these compounds show promising biological activities, including cytotoxic, antibacterial, and enzyme inhibitory effects. By describing representative studies, this review presents a comprehensive summary regarding the achievements and progress made by our group in the past decade. Several interesting examples are discussed in detail.

  3. Search for bioactive natural products from medicinal plants of Bangladesh.

    Science.gov (United States)

    Ahmed, Firoj; Sadhu, Samir Kumar; Ishibashi, Masami

    2010-10-01

    In our continuous search for bioactive natural products from natural resources, we explored medicinal plants of Bangladesh, targeting cancer-related tumor necrosis factor-related apoptosis-inducing ligand-signaling pathway, along with some other biological activities such as prostaglandin inhibitory activity, 1,1-diphenyl-2-picrylhydrazyl free-radical-scavenging activity, and cell growth inhibitory activity. Along with this, we describe a short field study on Sundarbans mangrove forests, Bangladesh, in the review.

  4. Atmospheric Precipitations, Hailstone and Rainwater, as a Novel Source of Streptomyces Producing Bioactive Natural Products

    Science.gov (United States)

    Sarmiento-Vizcaíno, Aida; Espadas, Julia; Martín, Jesús; Braña, Alfredo F.; Reyes, Fernando; García, Luis A.; Blanco, Gloria

    2018-01-01

    A cultivation-dependent approach revealed that highly diverse populations of Streptomyces were present in atmospheric precipitations from a hailstorm event sampled in February 2016 in the Cantabrian Sea coast, North of Spain. A total of 29 bioactive Streptomyces strains isolated from small samples of hailstone and rainwater, collected from this hailstorm event, were studied here. Taxonomic identification by 16S rRNA sequencing revealed more than 20 different Streptomyces species, with their closest homologs displaying mainly oceanic but also terrestrial origins. Backward trajectory analysis revealed that the air-mass sources of the hailstorm event, with North Western winds, were originated in the Arctic Ocean (West Greenland and North Iceland) and Canada (Labrador), depending on the altitude. After traveling across the North Atlantic Ocean during 4 days the air mass reached Europe and precipitated as hailstone and rain water at the sampling place in Spain. The finding of Streptomyces species able to survive and disperse through the atmosphere increases our knowledge of the biogeography of genus Streptomyces on Earth, and reinforces our previous dispersion model, suggesting a generalized feature for the genus which could have been essential in his evolution. This unique atmospheric-derived Streptomyces collection was screened for production of bioactive secondary metabolites. Analyses of isolates ethyl acetate extracts by LC-UV-MS and further database comparison revealed an extraordinary diversity of bioactive natural products. One hundred molecules were identified, mostly displaying contrasted antibiotic and antitumor/cytotoxic activities, but also antiparasitic, antiviral, anti-inflammatory, neuroprotector, and insecticide properties. More interestingly, 38 molecules not identified in natural products databases might represent new natural products. Our results revealed for the first time an extraordinary diversity of Streptomyces species in the atmosphere able to

  5. Statistical Research on the Bioactivity of New Marine Natural Products Discovered during the 28 Years from 1985 to 2012

    Science.gov (United States)

    Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie

    2015-01-01

    Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development. PMID:25574736

  6. The Complexity of Bioactive Natural Products in Plants

    DEFF Research Database (Denmark)

    Frisch, Tina

    Plants produce a diverse range of bioactive natural products promoting their fitness. These specialized metabolites may serve as chemical defence against herbivores and pathogens and may inhibit the growth and development of competing species. Hydroxynitrile glucosides and glucosinolates are two...... classes of defence compounds, which have diverging properties, but also share common biosynthetic features. Hydroxynitrile glucosides are produced in species across the plant kingdom, whereas glucosinolates are found almost exclusively within the Brassicales, which generally does not contain...... hydroxynitrile glucosides. This division has raised questions regarding possible evolutionary relationships between the biosynthetic pathways. The very rare co-occurrence of hydroxynitrile glucosides and glucosinolates found in Alliaria petiolata (garlic mustard, løgkarse) and Carica papaya (papaya) makes...

  7. EFFECTS OF INCORPORATING NATURAL MINERALS ON PRODUCTION AND BIOACTIVITY OF BIOACTIVE GLASS CERAMICS

    Directory of Open Access Journals (Sweden)

    Franco Matias Stabile

    2016-07-01

    Full Text Available Two glass-ceramics composition were produced from natural minerals. Quartzes and feldspars were pre-selected on the basis of their purities studied by X-ray diffraction (XRD and chemical analysis. Prepared compositions of glasses precursors were two different theoretical leucite (KAlSi₂O₆ /Bioglass 45S5 (L/Bg ratios. Transformations of raw materials mixtures and glass precursors were studied by differential thermal analyses. On the basis of thermal analysis results, glass ceramics were produced and characterized by XRD. Glass-ceramics were composed of two major crystalline phases, leucite and sodium calcium silicate. Bioactivity tests were performed submerging the glass-ceramics into simulated body fluid (SBF for different periods (1, 5 and 10 days. Bioactive behavior was monitored by XRD and scanning electron microscopy (SEM. Studied samples were found to be bioactive, in which hydroxyapatite layer was developed within 5 days of contact with SBF.

  8. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Science.gov (United States)

    Rayan, Anwar; Raiyn, Jamal; Falah, Mizied

    2017-01-01

    Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  9. Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity.

    Science.gov (United States)

    Aswad, Miran; Rayan, Mahmoud; Abu-Lafi, Saleh; Falah, Mizied; Raiyn, Jamal; Abdallah, Ziyad; Rayan, Anwar

    2018-01-01

    The aim was to index natural products for less expensive preventive or curative anti-inflammatory therapeutic drugs. A set of 441 anti-inflammatory drugs representing the active domain and 2892 natural products representing the inactive domain was used to construct a predictive model for bioactivity-indexing purposes. The model for indexing the natural products for potential anti-inflammatory activity was constructed using the iterative stochastic elimination algorithm (ISE). ISE is capable of differentiating between active and inactive anti-inflammatory molecules. By applying the prediction model to a mix set of (active/inactive) substances, we managed to capture 38% of the anti-inflammatory drugs in the top 1% of the screened set of chemicals, yielding enrichment factor of 38. Ten natural products that scored highly as potential anti-inflammatory drug candidates are disclosed. Searching the PubMed revealed that only three molecules (Moupinamide, Capsaicin, and Hypaphorine) out of the ten were tested and reported as anti-inflammatory. The other seven phytochemicals await evaluation for their anti-inflammatory activity in wet lab. The proposed anti-inflammatory model can be utilized for the virtual screening of large chemical databases and for indexing natural products for potential anti-inflammatory activity.

  10. Bioactive Natural Products of Marine Sponges from the Genus Hyrtios

    Directory of Open Access Journals (Sweden)

    Nourhan Hisham Shady

    2017-05-01

    Full Text Available Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios, reported to have various species such as Hyrtios erectus, Hyrtios reticulatus, Hyrtios gumminae, Hyrtios communis, and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classes including alkaloids, sesterterpenes and sesquiterpenes. This review covers the literature until June 2016, providing a complete survey of all compounds isolated from the genus Hyrtios with their corresponding biological activities whenever applicable.

  11. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Directory of Open Access Journals (Sweden)

    Anwar Rayan

    Full Text Available Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  12. Bioactive Structure of Membrane Lipids and Natural Products Elucidated by a Chemistry-Based Approach.

    Science.gov (United States)

    Murata, Michio; Sugiyama, Shigeru; Matsuoka, Shigeru; Matsumori, Nobuaki

    2015-08-01

    Determining the bioactive structure of membrane lipids is a new concept, which aims to examine the functions of lipids with respect to their three-dimensional structures. As lipids are dynamic by nature, their "structure" does not refer solely to a static picture but also to the local and global motions of the lipid molecules. We consider that interactions with lipids, which are completely defined by their structures, are controlled by the chemical, functional, and conformational matching between lipids and between lipid and protein. In this review, we describe recent advances in understanding the bioactive structures of membrane lipids bound to proteins and related molecules, including some of our recent results. By examining recent works on lipid-raft-related molecules, lipid-protein interactions, and membrane-active natural products, we discuss current perspectives on membrane structural biology. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Construction of a 3D-shaped, natural product like fragment library by fragmentation and diversification of natural products.

    Science.gov (United States)

    Prescher, Horst; Koch, Guido; Schuhmann, Tim; Ertl, Peter; Bussenault, Alex; Glick, Meir; Dix, Ina; Petersen, Frank; Lizos, Dimitrios E

    2017-02-01

    A fragment library consisting of 3D-shaped, natural product-like fragments was assembled. Library construction was mainly performed by natural product degradation and natural product diversification reactions and was complemented by the identification of 3D-shaped, natural product like fragments available from commercial sources. In addition, during the course of these studies, novel rearrangements were discovered for Massarigenin C and Cytochalasin E. The obtained fragment library has an excellent 3D-shape and natural product likeness, covering a novel, unexplored and underrepresented chemical space in fragment based drug discovery (FBDD). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Natural bioactive compounds: antibiotics | Dezfully | Journal of ...

    African Journals Online (AJOL)

    Antibiotics are powerful therapeutic agents that are produced by diverse living organisms. Over the last several decades, natural bioactive products particularly antibiotics have continued to play a significant role in drug discovery and has expanded the process for developing drugs with high degree of therapeutic index and ...

  15. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value

    Directory of Open Access Journals (Sweden)

    Anastasia-Varvara Ferlemi

    2016-06-01

    Full Text Available Berry fruits are recognized, worldwide, as “superfoods” due to the high content of bioactive natural products and the health benefits deriving from their consumption. Berry leaves are byproducts of berry cultivation; their traditional therapeutic use against several diseases, such as the common cold, inflammation, diabetes, and ocular dysfunction, has been almost forgotten nowadays. Nevertheless, the scientific interest regarding the leaf composition and beneficial properties grows, documenting that berry leaves may be considered an alternative source of bioactives. The main bioactive compounds in berry leaves are similar as in berry fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. The leaves are one of the richest sources of chlorogenic acid. In various studies, these secondary metabolites have demonstrated antioxidant, anti-inflammatory, cardioprotective, and neuroprotective properties. This review focuses on the phytochemical composition of the leaves of the commonest berry species, i.e., blackcurrant, blackberry, raspberry, bilberry, blueberry, cranberry, and lingonberry leaves, and presents their traditional medicinal uses and their biological activities in vitro and in vivo.

  16. Natural product-like virtual libraries: recursive atom-based enumeration.

    Science.gov (United States)

    Yu, Melvin J

    2011-03-28

    A new molecular enumerator is described that allows chemically and architecturally diverse sets of natural product-like and drug-like structures to be generated from a core structure as simple as a single carbon atom or as complex as a polycyclic ring system. Integrated with a rudimentary machine-learning algorithm, the enumerator has the ability to assemble biased virtual libraries enriched in compounds predicted to meet target criteria. The ability to dynamically generate relatively small focused libraries in a recursive manner could reduce the computational time and infrastructure necessary to construct and manage extremely large static libraries. Depending on enumeration conditions, natural product-like structures can be produced with a wide range of heterocyclic and alicyclic ring assemblies. Because natural products represent a proven source of validated structures for identifying and designing new drug candidates, mimicking the structural and topological diversity found in nature with a dynamic set of virtual natural product-like compounds may facilitate the creation of new ideas for novel, biologically relevant lead structures in areas of uncharted chemical space.

  17. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review

    Directory of Open Access Journals (Sweden)

    Ana Teixeira

    2014-09-01

    Full Text Available The relevance of food composition for human health has increased consumers’ interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L. are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used. Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.

  18. Natural bioactive compounds from winery by-products as health promoters: a review.

    Science.gov (United States)

    Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A; Garcia-Viguera, Cristina

    2014-09-04

    The relevance of food composition for human health has increased consumers' interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.

  19. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products.

    Science.gov (United States)

    Cornara, Laura; Biagi, Marco; Xiao, Jianbo; Burlando, Bruno

    2017-01-01

    Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs), and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA), with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.

  20. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products

    Directory of Open Access Journals (Sweden)

    Laura Cornara

    2017-06-01

    Full Text Available Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs, and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA, with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.

  1. Bioactive natural products from novel microbial sources.

    Science.gov (United States)

    Challinor, Victoria L; Bode, Helge B

    2015-09-01

    Despite the importance of microbial natural products for human health, only a few bacterial genera have been mined for the new natural products needed to overcome the urgent threat of antibiotic resistance. This is surprising, given that genome sequencing projects have revealed that the capability to produce natural products is not a rare feature among bacteria. Even the bacteria occurring in the human microbiome produce potent antibiotics, and thus potentially are an untapped resource for novel compounds, potentially with new activities. This review highlights examples of bacteria that should be considered new sources of natural products, including anaerobes, pathogens, and symbionts of humans, insects, and nematodes. Exploitation of these producer strains, combined with advances in modern natural product research methodology, has the potential to open the way for a new golden age of microbial therapeutics. © 2015 New York Academy of Sciences.

  2. A Natural Love of Natural Products

    OpenAIRE

    Kingston, David G. I.

    2008-01-01

    Recent research on the chemistry of natural products from the author?s group that led to the receipt of the ACS Ernest Guenther Award in the Chemistry of Natural Products is reviewed. REDOR NMR and synthetic studies established the T-taxol conformation as the bioactive tubulin-binding conformation, and these results were confirmed by the synthesis of compounds which clearly owed their activity or lack of activity to whether or not they could adopt the T-taxol conformation. Similar studies wit...

  3. l-theanine: A potential multifaceted natural bioactive amide as health supplement

    Directory of Open Access Journals (Sweden)

    Rajsekhar Adhikary

    2017-09-01

    Full Text Available Natural bioactive compounds from plants are of great importance in modern therapeutics, which are used to prepare antibiotics, growth supplements or some other therapeutics. l-theanine is such a bioactive amide amino acid presented in different plants and fungi, especially in tea. Theanine has influential effects on lifestyle associated diseases, such as diabetes, cardiovascular disorders, hypertension, stress relief, tumor suppression, menstruation and liver injury. This amino acid can maintain normal sleep and improve memory function and nullify effect of the neurotoxins. The rate of bioavailability and its medium of ingestion in the body is one of the great concerns for its additional antioxidant properties. Pharmacokinetics of the bioactive compound and its mode of action are described herewith. The biosynthesis and industrial synthesis are also reviewed to promote accelerated production of this bioactive compound in the pharmaceutical industries.

  4. Peptides: Production, bioactivity, functionality, and applications

    DEFF Research Database (Denmark)

    Hajfathalian, Mona; Ghelichi, Sakhi; García Moreno, Pedro Jesús

    2017-01-01

    Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry...... by-products. The aim of this review is to introduce production methods of hydrolysates and peptides and provide a comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous, and gastrointestinal systems. Moreover, functional and antioxidant properties...... of hydrolysates and isolated peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their use in nutrition and production of pharmaceuticals and nutraceuticals are discussed....

  5. [Elaboration of Pseudo-natural Products Using Artificial In Vitro Biosynthesis Systems].

    Science.gov (United States)

    Goto, Yuki

    2018-01-01

     Peptidic natural products often consist of not only proteinogenic building blocks but also unique non-proteinogenic structures such as macrocyclic scaffolds and N-methylated backbones. Since such non-proteinogenic structures are important structural motifs that contribute to diverse bioactivity, we have proposed that peptides with non-proteinogenic structures should be attractive candidates as artificial bioactive peptides mimicking natural products, or so-called pseudo-natural products. We previously devised an engineered translation system for pseudo-natural peptides, referred to as the flexible in vitro translation (FIT) system. This system enabled "one-pot" synthesis of highly diverse pseudo-natural peptide libraries, which can be rapidly screened by mRNA display technology for the discovery of pseudo-natural peptides with diverse bioactivities.

  6. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings. PMID:26347734

  7. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity.

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.

  8. Mangrove rare actinobacteria: Taxonomy, natural compound and discovery of bioactivity

    Directory of Open Access Journals (Sweden)

    Adzzie-Shazleen eAzman

    2015-08-01

    Full Text Available Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.

  9. Principal component analysis as a tool for library design: a case study investigating natural products, brand-name drugs, natural product-like libraries, and drug-like libraries.

    Science.gov (United States)

    Wenderski, Todd A; Stratton, Christopher F; Bauer, Renato A; Kopp, Felix; Tan, Derek S

    2015-01-01

    Principal component analysis (PCA) is a useful tool in the design and planning of chemical libraries. PCA can be used to reveal differences in structural and physicochemical parameters between various classes of compounds by displaying them in a convenient graphical format. Herein, we demonstrate the use of PCA to gain insight into structural features that differentiate natural products, synthetic drugs, natural product-like libraries, and drug-like libraries, and show how the results can be used to guide library design.

  10. Bioactive activities of natural products against herpesvirus infection.

    Science.gov (United States)

    Son, Myoungki; Lee, Minjung; Sung, Gi-Ho; Lee, Taeho; Shin, Yu Su; Cho, Hyosun; Lieberman, Paul M; Kang, Hyojeung

    2013-10-01

    More than 90% of adults have been infected with at least one human herpesvirus, which establish long-term latent infection for the life of the host. While anti-viral drugs exist that limit herpesvirus replication, many of these are ineffective against latent infection. Moreover, drug-resistant strains of herpesvirus emerge following chemotherapeutic treatment. For example, resistance to acyclovir and related nucleoside analogues can occur when mutations arise in either HSV thymidine kinase or DNA polymerases. Thus, there exists an unmet medical need to develop new anti-herpesvirus agents with different mechanisms of action. In this Review, we discuss the promise of anti-herpetic substances derived from natural products including extracts and pure compounds from potential herbal medicines. One example is Glycyrrhizic acid isolated from licorice that shows promising antiviral activity towards human gammaherpesviruses. Secondly, we discuss anti-herpetic mechanisms utilized by several natural products in molecular level. While nucleoside analogues inhibit replicating herpesviruses in lytic replication, some natural products can disrupt the herpesvirus latent infection in the host cell. In addition, natural products can stimulate immune responses against herpesviral infection. These findings suggest that natural products could be one of the best choices for development of new treatments for latent herpesvirus infection, and may provide synergistic anti-viral activity when supplemented with nucleoside analogues. Therefore, it is important to identify which natural products are more efficacious anti-herpetic agents, and to understand the molecular mechanism in detail for further advance in the anti-viral therapies.

  11. Combinatorial synthesis of natural products

    DEFF Research Database (Denmark)

    Nielsen, John

    2002-01-01

    Combinatorial syntheses allow production of compound libraries in an expeditious and organized manner immediately applicable for high-throughput screening. Natural products possess a pedigree to justify quality and appreciation in drug discovery and development. Currently, we are seeing a rapid...... increase in application of natural products in combinatorial chemistry and vice versa. The therapeutic areas of infectious disease and oncology still dominate but many new areas are emerging. Several complex natural products have now been synthesised by solid-phase methods and have created the foundation...... for preparation of combinatorial libraries. In other examples, natural products or intermediates have served as building blocks or scaffolds in the synthesis of complex natural products, bioactive analogues or designed hybrid molecules. Finally, structural motifs from the biologically active parent molecule have...

  12. Natural Products from Mangrove Actinomycetes

    Science.gov (United States)

    Xu, Dong-Bo; Ye, Wan-Wan; Han, Ying; Deng, Zi-Xin; Hong, Kui

    2014-01-01

    Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery. PMID:24798926

  13. Oxidative stress and production of bioactive monoterpene indole alkaloids: biotechnological implications.

    Science.gov (United States)

    Matsuura, Hélio Nitta; Rau, Mariana Ritter; Fett-Neto, Arthur Germano

    2014-02-01

    Monoterpene indole alkaloids (MIAs) encompass plant natural products with important pharmacological relevance. They include the anti-tumoral MIAs found in Catharanthus roseus and Camptotheca acuminata. The often low yields of bioactive alkaloids in plants has prompted research to identify the factors regulating MIA production. Oxidative stress is a general response associated with biotic and abiotic stresses leading to several secondary responses, including elicitation of MIA production. These changes in secondary metabolism may take place directly or via second messengers, such as Ca(2+) and reactive oxygen species (ROS). H2O2 is the main ROS that participates in MIA biosynthesis. This review analyzes the links between oxidative stress, elicitation of bioactive MIA production and their potential roles in antioxidant defense, as well as exploring the implications to developing biotechnological strategies relevant for alkaloid supply.

  14. In-vitro engineering of novel bioactivity in the natural enzymes

    Directory of Open Access Journals (Sweden)

    Vishvanath Tiwari

    2016-10-01

    Full Text Available Enzymes catalyze various biochemical functions with high efficiency and specificity. In-vitro design of the enzyme leads to novel bioactivity in this natural biomolecule that give answers of some vital questions like crucial residues in binding with substrate, molecular evolution, cofactor specificity etc. Enzyme engineering technology involves directed evolution, rational designing, semi-rational designing and structure-based designing using chemical modifications. Similarly, combined computational and in-vitro evolution approaches together help in artificial designing of novel bioactivity in the natural enzyme. DNA shuffling, error prone PCR and staggered extension process are used to artificially redesign active site of enzyme, which can alter its efficiency and specificity. Modifications of the enzyme can lead to the discovery of new path of molecular evolution, designing of efficient enzymes, locating active sites and crucial residues, shift in substrate and cofactor specificity. The methods and thermodynamics of in-vitro designing of the enzyme are also discussed. Similarly, engineered thermophilic and psychrophilic enzymes attain substrate specificity and activity of mesophilic enzymes that may also be beneficial for industry and therapeutics.

  15. Natural Products from Mangrove Actinomycetes

    Directory of Open Access Journals (Sweden)

    Dong-Bo Xu

    2014-05-01

    Full Text Available Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery.

  16. Effects of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride.

    Science.gov (United States)

    Daryaei, A; Jones, E E; Ghazalibiglar, H; Glare, T R; Falloon, R E

    2016-04-01

    The goal was to determine the effect of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride LU132 against Rhizoctonia solani. The incubation temperatures of 20, 25 or 30°C were assessed on the production of T. atroviride conidia under constant light over a 25 and 50 days periods. The resulting conidia were also studied for germination and bioactivity. Conidium production was maximum at 25°C after 20 days. The second peak of conidium production occurred at 45-50 days. Incubation at 25°C after 15 days showed optimum production of T. atroviride LU132. Conidia produced at 30°C gave the greatest germination and bioactivity in comparison with incubation at 20 or 25°C. This study indicates that the temperature at which conidia of T. atroviride are produced affects germination and bioactivity. Formulations based on production of the high conidia yield may not result in optimal bioactivity and there is a trade-off between quantity and quality of T. atroviride LU132 conidia. Conidium production was shown to be a continuous process, and increased under a dark/light regime. This is the first report of bimodal conidium production in a Trichoderma biological control agent (BCA), which is likely to be on 20 days cycle, and is dependent on colony age rather than abiotic factors. Conidia produced after 15 days are likely to be the most suitable for use in commercial production of this strain as a BCA. Most studies on Trichoderma-based BCA have only shown the effect of culture conditions on the high conidia yield regardless of conidium quality. This study is the first report on conidium quality affected by principal culture conditions for Trichoderma biological control formulations. © 2016 The Society for Applied Microbiology.

  17. Bioactive Compounds in Functional Meat Products.

    Science.gov (United States)

    Pogorzelska-Nowicka, Ewelina; Atanasov, Atanas G; Horbańczuk, Jarosław; Wierzbicka, Agnieszka

    2018-01-31

    Meat and meat products are a good source of bioactive compounds with positive effect on human health such as vitamins, minerals, peptides or fatty acids. Growing food consumer awareness and intensified global meat producers competition puts pressure on creating new healthier meat products. In order to meet these expectations, producers use supplements with functional properties for animal diet and as direct additives for meat products. In the presented work seven groups of key functional constituents were chosen: (i) fatty acids; (ii) minerals; (iii) vitamins; (iv) plant antioxidants; (v) dietary fibers; (vi) probiotics and (vii) bioactive peptides. Each of them is discussed in term of their impact on human health as well as some quality attributes of the final products.

  18. Comparative study on major bioactive components in natural, artificial and in-vitro cultured Calculus Bovis.

    Science.gov (United States)

    Yan, Shi-Kai; Wu, Yan-Wen; Liu, Run-Hui; Zhang, Wei-Dong

    2007-01-01

    Major bioactive components in various Calculus Bovis, including natural, artificial and in-vitro cultured Calculus Bovis, were comparatively studied. An approach of high-performance liquid chromatography coupled with ultraviolet and evaporative light scattering detections (HPLC/UV/ELSD) was established to simultaneously determinate six bioactive components thereof, including five bile acids (cholic acid, deoxycholic acid, ursodeoxycholic, chenodeoxycholic acid, hyodeoxycholic acid) and bilirubin. ELSD and UV detector were applied to detect bile acids and bilirubin respectively. The assay was performed on a C(18) column with water-acetonitrile gradient elution and the investigated constituents were authenticated by comparing retention times and mass spectra with those of reference compounds. The proposed method was applied to analyze twenty-one Calculus Bovis extraction samples, and produced data with acceptable linearity, precision, repeatability and accuracy. The result indicated the variations among Calculus Bovis samples under different developmental conditions. Artificial and in-vitro cultured Calculus Bovis, especially in-vitro cultured ones, which contain total bioactive constituents no less than natural products and have the best batch-to-batch uniformity, suffice to be used as substitutes of natural Calculus Bovis.

  19. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  20. Whey Based Bioactive Peptides Used in Animal Products

    Directory of Open Access Journals (Sweden)

    Ayse Demet Karaman

    2016-10-01

    Full Text Available Bioactive peptides come out as a result of the hydrolysis of milk proteins and contain nutritional, functional and biological activities. Nowadays, the utilization of whey proteins to provide various features in the animal products such as meat and milk products and animal production has been increasing. In this compilation, after being introduced some general information about their common characteristics, bioactive peptides will be mentioned about their particularly recent usage in animal products.

  1. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities.

    Science.gov (United States)

    Hayes, Maria; Tiwari, Brijesh K

    2015-09-17

    Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  2. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Martina [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Corazzari, Ingrid [Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, Torino 10125 (Italy); Centro Interdipartimentale “G. Scansetti” per lo studio degli amianti e di altri particolati nocivi, Via Pietro Giuria 9, 10125 Torino (Italy); Prenesti, Enrico [Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, Torino 10125 (Italy); Bertone, Elisa [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Vernè, Enrica, E-mail: enrica.verne@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Ferraris, Sara [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy)

    2016-03-30

    Graphical abstract: - Highlights: • Surface functionalization of bioactive glass with biomolecules has been optimized. • Biomolecules are present and active on the glass surface after functionalization. • Biomolecules affect deposition kinetics and morphology of hydroxyapatite. • Free radical scavenging activity is seen for the first time on bioactive glasses. - Abstract: Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H{sub 2}O{sub 2} highlighting scavenging activity of the bioactive glass.

  3. Building blocks for automated elucidation of metabolites: natural product-likeness for candidate ranking.

    Science.gov (United States)

    Jayaseelan, Kalai Vanii; Steinbeck, Christoph

    2014-07-05

    In metabolomics experiments, spectral fingerprints of metabolites with no known structural identity are detected routinely. Computer-assisted structure elucidation (CASE) has been used to determine the structural identities of unknown compounds. It is generally accepted that a single 1D NMR spectrum or mass spectrum is usually not sufficient to establish the identity of a hitherto unknown compound. When a suite of spectra from 1D and 2D NMR experiments supplemented with a molecular formula are available, the successful elucidation of the chemical structure for candidates with up to 30 heavy atoms has been reported previously by one of the authors. In high-throughput metabolomics, usually 1D NMR or mass spectrometry experiments alone are conducted for rapid analysis of samples. This method subsequently requires that the spectral patterns are analyzed automatically to quickly identify known and unknown structures. In this study, we investigated whether additional existing knowledge, such as the fact that the unknown compound is a natural product, can be used to improve the ranking of the correct structure in the result list after the structure elucidation process. To identify unknowns using as little spectroscopic information as possible, we implemented an evolutionary algorithm-based CASE mechanism to elucidate candidates in a fully automated fashion, with input of the molecular formula and 13C NMR spectrum of the isolated compound. We also tested how filters like natural product-likeness, a measure that calculates the similarity of the compounds to known natural product space, might enhance the performance and quality of the structure elucidation. The evolutionary algorithm is implemented within the SENECA package for CASE reported previously, and is available for free download under artistic license at http://sourceforge.net/projects/seneca/. The natural product-likeness calculator is incorporated as a plugin within SENECA and is available as a GUI client and

  4. Megalanthine, a bioactive sesquiterpenoid from Heliotropium megalanthum, its degradation products and their bioactivities.

    Science.gov (United States)

    Macías, Francisco A; Simonet, Ana M; D'Abrosca, Brigida; Maya, Claudia C; Reina, Matías; González-Coloma, Azucena; Cabrera, Raimundo; Giménez, Cristina; Villarroel, Luis

    2009-01-01

    The new bioactive sesquiterpenoid (3R,6E)-2,6,10-trimethyl-3-(3-p-hydroxyphenylpropanoyloxy)-dodeca-6,11-diene-2,10-diol, named megalanthine, was isolated from the resinous exudates of Heliotropium megalanthum. The degradation products of this compound were identified. Several plant-defensive properties (insecticidal, antifungal, and phytotoxic) were evaluated after obtaining positive results in a preliminary etiolated wheat coleoptile bioassay. This bioassay showed the need to have both the phenolic and sesquiterpene moieties of the natural product present to achieve a biological effect. This result was confirmed in phytotoxicity bioassays. Megalanthine was ruled out as a significant plant-plant defense agent because of its lack of stability. The positive results recorded in the antifungal and antifeedant tests suggest, however, that this chemical is relevant in several ecological interactions involving H. megalanthum.

  5. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    Science.gov (United States)

    Cazzola, Martina; Corazzari, Ingrid; Prenesti, Enrico; Bertone, Elisa; Vernè, Enrica; Ferraris, Sara

    2016-03-01

    Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H2O2 highlighting scavenging activity of the bioactive glass.

  6. Bioactive compounds from flesh and by-product of fresh-cut watermelon cultivars.

    Science.gov (United States)

    Tarazona-Díaz, Martha Patricia; Viegas, Joana; Moldao-Martins, Margarida; Aguayo, Encarna

    2011-03-30

    The fresh-cut industry produces thousands of tons of waste in non-edible portions that present an environmental and management problem. These by-products could be reused, in particular, to obtain bioactive compounds. In this study, five different fresh-cut watermelon cultivars were assessed for their flesh and by-product bioactive contents. The amount of by-product varied between 31.27 and 40.61% of initial fresh weight (f.w.) depending on the cultivar. Watermelon cultivars were poor sources of total antioxidant, and the content was similar between rind and flesh samples (46.96 vs 43.46 mg ascorbic acid equivalent antioxidant capacity kg(-1) f.w.). However, the rind had a moderate total phenolic content higher than that of the flesh (458 vs 389 mg chlorogenic acid equivalent kg(-1) f.w.) and a much higher content of the amino acid citrulline (3.34 vs 2.33 g kg(-1) f.w.), which has potential bioactive properties. Watermelon rind offers quantitative interest as a natural source of citrulline, particularly Fashion, a dark-skinned, seedless cultivar. More research is required on the efficient extraction of citrulline from watermelon rind and its suitability as an additive to drinks, juices or others products to produce new functional food products with valid health claims. Copyright © 2010 Society of Chemical Industry.

  7. Bioactive peptides: production, health effects and application as natural supplements for functional foods production

    Directory of Open Access Journals (Sweden)

    S. Mirdamadi

    2017-05-01

    Full Text Available Bioactive peptides, are inactive components within the structure of the protein and when they are released by enzymatic hydrolysis, show different physiological functions. Recently, the identification and characterization of bioactive peptides derived from plant and animal sources and different microorganisms is highly regarded. They are produced during enzymatic hydrolysis by gastrointestinal enzymes or enzymes extracted from microorganisms and plants or by proteolytic starter cultures during fermentation process and exhibit different activities including: opioid, mineral binding, immunomodulatory, antioxidant, antimicrobial, anti-inflammatory, chlosterol lowering and so on. Take advantage of bioactive peptides as components of health is related to bio stability assurance, bioavailability and safety of them. The use of computer-based techniques and the use of various databases completed in laboratory studies,  have provided the possibility of studying the mechanisms of action of different peptides.

  8. Identification and Characterization of Bioactive Peptides of Fermented Goat Milk as a Sources of Antioxidant as a Therapeutic Natural Product

    Science.gov (United States)

    Mahdi, Chanif; Untari, Handayu; Cendrakasih Padaga, Masdiana

    2018-01-01

    The increasing of functional food is rising in line with public awareness for healthy food consumption. Provision of functional food source is developed through enhanced bioactive that has a regulatory function for body. Bioactive peptides in milk is known have variety of beneficial function of the body such as immunomodulator, immunostimulatory, anti-hypertension, anti-hyper cholesterol, as well as a variety of other beneficial function. The aim of this study is to obtain fermentation methods to product functional dairy product contain bioactive peptides and beneficial of fermented goat milk. The result of this study showed that goat milk fermented using 3 % commercial starter able to produce the best yoghurt than using local yoghurt starter. Analysis of protein content showed that the fermentation processing increased the amount of protein in goat milk sample. Using SDS-PAGE showed that the breakdown of protein into fraction of fermented goat milk greater than unfermented goat milk. The result of fractional protein was analyzed by LC MS/MS and showed that there were three kind bioactive sequences of bioactive peptides. Each of which consist of 16 amino acids that safely protected from gastrointestinal animal model that fed by dietary treatment of hypercholesterolemia.

  9. Marine natural products in prevention and treatment of osteoporosis

    Directory of Open Access Journals (Sweden)

    Zahra Ghanbari

    2015-05-01

    Full Text Available Undoubtedly, pharmaceutical and nutritional factors play an important role in the prevention of age-related bone loss. According to the several studies so far, the effects of nutrients and bioactive components which are extracted from marine resources are very promising in osteoporosis. Most of these investigations have been done on various marine algae extracts. Since, algae are rich source of essential minerals, primary and secondary unique natural products, several amino acids and growth factors their extracts show favorable effects on bone metabolism. Moreover, it has been shown that marine nutrients such as marine fishes, shrimp and crabs increase the absorption of calcium and bone collagen synthesis or reduce the production of prostaglandins and decrease the deoxypyridinoline disposal. On the other hand, secondary products which are extracted and characterized from marine organisms such as mollusks, fungi, bacteria, sponges and coral reefs show anti-osteoporosis activities via the inhibition of osteoclast differentiation and the induction of apoptosis in osteoclasts like cells or stimulation of osteoblast differentiation. Although, several investigations have been done in this area, many of studies have been carried out on animal models, like ovariectomy-induced bone loss in mice. Hence, clinical investigations are warranted to develop marine natural products against bone loss and to prevent osteoporosis.

  10. Bioactivity, mechanical properties and drug delivery ability of bioactive glass-ceramic scaffolds coated with a natural-derived polymer.

    Science.gov (United States)

    Araújo, M; Viveiros, R; Philippart, A; Miola, M; Doumett, S; Baldi, G; Perez, J; Boccaccini, A R; Aguiar-Ricardo, A; Verné, E

    2017-08-01

    In this work, hybrid melanin-coated bioactive glass-ceramic multifunctional scaffolds were developed and characterized in terms of mechanical strength, in vitro bioactivity in simulated body fluid (SBF) and ability to load ibuprofen. The coated scaffolds exhibited an accelerated bioactivity in comparison with the uncoated ones, being able of developing hydroxyapatite-like crystals after 7days soaking in simulated body fluid (SBF). Besides its positive influence on the scaffolds bioactivity, the melanin coating was able to enhance their mechanical properties, increasing the initial compressive strength by a factor of >2.5. Furthermore, ibuprofen was successfully loaded on this coating, allowing a controlled drug release of the anti-inflammatory agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.

    Science.gov (United States)

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-10-07

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds.

  12. Interactive influences of bioactive trace metals on biological production in oceanic waters

    International Nuclear Information System (INIS)

    Bruland, K.W.; Donat, J.R.; Hutchins, D.A.

    1991-01-01

    The authors present an overview of the oceanic chemistries of the bioactive trace metals, Mn, Fe, Co, Ni, Cu, and Zn; the authors combine field data with results from laboratory phytoplankton culture-trace metal studies and speculate on the potential influences of these trace metals on oceanic plankton production and species composition. Most field studies have focused on the effects of single metals. However, they propose that synergistic and antagonistic interactions between multiple trace metals could be very important in the oceans. Trace metal antagonisms that may prove particularly important are those between Cu and the potential biolimiting metals Fe, Mn, and Zn. These antagonistic interactions could have the greatest influence on biological productivity in areas of the open ocean isolated from terrestrial inputs, such as the remote high nutrient regions of the Pacific and Antarctic Oceans. The emerging picture of trace metal-biota interactions in these oceanic areas is one in which biology strongly influences distribution and chemical speciation of all these bioactive trace metals. It also seems likely that many of these bioactive trace metals and their speciation may influence levels of primary productivity, species composition, and trophic structure. Future investigations should give more complete consideration to the interactive effects of biologically important trace metals

  13. Study on bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis.

    Science.gov (United States)

    Wan, Tien-Chun; Cheng, Fu-Yuan; Liu, Yu-Tse; Lin, Liang-Chuan; Sakata, Ryoichi

    2009-12-01

    The purpose of the study was to investigate bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis obtained as valuable by-products from animals used for meat production. The results showed that the components of natural Calculus Bovis were rich in bilirubin and biliverdin and had higher content of essential amino acids. The major amino acids of in vitro cultured Calculus Suis were identified as glycine, alanine, glutamic acid and aspartic acid, and those for natural Calculus Bovis were found to be glutamic acid, aspartic acid, proline, and arginine. The methionine and cysteine contents of precursors for glutathione in natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The mineral contents of zinc, iron and manganese of natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The major bile acids in both products were cholic acid and dehydrocholic acid, respectively. The chenodeoxycholic and ursodeoxycholic acid content of in vitro cultured Calculus Suis was significantly higher than that of natural Calculus Bovis.

  14. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  15. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  16. NCI Program for Natural Product Discovery: A Publicly-Accessible Library of Natural Product Fractions for High-Throughput Screening.

    Science.gov (United States)

    Thornburg, Christopher C; Britt, John R; Evans, Jason R; Akee, Rhone K; Whitt, James A; Trinh, Spencer K; Harris, Matthew J; Thompson, Jerell R; Ewing, Teresa L; Shipley, Suzanne M; Grothaus, Paul G; Newman, David J; Schneider, Joel P; Grkovic, Tanja; O'Keefe, Barry R

    2018-06-13

    The US National Cancer Institute's (NCI) Natural Product Repository is one of the world's largest, most diverse collections of natural products containing over 230,000 unique extracts derived from plant, marine, and microbial organisms that have been collected from biodiverse regions throughout the world. Importantly, this national resource is available to the research community for the screening of extracts and the isolation of bioactive natural products. However, despite the success of natural products in drug discovery, compatibility issues that make extracts challenging for liquid handling systems, extended timelines that complicate natural product-based drug discovery efforts and the presence of pan-assay interfering compounds have reduced enthusiasm for the high-throughput screening (HTS) of crude natural product extract libraries in targeted assay systems. To address these limitations, the NCI Program for Natural Product Discovery (NPNPD), a newly launched, national program to advance natural product discovery technologies and facilitate the discovery of structurally defined, validated lead molecules ready for translation will create a prefractionated library from over 125,000 natural product extracts with the aim of producing a publicly-accessible, HTS-amenable library of >1,000,000 fractions. This library, representing perhaps the largest accumulation of natural-product based fractions in the world, will be made available free of charge in 384-well plates for screening against all disease states in an effort to reinvigorate natural product-based drug discovery.

  17. Automated genome mining of ribosomal peptide natural products

    Energy Technology Data Exchange (ETDEWEB)

    Mohimani, Hosein; Kersten, Roland; Liu, Wei; Wang, Mingxun; Purvine, Samuel O.; Wu, Si; Brewer, Heather M.; Pasa-Tolic, Ljiljana; Bandeira, Nuno; Moore, Bradley S.; Pevzner, Pavel A.; Dorrestein, Pieter C.

    2014-07-31

    Ribosomally synthesized and posttranslationally modified peptides (RiPPs), especially from microbial sources, are a large group of bioactive natural products that are a promising source of new (bio)chemistry and bioactivity (1). In light of exponentially increasing microbial genome databases and improved mass spectrometry (MS)-based metabolomic platforms, there is a need for computational tools that connect natural product genotypes predicted from microbial genome sequences with their corresponding chemotypes from metabolomic datasets. Here, we introduce RiPPquest, a tandem mass spectrometry database search tool for identification of microbial RiPPs and apply it for lanthipeptide discovery. RiPPquest uses genomics to limit search space to the vicinity of RiPP biosynthetic genes and proteomics to analyze extensive peptide modifications and compute p-values of peptide-spectrum matches (PSMs). We highlight RiPPquest by connection of multiple RiPPs from extracts of Streptomyces to their gene clusters and by the discovery of a new class III lanthipeptide, informatipeptin, from Streptomyces viridochromogenes DSM 40736 as the first natural product to be identified in an automated fashion by genome mining. The presented tool is available at cy-clo.ucsd.edu.

  18. Search for Hydrophilic Marine Fungal Metabolites: A Rational Approach for Their Production and Extraction in a Bioactivity Screening Context

    Directory of Open Access Journals (Sweden)

    Jean-François Biard

    2011-01-01

    Full Text Available In the search for bioactive natural products, our lab screens hydrophobic extracts from marine fungal strains. While hydrophilic active substances were recently identified from marine macro-organisms, there was a lack of reported metabolites in the marine fungi area. As such, we decided to develop a general procedure for screening of hydrophobic metabolites. The aim of this study was to compare different processes of fermentation and extraction, using six representative marine fungal strains, in order to define the optimized method for production. The parameters studied were (a which polar solvent to select, (b which fermentation method to choose between solid and liquid cultures, (c which raw material, the mycelium or its medium, to extract and (d which extraction process to apply. The biochemical analysis and biological evaluations of obtained extracts led to the conclusion that the culture of marine fungi by agar surface fermentation followed by the separate extraction of the mycelium and its medium by a cryo-crushing and an enzymatic digestion with agarase, respectively, was the best procedure when screening for hydrophilic bioactive metabolites. During this development, several bioactivities were detected, confirming the potential of hydrophilic crude extracts in the search for bioactive natural products.

  19. Marine organisms: an alternative source of potentially valuable natural products

    Directory of Open Access Journals (Sweden)

    Alphonse Kelecom

    1991-01-01

    Full Text Available This paper recalls the outcoming of marine natural products research and reviews a selection of marirne bioactive metabolites in current use together with promising trends in marine pharmacology.

  20. Biosynthesis of therapeutic natural products using synthetic biology.

    Science.gov (United States)

    Awan, Ali R; Shaw, William M; Ellis, Tom

    2016-10-01

    Natural products are a group of bioactive structurally diverse chemicals produced by microorganisms and plants. These molecules and their derivatives have contributed to over a third of the therapeutic drugs produced in the last century. However, over the last few decades traditional drug discovery pipelines from natural products have become far less productive and far more expensive. One recent development with promise to combat this trend is the application of synthetic biology to therapeutic natural product biosynthesis. Synthetic biology is a young discipline with roots in systems biology, genetic engineering, and metabolic engineering. In this review, we discuss the use of synthetic biology to engineer improved yields of existing therapeutic natural products. We further describe the use of synthetic biology to combine and express natural product biosynthetic genes in unprecedented ways, and how this holds promise for opening up completely new avenues for drug discovery and production. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Bioactive Compounds in Functional Meat Products

    OpenAIRE

    Ewelina Pogorzelska-Nowicka; Atanas G. Atanasov; Jarosław Horbańczuk; Agnieszka Wierzbicka

    2018-01-01

    Meat and meat products are a good source of bioactive compounds with positive effect on human health such as vitamins, minerals, peptides or fatty acids. Growing food consumer awareness and intensified global meat producers competition puts pressure on creating new healthier meat products. In order to meet these expectations, producers use supplements with functional properties for animal diet and as direct additives for meat products. In the presented work seven groups of key functional cons...

  2. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    OpenAIRE

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between ...

  3. Total Synthesis of Natural Products Using Hypervalent Iodine Reagents

    Directory of Open Access Journals (Sweden)

    Gaetan eMaertens

    2015-01-01

    Full Text Available We present a review of natural product syntheses accomplished in our laboratory during the last five years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the aromatic ring umpolung concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol, a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor, acetylaspidoalbidine (an antitumor agent, fortucine (antiviral and antitumor, erysotramidine (curare-like effect, platensimycin (an antibiotic, and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis. These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products.

  4. Low Water Activity Induces the Production of Bioactive Metabolites in Halophilic and Halotolerant Fungi

    Directory of Open Access Journals (Sweden)

    Nina Gunde-Cimerman

    2010-12-01

    Full Text Available The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice, for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity.

  5. Chemical Biology of Microbial Anticancer Natural Products

    DEFF Research Database (Denmark)

    Bladt, Tanja Thorskov; Gotfredsen, Charlotte Held

    than 100 years. New natural products (NPs) are continually discovered and with the increase in selective biological assays, previously described compounds often also display novel bioactivities, justifying their presence in novel screening efforts. Screening and discovery of compounds with activity...... towards chronic lymphocytic leukemia (CLL) cells is crucial since CLL is considered as an incurable disease. To discover novel agents that targets CLL cells is complicated. CLL cells rapidly undergo apoptosis in vitro when they are removed from their natural microenvironment, even though they are long...

  6. Potential of Fruit Wastes as Natural Resources of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Wen-Hua Ling

    2012-07-01

    Full Text Available Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC of lipophilic and hydrophilic components in wastes (peel and seed of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP, trolox equivalent antioxidant capacity (TEAC and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries.

  7. Global patterns of marine bacterioplankton diversity and characterisation of bioactive Vibrionaceae isolates

    DEFF Research Database (Denmark)

    Wietz, Matthias

    from P. halotolerans and a novel siderophore-like compound from V. nigripulchritudo were isolated. All three compounds interfere with quorum sensing in S. aureus. During LOMROG-II further seventeen strains with antagonistic activity were isolated, affiliating with the Actinobacteria (8 strains......), Pseudoalteromonas (4 strains), the Vibrionaceae (3 strains), and Psychrobacter (2 strains). Seven of the eight bioactive Actinobacteria, being isolated from different sources throughout the Arctic Ocean, were related to Arthrobacter davidanieli. Its broad antibiotic spectrum was likely based on production...... demonstrated that marine Vibrionaceae and polar Actinobacteria are a resource of antibacterial compounds and may have potential for future natural product discovery....

  8. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials.

    Science.gov (United States)

    Choudhary, Alka; Naughton, Lynn M; Montánchez, Itxaso; Dobson, Alan D W; Rai, Dilip K

    2017-08-28

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012-2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.

  9. Drugs from the Oceans: Marine Natural Products as Leads for Drug Discovery.

    Science.gov (United States)

    Altmann, Karl-Heinz

    2017-10-25

    The marine environment harbors a vast number of species that are the source of a wide array of structurally diverse bioactive secondary metabolites. At this point in time, roughly 27'000 marine natural products are known, of which eight are (were) at the origin of seven marketed drugs, mostly for the treatment of cancer. The majority of these drugs and also of drug candidates currently undergoing clinical evaluation (excluding antibody-drug conjugates) are unmodified natural products, but synthetic chemistry has played a central role in the discovery and/or development of all but one of the approved marine-derived drugs. More than 1000 new marine natural products have been isolated per year over the last decade, but the pool of new and unique structures is far from exhausted. To fully leverage the potential offered by the structural diversity of marine-produced secondary metabolites for drug discovery will require their broad assessment for different bioactivities and the productive interplay between new fermentation technologies, synthetic organic chemistry, and medicinal chemistry, in order to secure compound supply and enable lead optimization.

  10. Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo.

    Directory of Open Access Journals (Sweden)

    Hai-Jing Zhong

    Full Text Available In this study, we applied structure-based virtual screening techniques to identify natural product or natural product-like inhibitors of iNOS. The iNOS inhibitory activity of the hit compounds was characterized using cellular assays and an in vivo zebrafish larvae model. The natural product-like compound 1 inhibited NO production in LPS-stimulated Raw264.7 macrophages, without exerting cytotoxic effects on the cells. Significantly, compound 1 was able to reverse MPTP-induced locomotion deficiency and neurotoxicity in an in vivo zebrafish larval model. Hence, compound 1 could be considered as a scaffold for the further development of iNOS inhibitors for potential anti-inflammatory or anti-neurodegenerative applications.

  11. Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives

    Directory of Open Access Journals (Sweden)

    Laura Salvia-Trujillo

    2016-01-01

    Full Text Available The oral bioavailability of many hydrophobic bioactive compounds found in natural food products (such as vitamins and nutraceuticals in fruits and vegetables is relatively low due to their low bioaccessibility, chemical instability, or poor absorption. Most previous research has therefore focused on the design of delivery systems to incorporate isolated bioactive compounds into food products. However, a more sustainable and cost-effect approach to enhancing the functionality of bioactive compounds is to leave them within their natural environment, but specifically design excipient foods that enhance their bioavailability. Excipient foods typically do not have functionality themselves but they have the capacity to enhance the functionality of nutrients present in natural foods by altering their bioaccessibility, absorption, and/or chemical transformation. In this review article we present the use of excipient nanoemulsions for increasing the bioavailability of bioactive components from fruits and vegetables. Nanoemulsions present several advantages over other food systems for this application, such as the ability to incorporate hydrophilic, amphiphilic, and lipophilic excipient ingredients, high physical stability, and rapid gastrointestinal digestibility. The design, fabrication, and application of nanoemulsions as excipient foods will therefore be described in this article.

  12. Biomolecules and Natural Medicine Preparations: Analysis of New Sources of Bioactive Compounds from Ribes and Rubus spp. Buds

    Directory of Open Access Journals (Sweden)

    Dario Donno

    2016-02-01

    Full Text Available It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may be used for the production of herbal preparations containing phytochemicals with significant bioactivity, as antioxidant activity and anti-inflammatory capacities, and health benefits. Blackberry sprouts and blackcurrant buds are known to contain appreciable levels of bioactive compounds, including flavonols, phenolic acids, monoterpenes, vitamin C, and catechins, with several clinical effects. The aim of this research was to perform an analytical study of blackcurrant and blackberry bud-preparations, in order to identify and quantify the main biomarkers, obtaining a specific phytochemical fingerprint to evaluate the single botanical class contribution to total phytocomplex and relative bioactivity, using a High Performance Liquid Chromatograph−Diode Array Detector; the same analyses were performed both on the University laboratory and commercial preparations. Different chromatographic methods were used to determine concentrations of biomolecules in the preparations, allowing for quantification of statistically significant differences in their bioactive compound content both in the case of Ribes nigrum and Rubus cultivated varieties at different harvest stages. In blackcurrant bud-extracts the most important class was organic acids (50.98% followed by monoterpenes (14.05%, while in blackberry preparations the main bioactive classes were catechins (50.06% and organic acids (27.34%. Chemical, pharmaceutical and agronomic-environmental knowledge could be important for obtaining label certifications for the valorization of specific genotypes, with high clinical and pharmaceutical value: this study allowed to develop an effective tool for the natural

  13. Biomolecules and Natural Medicine Preparations: Analysis of New Sources of Bioactive Compounds from Ribes and Rubus spp. Buds.

    Science.gov (United States)

    Donno, Dario; Mellano, Maria Gabriella; Cerutti, Alessandro Kim; Beccaro, Gabriele Loris

    2016-02-05

    It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may be used for the production of herbal preparations containing phytochemicals with significant bioactivity, as antioxidant activity and anti-inflammatory capacities, and health benefits. Blackberry sprouts and blackcurrant buds are known to contain appreciable levels of bioactive compounds, including flavonols, phenolic acids, monoterpenes, vitamin C, and catechins, with several clinical effects. The aim of this research was to perform an analytical study of blackcurrant and blackberry bud-preparations, in order to identify and quantify the main biomarkers, obtaining a specific phytochemical fingerprint to evaluate the single botanical class contribution to total phytocomplex and relative bioactivity, using a High Performance Liquid Chromatograph-Diode Array Detector; the same analyses were performed both on the University laboratory and commercial preparations. Different chromatographic methods were used to determine concentrations of biomolecules in the preparations, allowing for quantification of statistically significant differences in their bioactive compound content both in the case of Ribes nigrum and Rubus cultivated varieties at different harvest stages. In blackcurrant bud-extracts the most important class was organic acids (50.98%) followed by monoterpenes (14.05%), while in blackberry preparations the main bioactive classes were catechins (50.06%) and organic acids (27.34%). Chemical, pharmaceutical and agronomic-environmental knowledge could be important for obtaining label certifications for the valorization of specific genotypes, with high clinical and pharmaceutical value: this study allowed to develop an effective tool for the natural preparation quality

  14. Boosting the bioavailability of hydrophobic nutrients, vitamins, and nutraceuticals in natural products using excipient emulsions.

    Science.gov (United States)

    McClements, David Julian; Saliva-Trujillo, Laura; Zhang, Ruojie; Zhang, Zipei; Zou, Liqiang; Yao, Mingfei; Xiao, Hang

    2016-10-01

    Many highly hydrophobic bioactives, such as non-polar nutrients, nutraceuticals, and vitamins, have a relatively low or variable oral bioavailability. The poor bioavailability profile of these bioactives may be due to limited bioaccessibility, poor absorption, and/or chemical transformation within the gastrointestinal tract (GIT). The bioavailability of hydrophobic bioactives can be improved using specially designed oil-in-water emulsions consisting of lipid droplets dispersed within an aqueous phase. The bioactives may be isolated from their natural environment and then incorporated into the lipid phase of emulsion-based delivery systems. Alternatively, the bioactives may be left in their natural environment (e.g., fruits or vegetables), and then ingested with emulsion-based excipient systems. An excipient emulsion may have no inherent health benefits itself, but it boosts the biological activity of bioactive ingredients co-ingested with it by altering their bioaccessibility, absorption, and/or chemical transformation. This review discusses the design and fabrication of excipient emulsions, and gives some examples of recent research that demonstrates their potential efficacy for improving the bioavailability of hydrophobic bioactives. The concept of excipient emulsions could be used to formulate emulsion-based food products (such as excipient sauces, dressings, dips, creams, or yogurts) specifically designed to increase the bioavailability of bioactive agents in natural foods, such as fruits and vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Informatic search strategies to discover analogues and variants of natural product archetypes.

    Science.gov (United States)

    Johnston, Chad W; Connaty, Alex D; Skinnider, Michael A; Li, Yong; Grunwald, Alyssa; Wyatt, Morgan A; Kerr, Russell G; Magarvey, Nathan A

    2016-03-01

    Natural products are a crucial source of antimicrobial agents, but reliance on low-resolution bioactivity-guided approaches has led to diminishing interest in discovery programmes. Here, we demonstrate that two in-house automated informatic platforms can be used to target classes of biologically active natural products, specifically, peptaibols. We demonstrate that mass spectrometry-based informatic approaches can be used to detect natural products with high sensitivity, identifying desired agents present in complex microbial extracts. Using our specialised software packages, we could elaborate specific branches of chemical space, uncovering new variants of trichopolyn and demonstrating a way forward in mining natural products as a valuable source of potential pharmaceutical agents.

  16. LC-NMR: profiling and dereplication of natural product extracts

    International Nuclear Information System (INIS)

    Urban, Sylvia

    2006-01-01

    Natural products have served as a major source of drugs for centuries, with over half of the pharmaceuticals in use today derived from natural origins. Natural products continue to play a dominant role in the discovery of leads for the development of drugs for the treatment of human diseases. Much remains to be explored, particularly the marine and microbial environments, from which a host of novel bioactive chemical entities await discovery. The search for new drugs from natural origins (either terrestrial or marine) involves screening of extracts for the presence of novel compounds and an investigation of their biological activities. Suspected novel or bioactive compounds are usually isolated to elucidate the structure and for further biological and toxicological testing. The path that leads from the intact terrestrial or marine organism to the pure constituents is long, involving work that might last from weeks to years. Recognition of natural products at the earliest possible stage of separation is known as dereplication and is essential to avoid the time-consuming isolation of common constituents and nuisance compounds. In the search for new natural products, crude extracts are typically subjected to multi-step work-up and isolation procedures, which include various separation methods, in order to obtain pure compounds whose structure is then elucidated using off-line spectroscopic methods such as nuclear magnetic resonance (NMR) and mass spectroscopy (MS). The characterisation of a natural product can be summarised by the information obtained from each of the individual spectroscopic techniques. With the application of one or more of these individual techniques a dereplication by partial characterisation is possible. As natural product extracts often contain a large number of closely related, and thus difficult to separate, compounds, this classical approach may become very tedious and time-consuming. The characterisation of natural products in complex

  17. Microgreens: Production, shelf life, and bioactive components.

    Science.gov (United States)

    Mir, Shabir Ahmad; Shah, Manzoor Ahmad; Mir, Mohammad Maqbool

    2017-08-13

    Microgreens are emerging specialty food products which are gaining popularity and increased attention nowadays. They are young and tender cotyledonary leafy greens that are found in a pleasing palette of colors, textures, and flavors. Microgreens are a new class of edible vegetables harvested when first leaves have fully expanded and before true leaves have emerged. They are gaining popularity as a new culinary ingredient. They are used to enhance salads or as edible garnishes to embellish a wide variety of other dishes. Common microgreens are grown mainly from mustard, cabbage, radish, buckwheat, lettuce, spinach, etc. The consumption of microgreens has nowadays increased due to higher concentrations of bioactive components such as vitamins, minerals, and antioxidants than mature greens, which are important for human health. However, they typically have a short shelf life due to rapid product deterioration. This review aimed to evaluate the postharvest quality, potential bioactive compounds, and shelf life of microgreens for proper management of this specialty produce.

  18. Poly-ethers from Winogradskyella poriferorum: Antifouling potential, time-course study of production and natural abundance

    KAUST Repository

    Dash, Swagatika

    2011-08-01

    A sponge-associated bacterium, Winogradskyella poriferorum strain UST030701-295T was cultured up to 100l for extraction of antifouling bioactive compounds. Five poly-ethers were isolated and partially characterized based on nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS); two of them showed inhibitory effects on biofilm formation of marine bacteria and larval settlement of macro-foulers but did not produce any adverse effects on the phenotypes of zebra fish embryos at a concentration of 5μgml -1. The effect of culture duration on the production of the poly-ethers and the bioactivity of the relevant extracts was monitored over a period of 12days. The total crude poly-ether production increased from day 2 to day 5 and the highest bioactivity was observed on day 3. The poly-ethers were found to be localized in the cellular fraction of the extracts, implying their natural occurrence. The potent bioactivity of these poly-ethers together with their high natural abundance in bacteria makes them promising candidates as ingredients in antifouling applications. © 2011 Elsevier Ltd.

  19. Bioactive Peptides in Animal Food Products

    Directory of Open Access Journals (Sweden)

    Marzia Albenzio

    2017-05-01

    Full Text Available Proteins of animal origin represent physiologically active components in the human diet; they exert a direct action or constitute a substrate for enzymatic hydrolysis upon food processing and consumption. Bioactive peptides may descend from the hydrolysis by digestive enzymes, enzymes endogenous to raw food materials, and enzymes from microorganisms added during food processing. Milk proteins have different polymorphisms for each dairy species that influence the amount and the biochemical characteristics (e.g., amino acid chain, phosphorylation, and glycosylation of the protein. Milk from other species alternative to cow has been exploited for their role in children with cow milk allergy and in some infant pathologies, such as epilepsy, by monitoring the immune status. Different mechanisms concur for bioactive peptides generation from meat and meat products, and their functionality and application as functional ingredients have proven effects on consumer health. Animal food proteins are currently the main source of a range of biologically-active peptides which have gained special interest because they may also influence numerous physiological responses in the organism. The addition of probiotics to animal food products represent a strategy for the increase of molecules with health and functional properties.

  20. BIOACTIVE PEPTIDES OF THE COW MILK WHEY PROTEINS (Bos taurus

    Directory of Open Access Journals (Sweden)

    A. V. Iukalo

    2013-10-01

    Full Text Available Data on the biological functions of milk whey proteins, which are implemented at the level of their proteolytic degradation productsbioactive peptides have been reviewed. The main functions of these proteins is to provide the amino acid nutrition of mammals in the early stages of development, as well as the transport of fatty acids, retinol, involved in the synthesis of lactose, ions of calcium and iron, immune protection, antimicrobial action, etc. However, in recent years, it has been found that milk proteins like casein are precursors of biologically active peptides. Аngiotensin — converting enzyme, opioid peptides which are opiate receptor agonists, anti–microbial peptides, peptides with immunomodulatory and hypocholesterolemic action, and peptides affecting motility have been found among the products of proteolytic degradation of ?-lactoglobulin, ?-laktoalbumin, lactoferrin and milk whey albumin. Also data on the possible participation of peptides from milk whey proteins in the implementation of the biological functions of both the assimilation of calcium, antioxidant effect, the regulation of appetite, anticarcinogenic are provided. The authors assume that the phenomenon of bioactive peptides formation could be considered as an additional function of natural food proteins, which gives advantages to the mammals and has a positive effect on their development in the postnatal period. Ways of bioactive peptides formation, their resistance to action of proteolytic enzymes, the ability to cross into the bloodstream and have biological effects have been also discussed. Up to date, only a few products with bioactive peptides from milk whey proteins are obtained. Further studies of their structure, mechanism of action, ways of formation and methods of isolation are required for their wider use. Formation of functional products based on bioactive peptides from milk whey proteins will allow efficient use of milk whey, which is often a

  1. The Traditional Medicine and Modern Medicine from Natural Products

    Directory of Open Access Journals (Sweden)

    Haidan Yuan

    2016-04-01

    Full Text Available Natural products and traditional medicines are of great importance. Such forms of medicine as traditional Chinese medicine, Ayurveda, Kampo, traditional Korean medicine, and Unani have been practiced in some areas of the world and have blossomed into orderly-regulated systems of medicine. This study aims to review the literature on the relationship among natural products, traditional medicines, and modern medicine, and to explore the possible concepts and methodologies from natural products and traditional medicines to further develop drug discovery. The unique characteristics of theory, application, current role or status, and modern research of eight kinds of traditional medicine systems are summarized in this study. Although only a tiny fraction of the existing plant species have been scientifically researched for bioactivities since 1805, when the first pharmacologically-active compound morphine was isolated from opium, natural products and traditional medicines have already made fruitful contributions for modern medicine. When used to develop new drugs, natural products and traditional medicines have their incomparable advantages, such as abundant clinical experiences, and their unique diversity of chemical structures and biological activities.

  2. The Traditional Medicine and Modern Medicine from Natural Products.

    Science.gov (United States)

    Yuan, Haidan; Ma, Qianqian; Ye, Li; Piao, Guangchun

    2016-04-29

    Natural products and traditional medicines are of great importance. Such forms of medicine as traditional Chinese medicine, Ayurveda, Kampo, traditional Korean medicine, and Unani have been practiced in some areas of the world and have blossomed into orderly-regulated systems of medicine. This study aims to review the literature on the relationship among natural products, traditional medicines, and modern medicine, and to explore the possible concepts and methodologies from natural products and traditional medicines to further develop drug discovery. The unique characteristics of theory, application, current role or status, and modern research of eight kinds of traditional medicine systems are summarized in this study. Although only a tiny fraction of the existing plant species have been scientifically researched for bioactivities since 1805, when the first pharmacologically-active compound morphine was isolated from opium, natural products and traditional medicines have already made fruitful contributions for modern medicine. When used to develop new drugs, natural products and traditional medicines have their incomparable advantages, such as abundant clinical experiences, and their unique diversity of chemical structures and biological activities.

  3. Natural Products Research in China from 2015 to 2016

    Science.gov (United States)

    Liu, Haishan; Zhu, Guoliang; Fan, Yaqin; Du, Yuqi; Lan, Mengmeng; Xu, Yibo; Zhu, Weiming

    2018-03-01

    This review covers the literature published by Chinese chemists from 2015 to 2016 on natural products (NPs), with 1,985 citations referring to 6,944 new compounds isolated from marine or terrestrial microorganisms, plants, and animals. The emphasis is on 730 new compounds with a novel skeleton or/and significant bioactivity, together with their source organism and country of origin.

  4. Natural Products Research in China From 2015 to 2016

    OpenAIRE

    Haishan Liu; Haishan Liu; Guoliang Zhu; Guoliang Zhu; Yaqin Fan; Yaqin Fan; Yuqi Du; Yuqi Du; Mengmeng Lan; Mengmeng Lan; Yibo Xu; Yibo Xu; Weiming Zhu; Weiming Zhu

    2018-01-01

    This review covers the literature published by chemists from China during the 2015–2016 on natural products (NPs), with 1,985 citations referring to 6,944 new compounds isolated from marine or terrestrial microorganisms, plants, and animals. The emphasis is on 730 new compounds with a novel skeleton or/and significant bioactivity, together with their source organism and country of origin.

  5. Culture-independent discovery of natural products from soil metagenomes.

    Science.gov (United States)

    Katz, Micah; Hover, Bradley M; Brady, Sean F

    2016-03-01

    Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules.

  6. Marine Vibrionaceae as a source of bioactive natural products

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Gram, Lone

    an ecological function. Using chemical profiling, vibrio strains were compared on a global scale, revealing that the production of certain compounds is a conserved feature independent of sample locations. Chemical screening techniques such as explorative solid-phase extraction led to the isolation of two novel...... that some strains were capable of producing antibacterial compounds when grown on natural substrates such as chitin or seaweed. One Vibrio coralliilyticus strain was capable of producing the antibacterial compound when using chitin as the sole carbon source and in a live chitin model system, suggesting...... of which possess biological activities attractive for alternative strategies in antibacterial therapy....

  7. Bioactive coatings on Portland cement substrates: Surface precipitation of apatite-like crystals

    International Nuclear Information System (INIS)

    Gallego, Daniel; Higuita, Natalia; Garcia, Felipe; Ferrell, Nicholas; Hansford, Derek J.

    2008-01-01

    We report a method for depositing bioactive coatings onto cement materials for bone tissue engineering applications. White Portland cement substrates were hydrated under a 20% CO 2 atmosphere, allowing the formation of CaCO 3 . The substrates were incubated in a calcium phosphate solution for 1, 3, and 6 days (CPI, CPII, and CPIII respectively) at 37 deg. C to induce the formation of carbonated apatite. Cement controls were prepared and hydrated with and without CO 2 atmosphere (C+ and C- respectively). The presence of apatite-like crystals was verified by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The substrate cytocompatibility was evaluated via SEM after 24 hour cell cultures. SEM revealed the presence Ca(OH) 2 on C-, and CaCO 3 on C+. Apatite-like crystals were detected only on CPIII, confirmed by phosphorus EDS peaks only for CPIII. Cells attached and proliferated similarly well on all the substrates except C-. These results prove the feasibility of obtaining biocompatible and bioactive coatings on Portland cement for bone tissue engineering applications

  8. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.

    Science.gov (United States)

    Lu, Helen H; El-Amin, Saadiq F; Scott, Kimberli D; Laurencin, Cato T

    2003-03-01

    In the past decade, tissue engineering-based bone grafting has emerged as a viable alternative to biological and synthetic grafts. The biomaterial component is a critical determinant of the ultimate success of the tissue-engineered graft. Because no single existing material possesses all the necessary properties required in an ideal bone graft, our approach has been to develop a three dimensional (3-D), porous composite of polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) that is biodegradable, bioactive, and suitable as a scaffold for bone tissue engineering (PLAGA-BG composite). The objectives of this study were to examine the mechanical properties of a PLAGA-BG matrix, to evaluate the response of human osteoblast-like cells to the PLAGA-BG composite, and to evaluate the ability of the composite to form a surface calcium phosphate layer in vitro. Structural and mechanical properties of PLAGA-BG were measured, and the formation of a surface calcium phosphate layer was evaluated by surface analysis methods. The growth and differentiation of human osteoblast-like cells on PLAGA-BG were also examined. A hypothesis was that the combination of PLAGA with BG would result in a biocompatible and bioactive composite, capable of supporting osteoblast adhesion, growth and differentiation, with mechanical properties superior to PLAGA alone. The addition of bioactive glass granules to the PLAGA matrix resulted in a structure with higher compressive modulus than PLAGA alone. Moreover, the PLAGA-BA composite was found to be a bioactive material, as it formed surface calcium phosphate deposits in a simulated body fluid (SBF), and in the presence of cells and serum proteins. The composite supported osteoblast-like morphology, stained positively for alkaline phosphatase, and supported higher levels of Type I collagen synthesis than tissue culture polystyrene controls. We have successfully developed a degradable, porous, polymer bioactive glass composite possessing

  9. Marine Natural Products from New Caledonia—A Review

    Directory of Open Access Journals (Sweden)

    Sofia-Eléna Motuhi

    2016-03-01

    Full Text Available Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs.

  10. Synthesis and Biological Investigation of Antioxidant Pyrrolomorpholine Spiroketal Natural Products

    Science.gov (United States)

    Verano, Alyssa Leigh

    The pyrrolomorpholine spiroketal natural product family is comprised of epimeric furanose and pyranose isomers. These compounds were isolated from diverse plant species, all of which are used as traditional Chinese medicines for the treatment of a variety of diseases. Notably, the spiroketal natural products acortatarins A and B exhibit antioxidant activity in a diabetic renal cell model, significantly attenuating hyperglycemia-induced production of reactive oxygen species (ROS), a hallmark of diabetic nephropathy. The xylapyrrosides, additional members of the family, also inhibit t-butyl hydroperoxide-induced cytotoxicity in rat vascular smooth muscle cells. Accordingly, these natural products have therapeutic potential for the treatment of oxidative stress-related pathologies, and synthetic access would provide an exciting opportunity to investigate bioactivity and mechanism of action. Herein, we report the stereoselective synthesis of acortatarins A and B, furanose members of the pyrrolomorpholine spiroketal family. Our synthetic route was expanded to synthesize the pyranose congeners, thus completing entire D-enantiomeric family of natural products. Efficient access towards these scaffolds enabled systematic analogue synthesis, investigation of mechanism-of-action, and the discovery of novel antioxidants.

  11. Isolation, Bioactivity, and Production of ortho-Hydroxydaidzein and ortho-Hydroxygenistein

    Directory of Open Access Journals (Sweden)

    Te-Sheng Chang

    2014-04-01

    Full Text Available Daidzein and genistein are two major components of soy isoflavones. They exist abundantly in plants and possess multiple bioactivities. In contrast, ortho-hydroxydaidzein (OHD and ortho-hydroxygenistein (OHG, including 6-hydroxydaidzein (6-OHD, 8-hydroxydaidzein (8-OHD, 3'-hydroxydaidzein (3'-OHD, 6-hydroxygenistein (6-OHG, 8-hydroxygenistein (8-OHG, and 3'-hydroxygenistein (3'-OHG, are rarely found in plants. Instead, they are usually isolated from fermented soybean foods or microbial fermentation broth feeding with soybean meal. Accordingly, the bioactivity of OHD and OHG has been investigated less compared to that of soy isoflavones. Recently, OHD and OHG were produced by genetically engineering microorganisms through gene cloning of cytochrome P450 (CYP enzyme systems. This success opens up bioactivity investigation and industrial applications of OHD and OHG in the future. This article reviews isolation of OHD and OHG from non-synthetic sources and production of the compounds by genetically modified microorganisms. Several bioactivities, such as anticancer and antimelanogenesis-related activities, of OHD and OHG, are also discussed.

  12. Extraction, Isolation And Characterization Of Bioactive Compounds ...

    African Journals Online (AJOL)

    Natural products from medicinal plants, either as pure compounds or as standardized extracts, provide unlimited opportunities for new drug leads because of the ... The analysis of bioactive compounds present in the plant extracts involving the applications of common phytochemical screening assays, chromatographic ...

  13. Dihydroresveratrol Type Dihydrostilbenoids: Chemical Diversity, Chemosystematics, and Bioactivity.

    Science.gov (United States)

    Vitalini, Sara; Cicek, Serhat S; Granica, Sebastian; Zidorn, Christian

    2018-01-01

    Dihydrostilbenoids, a diverse class of natural products differing from stilbenoids by the missing double bond in the ethylene chain linking the aromatic moieties, have been reported from fungi, mosses, ferns, and flowering plants. Occurrence, structure, and bioactivity of naturally occurring dihydroresveratrol type dihydrostilbenoids are discussed in this review. A Reaxys database search for dihydroresveratrol derivatives with possible substitutions on all atoms, but excluding non-natural products and compounds featuring additional rings involving the ethyl connecting chain, was performed. Structures include simple dihydroresveratrol derivatives, compounds substituted with complex side chains composed of acyl moieties and sugars, and compounds containing polycyclic cores attached to dihydrostilbenoid units. Dihydrostilbenoids have a wide spectrum of bioactivities ranging from expectable antioxidant and anti-inflammatory activities to interesting neuroprotective and anticancer activity. The anticancer activity in particular is very pronounced for some plant-derived dihydrostilbenoids and makes them interesting lead compounds for drug development. Apart from some reports on dihydroresveratrol derivatives as phytoalexins against plant-pathogenic fungi, only very limited information is available on the ecological role of these compounds for the organisms producing them. Dihydrostilbenoids are a class of natural products possessing significant biological activities; their scattered but not ubiquitous occurrence throughout the kingdoms of plants and fungi is not easily explained. We are convinced that future studies will identify new sources of dihydrostilbenoids, and we hope that the present review will inspire such studies and will help in directing such efforts to suitable source organisms and towards promising bioactivities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Physical, bioactive and sensory quality parameters of reduced sugar chocolates formulated with natural sweeteners as sucrose alternatives.

    Science.gov (United States)

    Belščak-Cvitanović, Ana; Komes, Draženka; Dujmović, Marko; Karlović, Sven; Biškić, Matija; Brnčić, Mladen; Ježek, Damir

    2015-01-15

    In this study, sugar alcohols, dietary fibers, syrups and natural sweeteners were used as sucrose alternatives in the production of reduced sugar chocolates (50% of cocoa parts) with enhanced bioactive profile. Formulated chocolates were evaluated for their physical (particle size distribution, texture) and sensory properties, sugar composition, polyphenolic compounds content and antioxidant capacity. All produced reduced sugar chocolates ensured >20% lower calorific value than conventional chocolate (prepared with sucrose). Formulated chocolates containing stevia leaves and peppermint exhibited the best sensory properties (especially with regard to mouthfeel, sweetness and herbal aroma), as well as the highest polyphenolic content and antioxidant capacity. Particle size and hardness of chocolates increased in comparison to conventional chocolate, in particular when the combination of fructose and isomalt or lactitol was used. The bioactive profile of produced chocolates was enriched with phenolic acids, flavone (luteolin and apigenin) and flavonol (quercetin) derivatives, which were not identified in control chocolate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza.

    Science.gov (United States)

    Shi, Min; Huang, Fenfen; Deng, Changping; Wang, Yao; Kai, Guoyin

    2018-05-10

    Salvia miltiorrhiza (Danshen in Chinese), is a well-known traditional Chinese medicinal plant, which is used as not only human medicine but also health-promotion food. Danshen has been extensively used for the treatment of various cardiovascular and cerebrovascular diseases. As a major group of bioactive constituents from S. miltiorrhiza, water-soluble phenolic acids such as salvianolic acid B possessed good bioactivities including antioxidant, anti-inflammatory, anti-cancer and other health-promoting activities. It is of significance to improve the production of phenolic acids by modern biotechnology approaches to meet the increasing market demand. Significant progresses have been made in understanding the biosynthetic pathway and regulation mechanism of phenolic acids in S.miltiorrhiza, which will facilitate the process of targeted metabolic engineering or synthetic biology. Furthermore, multiple biotechnology methods such as in vitro culture, elicitation, hairy roots, endophytic fungi and bioreactors have been also used to obtain pharmaceutically active phenolic acids from S. miltiorrhiza. In this review, recent advances in bioactivities, biosynthetic pathway and biotechnological production of phenolic acid ingredients were summarized and future prospective was also discussed.

  16. Structure-based synthesis from natural products to drug prototypes

    International Nuclear Information System (INIS)

    Hanessian, S.

    2009-01-01

    X-Ray crystallographic data available from complexes of natural and synthetic molecules with the enzyme thrombin has aided to the design and synthesis of truncated and hybrid molecules exhibiting excellent inhibition in vitro. The vital importance of natural products for the well-being of man has been known lor millennia. Their therapeutic benefits to alleviate pain or cure diseases continue to rank natural products among the primary sources of potential drugs. Great advances have been made in the methods of isolation, identification, and structure elucidation of some of the most complex natural products in recent years. The advent of molecular biology and genetic mapping has also aided in our understanding of the intriguing biosynthetic pathways leading to various classes of therapeutically relevant antibiotic, anticancer, and related natural products. Elegant and practical methodology has been developed leading to the total synthesis of virtually every class of medicinally important natural product. In some cases, natural products or their chemically modified congeners have been manufactured by total synthesis on an industrial level which is a testament to the ingenuity of process chemists. In spite of their potent activities HI enzymatic ox receptor-mediated assays, not all natural products are amenable to being developed as marketable drags. In many instances unfavorable pharmacological effects cannot be overcome without drastic structural and functional modifications, which may also result in altered efficacy. Structure modification through truncation, functional group variations, isosteric replacements, and skeletal rigidifications aided by molecular modeling, X ray crystallography of protein targets, or NMR data are valid objectives in the context of small molecule drug discovery starting with bioactive natural products. A large proportion of these pertain to chemotherapeutic agents against cancer

  17. Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin.

    Science.gov (United States)

    Bonet, Bailey; Teufel, Robin; Crüsemann, Max; Ziemert, Nadine; Moore, Bradley S

    2015-03-27

    Heterologous expression of secondary metabolic pathways is a promising approach for the discovery and characterization of bioactive natural products. Herein we report the first heterologous expression of a natural product from the model marine actinomycete genus Salinispora. Using the recently developed method of yeast-mediated transformation-associated recombination for natural product gene clusters, we captured a type II polyketide synthase pathway from Salinispora pacifica with high homology to the enterocin pathway from Streptomyces maritimus and successfully produced enterocin in two different Streptomyces host strains. This result paves the way for the systematic interrogation of Salinispora's promising secondary metabolome.

  18. Marine Peptides: Bioactivities and Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-06-01

    Full Text Available Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant, immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.

  19. Fruits Bioactive Compounds Characterization from a New Food Product

    Directory of Open Access Journals (Sweden)

    Valentina Mariana RUS

    2014-12-01

    Full Text Available The aim of this study was (I to create a new product, smart bar type which can be consumed as protective food by adults and children (II to characterize the bioactive compounds from the designed food. The bioactive compounds were identified from nuts, raw seeds of almonds, dry cranberries, dry plums and flax seeds. Secoisolariciresinol (683 ppm has been identified as a major compound in flax seeds.  The vitamin C was quantified by HPLC in a concentration of 35.02 mg% in cranberries extract. The total phenolic content varied from 7.1 mg/g for walnut to 71.8 mg/g for cranberries. In addition, the antioxidative capability of phenolic compounds was monitored and evaluated using a colored free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH. Almond showed better results than walnut in the antioxidant capacity test. The results obtained in this study collect information that enables the use of nuts, raw seeds of almonds, dry cranberries, dry plums and flax seeds as raw material for the production of smart bar which may serve as a new product for food market.

  20. A Simplified Method to Estimate Sc-CO2 Extraction of Bioactive Compounds from Different Matrices: Chili Pepper vs. Tomato By-Products

    Directory of Open Access Journals (Sweden)

    Francesca Venturi

    2017-04-01

    Full Text Available In the last few decades, the search for bioactive compounds or “target molecules” from natural sources or their by-products has become the most important application of the supercritical fluid extraction (SFE process. In this context, the present research had two main objectives: (i to verify the effectiveness of a two-step SFE process (namely, a preliminary Sc-CO2 extraction of carotenoids followed by the recovery of polyphenols by ethanol coupled with Sc-CO2 in order to obtain bioactive extracts from two widespread different matrices (chili pepper and tomato by-products, and (ii to test the validity of the mathematical model proposed to describe the kinetics of SFE of carotenoids from different matrices, the knowledge of which is required also for the definition of the role played in the extraction process by the characteristics of the sample matrix. On the basis of the results obtained, it was possible to introduce a simplified kinetic model that was able to describe the time evolution of the extraction of bioactive compounds (mainly carotenoids and phenols from different substrates. In particular, while both chili pepper and tomato were confirmed to be good sources of bioactive antioxidant compounds, the extraction process from chili pepper was faster than from tomato under identical operating conditions.

  1. Sol-gel derived porous bioactive nanocomposites: Synthesis and in vitro bioactivity

    Science.gov (United States)

    Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.

    2013-06-01

    Porous bioactive composites consisting of SiO2-CaO-Na2O-P2O5 bioactive glass-ceramic and synthetic water soluble polymer Polyvinylpyrrolidone [PVP (C6H9NO)n, MW˜40000 g/mol] have been synthesized by sol-gel route. As-prepared polymeric composites were characterized by X-ray diffraction (XRD) technique. Two major bone mineral phases, viz., hydroxyapatite [Ca10(PO4)6(OH)2] and wollastonite [calcium silicate (CaSiO3)] have been identified in the XRD patterns of the composites. Presence of these bone minerals indicates the bioactive nature of the composites. In vitro bioactivity tests confirm bioactivity in the porous composites. The flexibility offered by these bioactive polymer composites is advantageous for its application as implant material.

  2. Natural product biosyntheses in cyanobacteria: A treasure trove of unique enzymes.

    Science.gov (United States)

    Kehr, Jan-Christoph; Gatte Picchi, Douglas; Dittmann, Elke

    2011-01-01

    Cyanobacteria are prolific producers of natural products. Investigations into the biochemistry responsible for the formation of these compounds have revealed fascinating mechanisms that are not, or only rarely, found in other microorganisms. In this article, we survey the biosynthetic pathways of cyanobacteria isolated from freshwater, marine and terrestrial habitats. We especially emphasize modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathways and highlight the unique enzyme mechanisms that were elucidated or can be anticipated for the individual products. We further include ribosomal natural products and UV-absorbing pigments from cyanobacteria. Mechanistic insights obtained from the biochemical studies of cyanobacterial pathways can inspire the development of concepts for the design of bioactive compounds by synthetic-biology approaches in the future.

  3. Natural product biosyntheses in cyanobacteria: A treasure trove of unique enzymes

    Directory of Open Access Journals (Sweden)

    Jan-Christoph Kehr

    2011-12-01

    Full Text Available Cyanobacteria are prolific producers of natural products. Investigations into the biochemistry responsible for the formation of these compounds have revealed fascinating mechanisms that are not, or only rarely, found in other microorganisms. In this article, we survey the biosynthetic pathways of cyanobacteria isolated from freshwater, marine and terrestrial habitats. We especially emphasize modular nonribosomal peptide synthetase (NRPS and polyketide synthase (PKS pathways and highlight the unique enzyme mechanisms that were elucidated or can be anticipated for the individual products. We further include ribosomal natural products and UV-absorbing pigments from cyanobacteria. Mechanistic insights obtained from the biochemical studies of cyanobacterial pathways can inspire the development of concepts for the design of bioactive compounds by synthetic-biology approaches in the future.

  4. Marine bioactives and potential application in sports.

    Science.gov (United States)

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D'Orazio, Nicolantonio

    2014-04-30

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  5. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology.

    Science.gov (United States)

    Gogineni, Vedanjali; Hamann, Mark T

    2018-01-01

    The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Microbial production of astilbin, a bioactive rhamnosylated flavanonol, from taxifolin

    DEFF Research Database (Denmark)

    Thuan, Nguyen Huy; Malla, Sailesh; Trung, Nguyen Thanh

    2017-01-01

    Flavonoids are plant-based polyphenolic biomolecules with a wide range of biological activities. Glycosylated flavonoids have drawn special attention in the industries as it improves solubility, stability, and bioactivity. Herein, we report the production of astilbin (ATN) from taxifolin (TFN) in...

  7. Effect of high pressure pasteurization on bacterial load and bioactivity of Echinacea purpurea.

    Science.gov (United States)

    Chen, Xiu-Min; Hu, Chun; Raghubeer, Errol; Kitts, David D

    2010-09-01

    High hydrostatic pressure (HHP) technology was applied to organic Echinacea purpurea (E. purpurea) roots and flowers to determine the feasibility of using this technology for cold herb pasteurization, to produce microbiologically safe and shelf-stable products for the natural health products (NHPs) industry. HHP significantly (P pasteurization process treatment to reduce microbial-contamination load while not adversely altering chemical and bioactive function of active constituents present in organic E. purpurea. Our study reports for the first time, the effectiveness of using high hydrostatic pressure (HHP) technology pressure to pasteurize E. purpurea root and flower, and the comparative retention of bioactive phytochemicals. Therefore, this technique can be used in food and natural health product industries to produce high-quality, microbiologically safe, and shelf-stable products.

  8. Structure, bioactivity, and synthesis of methylated flavonoids.

    Science.gov (United States)

    Wen, Lingrong; Jiang, Yueming; Yang, Jiali; Zhao, Yupeng; Tian, Miaomiao; Yang, Bao

    2017-06-01

    Methylated flavonoids are an important type of natural flavonoid derivative with potentially multiple health benefits; among other things, they have improved bioavailability compared with flavonoid precursors. Flavonoids have been documented to have broad bioactivities, such as anticancer, immunomodulation, and antioxidant activities, that can be elevated, to a certain extent, by methylation. Understanding the structure, bioactivity, and bioavailability of methylated flavonoids, therefore, is an interesting topic with broad potential applications. Though methylated flavonoids are widely present in plants, their levels are usually low. Because developing efficient techniques to produce these chemicals would likely be beneficial, we provide an overview of their chemical and biological synthesis. © 2017 New York Academy of Sciences.

  9. Current and potential uses of bioactive molecules from marine processing waste.

    Science.gov (United States)

    Suleria, Hafiz Ansar Rasul; Masci, Paul; Gobe, Glenda; Osborne, Simone

    2016-03-15

    Food industries produce huge amounts of processing waste that are often disposed of incurring expenses and impacting upon the environment. For these and other reasons, food processing waste streams, in particular marine processing waste streams, are gaining popularity amongst pharmaceutical, cosmetic and nutraceutical industries as sources of bioactive molecules. In the last 30 years, there has been a gradual increase in processed marine products with a concomitant increase in waste streams that include viscera, heads, skins, fins, bones, trimmings and shellfish waste. In 2010, these waste streams equated to approximately 24 million tonnes of mostly unused resources. Marine processing waste streams not only represent an abundant resource, they are also enriched with structurally diverse molecules that possess a broad panel of bioactivities including anti-oxidant, anti-coagulant, anti-thrombotic, anti-cancer and immune-stimulatory activities. Retrieval and characterisation of bioactive molecules from marine processing waste also contributes valuable information to the vast field of marine natural product discovery. This review summarises the current use of bioactive molecules from marine processing waste in different products and industries. Moreover, this review summarises new research into processing waste streams and the potential for adoption by industries in the creation of new products containing marine processing waste bioactives. © 2015 Society of Chemical Industry.

  10. Retention of insulin-like growth factor I bioactivity during the fabrication of sintered polymeric scaffolds

    International Nuclear Information System (INIS)

    Clark, Amanda; Puleo, David A; Milbrandt, Todd A; Hilt, J Zach

    2014-01-01

    The use of growth factors in tissue engineering offers an added benefit to cartilage regeneration. Growth factors, such as insulin-like growth factor I (IGF-I), increase cell proliferation and can therefore decrease the time it takes for cartilage tissue to regrow. In this study, IGF-I was released from poly(lactic-co-glycolic acid) (PLGA) scaffolds that were designed to have a decreased burst release often associated with tissue engineering scaffolds. The scaffolds were fabricated from IGF-I-loaded PLGA microspheres prepared by a double emulsion (W 1 /O/W 2 ) technique. The microspheres were then compressed, sintered at 49 °C and salt leached. The bioactivity of soluble IGF-I was verified after being heat treated at 37, 43, 45, 49 and 60 °C. Additionally, the bioactivity of IGF-I was confirmed after being released from the sintered scaffolds. The triphasic release lasted 120 days resulting in 20%, 55% and 25% of the IGF-I being released during days 1–3, 4–58 and 59–120, respectively. Seeding bone marrow cells directly onto the IGF-I-loaded scaffolds showed an increase in cell proliferation, based on DNA content, leading to increased glycosaminoglycan production. The present results demonstrated that IGF-I remains active after being incorporated into heat-treated scaffolds, further enhancing tissue regeneration possibilities. (paper)

  11. Total synthesis and related studies of large, strained, and bioactive natural products

    Science.gov (United States)

    HIRAMA, Masahiro

    2016-01-01

    Our chemical syntheses and related scientific investigations of natural products with complex architectures and powerful biological activities are described, focusing on the very large 3 nm-long polycyclic ethers called the ciguatoxins, highly strained and labile chromoprotein antitumor antibiotics featuring nine-membered enediyne cores, and extremely potent anthelmintic macrolides called the avermectins. PMID:27725470

  12. Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Aida Rodriguez-Garcia

    2017-08-01

    Full Text Available Accumulating evidence suggests that natural bioactive compounds, alone or in combination with traditional chemotherapeutic agents, could be used as potential therapies to fight cancer. In this study, we employed four natural bioactive compounds (curcumin, resveratrol, melatonin, and silibinin and studied their role in redox control and ability to promote apoptosis in androgen sensitive and insensitive prostate cancer cells. Here is shown that curcumin and resveratrol promote ROS production and induce apoptosis in LNCaP and PC-3. An increase in reactive species is a trigger event in curcumin-induced apoptosis and a consequence of resveratrol effects on other pathways within these cells. Moreover, here we demonstrated that these four compounds affect differently one of the main intracellular redox regulator, the thioredoxin system. Exposure to curcumin and resveratrol promoted TRX1 oxidation and altered its subcellular location. Furthermore, resveratrol diminished TRX1 levels in PC-3 cells and increased the expression of its inhibitor TXNIP. Conversly, melatonin and silibinin only worked as cytostatic agents, reducing ROS levels and showing preventive effects against TRX oxidation. All together, this work explores the effect of compounds currently tested as chemo-preventive agents in prostate cancer therapy, on the TRX1 redox state and function. Our work shows the importance that the TRX system might have within the differences found in their mechanisms of action. These bioactive compounds trigger different responses and affect ROS production and redox systems in prostate cancer cells, suggesting the key role that redox-related pathways might play in processes like differentiation or survival in prostate cancer. Keywords: Thioredoxin, Thioredoxin reductase, TXNIP, Prostate cancer, Redox signaling, Apoptosis

  13. Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.

    Science.gov (United States)

    Arihara, K; Zhou, L; Ohata, M

    Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.

  14. Synthesis and bioactivity of analogues of the marine antibiotic tropodithietic acid

    Directory of Open Access Journals (Sweden)

    Patrick Rabe

    2014-08-01

    Full Text Available Tropodithietic acid (TDA is a structurally unique sulfur-containing antibiotic from the Roseobacter clade bacterium Phaeobacter inhibens DSM 17395 and a few other related species. We have synthesised several structural analogues of TDA and used them in bioactivity tests against Staphylococcus aureus and Vibrio anguillarum for a structure–activity relationship (SAR study, revealing that the sulfur-free analogue of TDA, tropone-2-carboxylic acid, has an antibiotic activity that is even stronger than the bioactivity of the natural product. The synthesis of this compound and of several analogues is presented and the bioactivity of the synthetic compounds is discussed.

  15. Discovery and characterization of novel bioactive peptides from marine secondary products

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup

    antioxidative, antihypertensive, antimicrobial, immunomodulatory, anticancer and diabetes 2 effects among others. However, majority of the research has been focusing on the peptides derived from hydrolysis with commercial industrial enzymes and the usefulness of these hydrolysates.It could be interesting...... whether digestion of fish secondary tissue with gastrointestinal proteases generates peptides, which also have these health promoting properties either in relation to gastrointestinal digestion or as an alternative to the use of industrial proteases. Furthermore, as a bioactive defense system against...... the bacterial load in the water, fish is expected to possess bio-components as small peptides. It could therefore be relevant whether these naturally occurring peptides exhibit other functional and health promoting bioactive properties.On this background the overall goal of the present PhD research...

  16. LASER-INDUCED BIOACTIVITY IN DENTAL PORCELAIN MODIFIED BY BIOACTIVE GLASS

    Directory of Open Access Journals (Sweden)

    ANASTASIA BEKETOVA

    2012-12-01

    Full Text Available The aim of this study was to investigate the impact of laser-liquid-solid interaction method in the bioactivity of dental porcelain modified by bioactive glass. Forty sol-gel derived specimens were immersed in Dulbecco's Modified Eagle's Medium, 31 and 9 specimens of which were treated with Er:YAG and Nd:YAG laser respectively. Untreated specimens served as controls. Incubation of specimens followed. Bioactivity was evaluated, using Fourier Transform Infrared spectroscopy (FTIR, Scanning Electron Microscopy (SEM/Energy Dispersive Spectroscopy (EDS and Transmission Electron Microscopy (TEM. FTIR detected peaks associated with hydroxyapatite on 1 Nd:YAG- and 4 Er:YAG-treated specimens. SEM analysis revealed that Er:YAG-treated specimens were covered by granular hydroxyapatite layer, while Nd:YAG treated specimen presented growth of flake-like hydroxyapatite. TEM confirmed the results. The untreated controls presented delayed bioactivity. In conclusion, Nd:YAG and Er:YAG laser treatment of the material, under certain fluencies, accelerates hydroxyapatite formation. Nd:YAG laser treatment of specific parameters causes the precipitation of flake-like hydroxyapatite in nano-scale.

  17. Effects of an onion by-product on bioactivity and safety markers in healthy rats

    DEFF Research Database (Denmark)

    Roldan-Marin, Eduvigis; Krath, Britta; Poulsen, Morten

    2009-01-01

    Onions are excellent sources of bioactive compounds including fructo-oligosaccharides (FOS) and polyphenols. An onion by-product was characterised in order to be developed as a potentially bioactive food ingredient. Our main aim was to investigate whether the potential health and safety effects...... of this onion by-product were shared by either of two derived fractions, an extract containing the onion FOS and polyphenols and a residue fraction containing mainly cell wall materials. We report here on the effects of feeding these products on markers of potential toxicity, protective enzymes and gut...... environment in healthy rats. Rats were fed during 4 weeks with a diet containing the products or a control feed balanced in carbohydrate. The onion by-product and the extract caused anaemia as expected in rodents for Allium products. No other toxicity was observed, including genotoxicity. Glutathione...

  18. Purity-activity relationships of natural products: the case of anti-TB active ursolic acid.

    Science.gov (United States)

    Jaki, Birgit U; Franzblau, Scott G; Chadwick, Lucas R; Lankin, David C; Zhang, Fangqiu; Wang, Yuehong; Pauli, Guido F

    2008-10-01

    The present study explores the variability of biological responses from the perspective of sample purity and introduces the concept of purity-activity relationships (PARs) in natural product research. The abundant plant triterpene ursolic acid (1) was selected as an exemplary natural product due to the overwhelming number yet inconsistent nature of its approximate 120 reported biological activities, which include anti-TB potential. Nine different samples of ursolic acid with purity certifications were obtained, and their purity was independently assessed by means of quantitative 1H NMR (qHNMR). Biological evaluation consisted of determining MICs against two strains of virulent Mycobacterium tuberculosis and IC50 values in Vero cells. Ab initio structure elucidation provided unequivocal structural confirmation and included an extensive 1H NMR spin system analysis, determination of nearly all J couplings and the complete NOE pattern, and led to the revision of earlier reports. As a net result, a sigmoid PAR profile of 1 was obtained, demonstrating the inverse correlation of purity and anti-TB bioactivity. The results imply that synergistic effects of 1 and its varying impurities are the likely cause of previously reported antimycobacterial potential. Generating PARs is a powerful extension of the routinely performed quantitative correlation of structure and activity ([Q]SAR). Advanced by the use of primary analytical methods such as qHNMR, PARs enable the elucidation of cases like 1 when increasing purity voids biological activity. This underlines the potential of PARs as a tool in drug discovery and synergy research and accentuates the need to routinely combine biological testing with purity assessment.

  19. Bioaccessible nutrients and bioactive components from fortified products prepared using finger millet (Eleusine coracana).

    Science.gov (United States)

    Oghbaei, Morteza; Prakash, Jamuna

    2012-08-30

    Finger millet (Eleusine coracana), a staple food in semi-arid parts of the world, is a rich source of nutrients and bioactive components comparable to rice and wheat but with higher fibre content. Unprocessed and processed finger millet (whole flour (WFM), sieved flour (SFM), wafers and vermicelli with altered matrices (added Fe or Zn or reduced fibre)) were analysed for chemical composition, bioaccessible Fe, Zn and Ca, in vitro digestible starch (IVSD) and protein (IVPD) and bioactive components (polyphenols and flavonoids). WFM and SFM flours differed significantly in their composition. Sieving decreased the content of both nutrients and antinutrients in WFM but increased their digestibility/bioaccessibility. WFM products with Zn and Fe showed highest IVPD, whereas SFM products with Fe showed highest IVSD. Products with externally added Fe and Zn showed maximum bioaccessibility of Fe and Zn respectively. WFM had the highest levels of total polyphenols and flavonoids, 4.18 and 15.85 g kg⁻¹ respectively; however, bioaccessibility was highest in SFM vermicelli. The availability of nutrients and bioactive components was influenced by both processing methods and compositional alterations of the food matrix in finger millet products, and bioaccessibility of all constituents was higher in vermicelli (wet matrix) than in wafers (dry matrix). Copyright © 2012 Society of Chemical Industry.

  20. Bioactivity and phylogeny of the marine bacterial genus Pseudoalteromonas

    DEFF Research Database (Denmark)

    Vynne, Nikolaj Grønnegaard

    -associated strains were significantly more likely to possess stable antibacterial activity and be pigmented. Pseudoalteromonas strains are known as prolific producers of bioactive secondary metabolites; hence screening the global strain collection for production of novel antibiotics was initiated. Novel quinolone...... of regulatory compounds involved in cell to cell signaling within some strains of the species P. luteoviolacea. Since such mechanisms are known to govern antibiotic production in some bacteria, this was investigated. A quorum sensing system controlling a putative novel biosynthetic pathway with high homology......The purpose of this Ph.D. project was to evaluate a global collection of marine Pseudoalteromonas bacteria as a source of novel bioactive compounds, and to investigate the distribution and production of such compounds among different species within the Pseudoalteromonas genus. The strain collection...

  1. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases.

    Science.gov (United States)

    Kumar, Hemant; Kim, In-Su; More, Sandeep Vasant; Kim, Byung-Wook; Choi, Dong-Kug

    2014-01-01

    Covering: 2000 to 2013. Oxidative stress is the central component of chronic diseases. The nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway is vital in the up-regulation of cytoprotective genes and enzymes in response to oxidative stress and treatment with certain dietary phytochemicals. Herein, we classify bioactive compounds derived from natural products that are Nrf2/ARE pathway activators and recapitulate the molecular mechanisms for inducing Nrf2 to provide favorable effects in experimental models of chronic diseases. Moreover, pharmacological inhibition of Nrf2 signalling has emerged as promising strategy against multi-drug resistance thereby improving the treatment efficacy. We have also enlisted natural product-derived inhibitors of Nrf2/ARE pathway.

  2. Natural antifouling compound production by microbes associated with marine macroorganisms — A review

    Directory of Open Access Journals (Sweden)

    Sathianeson Satheesh

    2016-05-01

    Full Text Available In the marine environment, all hard surfaces including marine macroorganims are colonized by microorganisms mainly from the surrounding environment. The microorganisms associated with marine macroorganisms offer tremendous potential for exploitation of bioactive metabolites. Biofouling is a continuous problem in marine sectors which needs huge economy for control and cleaning processes. Biotechnological way for searching natural product antifouling compounds gained momentum in recent years because of the environmental pollution associated with the use of toxic chemicals to control biofouling. While, natural product based antifoulants from marine organisms particularly sponges and corals attained significance due to their activities in field assays, collection of larger amount of organisms from the sea is not a viable one. The microorganisms associated with sponges, corals, ascidians, seaweeds and seagrasses showed strong antimicrobial and also antifouling activities. This review highlights the advances in natural product antifoulants research from microbes associated with marine organisms.

  3. Bioactive Peptides in Cereals and Legumes: Agronomical, Biochemical and Clinical Aspects

    Directory of Open Access Journals (Sweden)

    Marco Malaguti

    2014-11-01

    Full Text Available Cereals and legumes are key components of a healthy and balanced diet. Accordingly, many national nutritional guidelines emphasize their health promoting properties by placing them at the base of nutritional food pyramids. This concept is further validated by the observed correlation between a lower risk and occurrence of chronic diseases and the adherence to dietary patterns, like the Mediterranean diet, in which cereal grains, legumes and derived products represent a staple food. In the search for a dietary approach to control/prevent chronic degenerative diseases, protein derived bioactive peptides may represent one such source of health-enhancing components. These peptides may already be present in foods as natural components or may derive from hydrolysis by chemical or enzymatic treatments (digestion, hydrolysis or fermentation. Many reports are present in the literature regarding the bioactivity of peptides in vitro and a wide range of activities has been described, including antimicrobial properties, blood pressure-lowering (ACE inhibitory effects, cholesterol-lowering ability, antithrombotic and antioxidant activities, enhancement of mineral absorption/bioavailability, cyto- or immunomodulatory effects, and opioid-like activities. However it is difficult to translate these observed effects to human. In fact, the active peptide may be degraded during digestion, or may not be absorbed or reach the target tissues at a concentration necessary to exert its function. This review will focus on bioactive peptides identified in cereals and legumes, from an agronomical and biochemical point of view, including considerations about requirements for the design of appropriate clinical trials necessary for the assessment of their nutraceutical effect in vivo.

  4. Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients.

    Science.gov (United States)

    Lafarga, Tomas; Hayes, Maria

    2014-10-01

    Bioactive peptides are sequences of between 2-30 amino acids in length that impart a positive health effect to the consumer when ingested. They have been identified from a range of foods, including milk and muscle sources including beef, chicken, pork and marine muscles. The myriad of peptides identified from these sources have known antihypertensive, opioid, antioxidant, antithrombotic and other bioactivities. Indeed, bioactive peptides could play a role in the prevention of diseases associated with the development of metabolic syndrome and mental health diseases. The aim of this work is to present an overview of the bioactive peptides identified in muscle proteins and by-products generated during the processing of meat. The paper looks at the isolation, enrichment and characterisation strategies that have been employed to date to generate bioactive peptides and the potential future applications of these peptides in functional foods for the prevention of heart and mental health problems and obesity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    Nadeem, Danish; Kiamehr, Mostafa; Yang, Xuebin; Su, Bo

    2013-01-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO 2 , 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  6. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Danish [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom); Kiamehr, Mostafa [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); Yang, Xuebin [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds LS7 4SA (United Kingdom); Su, Bo, E-mail: b.su@bristol.ac.uk [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom)

    2013-07-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO{sub 2}, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  7. Dietary Natural Products for Prevention and Treatment of Breast Cancer.

    Science.gov (United States)

    Li, Ya; Li, Sha; Meng, Xiao; Gan, Ren-You; Zhang, Jiao-Jiao; Li, Hua-Bin

    2017-07-08

    Breast cancer is the most common cancer among females worldwide. Several epidemiological studies suggested the inverse correlation between the intake of vegetables and fruits and the incidence of breast cancer. Substantial experimental studies indicated that many dietary natural products could affect the development and progression of breast cancer, such as soy, pomegranate, mangosteen, citrus fruits, apple, grape, mango, cruciferous vegetables, ginger, garlic, black cumin, edible macro-fungi, and cereals. Their anti-breast cancer effects involve various mechanisms of action, such as downregulating ER-α expression and activity, inhibiting proliferation, migration, metastasis and angiogenesis of breast tumor cells, inducing apoptosis and cell cycle arrest, and sensitizing breast tumor cells to radiotherapy and chemotherapy. This review summarizes the potential role of dietary natural products and their major bioactive components in prevention and treatment of breast cancer, and special attention was paid to the mechanisms of action.

  8. A simple and rapid method for calixarene-based selective extraction of bioactive molecules from natural products.

    Science.gov (United States)

    Segneanu, Adina-Elena; Damian, Daniel; Hulka, Iosif; Grozescu, Ioan; Salifoglou, Athanasios

    2016-03-01

    Natural products derived from medicinal plants have gained an important role in drug discovery due to their complex and abundant composition of secondary metabolites, with their structurally unique molecular components bearing a significant number of stereo-centers exhibiting high specificity linked to biological activity. Usually, the extraction process of natural products involves various techniques targeting separation of a specific class of compounds from a highly complex matrix. Aiding the process entails the use of well-defined and selective molecular extractants with distinctly configured structural attributes. Calixarenes conceivably belong to that class of molecules. They have been studied intensely over the years in an effort to develop new and highly selective receptors for biomolecules. These macrocycles, which display remarkable structural architectures and properties, could help usher a new approach in the efficient separation of specific classes of compounds from complex matrices in natural products. A simple and rapid such extraction method is presented herein, based on host-guest interaction(s) between a calixarene synthetic receptor, 4-tert-butyl-calix[6]arene, and natural biomolecular targets (amino acids and peptides) from Helleborus purpurascens and Viscum album. Advanced physicochemical methods (including GC-MS and chip-based nanoESI-MS analysis) suggest that the molecular structure and specifically the calixarene cavity size are closely linked to the nature of compounds separated. Incorporation of biomolecules and modification of the macrocyclic architecture during separation were probed and confirmed by scanning electronic microscopy and atomic force microscopy. The collective results project calixarene as a promising molecular extractant candidate, facilitating the selective separation of amino acids and peptides from natural products.

  9. Natural Product Chemistry of Gorgonian Corals of the Family Plexauridae Distributed in the Indo-Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Ping-Jyun Sung

    2012-11-01

    Full Text Available The structures, names, bioactivities and references of 105 natural products obtained from gorgonian corals belonging to the family Plexauridae with an Indo-Pacific distribution are described in this review. All compounds mentioned in this review were obtained from gorgonian corals belonging to the genera Astrogorgia, Bebryce, Echinomuricea, Euplexaura and Menella.

  10. Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis.

    Science.gov (United States)

    Nonejuie, Poochit; Trial, Rachelle M; Newton, Gerald L; Lamsa, Anne; Ranmali Perera, Varahenage; Aguilar, Julieta; Liu, Wei-Ting; Dorrestein, Pieter C; Pogliano, Joe; Pogliano, Kit

    2016-05-01

    Although most clinically used antibiotics are derived from natural products, identifying new antibacterial molecules from natural product extracts is difficult due to the complexity of these extracts and the limited tools to correlate biological activity with specific molecules. Here, we show that bacterial cytological profiling (BCP) provides a rapid method for mechanism of action determination on plates and in complex natural product extracts and for activity-guided purification. We prepared an extract from Bacillus subtilis 3610 that killed the Escherichia coli lptD mutant and used BCP to observe two types of bioactivities in the unfractionated extract: inhibition of translation and permeablization of the cytoplasmic membrane. We used BCP to guide purification of the molecules responsible for each activity, identifying the translation inhibitors bacillaene and bacillaene B (glycosylated bacillaene) and demonstrating that two molecules contribute to cell permeabilitization, the bacteriocin subtilosin and the cyclic peptide sporulation killing factor. Our results suggest that bacillaene mediates translational arrest, and show that bacillaene B has a minimum inhibitory concentration 10 × higher than unmodified bacillaene. Finally, we show that BCP can be used to screen strains on an agar plate without the need for extract preparation, greatly saving time and improving throughput. Thus, BCP simplifies the isolation of novel natural products, by identifying strains, crude extracts and fractions with interesting bioactivities even when multiple activities are present, allowing investigators to focus labor-intensive steps on those with desired activities.

  11. Bioactive and Antibacterial Coatings Based on Zein/Bioactive Glass Composites by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Nima Meyer

    2018-01-01

    Full Text Available This study investigated the electrophoretic deposition (EPD of the natural polymer zein combined with bioactive glass (BG particles. Through the deposition of various BG compositions, namely 45S5 BG and Cu-doped BG, this work sought to demonstrate the ability of the films to potentiate the formation of hydroxyapatite (HA in contact with simulated body fluid (SBF. Following incubation in SBF, the physical and chemical surface properties of the EPD films were evaluated using different characterization techniques. The formation of HA at the surface of the coatings following immersion in SBF was confirmed using Fourier transform infrared spectroscopy (FTIR. The results demonstrated HA formation in all coatings after seven days of immersion in SBF. Coating morphology and degradation of the zein films were characterized using environmental scanning electron microscopy (ESEM. The results confirmed EPD as a very convenient room temperature technique for production of ion releasing, bioactive, and antibacterial coatings for potential application in orthopedics.

  12. Nanotech: propensity in foods and bioactives.

    Science.gov (United States)

    Kuan, Chiu-Yin; Yee-Fung, Wai; Yuen, Kah-Hay; Liong, Min-Tze

    2012-01-01

    Nanotechnology is seeing higher propensity in various industries, including food and bioactives. New nanomaterials are constantly being developed from both natural biodegradable polymers of plant and animal origins such as polysaccharides and derivatives, peptides and proteins, lipids and fats, and biocompatible synthetic biopolyester polymers such as polylactic acid (PLA), polyhydroxyalkonoates (PHA), and polycaprolactone (PCL). Applications in food industries include molecular synthesis of new functional food compounds, innovative food packaging, food safety, and security monitoring. The relevance of bioactives includes targeted delivery systems with improved bioavailability using nanostructure vehicles such as association colloids, lipid based nanoencapsulator, nanoemulsions, biopolymeric nanoparticles, nanolaminates, and nanofibers. The extensive use of nanotechnology has led to the need for parallel safety assessment and regulations to protect public health and adverse effects to the environment. This review covers the use of biopolymers in the production of nanomaterials and the propensity of nanotechnology in food and bioactives. The exposure routes of nanoparticles, safety challenges, and measures undertaken to ensure optimal benefits that outweigh detriments are also discussed.

  13. Investigation of bioactivity and cell effects of nano-porous sol–gel derived bioactive glass film

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhijun, E-mail: mokuu@zju.edu.cn [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Ji, Huijiao [College of Life Science, Zhejiang University, Hangzhou, 310028 (China); Hu, Xiaomeng [School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Teng, Yu [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli [College of Life Science, Zhejiang University, Hangzhou, 310028 (China); Chen, Weibo [School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Qiu, Jianrong, E-mail: qjr@scut.edu.cn [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Zhang, Ming, E-mail: zhangming201201@126.com [College of Life Science, Zhejiang University, Hangzhou, 310028 (China)

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol–gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  14. Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film

    Science.gov (United States)

    Ma, Zhijun; Ji, Huijiao; Hu, Xiaomeng; Teng, Yu; Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli; Chen, Weibo; Qiu, Jianrong; Zhang, Ming

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol-gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  15. Microbial quality and bioactive constituents of sweet peppers from sustainable production systems.

    Science.gov (United States)

    Marín, Alicia; Gil, María I; Flores, Pilar; Hellín, Pilar; Selma, María V

    2008-12-10

    Integrated, organic, and soil-less production systems are the principal production practices that have emerged to encourage more sustainable agricultural practices and safer edible plants, reducing inputs of plaguicides, pesticides, and fertilizers. Sweet peppers grown commercially under integrated, organic, and soil-less production systems were compared to study the influence of these sustainable production systems on the microbial quality and bioactive constituents (vitamin C, individual and total carotenoids, hydroxycinnamic acids, and flavonoids). The antioxidant composition of peppers was analyzed at green and red maturity stages and at three harvest times (initial, middle, and late season). Irrigation water, manure, and soil were shown to be potential transmission sources of pathogens to the produce. Coliform counts of soil-less peppers were up to 2.9 log units lower than those of organic and integrated peppers. Soil-less green and red peppers showed maximum vitamin C contents of 52 and 80 mg 100 g(-1) fresh weight (fw), respectively, similar to those grown in the organic production system. Moreover, the highest content of total carotenoids was found in the soil-less red peppers, which reached a maximum of 148 mg 100 g(-1) fw, while slightly lower contents were found in integrated and organic red peppers. Hydroxycinnamic acids and flavonoids represented 15 and 85% of the total phenolic content, respectively. Total phenolic content, which ranged from 1.2 to 4.1 mg 100 g(-1) fw, was significantly affected by the harvest time but not by the production system assayed. Soil-less peppers showed similar or even higher concentrations of bioactive compounds (vitamin C, provitamin A, total carotenoid, hydroxycinnamic acids, and flavonoids) than peppers grown under organic and integrated practices. Therefore, in the commercial conditions studied, soil-less culture was a more suitable alternative than organic or integrated practices, because it improved the microbial

  16. Aspergillus niger is a superior expression host for the production of bioactive fungal cyclodepsipeptides.

    Science.gov (United States)

    Boecker, Simon; Grätz, Stefan; Kerwat, Dennis; Adam, Lutz; Schirmer, David; Richter, Lennart; Schütze, Tabea; Petras, Daniel; Süssmuth, Roderich D; Meyer, Vera

    2018-01-01

    Fungal cyclodepsipeptides (CDPs) are non-ribosomally synthesized peptides produced by a variety of filamentous fungi and are of interest to the pharmaceutical industry due to their anticancer, antimicrobial and anthelmintic bioactivities. However, both chemical synthesis and isolation of CDPs from their natural producers are limited due to high costs and comparatively low yields. These challenges might be overcome by heterologous expression of the respective CDP-synthesizing genes in a suitable fungal host. The well-established industrial fungus Aspergillus niger was recently genetically reprogrammed to overproduce the cyclodepsipeptide enniatin B in g/L scale, suggesting that it can generally serve as a high production strain for natural products such as CDPs. In this study, we thus aimed to determine whether other CDPs such as beauvericin and bassianolide can be produced with high titres in A. niger , and whether the generated expression strains can be used to synthesize new-to-nature CDP derivatives. The beauvericin and bassianolide synthetases were expressed under control of the tuneable Tet-on promoter, and titres of about 350-600 mg/L for bassianolide and beauvericin were achieved when using optimized feeding conditions, respectively. These are the highest concentrations ever reported for both compounds, whether isolated from natural or heterologous expression systems. We also show that the newly established Tet-on based expression strains can be used to produce new-to-nature beauvericin derivatives by precursor directed biosynthesis, including the compounds 12-hydroxyvalerate-beauvericin and bromo-beauvericin. By feeding deuterated variants of one of the necessary precursors (d-hydroxyisovalerate), we were able to purify deuterated analogues of beauvericin and bassianolide from the respective A. niger expression strains. These deuterated compounds could potentially be used as internal standards in stable isotope dilution analyses to evaluate and quantify

  17. Recent Advances in the Discovery and Development of Marine Natural Products with Cardiovascular Pharmacological Effects.

    Science.gov (United States)

    Zhou, Jie-Bin; Luo, Rong; Zheng, Ying-Lin; Pang, Ji-Yan

    2018-01-01

    Numerous studies have indicated that marine natural products are one of the most important sources of the lead compounds in drug discovery for their unique structures, various bioactivities and less side effects. In this review, the marine natural products with cardiovascular pharmacological effects reported after 2000 will be presented. Their structural types, relevant biological activities, origin of isolation and information of strain species will be discussed in detail. Finally, by describing our studies as an example, we also discuss the chances and challenges for translating marine-derived compounds into preclinical or clinical trials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. A diversity oriented synthesis of natural product inspired molecular libraries.

    Science.gov (United States)

    Chauhan, Jyoti; Luthra, Tania; Gundla, Rambabu; Ferraro, Antonio; Holzgrabe, Ulrike; Sen, Subhabrata

    2017-11-07

    Natural products are the source of innumerable pharmaceutical drug candidates and also form an important aspect of herbal remedies. They are also a source of various bioactive compounds. Herein we have leveraged the structural attributes of several natural products in building a library of architecturally diverse chiral molecules by harnessing R-tryptophan as the chiral auxiliary. It is converted to its corresponding methyl ester 1 which in turn provided a bevy of 1-aryl-tetrahydro-β-carbolines 2a-d, which were then converted to chiral compounds via a diversity oriented synthetic strategy (DOS). In general, intermolecular and intramolecular ring rearrangements facilitated the formation of the final compounds. Four different classes of molecules with distinct architectures were generated, adding up to nearly twenty-two individual molecules. Phenotypic screening of a representative section of the library revealed two molecules that selectively inhibit MCF7 breast cancer cells with IC 50 of ∼5 μg mL -1 potency.

  19. Fabrication and bioactivity behavior of HA/bioactive glass composites in the presence of calcium hexaboride

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassyouni, Gehan T.; Beherei, Hanan H. [Biomaterials Dept., National Research Centre (NRC), Dokki, Cairo (Egypt); Mohamed, Khaled R., E-mail: kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre (NRC), Dokki, Cairo (Egypt); Kenawy, Sayed H. [Ceramics Dept., National Research Centre (NRC), Dokki, Cairo (Egypt)

    2016-06-01

    In the current study, composites were prepared using both the synthesized nano-sized hydroxyapatite (HA), bioactive glass (BG) powders (obtained by the traditional melt-quenching route) together with the purchased nano-sized calcium hexaboride (CB) with different ratios and were fired at 1250 °C. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy; scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM) techniques and compressive strength. The mechanical testing was to designate the role of the CB in improving the mechanical property of the prepared composites. In vitro bioactivity of the prepared composites was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °°C for 10 days. The effect of different ratios of the three components (CB, HA & BG) on the bioactivity properties was assessed to explore the possibility of enhancing such property to perform in vitro imitations of in vivo conditions in the future. It can be pointed out that the Si-HA content in the composition showed outstanding in vitro bioactivity than pure hydroxyapatite which could be attributed to the excellent bioactivity of the synthesized composites. - Highlights: • The prepared of nano-composites containing CB, HA and BG powders were achieved. • The addition of CB powder enhanced the compressive strength for all the composites. • The composites containing high BG and CB contents improved formation of bone-like apatite layer.

  20. Fabrication and bioactivity behavior of HA/bioactive glass composites in the presence of calcium hexaboride

    International Nuclear Information System (INIS)

    El-Bassyouni, Gehan T.; Beherei, Hanan H.; Mohamed, Khaled R.; Kenawy, Sayed H.

    2016-01-01

    In the current study, composites were prepared using both the synthesized nano-sized hydroxyapatite (HA), bioactive glass (BG) powders (obtained by the traditional melt-quenching route) together with the purchased nano-sized calcium hexaboride (CB) with different ratios and were fired at 1250 °C. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy; scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM) techniques and compressive strength. The mechanical testing was to designate the role of the CB in improving the mechanical property of the prepared composites. In vitro bioactivity of the prepared composites was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °°C for 10 days. The effect of different ratios of the three components (CB, HA & BG) on the bioactivity properties was assessed to explore the possibility of enhancing such property to perform in vitro imitations of in vivo conditions in the future. It can be pointed out that the Si-HA content in the composition showed outstanding in vitro bioactivity than pure hydroxyapatite which could be attributed to the excellent bioactivity of the synthesized composites. - Highlights: • The prepared of nano-composites containing CB, HA and BG powders were achieved. • The addition of CB powder enhanced the compressive strength for all the composites. • The composites containing high BG and CB contents improved formation of bone-like apatite layer.

  1. Application of cyclic phosphonamide reagents in the total synthesis of natural products and biologically active molecules

    Directory of Open Access Journals (Sweden)

    Thilo Focken

    2014-08-01

    Full Text Available A review of the synthesis of natural products and bioactive compounds adopting phosphonamide anion technology is presented highlighting the utility of phosphonamide reagents in stereocontrolled bond-forming reactions. Methodologies utilizing phosphonamide anions in asymmetric alkylations, Michael additions, olefinations, and cyclopropanations will be summarized, as well as an overview of the synthesis of the employed phosphonamide reagents.

  2. δ-Tocotrienol, a natural form of vitamin E, inhibits pancreatic cancer stem-like cells and prevents pancreatic cancer metastasis.

    Science.gov (United States)

    Husain, Kazim; Centeno, Barbara A; Coppola, Domenico; Trevino, Jose; Sebti, Said M; Malafa, Mokenge P

    2017-05-09

    The growth, metastasis, and chemotherapy resistance of pancreatic ductal adenocarcinoma (PDAC) is characterized by the activation and growth of tumor-initiating cells in distant organs that have stem-like properties. Thus, inhibiting growth of these cells may prevent PDAC growth and metastases. We have demonstrated that δ-tocotrienol, a natural form of vitamin E (VEDT), is bioactive against cancer, delays progression, and prevents metastases in transgenic mouse models of PDAC. In this report, we provide the first evidence that VEDT selectively inhibits PDAC stem-like cells. VEDT inhibited the viability, survival, self-renewal, and expression of Oct4 and Sox2 transcription factors in 3 models of PDAC stem-like cells. In addition, VEDT inhibited the migration, invasion, and several biomarkers of epithelial-to-mesenchymal transition and angiogenesis in PDAC cells and tumors. These processes are critical for tumor metastases. Furthermore, in the L3.6pl orthotopic model of PDAC metastases, VEDT significantly inhibited growth and metastases of these cells. Finally, in an orthotopic xenograft model of human PDAC stem-like cells, we showed that VEDT significantly retarded the growth and metastases of gemcitabine-resistant PDAC human stem-like cells. Because VEDT has been shown to be safe and to reach bioactive levels in humans, this work supports investigating VEDT for chemoprevention of PDAC metastases.

  3. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy.

    Science.gov (United States)

    Yarla, Nagendra Sastry; Bishayee, Anupam; Sethi, Gautam; Reddanna, Pallu; Kalle, Arunasree M; Dhananjaya, Bhadrapura Lakkappa; Dowluru, Kaladhar S V G K; Chintala, Ramakrishna; Duddukuri, Govinda Rao

    2016-10-01

    Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A 2 s (PLA 2 s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA 2 s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites

    Science.gov (United States)

    Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source. PMID:22163194

  5. Marine Sponge Derived Natural Products between 2001 and 2010: Trends and Opportunities for Discovery of Bioactives

    Science.gov (United States)

    Mehbub, Mohammad Ferdous; Lei, Jie; Franco, Christopher; Zhang, Wei

    2014-01-01

    Marine sponges belonging to the phylum Porifera (Metazoa), evolutionarily the oldest animals are the single best source of marine natural products. The present review presents a comprehensive overview of the source, taxonomy, country of origin or geographical position, chemical class, and biological activity of sponge-derived new natural products discovered between 2001 and 2010. The data has been analyzed with a view to gaining an outlook on the future trends and opportunities in the search for new compounds and their sources from marine sponges. PMID:25196730

  6. Streptococcus thermophilus APC151 Strain Is Suitable for the Manufacture of Naturally GABA-Enriched Bioactive Yogurt.

    Science.gov (United States)

    Linares, Daniel M; O'Callaghan, Tom F; O'Connor, Paula M; Ross, R P; Stanton, Catherine

    2016-01-01

    Consumer interest in health-promoting food products is a major driving force for the increasing global demand of functional (probiotic) dairy foods. Yogurt is considered the ideal medium for delivery of beneficial functional ingredients. Gamma-amino-butyric acid has potential as a bioactive ingredient in functional foods due to its health-promoting properties as an anti-stress, anti-hypertensive, and anti-diabetic agent. Here, we report the use of a novel Streptococcus thermophilus strain, isolated from the digestive tract of fish, for production of yogurt naturally enriched with 2 mg/ml of gamma-amino-butyric acid (200 mg in a standard yogurt volume of 100 ml), a dose in the same range as that provided by some commercially available gamma-amino-butyric acid supplements. The biotechnological suitability of this strain for industrial production of yogurt was demonstrated by comparison with the reference yogurt inoculated with the commercial CH1 starter (Chr. Hansen) widely used in the dairy industry. Both yogurts showed comparable pH curves [ΔpH/Δ t = 0.31-0.33 h -1 ], viscosity [0.49 Pa-s], water holding capacity [72-73%], and chemical composition [moisture (87-88%), protein (5.05-5.65%), fat (0.12-0.15%), sugar (4.8-5.8%), and ash (0.74-1.2%)]. Gamma-amino-butyric acid was not detected in the control yogurt. In conclusion, the S. thermophilus APC151 strain reported here provides a natural means for fortification of yogurt with gamma-amino-butyric acid.

  7. “Gold” Pressed Essential Oil: An Essay on the Volatile Fragment from Citrus Juice Industry By-Products Chemistry and Bioactivity

    Directory of Open Access Journals (Sweden)

    V. N. Kapsaski-Kanelli

    2017-01-01

    Full Text Available Present essay explores the potentials of Citrus juice industry’s by-products as alternative bioactive natural products resources. Four crude Cold Pressed Essential Oils (CPEOs, derived from orange, lemon, grapefruit, and mandarin, were studied. All CPEOs were subjected to water distillation, in order to obtain the volatile fragment, which was further fractionated with respect to distillation period in two parts, concluding to eight samples. These samples along with the four original CPEOs were assessed in relation to their phytochemical content and their repellent and larvicidal properties against Asian Tiger Mosquito. The volatiles recovery rates ranged from 74% to 88% of the CPEO. Limonene presented a significant increase in all samples ranging from 8% to 52% of the respective CPEO’s content and peaked in mandarin’s 2nd volatile fragment which comprised 97% of the essential oil. The refinement process presented clear impacts on both bioassays: a significant increase in larvicidal potency was observed, annotated best by the improvement by 1100% and 1300% of the grapefruit volatile fractions; repellence testing provided only one significant result, the decrease of landings by 50% as a response to mandarin’s second volatile fraction. The applied methodology thus may be considered for the improvement of Citrus juice industry’s by-products chemistry and bioactivity.

  8. Bioactivity evaluation against Artemia salina Leach of medicinal plants used in Brazilian Northeastern folk medicine.

    Science.gov (United States)

    Arcanjo, D D R; Albuquerque, A C M; Melo-Neto, B; Santana, L C L R; Medeiros, M G F; Citó, Amgl

    2012-08-01

    The brine shrimp (Artemia salina Leach) lethality bioassay offers an advantage in standardization and quality control of botanical products. This test is well correlated with antitumor activity (cytotoxicity) and can be used to monitor the activity of bioactive natural products. This paper reports the bioactivity of ethanol extracts from seven medicinal plants from the Northeast of Brazil (Acmella uliginosa, Ageratum conyzoides, Eugenia uniflora, Plectranthus neochilus, Moringa oleifera, Justicia pectoralis and Equisetum sp.) against Artemia salina. Biological activity was evaluated for extracts at 1, 10, 100, and 1000 µg/mL in triplicate, and the mean lethal concentration values (LC50) were obtained by probit analysis. The species Acmella uliginosa showed the highest bioactivity, and its flower extract was more active than its leaf extract.

  9. BIOACTIVITIES AND CHEMICAL CONSTITUENTS OF A VIETNAMESE MEDICINAL PLANT JASMINUM SUBTRIPLINERVE BLUME (CHE VANG )

    OpenAIRE

    Dai, Hue Ngan

    2006-01-01

    #This thesis encompasses two parts. The first part deals with general introduction to isolation, characterization, and bioactivities of natural products, with emphasis on Jasminum Subtriplinerve Blume spp., and its genus. The second is experimental study of J.subtriplinerve Bl. about its bioactivities and chemical constituents. In first part (from chapter 1 to 6), the botanical of two varieties of J.subtriplinerve Bl., a medicinal plant widely distributed in Middle area of Vietnam that has ju...

  10. Investigating in vitro bioactivity and magnetic properties of the ferrimagnetic bioactive glass–ceramic fabricated using soda-lime–silica waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, M. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Street, Shiraz (Iran, Islamic Republic of); Hashemi, B., E-mail: hashemib@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Street, Shiraz (Iran, Islamic Republic of); Shokrollahi, H. [Electroceramics Group, Materials Science and Engineering Department, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of)

    2014-04-01

    The main purpose of the current research is the production and characterization of a ferrimagnetic bioactive glass–ceramic prepared through the solid-state reaction method using soda-lime–silica waste glass as the main raw material. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural, thermal and magnetic properties of the samples were examined by X-ray diffraction (XRD), differential thermal analysis (DTA) and vibrating sample magnetometer (VSM). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). The apatite surface layer formation was examined by the scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The calcium ion concentration in the solutions was measured by atomic absorption spectroscopy (AAS). VSM results revealed that with the addition of 5–20 wt% strontium hexaferrite to bioactive glass–ceramics, the ferrimagnetic bioactive glass–ceramics with hysteresis losses between 7024 and 75,852 erg/g were obtained. The in vitro test showed that the onset formation time of hydroxyapatite layer on the surface of the samples was 14 days and after 30 days, this layer was completed. - Highlights: • A novel ferrimagnetic bioactive glass–ceramic was synthesized by an incorporation method. • The bioactive part was synthesized by the solid-state reaction method using soda-lime–silica waste glass. • The doping of SrFe{sub 12}O{sub 19} to Bioglass{sup ®} 45S5 glass–ceramic is likely to decrease bioactivity.

  11. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste

    OpenAIRE

    Nour, Violeta; Ionica, Mira Elena; Trandafir, Ion

    2015-01-01

    The tomato processing industry generates high amounts of waste, mainly tomato skins and seeds, which create environmental problems. These residues are attractive sources of valuable bioactive components and pigments. A relatively simple recovery technology could consist of production of powders to be directly incorporated into foods. Tomato waste coming from a Romanian tomato processing unit were analyzed for the content of several bioactive compounds like ascorbic acid, β-carotene, lycopene,...

  12. Building a discovery partnership with Sarawak Biodiversity Centre: a gateway to access natural products from the rainforests.

    Science.gov (United States)

    Yeo, Tiong Chia; Naming, Margarita; Manurung, Rita

    2014-03-01

    The Sarawak Biodiversity Centre (SBC) is a state government agency which regulates research and promotes the sustainable use of biodiversity. It has a program on documentation of traditional knowledge (TK) and is well-equipped with facilities for natural product research. SBC maintains a Natural Product Library (NPL) consisting of local plant and microbial extracts for bioprospecting. The NPL is a core discovery platform for screening of bioactive compounds by researchers through a formal agreement with clear benefit sharing obligations. SBC aims to develop partnerships with leading institutions and the industries to explore the benefits of biodiversity.

  13. Marine bioactive compounds: stereospecific anti-inflammatory activity of natural and synthetic cordiachromene A.

    Science.gov (United States)

    Benslimane, A F; Pouchus, Y F; Verbist, J F; Petit, J Y; Khettab, E N; Welin, L; Brion, J D

    1992-01-01

    A new synthesis is proposed for cordiachromene A (CCA), a bioactive component of the ascidian Aplidium antillense Gravier, using a method producing a racemic mixture. The anti-inflammatory activities of a natural extract and a chemically synthetic form of CCA were assessed in vivo by carrageenan-induced rat-paw edema. The activity of synthetic CCA was confirmed by a test on kaolin-induced granuloma in the rat. Strong activities were measured for both CCA, but comparison of results of the first test suggests that only the natural optically active isomer has an anti-inflammatory effect. CCA is similar to indomethacin in its effect on carrageenan-induced rat-paw edema and ten times as active as phenylbutazone.

  14. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion.

    Science.gov (United States)

    Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Smoczyńska, Paulina; Czaczyk, Katarzyna; Komolka, Patrycja

    2015-03-01

    The modern day consumer tends to choose products with health enhancing properties, enriched in bioactive substances. One such bioactive food component is dietary fibre, which shows a number of physiological properties including the binding of bile acids. Dietary fibre should be contained in everyday, easily accessible food products. Therefore, the aim of this study was to determine sorption capacities of primary bile acid (cholic acid - CA) and secondary bile acids (deoxycholic - DCA and lithocholic acids - LCA) by muffins (BM) and cookies (BC) with bioactive substances and control muffins (CM) and cookies (CC) in two sections of the in vitro gastrointestinal tract. Variations in gut flora were also analysed in the process of in vitro digestion of pastry products in a bioreactor. Enzymes: pepsin, pancreatin and bile salts: cholic acid, deoxycholic acid and lithocholic acid were added to the culture. Faecal bacteria, isolated from human large intestine, were added in the section of large intestine. The influence of dietary fibre content in cookies and concentration of bile acids in two stages of digestion were analysed. Generally, pastry goods with bioactive substances were characterized by a higher content of total fibre compared with the control samples. These products also differ in the profile of dietary fibre fractions. Principal Component Analysis (PCA) showed that the bile acid profile after two stages of digestion depends on the quality and quantity of fibre. The bile acid profile after digestion of BM and BC forms one cluster, and with the CM and CC forms a separate cluster. High concentration of H (hemicellulose) is positively correlated with LCA (low binding effect) and negatively correlated with CA and DCA contents. The relative content of bile acids in the second stage of digestion was in some cases above the content in the control sample, particularly LCA. This means that the bacteria introduced in the 2nd stage of digestion synthesize the LCA.

  15. Bioactivity and structural properties of nanostructured bulk composites containing Nb2O5 and natural hydroxyapatite

    Science.gov (United States)

    Bonadio, T. G. M.; Sato, F.; Medina, A. N.; Weinand, W. R.; Baesso, M. L.; Lima, W. M.

    2013-06-01

    In this work, we investigate the bioactivity and structural properties of nanostructured bulk composites that are composed of Nb2O5 and natural hydroxyapatite (HAp) and are produced by mechanical alloying and powder metallurgy. X-ray diffraction and Raman spectroscopy data showed that the milling process followed by a heat treatment at 1000 °C induced chemical reactions along with the formation of the CaNb2O6, PNb9O25 and Ca3(PO4)2 phases. Rietveld refinement indicated significant changes in each phase weight fraction as a function of HAp concentration. These changes influenced the in vitro bioactivity of the material. XRD and FTIR analyses indicated that the composites exhibited bioactivity characteristics by forming a carbonated apatite layer when the composites were immersed in a simulated body fluid. The formed layers had a maximum thickness of 13 μm, as measured by confocal Raman spectroscopy and as confirmed by scanning electron microscopy. The results of this work suggest that the tested bulk composites are promising biomaterials for use in implants.

  16. Stevia rebaudiana Leaves: Effect of Drying Process Temperature on Bioactive Components, Antioxidant Capacity and Natural Sweeteners.

    Science.gov (United States)

    Lemus-Mondaca, Roberto; Ah-Hen, Kong; Vega-Gálvez, Antonio; Honores, Carolina; Moraga, Nelson O

    2016-03-01

    Stevia leaves are usually used in dried state and undergo the inevitable effect of drying process that changes the quality characteristics of the final product. The aim of this study was to assess temperature effect on Stevia leaves through analysis of relevant bioactive components, antioxidant capacity and content of natural sweeteners and minerals. The drying process was performed in a convective dryer at constant temperatures ranging from 30 to 80 °C. Vitamin C was determined in the leaves and as expected showed a decrease during drying proportional to temperature. Phenolics and flavonoids were also determined and were found to increase during drying below 50 °C. Antioxidant activity was determined by DPPH and ORAC assays, and the latter showed the highest value at 40 °C, with a better correlation with the phenolics and flavonoids content. The content of eight natural sweeteners found in Stevia leaves was also determined and an increase in the content of seven of the sweeteners, excluding steviol bioside, was found at drying temperature up to 50 °C. At temperatures between 60 and 80 °C the increase in sweeteners content was not significant. Stevia leaves proved to be an excellent source of antioxidants and natural sweeteners.

  17. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products.

    Science.gov (United States)

    Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid

    2017-09-05

    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.

  18. Bioactive Components in The Meat and Their Functional Properties: A Literature Study

    Directory of Open Access Journals (Sweden)

    Khothibul Umam Al Awwaly

    2017-03-01

    Full Text Available Consumer awareness in meat and meat products is generally recognized as a good source of food, with high biological value protein, B group vitamins, minerals and minor elements like several other bioactive compounds that are beneficial to the human body. But in many cases, a processing error is affecting the bioactive compounds of functional foods and consumer impression are relatively negative to some levels of substances in meat such as fat, cholesterol, saturated fatty acids, salt and other substances, which however also involves a diseases of western society such as cardiovascular diseases, respiratory, carcinogenesis, obesity, impaired immune system and accelerate the aging process. Hence there is a need for adequate information related to favorable nutritional value of meat that has not been widely disclosed. Bioactive components in the meat can be anserin, karnosin and bioactive peptides. The generation of bioactive components in the meat in the form of bioactive peptides can be done in three ways: (1 aging or storage of meat, (2 meat fermentation, and (3 the enzyme treatment. Functional properties of bioactive components in meat varies greatly as an antioxidant, antihypertensive, antimicrobial, anticancer and immunomodulatory.

  19. Natural products to improve quality of life targeting for colon drug delivery.

    Science.gov (United States)

    Kim, Hyunjo

    2012-03-01

    The colon is largely being investigated as a site for administration of protein and peptides, which are degraded by digestive enzymes in the upper GIT. Also for local diseases of the colon such as inflammatory bowel disease, colorectal cancer and ameobiasis, drug administration to the site of action can not only reduce the dose to be administered, but also decrease the side effects. Inflammatory Bowel Disease (IBD) such as Ulcerative colitis and Crohn's disease are characterized by chronic intestinal inflammation. Intestinal bacteria initiate the activation of intestinal inflammatory processes, which are mediated by pro-inflammatory cytokines and chemokine. Increased chemokine expression has also been observed in epithelial cells, endothelial cells, and smooth muscle cells. Future trials of specific agents capable of inhibiting chemokine synthesis and secretion or blocking chemokine-chemokine receptor interaction will be important to study in patients with ulcerative colitis and Crohn's disease. Many important bioactive compounds have been discovered from natural sources using bioactivity directed fractionation and isolation (BDFl) Continuing discovery has also been facilitated by the recent development of new bioassay methods. These bioactive compounds are mostly plant secondary metabolites, and many naturally occurring pure compounds have become medicines, dietary supplements, and other useful commercial products. The present review includes various approaches investigated for colon drug delivery and their site specificity. To achieve successful colonic delivery, a drug needs to be protected from absorption and the environment of the upper gastrointestinal tract and then be abruptly released into the proximal colon, which is considered the optimum site for colon targeted delivery of drugs.

  20. Cordyceps fungi: natural products, pharmacological functions and developmental products.

    Science.gov (United States)

    Zhou, Xuanwei; Gong, Zhenghua; Su, Ying; Lin, Juan; Tang, Kexuan

    2009-03-01

    Parasitic Cordyceps fungi, such as Cordyceps sinensis, is a parasitic complex of fungus and caterpillar, which has been used for medicinal purposes for centuries particularly in China, Japan and other Asian countries. This article gives a general idea of the latest developments in C. sinensis research, with regard to the active chemical components, the pharmacological effects and the research and development of products in recent years. The common names for preparations include DongChongXiaCao in Chinese, winter worm summer grass in English. It has many bioactive components, such as 3'-deoxyadenosine, cordycepic acid and Cordyceps polysaccharides. It is commonly used to replenish the kidney and soothe the lung, and for the treatment of fatigue. It also can be used to treat conditions such as night sweating, hyposexuality, hyperglycaemia, hyperlipidaemia, asthenia after severe illness, respiratory disease, renal dysfunction, renal failure, arrhythmias and other heart disease and liver disease. Because of its rarity and outstanding curative effects, several mycelia strains have been isolated from natural Cordyceps and manufactured by fermentation technology, and are commonly sold as health food products. In addition, some substitutes such as C. militaris and adulterants also have been used; therefore, quality control of C. sinensis and its products is very important to ensure their safety and efficacy. Recent research advances in the study of Cordyceps, including Cordyceps mushrooms, chemical components, pharmacological functions and developmental products, has been reviewed and discussed. Developing trends in the field have also been appraised.

  1. Microbial Transformation of Bioactive Compounds and Production of ortho-Dihydroxyisoflavones and Glycitein from Natural Fermented Soybean Paste

    Directory of Open Access Journals (Sweden)

    Changhyun Roh

    2014-12-01

    Full Text Available Recently, there has been a great deal of remarkable interest in finding bioactive compounds from nutritional foods to replace synthetic compounds. In particular, ortho-dihydroxyisoflavones and glycitein are of growing scientific interest owing to their attractive biological properties. In this study, 7,8-ortho-dihydroxyisoflavone, 6,7-ortho-dihydroxyisoflavone, 3',4'-ortho-dihydroxyisoflavone and 7,4'-dihydroxy-6-methoxyisoflavone were characterized using microorganism screened from soybean Doenjang. Three ortho-dihydroxyisoflavones and glycitein were structurally elucidated by 1H-NMR and GC-MS analysis. Furthermore, bacterial strains from soybean Doenjang with the capacity of biotransformation were screened. The bacterial strain, identified as Bacillus subtilis Roh-1, was shown to convert daidzein into ortho-dihydroxyisoflavones and glycitein. Thus, this study has, for the first time, demonstrated that a bacterial strain had a substrate specificity for multiple modifications of the bioactive compounds.

  2. Evaluation of Agro-Industrial Co-Products as Source of Bioactive Compounds: Fiber, Antioxidants and Prebiotic

    Directory of Open Access Journals (Sweden)

    Hernández-Alcántara Annel M

    2016-12-01

    Full Text Available Agro-industrial co-products derived of fruit processing represents an important source of bioactive compounds as fiber, antioxidants and prebiotics. The objective of this work was to determine the content of fiber, antioxidant capacity and prebiotic activity of three flours obtained from commonly co-products (banana peel, apple peel, and carrot bagasse. The results showed a higher total fiber content in carrot bagasse, and lower in apple peel. Significantly differences were found in antioxidant activity. Fruit co-products flours were a suitable carbon source increasing specific growth rate with a reduction in duplication time as compared to glucose. The prebiotic activity was positive in the three co-products, all flours survived at pH 1.0 and showed resistance to simulated gastric acid for about 60 min. Banana peel, apple peel and carrot bagasse showed to be a good source of bioactive compounds as fiber and antioxidants and can be used as prebiotics for lactic acid bacteria.

  3. Cu-Hemin Metal-Organic-Frameworks/Chitosan-Reduced Graphene Oxide Nanocomposites with Peroxidase-Like Bioactivity for Electrochemical Sensing

    International Nuclear Information System (INIS)

    Wang, Li; Yang, Han; He, Juan; Zhang, Yayun; Yu, Jie; Song, Yonghai

    2016-01-01

    Graphical abstract: A simple, sensitive and effective method to detect hydrogen peroxide based on a hybrid Cu-hemin metal-organic-frameworks (MOFs)/chitosan-functionalized reduced graphene oxide (CS-rGO) nanocomposite was achieved via Cu-hemin MOFs constructing with CS-rGO in room temperature. The Cu-hemin MOFs/CS-rGO nanomaterials exhibited a unique peroxidase-like activity and good electrical conductivity as well as some novel properties. And the as-prepared electrode resulted in a perfect electrochemical performance towards reduction of hydrogen peroxide which was superior to natural enzymes and some inorganic mimic enzymes. - Highlights: • A hybrid Cu-hemin MOF/CS-rGO with a unique peroxidase-like activity was prepared. • The CS-rGO improved electrical conductivity of the nanocomposites greatly. • The 3D porous structure enhanced the catalytic activity of hemin for H 2 O 2 . • A novel sensitive electrochemical biosensing for H 2 O 2 detection was achieved. - Abstract: Herein, a Cu-hemin metal-organic-frameworks (MOFs)/chitosan (CS)-reduced graphene oxide (CS-rGO) nanocomposite with unique peroxidase-like bioactivity and good electrical conductivity was prepared for electrochemical H 2 O 2 sensing for the first time. The prepared Cu-hemin MOFs/CS-rGO nanocomposites were well characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray powder diffraction, UV–vis spectroscopy and electrochemical techniques. The results showed that after the Cu-hemin MOFs were formed on the CS-rGO surface, the crystalline structure of the Cu-hemin MOFs was kept while the size of Cu-hemin MOFs was decreased and the electrical conductivity of the nanocomposites was enhanced greatly as compared with that of Cu-hemin MOFs. The unique peroxidase-like bioactivity and good electrical conductivity as well as some novel properties of Cu-hemin MOFs/CS-rGO nanocomposites resulted in

  4. Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products.

    Science.gov (United States)

    Valliappan, Karuppiah; Sun, Wei; Li, Zhiyong

    2014-09-01

    Actinobacteria are ubiquitous in the marine environment, playing an important ecological role in the recycling of refractory biomaterials and producing novel natural products with pharmic applications. Actinobacteria have been detected or isolated from the marine creatures such as sponges, corals, mollusks, ascidians, seaweeds, and seagrass. Marine organism-associated actinobacterial 16S rRNA gene sequences, i.e., 3,003 sequences, deposited in the NCBI database clearly revealed enormous numbers of actinobacteria associated with marine organisms. For example, RDP classification of these sequences showed that 112 and 62 actinobacterial genera were associated with the sponges and corals, respectively. In most cases, it is expected that these actinobacteria protect the host against pathogens by producing bioactive compounds. Natural products investigation and functional gene screening of the actinobacteria associated with the marine organisms revealed that they can synthesize numerous natural products including polyketides, isoprenoids, phenazines, peptides, indolocarbazoles, sterols, and others. These compounds showed anticancer, antimicrobial, antiparasitic, neurological, antioxidant, and anti-HIV activities. Therefore, marine organism-associated actinobacteria represent an important resource for marine drugs. It is an upcoming field of research to search for novel actinobacteria and pharmaceutical natural products from actinobacteria associated with the marine organisms. In this review, we attempt to summarize the present knowledge on the diversity and natural products production of actinobacteria associated with the marine organisms, based on the publications from 1991 to 2013.

  5. Extraction and characterization of naturally occurring bioactive peptides from different tissues from Salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup; Nielsen, Henrik Hauch

    2011-01-01

    used. Combination of different extraction conditions such as with/without boiling, with/without inhibitor and variation of pH resulted in a total of 36 extracts. The activity of the extracts was analyzed in vitro for ACE (angiotensin-converting enzyme) inhibiting activity, and anti-oxidative activity...... (Free Radical Scavenging assay). A number of extracts showed high ACE inhibiting and anti-oxidative activity. The extracts were then size fractionated by ultrafiltration using a 10 kDa filter, and relevant fractions below 10 kDa from gills, skin and belly flap were further fractionated by gel...... is therefore to extract and identify naturally occurring bioactive peptides from different tissues from salmon. A number of aqueous extracts were made from gills, skin and belly flap. In order to preserve the bioactivity of the peptides mild extraction procedures as acidic, basic and aqueous solutions were...

  6. A natural food ingredient based on ergosterol: optimization of the extraction from Agaricus blazei, evaluation of bioactive properties and incorporation in yogurts.

    Science.gov (United States)

    Corrêa, Rúbia C G; Barros, Lillian; Fernandes, Ângela; Sokovic, Marina; Bracht, Adelar; Peralta, Rosane M; Ferreira, Isabel C F R

    2018-03-01

    In recent years, mycosterols have emerged as potential functional ingredients for the development of sterol-enriched food products and dietary supplements. Agaricus blazei is a mushroom rich in bioactive compounds. For commercial purposes, their fruiting bodies must obey rigid morphological criteria. Those not conforming to these criteria are usually discarded, although this does not mean impairment of their content in bioactives. The aim of the present work was to propose the use of commercially discarded A. blazei fruiting bodies for obtaining an extract rich in ergosterol as a fortifier ingredient for yogurts. For extraction, the Soxhlet technology was used and the highest ergosterol yield (around 12%) was achieved in the 5 th cycle, yielding 58.53 ± 1.72 µg of ergosterol per 100 g of mushroom (dry weight). The ergosterol rich extract presented notable antioxidant and antimicrobial properties, besides showing no hepatotoxicity. When added to the yogurts it significantly enhanced their antioxidant properties. Furthermore, it did not significantly alter the nutritional or the individual fatty acid profiles of the final dairy products. Thus, A. blazei fruiting bodies that do not conform to the commercial requirements of the market and are normally discarded could be exploited for obtaining a natural high added-value food additive, following the circular bioeconomy concept.

  7. Streptococcus thermophilus APC151 Strain Is Suitable for the Manufacture of Naturally GABA-Enriched Bioactive Yogurt

    Science.gov (United States)

    Linares, Daniel M.; O’Callaghan, Tom F.; O’Connor, Paula M.; Ross, R. P.; Stanton, Catherine

    2016-01-01

    Consumer interest in health-promoting food products is a major driving force for the increasing global demand of functional (probiotic) dairy foods. Yogurt is considered the ideal medium for delivery of beneficial functional ingredients. Gamma-amino-butyric acid has potential as a bioactive ingredient in functional foods due to its health-promoting properties as an anti-stress, anti-hypertensive, and anti-diabetic agent. Here, we report the use of a novel Streptococcus thermophilus strain, isolated from the digestive tract of fish, for production of yogurt naturally enriched with 2 mg/ml of gamma-amino-butyric acid (200 mg in a standard yogurt volume of 100 ml), a dose in the same range as that provided by some commercially available gamma-amino-butyric acid supplements. The biotechnological suitability of this strain for industrial production of yogurt was demonstrated by comparison with the reference yogurt inoculated with the commercial CH1 starter (Chr. Hansen) widely used in the dairy industry. Both yogurts showed comparable pH curves [ΔpH/Δt = 0.31-0.33 h-1], viscosity [0.49 Pa-s], water holding capacity [72–73%], and chemical composition [moisture (87–88%), protein (5.05–5.65%), fat (0.12–0.15%), sugar (4.8–5.8%), and ash (0.74–1.2%)]. Gamma-amino-butyric acid was not detected in the control yogurt. In conclusion, the S. thermophilus APC151 strain reported here provides a natural means for fortification of yogurt with gamma-amino-butyric acid. PMID:27920772

  8. Streptococcus thermophilus APC151 strain is suitable for the manufacture of naturally GABA-enriched bioactive yoghurt

    Directory of Open Access Journals (Sweden)

    Daniel M. Linares

    2016-11-01

    Full Text Available Consumer interest in health-promoting food products is a major driving force for the increasing global demand of functional (probiotic dairy foods. Yoghurt is considered the ideal medium for delivery of beneficial functional ingredients. Gamma-amino-butyric acid has potential as a bioactive ingredient in functional foods due to its health-promoting properties as an anti-stress, anti-hypertensive and anti-diabetic agent. Here we report the use of a novel Streptococcus thermophilus strain, isolated from the digestive tract of fish, for production of yoghurt naturally enriched with 2 mg/ml of gamma-amino-butyric acid (250 mg in a standard yoghurt volume of 125 ml, a dose in the same range as that provided by some commercially available gamma-amino-butyric acid supplements. The biotechnological suitability of this strain for industrial production of yoghurt was demonstrated by comparison with the reference yoghurt inoculated with the commercial CH1 starter (Chr. Hansen widely used in the dairy industry. Both yoghurts showed comparable pH curves ΔpH/Δt = 0.31-0.33 h−1, viscosity 0.49 Pa.s, water holding capacity 72-73%, and chemical composition moisture (87-88 %, protein (5.05-5.65 %, fat (0.12-0.15 %, lactose (4.8-5.8 % and ash (0.74-1.2 %. Gamma-amino-butyric acid was not detected in the control yoghurt. In conclusion, the S. thermophilus APC151 strain reported here provides a natural means for fortification of yoghurt with gamma-amino-butyric acid.

  9. Bioactivity evolution of the surface functionalized bioactive glasses.

    Science.gov (United States)

    Magyari, Klára; Baia, Lucian; Vulpoi, Adriana; Simon, Simion; Popescu, Octavian; Simon, Viorica

    2015-02-01

    The formation of a calcium phosphate layer on the surface of the SiO2 -CaO-P2 O5 glasses after immersion in simulated body fluid (SBF) generally demonstrates the bioactivity of these materials. Grafting of the surface by chemical bonding can minimize the structural changes in protein adsorbed on the surface. Therefore, in this study our interest was to evaluate the bioactivity and blood biocompatibility of the SiO2 -CaO-P2 O5 glasses after their surface modification by functionalization with aminopropyl-triethoxysilane and/or by fibrinogen. It is shown that the fibrinogen adsorbed on the glass surfaces induces a growing of the apatite-like layer. It is also evidenced that the protein content from SBF influences the growth of the apatite-like layer. Furthermore, the good blood compatibility of the materials after fibrinogen and bovine serum albumin adsorption is proved from the assessment of the β-sheet-β-turn ratio. © 2014 Wiley Periodicals, Inc.

  10. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production.

    Science.gov (United States)

    Koirala, Niranjan; Thuan, Nguyen Huy; Ghimire, Gopal Prasad; Thang, Duong Van; Sohng, Jae Kyung

    2016-05-01

    Among the natural products, flavonoids have been particularly attractive, highly studied and become one of the most important promising agent to treat cancer, oxidant stress, pathogenic bacteria, inflammations, cardio-vascular dysfunctions, etc. Despite many promising roles of flavonoids, expectations have not been fulfilled when studies were extended to the in vivo condition, particularly in humans. Instability and very low oral bioavailability of dietary flavonoids are the reasons behind this. Researches have demonstrated that the methylation of these flavonoids could increase their promise as pharmaceutical agents leading to novel applications. Methylation of the flavonoids via theirs free hydroxyl groups or C atom dramatically increases their metabolic stability and enhances the membrane transport, leading to facilitated absorption and highly increased oral bioavailability. In this paper, we concentrated on analysis of flavonoid methoxides including O- and C-methoxide derivatives in aspect of structure, bioactivities and description of almost all up-to-date O- and C-methyltransferases' enzymatic characteristics. Furthermore, modern biological approaches for synthesis and production of flavonoid methoxides using metabolic engineering and synthetic biology have been focused and updated up to 2015. This review will give a handful information regarding the methylation of flavonoids, methyltransferases and biotechnological synthesis of the same. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.

    Science.gov (United States)

    Chan, K K Jason; O'Hagan, David

    2012-01-01

    Nature has hardly evolved a biochemistry of fluorine although there is a low-level occurrence of fluoroacetate found in selected tropical and subtropical plants. This compound, which is generally produced in low concentrations, has been identified in the plants due to its high toxicity, although to date the biosynthesis of fluoroacetate in plants remains unknown. After that, fluorinated entities in nature are extremely rare, and despite increasingly sophisticated screening and analytical methods applied to natural product extraction, it has been 25 years since the last bona fide fluorinated natural product was identified from an organism. This was the reported isolation of the antibiotic 4-fluorothreonine and the toxin fluoroacetate in 1986 from Streptomyces cattleya. This bacterium has proven amenable to biochemical investigation, the fluorination enzyme (fluorinase) has been isolated and characterized, and the biosynthetic pathway to these bacterial metabolites has been elucidated. Also the fluorinase gene has been cloned into a host bacterium (Salinispora tropica), and this has enabled the de novo production of a bioactive fluorinated metabolite from fluoride ion, by genetic engineering. Biotechnological manipulation of the fluorinase offers the prospects for the assembly of novel fluorinated metabolites by fermentation technology. This is particularly attractive, given the backdrop that about 15-20% of pharmaceuticals licensed each year (new chemical entities) contain a fluorine atom. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Meat and fermented meat products as a source of bioactive peptides.

    Science.gov (United States)

    Stadnik, Joanna; Kęska, Paulina

    2015-01-01

    Bioactive peptides are short amino acid sequences, that upon release from the parent protein may play different physiological roles, including antioxidant, antihypertensive, antimicrobial, and other bioactivities. They have been identified from a range of foods, including those of animal origin, e.g., milk and muscle sources (with pork, beef, or chicken and various species of fish and marine organism). Bioactive peptides are encrypted within the sequence of the parent protein molecule and latent until released and activated by enzymatic proteolysis, e.g. during gastrointestinal digestion or food processing. Bioactive peptides derived from food sources have the potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an overview of the muscle-derived bioactive peptides, especially those of fermented meats and the potential benefits of these bioactive compounds to human health.

  13. Behaviour of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses

    Directory of Open Access Journals (Sweden)

    Hattar S.

    2002-12-01

    Full Text Available Bioactive glasses have been shown to stimulate osteogenesis both in vivo and in vitro. However, the molecular mechanisms underlying this process are still poorly understood. In this study, we have investigated the behaviour of osteoblast-like cells (MG63, cultured in the presence of bioglass particles. Three types of granules were used: 45S5registered bioactive glass, 45S5registered granules preincubated in tris buffer and 60S non-reactive glass, used as control. Phase contrast microscopy permitted step-by-step visualization of cell cultures in contact with the particles. Ultrastructural observations of undecalcified sections revealed direct contacts of the cells and an electron-dense layer located at the periphery of the material. Protein synthesis was evaluated biochemically and showed a gradual increase throughout the culture time in the three types of cultures. Alkaline phosphatase was detected in situ, in clusters of packed cells either in contact with the material or in the background cell layer. Semi-quantitative RT-PCR analysis of the main osteoblastic markers showed that gene expression was maintained in all three cultures. The fact that osteocalcin was not detected, supports the fact that the MG63 cell line is composed of less differentiated osteogenic cells rather than mature osteoblasts. We also demonstrated for the first time in this cell line, the expression of Msx-2, Dlx-3 and Dlx-7 homeogenes, known to regulate in vivo foetal skeletogenesis as well as adult skeletal regeneration. However, no significant differences could be recognised in the expression pattern of bone markers between the three types of cultures. Yet these preliminary results indicate that bioactive glasses provided a suitable environment for the growth and proliferation of osteoblasts in vitro, since no drastic changes in phenotype expression of pre-osteoblasts was noted.

  14. Approach to improve the productivity of bioactive compounds of the cyanobacterium Anabaena oryzae using factorial design

    Directory of Open Access Journals (Sweden)

    Ragaa A. Hamouda

    2017-09-01

    Full Text Available Cyanobacteria are one of the richest sources of biomedical relevant compounds with extensive therapeutic pharmaceutical applications and are also known as producer of intracellular and extracellular metabolites with diverse biological activities. The genus Anabaena sp. is known to produce antimicrobial compounds, like phycocyanin and others. The goal of this study was to optimize the production of these bioactive compounds. The Plackett–Burman experimental design was used to screen and evaluate the important medium components that influence the production of bioactive compounds. In this present study, eight independent factors including NaNO3, K2HPO4, MgSO4·7H2O, CaCl2, citric acid, ammonium ferric citrate, ethylene diamine tetraacetic acid disodium magnesium salt (EDTA-Na2Mg and Na2CO3 were surveyed and the effective variables for algal components production of Anabaena oryzae were determined using two-levels Plackett–Burman design. Results analysis showed that the best medium components were NaNO3 (2.25 g l−1; K2HPO4 (0.02 g l−1; MgSO4 (0.0375 g l−1; CaCl2 (0.018 g l−1; citric acid (0.009 g l−1; ammonium ferric citrate (0.009 g l−1 and EDTA-Na2 (0.0015 g l−1 respectively. The total chlorophyll-a, carotenoids, phenol, tannic acid and flavonoid contents in crude extract of Anabaena oryzae were determined. They were 47.7, 4.11, 0.256, 1.046 and 1.83 μg/ml, respectively. The antioxidant capacity was 62.81%.

  15. A new bio-active glass ceramic

    International Nuclear Information System (INIS)

    Shamim, A.; Arif, I.; Suleman, M.; Hussain, K.; Shah, W.A.

    1995-01-01

    Since 1960 fine ceramics such as alumina have been used side by side with metallic materials for bone and joint replacement. They have high mechanical strength and are free from corrosion problem faced by metals. However they don't bond to the natural living bone and hence are called bio-inactive. This was followed by the development of bio-active glasses and glass-ceramics which bond to the natural bone but have low mechanical strength. In the present work a new bio-active glass-ceramic, based on CaO-SiO/sub 2/-P/sub 2/O/sub 3/-MgO composition, has been developed which has mechanical strength compared to that of a bio-inactive glass ceramic and also bonds strongly to the natural bone. X-ray diffraction analysis reveals wollastanite and apatite phases in the glass ceramic. A new bio-active cement has also been developed which can be used to join broken pieces of bone or by itself at a filler. (author)

  16. Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties

    Directory of Open Access Journals (Sweden)

    M. Kalim Akhtar

    2015-12-01

    Full Text Available The development of sustainable, bio-based technologies to convert solar energy and carbon dioxide into fuels is a grand challenge. A core part of this challenge is to produce a fuel that is compatible with the existing transportation infrastructure. This task is further compounded by the commercial desire to separate the fuel from the biotechnological host. Based on its fuel characteristics, 1-octanol was identified as an attractive metabolic target with diesel-like properties. We therefore engineered a synthetic pathway specifically for the biosynthesis of 1-octanol in Escherichia coli BL21(DE3 by over-expression of three enzymes (thioesterase, carboxylic acid reductase and aldehyde reductase and one maturation factor (phosphopantetheinyl transferase. Induction of this pathway in a shake flask resulted in 4.4 mg 1-octanol L−1 h−1 which exceeded the productivity of previously engineered strains. Furthermore, the majority (73% of the fatty alcohol was localised within the media without the addition of detergent or solvent overlay. The deletion of acrA reduced the production and excretion of 1-octanol by 3-fold relative to the wild-type, suggesting that the AcrAB–TolC complex may be responsible for the majority of product efflux. This study presents 1-octanol as a potential fuel target that can be synthesised and naturally accumulated within the media using engineered microbes. Keywords: 1-Octanol, Fatty alcohol, Diesel, Biofuel, Excretion

  17. BacHBerry:: BACterial Hosts for production of Bioactive phenolics from bERRY fruits

    DEFF Research Database (Denmark)

    Dudnik, Alexey; Almeida, A. Filipa; Andrade, Ricardo

    2017-01-01

    BACterial Hosts for production of Bioactive phenolics from bERRY fruits (BacHBerry) was a 3-year project funded by the Seventh Framework Programme (FP7) of the European Union that ran between November 2013 and October 2016. The overall aim of the project was to establish a sustainable and economi...

  18. 2,5-diketopiperazines in food and beverages: Taste and bioactivity.

    Science.gov (United States)

    Borthwick, Alan D; Da Costa, Neil C

    2017-03-04

    2,5-Diketopiperazines (2,5-DKPs) have been found to occur in a wide range of food and beverages, and display an array of chemesthetic effects (bitter, astringent, metallic, and umami) that can contribute to the taste of a variety of foods. These smallest cyclic peptides also occur as natural products and have been found to display a variety of bioactivities from antibacterial, antifungal, to anthroprotective effects and have the potential to be used in the development of new functional foods. An overview of the synthesis of these small chiral molecules and their molecular properties is presented. The occurrence, taste, and bioactivity of all simple naturally occurring 2,5-DKPs to date have been reviewed and those found in food from yeasts, fungi, and bacteria that have been used in food preparation or contamination, as well as metabolites of sweeteners and antibiotics added to food are also reviewed.

  19. Bioactive Peptides in Milk Products. | Tirelli | Journal of Food ...

    African Journals Online (AJOL)

    Some peptides produced in vitro or in vivo by enzymatic hydrolysis of caseins and whey protein can affect some biological functions of the body and therefore they are called bioactive peptides. In this paper the physiological significance of bioactive peptides is reviewed and the analytical methods for their purification and ...

  20. Fucose-containing sulfated polysaccharides from brown seaweed: Extraction technolgy and bioactivity assessment

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor

    will generate new valuable products that may help lessen coastal pollution by seaweeds and create new seaweed-based resources. Thus, utilization of these natural resources is of great importance. The objectives of this PhD study were to develop a technology to extract bioactive compounds from nuisance brown...... seaweeds, and investigate their bioactivity. To this effect, designed optimized extraction of fucose-containing sulfated polysaccharides (FCSPs) and/or crude fucoidan from brown seaweed were performed, and the bioactivity of the isolated FCSPs was investigated. Moreover, to assess the potential of seaweed...... to assimilate nitrogen-based nutrients, a technology for accurate monitoring of differential seaweed growth responses to nutrient assimilation was also developed. Fucoidan is a term used to describe a class of sulfated polysaccharides extracted from brown seaweed, which contains substantial amounts of fucose...

  1. New Therapeutic Drugs from Bioactive Natural Molecules: the Role of Gut Microbiota Metabolism in Neurodegenerative Diseases.

    Science.gov (United States)

    Di Meo, Francesco; Donato, Stella; Di Pardo, Alba; Maglione, Vittorio; Filosa, Stefania; Crispi, Stefania

    2018-04-03

    The gut-brain axis is considered a neuroendocrine system, which connects brain and gastrointestinal tract and plays an important role in stress response. The homeostasis of gut-brain axis is important for healthy conditions and its alterations are associated to neurological disorders and neurodegenerative diseases. Gut microbiota is a dynamic ecosystem that can be altered by external factors such as diet composition, antibiotics or xenobiotics. Recent advances in gut microbiota analyses indicate that the gut bacterial community plays a key role in maintaining normal brain functions. Recent metagenomic analyses have elucidated that the relationship between gut and brain, either in normal or in pathological conditions, reflects the existence of a "microbiota-gut-brain" axis. Gut microbiota composition can be influenced by dietary ingestion of probiotics or natural bioactive molecules such as prebiotics and polyphenols. Their derivatives coming from microbiota metabolism can affect both gut bacterial composition and brain biochemistry. Modifications of microbiota composition by natural bioactive molecules could be used to restore the altered brain functions, which characterize neurodegenerative diseases, leading to consider these compounds as novel therapeutic strategies for the treatment of neuropathologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Matrix Metalloproteinase Inhibitors (MMPIs from Marine Natural Products: the Current Situation and Future Prospects

    Directory of Open Access Journals (Sweden)

    Se-Kwon Kim

    2009-03-01

    Full Text Available Matrix metalloproteinases (MMPs are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products.

  3. Adhesive Bioactive Coatings Inspired by Sea Life.

    Science.gov (United States)

    Rego, Sónia J; Vale, Ana C; Luz, Gisela M; Mano, João F; Alves, Natália M

    2016-01-19

    Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan, and hyaluronic acid modified with catechol groups, which are the main components responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The buildup of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring, and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that the constructed films promote the formation of bonelike apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

  4. Molecular characteristics of humic acids isolated from vermicomposts and their relationship to bioactivity.

    Science.gov (United States)

    Martinez-Balmori, Dariellys; Spaccini, Riccardo; Aguiar, Natália Oliveira; Novotny, Etelvino Henrique; Olivares, Fábio Lopes; Canellas, Luciano Pasqualoto

    2014-11-26

    Vermitechnology is an effective composting method, which transforms biomass into nutrient-rich organic fertilizer. Mature vermicompost is a renewable organic product containing humic substances with high biological activity. The aim of this study was to assess the chemical characteristics and the bioactivity of humic acids isolated from different vermicomposts produced with either cattle manure, sugar cane bagasse, sunflower cake from seed oil extraction, or filter cake from a sugar cane factory. More than 200 different molecules were found, and it was possible to identify chemical markers on humic acids according to the nature of the organic source. The large hydrophobic character of humic extracts and the preservation of altered lignin derivatives confer to humic acids the ability to induce lateral root emergence in maize seedlings. Humic acid-like substances extracted from plant biomass residues represent an additional valuable product of vermicomposting that can be used as a plant growth promoter.

  5. Essential oils: extraction, bioactivities, and their uses for food preservation.

    Science.gov (United States)

    Tongnuanchan, Phakawat; Benjakul, Soottawat

    2014-07-01

    Essential oils are concentrated liquids of complex mixtures of volatile compounds and can be extracted from several plant organs. Essential oils are a good source of several bioactive compounds, which possess antioxidative and antimicrobial properties. In addition, some essential oils have been used as medicine. Furthermore, the uses of essential oils have received increasing attention as the natural additives for the shelf-life extension of food products, due to the risk in using synthetic preservatives. Essential oils can be incorporated into packaging, in which they can provide multifunctions termed "active or smart packaging." Those essential oils are able to modify the matrix of packaging materials, thereby rendering the improved properties. This review covers up-to-date literatures on essential oils including sources, chemical composition, extraction methods, bioactivities, and their applications, particularly with the emphasis on preservation and the shelf-life extension of food products. © 2014 Institute of Food Technologists®

  6. Littoral lichens as a novel source of potentially bioactive Actinobacteria.

    Science.gov (United States)

    Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T

    2015-10-30

    Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria.

  7. Fungal Secretome Analysis via PepSAVI-MS: Identification of the Bioactive Peptide KP4 from Ustilago maydis

    Science.gov (United States)

    Kirkpatrick, Christine L.; Parsley, Nicole C.; Bartges, Tessa E.; Cooke, Madeline E.; Evans, Wilaysha S.; Heil, Lilian R.; Smith, Thomas J.; Hicks, Leslie M.

    2018-05-01

    Fungal secondary metabolites represent a rich and largely untapped source for bioactive molecules, including peptides with substantial structural diversity and pharmacological potential. As methods proceed to take a deep dive into fungal genomes, complimentary methods to identify bioactive components are required to keep pace with the expanding fungal repertoire. We developed PepSAVI-MS to expedite the search for natural product bioactive peptides and herein demonstrate proof-of-principle applicability of the pipeline for the discovery of bioactive peptides from fungal secretomes via identification of the antifungal killer toxin KP4 from Ustilago maydis P4. This work opens the door to investigating microbial secretomes with a new lens, and could have broad applications across human health, agriculture, and food safety. [Figure not available: see fulltext.

  8. Effects of an onion by-product on bioactivity and safety markers in healthy rats.

    Science.gov (United States)

    Roldán-Marín, Eduvigis; Krath, Britta N; Poulsen, Morten; Binderup, Mona-Lise; Nielsen, Tom H; Hansen, Max; Barri, Thaer; Langkilde, Søren; Cano, M Pilar; Sánchez-Moreno, Concepción; Dragsted, Lars O

    2009-12-01

    Onions are excellent sources of bioactive compounds including fructo-oligosaccharides (FOS) and polyphenols. An onion by-product was characterised in order to be developed as a potentially bioactive food ingredient. Our main aim was to investigate whether the potential health and safety effects of this onion by-product were shared by either of two derived fractions, an extract containing the onion FOS and polyphenols and a residue fraction containing mainly cell wall materials. We report here on the effects of feeding these products on markers of potential toxicity, protective enzymes and gut environment in healthy rats. Rats were fed during 4 weeks with a diet containing the products or a control feed balanced in carbohydrate. The onion by-product and the extract caused anaemia as expected in rodents for Allium products. No other toxicity was observed, including genotoxicity. Glutathione reductase (GR) and glutathione peroxidase (GPx1) activities in erythrocytes increased when rats were fed with the onion extract. Hepatic gene expression of Gr, Gpx1, catalase, 5-aminolevulinate synthase and NAD(P)H:quinone oxidoreductase was not altered in any group of the onion fed rats. By contrast, gamma-glutamate cysteine ligase catalytic subunit gene expression was upregulated but only in rats given the onion residue. The onion by-products as well as the soluble and insoluble fractions had prebiotic effects as evidenced by decreased pH, increased butyrate production and altered gut microbiota enzyme activities. In conclusion, the onion by-products have no in vivo genotoxicity, may support in vivo antioxidative defence and alter the functionality of the rat gut microbiota.

  9. Use of ultrasound radiation for extraction of bioactive compounds from natural sources. Current events and perspectives

    International Nuclear Information System (INIS)

    Rodriguez Riera, Zalua; Robaina Mesa, Malvis; Jauregui Haza, Ulises

    2014-01-01

    In recent years, clean technologies have been developed for high efficiency extracting of isolation of biologically active compounds from natural sources, without the loss of biological activity, with good yield and high purity. Ultrasound-assisted extraction has low instrumental requirements and their implementation is very appropriate where the stability of the active component to be removed is affected by the high temperatures of conventional processes. In this paper it is evaluated the state of the art of ultrasound-assisted extraction of bioactive compounds from various natural sources, its mechanism, the parameters governing its use and research perspectives in this field. Ultrasonic cavitation phenomenon promotes cell wall rupture, reduction of particle size and tissue permeability, which facilitates the diffusion of the solvent into the inert part of the plant material and increasing the mass transferred through membranes. This mechanism explains the high efficiency of ultrasound-assisted extraction as it allows to reduce the time, temperature and amounts of solvent extraction process with high yields and high purity of the extracted product. Currently there is a great demand for the use of ultrasound to industrial and current research lead to the development of larger scale reactors and the theoretical modeling of the parameters that determine efficient extraction

  10. Encapsulation for preservation of functionality and targeted delivery of bioactive food components

    NARCIS (Netherlands)

    de Vos, Paul; Faas, Marijke M.; Spasojevic, Milica; Sikkema, Jan

    There has been a tremendous increase in the number of food products containing bioactive components with a health promoting or disease preventing effect. Bioactive food components can be divided into bioactive molecules and bioactive living cells (probiotics). Both bioactive molecules and bioactive

  11. Bio-prospecting of Plants and Marine Organisms in Saudi Arabia for New Potential Bioactivity

    KAUST Repository

    Hajjar, Dina A.

    2016-12-08

    The natural resources offer a unique opportunity for the discovery of active compounds, due to the complexity and biodiversity of their chemical structures. Natural resources have been used as medicines throughout human history. Saudi Arabia’s natural resources, for instance its terrestrial medicinal plants and the Red Sea sponges, have not been extensively investigated with regard to their biological activities. To better identify the diversity of compounds with bioactive potential, new techniques are also necessary in order to improve the drug discovery path. This study comprises three sections. The first section examines Juniperus phoenicea (Arar), Anastatica hierochuntica (Kaff Maryam) and Citrullus colocynthis (Hanzal); these herbal plants were screened for potential bioactivity using a newly developed pipeline based on a high-content screening technique. We report a new cell-based high-throughput phenotypic screening for the bio-prospecting of unknown natural products from Saudi Arabian plants, in order to reveal their biological activities. The second section investigates Avicennia marina plants, screened for reverse transcriptase anti-HIV bioactivity using biochemical assay. Image-based high-content screening with a set of cellular stains was used to investigate the phenotypic results of toxicity and cell cycle arrest. The third section considers the isolation of Actinomycetes from Red Sea Sponges. Actinomycetes bacterial isolates were tested for bioactivity against West Nile Virus NS3 Protease. Analytical chemical techniques such as liquid chromatography–mass spectrometry (LC-MS), gas chromatography–mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) were used to gain more understanding of the possible chemical compounds responsible for this bioactivity. Overall, the aim of this work is to investigate the potential bioactive effect of several Saudi Arabian plants and Red Sea sponges against cancer cells and viral infections. Our study

  12. An analysis of the sponge Acanthostrongylophora igens’ microbiome yields an actinomycete that produces the natural product manzamine A

    Directory of Open Access Journals (Sweden)

    Amanda Leigh Waters

    2014-10-01

    Full Text Available Sponges have generated significant interest as a source of bioactive and elaborate secondary metabolites that hold promise for the development of novel therapeutics for the control of an array of human diseases. However, research and development of marine natural products can often be hampered by the difficulty associated with obtaining a stable and sustainable production source. Herein we report the first successful characterization and utilization of the microbiome of a marine invertebrate to identify a sustainable production source for an important natural product scaffold. Through molecular-microbial community analysis, optimization of fermentation conditions and MALDI-MS imaging, we provide the first report of a sponge-associated bacterium (Micromonospora sp. that produces the manzamine class of antimalarials from the Indo-Pacific sponge Acanthostrongylophora ingens (Thiele, 1899 (Class Demospongiae, Order Haplosclerida, Family Petrosiidae. These findings suggest that a general strategy of analysis of the macroorganism’s microbiome could significantly transform the field of natural products drug discovery by gaining access to not only novel drug leads, but the potential for sustainable production sources and biosynthetic genes at the same time.

  13. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO(2) laser cladding.

    Science.gov (United States)

    Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J

    2011-09-01

    Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria.

    Science.gov (United States)

    Dittmann, Elke; Gugger, Muriel; Sivonen, Kaarina; Fewer, David P

    2015-10-01

    Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms. Copyright © 2015. Published by Elsevier Ltd.

  15. Nephrotoxicity of Natural Products.

    Science.gov (United States)

    Nauffal, Mary; Gabardi, Steven

    2016-01-01

    The manufacture and sale of natural products constitute a multi-billion dollar industry. Nearly a third of the American population admit to using some form of complementary or alternative medicine, with many using them in addition to prescription medications. Most patients fail to inform their healthcare providers of their natural product use and physicians rarely inquire. Annually, thousands of natural product-induced adverse events are reported to Poison Control Centers nationwide. Natural product manufacturers are not responsible for proving safety and efficacy, as the FDA does not regulate them. However, concerns exist surrounding the safety of natural products. This review provides details on natural products that have been associated with renal dysfunction. We have focused on products that have been associated with direct renal injury, immune-mediated nephrotoxicity, nephrolithiasis, rhabdomyolysis with acute renal injury, hepatorenal syndrome, and common adulterants or contaminants that are associated with renal dysfunction. The potential for natural products to cause renal dysfunction is justifiable. It is imperative that natural product use be monitored closely in all patients. Healthcare practitioners must play an active role in identifying patients using natural products and provide appropriate patient education. © 2016 S. Karger AG, Basel.

  16. Functionally graded bioactive coatings: From fabrication to testing

    Science.gov (United States)

    Foppiano, Silvia

    Every year about half a million Americans undergo total joint replacement surgery of some kind. This number is expected to steadily increase in the future. About 20% of these patients will need a revision surgery because of implant failure, with a significant increase in health care cost. Current implant materials for load bearing applications must be strong enough to support the loads involved in daily activities, and bioinert, to limit reactivity in the body that may cause inflammatory and other adverse reactions. Metal alloys are typically used as materials for load bearing implants and rely on mechanical interlocking to achieve fixation which can be improved by using bone cements. To improve implant osteointegration, metal implants have been coated with a bone-like mineral: hydroxyapatite (HA). The plasma spray technique is commonly used to apply the HA coating. Such implants do not require the use of bone cement. Plasma sprayed HA coated implants are FDA approved and currently on the market, but their properties are not reproducible or reliable. Thus, coating delamination can occur. Our research group developed a novel family of bioactive glasses which were enameled onto titanium alloy using a functionally graded approach. We stratified the coating with different glass compositions to fulfill different functions. We coupled a first glass layer, with a good CTE match to the alloy, with a second layer of bioactive glass obtaining a functionally graded bioactive coating (FGC). In this thesis for the first time the cytocompatibility of novel bioactive glasses, and their functionally graded coatings on Ti6Al4V, was studied with an in vitro bone model (MC3T3-E1.4 mouse preosteblast cells). The novel bioactive glasses are cytocompatible and no compositional change is required. The fabrication process is reproducible, introduces a small (average 6 vol%) amount of crystallization, which does not significantly affect bioactivity in SBF as tested. The coatings are

  17. Bioactive glasses: Frontiers and challenges

    Directory of Open Access Journals (Sweden)

    Larry L. Hench

    2015-11-01

    Full Text Available Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980’s it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are: a discovery; b clinical application; c tissue regeneration; and d innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  18. Microbial production of value-added nutraceuticals.

    Science.gov (United States)

    Wang, Jian; Guleria, Sanjay; Koffas, Mattheos Ag; Yan, Yajun

    2016-02-01

    Nutraceuticals are important natural bioactive compounds that confer health-promoting and medical benefits to humans. Globally growing demands for value-added nutraceuticals for prevention and treatment of human diseases have rendered nutraceuticals a multi-billion dollar market. However, supply limitations and extraction difficulties from natural sources such as plants, animals or fungi, restrict the large-scale use of nutraceuticals. Metabolic engineering via microbial production platforms has been advanced as an eco-friendly alternative approach for production of value-added nutraceuticals from simple carbon sources. Microbial platforms like the most widely used Escherichia coli and Saccharomyces cerevisiae have been engineered as versatile cell factories for production of diverse and complex value-added chemicals such as phytochemicals, prebiotics, polysaccaharides and poly amino acids. This review highlights the recent progresses in biological production of value-added nutraceuticals via metabolic engineering approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Yoghurt enrichment with natural bee farming products

    Directory of Open Access Journals (Sweden)

    N. Lomova

    2015-05-01

    Full Text Available Introduction. Bee pollen is a unique and unparalleled natural bioactive substances source. Using it in conjunction with the popular functional fermented milk product -yogurt will expand its product range and increase the biological value. Materials and Methods. Dried bee pollen’s moisture determination was made by gravimetry methods, based on the sample weight loss due to desiccation, until constant weight was reached.Test and control yogurt samples were studied by applying standard techniques for milk and milk products set forth in the regulations of Ukraine. Results and discussion. It is found that bee pollen pellet drying to a moisture content of 2 -4%, increases the flow rate of powder almost by 90%. The sample having moisture content of 2% will have a bulk density exceeding 12.5% compared to the sample having moisture content of 10%. Raw output will also increase by 3.7%. By contrast, apparent density and weight fraction of losses decreases, which has a positive impact on pollen efficiency of use and distribution in bulk yogurt. Moreover, the weight fraction of losses decreases by fourfold (4.6% vs. 1%. It was experimentally determined that pollen can deteriorate microbiological characteristics of yogurt. It was proved that treatment of crushed bee pollen pellet sample with ultraviolet allows improving yogurt microbiological safety indicators. Namely, to reduce the presence of coli-forms to 0, mould –to 10 CFU/cm³. Conclusions. The proposed bee pollen pellet treatment method will improve the technological and microbiological characteristics of pollen powder. This provides for yoghurt production biotechnology using bee farming products.

  20. An analysis of FDA-approved drugs: natural products and their derivatives.

    Science.gov (United States)

    Patridge, Eric; Gareiss, Peter; Kinch, Michael S; Hoyer, Denton

    2016-02-01

    Natural products contribute greatly to the history and landscape of new molecular entities (NMEs). An assessment of all FDA-approved NMEs reveals that natural products and their derivatives represent over one-third of all NMEs. Nearly one-half of these are derived from mammals, one-quarter from microbes and one-quarter from plants. Since the 1930s, the total fraction of natural products has diminished, whereas semisynthetic and synthetic natural product derivatives have increased. Over time, this fraction has also become enriched with microbial natural products, which represent a significant portion of approved antibiotics, including more than two-thirds of all antibacterial NMEs. In recent years, the declining focus on natural products has impacted the pipeline of NMEs from specific classes, and this trend is likely to continue without specific investment in the pursuit of natural products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Rational and Efficient Preparative Isolation of Natural Products by MPLC-UV-ELSD based on HPLC to MPLC Gradient Transfer.

    Science.gov (United States)

    Challal, Soura; Queiroz, Emerson Ferreira; Debrus, Benjamin; Kloeti, Werner; Guillarme, Davy; Gupta, Mahabir Prashad; Wolfender, Jean-Luc

    2015-11-01

    In natural product research, the isolation of biomarkers or bioactive compounds from complex natural extracts represents an essential step for de novo identification and bioactivity assessment. When pure natural products have to be obtained in milligram quantities, the chromatographic steps are generally labourious and time-consuming. In this respect, an efficient method has been developed for the reversed-phase gradient transfer from high-performance liquid chromatography to medium-performance liquid chromatography for the isolation of pure natural products at the level of tens of milligrams from complex crude natural extracts. The proposed method provides a rational way to predict retention behaviour and resolution at the analytical scale prior to medium-performance liquid chromatography, and guarantees similar performances at both analytical and preparative scales. The optimisation of the high-performance liquid chromatography separation and system characterisation allows for the prediction of the gradient at the medium-performance liquid chromatography scale by using identical stationary phase chemistries. The samples were introduced in medium-performance liquid chromatography using a pressure-resistant aluminium dry load cell especially designed for this study to allow high sample loading while maintaining a maximum achievable flow rate for the separation. The method has been validated with a mixture of eight natural product standards. Ultraviolet and evaporative light scattering detections were used in parallel for a comprehensive monitoring. In addition, post-chromatographic mass spectrometry detection was provided by high-throughput ultrahigh-performance liquid chromatography time-of-flight mass spectrometry analyses of all fractions. The processing of all liquid chromatography-mass spectrometry data in the form of an medium-performance liquid chromatography x ultra high-performance liquid chromatography time-of-flight mass spectrometry matrix enabled an

  2. Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by 'Entotheonella'.

    Science.gov (United States)

    Nakashima, Yu; Egami, Yoko; Kimura, Miki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-01

    Sponge metagenomes are a useful platform to mine cryptic biosynthetic gene clusters responsible for production of natural products involved in the sponge-microbe association. Since numerous sponge-derived bioactive metabolites are biosynthesized by the symbiotic bacteria, this strategy may concurrently reveal sponge-symbiont produced compounds. Accordingly, a metagenomic analysis of the Japanese marine sponge Discodermia calyx has resulted in the identification of a hybrid type I polyketide synthase-nonribosomal peptide synthetase gene (kas). Bioinformatic analysis of the gene product suggested its involvement in the biosynthesis of kasumigamide, a tetrapeptide originally isolated from freshwater free-living cyanobacterium Microcystis aeruginosa NIES-87. Subsequent investigation of the sponge metabolic profile revealed the presence of kasumigamide in the sponge extract. The kasumigamide producing bacterium was identified as an 'Entotheonella' sp. Moreover, an in silico analysis of kas gene homologs uncovered the presence of kas family genes in two additional bacteria from different phyla. The production of kasumigamide by distantly related multiple bacterial strains implicates horizontal gene transfer and raises the potential for a wider distribution across other bacterial groups.

  3. The potential of Nigerian bioactive plants for controlling gastrointestinal nematode infection in livestock.

    Science.gov (United States)

    Ademola, Isaiah Oluwafemi

    2016-12-01

    Bioactive compounds from marine and terrestrial organisms have been used extensively in the treatment of many diseases in both their natural form and as templates for synthetic modifications. This review summarizes present knowledge about anthelmintic effects of the extracts of bioactive plants in Nigeria against helminth parasites of ruminants. Plants traditionally used in livestock production are discussed. The main focus is hinged on in vitro and in vivo activities of secondary plant metabolites against nematodes of livestock. This review provides insight into preliminary studies of medicinal plants, which can be investigated further to discover promising molecules in the search for novel anthelmintic drugs and nutraceuticals.

  4. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    Science.gov (United States)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  5. Effect of UV-C radiation on bioactive compounds of pineapple (Ananas comosus L. Merr.) by-products.

    Science.gov (United States)

    Freitas, Ana; Moldão-Martins, Margarida; Costa, Helena S; Albuquerque, Tânia G; Valente, Ana; Sanches-Silva, Ana

    2015-01-01

    The industrial processing of pineapple generates a high quantity of by-products. To reduce the environmental impact of these by-products and the inherent cost of their treatment, it is important to characterise and valorise these products, converting them into high added value products. Ultra-violet radiation is one of the main sustainable sanitation techniques for fruits. Since this radiation can induce plant stress which can promote the biosynthesis of bioactive compounds, it is important to evaluate its effect in fruits. The amounts of vitamins (C and E) and carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein, lycopene, neoxanthin, violaxanthin and zeaxanthin) in pineapple by-products (core and rind) were analysed before and after treatment with UV radiation. All treated and untreated pineapple by-products contained β-carotene as the main carotenoid (rind, 2537-3225 µg; and core, 960-994 µg 100 g(-1) DW). Pineapple rind also contained lutein (288-297 µg 100 g(-1) DW) and α-carotene (89-126 µg 100 g(-1) DW). The results provide evidence of the potential of pineapple by-products as a source of bioactive compounds with antioxidant activity, which can be used by pharmaceutical, cosmetics and food industries. In addition, UV-C was shown to be a treatment that can add nutritional value to pineapple by-products. © 2014 Society of Chemical Industry.

  6. Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation

    Science.gov (United States)

    Wu, Changsheng; Zacchetti, Boris; Ram, Arthur F.J.; van Wezel, Gilles P.; Claessen, Dennis; Hae Choi, Young

    2015-01-01

    Actinomycetes and filamentous fungi produce a wide range of bioactive compounds, with applications as antimicrobials, anticancer agents or agrochemicals. Their genomes contain a far larger number of gene clusters for natural products than originally anticipated, and novel approaches are required to exploit this potential reservoir of new drugs. Here, we show that co-cultivation of the filamentous model microbes Streptomyces coelicolor and Aspergillus niger has a major impact on their secondary metabolism. NMR-based metabolomics combined with multivariate data analysis revealed several compounds that correlated specifically to co-cultures, including the cyclic dipeptide cyclo(Phe-Phe) and 2-hydroxyphenylacetic acid, both of which were produced by A. niger in response to S. coelicolor. Furthermore, biotransformation studies with o-coumaric acid and caffeic acid resulted in the production of the novel compounds (E)-2-(3-hydroxyprop-1-en-1-yl)-phenol and (2E,4E)-3-(2-carboxy-1-hydroxyethyl)-2,4-hexadienedioxic acid, respectively. This highlights the utility of microbial co-cultivation combined with NMR-based metabolomics as an efficient pipeline for the discovery of novel natural products. PMID:26040782

  7. Therapeutic potential of dairy bioactive peptides: A contemporary perspective.

    Science.gov (United States)

    Sultan, Saira; Huma, Nuzhat; Butt, Masood Sadiq; Aleem, Muhammad; Abbas, Munawar

    2018-01-02

    Dairy products are associated with numerous health benefits. These are a good source of nutrients such as carbohydrates, protein (bioactive peptides), lipids, minerals, and vitamins, which are essential for growth, development, and maintenance of the human body. Accordingly, dairy bioactive peptides are one of the targeted compounds present in different dairy products. Dairy bioactive compounds can be classified as antihypertensive, anti-oxidative, immmunomodulant, anti-mutagenic, antimicrobial, opoid, anti-thrombotic, anti-obesity, and mineral-binding agents, depending upon biological functions. These bioactive peptides can easily be produced by enzymatic hydrolysis, and during fermentation and gastrointestinal digestion. For this reason, fermented dairy products, such as yogurt, cheese, and sour milk, are gaining popularity worldwide, and are considered excellent source of dairy peptides. Furthermore, fermented and non-fermented dairy products are associated with lower risks of hypertension, coagulopathy, stroke, and cancer insurgences. The current review article is an attempt to disseminate general information about dairy peptides and their health claims to scientists, allied stakeholders, and, certainly, readers.

  8. Bioactive compounds in seaweed; functional food applications and legislation

    DEFF Research Database (Denmark)

    Holdt, Susan Løvstad; Kraan, Stefan

    2011-01-01

    Seaweed is more than the wrap that keeps rice together in sushi. Seaweed biomass is already used for a wide range of other products in food, including stabilising agents. Biorefineries with seaweed as feedstock are attracting worldwide interest and include low-volume, high value-added products...... and vice versa. Scientific research on bioactive compounds in seaweed usually takes place on just a few species and compounds. This paper reviews worldwide research on bioactive compounds, mainly of nine genera or species of seaweed, which are also available in European temperate Atlantic waters, i...... described in this review. This applies either to the choice of high value-added bioactive products to be exploited in an available species or to the choice of seaweed species when a bioactive compound is desired. Data are presented in tables with species, effect and test organism (if present) with examples...

  9. Phenolic compounds and bioactive properties of wild German and Roman chamomiles

    OpenAIRE

    Guimarães, Rafaela; Barros, Lillian; Dueñas, Montserrat; Calhelha, Ricardo C.; Carvalho, Ana Maria; Santos-Buelga, Celestino; Queiroz, Maria João R.P.; Ferreira, Isabel C.F.R.

    2012-01-01

    Natural products represent a rich source of biologically active compounds and are an example of molecular diversity, with recognized potential in drug discovery. In the present work, methanolic extracts of Matricaria recutita L. (German chamomile) and Chamaemelum nobile L. (Roman chamomile) and their decoction and infusion (the most consumed preparations of these herbs) were submitted to an analysis of phenolic compounds and bioactivity evaluation. Phenolic compounds were characterized by HPL...

  10. Natural Products as Leads in Schistosome Drug Discovery

    Directory of Open Access Journals (Sweden)

    Bruno J. Neves

    2015-01-01

    Full Text Available Schistosomiasis is a neglected parasitic tropical disease that claims around 200,000 human lives every year. Praziquantel (PZQ, the only drug recommended by the World Health Organization for the treatment and control of human schistosomiasis, is now facing the threat of drug resistance, indicating the urgent need for new effective compounds to treat this disease. Therefore, globally, there is renewed interest in natural products (NPs as a starting point for drug discovery and development for schistosomiasis. Recent advances in genomics, proteomics, bioinformatics, and cheminformatics have brought about unprecedented opportunities for the rapid and more cost-effective discovery of new bioactive compounds against neglected tropical diseases. This review highlights the main contributions that NP drug discovery and development have made in the treatment of schistosomiasis and it discusses how integration with virtual screening (VS strategies may contribute to accelerating the development of new schistosomidal leads, especially through the identification of unexplored, biologically active chemical scaffolds and structural optimization of NPs with previously established activity.

  11. Bio-Activity and Dereplication-Based Discovery of Ophiobolins and Other Fungal Secondary Metabolites Targeting Leukemia Cells

    DEFF Research Database (Denmark)

    Bladt, Tanja Thorskov; Dürr, Claudia; Knudsen, Peter Boldsen

    2013-01-01

    The purpose of this study was to identify and characterize fungal natural products (NPs) with in vitro bioactivity towards leukemia cells. We based our screening on a combined analytical and bio-guided approach of LC-DAD-HRMS dereplication, explorative solid-phase extraction (E-SPE), and a co...

  12. Production of bioactive soluble interleukin-15 in complex with interleukin-15 receptor alpha from a conditionally-replicating oncolytic HSV-1.

    Directory of Open Access Journals (Sweden)

    David C Gaston

    Full Text Available Oncolytic type-1 herpes simplex viruses (oHSVs lacking the γ134.5 neurovirulence gene are being evaluated for treatment of a variety of malignancies. oHSVs replicate within and directly kill permissive cancer cells. To augment their anti-tumor activity, oHSVs have been engineered to express immunostimulatory molecules, including cytokines, to elicit tumor-specific immune responses. Interleukin-15 (IL-15 holds potential as an immunotherapeutic cytokine because it has been demonstrated to promote both natural killer (NK cell-mediated and CD8(+ T cell-mediated cytotoxicity against cancer cells. The purpose of these studies was to engineer an oHSV producing bioactive IL-15. Two oHSVs were constructed encoding murine (mIL-15 alone (J100 or with the mIL-15 receptor α (mIL-15Rα, J100D to determine whether co-expression of these proteins is required for production of bioactive mIL-15 from oHSV. The following were demonstrated: i both oHSVs retain replication competence and cytotoxicity in permissive tumor cell lines. ii Enhanced production of mIL-15 was detected in cell lysates of neuro-2a cells following J100D infection as compared to J100 infection, suggesting that mIL-15Rα improved mIL-15 production. iii Soluble mIL-15 in complex with mIL-15Rα was detected in supernates from J100D-infected, but not J100-infected, neuro-2a, GL261, and CT-2A cells. These cell lines vary in permissiveness to oHSV replication and cytotoxicity, demonstrating soluble mIL-15/IL-15Rα complex production from J100D was independent of direct oHSV effects. iv The soluble mIL-15/IL-15Rα complex produced by J100D was bioactive, stimulating NK cells to proliferate and reduce the viability of syngeneic GL261 and CT-2A cells. v J100 and J100D were aneurovirulent inasmuch as no neuropathologic effects were documented following direct inoculation into brains of CBA/J mice at up to 1x10(7 plaque forming units. The production of mIL-15/mIL-15Rα from multiple tumor lines, as well

  13. [Synthetic Studies of Bioactive Heterocyclic Natural Products and Fused Heterocyclic Compounds Based on the Thermal Electrocyclic or Azaelectocyclic Reaction of 6π-Electron or Aza-6π-electron Systems].

    Science.gov (United States)

    Hibino, Satoshi

    2016-01-01

    Since 1979, synthetic studies of bioactive heterocyclic natural products and condensed heteroaromatic compounds based on the thermal electrocyclic reaction of 6π-electron or aza-6π-electron systems incorporating the double bond of the principal aromatic or heteroaromatic ring have been conducted by our research group. In this review, five types of electrocyclic and azaelectrocyclic reaction are described: 1) the synthesis of the carbazole alkaloids hyellazole and 6-chlorohyellazole through the electrocyclic reaction of 2,3-bisalkenylindoles; 2) synthetic studies of the pyridocarbazole alkaloids ellipticine and olivacine through the electrocyclic reactions of the indole-2,3- and pyridine-3,4-quinodimethane intermediates; 3) synthetic studies of polysubstituted carbazole alkaloids through the allene-mediated electrocyclic reactions involving the indole 2,3-bond; 4) synthetic studies of fused pyridine rings through the azaelectrocyclic reaction of the 1-aza-6π-electron system using the oxime or oxime ether; and 5) synthetic studies of fused pyridine rings through the azaelectrocyclic reaction of the 2-aza-6π-electron system using a carbodiimide or isocyanate.

  14. Thioester derivatives of the natural product psammaplin A as potent histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Matthias G. J. Baud

    2013-01-01

    Full Text Available There has been significant interest in the bioactivity of the natural product psammaplin A, most recently as a potent and isoform selective HDAC inhibitor. Here we report our preliminary studies on thioester HDAC inhibitors derived from the active monomeric (thiol form of psammaplin A, as a means to improve compound delivery into cells. We have discovered that such compounds exhibit both potent cytotoxicity and enzymatic inhibitory activity against recombinant HDAC1. The latter effect is surprising since previous SAR suggested that modification of the thiol functionality should detrimentally affect HDAC potency. We therefore also report our preliminary studies on the mechanism of action of this observed effect.

  15. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods.

    Science.gov (United States)

    Linares, Daniel M; Gómez, Carolina; Renes, Erica; Fresno, José M; Tornadijo, María E; Ross, R P; Stanton, Catherine

    2017-01-01

    Consumer interest in healthy lifestyle and health-promoting natural products is a major driving force for the increasing global demand of biofunctional dairy foods. A number of commercial sources sell synthetic formulations of bioactive substances for use as dietary supplements. However, the bioactive-enrichment of health-oriented foods by naturally occurring microorganisms during dairy fermentation is in increased demand. While participating in milk fermentation, lactic acid bacteria can be exploited in situ as microbial sources for naturally enriching dairy products with a broad range of bioactive components that may cover different health aspects. Several of these bioactive metabolites are industrially and economically important, as they are claimed to exert diverse health-promoting activities on the consumer, such as anti-hypertensive, anti-inflammatory, and anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation. This review aims at discussing the potential of these health-supporting bacteria as starter or adjunct cultures for the elaboration of dairy foods with a broad spectrum of new functional properties and added value.

  16. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods

    Directory of Open Access Journals (Sweden)

    Daniel M. Linares

    2017-05-01

    Full Text Available Consumer interest in healthy lifestyle and health-promoting natural products is a major driving force for the increasing global demand of biofunctional dairy foods. A number of commercial sources sell synthetic formulations of bioactive substances for use as dietary supplements. However, the bioactive-enrichment of health-oriented foods by naturally occurring microorganisms during dairy fermentation is in increased demand. While participating in milk fermentation, lactic acid bacteria can be exploited in situ as microbial sources for naturally enriching dairy products with a broad range of bioactive components that may cover different health aspects. Several of these bioactive metabolites are industrially and economically important, as they are claimed to exert diverse health-promoting activities on the consumer, such as anti-hypertensive, anti-inflammatory, and anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation. This review aims at discussing the potential of these health-supporting bacteria as starter or adjunct cultures for the elaboration of dairy foods with a broad spectrum of new functional properties and added value.

  17. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism.

    Science.gov (United States)

    Li, Jian; Yu, Haiyang; Wang, Sijian; Wang, Wei; Chen, Qian; Ma, Yanmin; Zhang, Yi; Wang, Tao

    2018-01-01

    Imbalanced hepatic glucose homeostasis is one of the critical pathologic events in the development of metabolic syndromes (MSs). Therefore, regulation of imbalanced hepatic glucose homeostasis is important in drug development for MS treatment. In this review, we discuss the major targets that regulate hepatic glucose homeostasis in human physiologic and pathophysiologic processes, involving hepatic glucose uptake, glycolysis and glycogen synthesis, and summarize their changes in MSs. Recent literature suggests the necessity of multitarget drugs in the management of MS disorder for regulation of imbalanced glucose homeostasis in both experimental models and MS patients. Here, we highlight the potential bioactive compounds from natural products with medicinal or health care values, and focus on polypharmacologic and multitarget natural products with effects on various signaling pathways in hepatic glucose metabolism. This review shows the advantage and feasibility of discovering multicompound-multitarget drugs from natural products, and providing a new perspective of ways on drug and functional food development for MSs.

  18. Anxiolytic-Like Effect of a Salmon Phospholipopeptidic Complex Composed of Polyunsaturated Fatty Acids and Bioactive Peptides

    Directory of Open Access Journals (Sweden)

    Nabila Belhaj

    2013-10-01

    Full Text Available A phospholipopeptidic complex obtained by the enzymatic hydrolysis of salmon heads in green conditions; exert anxiolytic-like effects in a time and dose-dependent manner, with no affection of locomotor activity. This study focused on the physico-chemical properties of the lipidic and peptidic fractions from this natural product. The characterization of mineral composition, amino acid and fatty acids was carried out. Stability of nanoemulsions allowed us to realize a behavioral study conducted with four different tests on 80 mice. This work highlighted the dose dependent effects of the natural complex and its various fractions over a period of 14 days compared to a conventional anxiolytic. The intracellular redox status of neural cells was evaluated in order to determine the free radicals scavenging potential of these products in the central nervous system (CNS, after mice sacrifice. The complex peptidic fraction showed a strong scavenging property and similar results were found for the complex as well as its lipidic fraction. For the first time, the results of this study showed the anxiolytic-like and neuroprotective properties of a phospholipopeptidic complex extracted from salmon head. The applications on anxiety disorders might be relevant, depending on the doses, the fraction used and the chronicity of the supplementation.

  19. Assessing the drug-likeness of lamellarins, a marine-derived natural product class with diverse oncological activities.

    Science.gov (United States)

    Chittchang, Montakarn; Gleeson, M Paul; Ploypradith, Poonsakdi; Ruchirawat, Somsak

    2010-06-01

    Natural products currently represent an underutilized source of leads for the pharmaceutical industry, especially when one considers that almost 50% of all drugs were either derived from such sources or are very closely related. Lamellarins are a class of natural products with diverse biological activities and have entered into preclinical development for the treatment of multidrug-resistant tumors. Although these compounds demonstrated good cell penetration, as observed by their low microM activity in whole cell models, they have not been extensively profiled from a physicochemical point of view, and this is the goal of this study. For this study, we have determined the experimental logP values of a set of 25 lamellarins, given it is the single most important parameter in determining multiple ADMET parameters. We also discuss the relationship between this natural product class, natural product derivatives in development and on the market, oral marketed drugs, as well as drug molecules in development, using a range of physicochemical parameters in conjunction with principal components analysis (PCA). The impact of this systematic analysis on our ongoing medicinal chemistry strategy is also discussed. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  20. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass.

    Science.gov (United States)

    Pourhaghgouy, Masoud; Zamanian, Ali; Shahrezaee, Mostafa; Masouleh, Milad Pourbaghi

    2016-01-01

    Chitosan based nanocomposite scaffolds were prepared by freeze casting method through blending constant chitosan concentration with different portions of synthesized bioactive glass nanoparticles (BGNPs). Transmission Electron Microscopy (TEM) image showed that the particles size of bioactive glass (64SiO2.28CaO.8P2O5) prepared by sol-gel method was approximately less than 20 nm. Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD) analysis showed proper interfacial bonding between BGNPs and chitosan polymers. Scanning Electron Microscopy (SEM) images depicted a unidirectional structure with homogenous distribution of BGNPs among chitosan matrix associated with the absence of pure chitosan scaffold's wall pores after addition of only 10 wt.% BGNPs. As the BGNP content increased from 0 to 50 wt.%, the compressive strength and compressive module values increased from 0.034 to 0.419 MPa and 0.41 to 10.77 MPa, respectively. Biodegradation study showed that increase in BGNP content leads to growth of weight loss amount. The in vitro biomineralization studies confirmed the bioactive nature of all nanocomposites. Amount of 30 wt.% BGNPs represented the best concentration for absorption capacity and bioactivity behaviors. Copyright © 2015. Published by Elsevier B.V.

  1. Use of Jatropha curcas hull biomass for bioactive compost production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi 110012 (India); Pandey, A.K.; Lata [Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012 (India)

    2009-01-15

    The paper deals with utilization of biomass of Jatropha hulls for production of bioactive compost. In the process of Jatropha oil extraction, a large amount of hull waste is generated. It has been found that the direct incorporation of hull into soil is considerably inefficient in providing value addition to soil due to its unfavorable physicochemical characteristics (high pH, EC and phenolic content). An alternative to this problem is the bioconversion of Jatropha hulls using effective lignocellulolytic fungal consortium, which can reduce the phytotoxicity of the degraded material. Inoculation with the fungal consortium resulted in better compost of jatropha hulls within 1 month, but it takes nearly 4 months for complete compost maturation as evident from the results of phytotoxicity test. Such compost can be applied to the acidic soil as a remedial organic manure to help maintaining sustainability of the agro-ecosystem. Likewise, high levels of cellulolytic enzymes observed during bioconversion indicate possible use of fungi for ethanol production from fermentation of hulls. (author)

  2. Bioactive Pigments from Marine Bacteria: Applications and Physiological Roles

    Directory of Open Access Journals (Sweden)

    Azamjon B. Soliev

    2011-01-01

    Full Text Available Research into natural products from the marine environment, including microorganisms, has rapidly increased over the past two decades. Despite the enormous difficulty in isolating and harvesting marine bacteria, microbial metabolites are increasingly attractive to science because of their broad-ranging pharmacological activities, especially those with unique color pigments. This current review paper gives an overview of the pigmented natural compounds isolated from bacteria of marine origin, based on accumulated data in the literature. We review the biological activities of marine compounds, including recent advances in the study of pharmacological effects and other commercial applications, in addition to the biosynthesis and physiological roles of associated pigments. Chemical structures of the bioactive compounds discussed are also presented.

  3. History and trends of bioactive glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Dutra Zanotto, Edgar

    2016-05-01

    The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development. © 2016 Wiley Periodicals, Inc.

  4. StraPep: a structure database of bioactive peptides

    Science.gov (United States)

    Wang, Jian; Yin, Tailang; Xiao, Xuwen; He, Dan; Xue, Zhidong; Jiang, Xinnong; Wang, Yan

    2018-01-01

    Abstract Bioactive peptides, with a variety of biological activities and wide distribution in nature, have attracted great research interest in biological and medical fields, especially in pharmaceutical industry. The structural information of bioactive peptide is important for the development of peptide-based drugs. Many databases have been developed cataloguing bioactive peptides. However, to our knowledge, database dedicated to collect all the bioactive peptides with known structure is not available yet. Thus, we developed StraPep, a structure database of bioactive peptides. StraPep holds 3791 bioactive peptide structures, which belong to 1312 unique bioactive peptide sequences. About 905 out of 1312 (68%) bioactive peptides in StraPep contain disulfide bonds, which is significantly higher than that (21%) of PDB. Interestingly, 150 out of 616 (24%) bioactive peptides with three or more disulfide bonds form a structural motif known as cystine knot, which confers considerable structural stability on proteins and is an attractive scaffold for drug design. Detailed information of each peptide, including the experimental structure, the location of disulfide bonds, secondary structure, classification, post-translational modification and so on, has been provided. A wide range of user-friendly tools, such as browsing, sequence and structure-based searching and so on, has been incorporated into StraPep. We hope that this database will be helpful for the research community. Database URL: http://isyslab.info/StraPep PMID:29688386

  5. Phenotypic Screening Identifies Synergistically Acting Natural Product Enhancing the Performance of Biomaterial Based Wound Healing

    Directory of Open Access Journals (Sweden)

    Srinivasan Sivasubramanian

    2017-07-01

    Full Text Available The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented

  6. The development of electro-membrane filtration for the isolation of bioactive peptides: the effect of membrane selection and operating parameters on the transport rate

    NARCIS (Netherlands)

    Bargeman, Gerrald; Koops, G.H.; Houwing, J.; Breebaart, I.; van der Horst, H.C.; Wessling, Matthias

    2002-01-01

    The ability to produce functional food ingredients from natural sources becomes increasingly attractive to the food industry. Antimicrobial (bioactive) ingredients, like peptides and proteins, can be isolated from hydrolysates with membrane filtration and/or chromatography. Electro-membrane

  7. Application of Combination High-Throughput Phenotypic Screening and Target Identification Methods for the Discovery of Natural Product-Based Combination Drugs.

    Science.gov (United States)

    Isgut, Monica; Rao, Mukkavilli; Yang, Chunhua; Subrahmanyam, Vangala; Rida, Padmashree C G; Aneja, Ritu

    2018-03-01

    Modern drug discovery efforts have had mediocre success rates with increasing developmental costs, and this has encouraged pharmaceutical scientists to seek innovative approaches. Recently with the rise of the fields of systems biology and metabolomics, network pharmacology (NP) has begun to emerge as a new paradigm in drug discovery, with a focus on multiple targets and drug combinations for treating disease. Studies on the benefits of drug combinations lay the groundwork for a renewed focus on natural products in drug discovery. Natural products consist of a multitude of constituents that can act on a variety of targets in the body to induce pharmacodynamic responses that may together culminate in an additive or synergistic therapeutic effect. Although natural products cannot be patented, they can be used as starting points in the discovery of potent combination therapeutics. The optimal mix of bioactive ingredients in natural products can be determined via phenotypic screening. The targets and molecular mechanisms of action of these active ingredients can then be determined using chemical proteomics, and by implementing a reverse pharmacokinetics approach. This review article provides evidence supporting the potential benefits of natural product-based combination drugs, and summarizes drug discovery methods that can be applied to this class of drugs. © 2017 Wiley Periodicals, Inc.

  8. Improvement of Nutritional and Bioactive Compound Production by Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes), by Spraying Growth Regulators.

    Science.gov (United States)

    Vi, Minhthuan; Yang, Xueqin; Zeng, Xianlu; Chen, Rui'an; Guo, Liqiong; Lin, Junfang; He, Qianyun; Zheng, Qianwang; Wei, Tao

    2018-01-01

    Hericium erinaceus is a popular culinary and medicinal mushroom in China because of its broad beneficial effects. In this study we evaluated the effects of stimulation with 7 growth regulators at 5 different concentrations on improving the production of nutritional and bioactive compounds by H. erinaceus. Results showed that among all the tested regulators, gibberellic acid (GA) increased protein content (165%), free amino acids (100%), polysaccharides (108%), and polyphenols (26%). Spraying nephthyl acetic acid increased polysaccharides and triterpenoids to 4.37 and 17.27 g/100 g, respectively. Spraying chitosan significantly increased polyphenols by 42%. The addition of triacontanol, indole acetic acid, and 2,4-dichlorophenoxyacetic acid improved the production of proteins, free amino acids, polysaccharides, and polyphenols, but not to the extent that GA did. These results indicate that adding certain growth regulators can effectively improve the production of nutritional and bioactive compounds in H. erinaceus.

  9. Indexing Natural Products for Their Potential Anti-Diabetic Activity: Filtering and Mapping Discriminative Physicochemical Properties.

    Science.gov (United States)

    Zeidan, Mouhammad; Rayan, Mahmoud; Zeidan, Nuha; Falah, Mizied; Rayan, Anwar

    2017-09-17

    Diabetes mellitus (DM) poses a major health problem, for which there is an unmet need to develop novel drugs. The application of in silico techniques and optimization algorithms is instrumental to achieving this goal. A set of 97 approved anti-diabetic drugs, representing the active domain, and a set of 2892 natural products, representing the inactive domain, were used to construct predictive models and to index anti-diabetic bioactivity. Our recently-developed approach of 'iterative stochastic elimination' was utilized. This article describes a highly discriminative and robust model, with an area under the curve above 0.96. Using the indexing model and a mix ratio of 1:1000 (active/inactive), 65% of the anti-diabetic drugs in the sample were captured in the top 1% of the screened compounds, compared to 1% in the random model. Some of the natural products that scored highly as potential anti-diabetic drug candidates are disclosed. One of those natural products is caffeine, which is noted in the scientific literature as having the capability to decrease blood glucose levels. The other nine phytochemicals await evaluation in a wet lab for their anti-diabetic activity. The indexing model proposed herein is useful for the virtual screening of large chemical databases and for the construction of anti-diabetes focused libraries.

  10. Synthetic biology approaches: Towards sustainable exploitation of marine bioactive molecules.

    Science.gov (United States)

    Seghal Kiran, G; Ramasamy, Pasiyappazham; Sekar, Sivasankari; Ramu, Meenatchi; Hassan, Saqib; Ninawe, A S; Selvin, Joseph

    2018-06-01

    The discovery of genes responsible for the production of bioactive metabolites via metabolic pathways combined with the advances in synthetic biology tools, has allowed the establishment of numerous microbial cell factories, for instance the yeast cell factories, for the manufacture of highly useful metabolites from renewable biomass. Genome mining and metagenomics are two platforms provide base-line data for reconstruction of genomes and metabolomes which is based in the development of synthetic/semi-synthetic genomes for marine natural products discovery. Engineered biofilms are being innovated on synthetic biology platform using genetic circuits and cell signalling systems as represillators controlling biofilm formation. Recombineering is a process of homologous recombination mediated genetic engineering, includes insertion, deletion or modification of any sequence specifically. Although this discipline considered new to the scientific domain, this field has now developed as promising endeavor on the accomplishment of sustainable exploitation of marine natural products. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Peptide Fractions Obtained from Rice By-Products by Means of an Environment-Friendly Process Show In Vitro Health-Related Bioactivities.

    Directory of Open Access Journals (Sweden)

    Maura Ferri

    Full Text Available Recently, the isolation of new health-related bioactive molecules derived from agro-food industrial by-products by means of environment-friendly extraction processes has become of particular interest. In the present study, a protein by-product from the rice starch industry was hydrolysed with five commercial proteolytic enzymes, avoiding the use of solvents or chemicals. The digestion processes were optimised, and the digestates were separated in fractions with four different molecular weight ranges by using a cross-flow membrane filtration technique. Total hydrolysates and fractions were tested in vitro for a wide range of biological activities. For the first time rice-derived peptides were assayed for anti-tyrosinase, anti-inflammatory, cytotoxicity and irritation capacities. Antioxidant and anti-hypertensive activities were also evaluated. Protamex, Alcalase and Neutrase treatments produced peptide fractions with valuable bioactivities without resulting cytotoxic or irritant. Highest levels of bioactivity were detected in Protamex-derived samples, followed by samples treated with Alcalase. Based on the present results, a future direct exploitation of isolated peptide fractions in the nutraceutical, functional food and cosmetic industrial fields may be foreseen.

  12. Peptide Fractions Obtained from Rice By-Products by Means of an Environment-Friendly Process Show In Vitro Health-Related Bioactivities.

    Science.gov (United States)

    Ferri, Maura; Graen-Heedfeld, Jürgen; Bretz, Karlheinz; Guillon, Fabien; Michelini, Elisa; Calabretta, Maria Maddalena; Lamborghini, Matteo; Gruarin, Nicolò; Roda, Aldo; Kraft, Axel; Tassoni, Annalisa

    2017-01-01

    Recently, the isolation of new health-related bioactive molecules derived from agro-food industrial by-products by means of environment-friendly extraction processes has become of particular interest. In the present study, a protein by-product from the rice starch industry was hydrolysed with five commercial proteolytic enzymes, avoiding the use of solvents or chemicals. The digestion processes were optimised, and the digestates were separated in fractions with four different molecular weight ranges by using a cross-flow membrane filtration technique. Total hydrolysates and fractions were tested in vitro for a wide range of biological activities. For the first time rice-derived peptides were assayed for anti-tyrosinase, anti-inflammatory, cytotoxicity and irritation capacities. Antioxidant and anti-hypertensive activities were also evaluated. Protamex, Alcalase and Neutrase treatments produced peptide fractions with valuable bioactivities without resulting cytotoxic or irritant. Highest levels of bioactivity were detected in Protamex-derived samples, followed by samples treated with Alcalase. Based on the present results, a future direct exploitation of isolated peptide fractions in the nutraceutical, functional food and cosmetic industrial fields may be foreseen.

  13. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications.

    Science.gov (United States)

    Sahoo, Sambit; Ang, Lay-Teng; Cho-Hong Goh, James; Toh, Siew-Lok

    2010-02-01

    Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications. 2009 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  14. Variation in bioactive content in broccoli (Brassica oleracea var. italica) grown under conventional and organic production systems.

    Science.gov (United States)

    Valverde, Juan; Reilly, Kim; Villacreces, Salvador; Gaffney, Michael; Grant, James; Brunton, Nigel

    2015-04-01

    Broccoli and other cruciferous vegetables contain a number of bioactive compounds, in particular glucosinolates and polyphenols, which are proposed to confer health benefits to the consumer. Demand for organic crops is at least partly based on a perception that organic crops may contain higher levels of bioactive compounds; however, insufficient research has been carried out to either support or refute such claims. In this study we examined the effect of conventional, organic, and mixed cultivation practices on the content of total phenolics, total flavonoids, and total and individual glucosinolates in two varieties of broccoli grown over 2 years in a split-plot factorial systems comparison trial. Levels of total phenolics and total flavonoids showed a significant year-on-year variation but were not significantly different between organic and conventional production systems. In contrast, levels of the indolyl glucosinolates glucobrassicin and neoglucobrassicin were significantly higher (P broccoli florets; however, other investigated compounds were unaffected by production practices. © 2014 Society of Chemical Industry.

  15. In vitro study of nano-sized zinc doped bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-Fan; Alshemary, Ammar Z.; Akram, Muhammad [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM skudai, Johor Darul Ta' zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia, 81310 UTMJohor Bahru (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [IbnuSina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor DarulTa' zim (Malaysia)

    2013-01-15

    Surface reactivity in physiological fluid has been linked to bioactivity of a material. Past research has shown that bioactive glass containing zinc has the potential in bone regeneration field due to its enhanced bioactivity. However, results from literature are always contradictory. Therefore, in this study, surface reactivity of bioactive glass containing zinc was evaluated through the study of morphology and composition of apatite layer formed after immersion in simulated body fluid (SBF). Nano-sized bioactive glass with 5 and 10 mol% zinc were synthesized through quick alkali sol-gel method. The synthesized Zn-bioglass was characterized using field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometer (EDX), X-ray diffractometer (XRD) and Fourier transform infrared spectrometer (FTIR). Samples after SBF immersion were characterized using scanning electron microscope (SEM) and EDX. Morphological study through SEM showed the formation of spherical apatite particles with Ca/P ratio closer to 1.67 on the surface of 5 mol% Zn-bioglass. Whereas, the 10 mol% Zn-bioglass samples induced the formation of flake-like structure of calcite in addition to the spherical apatite particles with much higher Ca/P ratio. Our results suggest that the higher Zn content increases the bioactivity through the formation of bone-bonding calcite as well as the spherical apatite particles. -- Highlights: Black-Right-Pointing-Pointer Nano-sized bioactive glasses were synthesized through quick alkali sol-gel method. Black-Right-Pointing-Pointer 5 and 10 mol% Zn-bioglass induced the formation of spherical particles in SBF test. Black-Right-Pointing-Pointer 10 mol% Zn-bioglass also induced the formation of flake-like structure. Black-Right-Pointing-Pointer The flake-like structure is calcium carbonate; spherical particles are apatite. Black-Right-Pointing-Pointer High Zn contents negatively influence the chemical composition of the apatite layer.

  16. Electro-activation of sweet defatted whey: Impact on the induced Maillard reaction products and bioactive peptides.

    Science.gov (United States)

    Kareb, Ourdia; Gomaa, Ahmed; Champagne, Claude P; Jean, Julie; Aïder, Mohammed

    2017-04-15

    Electro-activation was used to add value to sweet defatted whey. This study aimed to investigate and to characterize the bioactive compounds formed under different electro-activation conditions by molecular and proteomic approaches. The effects of electric current intensity (400, 500 or 600mA) and whey concentration (7, 14 or 21% (w/v)) as a function of the electro-activation time (0, 15, 30 or 45min) were evaluated. The targeted dependent variables were the formation of Maillard reaction products (MRPs), protein hydrolysates and glycated compounds. It was shown that the MRPs derived from electro-activated whey at a concentration of 14% had the highest potential of biological activity. SDS-PAGE analyses indicated the formation of hydrolysates and glycated compounds with different molecular weight distributions. FTIR indicated the predominance of intermediate MRPs, such as the Schiff base compounds. LC-MS/MS and proteomics analysis showed the production of multi-functional bioactive peptides due to the hydrolysis of whey proteins. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. Structure-based discovery of an immunomodulatory inhibitor of TLR1-TLR2 heterodimerization from a natural product-like database.

    Science.gov (United States)

    Zhong, Zhangfeng; Liu, Li-Juan; Dong, Zhi-Qiang; Lu, Lihua; Wang, Modi; Leung, Chung-Hang; Ma, Dik-Lung; Wang, Yitao

    2015-06-30

    We report herein the identification of an immunomodulatory natural product-like compound as a direct inhibitor of TLR1-TLR2 heterodimerization. Compound suppressed TNF-α and IL-6 secretion in Pam3CSK4-induced macrophages. Moreover, compound inhibited the phagocytic activity of macrophages, presumably through modulation of TLR1-TLR2 signaling and inactivation of NF-κB. Molecular docking revealed that compound bound to the interface region of TLR1-TLR2 by forming two hydrogen bonds with residues lining the binding site. To our knowledge, compound has been only the second inhibitor overall of TLR1-TLR2 heterodimerization reported to date.

  18. Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Mackovic, M.; Hoppe, A.; Detsch, R. [University of Erlangen-Nuremberg, Department of Materials Science and Engineering, Institute of Biomaterials (Germany); Mohn, D.; Stark, W. J. [Institute for Chemical and Bioengineering, ETH Zurich (Switzerland); Spiecker, E., E-mail: Erdmann.Spiecker@ww.uni-erlangen.de; Boccaccini, A. R., E-mail: aldo.boccaccini@ww.uni-erlangen.de [University of Erlangen-Nuremberg, Department of Materials Science and Engineering, Institute of Biomaterials (Germany)

    2012-07-15

    Bioactive glasses represent important biomaterials being investigated for the repair and reconstruction of diseased bone tissues, as they exhibit outstanding bonding properties to human bone. In this study, bioactive glass (type 45S5) nanoparticles (nBG) with a mean particle size in the range of 20-60 nm, synthesised by flame spray synthesis, are investigated in relation to in vitro bioreactivity in simulated body fluid (SBF) and response to osteoblast cells. The structure and kinetics of hydroxyapatite formation in SBF were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) revealing a very rapid transformation (after 1 day) of nBG to nanocrystalline bone-like carbonated HAp. Additionally, calcite is formed after 1 day of SBF immersion because of the high surface reactivity of the nBG particles. In the initial state, nBG particles were found to exhibit chain-like porous agglomerates of amorphous nature which are transformed on immersion in SBF into compact agglomerates covered by hydroxyapatite with a reduced size of the primary nanoparticles. In vitro studies revealed high cytocompatibility of nBG with human osteoblast cells, indicated through high lactatedehydrogenase (LDH) and mitochondrial activity as well as alkaline phosphatase activity. Hence, this study contributes to the understanding of the structure and bioactivity of bioactive glass (type 45S5) nanoparticles, providing insights to the phenomena occurring at the nanoscale after immersion in SBF. The results are relevant in relation to the understanding of the nanoparticles' bioreactivity required for applications in bone tissue engineering.

  19. Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility

    Science.gov (United States)

    Mačković, M.; Hoppe, A.; Detsch, R.; Mohn, D.; Stark, W. J.; Spiecker, E.; Boccaccini, A. R.

    2012-07-01

    Bioactive glasses represent important biomaterials being investigated for the repair and reconstruction of diseased bone tissues, as they exhibit outstanding bonding properties to human bone. In this study, bioactive glass (type 45S5) nanoparticles (nBG) with a mean particle size in the range of 20-60 nm, synthesised by flame spray synthesis, are investigated in relation to in vitro bioreactivity in simulated body fluid (SBF) and response to osteoblast cells. The structure and kinetics of hydroxyapatite formation in SBF were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) revealing a very rapid transformation (after 1 day) of nBG to nanocrystalline bone-like carbonated HAp. Additionally, calcite is formed after 1 day of SBF immersion because of the high surface reactivity of the nBG particles. In the initial state, nBG particles were found to exhibit chain-like porous agglomerates of amorphous nature which are transformed on immersion in SBF into compact agglomerates covered by hydroxyapatite with a reduced size of the primary nanoparticles. In vitro studies revealed high cytocompatibility of nBG with human osteoblast cells, indicated through high lactatedehydrogenase (LDH) and mitochondrial activity as well as alkaline phosphatase activity. Hence, this study contributes to the understanding of the structure and bioactivity of bioactive glass (type 45S5) nanoparticles, providing insights to the phenomena occurring at the nanoscale after immersion in SBF. The results are relevant in relation to the understanding of the nanoparticles' bioreactivity required for applications in bone tissue engineering.

  20. Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility

    International Nuclear Information System (INIS)

    Mačković, M.; Hoppe, A.; Detsch, R.; Mohn, D.; Stark, W. J.; Spiecker, E.; Boccaccini, A. R.

    2012-01-01

    Bioactive glasses represent important biomaterials being investigated for the repair and reconstruction of diseased bone tissues, as they exhibit outstanding bonding properties to human bone. In this study, bioactive glass (type 45S5) nanoparticles (nBG) with a mean particle size in the range of 20–60 nm, synthesised by flame spray synthesis, are investigated in relation to in vitro bioreactivity in simulated body fluid (SBF) and response to osteoblast cells. The structure and kinetics of hydroxyapatite formation in SBF were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) revealing a very rapid transformation (after 1 day) of nBG to nanocrystalline bone-like carbonated HAp. Additionally, calcite is formed after 1 day of SBF immersion because of the high surface reactivity of the nBG particles. In the initial state, nBG particles were found to exhibit chain-like porous agglomerates of amorphous nature which are transformed on immersion in SBF into compact agglomerates covered by hydroxyapatite with a reduced size of the primary nanoparticles. In vitro studies revealed high cytocompatibility of nBG with human osteoblast cells, indicated through high lactatedehydrogenase (LDH) and mitochondrial activity as well as alkaline phosphatase activity. Hence, this study contributes to the understanding of the structure and bioactivity of bioactive glass (type 45S5) nanoparticles, providing insights to the phenomena occurring at the nanoscale after immersion in SBF. The results are relevant in relation to the understanding of the nanoparticles’ bioreactivity required for applications in bone tissue engineering.

  1. Super Natural II--a database of natural products.

    Science.gov (United States)

    Banerjee, Priyanka; Erehman, Jevgeni; Gohlke, Björn-Oliver; Wilhelm, Thomas; Preissner, Robert; Dunkel, Mathias

    2015-01-01

    Natural products play a significant role in drug discovery and development. Many topological pharmacophore patterns are common between natural products and commercial drugs. A better understanding of the specific physicochemical and structural features of natural products is important for corresponding drug development. Several encyclopedias of natural compounds have been composed, but the information remains scattered or not freely available. The first version of the Supernatural database containing ∼ 50,000 compounds was published in 2006 to face these challenges. Here we present a new, updated and expanded version of natural product database, Super Natural II (http://bioinformatics.charite.de/supernatural), comprising ∼ 326,000 molecules. It provides all corresponding 2D structures, the most important structural and physicochemical properties, the predicted toxicity class for ∼ 170,000 compounds and the vendor information for the vast majority of compounds. The new version allows a template-based search for similar compounds as well as a search for compound names, vendors, specific physical properties or any substructures. Super Natural II also provides information about the pathways associated with synthesis and degradation of the natural products, as well as their mechanism of action with respect to structurally similar drugs and their target proteins. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Natural Products and HIV/AIDS.

    Science.gov (United States)

    Cary, Daniele C; Peterlin, B Matija

    2018-01-01

    The study of natural products in biomedical research is not a modern concept. Many of the most successful medical therapeutics are derived from natural products, including those studied in the field of HIV/AIDS. Biomedical research has a rich history of discovery based on screens of medicinal herbs and traditional medicine practices. Compounds derived from natural products, which repress HIV and those that activate latent HIV, have been reported. It is important to remember the tradition in medical research to derive therapies based on these natural products and to overcome the negative perception of natural products as an "alternative medicine."

  3. Synthesis and Structural Characterization of Bioactive PHA and γ-PGA Oligomers for Potential Applications as a Delivery System

    Directory of Open Access Journals (Sweden)

    Iwona Kwiecień

    2016-04-01

    Full Text Available The (transesterification reaction of bacterial biopolymers with a selected bioactive compound with a hydroxyl group was applied as a convenient method for obtaining conjugates of such compound. Tyrosol, a naturally occurring phenolic compound, was selected as a model of a bioactive compound with a hydroxyl group. Selected biodegradable polyester and polyamide, poly(3-hydroxybutyrate-co-4-hydroxybutyrate (P(3HB-co-4HB and poly-γ-glutamic acid (γ-PGA, respectively, were used. The (transesterification reactions were carried out in melt mediated by 4-toluenesulfonic acid monohydrate. The structures of (transesterification products were established at the molecular level with the aid of ESI-MS2 (electrospray ionization tandem mass spectrometry and/or 1H NMR (nuclear magnetic resonance techniques. Performed analyses confirmed that the developed method leads to the formation of conjugates in which bioactive compounds are covalently bonded to biopolymer chains. The amount of covalently bonded bioactive compounds in the resulting conjugates depends on the type of biopolymers applied in synthesis.

  4. Seasonal Changes in Mycosporine-Like Amino Acid Production Rate with Respect to Natural Phytoplankton Species Composition

    Directory of Open Access Journals (Sweden)

    Sun-Yong Ha

    2015-11-01

    Full Text Available After in situ incubation at the site for a year, phytoplanktons in surface water were exposed to natural light in temperate lakes (every month; thereafter, the net production rate of photoprotective compounds (mycosporine-like amino acids, MAAs was calculated using 13C labeled tracer. This is the first report describing seasonal variation in the net production rate of individual MAAs in temperate lakes using a compound-specific stable isotope method. In the mid-latitude region of the Korean Peninsula, UV radiation (UVR usually peaks from July to August. In Lake Paldang and Lake Cheongpyeong, diatoms dominated among the phytoplankton throughout the year. The relative abundance of Cyanophyceae (Anabaena spiroides reached over 80% during July in Lake Cheongpyeong. Changes in phytoplankton abundance indicate that the phytoplankton community structure is influenced by seasonal changes in the net production rate and concentration of MAAs. Notably, particulate organic matter (POM showed a remarkable change based on the UV intensity occurring during that period; this was because of the fact that cyanobacteria that are highly sensitive to UV irradiance dominated the community. POM cultured in Lake Paldang had the greatest shinorine (SH production rate during October, i.e., 83.83 ± 10.47 fgC·L−1·h−1. The dominance of diatoms indicated that they had a long-term response to UVR. Evaluation of POM cultured in Lake Cheongpyeong revealed that there was an increase in the net MAA production in July (when UVR reached the maximum; a substantial amount of SH, i.e., 17.62 ± 18.34 fgC·L−1·h−1, was recorded during this period. Our results demonstrate that both the net production rate as well as the concentration of MAAs related to photoinduction depended on the phytoplankton community structure. In addition, seasonal changes in UVR also influenced the quantity and production of MAAs in phytoplanktons (especially Cyanophyceae.

  5. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.

    Science.gov (United States)

    Shuai, Cijun; Huang, Wei; Feng, Pei; Gao, Chengde; Shuai, Xiong; Xiao, Tao; Deng, Youwen; Peng, Shuping; Wu, Ping

    2016-01-01

    The biological properties of porous poly (vinylidene fluoride) (PVDF) scaffolds fabricated by selective laser sintering were tailored through nano-sized 58s bioactive glass. The results showed that 58s bioactive glass distributed evenly in the PVDF matrix. There were some exposed particles on the surface which provided attachment sites for biological response. It was confirmed that the scaffolds had highly bioactivity by the formation of bone-like apatite in simulated body fluid. And the bone-like apatite became dense with the increase in 58s bioactive glass and culture time. Moreover, the scaffolds were suitable for cell adhesion and proliferation compared with the PVDF scaffolds without 58s bioactive glass. The research showed that the PVDF/58s bioactive glass scaffolds had latent application in bone tissue engineering.

  6. Development of Bioactive Edible Coatings and Biodegradable Packaging Using Gamma Irradiation

    International Nuclear Information System (INIS)

    Lacroix, M.; Salmieri, S.

    2010-01-01

    Gamma irradiation was used to cross-link milk proteins in order to enhance the physico-chemical properties of edible films made of calcium caseinate, whey protein isolate and glycerol. Fourier Transform Infrared analysis was used to characterize the conformation of proteins adopted after irradiation. The molecular weight of cross-linked proteins was measured by Size-Exclusion Chromatography. Furthermore, the effect of the addition of methylcellulose to the irradiated protein matrix on the rheological properties (puncture strength, puncture deformation and water vapor permeability) of films was also studied. Moreover, cross-linking of polysaccharides under paste-like state was investigated and the cross-linking degree of the gel products was determined by gel fraction measurements and solubility percentage. In order to prepare bioactive coatings, several antifungal compounds were evaluated as bioactive compounds in order to select one of them to prepare an antimicrobial solution to spray onto strawberries or to encapsulate them in film formulations composed of milk proteins and methylcellulose based films. In addition, the bioactive coatings containing the antifungals were used to increase the radiosensitivity under air of moulds and total flora in strawberries and the relative sensitivity of selected formulations was calculated from their D10 value. The film formulation selected was used as a bioactive edible coating in order to determine their efficiency to increase the shelf life of fresh strawberries and to preserve their quality during storage. (author)

  7. Plant proteases for bioactive peptides release: A review.

    Science.gov (United States)

    Mazorra-Manzano, M A; Ramírez-Suarez, J C; Yada, R Y

    2017-04-10

    Proteins are a potential source of health-promoting biomolecules with medical, nutraceutical, and food applications. Nowadays, bioactive peptides production, its isolation, characterization, and strategies for its delivery to target sites are a matter of intensive research. In vitro and in vivo studies regarding the bioactivity of peptides has generated strong evidence of their health benefits. Dairy proteins are considered the richest source of bioactive peptides, however proteins from animal and vegetable origin also have been shown to be important sources. Enzymatic hydrolysis has been the process most commonly used for bioactive peptide production. Most commercial enzymatic preparations frequently used are from animal (e.g., trypsin and pepsin) and microbial (e.g., Alcalase® and Neutrase®) sources. Although the use of plant proteases is still relatively limited to papain and bromelain from papaya and pineapple, respectively, the application of new plant proteases is increasing. This review presents the latest knowledge in the use and diversity of plant proteases for bioactive peptides release from food proteins including both available commercial plant proteases as well as new potential plant sources. Furthermore, the properties of peptides released by plant proteases and health benefits associated in the control of disorders such as hypertension, diabetes, obesity, and cancer are reviewed.

  8. Antiplasmodial Natural Products

    Directory of Open Access Journals (Sweden)

    Cláudio R. Nogueira

    2011-03-01

    Full Text Available Malaria is a human infectious disease that is caused by four species of Plasmodium. It is responsible for more than 1 million deaths per year. Natural products contain a great variety of chemical structures and have been screened for antiplasmodial activity as potential sources of new antimalarial drugs. This review highlights studies on natural products with antimalarial and antiplasmodial activity reported in the literature from January 2009 to November 2010. A total of 360 antiplasmodial natural products comprised of terpenes, including iridoids, sesquiterpenes, diterpenes, terpenoid benzoquinones, steroids, quassinoids, limonoids, curcubitacins, and lanostanes; flavonoids; alkaloids; peptides; phenylalkanoids; xanthones; naphthopyrones; polyketides, including halenaquinones, peroxides, polyacetylenes, and resorcylic acids; depsidones; benzophenones; macrolides; and miscellaneous compounds, including halogenated compounds and chromenes are listed in this review.

  9. Exogenous estrogen as mediator of racial differences in bioactive insulin-like growth factor-I levels among postmenopausal women.

    Science.gov (United States)

    Jung, Su Yon; Vitolins, Mara Z; Paskett, Electra D; Chang, Shine

    2015-04-01

    The role of exogenous estrogen use in racial differences in insulin-like growth factor-I (IGF-I) levels which affect cancer risk is unclear. We investigated whether the relationship between race and circulating bioactive IGF-I proteins was mediated by exogenous estrogen and the extent to which exogenous estrogen influenced the race-IGF-I relationship in postmenopausal women. This cross-sectional study included 636 white and 133 African American postmenopausal women enrolled in an ancillary study of the Women's Health Initiative Observational Study. To assess exogenous estrogen use (nonusers [n = 262] vs users [n = 507]) as a mediator of the race-IGF-I relationship, we used the Baron-Kenny method and an estimation of the proportional change in the odd ratios for IGF-I levels on race plus a bootstrapping test for the significance of the mediation effect. Compared with white women, African American women were more likely to have high IGF-I levels and less likely to use exogenous estrogen. After accounting for race, estrogen nonusers had higher IGF-I levels than estrogen users did. Among oral contraceptive ever users, exogenous estrogen had a strong mediation effect (67%; p = .018) in the race-IGF-I relationship. In the women with a history of hypertension, exogenous estrogen explained racial differences in IGF-I levels to a modest degree (23%; p = .029). Exogenous estrogen use has a potentially important role in disparities in IGF-I bioactivity between postmenopausal African American and white women. A history of oral contraceptive use and hypertension may be part of the interconnected hormonal pathways related to racial differences in IGF-I levels. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil.

    Science.gov (United States)

    Teixeira, Bárbara; Marques, António; Ramos, Cristina; Serrano, Carmo; Matos, Olívia; Neng, Nuno R; Nogueira, José M F; Saraiva, Jorge Alexandre; Nunes, Maria Leonor

    2013-08-30

    There is a growing interest in industry to replace synthetic chemicals by natural products with bioactive properties. Aromatic plants are excellent sources of bioactive compounds that can be extracted using several processes. As far as oregano is concerned, studies are lacking addressing the effect of extraction processes in bioactivity of extracts. This study aimed to characterise the in vitro antioxidant and antibacterial properties of oregano (Origanum vulgare) essential oil and extracts (in hot and cold water, and ethanol), and the chemical composition of its essential oil. The major components of oregano essential oil were carvacrol, β-fenchyl alcohol, thymol, and γ-terpinene. Hot water extract had the strongest antioxidant properties and the highest phenolic content. All extracts were ineffective in inhibiting the growth of the seven tested bacteria. In contrast, the essential oil inhibited the growth of all bacteria, causing greater reductions on both Listeria strains (L. monocytogenes and L. innocua). O. vulgare extracts and essential oil from Portuguese origin are strong candidates to replace synthetic chemicals used by the industry. © 2013 Society of Chemical Industry.

  11. Nutrients and bioactive substances in aquatic organisms

    International Nuclear Information System (INIS)

    Devadasan, K.; Mukundan, M.K.; Antony, P.D.; Viswanathan Nair, P.G.; Perigreen, P.A.; Joseph, Jose

    1994-01-01

    The International Symposium on Nutrients and Bioactive Substances in Aquatic Organisms, was held during 16-17 September 1993 by the Society of Fisheries Technologists (India) to review the progress of research in this area in India and elsewhere. The papers presented indicate that scientific productivity in this field is substantial and that some of the bioactive materials isolated from aquatic organisms have potential application in human health, nutrition and therapy. The symposium focussed attention on toxicants, nutrients and bioactive substances in aquatic organisms in general, and also on pollution of aquatic systems due to thermal effluents. Paper relevant to INIS database is indexed separately. (M.K.V.)

  12. The Stability of Bioactive Compounds in Spaceflight Foods

    Science.gov (United States)

    Cooper, M. R.; Douglas, G. L.

    2017-01-01

    The status and stability of bioactive compounds in the processed and shelf-stable spaceflight food system have not previously been investigated though the presence of such compounds in aged space foods could have health significance for crews on long duration exploration missions. Over forty foods - either existing International Space Station (ISS) food provisioning items, newly developed foods for spaceflight, or commercially-available ready-to-eat foods - that were predicted to have a relatively high concentrations of one or more bioactive compounds (lycopene, lutein, omega-3 fatty acids, phenolics, sterols, and/or flavonoids) were selected for the study. Food samples were sent overnight to the Food Composition Laboratory of the Linus Pauling Institute at Oregon State University (Corvallis, OR) for bioactive compound analysis. Three packages of each product were blended together for the analysis to reduce package-to-package variability. All ISS food items and commercial foods were analyzed initially and after 12 and 24 months of 21degC storage. Food development occurred in a staggered fashion, so data collection for the newly developed foods continues. Lastly, sensory evaluation and additional temperature storage data (4degC, 35degC) for select foods were collected to establish additional stability parameters. Efficacious concentrations of lycopene, lutein, and omega-3 fatty acids were measured in limited spaceflight foods; two grams of sterols a day may be difficult to achieve with the current space diet. Total polyphenol delivery appears stable and adequate, but individual phenolic compounds vary in stability and were not specifically evaluated in this study. The data suggests that some bioactive compounds, like lycopene and lutein, degrade and then plateau at some equilibrium concentration. The anthocyanin stability appears to be related to storage temperature and food matrix, and lutein stability in leafy vegetables may be impacted by storage temperature

  13. An Overview of Some Natural Products with Two A-Level Science Club Natural Products Experiments

    Science.gov (United States)

    Sosabowski, Michael Hal; Olivier, George W. J.; Jawad, Hala; Maatta, Sieja

    2017-01-01

    Natural products are ubiquitous in nature but do not form a large proportion of the A-level syllabuses in the UK. In this article we briefly discuss a small selection of natural products, focusing on alcohols, aldehydes and ketones, and alkaloids. We then outline two natural product experiments that are suitable for A-level chemistry clubs or…

  14. Indexing Natural Products for Their Potential Anti-Diabetic Activity: Filtering and Mapping Discriminative Physicochemical Properties

    Directory of Open Access Journals (Sweden)

    Mouhammad Zeidan

    2017-09-01

    Full Text Available Diabetes mellitus (DM poses a major health problem, for which there is an unmet need to develop novel drugs. The application of in silico techniques and optimization algorithms is instrumental to achieving this goal. A set of 97 approved anti-diabetic drugs, representing the active domain, and a set of 2892 natural products, representing the inactive domain, were used to construct predictive models and to index anti-diabetic bioactivity. Our recently-developed approach of ‘iterative stochastic elimination’ was utilized. This article describes a highly discriminative and robust model, with an area under the curve above 0.96. Using the indexing model and a mix ratio of 1:1000 (active/inactive, 65% of the anti-diabetic drugs in the sample were captured in the top 1% of the screened compounds, compared to 1% in the random model. Some of the natural products that scored highly as potential anti-diabetic drug candidates are disclosed. One of those natural products is caffeine, which is noted in the scientific literature as having the capability to decrease blood glucose levels. The other nine phytochemicals await evaluation in a wet lab for their anti-diabetic activity. The indexing model proposed herein is useful for the virtual screening of large chemical databases and for the construction of anti-diabetes focused libraries.

  15. Meat and meat products as a source of bioactive peptides

    Directory of Open Access Journals (Sweden)

    Alfonso Totosaus

    2016-12-01

    Full Text Available Meat is a high protein content food, with great nutritional and biological value. Meat protein hydrolysis begins with the muscle to meat conversion, during meat ageing. After slaughter, endogen enzymes are responsible of meat softening since myofibrillar anchorage proteins are degraded. Protein hydrolysis continues during food preparation. When meat reaches the stomach, pepsin is the first enzyme to interact. As the food travel trough out gastrointestinal tract, pancreatic enzymes degraded the remained protein and the peptidases made the final proteolysis process. The small proteins or peptides are the absorbed to the circulatory system and distributed to the rest of the body. Bioactive peptides activity of meat and meat products is anti-hypertensive mainly, where histidine, carnosine and anserine are the main peptides identified. Another peptide with anti-oxidant activity is glutathione. The content depends on animal species.

  16. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts

    Directory of Open Access Journals (Sweden)

    Ammar Altemimi

    2017-09-01

    Full Text Available There are concerns about using synthetic phenolic antioxidants such as butylated hydroxytoluene (BHT and butylated hydroxyanisole (BHA as food additives because of the reported negative effects on human health. Thus, a replacement of these synthetics by antioxidant extractions from various foods has been proposed. More than 8000 different phenolic compounds have been characterized; fruits and vegetables are the prime sources of natural antioxidants. In order to extract, measure, and identify bioactive compounds from a wide variety of fruits and vegetables, researchers use multiple techniques and methods. This review includes a brief description of a wide range of different assays. The antioxidant, antimicrobial, and anticancer properties of phenolic natural products from fruits and vegetables are also discussed.

  17. Bioactivity-guided fractionation and analysis of compounds with anti-influenza virus activity from Gardenia jasminoides Ellis.

    Science.gov (United States)

    Yang, Quanjun; Wu, Bin; Shi, Yujing; Du, Xiaowei; Fan, Mingsong; Sun, Zhaolin; Cui, Xiaolan; Huang, Chenggang

    2012-01-01

    Bioassay-guided fractionation of extracts from Fructus Gardeniae led to analysis of its bioactive natural products. After infection by influenza virus strain A/FM/1/47-MA in vivo, antiviral activity of the extracts were investigated. The target fraction was orally administered to rats and blood was collected. High-performance liquid chromatography coupled with photo diode array detector and electrospray ion trap multiple-stage tandem mass spectrometry was applied to screen the compounds absorbed into the blood. A structural characterization based on the retention time, ultraviolet spectra, parent ions and fragmentation ions was performed. Thirteen compounds were confirmed or tentatively identified. This provides an accurate profile of the composition of bioactive compounds responsible for the anti-influenza properties.

  18. Exploring the production of natural gas through the lenses of the ACEGES model

    International Nuclear Information System (INIS)

    Voudouris, Vlasios; Matsumoto, Ken'ichi; Sedgwick, John; Rigby, Robert; Stasinopoulos, Dimitrios; Jefferson, Michael

    2014-01-01

    Due to the increasing importance of natural gas for modern economic activity, and gas's non-renewable nature, it is extremely important to try to estimate possible trajectories of future natural gas production while considering uncertainties in resource estimates, demand growth, production growth and other factors that might limit production. In this study, we develop future scenarios for natural gas supply using the ACEGES computational laboratory. Conditionally on the currently estimated ultimate recoverable resources, the ‘Collective View’ and ‘Golden Age’ Scenarios suggest that the supply of natural gas is likely to meet the increasing demand for natural gas until at least 2035. The ‘Golden Age’ Scenario suggests significant ‘jumps’ of natural gas production – important for testing the resilience of long-term strategies. - Highlights: • We present the ‘Collective View’ and ‘Golden Age’ Scenarios for natural gas production. • We do not observe any significant supply demand pressure of natural gas until 2035. • We do observe ‘jumps’ in natural gas supply until 2035. • The ACEGES-based scenarios can assess the resilience of longterm strategies

  19. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    International Nuclear Information System (INIS)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-01-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO 2 –Na 2 O–CaO–P 2 O 5 –FeO–Fe 2 O 3 and contains magnetite (Fe 3 O 4 ) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests show hydroxyapatite precipitates

  20. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  1. Microencapsulation of bioactives for food applications.

    Science.gov (United States)

    Dias, Maria Inês; Ferreira, Isabel C F R; Barreiro, Maria Filomena

    2015-04-01

    Health issues are an emerging concern to the world population, and therefore the food industry is searching for novel food products containing health-promoting bioactive compounds, with little or no synthetic ingredients. However, there are some challenges in the development of functional foods, particularly in which the direct use of some bioactives is involved. They can show problems of instability, react with other food matrix ingredients or present strong odour and/or flavours. In this context, microencapsulation emerges as a potential approach to overcome these problems and, additionally, to provide controlled or targeted delivery or release. This work intends to contribute to the field of functional food development by performing a comprehensive review on the microencapsulation methods and materials, the bioactives used (extracts and isolated compounds) and the final application development. Although several studies dealing with microencapsulation of bioactives exist, they are mainly focused on the process development and the majority lack proof of concept for final applications. These factors, together with the lack of regulation, in Europe and in the United States, delay the development of new functional foods and, consequently, their market entry. In conclusion, the potential of microencapsulation to protect bioactive compounds ensuring their bioavailability is shown, but further studies are required, considering both its applicability and incentives by regulatory agencies.

  2. Bioactive Compounds Found in Brazilian Cerrado Fruits.

    Science.gov (United States)

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-10-09

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here.

  3. Bioactive Compounds Found in Brazilian Cerrado Fruits

    Directory of Open Access Journals (Sweden)

    Elisa Flávia Luiz Cardoso Bailão

    2015-10-01

    Full Text Available Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi, Dipteryx alata Vog. (baru, Eugenia dysenterica DC. (cagaita, Eugenia uniflora L. (pitanga, Genipa americana L. (jenipapo, Hancornia speciosa Gomes (mangaba, Mauritia flexuosa L.f. (buriti, Myrciaria cauliflora (DC Berg (jabuticaba, Psidium guajava L. (goiaba, Psidium spp. (araçá, Solanum lycocarpum St. Hill (lobeira, Spondias mombin L. (cajá, Annona crassiflora Mart. (araticum, among others are reported here.

  4. Natural products as radiation response modifiers

    International Nuclear Information System (INIS)

    Colin Seymour; Carmel Mothersill

    2007-01-01

    membrane receptors, to induce stress. There is evidence in vivo from bomb survivors of the persistence of these effects for 50 years. The instability consequent on the process can predispose to later carcinogenic insult. At low radiation doses (as might be predicted from a dirty bomb where widespread, disruptive low level contamination is a desired outcome) untargeted effects may predominate in terms of long-term major human health effects. Our hypothesis is that chemicals derived from marine invertebrates will be useful in terms of modifying and negating any long term health consequences. Sessile benthic invertebrates including marine tunicates, cnidarians, and sponges in particular, have developed an array of structurally unique bioactive natural products, which have been demonstrated to afford the producing organism a competitive advantage in ecosystems such as tropical coral reefs, characterized by extreme resource limitations. In addition to limited resources, environmental pressures such as predation, fouling, competition for space and exposure to ultraviolet radiation drive the production of these chemicals. In addition to the variety of toxic compounds produced as defensive agents, organisms use highly coloured pigments to protect against the high levels of UV radiation in tropical coral reefs and pigments such as these are known radioprotectors in radioresistent bacteria. This paper will review the literature concerning known radiation response modification by natural products, with particular reference to substances which modify low dose effects and will present new data concerning the effects of some marine substances derived from sponges which we have found to sensitise cells to radiation. Drawing together the data in this area should permit some conclusions to be drawn about the mechanisms operating at low doses which can be targeted for radiation protection. We will also present new preliminary data which uses natural products derived from marine sponges

  5. Seasonal Effects on Bioactive Compounds and Antioxidant Capacity of Six Economically Important Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Eduardo A.S. Rosa

    2011-08-01

    Full Text Available Research on natural and bioactive compounds is increasingly focused on their effects on human health, but there are unexpectedly few studies evaluating the relationship between climate and natural antioxidants. The aim of this study was analyze the biological role of six different Brassica vegetables (Brassica oleracea L. and Brassica rapa L. as a natural source of antioxidant compounds. The antioxidant activity may be assigned to high levels of L-ascorbic acid, total phenolics and total flavonoids of each sample. The climate seasons affected directly the concentration of bioactive components and the antioxidant activity. Broccoli inflorescences and Portuguese kale showed high antioxidant activity in Spring-Summer whilst turnip leaves did so in Summer-Winter. The Brassica vegetables can provide considerable amounts of bioactive compounds and thus may constitute an important natural source of dietary antioxidants.

  6. Influenza neuraminidase: a druggable target for natural products.

    Science.gov (United States)

    Grienke, Ulrike; Schmidtke, Michaela; von Grafenstein, Susanne; Kirchmair, Johannes; Liedl, Klaus R; Rollinger, Judith M

    2012-01-01

    The imminent threat of influenza pandemics and repeatedly reported emergence of new drug-resistant influenza virus strains demonstrate the urgent need for developing innovative and effective antiviral agents for prevention and treatment. At present, influenza neuraminidase (NA), a key enzyme in viral replication, spread, and pathogenesis, is considered to be one of the most promising targets for combating influenza. Despite the substantial medical potential of NA inhibitors (NAIs), only three of these drugs are currently on the market (zanamivir, oseltamivir, and peramivir). Moreover, sudden changes in NAI susceptibility revealed the urgent need in the discovery/identification of novel inhibitors. Nature offers an abundance of biosynthesized compounds comprising chemical scaffolds of high diversity, which present an infinite pool of chemical entities for target-oriented drug discovery in the battle against this highly contagious pathogen. This review illuminates the increasing research efforts of the past decade (2000-2011), focusing on the structure, function and druggability of influenza NA, as well as its inhibition by natural products. Following a critical discussion of publications describing some 150 secondary plant metabolites tested for their inhibitory potential against influenza NA, the impact of three different strategies to identify and develop novel NAIs is presented: (i) bioactivity screening of herbal extracts, (ii) exploitation of empirical knowledge, and (iii) computational approaches. This work addresses the latest developments in theoretical and experimental research on properties of NA that are and will be driving anti-influenza drug development now and in the near future.

  7. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process

    Science.gov (United States)

    Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore

    2016-10-01

    There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin-Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry.

  8. Effects of bioactive constituents in functional cocoa products on cardiovascular health in humans.

    Science.gov (United States)

    Sarriá, Beatriz; Martínez-López, Sara; Sierra-Cinos, José Luis; Garcia-Diz, Luis; Goya, Luis; Mateos, Raquel; Bravo, Laura

    2015-05-01

    Cocoa manufacturers are producing novel products increasing polyphenols, methylxanthines or dietary fibre to improve purported health benefits. We attempt to explain the contribution of cocoa bioactive compounds to cardiovascular effects observed in previous studies, placing particular emphasis on methylxanthines. We focused on a soluble cocoa product rich in dietary fibre (DFCP) and a product rich in polyphenols (PPCP). Effects of regularly consuming DFCP (providing daily 10.17 g, 43.8 mg and 168.6 mg of total-dietary-fibre, flavanols and methylxanthines, respectively) as well as PPCP (providing daily 3.74 g, 45.3 mg and 109.8 mg of total-dietary-fibre, flavanols and methylxanthines, respectively) on cardiovascular health were assessed in two controlled, cross-over studies in free-living normocholesterolemic and moderately hypercholesterolemic subjects. Both products increased HDL-cholesterol concentrations, whereas only DFCP decreased glucose and IL-1β levels in all subjects. Flavanols appeared to be responsible for the increase in HDL-cholesterol, whereas insoluble-dietary-fibre and theobromine in DFCP were associated with the hypoglycemic and anti-inflammatory effects observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  10. Evolution of Chemical Diversity in a Group of Non-Reduced Polyketide Gene Clusters: Using Phylogenetics to Inform the Search for Novel Fungal Natural Products

    Directory of Open Access Journals (Sweden)

    Kurt Throckmorton

    2015-09-01

    Full Text Available Fungal polyketides are a diverse class of natural products, or secondary metabolites (SMs, with a wide range of bioactivities often associated with toxicity. Here, we focus on a group of non-reducing polyketide synthases (NR-PKSs in the fungal phylum Ascomycota that lack a thioesterase domain for product release, group V. Although widespread in ascomycete taxa, this group of NR-PKSs is notably absent in the mycotoxigenic genus Fusarium and, surprisingly, found in genera not known for their secondary metabolite production (e.g., the mycorrhizal genus Oidiodendron, the powdery mildew genus Blumeria, and the causative agent of white-nose syndrome in bats, Pseudogymnoascus destructans. This group of NR-PKSs, in association with the other enzymes encoded by their gene clusters, produces a variety of different chemical classes including naphthacenediones, anthraquinones, benzophenones, grisandienes, and diphenyl ethers. We discuss the modification of and transitions between these chemical classes, the requisite enzymes, and the evolution of the SM gene clusters that encode them. Integrating this information, we predict the likely products of related but uncharacterized SM clusters, and we speculate upon the utility of these classes of SMs as virulence factors or chemical defenses to various plant, animal, and insect pathogens, as well as mutualistic fungi.

  11. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity.

    Science.gov (United States)

    Sola, A; Bellucci, D; Raucci, M G; Zeppetelli, S; Ambrosio, L; Cannillo, V

    2012-02-01

    Because of their excellent bioactivity, bioactive glasses are increasingly diffused to produce biomedical devices for bone prostheses, to face the dysfunctions that may be caused by traumatic events, diseases, or even natural aging. However, several processing routes, such as the production of scaffolds or the deposition of coatings, include a thermal treatment to apply or sinter the glass. The exposure to high temperature may induce a devetrification phenomenon, altering the properties and, in particular, the bioactivity of the glass. The present contribution offers an overview of the thermal behavior and properties of two glasses belonging to the Na2O-CaO-P2O5-SiO2 system, to be compared to the standard 45S5 Bioglass(®). The basic goal is to understand the effect of both the original composition and the thermal treatment on the performance of the sintered glasses. The new glasses, the one (BG_Na) with a high content of Na2O, the other (BG_Ca) with a high content of CaO, were fully characterized and sintering tests were performed to define the most interesting firing cycles. The sintered samples, treated at 880°C and 800°C respectively, were investigated from a microstructural point of view and their mechanical properties were compared to those of the bulk (not sintered) glass counterparts. The effect of sintering was especially striking on the BG_Ca material, whose Vickers hardness increased from 598.9 ± 46.7 HV to 1053.4 ± 35.0 HV. The in vitro tests confirmed the ability of the glasses, both in bulk and sintered form, of generating a hydroxyapatite surface layer when immersed in a simulated body fluid. More accurate biological tests performed on the sintered glasses proved the high bioactivity of the CaO-rich composition even after a heat treatment. Copyright © 2011 Wiley Periodicals, Inc.

  12. Bioactive focus in conformational ensembles: a pluralistic approach

    Science.gov (United States)

    Habgood, Matthew

    2017-12-01

    Computational generation of conformational ensembles is key to contemporary drug design. Selecting the members of the ensemble that will approximate the conformation most likely to bind to a desired target (the bioactive conformation) is difficult, given that the potential energy usually used to generate and rank the ensemble is a notoriously poor discriminator between bioactive and non-bioactive conformations. In this study an approach to generating a focused ensemble is proposed in which each conformation is assigned multiple rankings based not just on potential energy but also on solvation energy, hydrophobic or hydrophilic interaction energy, radius of gyration, and on a statistical potential derived from Cambridge Structural Database data. The best ranked structures derived from each system are then assembled into a new ensemble that is shown to be better focused on bioactive conformations. This pluralistic approach is tested on ensembles generated by the Molecular Operating Environment's Low Mode Molecular Dynamics module, and by the Cambridge Crystallographic Data Centre's conformation generator software.

  13. Characterization of Animal By-Product Hydrolysates to Be Used as Healthy and Bioactive Ingredients in Food

    DEFF Research Database (Denmark)

    Damgaard, Trine Desiree

    The world meat production and consumption has increased rapidly over the last couple of decades, due to population and income growth. In contrast to the meat, the consumption of animal by-products has been declining, leaving large amounts of by-products underutilized. As many by-products are highly...... nutritious as well as being good sources of protein, they represent interesting substrates for the generation of bioactive hydrolysates and peptides. Different porcine and bovine by-products were hydrolysed with a mixture consisting of Alcalase®and Protamex, and tested in relation to antioxidant capacity...... and their “meat factor” effect, i.e. their ability to enhance in vitro iron availability. Hydrolysates of different animal by-products displayed antioxidant capacities as observed by several assays intended to test different antioxidant mechanisms. The radical scavenging capacity of the hydrolysates was found...

  14. Oleuropein as a bioactive constituent added in milk and yogurt.

    Science.gov (United States)

    Zoidou, Evangelia; Magiatis, Prokopios; Melliou, Eleni; Constantinou, Maria; Haroutounian, Serkos; Skaltsounis, Alexios-Leandros

    2014-09-01

    Oleuropein is a bioactive natural product from olives known to display a broad variety of health beneficial properties. However its presence in most edible olives is lowered due to debittering. In this respect, we envisaged the incorporation of oleuropein into dairy products (cow's milk and yogurt) aiming to produce novel functional foods. Additionally, an analytical method for the monitoring of oleuropein in milk and yogurt was also developed and validated. Oleuropein was not affected during heat treatment of milk, while during the milk fermentation process it was not hydrolysed by the produced acids. Oleuropein was not metabolised by lactic acid bacteria, did not inhibit their growth and its stability in the final products was proven. The novel products displayed same taste, colour and texture as the conventional ones. Results herein indicate that oleuropein can be added as an active ingredient in milk and yogurt preparations to provide two novel functional dairy products. Copyright © 2014. Published by Elsevier Ltd.

  15. Nutrient Optimization Using Response Surface Methodology for Simultaneous Biomass and Bioactive Compound Production by Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes).

    Science.gov (United States)

    Ofosu, Fred K; Yu, Xiaobin; Wang, Qiang; Li, Hanguang

    2016-01-01

    Due to the unpleasant side effects of long-term use of commercially available drugs, the discovery and development of natural therapeutic agents to prevent life-debilitating diseases is urgently needed. In the present study, the optimization of medium composition for maximum mycelial biomass and bioactive compounds production by Hericium erinaceus was studied using response surface methodology based on a central composite design. Under the optimal conditions and at a pH of 5.41 ± 0.28, the maximum mycelial biomass and exopolysaccharide production reached 25.0 ± 1.38 g/L and 1.73 ± 0.06 g/L, respectively, compared with 22.65 ± 0.10 g/L and 1.56 ± 0.23 g/L in the basal medium, after 7 days of cultivation. Furthermore, we report for the first time the production of adenosine, both intra- and extracellularly in submerged cultures of H. erinaceus. Although most of the adenosine detected existed in the culture medium, the highest intracellular and extracellular adenosine concentrations of 150.84 ± 1.87 mg/L and 142.48 ± 3.78 mg/L were achieved after 7 and 6 days of cultivation, respectively.

  16. Humic-like Products Formation via the Reaction of Phenol with Nitrite in Ice Phase

    Science.gov (United States)

    Min, D. W.; Choi, W.

    2017-12-01

    Understanding the chemical nature of humic substances is very important but the origin of humic substances in nature is not well known. Therefore, elucidating the mechanisms leading to the generation of humic substances in nature is of great interests. It is believed that humic substances are produced from the transformation of natural organic matters, like lignin, by biological pathways. Recently, it has been reported that monomer molecules like quinones and sugars could be polymerized with amino compounds to form humic-like substances. This humification process is considered as a possible mechanism of humic substances production in the environment. In this work, we report the first observation on the formation of humic-like substances from the reaction between phenol and nitrite under a frozen state. In aqueous solution, nitrite slowly reacts with phenol, producing phenolic compounds like nitrophenol. Under frozen state, however, phenol reacted rapidly with nitrite and produced diverse organic compounds, like hydroquinone, dimerized phenolic substances, and much bigger molecules such as humic-like substances. The humic-like substances produced in ice are likely caused by the formation of phenolic radical and nitrosonium ion. This work may provide some insights into unknown pathways for the origin of humic substances especially in frozen environments.

  17. Advances on Bioactive Polysaccharides from Medicinal Plants.

    Science.gov (United States)

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  18. Production of Bioactive Secondary Metabolites by Marine Vibrionaceae

    Directory of Open Access Journals (Sweden)

    Lone Gram

    2011-08-01

    Full Text Available Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS. Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.

  19. Antifouling potential of Nature-inspired sulfated compounds

    Science.gov (United States)

    Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel

    2017-02-01

    Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL-1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL-1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina ( 1000 μg.mL-1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.

  20. Bisphenol A in dental sealants and its estrogen like effect

    Directory of Open Access Journals (Sweden)

    Manu Rathee

    2012-01-01

    Full Text Available Bisphenol A or BPA-based epoxy resins are widely used in the manufacture of commercial products, including dental resins, polycarbonate plastics, and the inner coating of food cans. BPA is a precursor to the resin monomer Bis-GMA. During the manufacturing process of Bis-GMA dental sealants, Bisphenol A (BPA might be present as an impurity or as a degradation product of Bis-DMA through esterases present in saliva. Leaching of these monomers from resins can occur during the initial setting period and in conjunction with fluid sorption and desorption over time and this chemical leach from dental sealants may be bioactive. Researchers found an estrogenic effect with BPA, Bis-DMA, and Bis-GMA because BPA lacks structural specificity as a natural ligand to the estrogen receptor. It generated considerable concern regarding the safety of dental resin materials. This review focuses on the BPA in dental sealants and its estrogen-like effect.

  1. An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery

    Directory of Open Access Journals (Sweden)

    Candice M. Brinkmann

    2017-09-01

    Full Text Available Microbial symbiotic communities of marine macro-organisms carry functional metabolic profiles different to the ones found terrestrially and within surrounding marine environments. These symbiotic bacteria have increasingly been a focus of microbiologists working in marine environments due to a wide array of reported bioactive compounds of therapeutic importance resulting in various patent registrations. Revelations of symbiont-directed host specific functions and the true nature of host-symbiont interactions, combined with metagenomic advances detecting functional gene clusters, will inevitably open new avenues for identification and discovery of novel bioactive compounds of biotechnological value from marine resources. This review article provides an overview on bioactive marine symbiotic organisms with specific emphasis placed on the sponge-associated ones and invites the international scientific community to contribute towards establishment of in-depth information of the environmental parameters defining selection and acquisition of true symbionts by the host organisms.

  2. Marine Polysaccharides: A Source of Bioactive Molecules for Cell Therapy and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anne-Marie Fischer

    2011-09-01

    Full Text Available The therapeutic potential of natural bioactive compounds such as polysaccharides, especially glycosaminoglycans, is now well documented, and this activity combined with natural biodiversity will allow the development of a new generation of therapeutics. Advances in our understanding of the biosynthesis, structure and function of complex glycans from mammalian origin have shown the crucial role of this class of molecules to modulate disease processes and the importance of a deeper knowledge of structure-activity relationships. Marine environment offers a tremendous biodiversity and original polysaccharides have been discovered presenting a great chemical diversity that is largely species specific. The study of the biological properties of the polysaccharides from marine eukaryotes and marine prokaryotes revealed that the polysaccharides from the marine environment could provide a valid alternative to traditional polysaccharides such as glycosaminoglycans. Marine polysaccharides present a real potential for natural product drug discovery and for the delivery of new marine derived products for therapeutic applications.

  3. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    Science.gov (United States)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Bioprospecting of South African Plants as a Unique Resource for Bioactive Endophytic Microbes

    Directory of Open Access Journals (Sweden)

    Muna Ali Abdalla

    2018-05-01

    Full Text Available South Africa has a long history and strong belief in traditional herbal medicines. Using ethnobotanical knowledge as a lead, a large number of South African medicinal plants have been discovered to possess a wide spectrum of pharmacological properties. In this review, bioprospecting of endophytes is highlighted by following the advantages of the ethnomedicinal approach together with identifying unique medicinal plants where biological activity may be due to endophytes. This review focuses on the current status of South African medicinal plants to motivate the research community to harness the benefits of ethnobotanical knowledge to investigate the presence of endophytic microbes from the most potent South African medicinal plants. The potential chemical diversity and subsequent putative medicinal value of endophytes is deserving of further research. A timely and comprehensive review of literature on recently isolated endophytes and their metabolites was conducted. Worldwide literature from the last 2 years demonstrating the importance of ethnobotanical knowledge as a useful approach to discover endophytic microbes was documented. Information was obtained from scientific databases such as Pubmed, Scopus, Scirus, Google Scholar, Dictionary of Natural Products, Chemical Abstracts Services, official websites, and scientific databases on ethnomedicines. Primary sources such as books, reports, dissertations, and thesises were accessed where available. Recently published information on isolated endophytes with promising bioactivity and their bioactive natural products worldwide (2015-2017 was summarized. The potential value of South African medicinal plants as sources of endophytes is discussed. The insights provided through this study indicate that medicinal plants in South Africa are highly under-investigated sources of potentially useful endophytic microbes. New approaches may be used by medicinal plant scientists for further exploration of natural

  5. Incorporating Natural Products, Pharmaceutical Drugs, Self-Care and Digital/Mobile Health Technologies into Molecular-Behavioral Combination Therapies for Chronic Diseases

    Science.gov (United States)

    Bulaj, Grzegorz; Ahern, Margaret M.; Kuhn, Alexis; Judkins, Zachary S.; Bowen, Randy C.; Chen, Yizhe

    2016-01-01

    Merging pharmaceutical and digital (mobile health, mHealth) ingredients to create new therapies for chronic diseases offers unique opportunities for natural products such as omega-3 polyunsaturated fatty acids (n-3 PUFA), curcumin, resveratrol, theanine, or α-lipoic acid. These compounds, when combined with pharmaceutical drugs, show improved efficacy and safety in preclinical and clinical studies of epilepsy, neuropathic pain, osteoarthritis, depression, schizophrenia, diabetes and cancer. Their additional clinical benefits include reducing levels of TNFα and other inflammatory cytokines. We describe how pleiotropic natural products can be developed as bioactive incentives within the network pharmacology together with pharmaceutical drugs and self-care interventions. Since approximately 50% of chronically-ill patients do not take pharmaceutical drugs as prescribed, psychobehavioral incentives may appeal to patients at risk for medication non-adherence. For epilepsy, the incentive-based network therapy comprises anticonvulsant drugs, antiseizure natural products (n-3 PUFA, curcumin or/and resveratrol) coupled with disease-specific behavioral interventions delivered by mobile medical apps. The add-on combination of antiseizure natural products and mHealth supports patient empowerment and intrinsic motivation by having a choice in self-care behaviors. The incentivized therapies offer opportunities: (1) to improve clinical efficacy and safety of existing drugs, (2) to catalyze patient-centered, disease self-management and behavior-changing habits, also improving health-related quality-of-life after reaching remission, and (3) merging copyrighted mHealth software with natural products, thus establishing an intellectual property protection of medical treatments comprising the natural products existing in public domain and currently promoted as dietary supplements. Taken together, clinical research on synergies between existing drugs and pleiotropic natural products

  6. Marine Invertebrate Natural Products for Anti-Inflammatory and Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Kalimuthu Senthilkumar

    2013-01-01

    Full Text Available The marine environment represents a relatively available source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine invertebrates based compounds have biological activities and also interfere with the pathogenesis of diseases. Isolated compounds from marine invertebrates have been shown to pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS, osteoporosis, and so forth. Extensive research within the last decade has revealed that most chronic illnesses such as cancer, neurological diseases, diabetes, and autoimmune diseases exhibit dysregulation of multiple cell signaling pathways that have been linked to inflammation. On the basis of their bioactive properties, this review focuses on the potential use of marine invertebrate derived compounds on anti-inflammatory and some chronic diseases such as cardiovascular disease, osteoporosis, diabetes, HIV, and cancer.

  7. A Systematic Review of the Anxiolytic-Like Effects of Essential Oils in Animal Models

    Directory of Open Access Journals (Sweden)

    Damião Pergentino de Sousa

    2015-10-01

    Full Text Available The clinical efficacy of standardized essential oils (such as Lavender officinalis, in treating anxiety disorders strongly suggests that these natural products are an important candidate source for new anxiolytic drugs. A systematic review of essential oils, their bioactive constituents, and anxiolytic-like activity is conducted. The essential oil with the best profile is Lavendula angustifolia, which has already been tested in controlled clinical trials with positive results. Citrus aurantium using different routes of administration also showed significant effects in several animal models, and was corroborated by different research groups. Other promising essential oils are Citrus sinensis and bergamot oil, which showed certain clinical anxiolytic actions; along with Achillea wilhemsii, Alpinia zerumbet, Citrus aurantium, and Spiranthera odoratissima, which, like Lavendula angustifolia, appear to exert anxiolytic-like effects without GABA/benzodiazepine activity, thus differing in their mechanisms of action from the benzodiazepines. The anxiolytic activity of 25 compounds commonly found in essential oils is also discussed.

  8. In vitro bioactivity of polymer matrices reinforced with a bioactive glass phase

    Directory of Open Access Journals (Sweden)

    Oréfice Rodrigo L.

    2000-01-01

    Full Text Available Composites that can mimic the in vitro bioactive behavior of bioactive glasses were designed to fulfill two main features of bioactive glasses that are responsible for their high bond-to-bone rates: (1 capability of providing ions such as calcium and phosphate to the nearby environment and (2 ideal surface structure that allows fast heterogeneous precipitation of hydroxy-carbonate-apatite (HCA. The novel composites were prepared by incorporating bioactive glass particles into polymer matrices. The in vitro bioactivity test was performed by introducing samples into a buffered solution as well as into a simulated body fluid solution. FTIR was used to evaluate the kinetics of HCA (hydroxy-carbonate-apatite precipitation. The results showed that the obtained composites can supply ions, such as silicates and phosphates in rates and concentrations comparable or superior than bulk bioactive glasses. Moreover, the surface chemistry of the composites was altered to mimic the surface of bioactive glasses. It was demonstrated that the in vitro bioactivity of the composites was enhanced by chemically modifying polymer surfaces through the introduction of special alkoxysilane groups.

  9. Analyses of marketplace tacrolimus drug product quality: bioactivity, NMR and LC-MS.

    Science.gov (United States)

    Sommers, Cynthia D; Pang, Eric S; Ghasriani, Houman; Berendt, Robert T; Vilker, Vincent L; Keire, David A; Boyne, Michael T

    2013-11-01

    Tacrolimus (FK506) is a potent, narrow therapeutic index, immunosuppressive drug used to avoid organ rejection in patients that have undergone organ transplantation. Recent clinical reports suggested a significant reduction in the tacrolimus concentration/dose ratio in the plasma of liver and kidney recipients when the reference listed drug was substituted with a generic drug. In response to these concerns about switching between tacrolimus from different approved manufacturers during treatment, the FDA initiated purity, potency and quality studies of the innovator and generic tacrolimus products available in the US marketplace. A combination of analytical methods, including mass spectrometry (LC-MS), nuclear magnetic resonance (NMR) and bioactivity assay were developed and validated to assess the quality of tacrolimus. These tests measured the identity, impurities and activity of tacrolimus from active pharmaceutical ingredient (API) sources and with formulated drug product from five different approved manufactures. In addition, some testing was performed on tacrolimus capsules obtained from a non US approved Indian source. The data obtained showed no discernible difference in the impurity profiles and potency between the generic and innovator tacrolimus products. Copyright © 2013. Published by Elsevier B.V.

  10. Ultrasound assisted extraction of bioactive compounds

    Directory of Open Access Journals (Sweden)

    Helena Drmić

    2010-01-01

    Full Text Available Many novel and innovative techniques are nowadays researched and explored in order to replace or improve classical, thermal processing technologies. One of newer technique is technique of minimal food processing, under what we assume ultrasound processing. Ultrasound technology can be very useful for minimal food processing because transmission of acoustic energy through product is fast and complete, which allows reduction in total processing time, and therefore lower energy consumption. Industrial processing is growing more and more waste products, and in desire of preservation of global recourses and energy efficiency, several ways of active compounds extraction techniques are now explored. The goal is to implement novel extraction techniques in food and pharmaceutical industry as well in medicine. Ultrasound assisted extraction of bioactive compounds offers increase in yield, and reduction or total avoiding of solvent usage. Increase in temperature of treatment is controlled and restricted, thereby preserving extracted bioactive compounds. In this paper, several methods of ultrasound assisted extraction of bioactive compounds from plant materials are shown. Ultrasound can improve classic mechanisms of extraction, and thereby offer novel possibilities of commercial extraction of desired compounds. Application of sonochemistry (ultrasound chemistry is providing better yield in desired compounds and reduction in treatment time.

  11. Biological activity of anthocyanins and their phenolic degradation products and metabolites in human vascular endothelial cells

    OpenAIRE

    Edwards, Michael

    2013-01-01

    Human, animal, and in vitro data indicate significant vasoprotective activity of anthocyanins. However, few studies have investigated the activity of anthocyanin degradation products and metabolites which are likely to mediate bioactivity in vivo. The present thesis therefore examined the vascular bioactivity in vitro of anthocyanins, their phenolic degradants, and the potential for interactions between dietary bioactive compounds. Seven treatment compounds (cyanidin-, peonidin-, petunidin- &...

  12. Synthesis and characterization of novel bioactive 1,2,4-oxadiazole natural product analogs bearing the N-phenylmaleimide and N-phenylsuccinimide moieties

    Directory of Open Access Journals (Sweden)

    Catalin V. Maftei

    2013-10-01

    Full Text Available Taking into consideration the biological activity of the only natural products containing a 1,2,4-oxadiazole ring in their structure (quisqualic acid and phidianidines A and B, the natural product analogs 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-ylphenylpyrrolidine-2,5-dione (4 and 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-ylphenyl-1H-pyrrole-2,5-dione (7 were synthesized starting from 4-(3-tert-butyl-1,2,4-oxadiazol-5-ylaniline (1 in two steps by isolating the intermediates 4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-ylphenylamino-4-oxobutanoic acid (3 and (Z-4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-ylphenylamino-4-oxobut-2-enoic acid (6. The two natural product analogs 4 and 7 were then tested for antitumor activity toward a panel of 11 cell lines in vitro by using a monolayer cell-survival and proliferation assay. Compound 7 was the most potent and exhibited a mean IC50 value of approximately 9.4 µM. Aniline 1 was synthesized by two routes in one-pot reactions starting from tert-butylamidoxime and 4-aminobenzoic acid or 4-nitrobenzonitrile. The structures of compounds 1, 2, 4, 5 and 6 were confirmed by X-ray crystallography.

  13. eBASIS (Bioactive Substances in Food Information Systems) and Bioactive Intakes: Major Updates of the Bioactive Compound Composition and Beneficial Bioeffects Database and the Development of a Probabilistic Model to Assess Intakes in Europe.

    Science.gov (United States)

    Plumb, Jenny; Pigat, Sandrine; Bompola, Foteini; Cushen, Maeve; Pinchen, Hannah; Nørby, Eric; Astley, Siân; Lyons, Jacqueline; Kiely, Mairead; Finglas, Paul

    2017-03-23

    eBASIS (Bioactive Substances in Food Information Systems), a web-based database that contains compositional and biological effects data for bioactive compounds of plant origin, has been updated with new data on fruits and vegetables, wheat and, due to some evidence of potential beneficial effects, extended to include meat bioactives. eBASIS remains one of only a handful of comprehensive and searchable databases, with up-to-date coherent and validated scientific information on the composition of food bioactives and their putative health benefits. The database has a user-friendly, efficient, and flexible interface facilitating use by both the scientific community and food industry. Overall, eBASIS contains data for 267 foods, covering the composition of 794 bioactive compounds, from 1147 quality-evaluated peer-reviewed publications, together with information from 567 publications describing beneficial bioeffect studies carried out in humans. This paper highlights recent updates and expansion of eBASIS and the newly-developed link to a probabilistic intake model, allowing exposure assessment of dietary bioactive compounds to be estimated and modelled in human populations when used in conjunction with national food consumption data. This new tool could assist small- and medium-sized enterprises (SMEs) in the development of food product health claim dossiers for submission to the European Food Safety Authority (EFSA).

  14. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    Science.gov (United States)

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  15. Novel Natural Products for Healthy Ageing from the Mediterranean Diet and Food Plants of Other Global Sources-The MediHealth Project.

    Science.gov (United States)

    Waltenberger, Birgit; Halabalaki, Maria; Schwaiger, Stefan; Adamopoulos, Nicolas; Allouche, Noureddine; Fiebich, Bernd L; Hermans, Nina; Jansen-Dürr, Pidder; Kesternich, Victor; Pieters, Luc; Schönbichler, Stefan; Skaltsounis, Alexios-Leandros; Tran, Hung; Trougakos, Ioannis P; Viljoen, Alvaro; Wolfender, Jean-Luc; Wolfrum, Christian; Xynos, Nikos; Stuppner, Hermann

    2018-05-06

    There is a rapid increase in the percentage of elderly people in Europe. Consequently, the prevalence of age-related diseases will also significantly increase. Therefore, the main goal of MediHealth, an international research project, is to introduce a novel approach for the discovery of active agents of food plants from the Mediterranean diet and other global sources that promote healthy ageing. To achieve this goal, a series of plants from the Mediterranean diet and food plants from other origins are carefully selected and subjected to in silico, cell-based, in vivo (fly and mouse models), and metabolism analyses. Advanced analytical techniques complement the bio-evaluation process for the efficient isolation and identification of the bioactive plant constituents. Furthermore, pharmacological profiling of bioactive natural products, as well as the identification and synthesis of their metabolites, is carried out. Finally, optimization studies are performed in order to proceed to the development of innovative nutraceuticals, dietary supplements or herbal medicinal products. The project is based on an exchange of researchers between nine universities and four companies from European and non-European countries, exploiting the existing complementary multidisciplinary expertise. Herein, the unique and novel approach of this interdisciplinary project is presented.

  16. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    International Nuclear Information System (INIS)

    Pan, Y.K.; Chen, C.Z.; Wang, D.G.; Lin, Z.Q.

    2013-01-01

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH 3 COO) 2 Ca·H 2 O) and disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 ·12H 2 O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HA) and calcium pyrophosphates (Ca 2 P 2 O 7 , CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF 2 , CaO, CaF 2 and Ca 3 (PO 4 ) 2 . • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate

  17. Mangiferin: a natural miracle bioactive compound against lifestyle related disorders

    OpenAIRE

    Imran, Muhammad; Arshad, Muhammad Sajid; Butt, Masood Sadiq; Kwon, Joong-Ho; Arshad, Muhammad Umair; Sultan, Muhammad Tauseef

    2017-01-01

    The current review article is an attempt to explain the therapeutic potential of mangiferin, a bioactive compound of the mango, against lifestyle-related disorders. Mangiferin (2-?-D-glucopyranosyl-1,3,6,7-tetrahydroxy-9H-xanthen-9-one) can be isolated from higher plants as well as the mango fruit and their byproducts (i.e. peel, seed, and kernel). It possesses several health endorsing properties such as antioxidant, antimicrobial, antidiabetic, antiallergic, anticancer, hypocholesterolemic, ...

  18. Effects of medium components and culture conditions on mycelial biomass and the production of bioactive ingredients in submerged culture of Xylaria nigripes (Ascomycetes), a Chinese medicinal fungus.

    Science.gov (United States)

    Chen, Jian-Zhi; Lo, Hui-Chen; Lin, Fang-Yi; Chang, Shih-Liang; Hsieh, Changwei; Liang, Zeng-Chin; Ho, Wai-Jane; Hsu, Tai-Hao

    2014-01-01

    The optimal culture conditions were investigated to maximize the production of mycelial biomass and bioactive ingredients in submerged cultivation of Xylaria nigripes, a Chinese medicinal fungus. The one-factor-at-a-time method was used to explore the effects of medium components, including carbon, nitrogen, mineral sources, and initial pH of the medium and environmental factors, such as culture temperature and rotation speed, on mycelial growth and production of bioactive ingredients. The results indicated that the optimal culture temperature and rotation speed were 25°C and 100 rpm in a medium with 20 g fructose, 6 g yeast extract, and 2 g magnesiun sulfate heptahydrate as carbon, nitrogen, and mineral sources, respectively, in 1 L distilled water with an initial medium pH of 5.5. With optimal medium components and conditions of cultivation, the maximal production of mycelial biomass was 6.64 ± 0.88 g/L, with maximal production of bioactive ingredients such as extracellular polysaccharides (2.36 ± 0.18 mg/mL), intracellular polysaccharides (2.38 ± 0.07 mg/g), adenosine (43.27 ± 2.37 mg/g), total polyphenols (36.57 ± 1.36 mg/g), and triterpenoids (31.29 ± 1.17 mg/g) in a shake flask culture. These results suggest that different bioactive ingredients including intracellular polysaccharides, adenosine, total polyphenols and triterpenoids in mycelia and extracellular polysaccharides in broth can be obtained from one simple medium for submerged cultivation of X. nigripes.

  19. Chitosan as a bioactive polymer: Processing, properties and applications.

    Science.gov (United States)

    Muxika, A; Etxabide, A; Uranga, J; Guerrero, P; de la Caba, K

    2017-12-01

    Chitin is one of the most abundant natural polysaccharides in the world and it is mainly used for the production of chitosan by a deacetylation process. Chitosan is a bioactive polymer with a wide variety of applications due to its functional properties such as antibacterial activity, non-toxicity, ease of modification, and biodegradability. This review summarizes the most common chitosan processing methods and highlights some applications of chitosan in various industrial and biomedical fields. Finally, environmental concerns of chitosan-based films, considering the stages from raw materials extraction up to the end of life after disposal, are also discussed with the aim of finding more eco-friendly alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Microfluidic production of bioactive fibrin micro-beads embedded in crosslinked collagen used as an injectable bulking agent for urinary incontinence treatment.

    Science.gov (United States)

    Vardar, E; Larsson, H M; Allazetta, S; Engelhardt, E M; Pinnagoda, K; Vythilingam, G; Hubbell, J A; Lutolf, M P; Frey, P

    2018-02-01

    Endoscopic injection of bulking agents has been widely used to treat urinary incontinence, often due to urethral sphincter complex insufficiency. The aim of the study was to develop a novel injectable bioactive collagen-fibrin bulking agent restoring long-term continence by functional muscle tissue regeneration. Fibrin micro-beads were engineered using a droplet microfluidic system. They had an average diameter of 140 μm and recombinant fibrin-binding insulin-like growth factor-1 (α 2 PI 1-8 -MMP-IGF-1) was covalently conjugated to the beads. A plasmin fibrin degradation assay showed that 72.5% of the initial amount of α 2 PI 1-8 -MMP-IGF-1 loaded into the micro-beads was retained within the fibrin micro-beads. In vitro, the growth factor modified fibrin micro-beads enhanced cell attachment and the migration of human urinary tract smooth muscle cells, however, no change of the cellular metabolic activity was seen. These bioactive micro-beads were mixed with genipin-crosslinked homogenized collagen, acting as a carrier. The collagen concentration, the degree of crosslinking, and the mechanical behavior of this bioactive collagen-fibrin injectable were comparable to reference samples. This novel injectable showed no burst release of the growth factor, had a positive effect on cell behavior and may therefore induce smooth muscle regeneration in vivo, necessary for the functional treatment of stress and other urinary incontinences. Urinary incontinence is involuntary urine leakage, resulting from a deficient function of the sphincter muscle complex. Yet there is no functional cure for this devastating condition using current treatment options. Applied physical and surgical therapies have limited success. In this study, a novel bioactive injectable bulking agent, triggering new muscle regeneration at the injection site, has been evaluated. This injectable consists of cross-linked collagen and fibrin micro-beads, functionalized with bound insulin-like growth factor

  1. Variation in Essential Oil and Bioactive Compounds of Curcuma kwangsiensis Collected from Natural Habitats.

    Science.gov (United States)

    Zhang, Lanyue; Yang, Zhiwen; Huang, Zebin; Zhao, Mincong; Li, Penghui; Zhou, Wei; Zhang, Kun; Zheng, Xi; Lin, Li; Tang, Jian; Fang, Yanxiong; Du, Zhiyun

    2017-07-01

    The chemical compositions of essential oils (EOs) extracted from Curcuma kwangsiensis rhizomes collected from six natural habitats in P. R. China were evaluated using gas chromatography/mass spectrometry (GC/MS). Fifty-seven components were identified from the six EOs, and their main constituents were 8,9-dehydro-9-formyl-cycloisolongifolene (2.37 - 42.59%), germacrone (6.53 - 22.20%), and l-camphor (0.19 - 6.12%). The six EOs exhibited different DPPH radical-scavenging activities (IC 50 , 2.24 - 31.03 μg/ml), with the activity of most of EOs being much higher than that of Trolox C (IC 50 , 10.49 μg/ml) and BHT (IC 50 , 54.13 μg/ml). Most EOs had potent antimicrobial effects against the tested bacteria and fungus. They also exhibited cytotoxicity against B16 (IC 50 , 4.44 - 147.4 μg/ml) and LNCaP cells (IC 50 , 73.94 - 429.25 μg/ml). The EOs showed excellent anti-inflammatory action by significantly downregulating expression of pro-inflammatory cytokines, cyclooxygenase-2, and tumor necrosis factor-α. This study provides insight into the interrelation among growth location, phytoconstituents, and bioactivities, and the results indicate the potential of C. kwangsiensis as natural nutrients, medicines, and others additives. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  2. Natural products used for diabetes.

    Science.gov (United States)

    Shapiro, Karen; Gong, William C

    2002-01-01

    To review the efficacy and safety of natural products commonly used for diabetes. English and Spanish-language journals retrieved through a MEDLINE search of articles published between 1960 and December 2001 using these index terms: Opuntia, karela, gymnema, tecoma, alpha lipoic acid, thioctic acid, ginseng, panaxans, and diabetes. Natural products have long been used in traditional systems of medicine for diabetes. Products in common use include nopal (prickly pear cactus), fenu-greek, karela (bitter melon), gymnema, ginseng, tronadora, chromium, and alpha-lipoic acid. The popularity of these products varies among people of different ethnicities. Nopal is the most commonly used herbal hypoglycemic among persons of Mexican descent. Karela is more commonly used by persons from Asian countries. Some of these agents have gained universal appeal. For a select number of products, studies have revealed single or multiple mechanisms of action. For several of these, high soluble fiber content is a contributing factor. Based on the available evidence, several natural products in common use can lower blood glucose in patients with diabetes. Commonly used natural products often have a long history of traditional use, and pharmacists who have a stronger understanding of these products are better positioned to counsel patients on their appropriate use.

  3. Endophytic Fungi as Novel Resources of natural Therapeutics

    Directory of Open Access Journals (Sweden)

    Maheshwari Rajamanikyam

    2017-08-01

    Full Text Available ABSTRACT Fungal endophytes constitute a major part of the unexplored fungal diversity. Endophytic fungi (EF are an important source for novel, potential and active metabolites. Plant-endophyte interaction and endophyte -endophyte interactions study provide insights into mutualism and metabolite production by fungi. Bioactive compounds produced by endophytes main function are helping the host plants to resist external biotic and abiotic stress, which benefit the host survival in return. These organisms mainly consist of members of the Ascomycota, Basidiomycota, Zygomycota and Oomycota. Recently, the genome sequencing technology has emerged as one of the most efficient tools that can provide whole information of a genome in a small period of time. Endophytes are fertile ground for drug discovery. EFare considered as the hidden members of the microbial world and represent an underutilized resource for new therapeutics and compounds. Endophytes are rich source of natural products displaying broad spectrum of biological activities like anticancer, antibacterial, antiviral, immunomodulatory, antidiabetic, antioxidant, anti-arthritis and anti-inflammatory.

  4. Forecasting natural gas supply in China: Production peak and import trends

    International Nuclear Information System (INIS)

    Lin Boqiang; Wang Ting

    2012-01-01

    China's natural gas consumption has increased rapidly in recent years making China a net gas importer. As a nonrenewable energy, the gas resource is exhaustible. Based on the forecast of this article, China's gas production peak is likely to approach in 2022. However, China is currently in the industrialization and urbanization stage, and its natural gas consumption will persistently increase. With China's gas production peak, China will have to face a massive expansion in gas imports. As the largest developing country, China's massive imports of gas will have an effect on the international gas market. In addition, as China's natural gas price is still controlled by the government and has remained at a low level, the massive imports of higher priced gas will exert great pressure on China's gas price reform. - Highlights: ► We figured out the natural gas production peak of China. ► We predict the import trends of natural gas of China. ► We study the international and national impacts of China's increasing import of gas. ► It is important for China to accelerate price reformation of natural gas.

  5. Bioactive substances

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.

    Chemistry related to certain bioactive molecules, from Indian Ocean Region, developed into drugs or which served as models for the synthesis of more effective bioactive substances or in use in fundamental studies of physiological and biochemical...

  6. Red Algae (Rhodophyta from the Coast of Madagascar: Preliminary Bioactivity Studies and Isolation of Natural Products

    Directory of Open Access Journals (Sweden)

    Marie Pascaline Rahelivao

    2015-07-01

    Full Text Available Several species of red algae (Rhodophyta from the coastal regions of Madagascar have been investigated for their natural products. The most abundant compound was cholesterol (5 in combination with a series of oxidized congeners. The brominated indoles 1–3 along with the sesquiterpene debilone (4 have been isolated from Laurencia complanata. For the first time, debilone (4 has been obtained from a marine plant. From the methanol extract of Calloseris sp., we have achieved the second isolation of the unusual A-ring contracted steroids (−-2-ethoxycarbonyl-2β-hydroxy-A-nor-cholest-5-en-4-one (9 and phorbasterone B (10. The crude extracts of Laurencia complanata exhibited antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Streptococcus pneumoniae, and Candida albicans.

  7. Red Algae (Rhodophyta) from the Coast of Madagascar: Preliminary Bioactivity Studies and Isolation of Natural Products.

    Science.gov (United States)

    Rahelivao, Marie Pascaline; Gruner, Margit; Andriamanantoanina, Hanta; Andriamihaja, Bakolinirina; Bauer, Ingmar; Knölker, Hans-Joachim

    2015-07-07

    Several species of red algae (Rhodophyta) from the coastal regions of Madagascar have been investigated for their natural products. The most abundant compound was cholesterol (5) in combination with a series of oxidized congeners. The brominated indoles 1-3 along with the sesquiterpene debilone (4) have been isolated from Laurencia complanata. For the first time, debilone (4) has been obtained from a marine plant. From the methanol extract of Calloseris sp., we have achieved the second isolation of the unusual A-ring contracted steroids (-)-2-ethoxycarbonyl-2β-hydroxy-A-nor-cholest-5-en-4-one (9) and phorbasterone B (10). The crude extracts of Laurencia complanata exhibited antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Streptococcus pneumoniae, and Candida albicans.

  8. Silk-Silk Interactions between Silkworm Fibroin and Recombinant Spider Silk Fusion Proteins Enable the Construction of Bioactive Materials.

    Science.gov (United States)

    Nilebäck, Linnea; Chouhan, Dimple; Jansson, Ronnie; Widhe, Mona; Mandal, Biman B; Hedhammar, My

    2017-09-20

    Natural silk is easily accessible from silkworms and can be processed into different formats suitable as biomaterials and cell culture matrixes. Recombinant DNA technology enables chemical-free functionalization of partial silk proteins through fusion with peptide motifs and protein domains, but this constitutes a less cost-effective production process. Herein, we show that natural silk fibroin (SF) can be used as a bulk material that can be top-coated with a thin layer of the recombinant spider silk protein 4RepCT in fusion with various bioactive motifs and domains. The coating process is based on a silk assembly to achieve stable interactions between the silk types under mild buffer conditions. The assembly process was studied in real time by quartz crystal microbalance with dissipation. Coatings, electrospun mats, and microporous scaffolds were constructed from Antheraea assama and Bombyx mori SFs. The morphology of the fibroin materials before and after coating with recombinant silk proteins was analyzed by scanning electron microscopy and atomic force microscopy. SF materials coated with various bioactive 4RepCT fusion proteins resulted in directed antibody capture, enzymatic activity, and improved cell attachment and spreading, respectively, compared to pristine SF materials. The herein-described procedure allows a fast and easy route for the construction of bioactive materials.

  9. Managing hypertension: relevant biomarkers and combating bioactive compounds

    Directory of Open Access Journals (Sweden)

    Bryan Singharaj

    2017-06-01

    Full Text Available Hypertension is one of the most common chronic diseases which affects many people who belong to a higher age range. The standard definition that is offered to the general public has a minimum age of 18 years to be diagnosed with hypertension. Many studies have been conducted in the hopes of finding consistent data that provides information on the biomarkers of hypertension and effective forms of treatment. However, there is a tendency for skewed data due to the ineffectiveness of diagnosing hypertension, due to variability in technique or even negligence. Interestingly, research has indicated that there are connections to certain biomarkers of hypertension. However,the results have been deemed inconclusive. Moreover, the results provide promising data for future studies that have an emphasis on biomarkers. The biomarkers that have been consistently brought to researchers’ attention include the following: circulating C-reactive protein (CRP, plasminogen activator inhibitor-1 (PAI-1, urinary albumin:creatinine ratio (UACR, and aldosterone:renin ratio (ARR. These four biomarkers have become the foundation of multiple hypertension studies, even though the only formal conclusion drawn from these studies is that there is a wide range of variables that have some kind of influence on hypertension. More recently, treatment options for hypertension have increasingly become an emphasis for studies, with research predicting that nutrition plays a key role in the managing of diseases. Furthermore, the role of bioactive compounds has gained traction in hypertension research, being loosely correlated to managing specific biomarkers. Ultimately, these correlations to bioactive compounds like antioxidants would demonstrate that certain functional foods have the capacity to help treat hypertension. The modality is to find an alternative option for managing or treating hypertension through natural sources of food or food products fortified with ingredients to

  10. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  11. BIOACTIVE COMPOUNDS AND ANTIOXIDANT CAPACITY FROM FIVE TYPES OF SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Florina Maria Copaciu

    2016-10-01

    Full Text Available After germination process, the green seedlings accumulate important quantities of bioactive compounds such as: enzymes, vitamins, minerals, chlorophylls and nutrients. The current study presents a comparison between different bioactive compounds and their antioxidant capacity, after the seedling germination and growth of five seeds (arugula, lentil, wheat, beans and mustard both on soil, in a pot (natural system, and directly on cotton wool soaked, in water (artificial system. In this study the carotenoids content and the antioxidant capacity were analysed. The data of the present study showed that the highest amount of zeaxanthin and β - carotene was found in cultivars of wheat grown in natural system, while the highest antioxidant activity was found in cultivars of wheat, lentils and beans, though in this case with no statistical differences between the systems. The results show statistical differences between the values of bioactive compounds in the five types of seedlings but also in the values obtained for the same seedlings in different systems. The best cultivars for improving the nutritional quality for human consumption are wheat seedlings followed by lentil ones.

  12. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses.

    Science.gov (United States)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    Science.gov (United States)

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. © 2012 Nestec S. A.. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  14. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses

    International Nuclear Information System (INIS)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; Singh, S.P.

    2016-01-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO 2 in Na 2 O–CaO–SrO–P 2 O 5 –SiO 2 system. This work demonstrates that the substitution of SrO for SiO 2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO 2 . The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. - Highlights: • The substitution of SrO was done for SiO 2 in Na 2 O–CaO–SrO–P 2 O 5 –SiO 2 bioactive glass. • Network connectivity significantly influenced on bioactivity and biocompatibility. • In vitro SBF studies showed enhanced HCA crystallinity on the glass surface. • The cell culture studies exhibited better cell compatibility and significant growth. • Density and elastic moduli increased with increasing concentration of strontia.

  15. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Tripathi, Himanshu [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Hira, Sumit Kumar; Manna, Partha Pratim [Immunobiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India); Pyare, Ram; Singh, S.P. [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} system. This work demonstrates that the substitution of SrO for SiO{sub 2} has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO{sub 2}. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. - Highlights: • The substitution of SrO was done for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} bioactive glass. • Network connectivity significantly influenced on bioactivity and biocompatibility. • In vitro SBF studies showed enhanced HCA crystallinity on the glass surface. • The cell culture studies exhibited better cell compatibility and significant growth. • Density and elastic moduli increased with increasing concentration of strontia.

  16. Peptidome characterization and bioactivity analysis of donkey milk.

    Science.gov (United States)

    Piovesana, Susy; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2015-04-24

    Donkey milk is an interesting commercial product for its nutritional values, which make it the most suitable mammalian milk for human consumption, and for the bioactivity associated with it and derivative products. To further mine the characterization of donkey milk, an extensive peptidomic study was performed. Two peptide purification strategies were compared to remove native proteins and lipids and enrich the peptide fraction. In one case the whole protein content was precipitated by organic solvent using cold acetone. In the other one the precipitation of the most abundant milk proteins, caseins, was performed under acidic conditions by acetic acid at pH4.6, instead. The procedures were compared and proved to be partially complementary. Considered together they provided 1330 peptide identifications for donkey milk, mainly coming from the most abundant proteins in milk. The bioactivity of the isolated peptides was also investigated, both by angiotensin-converting-enzyme inhibitory and antioxidant activity assays and by bioinformatics, proving that the isolated peptides did have the tested biological activities. The rationale behind this study is that peptides in food matrices often play an important biological role and, despite the extensive study of the protein composition of different samples, they remain poorly characterized. In fact, in a typical shotgun proteomics study endogenous peptides are not properly characterized. In proteomics workflows one limiting point is the isolation process: if it is specific for the purification of proteins, it often comprises a precipitation step which aims at isolating pure protein pellets and remove unwonted interferent compounds. In this way endogenous peptides, which are not effectively precipitated as well as proteins, are removed too and not analyzed at the end of the process. Moreover, endogenous peptides do often originate from precursor proteins, but in phenomena which are independent of the shotgun digestion

  17. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention.

    Science.gov (United States)

    Tewari, Devesh; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad; Sureda, Antoni; Farooqi, Ammad Ahmad; Atanasov, Atanas G; Vacca, Rosa Anna; Sethi, Gautam; Bishayee, Anupam

    2018-02-01

    Activator protein 1 (AP-1) is a key transcription factor in the control of several cellular processes responsible for cell survival proliferation and differentiation. Dysfunctional AP-1 expression and activity are involved in several severe diseases, especially inflammatory disorders and cancer. Therefore, targeting AP-1 has recently emerged as an attractive therapeutic strategy for cancer prevention and therapy. This review summarizes our current understanding of AP-1 biology and function as well as explores and discusses several natural bioactive compounds modulating AP-1-associated signaling pathways for cancer prevention and intervention. Current limitations, challenges, and future directions of research are also critically discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    Science.gov (United States)

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-03-11

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  19. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.K. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Chen, C.Z., E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Wang, D.G.; Lin, Z.Q. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China)

    2013-09-16

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH{sub 3}COO){sub 2}Ca·H{sub 2}O) and disodium hydrogen phosphate dodecahydrate (Na{sub 2}HPO{sub 4}·12H{sub 2}O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) and calcium pyrophosphates (Ca{sub 2}P{sub 2}O{sub 7}, CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF{sub 2}, CaO, CaF{sub 2} and Ca{sub 3}(PO{sub 4}){sub 2}. • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate.

  20. Supercritical Fluid Chromatography--Theoretical Background and Applications on Natural Products.

    Science.gov (United States)

    Hartmann, Anja; Ganzera, Markus

    2015-11-01

    The use of supercritical fluid chromatography for natural product analysis as well as underlying theoretical mechanisms and instrumental requirements are summarized in this review. A short introduction focusing on the historical development of this interesting separation technique is followed by remarks on the current instrumental design, also describing possible detection modes and useable stationary phases. The overview on relevant applications is grouped based on their basic intention, may it be (semi)preparative or purely analytical. They indicate that supercritical fluid chromatography is still primarily considered for the analysis of nonpolar analytes like carotenoids, fatty acids, or terpenes. The low polarity of supercritical carbon dioxide, which is used with modifiers almost exclusively as a mobile phase today, combined with high efficiency and fast separations might explain the popularity of supercritical fluid chromatography for the analysis of these compounds. Yet, it has been shown that more polar natural products (e.g., xanthones, flavonoids, alkaloids) are separable too, with the same (if not superior) selectivity and reproducibility than established approaches like HPLC or GC. Georg Thieme Verlag KG Stuttgart · New York.

  1. The Environmental Fluctuations of some Bioactive Nutraceutical Compounds in Zilla spinosa Inhabiting Arid Habitats

    Directory of Open Access Journals (Sweden)

    Hemmat Ibrahim KHATTAB

    2017-12-01

    Full Text Available Zilla spinosa is one of the dominated woody perennial shrubs widespread in the Egyptian Red sea coastal desert, belonging to family Brassicacea. Z. spinosa is used as a folk medicine and for heating by local people. Z. spinosa inhabits arid habitats exposed to adverse climatic changes which influence the production of the bioactive natural products. The natural secondary products have significant importance for plant acclimatization to the arid habitats beside their significant practical application in medicinal, nutritive and industrial purposes. The accumulation levels of some natural products including phenols, tannins, glucosinolates, flavonoids, saponins, proanthocyanidins and cardiac glycosides were measured in Z. spinosa inhabiting different locations of Wadi Hagul during spring and summer seasons. The results of the current study showed that Z. spinosa grown in the adverse environment has adapted to cope with extreme temperature, water deficit and geoclimate changes especially in summer, by enhancing the accumulation of some antioxidant compounds including phenols, tannins, glucosinolates, flavonoids, saponins, cardiac glycosides, concomitant with increments in the total antioxidant capacity and PAL activity. Consequently, Z. spinosa shrubs inhabiting the arid environment is a promising new source of saponins, glucosinolates, cardiac glycosides, phenols and flavonoids which could participate in drug development and exploration of alternative strategies to increase productivity of wild plants.

  2. [Bread from the bioactivated wheat grain with the raised nutrition value].

    Science.gov (United States)

    Ponomareva, E I; Alekhina, N N; Bakaeva, I A

    2016-01-01

    Bread from the bioactivated grain of wheat differs in high content of dietary fibers, minerals and vitamins compared to traditional types of bread, but, despite this, it has low protein and lysine content. The aim of the study was the development of bread with the raised nutritional value from the bioactivated wheat grain by use of flour from cake of wheat germ (6.5%). It has been established that the flour from wheat germ has protein biological value (77.4%) and the amino acid score according to lysine (100.3%) above 12 and 40.5%, respectively, compared with those from bioactivated wheat. During calculation of nutritive, biological and energy value of products from the bioactivated wheat grain it is revealed that the biological value of bread from wheat germ flour slightly exceeded the biological value of the bread without its addition and amounted to 70.80%, due to a high protein content and a balanced amino acid composition. The protein content in the test sample of bakery products was 19.0% higher than the control, phosphorus - 13.0%, zinc - 50.0%.

  3. Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry.

    Science.gov (United States)

    Wang, Y-Y; Chatzistavrou, X; Faulk, D; Badylak, S; Zheng, L; Papagerakis, S; Ge, L; Liu, H; Papagerakis, P

    2015-06-20

    The aim of this study was the fabrication and evaluation of a novel bioactive and bactericidal material, which could have applications in dentistry by supporting tissue regeneration and killing oral bacteria. Our hypothesis was that a new scaffold for pulp-dentin tissue engineering with enhanced antibacterial activity could be obtained by associating extracellular matrix derived from porcine bladder with an antibacterial bioactive glass. Our study combines in vitro approaches and ectopic implantation in scid mice. The novel material was fabricated by incorporating a sol-gel derived silver (Ag)-doped bioactive glass (BG) in a natural extracellular matrix (ECM) hydrogel in ratio 1:1 in weight % (Ag-BG/ECM). The biological properties of the Ag-BG/ECM were evaluated in culture with dental pulp stem cells (DPSCs). In particular, cell proliferation, cell apoptosis, stem cells markers profile, and cell differentiation potential were studied. Furthermore, the antibacterial activity against Streptococcus mutans and Lactobacillus casei was measured. Moreover, the capability of the material to enhance pulp/dentin regeneration in vivo was also evaluated. Our data show that Ag-BG/ECM significantly enhances DPSCs' proliferation, it does not affect cell morphology and stem cells markers profile, protects cells from apoptosis, and enhances in vitro cell differentiation and mineralisation potential as well as in vivo dentin formation. Furthermore, Ag-BG/ECM strongly inhibits S. mutans and L. casei growth suggesting that the new material has also anti-bacterial properties. This study provides foundation for future clinical applications in dentistry. It could potentially advance the currently available options of dental regenerative materials.

  4. Bioactivity-guided mapping and navigation of chemical space

    NARCIS (Netherlands)

    Renner, S.; Otterlo, van W.A.L.; Seoane, M.D.; Möcklinghoff, S.; Hofmann, B.; Wetzel, S.; Schuffenhauer, A.; Ertl, P.; Oprea, T.I.; Steinhilber, D.; Brunsveld, L.; Rauh, D.; Waldmann, H.

    2009-01-01

    The structure- and chemistry-based hierarchical organization of library scaffolds in tree-like arrangements provides a valid, intuitive means to map and navigate chemical space. We demonstrate that scaffold trees built using bioactivity as the key selection criterion for structural simplification

  5. In vitro bioactivity and cytocompatibility of tricalcium silicate

    Indian Academy of Sciences (India)

    tricalcium silicate powder showed that it could induce bone- like apatite formation after ... ated by soaking them in SBF, cell adhesion and MTT assay, respectively. 2. .... tibility, which might be used as one of the bioactive coating materials and ...

  6. Astragalin: A Bioactive Phytochemical with Potential Therapeutic Activities

    Directory of Open Access Journals (Sweden)

    Ammara Riaz

    2018-01-01

    Full Text Available Natural products, an infinite treasure of bioactive chemical entities, persist as an inexhaustible resource for discovery of drugs. This review article intends to emphasize on one of the naturally occurring flavonoids, astragalin (kaempferol 3-glucoside, which is a bioactive constituent of various traditional medicinal plants such as Cuscuta chinensis. This multifaceted compound is well known for its diversified pharmacological applications such as anti-inflammatory, antioxidant, neuroprotective, cardioprotective, antiobesity, antiosteoporotic, anticancer, antiulcer, and antidiabetic properties. It carries out the aforementioned activities by the regulation and modulation of various molecular targets such as transcription factors (NF-κB, TNF-α, and TGF-β1, enzymes (iNOS, COX-2, PGE2, MMP-1, MMP-3, MIP-1α, COX-2, PGE-2, HK2, AChe, SOD, DRP-1, DDH, PLCγ1, and GPX, kinases (JNK, MAPK, Akt, ERK, SAPK, IκBα, PI3K, and PKCβ2, cell adhesion proteins (E-cadherin, vimentin PAR-2, and NCam, apoptotic and antiapoptotic proteins (Beclin-1, Bcl-2, Bax, Bcl-xL, cytochrome c, LC3A/B, caspase-3, caspase-9, procaspase-3, procaspase-8, and IgE, and inflammatory cytokines (SOCS-3, SOCS-5, IL-1β, IL-4, IL-6, IL-8, IL-13, MCP-1, CXCL-1, CXCL-2, and IFN-γ. Although researchers have reported multiple pharmacological applications of astragalin in various diseased conditions, further experimental investigations are still mandatory to fully understand its mechanism of action. It is contemplated that astragalin could be subjected to structural optimization to ameliorate its chemical accessibility, to optimize its absorption profiles, and to synthesize its more effective analogues which will ultimately lead towards potent drug candidates.

  7. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule

    Science.gov (United States)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

  8. A QSAR approach for virtual screening of lead-like molecules en route to antitumor and antibiotic drugs from marine and microbial natural products

    Directory of Open Access Journals (Sweden)

    Florbela Pereira

    2014-05-01

    Figure 1. The unreported 15 lead antibiotic MNPs and MbNPs from AntiMarin database, using the best Rfs antibiotic model with a probability of being antibiotic greater than or equal to 0.8. Figure 2. The selected 4 lead antitumor MNPs and MbNPs from the AntiMarin database, using the best Rfs antitumor model with a probability of being antitumor greater than or equal to 0.8. The present work corroborates by one side the results of our previous work6 and enables the presentation of a new set of possible lead like bioactive compounds. Additionally, it is shown the usefulness of quantum-chemical descriptors in the discrimination of biological active and inactive compounds. The use of the εHOMO quantum-chemical descriptor in the discrimination of large scale data sets of lead-like or drug-like compounds has never been reported. This approach results in the reduction, in great extent, of the number of compounds used in real screens, and it reinforces the results of our previous work. Furthermore, besides the virtual screening, the computational methods can be very useful to build appropriate databases, allowing for effective shortcuts of NP extracts dereplication procedures, which will certainly result in increasing the efficiency of drug discovery.

  9. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  10. Innovative natural functional ingredients from microalgae.

    Science.gov (United States)

    Plaza, Merichel; Herrero, Miguel; Cifuentes, Alejandro; Ibáñez, Elena

    2009-08-26

    Nowadays, a wide variety of compounds such as polyphenols, polyunsaturated fatty acids (PUFA), or phytosterols obtained, for example, from wine, fish byproducts, or plants are employed to prepare new functional foods. However, unexplored natural sources of bioactive ingredients are gaining much attention since they can lead to the discovery of new compounds or bioactivities. Microalgae have been proposed as an interesting, almost unlimited, natural source in the search for novel natural functional ingredients, and several works have shown the possibility to find bioactive compounds in these organisms. Some advantages can be associated with the study of microalgae such as their huge diversity, the possibility of being used as natural reactors at controlled conditions, and their ability to produce active secondary metabolites to defend themselves from adverse or extreme conditions. In this contribution, an exhaustive revision is presented involving the research for innovative functional food ingredients from microalgae. The most interesting results in this promising field are discussed including new species composition and bioactivity and new processing and extraction methods. Moreover, the future research trends are critically commented.

  11. Role of cellulose functionality in bio-inspired synthesis of nano bioactive glass.

    Science.gov (United States)

    Gupta, Nidhi; Santhiya, Deenan

    2017-06-01

    In search of abundant cheaper natural polymer for bio-inspired bioactive glass nanoparticles synthesis, cellulose and its derivatives have been considered as a template. Different templates explored in the present studies are pure cellulose, methyl cellulose and amine grafted cellulose. To the best of our knowledge, for the first time of the considered templates, pure cellulose and amine grafted cellulose results in in situ nano particulate composite formation while interestingly methyl cellulose proves to be an excellent sacrificial template for the synthesis of uniform bioglass nanoparticles of diameter in the range of 55nm. Further, viscoelastic measurements were carried out using dynamic mechanical analyzer. Herein, an attempt has been made to establish structure-mechanical relationship based on the templates. Moreover, in vitro bioactivity is also observed to be affected by the nature of the template molecule used for the synthesis of bioactive glass. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite – an in vitro study

    Directory of Open Access Journals (Sweden)

    Lakshmi R

    2015-10-01

    Full Text Available R Lakshmi, S Sasikumar Materials Chemistry Division, School of Advanced Sciences, VIT University, Vellore, Tamil Nadu, India Abstract: In the past 2 decades, wollastonite has been studied thoroughly for its application as a bone implant material due to its biocompatibility, high mechanical strength, and excellent bioactivity when compared to calcium phosphates bioceramics. Wollastonite was prepared through the low-temperature sol-gel combustion method using urea as the fuel, nitrate ions and nitric acid as the oxidizer. Calcium nitrate and tetraethyl orthosilicate were taken as the source of calcium and silica. The synthesized wollastonite were characterized by Fourier transform infrared spectroscopy for the identification of characteristic functional group and powder X-ray diffraction for the phase identification. Employing urea as a fuel resulted in needle-like morphology of the particles, which was confirmed by scanning electron microscopy and transmission electron microscopy. It was observed that the needle-like morphology enhances the mechanical properties such as elasticity and compressive strength and also increases the surface area of the material, which could help in a rapid deposition of hydroxyapatite layer. These properties of wollastonite warrant its application as a new artificial bone material in the field of hard tissue engineering. Keywords: sol-gel combustion synthesis, bioceramics, hydroxyapatite, compressive strength, morphology

  13. A Natural Experiment: Using Immersive Technologies to Study the Impact of "All-Natural" Labeling on Perceived Food Quality, Nutritional Content, and Liking.

    Science.gov (United States)

    Liu, Rebecca; Hooker, Neal H; Parasidis, Efthimios; Simons, Christopher T

    2017-03-01

    The "all-natural" label is used extensively in the United States. At many point-of-purchase locations, employed servers provide food samples and call out specific label information to influence consumers' purchase decisions. Despite these ubiquitous practices, it is unclear what information is conveyed to consumers by the all-natural label or how it impacts judgments of perceived food quality, nutritional content, and acceptance. We used a novel approach incorporating immersive technology to simulate a virtual in-store sampling scenario where consumers were asked by a server to evaluate identical products with only one being labeled all-natural. Another condition evaluated the impact of the in-store server additionally emphasizing the all-natural status of one sample. Results indicated the all-natural label significantly improved consumer's perception of product quality and nutritional content, but not liking or willingness to pay, when compared to the regular sample. With the simple emphasis of the all-natural claim by the in-store server, these differences in quality and nutritional content became even more pronounced, and willingness to pay increased significantly by an average of 8%. These results indicate that in a virtual setting consistent with making food purchases, an all-natural front-of-pack label improves consumer perceptions of product quality and nutritional content. In addition, information conveyed to consumers by employed servers has a further, substantial impact on these variables suggesting that consumers are highly susceptible to social influence at the point of purchase. © 2017 Institute of Food Technologists®.

  14. Alternative Fuels Data Center: Conventional Natural Gas Production

    Science.gov (United States)

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production

  15. Synchrotron X-ray Absorption and In Vitro Bioactivity of Magnetic Macro/Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Thanida Charoensuk

    2015-12-01

    Full Text Available Iron oxides in macro/mesoporous bioactive glasses were characterized by synchrotron X-ray absorption near edge structure (XANES spectroscopy. This magnetic phase was introduced by adding Fe(NO33 9H2O during the sol-gel synthesis. The obtained bioactive glass scaffolds exhibited superparamagnetism, in which the magnetization was increased with the increase in the Fe molar ratio from 10 to 20%. The linear combination fits of the XANES spectra indicated that the increase in the Fe molar ratio to 20% enhanced the γ-Fe2O3 formation at the expense of the α- Fe2O3 phase. This variation also promoted the formation of fine-grained bone-like apatites on the surface of the scaffolds in the in vitro test. The apatite growth between three and seven days was confirmed by the changing elemental compositions. However, the highest magnetic proportion led to the distortion of the skeleton walls and the collapse of the porous networks.

  16. Synthesis of Polycyclic Natural Products

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tuan Hoang [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    With the continuous advancements in molecular biology and modern medicine, organic synthesis has become vital to the support and extension of those discoveries. The isolations of new natural products allow for the understanding of their biological activities and therapeutic value. Organic synthesis is employed to aid in the determination of the relationship between structure and function of these natural products. The development of synthetic methodologies in the course of total syntheses is imperative for the expansion of this highly interdisciplinary field of science. In addition to the practical applications of total syntheses, the structural complexity of natural products represents a worthwhile challenge in itself. The pursuit of concise and efficient syntheses of complex molecules is both gratifying and enjoyable.

  17. Exploration of avocado by-products as natural sources of bioactive compounds

    Science.gov (United States)

    Tremocoldi, Maria Augusta; Rosalen, Pedro Luiz; Franchin, Marcelo; Massarioli, Adna Prado; Denny, Carina; Daiuto, Érica Regina; Paschoal, Jonas Augusto Rizzato; Melo, Priscilla Siqueira

    2018-01-01

    This study aimed to evaluate the antioxidant, anti-inflammatory, and cytotoxic properties and phenolic composition of peel and seed of avocado varieties Hass and Fuerte using green solvents. Ethanol soluble compounds were identified in peel and seed of both varieties using HPLC-MS/MS and quantified using HPLC-DAD. Agro-industrial by-products of both varieties exhibited high radical scavenging activity against synthetic free radicals (DPPH and ABTS) and reactive oxygen species (peroxyl, superoxide, and hypochlorous acid) and high ability to reduce Fe3+ to Fe2+. The main compounds with significant contribution to the antioxidant activity determined by online HPLC-ABTS●+ analyses were procyanidin B2 and epicatechin in the peel and trans-5-O-caffeoyl-D-quinic acid, procyanidin B1, catechin, and epicatechin in the seed. Peel of Fuerte significantly suppressed TNF-α and nitric oxide (NO) release (459.3 pg/mL and 8.5 μM, respectively), possibly because of the high phenolic content and antioxidant activity detected. Avocado agro-industrial by-products can be used for food and pharmaceutical purposes due to their antioxidant and anti-inflammatory properties. PMID:29444125

  18. Antibacterial and cytotoxic bioactivity of marine Actinobacteria from Loreto Bay National Park, Mexico

    OpenAIRE

    Cardoso-Martínez, Faviola; Becerril-Espinosa, Amayaly; Barrila-Ortíz, Celso; Torres-Beltrán, Mónica; Ocampo-Alvarez, Héctor; Iñiguez-Martínez, Ana M.; Soria-Mercado, Irma E.

    2015-01-01

    Abstract Production of bioactive compounds is intimately linked to the ecology of the producing organisms. Taking this into account, the objective of this study was to evaluate the bioactive properties of isolated Actinobacteria from sea sediments of a high biodiversity zone; under the hypothesis that the ecological characteristics of this site stimulate the presence of unique and bioactive strains that can be screened for new compounds with antibiotic and anticancer properties. The elected z...

  19. A New Highly Bioactive Composite for Scaffold Applications: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Antonella Sola

    2011-01-01

    Full Text Available Hydroxyapatite (HA has been widely investigated as scaffolding material for bone tissue engineering, mainly for its excellent biocompatibility. Presently, there is an increasing interest in the composites of hydroxyapatite with bioactive glasses, with the aim to obtain systems with improved bioactivity or mechanical properties. Moreover, modifying the ratio between bioactive glass and hydroxyapatite results in the possibility of controlling the reaction rate of the composite scaffold in the human body. However, high temperature treatments are usually required in order to sinter HA-based composites, causing the bioactive glass to crystallize into a glass-ceramic, with possible negative effects on its bioactivity. In the present research work, a glass composition belonging to the Na2O-CaO-P2O5-SiO2 system, with a reduced tendency to crystallize, is applied to realize HA-based composites. The novel samples can be sintered at a relative low temperature (750 °C compared to the widely studied HA/45S5 Bioglass® composites. This fact greatly helps to preserve the amorphous nature of the glass, with excellent effects in terms of bioactivity, according to in vitro tests. As a first application, the obtained composites are also tested to realize highly porous scaffolds by means of the standard burning out method.

  20. Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products: New Insights Into the Role of Leader and Core Peptides During Biosynthesis

    Science.gov (United States)

    Yang, Xiao; van der Donk, Wilfred A.

    2013-01-01

    Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with a high degree of structural diversity and a wide variety of bioactivities. Understanding the biosynthetic machinery of these RiPPs will benefit the discovery and development of new molecules with potential pharmaceutical applications. In this review, we discuss the features of the biosynthetic pathways to different RiPP classes, and propose mechanisms regarding recognition of the precursor peptide by the posttranslational modification enzymes. We propose that the leader peptides function as allosteric regulators that bind the active form of the biosynthetic enzymes in a conformational selection process. We also speculate how enzymes that generate polycyclic products of defined topologies may have been selected for during evolution. PMID:23666908

  1. Bioactivity characterization of Lactobacillus strains isolated from dairy products

    Science.gov (United States)

    Haghshenas, Babak; Nami, Yousef; Haghshenas, Minoo; Abdullah, Norhafizah; Rosli, Rozita; Radiah, Dayang; Yari Khosroushahi, Ahmad

    2015-01-01

    This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. PMID:26219634

  2. The design, synthesis, and anti-inflammatory evaluation of a drug-like library based on the natural product valerenic acid.

    Science.gov (United States)

    Egbewande, Folake A; Nilsson, Niclas; White, Jonathan M; Coster, Mark J; Davis, Rohan A

    2017-07-15

    The plant natural product, valerenic acid (1) was chosen as a desirable scaffold for the generation of a novel screening library due to its drug-like physicochemical parameters (such as LogP, hydrogen bond donor/acceptor counts, and molecular weight). An 11-membered amide library (2-12) was subsequently generated using parallel solution-phase synthesis and Ghosez's reagent. The chemical structures of all semi-synthetic analogues (2-12) were elucidated following analysis of the NMR, MS, UV and IR data. The structures of compounds 8 and 11 were also confirmed by X-ray crystallographic analysis. All library members were evaluated for their ability to inhibit the release of IL-8 and TNF-α. Six analogues showed moderate activity in the IL-8 assay with IC 50 values of 2.8-8.3μM, while none of the tested compounds showed any significant effect on inhibiting TNF-α release. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Economic growth to raise U.S. oil products, natural gas demand

    International Nuclear Information System (INIS)

    Beck, R.J.

    1994-01-01

    An accelerating economy will raise consumption of oil products and natural gas in the US this year. Contributing to demand growth will be the slump that began late last year in prices for crude oil and petroleum products. Some price recovery is likely in 1994, but there's little reason to expect a major increase. With oil production falling and demand rising, imports will have to climb again this year. OGJ projects a 2.6% increase this year following a 6.6% increase last year. Imports are expected to fill a record high 49.3% of US oil demand this year. The paper discusses energy and the economy, overall energy use, energy by source, the electrification trend, energy supplies, imports, refining operations, the growth of margins, and the energy demand of motor gasoline, jet fuel, distillate fuels, residual fuel oils, other petroleum products, and natural gas

  4. Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites

    Energy Technology Data Exchange (ETDEWEB)

    Chatzistavrou, Xanthippi, E-mail: x.chatzistavrou@imperial.ac.uk [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kantiranis, Nikolaos, E-mail: kantira@geo.auth.gr [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, Eleana, E-mail: kont@dent.auth.gr [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, Konstantinos, E-mail: hrisafis@physics.auth.gr [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, Labrini, E-mail: lambrini@geo.auth.gr [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, Petros, E-mail: pkoidis@dent.auth.gr [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Boccaccini, Aldo R., E-mail: a.boccaccini@imperial.ac.uk [Department of Materials, Faculty of Engineering, Imperial College, SW7 2AZ London (United Kingdom); Paraskevopoulos, Konstantinos M., E-mail: kpar@auth.gr [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2011-01-15

    Bioactive glass-alumina composite (BA) pellets were fabricated in the range 95/5-60/40 wt.% respectively and were heat-treated under a specific thermal treatment up to 950 {sup o}C. Control (unheated) and heat-treated pellets were immersed in Simulated Body Fluid (SBF) for bioactivity testing. All pellets before and after immersion in SBF were studied by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray Diffraction (XRD) analysis. All composite pellets presented bioactive response. On the surface of the heat-treated pellets the development of a rich biological hydroxyapatite (HAp) layer was delayed for one day, compared to the respective control pellets. Independent of the proportion of the two components, all composites of each group (control and heat-treated) presented the same bioactive response as a function of immersion time in SBF. It was found that by the applied methodology, Al{sub 2}O{sub 3} can be successfully applied in bioactive glass composites without obstructing their bioactive response. - Research Highlights: {yields} Isostatically pressed glass-alumina composites presented apatite-forming ability. {yields} The interaction with SBF resulted in an aluminium phosphate phase formation. {yields} The formation of an aluminium phosphate phase enhanced the in vitro apatite growth.

  5. Production of Bioactive Compounds by Bacillus subtilis against Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Nalisha, I.

    2006-01-01

    Full Text Available This study aims to investigate the characteristic of bioactive compound produced by Bacillus subtilis against Sclerotium rolfsii and the influence of additive supplements on the antagonistic activity of B. subtilis. The fact that B. subtilis produced an antifungal substance which has inhibitory effect on wide range of fungi, including S. rolfsii, is well known. To learn the effect of pH, temperature and light condition on the production of antifungal compound, B. subtilis was inoculated in Potato Dextrose Broth at various initial pH, temperatures and light conditions, respectively. This antagonist was found to produce antifungal compound that stable at 80C with 58.3 % inhibition on S. rolfsii. The activity was constant within a wide range of pH (3–11. However, treatment with pH11 lead to higher antifungal activity (31.57 % inhibition and it was also found to produce substance that can endure dark condition (46.24 % inhibition with fungicidal effect on S. rolfsii. A series of experiments also been carried out to enhance the antifungal production by supplementing different carbon source preparation into bacterial liquid culture. B. subtilis were grown in minimal medium containing 1 % of oil palm root, Ganoderma lucidum or chitin, respectively prior to bioassay. Crude culture from oil palm root supplemented culture shown significantly reduction in S. rolfsii growth compared to other carbon source crude culture or the antagonism alone, suggesting that this approach may provide improved biocontrol efficiency.

  6. Rat health status affects bioavailability, target tissue levels, and bioactivity of grape seed flavanols

    NARCIS (Netherlands)

    Margalef, M.; Pons, Z.; Iglesias-Carres, L.; Quinones, M.; Bravo, F.I.; Arola-Arnal, A.; Muguerza, B.

    2017-01-01

    SCOPE: Studying the flavanol metabolism is essential to identify bioactive compounds, as beneficial effects of flavanols have been attributed to their metabolic products. However, host-related factors, including pathological conditions, may affect flavanol metabolism and, thus, their bioactivity.

  7. Chiral thiazoline and thiazole building blocks for the synthesis of peptide-derived natural products.

    Science.gov (United States)

    Just-Baringo, Xavier; Albericio, Fernando; Alvarez, Mercedes

    2014-01-01

    Thiazoline and thiazole heterocycles are privileged motifs found in numerous peptide-derived natural products of biological interest. During the last decades, the synthesis of optically pure building blocks has been addressed by numerous groups, which have developed a plethora of strategies to that end. Efficient and reliable methodologies that are compatible with the intricate and capricious architectures of natural products are a must to further develop their science. Structure confirmation, structure-activity relationship studies and industrial production are fields of paramount importance that require these robust methodologies in order to successfully bring natural products into the clinic. Today's chemist toolbox is assorted with many powerful methods for chiral thiazoline and thiazole synthesis. Ranging from biomimetic approaches to stereoselective alkylations, one is likely to find a suitable method for their needs.

  8. The Effect of the Nanoscale Structure of Nanobioceramics on Their In Vitro Bioactivity and Cell Differentiation Properties

    Directory of Open Access Journals (Sweden)

    Cristian Covarrubias

    2015-01-01

    Full Text Available The effect of the nanoscale structure of bioceramics on their in vitro bioactivity and capacity to osteogenically differentiate stem cell is studied. Nanoparticles of hydroxyapatite (nHA, bioactive glass (nBG, nanoporous bioactive glass (MBG, and nanoporous bioactive glass nanospheres (nMBG are investigated. The nanometric particle size of bioceramics seems to be more determining in controlling the ability to induce bone-like apatite as compared to the nanoporous structure. At short incubation time, nBG also produces a bioactive extracellular medium capable of upregulating key osteogenic markers involved in the development of a mineralizing phenotype in DPSCs. The bioactive properties of nBG are promissory for accelerating the bone regeneration process in tissue engineering applications.

  9. Bioactive Compounds of Blueberries: Post-Harvest Factors Influencing the Nutritional Value of Products.

    Science.gov (United States)

    Michalska, Anna; Łysiak, Grzegorz

    2015-08-10

    Blueberries, besides having commonly-recognized taste properties, are also a valuable source of health-promoting bioactive compounds. For several decades, blueberries have gained in popularity all over the world, and recent years have seen not only an increase in fresh consumption, but also in the importance of blueberries for the processing industry. Blueberry processing mostly consists of freezing and juicing. Recently, more attention has been drawn to dewatering and drying, which are promising areas for developing novel blueberry products. Processing affects each biologically-active compound in a different way, and it is still unknown what changes those compounds undergo at the molecular level after the application of different processing technologies. This work presents the most recent state of knowledge about the pre-treatment and processing methods applied to blueberries and their influence on the content of biologically-active compounds. The presentation of methods is preceded by a brief overview of the characteristics of the blueberry species, a description of the chemical composition of the fruit and a short note about the main growing areas, production volumes and the management of fruit crops.

  10. Use of bioactivator, biostimulant and complex of nutrients in soybean seeds

    Directory of Open Access Journals (Sweden)

    José Adolfo Binsfeld

    2014-03-01

    Full Text Available New discoveries have stimulated the use of different substances with physiologic effects, in order to develop agricultural crops. Thus, this study aimed at evaluating seeds treated with biostimulant, bioactivator and nutrients, in the initial development of soybean seeds. Two lots of seeds (high and low vigor, BMX Potência RR cultivar were used. The products tested were an insecticide with bioactivator effect, a plant growth regulator with biostimulant effect, a complex of nutrients and a control. Under laboratory conditions, the parameters water content, germination, first germination counting, accelerated aging, cold test, length and dry matter weight of seedlings were evaluated. Under greenhouse conditions, evaluations included emergence, emergence speed index, length and dry matter weight of seedlings. The efficiency of the products tested was affected by the seed physiologic quality, with a more pronounced effect for the products in high vigor lots. In general, the treatment with best results for initial performance was the complex of nutrients, followed by the plant growth regulator with biostimulant effect. The bioactivator had negative effect on seeds germination and seedling development.

  11. High-level expression and efficient purification of bioactive swollenin in Aspergillus oryzae.

    Science.gov (United States)

    Wang, Meihua; Cai, Jin; Huang, Lei; Lv, Zhengbin; Zhang, Yaozhou; Xu, Zhinan

    2010-11-01

    The bioactivity of swollenin is beneficial to cellulose decomposition by cellulase despite the lack of hydrolytic activity itself. In order to improve the productivity of swollenin, the effects of culture conditions on the expression level in recombinant Aspergillus oryzae were investigated systematically. With regard to the bioactivity of swollenin, glycerin and peanut meal were the optimal carbon or nitrogen source, respectively. The highest level production of swollenin (50 mg L(-1)) was attained after 88 h cultivation with the initial pH of 5.6 in the culture medium. Then the soluble swollenin was effectively purified from the cultural supernatant by ammonium sulfate precipitation and cationic exchange chromatography with recovery yield of 53.2%. The purified swollenin was fully bioactive due to its strong synergistic activity with cellulose.

  12. Discovery and characterization of natural products that act as pheromones in fish.

    Science.gov (United States)

    Li, Ke; Buchinger, Tyler J; Li, Weiming

    2018-06-20

    Covering: up to 2018 Fish use a diverse collection of molecules to communicate with conspecifics. Since Karlson and Lüscher termed these molecules 'pheromones', chemists and biologists have joined efforts to characterize their structures and functions. In particular, the understanding of insect pheromones developed at a rapid pace, set, in part, by the use of bioassay-guided fractionation and natural product chemistry. Research on vertebrate pheromones, however, has progressed more slowly. Initially, biologists characterized fish pheromones by screening commercially available compounds suspected to act as pheromones based upon their physiological function. Such biology-driven screening has proven a productive approach to studying pheromones in fish. However, the many functions of fish pheromones and diverse metabolites that fish release make predicting pheromone identity difficult and necessitate approaches led by chemistry. Indeed, the few cases in which pheromone identification was led by natural product chemistry indicated novel or otherwise unpredicted compounds act as pheromones. Here, we provide a brief review of the approaches to identifying pheromones, placing particular emphasis on the promise of using natural product chemistry together with assays of biological activity. Several case studies illustrate bioassay-guided fractionation as an approach to pheromone identification in fish and the unexpected diversity of pheromone structures discovered by natural product chemistry. With recent advances in natural product chemistry, bioassay-guided fractionation is likely to unveil an even broader collection of pheromone structures and enable research that spans across disciplines.

  13. Synthesis, characterization, bioactivity and antibacterial studies of silver doped calcium borosilicate glass-ceramics

    Science.gov (United States)

    Kumar, Alesh; Mariappan, C. R.

    2018-04-01

    Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.

  14. Bioactivity Improvement of Olea europaea Leaf Extract Biotransformed by Wickerhamomyces anomalus Enzymes.

    Science.gov (United States)

    Palmeri, Rosa; Restuccia, Cristina; Monteleone, Julieta Ines; Sperlinga, Elisa; Siracusa, Laura; Serafini, Mauro; Finamore, Alberto; Spagna, Giovanni

    2017-06-01

    Olive leaves represent a quantitatively significant by-product of agroindustry. They are rich in phenols, mainly oleuropein, which can be hydrolyzed into several bioactive compounds, including hydroxytyrosol. In this study, water extract from olive leaves 'Biancolilla' was analyzed for polyphenol profile, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and protective effect on differentiated Caco-2 cells. The efficacy of two enzymatic treatments in promoting the release of bioactive phenols was investigated: a) enzymatic extract from Wickerhamomyces anomalus, characterized by β-glucosidase and esterase activities; b) commercial β-glucosidase. Composition and bioactivity of the resulting extracts were compared. The results showed that the yeast-treated extract presented hydroxytyrosol content and DPPH radical scavenging activity comparable to those obtained using commercial β-glucosidase; however, it was showed the additional presence of hydroxycinnamic acids. In experiments on Caco-2 cells, the leaf extracts promoted the recovery of cell membrane barrier at different minimum effective concentrations. The high specificity of W. anomalus enzymatic extract may represent an effective tool for the release of bioactive phenols from olive by-products.

  15. Bioactive Glasses: Where Are We and Where Are We Going?

    Directory of Open Access Journals (Sweden)

    Francesco Baino

    2018-03-01

    Full Text Available Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today’s achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.

  16. Bioactive Glasses: Where Are We and Where Are We Going?

    Science.gov (United States)

    Baino, Francesco; Hamzehlou, Sepideh; Kargozar, Saeid

    2018-03-19

    Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today's achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.

  17. Effects of Illumination Pattern during Cultivation of Fruiting Body and Bioactive Compound Production by the Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes).

    Science.gov (United States)

    Wu, Chiu-Yeh; Liang, Zeng-Chin; Tseng, Chin-Yin; Hu, Shu-Hui

    2016-01-01

    We investigated the effects of light intensity in the 3 cultivation stages separately-the mycelium colonization stage, the primordial initiation stage, and the fruiting stage (in order)-on fruiting body and bioactive compound production by Cordyceps militaris. In the mycelium colonization stage, rice substrates were incubated in a spawn running room at 23°C. During the primordial initiation stage, C. militaris was grown at 18°C and illuminated 12 hours/day. In the fruiting stage the temperature was 23°C, with illumination provided 12 hours/day. The highest fruiting body yield and biological efficiency were 4.06 g dry weight/bottle and 86.83%, respectively, under 1750 ± 250 lux during the second and third stages. The cordycepin content was highest during the second and third stages under 1250 ± 250 lux. The mannitol and polysaccharide contents were highest under 1250 ± 250 and 1750 ± 250 lux during the primordial initiation stage and the fruiting stage, respectively. Thus, with controlled lighting, C. militaris can be cultivated in rice-water medium to increase fruiting body yield and bioactive compound production.

  18. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth.

    Science.gov (United States)

    Kumaraswamy, R V; Kumari, Sarita; Choudhary, Ram Chandra; Pal, Ajay; Raliya, Ramesh; Biswas, Pratim; Saharan, Vinod

    2018-07-01

    Excessive use of agrochemicals for enhancing crop production and its protection posed environmental and health concern. Integration of advanced technology is required to realize the concept of precision agriculture by minimizing the input of pesticides and fertilizers per unit while improving the crop productivity. Notably, chitosan based biodegradable nanomaterials (NMs) including nanoparticles, nanogels and nanocomposites have eventually proceeded as a key choice in agriculture due to their inimitable properties like antimicrobial and plant growth promoting activities. The foreseeable role of chitosan based NMs in plants might be in achieving sustainable plant growth through boosting the intrinsic potential of plants. In-spite of the fact that chitosan based NMs abode immense biological activities in plants, these materials have not yet been widely adopted in agriculture due to poor understanding of their bioactivity and modes of action towards pathogenic microbes and in plant protection and growth. To expedite the anticipated claims of chitosan based NMs, it is imperative to line up all the possible bioactivities which denote for sustainable agriculture. Herein, we have highlighted, in-depth, various chitosan based NMs which have been used in plant growth and protection mainly against fungi, bacteria and viruses and have also explained their modes of action. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging.

    Science.gov (United States)

    Torres-Giner, Sergio; Wilkanowicz, Sabina; Melendez-Rodriguez, Beatriz; Lagaron, Jose M

    2017-06-07

    This work originally reports on the use of electrohydrodynamic processing (EHDP) to encapsulate Aloe vera (AV, Aloe barbadensis Miller) using both synthetic polymers, i.e., polyvinylpyrrolidone (PVP) and poly(vinyl alcohol) (PVOH), and naturally occurring polymers, i.e., barley starch (BS), whey protein concentrate (WPC), and maltodextrin. The AV leaf juice was used as the water-based solvent for EHDP, and the resultant biopolymer solution properties were evaluated to determine their effect on the process. Morphological analysis revealed that, at the optimal processing conditions, synthetic polymers mainly produced fiber-like structures, while naturally occurring polymers generated capsules. Average sizes ranged from 100 nm to above 3 μm. As a result of their different and optimal morphology and, hence, higher AV content, PVP, in the form of nanofibers, and WPC, of nanocapsules, were further selected to study the AV stability against ultraviolet (UV) light exposure. Fourier transform infrared (FTIR) spectroscopy confirmed the successful encapsulation of AV in the biopolymer matrices, presenting both encapsulants a high chemical interaction with the bioactive components. Ultraviolet-visible (UV-vis) spectroscopy showed that, while PVP nanofibers offered a poor effect on the AV degradation during UV light exposure (∼10% of stability after 5 h), WPC nanobeads delivered excellent protection (stability of >95% after 6 h). This was ascribed to positive interactions between WPC and the hydrophilic components of AV and the inherent UV-blocking and oxygen barrier properties provided by the protein. Therefore, electrospraying of food hydrocolloids interestingly appears as a novel potential nanotechnology tool toward the formulation of more stable functional foods and nutraceuticals.

  20. Bioactive glass 45S5 from diatom biosilica

    Directory of Open Access Journals (Sweden)

    Luqman A. Adams

    2017-12-01

    Full Text Available A major draw-back to large scale production of bioactive glasses is the high cost of the standard silica precursor, usually tetraethyl orthosilicate (TEOS. The current study describes a novel sol–gel preparation of 45S5 bioactive glass using diatom biosilica from cultured cells of the diatom, Aulacoseira granulata as substitute to TEOS. The glass formed was characterized using mechanical tester, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDX, X-ray diffraction (XRD and Fourier transform infrared (FTIR spectroscopy. Results showed that the glass possessed a compressive strength of 3.75 ± 0.18 and formed carbonated hydroxyapatite (HCA within 7 days in simulated body fluid (SBF, attributable to good surface chemistry. The performance of the glass was compared with that of those formed using TEOS. Diatom biosilica could be a potential economically friendly starting material for large scale fabrication of bioactive glasses.

  1. A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network

    OpenAIRE

    Vaezi, Mohammad; Yang, Shoufeng

    2015-01-01

    Polyetheretherketone (PEEK) is a high-performance thermoplastic biomaterial which is currently used in a variety of biomedical orthopaedic applications. It has comparable tensile and compressive strength to cortical bone with favourable biocompatibility. However, natural grade PEEK-OPTIMA has shown insufficient bioactivity and limited bone integration. Bioactive PEEK composites (e.g., PEEK/calcium phosphates or Bioglass) and porous PEEK have been used to improve bone-implant interface of PEEK...

  2. Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites.

    Science.gov (United States)

    Aguilar-Pérez, Fernando J; Vargas-Coronado, Rossana F; Cervantes-Uc, Jose M; Cauich-Rodríguez, Juan V; Covarrubias, Cristian; Pedram-Yazdani, Merhdad

    2016-04-01

    Composites of glutamine-based segmented polyurethanes with 5 to 25 wt.% bioactive glass nanoparticles were prepared, characterized, and their mineralization potential was evaluated in simulated body fluid. Biocompatibility with dental pulp stem cells was assessed by MTS to an extended range of compositions (1 to 25 wt.% of bioactive glass nanoparticles). Physicochemical characterization showed that composites retained many of the matrix properties, i.e. those corresponding to semicrystalline elastomeric polymers as they exhibited a glass transition temperature (Tg) between -41 and -36℃ and a melting temperature (Tm) between 46 and 49℃ in agreement with X-ray reflections at 23.6° and 21.3°. However, with bioactive glass nanoparticles addition, tensile strength and strain were reduced from 22.2 to 12.2 MPa and 667.2 to 457.8%, respectively with 25 wt.% of bioactive glass nanoparticles. Although Fourier transform infrared spectroscopy did not show evidence of mineralization after conditioning of these composites in simulated body fluid, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray microanalysis showed the formation of an apatite layer on the surface which increased with higher bioactive glass concentrations and longer conditioning time. Dental pulp stem cells proliferation at day 5 was improved in bioactive glass nanoparticles composites containing lower amounts of the filler (1-2.5 wt.%) but it was compromised at day 9 in composites containing high contents of nBG (5, 15, 25 wt.%). However, Runx2 gene expression was particularly upregulated for the dental pulp stem cells cultured with composites loaded with 15 and 25 wt.% of bioactive glass nanoparticles. In conclusion, low content bioactive glass nanoparticles and segmented polyurethanes composites deserve further investigation for applications such as guided bone regeneration membranes, where osteoconductivity is desirable but not a demanding mechanical performance. © The

  3. Bioactive Constituents from an Endophytic Fungus, Penicillium polonicum NFW9, Associated with Taxus fauna.

    Science.gov (United States)

    Fatima, Nighat; Sripisut, Tawanun; Youn, Ui J; Ahmed, Safia; Ul-Haq, Ihsan; Munoz-Acuna, Ulyana; Simmons, Charles J; Qazi, Muneer A; Jadoon, Muniba; Tan, Ghee T; de Blanco, Esperanza J C; Chang, Leng C

    2017-01-01

    Endophytic fungi are being recognized as vital and untapped sources of a variety of structurally novel and unique bioactive secondary metabolites in the field of natural products drug discovery. Herein, this study reports the isolation and characterization of secondary metabolites from an endophytic fungus Penicillium polonicum (NFW9) associated with Taxus fuana. The extracts of the endophytic fungus cultured on potato dextrose agar were purified using several chromatographic techniques. Biological evaluation was performed based on their abilities to inhibit tumor necrosis factor-alpha (TNF-α)-induced nuclear factor-kappa B (NF-κB) and cytotoxicity assays. Bioactivity-directed fractionation of the ethyl acetate extract of a fermentation culture of an endophytic fungus, Penicillium polonicum led to the isolation of a dimeric anthraquinone, (R)- 1,1',3,3',5,5'-hexahydroxy-7,7'-dimethyl[2,2'-bianthracene]-9,9',10,10'-tetraone (1), a steroidal furanoid (-)-wortmannolone (2), along with three other compounds (3-4). Moreover, this is the first report on the isolation of compound 1 from an endophytic fungus. All purified metabolites were characterized by NMR and MS data analyses. The stereo structure of compound 1 was determined by the measurement of specific optical rotation and CD spectrum. The relative stereochemistry of 2 was confirmed by single-crystal X-ray diffraction. Compounds 2-3 showed inhibitory activities in the TNF-α-induced NF-κB assay with IC50 values in the range of 0.47-2.11 µM. Compounds 1, 4 and 5 showed moderate inhibition against NF-κB and cancer cell lines. The endophytic fungus Penicillium polonicum of Taxus fuana is capable of producing biologically active natural compounds. Our results provide a scientific rationale for further chemical investigations into endophyte-producing natural products, drug discovery and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Bioactive secondary metabolites from marine microbes for drug discovery.

    Science.gov (United States)

    Nikapitiya, Chamilani

    2012-01-01

    The isolation and extraction of novel bioactive secondary metabolites from marine microorganisms have a biomedical potential for future drug discovery as the oceans cover 70% of the planet's surface and life on earth originates from sea. Wide range of novel bioactive secondary metabolites exhibiting pharmacodynamic properties has been isolated from marine microorganisms and many to be discovered. The compounds isolated from marine organisms (macro and micro) are important in their natural form and also as templates for synthetic modifications for the treatments for variety of deadly to minor diseases. Many technical issues are yet to overcome before wide-scale bioprospecting of marine microorganisms becomes a reality. This chapter focuses on some novel secondary metabolites having antitumor, antivirus, enzyme inhibitor, and other bioactive properties identified and isolated from marine microorganisms including bacteria, actinomycetes, fungi, and cyanobacteria, which could serve as potentials for drug discovery after their clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Conformational stability, spectroscopic and computational studies, HOMO-LUMO, NBO, ESP analysis, thermodynamic parameters of natural bioactive compound with anticancer potential of 2-(hydroxymethyl)anthraquinone.

    Science.gov (United States)

    Balachandran, V; Karpagam, V; Revathi, B; Kavimani, M; Ilango, G

    2015-11-05

    Natural product drugs play a dominant role in pharmaceutical care. Nature is an attractive source of new therapeutic candidate compounds as a tremendous chemical diversity is found in millions of species of plants, animals, marine organism and micro-organism. A antifungal activity against important opportunist micro-organism and against those involved in superficial mycosis, all from nosocomial origin. The acute in vitro cytotoxicity evaluation of each anthraquinone (AQ) isolated from these bioactive extracts, on a mammalian eukaryotic cell line (Vero cells), allowed us to establish the non-cytotoxic concentration range, which was used to evaluate the anti-microbial effect. A comprehensive ab initio calculation using the DFT/6-31+G(d) level theory showed that 2-(hydroxymethyl)anthraquinone can exist in four possible conformations, which can interchange through the OH group on the five-membered ring. Density functional theory calculations were used to predict the vibrational frequencies and to help in normal mode, assignments. Furthermore, a natural bond orbital analysis was performed describing each hydrogen bond as donor accepter interaction. The Fourier transform infrared spectra (4000-400 cm(-1)) and the Fourier transform Raman spectra (3500-100 cm(-1)) of the HMA in the solid space have been recorded. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The calculated ESP contour map shows the electrophilic and nucleophilic region of the molecule. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis

    Science.gov (United States)

    Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-Cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi

    2017-09-01

    Pericyclic reactions—which proceed in a concerted fashion through a cyclic transition state—are among the most powerful synthetic transformations used to make multiple regioselective and stereoselective carbon-carbon bonds. They have been widely applied to the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centres. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples (the intramolecular Diels-Alder reaction, and the Cope and the Claisen rearrangements) have been characterized. Here we report a versatile S-adenosyl-L-methionine (SAM)-dependent enzyme, LepI, that can catalyse stereoselective dehydration followed by three pericyclic transformations: intramolecular Diels-Alder and hetero-Diels-Alder reactions via a single ambimodal transition state, and a retro-Claisen rearrangement. Together, these transformations lead to the formation of the dihydropyran core of the fungal natural product, leporin. Combined in vitro enzymatic characterization and computational studies provide insight into how LepI regulates these bifurcating biosynthetic reaction pathways by using SAM as the cofactor. These pathways converge to the desired biosynthetic end product via the (SAM-dependent) retro-Claisen rearrangement catalysed by LepI. We expect that more pericyclic biosynthetic enzymatic transformations remain to be discovered in naturally occurring enzyme ‘toolboxes’. The new role of the versatile cofactor SAM is likely to be found in other examples of enzyme catalysis.

  7. In-situ production of humic-like fluorescent dissolved organic matter during Cochlodinium polykrikoides blooms

    Science.gov (United States)

    Kwon, Hyeong Kyu; Kim, Guebuem; Lim, Weol Ae; Park, Jong Woo

    2018-04-01

    We investigated phytoplankton pigments, dissolved organic carbon (DOC), and fluorescent dissolved organic matter (FDOM) during the summers of 2013 and 2016 in the coastal area of Tongyeong, Korea, where Cochlodinium polykrikoides blooms often occur. The density of red tides was evaluated using a dinoflagellate pigment, peridinin. The concentrations of peridinin and DOC in the patch areas were 15- and 4-fold higher than those in the non-patch areas. The parallel factor analysis (PARAFAC) model identified one protein-like FDOM (FDOMT) and two humic-like FDOM, classically classified as marine FDOM (FDOMM) and terrestrial FDOM (FDOMC). The concentrations of FDOMT in the patch areas were 5-fold higher than those in the non-patch areas, likely associated with biological production. In general, FDOMM and FDOMC are known to be dependent exclusively on salinity in any surface waters of the coastal ocean. However, in this study, we observed strikingly enhanced FDOMC concentration over that expected from the salinity mixing, whereas FDOMM increases were not clear. These FDOMC concentrations showed a significant positive correlation against peridinin, indicating that the production of FDOMC is associated with the red tide blooms. Our results suggest that FDOMC can be naturally enriched by some phytoplankton species, without FDOMM enrichment. Such naturally produced FDOM may play a critical role in biological production as well as biogeochemical cycle in red tide regions.

  8. Cerâmicas bioativas: estado da arte Bioactive ceramics: state of the arts

    Directory of Open Access Journals (Sweden)

    Ângela Leão Andrade

    2006-02-01

    Full Text Available Bioactive glasses undergo corrosion with leaching of alkaline ions when exposed to body fluids. This results in the spontaneous formation of a layer of hydroxyapatite (HA, the mineral component of natural bone, which in turn can induce bone growth in vivo. This paper describes the different types of bioactive glasses, the characterization methods currently used, and the main factors that influence their bioactivity. Nucleation and crystallization, the main mechanisms involved in the formation of hydroxyapatite, Ca10(PO46(OH2, are discussed as a function of the chemical composition and the reactivity of the surface of the material. Finally, promising applications are considered.

  9. Natural products as photoprotection.

    Science.gov (United States)

    Saewan, Nisakorn; Jimtaisong, Ampa

    2015-03-01

    The rise in solar ultraviolet radiation on the earth's surface has led to a depletion of stratospheric ozone over recent decades, thus accelerating the need to protect human skin against the harmful effects of UV radiation such as erythema, edema, hyperpigmentation, photoaging, and skin cancer. There are many different ways to protect skin against UV radiation's harmful effects. The most popular way to reduce the amount of UV radiation penetrating the skin is topical application of sunscreen products that contain UV absorbing or reflecting active molecules. Based on their protection mechanism, the active molecules in sunscreens are broadly divided into inorganic and organic agents. Inorganic sunscreens reflect and scatter UV and visible radiation, while organic sunscreens absorb UV radiation and then re-emit energy as heat or light. These synthetic molecules have limited concentration according to regulation concern. Several natural compounds with UV absorption property have been used to substitute for or to reduce the quantity of synthetic sunscreen agents. In addition to UV absorption property, most natural compounds were found to act as antioxidants, anti-inflammatory, and immunomodulatory agents, which provide further protection against the damaging effects of UV radiation exposure. Compounds derived from natural sources have gained considerable attention for use in sunscreen products and have bolstered the market trend toward natural cosmetics. This adds to the importance of there being a wide selection of active molecules in sunscreen formulations. This paper summarizes a number of natural products derived from propolis, plants, algae, and lichens that have shown potential photoprotection properties against UV radiation exposure-induced skin damage. © 2015 Wiley Periodicals, Inc.

  10. Study of new CaO-SiO/sub 2/-P/sub 2/O/sub 5/CaF/sub 2/ bioactive ceramic

    International Nuclear Information System (INIS)

    Shamim, A.; Arif, I.; Siddiqi, S.A.; Shah, W.A.

    1997-01-01

    A new bioactive glass ceramic having, composition 48CaO-32SiO/sub 2/-16P/sub 2/O/sub 5/-4CaF/sub 2/ has been developed and studied for its physical and biological properties. Like the natural bone in which spastic particles are reinforced by collagen, in the present glass-ceramic, fine grained ceramic particles embedded in a glass matrix. X-ray diffraction analysis reveals wollastonite and oxyfluorapatite as the crystalline part of the glass-ceramic. Scanning electron microscopy of the samples has been carried out to see the grain size and grain distribution. Bending and compressive strength of the glass ceramic have been carried out to measured and found to be 208.60 m.Pa and 788.61 M.Pa respectively. Growth of apatite layer, which is responsible for bonding the broken part of a natural bone, on a bioactive glass-ceramic in a simulated body fluid has been studied. A small rectangular piece of this glass-ceramic has also been implanted successfully in a dog's tibia. (author)

  11. 4-Substituted-2-Methoxyphenol: Suitable Building Block to Prepare New Bioactive Natural-like Hydroxylated Biphenyls.

    Science.gov (United States)

    Dettori, Maria Antonietta; Fabbri, Davide; Pisano, Marina; Rozzo, Carla; Palmieri, Giuseppe; Dess, Alessandro; Dallocchio, Roberto; Delogu, Giovanna

    2015-02-01

    A small collection of eugenol- and curcumin-analog hydroxylated biphenyls was prepared by straightforward methods starting from natural 4-substituted-2-methoxyphenols and their antitumoral activity was evaluated in vitro . Two curcumin-biphenyl derivatives showed interesting growth inhibitory activities on different malignant melanoma cell lines with IC 50 ranging from 13 to 1 µM. Preliminary molecular modeling studies were carried out to evaluate conformations and dihedral angles suitable for antiproliferative activity in hydroxylated biphenyls bearing a side aliphatic chain.

  12. Bioactive compounds from palm fatty acid distillate and crude palm oil

    Science.gov (United States)

    Estiasih, T.; Ahmadi, K.

    2018-03-01

    Crude palm oil (CPO) and palm fatty acid distillate (PFAD) are rich sources of bioactive compounds. PFAD is a by-product of palm oil refinery that produce palm frying oil. Physical refining of palm oil by deodorization produces palm fatty acid distillate. CPO and PFAD contain some bioactive compounds such as vitamin E (tocopherol and tocotrienols), phytosterol, and squalene. Bioactive compounds of CPO and PFAD are vitamin E, phytosterols, and squalene. Vitamin E of CPO and PFAD mainly comprised of tocotrienols and the remaining is tocopherol. Phytosterols of CPO and PFAD contained beta sitosterol, stigmasterol, and campesterol. Tocotrienols and phytosterols of CPO and PFAD, each can be separated to produce tocotrienol rich fraction and phytosterol rich fraction. Tocotrienol rich fraction from PFAD has both antioxidant and cholesterol lowering properties. Bioactive compounds of PFAD silmultaneously have been proven to improve lipid profile, and have hepatoprotector effect, imunomodulator, antioxidant properties, and lactogenic effect in animal test experiment. It is possible to develop separation of bioactive compounds of CPO and PFAD integratively with the other process that utilizes fatty acid.

  13. Bioactive insulin-like growth factor (IGF) I and IGF-binding protein-1 in anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, René; Chen, Jian-Wen; Glintborg, Dorte

    2007-01-01

    CONTEXT: Regulation of IGF-I activity appears crucial in anorexia nervosa (AN) during adaptation to chronic starvation as well as during the regenerative processes on nutritional restoration. OBJECTIVE: The objective of this study was to examine the relationship between IGF-I bioactivity and IGF...

  14. Trends in the Discovery of New Marine Natural Products from Invertebrates over the Last Two Decades – Where and What Are We Bioprospecting?

    Science.gov (United States)

    Leal, Miguel Costa; Puga, João; Serôdio, João; Gomes, Newton C. M.; Calado, Ricardo

    2012-01-01

    It is acknowledged that marine invertebrates produce bioactive natural products that may be useful for developing new drugs. By exploring untapped geographical sources and/or novel groups of organisms one can maximize the search for new marine drugs to treat human diseases. The goal of this paper is to analyse the trends associated with the discovery of new marine natural products from invertebrates (NMNPI) over the last two decades. The analysis considers different taxonomical levels and geographical approaches of bioprospected species. Additionally, this research is also directed to provide new insights into less bioprospected taxa and world regions. In order to gather the information available on NMNPI, the yearly-published reviews of Marine Natural Products covering 1990–2009 were surveyed. Information on source organisms, specifically taxonomical information and collection sites, was assembled together with additional geographical information collected from the articles originally describing the new natural product. Almost 10000 NMNPI were discovered since 1990, with a pronounced increase between decades. Porifera and Cnidaria were the two dominant sources of NMNPI worldwide. The exception was polar regions where Echinodermata dominated. The majority of species that yielded the new natural products belong to only one class of each Porifera and Cnidaria phyla (Demospongiae and Anthozoa, respectively). Increased bioprospecting efforts were observed in the Pacific Ocean, particularly in Asian countries that are associated with the Japan Biodiversity Hotspot and the Kuroshio Current. Although results show comparably less NMNPI from polar regions, the number of new natural products per species is similar to that recorded for other regions. The present study provides information to future bioprospecting efforts addressing previously unexplored taxonomic groups and/or regions. We also highlight how marine invertebrates, which in some cases have no commercial value

  15. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    SERIES I ARTICLE. Learning Organic Chemistry. Through Natural Products. 2. Determination of Absolute Stereochemistry. N R Krishnaswamy was initiated into the world of natural products by T R. Seshadri at University of. Delhi and has carried on the glorious traditions of his mentor. He has taught at Bangalore University,.

  16. Study on antiviral activities, drug-likeness and molecular docking of bioactive compounds of Punica granatum L. to Herpes simplex virus - 2 (HSV-2).

    Science.gov (United States)

    Arunkumar, Jagadeesan; Rajarajan, Swaminathan

    2018-03-28

    Herpes simplex virus - 2 (HSV-2) causes lifelong persisting infection in the immunocompromised host and intermittent in healthy individuals with high morbidity in neonatals and also increase the transmission of HIV. Acyclovir is widely used drug to treat HSV-2 infection but it unable to control viral latency and recurrent infection and prolonged usage lead to drug resistance. Plant-based bioactive compounds are the lead structural bio-molecules play an inevitable role as a potential antiviral agent with reduced toxicity. Therefore, there is an urgent need to develop anti-HSV-2 bioactive molecules to prevent viral resistance and control of latent infection. Punica granatum fruit is rich in major bioactive compounds with potential antimicrobial properties. Hence, we evaluated the anti-HSV-2 efficacy of lyophilized extracts and bioactive compounds isolated from fruit peel of P. granatum. As a result, ethanolic peel extract showed significant inhibition at 62.5 μg/ml. Hence, the fruit peel ethanolic extract was subjected for the isolation of bioactive compounds isolation by bioactivity-guided fractionation. Among isolated bioactive compounds, punicalagin showed 100% anti-HSV-2 activity at 31.25 μg/ml with supportive evidence of desirable in silico ADMET properties and strong interactions to selected protein targets of HSV-2 by docking analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Immense essence of excellence: marine microbial bioactive compounds.

    Science.gov (United States)

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-10-15

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  18. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Ira Bhatnagar

    2010-10-01

    Full Text Available Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  19. Expanding the range of 'druggable' targets with natural product-based libraries: an academic perspective.

    Science.gov (United States)

    Bauer, Renato A; Wurst, Jacqueline M; Tan, Derek S

    2010-06-01

    Existing drugs address a relatively narrow range of biological targets. As a result, libraries of drug-like molecules have proven ineffective against a variety of challenging targets, such as protein-protein interactions, nucleic acid complexes, and antibacterial modalities. In contrast, natural products are known to be effective at modulating such targets, and new libraries are being developed based on underrepresented scaffolds and regions of chemical space associated with natural products. This has led to several recent successes in identifying new chemical probes that address these challenging targets. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Efficient recombinant production of prodigiosin in Pseudomonas putida

    Directory of Open Access Journals (Sweden)

    Andreas eDomröse

    2015-09-01

    Full Text Available Serratia marcescens and several other bacteria produce the red-colored pigment prodigiosin which possesses bioactivities as an antimicrobial, anticancer and immunosuppressive agent. Therefore, there is a great interest to produce this natural compound. Efforts aiming at its biotechnological production have so far largely focused on the original producer and opportunistic human pathogen S. marcescens. Here, we demonstrate efficient prodigiosin production in the heterologous host Pseudomonas putida. Random chromosomal integration of the 21 kb prodigiosin biosynthesis gene cluster of S. marcescens in P. putida KT2440 was employed to construct constitutive prodigiosin production strains. Standard cultivation parameters were optimized such that titers of 94 mg/L culture were obtained upon growth of P. putida at 20 °C using rich medium under high aeration conditions. Subsequently, a novel, fast and effective protocol for prodigiosin extraction and purification was established enabling the straightforward isolation of prodigiosin from P. putida growth medium. In summary, we describe here a highly efficient method for the heterologous biosynthetic production of prodigiosin which may serve as a basis to produce large amounts of this bioactive natural compound and may provide a platform for further in-depth studies of prodiginine biosynthesis.

  1. The Budding Yeast “Saccharomyces cerevisiae” as a Drug Discovery Tool to Identify Plant-Derived Natural Products with Anti-Proliferative Properties

    Directory of Open Access Journals (Sweden)

    Bouchra Qaddouri

    2011-01-01

    Full Text Available The budding yeast Saccharomyces cerevisiae is a valuable system to study cell-cycle regulation, which is defective in cancer cells. Due to the highly conserved nature of the cell-cycle machinery between yeast and humans, yeast studies are directly relevant to anticancer-drug discovery. The budding yeast is also an excellent model system for identifying and studying antifungal compounds because of the functional conservation of fungal genes. Moreover, yeast studies have also contributed greatly to our understanding of the biological targets and modes of action of bioactive compounds. Understanding the mechanism of action of clinically relevant compounds is essential for the design of improved second-generation molecules. Here we describe our methodology for screening a library of plant-derived natural products in yeast in order to identify and characterize new compounds with anti-proliferative properties.

  2. Natural gas product and strategic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Layne, A.W.; Duda, J.R.; Zammerilli, A.M.

    1993-12-31

    Product and strategic analysis at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry. This includes the supply, transportation, and end-use sectors of the natural-gas market. Projects in the Natural Gas Resource and Extraction supply program have been integrated into a new product focus. Product development facilitates commercialization and technology transfer through DOE/industry cost-shared research, development, and demonstration (RD&D). Four products under the Resource and Extraction program include Resource and Reserves; Low Permeability Formations; Drilling, Completion, and Stimulation: and Natural Gas Upgrading. Engineering process analyses have been performed for the Slant Hole Completion Test project. These analyses focused on evaluation of horizontal-well recovery potential and applications of slant-hole technology. Figures 2 and 3 depict slant-well in situ stress conditions and hydraulic fracture configurations. Figure 4 presents Paludal Formation coal-gas production curves used to optimize the hydraulic fracture design for the slant well. Economic analyses have utilized data generated from vertical test wells to evaluate the profitability of horizontal technology for low-permeability formations in Yuma County, Colorado, and Maverick County, Texas.

  3. Using Genomics for Natural Product Structure Elucidation.

    Science.gov (United States)

    Tietz, Jonathan I; Mitchell, Douglas A

    2016-01-01

    Natural products (NPs) are the most historically bountiful source of chemical matter for drug development-especially for anti-infectives. With insights gleaned from genome mining, interest in natural product discovery has been reinvigorated. An essential stage in NP discovery is structural elucidation, which sheds light not only on the chemical composition of a molecule but also its novelty, properties, and derivatization potential. The history of structure elucidation is replete with techniquebased revolutions: combustion analysis, crystallography, UV, IR, MS, and NMR have each provided game-changing advances; the latest such advance is genomics. All natural products have a genetic basis, and the ability to obtain and interpret genomic information for structure elucidation is increasingly available at low cost to non-specialists. In this review, we describe the value of genomics as a structural elucidation technique, especially from the perspective of the natural product chemist approaching an unknown metabolite. Herein we first introduce the databases and programs of interest to the natural products chemist, with an emphasis on those currently most suited for general usability. We describe strategies for linking observed natural product-linked phenotypes to their corresponding gene clusters. We then discuss techniques for extracting structural information from genes, illustrated with numerous case examples. We also provide an analysis of the biases and limitations of the field with recommendations for future development. Our overview is not only aimed at biologically-oriented researchers already at ease with bioinformatic techniques, but also, in particular, at natural product, organic, and/or medicinal chemists not previously familiar with genomic techniques.

  4. Bioactive Compounds of Blueberries: Post-Harvest Factors Influencing the Nutritional Value of Products

    Directory of Open Access Journals (Sweden)

    Anna Michalska

    2015-08-01

    Full Text Available Blueberries, besides having commonly-recognized taste properties, are also a valuable source of health-promoting bioactive compounds. For several decades, blueberries have gained in popularity all over the world, and recent years have seen not only an increase in fresh consumption, but also in the importance of blueberries for the processing industry. Blueberry processing mostly consists of freezing and juicing. Recently, more attention has been drawn to dewatering and drying, which are promising areas for developing novel blueberry products. Processing affects each biologically-active compound in a different way, and it is still unknown what changes those compounds undergo at the molecular level after the application of different processing technologies. This work presents the most recent state of knowledge about the pre-treatment and processing methods applied to blueberries and their influence on the content of biologically-active compounds. The presentation of methods is preceded by a brief overview of the characteristics of the blueberry species, a description of the chemical composition of the fruit and a short note about the main growing areas, production volumes and the management of fruit crops.

  5. Bioactive Compounds of Blueberries: Post-Harvest Factors Influencing the Nutritional Value of Products

    Science.gov (United States)

    Michalska, Anna; Łysiak, Grzegorz

    2015-01-01

    Blueberries, besides having commonly-recognized taste properties, are also a valuable source of health-promoting bioactive compounds. For several decades, blueberries have gained in popularity all over the world, and recent years have seen not only an increase in fresh consumption, but also in the importance of blueberries for the processing industry. Blueberry processing mostly consists of freezing and juicing. Recently, more attention has been drawn to dewatering and drying, which are promising areas for developing novel blueberry products. Processing affects each biologically-active compound in a different way, and it is still unknown what changes those compounds undergo at the molecular level after the application of different processing technologies. This work presents the most recent state of knowledge about the pre-treatment and processing methods applied to blueberries and their influence on the content of biologically-active compounds. The presentation of methods is preceded by a brief overview of the characteristics of the blueberry species, a description of the chemical composition of the fruit and a short note about the main growing areas, production volumes and the management of fruit crops. PMID:26266408

  6. Bioactive compounds from orange epicarp to enrich fish burgers.

    Science.gov (United States)

    Spinelli, Sara; Lecce, Lucia; Likyova, Desislava; Del Nobile, Matteo Alessandro; Conte, Amalia

    2018-05-01

    The orange industry produces considerable amounts of by-products, traditionally used for animal feed or fuel production. Most of these by-products could be used as functional ingredients. To assess the potential food application of orange epicarp, different percentages of micro-encapsulated orange extract were added to fresh fish burgers. Then, an in vitro digestion was also carried out, before and after micro-encapsulation, to measure the bio-accessibility of the active compounds. A significant increase of bio-accessibility of bioactive compounds has been observed in the orange epicarp extract after micro-encapsulation by spray-drying. From the sensory point of view, the fish sample enriched with 50 g kg -1 micro-encapsulated extract was the most comparable to the control burger, even if it showed a higher phenolic, flavonoid and carotenoid bio-accessibility. Orange epicarp may be used as a food additive to enhance the health content of food products. The micro-encapsulation is a valid technique to protect the bioactive compounds and increase their bio-accessibility. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer

    Science.gov (United States)

    Liang, Yeru; Wu, Dingcai; Fu, Ruowen

    2013-01-01

    Electrospinning offers a powerful route for building one-dimensional (1D) micro/nanostructures, but a common requirement for toxic or corrosive organic solvents during the preparation of precursor solution has limited their large scale synthesis and broad applications. Here we report a facile and low-cost way to prepare 1D porous carbon microfibers by using an electrospun fiber-like natural product, i.e., silk cocoon, as precursor. We surprisingly found that by utilizing a simple carbonization treatment, the cocoon microfiber can be directly transformed into 1D carbon microfiber of ca. 6 μm diameter with a unique three-dimensional porous network structure composed of interconnected carbon nanoparticles of 10~40 nm diameter. We further showed that the as-prepared carbon product presents superior electrochemical performance as binder-free electrodes of supercapacitors and good adsorption property toward organic vapor.

  8. Teaching 'natural product chemistry' in Tanzania | Buchanan ...

    African Journals Online (AJOL)

    Natural products 'historically' and 'today' have vast importance. This article describes the course 'Natural Product Chemistry', a new course in the 2011/2012 academic year in the Faculty of Natural and Applied Sciences at St. John's University of Tanzania. It reveals how the course has been applied to the African and ...

  9. The Evaluation and Utilization of Marine-derived Bioactive Compounds with Anti-obesity Effect.

    Science.gov (United States)

    Jin, Qiu; Yu, Huahua; Li, Pengcheng

    2018-01-01

    Obesity is a global epidemic throughout the world. There is thus increasing interest in searching for natural bioactive compounds with anti-obesity effect. A number of marine compounds have been regarded as potential sources of bioactive compounds and are associated with an anti-obesity effect. Marine-derived compounds with anti-obesity effect and their current applications, methods and indicators for the evaluation of anti-obesity activity are summarized in this review. in order to make contributions to the development of marine-derived functional food against obesity. In this review, an overview of marine-derived compounds with anti-obesity effect, including marine polysaccharides, marine lipid, marine peptides, marine carotenoids is intensively made with an emphasis on their efficacy and mechanism of action. Meanwhile, methods and indicators for the evaluation of anti-obesity activity are discussed. We summarize these methods into three categories: in vitro assay (including adsorption experiments and enzyme inhibitory assay), cell line study, animal experiments and clinical experiments. In addition, a brief introduction of the current applications of marine bioactive compounds with anti-obesity activity is discussed. Marine environment is a rich source of both biological and chemical diversity. In the past decades, numerous novel compounds with anti-obesity activity have been obtained from marine organisms, and many of them have been applied to industrial production such as functional foods and pharmaceuticals. Further studies are needed to explore the above-mentioned facts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Bafandeh, Mohammad Reza, E-mail: mr.bafandeh@gmail.com [Department of Materials Science and Engineering, Faculty of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Gharahkhani, Raziyeh; Fathi, Mohammad Hossein [Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-12-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  11. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    International Nuclear Information System (INIS)

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-01-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  12. Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces.

    Science.gov (United States)

    El-Gendy, Mervat M A; Shaaban, M; El-Bondkly, A M; Shaaban, K A

    2008-07-01

    In our searching program for bioactive secondary metabolites from marine Streptomycetes, three microbial benzopyrone derivatives (1-3), 7-methylcoumarin (1) and two flavonoides, rhamnazin (2) and cirsimaritin (3), were obtained during the working up of the ethyl acetate fraction of a marine Streptomyces fusant obtained from protoplast fusion between Streptomyces strains Merv 1996 and Merv 7409. The structures of the three compounds (1-3) were established by nuclear magnetic resonance, mass, UV spectra, and by comparison with literature data. Marine Streptomyces strains were identified based on their phenotypic and chemotypic characteristics as two different bioactive strains of the genus Streptomyces. We described here the fermentation, isolation, as well as the biological activity of these bioactive compounds. The isolated compounds (1-3) are reported here as microbial products for the first time.

  13. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta

    Directory of Open Access Journals (Sweden)

    Rosario Nicoletti

    2015-09-01

    Full Text Available It is known that plant-based ethnomedicine represented the foundation of modern pharmacology and that many pharmaceuticals are derived from compounds occurring in plant extracts. This track still stimulates a worldwide investigational activity aimed at identifying novel bioactive products of plant origin. However, the discovery that endophytic fungi are able to produce many plant-derived drugs has disclosed new horizons for their availability and production on a large scale by the pharmaceutical industry. In fact, following the path traced by the blockbuster drug taxol, an increasing number of valuable compounds originally characterized as secondary metabolites of plant species belonging to the Spermatophyta have been reported as fermentation products of endophytic fungal strains. Aspects concerning sources and bioactive properties of these compounds are reviewed in this paper.

  14. Bioinspired, Ultrastrong, Highly Biocompatible, and Bioactive Natural Polymer/Graphene Oxide Nanocomposite Films.

    Science.gov (United States)

    Zhu, Wen-Kun; Cong, Huai-Ping; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2015-09-09

    Tough and biocompatible nanocomposite films: A new type of bioinspired ultrastrong, highly biocompatible, and bioactive konjac glucomannan (KGM)/graphene oxide (GO) nanocomposite film is fabricated on a large scale by a simple solution-casting method. Such KGM-GO composite films exhibit much enhanced mechanical properties under the strong hydrogen-bonding interactions, showing great potential in the fields of tissue engineering and food package. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Using machine learning for improving knowledge on antibacterial effect of bioactive glass.

    Science.gov (United States)

    Echezarreta-López, M M; Landin, M

    2013-09-10

    The aim of this work was to find relationships between critical bioactive glass characteristics and their antibacterial behaviour using an artificial intelligence tool. A large dataset including ingredients and process variables of the bioactive glasses production, bacterial characteristics and microbiological experimental conditions was generated from literature and analyzed by neurofuzzy logic technology. Our findings allow an explanation on the variability in antibacterial behaviour found by different authors and to obtain general conclusions about critical parameters of bioactive glasses to be considered in order to achieve activity against some of the most common skin and implant surgery pathogens. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Biomineralized diamond-like carbon films with incorporated titanium dioxide nanoparticles improved bioactivity properties and reduced biofilm formation.

    Science.gov (United States)

    Lopes, F S; Oliveira, J R; Milani, J; Oliveira, L D; Machado, J P B; Trava-Airoldi, V J; Lobo, A O; Marciano, F R

    2017-12-01

    Recently, the development of coatings to protect biomedical alloys from oxidation, passivation and to reduce the ability for a bacterial biofilm to form after implantation has emerged. Diamond-like carbon films are commonly used for implanted medical due to their physical and chemical characteristics, showing good interactions with the biological environment. However, these properties can be significantly improved when titanium dioxide nanoparticles are included, especially to enhance the bactericidal properties of the films. So far, the deposition of hydroxyapatite on the film surface has been studied in order to improve biocompatibility and bioactive behavior. Herein, we developed a new route to obtain a homogeneous and crystalline apatite coating on diamond-like carbon films grown on 304 biomedical stainless steel and evaluated its antibacterial effect. For this purpose, films containing two different concentrations of titanium dioxide (0.1 and 0.3g/L) were obtained by chemical vapor deposition. To obtain the apatite layer, the samples were soaked in simulated body fluid solution for up to 21days. The antibacterial activity of the films was evaluated by bacterial eradication tests using Staphylococcus aureus biofilm. Scanning electron microscopy, X-ray diffraction, Raman scattering spectroscopy, and goniometry showed that homogeneous, crystalline, and hydrophilic apatite films were formed independently of the titanium dioxide concentration. Interestingly, the diamond-like films containing titanium dioxide and hydroxyapatite reduced the biofilm formation compared to controls. A synergism between hydroxyapatite and titanium dioxide that provided an antimicrobial effect against opportunistic pathogens was clearly observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Laser sintering of nano 13-93 glass scaffolds: Microstructure, mechanical properties and bioactivity

    Directory of Open Access Journals (Sweden)

    Cao Y.

    2015-01-01

    Full Text Available As the only bioactive material that can bond with both hard tissues and soft tissues, bioactive glass has become much important in the field of tissue engineering. 13-93 bioactive glass scaffolds were fabricated via selective laser sintering (SLS. It was focused on the effects of laser sintering on microstructure and mechanical properties of the scaffolds. The experimental results showed that the sintered layer gradually became dense with the laser power increasing and then some defects occurred, such as macroscopic caves. The optimum compressive strength and fracture toughness were 21.43±0.87 MPa and 1.14±0.09 MPa.m1/2, respectively. In vitro bioactivity showed that there was the bone-like apatite layer on the surface of the scaffolds after soaking in simulated body fluid (SBF, which was further evaluated by Fourier transform infrared spectroscopy (FTIR. Moreover, cell culture study showed MG-63 cells adhered and spread well on the scaffolds, and proliferated with increasing time in cell culture. These indicated excellent bioactivity and biocompatibility of nano 13-93 glass scaffolds.

  18. BioPepDB: an integrated data platform for food-derived bioactive peptides.

    Science.gov (United States)

    Li, Qilin; Zhang, Chao; Chen, Hongjun; Xue, Jitong; Guo, Xiaolei; Liang, Ming; Chen, Ming

    2018-03-12

    Food-derived bioactive peptides play critical roles in regulating most biological processes and have considerable biological, medical and industrial importance. However, a large number of active peptides data, including sequence, function, source, commercial product information, references and other information are poorly integrated. BioPepDB is a searchable database of food-derived bioactive peptides and their related articles, including more than four thousand bioactive peptide entries. Moreover, BioPepDB provides modules of prediction and hydrolysis-simulation for discovering novel peptides. It can serve as a reference database to investigate the function of different bioactive peptides. BioPepDB is available at http://bis.zju.edu.cn/biopepdbr/ . The web page utilises Apache, PHP5 and MySQL to provide the user interface for accessing the database and predict novel peptides. The database itself is operated on a specialised server.

  19. Broad spectrum bioactive sunscreens.

    Science.gov (United States)

    Velasco, Maria Valéria Robles; Sarruf, Fernanda Daud; Salgado-Santos, Idalina Maria Nunes; Haroutiounian-Filho, Carlos Alberto; Kaneko, Telma Mary; Baby, André Rolim

    2008-11-03

    The development of sunscreens containing reduced concentration of chemical UV filters, even though, possessing broad spectrum effectiveness with the use of natural raw materials that improve and infer UV absorption is of great interest. Due to the structural similarities between polyphenolic compounds and organic UV filters, they might exert photoprotection activity. The objective of the present research work was to develop bioactive sunscreen delivery systems containing rutin, Passiflora incarnata L. and Plantago lanceolata extracts associated or not with organic and inorganic UV filters. UV transmission of the sunscreen delivery system films was performed by using diffuse transmittance measurements coupling to an integrating sphere. In vitro photoprotection efficacy was evaluated according to the following parameters: estimated sun protection factor (SPF); Boot's Star Rating category; UVA/UVB ratio; and critical wavelength (lambda(c)). Sunscreen delivery systems obtained SPF values ranging from 0.972+/-0.004 to 28.064+/-2.429 and bioactive compounds interacted with the UV filters positive and negatively. This behavior may be attributed to: the composition of the delivery system; the presence of inorganic UV filter and quantitative composition of the organic UV filters; and the phytochemical composition of the P. incarnata L. and P. lanceolata extracts. Among all associations of bioactive compounds and UV filters, we found that the broad spectrum sunscreen was accomplished when 1.68% (w/w) P. incarnata L. dry extract was in the presence of 7.0% (w/w) ethylhexyl methoxycinnamate, 2.0% (w/w) benzophenone-3 and 2.0% (w/w) TiO(2). It was demonstrated that this association generated estimated SPF of 20.072+/-0.906 and it has improved the protective defense against UVA radiation accompanying augmentation of the UVA/UVB ratio from 0.49 to 0.52 and lambda(c) from 364 to 368.6nm.

  20. Industrial production of products like petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Baurier, P J.H.

    1925-02-25

    This invention has as its object a process for separating tars, oils, or gases coming from the distillation of carbonaceous materials, such as lignities or shales, to separate all other substances of the same kind and to prepare products like petroleum. The process for present consideration consists essentially in achieving simultaneously hydrogenation of the material (treated for conversion to stable products) and desulfurization of the materials showing the following characteristics: The substances to be treated are fed in the gaseous state, as vapors or pulverized and made to react at a temperature of 300 to 450/sup 0/C in the presence of excess water vapor, on divided metals capable of decomposing the water with release of hydrogen, at a temperature below 450/sup 0/C.

  1. Natural product synthesis at the interface of chemistry and biology

    Science.gov (United States)

    2014-01-01

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences. PMID:25043880

  2. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus?

    Directory of Open Access Journals (Sweden)

    Undurti N. Das

    2017-08-01

    Full Text Available Inflammation, decreased levels of circulating endothelial nitric oxide (eNO and brain-derived neurotrophic factor (BDNF, altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM. Type 1 diabetes mellitus (type 1 DM is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s. On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats. Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic

  3. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.t [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2010-10-22

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E{sub corr}) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  4. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Kung, Kuan-Chen; Lee, Tzer-Min; Lui, Truan-Sheng

    2010-01-01

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E corr ) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  5. Bioactive peptides released from in vitro digestion of human milk with or without pasteurization.

    Science.gov (United States)

    Wada, Yasuaki; Lönnerdal, Bo

    2015-04-01

    Pasteurized donor human milk (HM) serves as the best alternative for breast-feeding when availability of mother's milk is limited. Pasteurization is also applied to mother's own milk for very low birth weight infants, who are vulnerable to microbial infection. Whether pasteurization affects protein digestibility and therefore modulates the profile of bioactive peptides released from HM proteins by gastrointestinal digestion, has not been examined to date. HM with and without pasteurization (62.5 °C for 30 min) were subjected to in vitro gastrointestinal digestion, followed by peptidomic analysis to compare the formation of bioactive peptides. Some of the bioactive peptides, such as caseinophosphopeptide homologues, a possible opioid peptide (or propeptide), and an antibacterial peptide, were present in undigested HM and showed resistance to in vitro digestion, suggesting that these peptides are likely to exert their bioactivities in the gastrointestinal lumen, or be stably transported to target organs. In vitro digestion of HM released a large variety of bioactive peptides such as angiotensin I-converting enzyme-inhibitory, antioxidative, and immunomodulatory peptides. Bioactive peptides were released largely in the same manner with and without pasteurization. Provision of pasteurized HM may be as beneficial as breast-feeding in terms of milk protein-derived bioactive peptides.

  6. High-Yield Production in Escherichia coli of Fungal Immunomodulatory Protein Isolated from Flammulina velutipes and Its Bioactivity Assay in Vivo

    Directory of Open Access Journals (Sweden)

    Shenkui Liu

    2013-01-01

    Full Text Available A fungal immunomodulatory protein isolated from Flammulina velutipes (FIP-fve has structural similarity to the variable region of the immunoglobulin heavy chain. In the present study, the recombinant bioactive FIP-fve protein with a His-tag in N-terminal of recombinant protein was expressed in transetta (DE3 at a high level under the optimized culturing conditions of 0.2 mM IPTG and 28 °C. The efficiency of the purification was improved with additional ultrasonication to the process of lysozyme lysis. The yield of the bioactive FIP-fve protein with 97.1% purity reached 29.1 mg/L with a large quantity for industrial applications. Enzyme-linked immunosorbent assay showed a maximum increase in interleukin-2 (IL-2 and gamma interferon (IFN-γ for the mice serum group of 5 mg/kg body mass (p < 0.01 with three doses of His-FIP-fve. However, the production of IL-4 had no apparent difference compared to the control.

  7. Legume bioactive compounds: influence of rhizobial inoculation

    Directory of Open Access Journals (Sweden)

    Luis R. Silva

    2017-04-01

    Full Text Available Legumes consumption has been recognized as beneficial for human health, due to their content in proteins, fiber, minerals and vitamins, and their cultivation as beneficial for sustainable agriculture due to their ability to fix atmospheric nitrogen in symbiosis with soil bacteria known as rhizobia. The inoculation with these baceria induces metabolic changes in the plant, from which the more studied to date are the increases in the nitrogen and protein contents, and has been exploited in agriculture to improve the crop yield of several legumes. Nevertheless, legumes also contain several bioactive compounds such as polysaccharides, bioactive peptides, isoflavones and other phenolic compounds, carotenoids, tocopherols and fatty acids, which makes them functional foods included into the nutraceutical products. Therefore, the study of the effect of the rhizobial inoculation in the legume bioactive compounds content is gaining interest in the last decade. Several works reported that the inoculation of different genera and species of rhizobia in several grain legumes, such as soybean, cowpea, chickpea, faba bean or peanut, produced increases in the antioxidant potential and in the content of some bioactive compounds, such as phenolics, flavonoids, organic acids, proteins and fatty acids. Therefore, the rhizobial inoculation is a good tool to enhance the yield and quality of legumes and further studies on this field will allow us to have plant probiotic bacteria that promote the plant growth of legumes improving their functionality.

  8. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction.

    Science.gov (United States)

    Woerly, Eric M; Roy, Jahnabi; Burke, Martin D

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  9. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica

    Energy Technology Data Exchange (ETDEWEB)

    Özarslan, Ali Can, E-mail: alicanozarslan@gmail.com; Yücel, Sevil, E-mail: syucel@yildiz.edu.tr

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering. - Highlights: • Production of 3-D bioactive glass scaffolds from different silica sources • The effect of biosilica from rice hull ash on the bioactive glass scaffold • Sr additive impact on the bioactivity and biodegradability properties of scaffolds.

  10. Bioactive lipids as radioprotectors and potentiators of radiotherapy

    International Nuclear Information System (INIS)

    Das, Undurti N.

    2016-01-01

    Selective elimination of tumor cells with little or no effects on normal cells is desirable for the treatment of cancer. Radiotherapy, a well accepted form of cancer therapy, is associated with significant side effects that need to be eliminated or dampened. Our studies revealed that radiation can produce significant changes in the metabolism of essential fatty acids that could be related to its actions and side effects. It was noted that UVB exposed skin produced PGE2, PGF2a and PGE3 that accompany the erythema in the first 24-48 h, associated with increased COX-2 expression at 24 h. Leukocyte chemoattractants 11-, 12- and 8-monohydroxy-eicosatetraenoic acid (HETE) are elevated from 4 to 72 h, in association with peak dermal neutrophil influx at 24 h, and increased dermal CD3"+ lymphocytes and 12- and 15-LOX expression from 24 to 72 h. On the other hand, anti-inflammatory metabolite 15-HETE shows later expression, peaking at 72 h. Thus, skin lesions are characterized by overlapping sequential profiles of increases in COX products followed by LOX products that may regulate subsequent events and ultimately its resolution. The enhanced expression of 15-HETE at 72 h is interesting since it forms the precursor to antiinflammatory bioactive lipids. We and others also showed that the anti-cancer action of radiation and chemotherapeutic drugs can be augmented by certain polyunsaturated fatty acids with little or no action on normal cells. Even tumor cell drug resistance could be reversed by these bioactive lipids. Our recent studies revealed that these bioactive lipids also prevent genetic damage induced by radiation and other drugs. These studies imply that employing certain bioactive lipids may be exploited as radiation protective molecules and as enhancers of the anti-cancer action of radiation in the therapy of cancer. (author)

  11. The potential contribution of the natural products from Brazilian biodiversity to bioeconomy.

    Science.gov (United States)

    Valli, Marilia; Russo, Helena M; Bolzani, Vanderlan S

    2018-01-01

    The development of our society has been based on the use of biodiversity, especially for medicines and nutrition. Brazil is the nation with the largest biodiversity in the world accounting for more than 15% of all living species. The devastation of biodiversity in Brazil is critical and may not only cause the loss of species and genes that encode enzymes involved in the complex metabolism of organisms, but also the loss of a rich chemical diversity, which is a potential source for bioeconomy based on natural products and new synthetic derivatives. Bioeconomy focus on the use of bio-based products, instead of fossil-based ones and could address some of the important challenges faced by society. Considering the chemical and biological diversity of Brazil, this review highlights the Brazilian natural products that were successfully used to develop new products and the value of secondary metabolites from Brazilian biodiversity with potential application for new products and technologies. Additionally, we would like to address the importance of new technologies and scientific programs to support preservation policies, bioeconomy and strategies for the sustainable use of biodiversity.

  12. The effects of bioactive compounds on Alzheimer’s disease and Mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Brian McAnany

    2016-06-01

    Full Text Available As the prevalence and rate of Alzheimer’s disease are increasing around world, identifying effective treatments to manage cognitive impairment and neurodegeneration has become a global health priority. Decades of scientific research have led to a more comprehensive understanding of Alzheimer’s Disease and Mild Cognitive Impairment (MCI, a transitional stage of accelerated cognitive decline. This understanding has enabled researchers to envision and develop novel Alzheimer’s Disease therapies, including the use of bioactive compounds found in plants and animals. Within the past 15 years, a significant amount of clinical research has been published documenting the effects specific bioactive compounds have on patients with Alzheimer’s Disease and MCI. This article reviews the results of this research, along with relevant epidemiological studies, measures of cognition, and disease pathologies to discuss whether sufficient evidence exists to support the use of specific bioactive compounds by individuals diagnosed with Alzheimer’s Disease and MCI. The results of clinical trials within the last 15 years do not conclusively prove that the studied quantities of vitamin B, Omega-3 fatty acids, or bioactive compounds within Fortasyn Connect are beneficial for use in the management of Alzheimer’s Disease or MCI. Additionally, the documented effects of these bioactive compounds do not warrant development of a functional food product to help manage AD or MCI. Conclusion: The results of clinical trials within the last 15 years do not conclusively prove that the specified quantities of vitamin B, Omega-3 fatty acids, or bioactive compounds within Fortasyn Connect, are beneficial for use in the management of AD or MCI. Additionally, the documented effects of these bioactive compounds do not warrant development of a functional food product utilizing the previously specified quantities to help manage AD or MCI. The effects bioactive compound

  13. Preparation of Nanofibrous Structure of Mesoporous Bioactive Glass Microbeads for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    2016-06-01

    Full Text Available A highly ordered, mesoporous (pore size 2~50 nm bioactive glass (MBG structure has a greater surface area and pore volume and excellent bone-forming bioactivity compared with traditional bioactive glasses (BGs. Hence, MBGs have been used in drug delivery and bone tissue engineering. MBGs can be developed as either a dense or porous block. Compared with a block, microbeads provide greater flexibility for filling different-shaped cavities and are suitable for culturing cells in vitro. In contrast, the fibrous structure of a scaffold has been shown to increase cell attachment and differentiation due to its ability to mimic the three-dimensional structure of natural extracellular matrices. Hence, the aim of this study is to fabricate MBG microbeads with a fibrous structure. First, a sol-gel/electrospinning technique was utilized to fabricate the MBG nanofiber (MBGNF structure. Subsequently, the MBGNF microbeads (MFBs were produced by an electrospraying technology. The results show that the diameter of the MFBs decreases when the applied voltage increases. The drug loading and release profiles and mechanisms of the MFBs were also evaluated. MFBs had a better drug entrapment efficiency, could reduce the burst release of tetracycline, and sustain the release over 10 days. Hence, the MFBs may be suitable drug carriers. In addition, the cellular attachment of MG63 osteoblast-like cells is significantly higher for MFBs than for glass microbeads after culturing for 4 h. The nanofibrous structure of MFBs could provide an appropriate environment for cellular spreading. Therefore, MFBs have great potential for use as a bone graft material in bone tissue engineering applications.

  14. Natural Connections on Riemannian Product Manifolds

    OpenAIRE

    Gribacheva, Dobrinka

    2011-01-01

    A Riemannian almost product manifold with integrable almost product structure is called a Riemannian product manifold. In the present paper the natural connections on such manifolds are studied, i.e. the linear connections preserving the almost product structure and the Riemannian metric.

  15. Nature tourism: a sustainable tourism product

    Directory of Open Access Journals (Sweden)

    Violante Martínez Quintana

    2017-11-01

    Full Text Available Nature tourism has emerged in the tourism field as a result of a logical evolution in line with public policies and academic research. After negative outcomes from traditional models first raised the alarm, the entire sector has tried to foster local development based on models of responsibility and sustainability. This article revises key concepts of nature – based tourism and shows new tendencies and the perception of cultural landscapes that are seen as tourism products. Finally, it concludes by analysing new tendencies to foster alternative nature – based tourism. It also presents a planning proposal based on a responsible and sustainable tourism model to guarantee a sustainable tourism product within the natural and cultural heritage context.

  16. Elemental and Microscopic Analysis of Naturally Occurring C-O-Si Hetero-Fullerene-Like Structures.

    Science.gov (United States)

    Hullavarad, Nilima V; Hullavarad, Shiva S; Fochesatto, Javier

    2015-03-01

    Carbon exhibits an ability to form a wide range of structures in nature. Under favorable conditions, carbon condenses to form hollow, spheroid fullerenes in an inert atmosphere. Using high resolution FESEM, we have concealed the existence of giant hetero-fullerene like structures in the natural form. Clear, distinct features of connected hexagons and pentagons were observed. Energy dispersive X-ray analysis depth-profile of natural fullerene structures indicates that Russian-doll-like configurations composed of C, 0, and Si rings exist in nature. The analysis is based on an outstanding molecular feature found in the size fraction of aerosols having diameters 150 nm to 1.0 µm. The fullerene like structures, which are ~ 150 nm in diameter, are observed in large numbers. To the best of our knowledge, this is the first direct detailed observation of natural fullerene-like structures. This article reports inadvertent observation of naturally occurring hetero-fullerene-like structures in the Arctic.

  17. Functional food productions: release the potential of bioactive compounds through food processing

    Science.gov (United States)

    Epidemiological studies of bioactive compounds from plant-based foods have consistently pointed to undisputed benefits of consumption of plant-based foods on human health particularly regarding cardiovascular diseases and cancers. However, in order to attain the dosage required from these studies, p...

  18. New Synthetic Methods for Hypericum Natural Products

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Insik [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Organic chemistry has served as a solid foundation for interdisciplinary research areas, such as molecular biology and medicinal chemistry. An understanding of the biological activities and structural elucidations of natural products can lead to the development of clinically valuable therapeutic options. The advancements of modern synthetic methodologies allow for more elaborate and concise natural product syntheses. The theme of this study centers on the synthesis of natural products with particularly challenging structures and interesting biological activities. The synthetic expertise developed here will be applicable to analog syntheses and to other research problems.

  19. Bioactive Glasses in Dentistry: A Review

    Directory of Open Access Journals (Sweden)

    Abbasi Z

    2015-03-01

    Full Text Available Bioactive glasses are silicate-based and can form a strong chemical bond with the tissues. These biomaterials are highly biocompatible and can form a hydroxyapatite layer when implanted in the body or soaked in the simulated body fluid. Due to several disadvantages, conventional glass processing method including melting of glass components, is replaced by sol-gel method with a large number of benefits such as low processing temperature, higher purity and homogeneity and therefore better control of bioactivity. Bioactive glasses have a wide range of applications, particularly in dentistry. These glasses can be used as particulates or monolithic shapes and porous or dense constructs in different applications such as remineralization or hypersensitivity treatment. Some properties of bioactive glasses such as antibacterial properties can be promoted by adding different elements into the glass. Bioactive glasses can also be used to modify different biocompatible materials that need to be bioactive. This study reviews the significant developments of bioactive glasses in clinical application, especially dentistry. Furthermore, we will discuss the field of bioactive glasses from beginning to the current developments, which includes processing methods, applications, and properties of these glasses.

  20. Natural product diversity of actinobacteria in the Atacama Desert.

    Science.gov (United States)

    Rateb, Mostafa E; Ebel, Rainer; Jaspars, Marcel

    2018-02-14

    The Atacama Desert of northern Chile is considered one of the most arid and extreme environment on Earth. Its core region was described as featuring "Mars-like" soils that were at one point deemed too extreme for life to exist. However, recent investigations confirmed the presence of diverse culturable actinobacteria. In the current review, we discuss a total of 46 natural products isolated to date representing diverse chemical classes characterized from different actinobacteria isolated from various locations in the Atacama Desert. Their reported biological activities are also discussed.

  1. PRODUCTION OF MONASCUS-LIKE AZAPHILONE PIGMENT

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to the field of biotechnological production of polyketide based colorants from filamentous fungi, in particular a method for preparing a biomass comprising a Monascus-like pigment composition from a nontoxigenic and non-pathogenic fungal source. The present invention...... further relates to use of the Monascus-like pigment composition as a colouring agent for food items and/or non-food items, and a cosmetic composition comprising the Monascus-like pigment composition....

  2. Production of Monascus-like azaphilone Pigment

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to the field of biotechnological production of polyketide based colorants from filamentous fungi, in particular a method for preparing a biomass comprising a Monascus-like pigment composition from a nontoxigenic and non-pathogenic fungal source. The present invention...... further relates to use of the Monascus-like pigment composition as a colouring agent for food items and/or non-food items, and a cosmetic composition comprising the Monascus-like pigment composition....

  3. A novel graded bioactive high adhesion implant coating

    International Nuclear Information System (INIS)

    Brohede, Ulrika; Zhao, Shuxi; Lindberg, Fredrik; Mihranyan, Albert; Forsgren, Johan; Stromme, Maria; Engqvist, Hakan

    2009-01-01

    One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 deg. C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 deg. C for one week. The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.

  4. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite

    International Nuclear Information System (INIS)

    Fahami, Abbas; Beall, Gary W.; Betancourt, Tania

    2016-01-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl–F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20 ± 5 to 70 ± 5 nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14 days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl–F will lead to the formation of new apatite particles and therefore be a potential implant material. - Highlights: • Cl"− and F"− substituted hydroxyapatite was synthesized by mechanochemical process. • Structural features were influenced strongly by incorporation of different ions. • Microscopic observations showed a mean particle size of around 20 ± 5 to 70 ± 5 nm. • The bioactivity properties indicated that apatite was successfully formed.

  5. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Fahami, Abbas, E-mail: fahami@txstate.edu [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666 (United States); Beall, Gary W. [Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666 (United States); Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Betancourt, Tania [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666 (United States); Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666 (United States)

    2016-02-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl–F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20 ± 5 to 70 ± 5 nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14 days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl–F will lead to the formation of new apatite particles and therefore be a potential implant material. - Highlights: • Cl{sup −} and F{sup −} substituted hydroxyapatite was synthesized by mechanochemical process. • Structural features were influenced strongly by incorporation of different ions. • Microscopic observations showed a mean particle size of around 20 ± 5 to 70 ± 5 nm. • The bioactivity properties indicated that apatite was successfully formed.

  6. Minimally processed mixed salad submitted to gamma radiation: effects on bioactive compounds

    International Nuclear Information System (INIS)

    Hirashima, Fabiana K.; Sabato, Susy F.; Lanfer-Marquez, Ursula M.

    2015-01-01

    High consumption of fruits and vegetables has been associated with a lowered incidence of oxidative stress-related diseases due to the presence of bioactive structures. Minimally processed products are a growing segment in food retail establishments because it is associated with practicality and convenience without significantly altering fresh-like characteristics. Low-dose of gamma radiation in combination with minimal processes has shown to be a promising strategy for extending shelf life and maintaining the organoleptic quality of fruits and vegetables. The objective of this study was to evaluate the levels of phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical scavenging and Oxygen Radical Absorbance Capacity (ORAC) method in minimally processed mixed salad before and after different radiation doses. Samples of minimally processed mixed salad (with green and red cabbage and carrot) were purchased at local supermarket and irradiated with doses of 0.5, 1.0, 2.0 and 3.0 kGy. Phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by DPPH• and ORAC were analyzed on the same extract prepared with MeOH. The results showed that bioactive compounds levels and antioxidant activity decreased significantly (p<0.05) with an increasing on radiation dose. Gamma-rays may affect these compounds and can cause degradation or oxidation, which can explain the drop on levels. Although the radiation has affected the bioactive contents, the process seems to be interesting to maintaining organoleptic characteristics and provide microbiological security at doses up to 2.0 kGy, according to studies conducted by our research group. (author)

  7. Minimally processed mixed salad submitted to gamma radiation: effects on bioactive compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hirashima, Fabiana K.; Sabato, Susy F., E-mail: fmayumi@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lanfer-Marquez, Ursula M., E-mail: lanferum@usp.br [Universidade de Sao Paulo (FCF/USP), Sao Paulo, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental

    2015-07-01

    High consumption of fruits and vegetables has been associated with a lowered incidence of oxidative stress-related diseases due to the presence of bioactive structures. Minimally processed products are a growing segment in food retail establishments because it is associated with practicality and convenience without significantly altering fresh-like characteristics. Low-dose of gamma radiation in combination with minimal processes has shown to be a promising strategy for extending shelf life and maintaining the organoleptic quality of fruits and vegetables. The objective of this study was to evaluate the levels of phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical scavenging and Oxygen Radical Absorbance Capacity (ORAC) method in minimally processed mixed salad before and after different radiation doses. Samples of minimally processed mixed salad (with green and red cabbage and carrot) were purchased at local supermarket and irradiated with doses of 0.5, 1.0, 2.0 and 3.0 kGy. Phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by DPPH• and ORAC were analyzed on the same extract prepared with MeOH. The results showed that bioactive compounds levels and antioxidant activity decreased significantly (p<0.05) with an increasing on radiation dose. Gamma-rays may affect these compounds and can cause degradation or oxidation, which can explain the drop on levels. Although the radiation has affected the bioactive contents, the process seems to be interesting to maintaining organoleptic characteristics and provide microbiological security at doses up to 2.0 kGy, according to studies conducted by our research group. (author)

  8. Recent Evidence on Bioactive Glass Antimicrobial and Antibiofilm Activity: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Lorenzo Drago

    2018-02-01

    Full Text Available Bone defects caused by trauma or pathological events are major clinical and socioeconomic burdens. Thus, the efforts of regenerative medicine have been focused on the development of non-biodegradable materials resembling bone features. Consequently, the use of bioactive glass as a promising alternative to inert graft materials has been proposed. Bioactive glass is a synthetic silica-based material with excellent mechanical properties able to bond to the host bone tissue. Indeed, when immersed in physiological fluids, bioactive glass reacts, developing an apatite layer on the granule’s surface, playing a key role in the osteogenesis process. Moreover, the contact of bioactive glass with biological fluids results in the increase of osmotic pressure and pH due to the leaching of ions from granules’ surface, thus making the surrounding environment hostile to microbial growth. The bioactive glass antimicrobial activity is effective against a wide selection of aerobic and anaerobic bacteria, either in planktonic or sessile forms. Furthermore, bioglass is able to reduce pathogens’ biofilm production. For the aforementioned reasons, the use of bioactive glass might be a promising solution for the reconstruction of bone defects, as well as for the treatment and eradication of bone infections, characterized by bone necrosis and destruction of the bone structure.

  9. Synthesis of most polyene natural product motifs using just twelve building blocks and one coupling reaction

    Science.gov (United States)

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-01-01

    The inherent modularity of polypeptides, oligonucleotides, and oligosaccharides has been harnessed to achieve generalized building block-based synthesis platforms. Importantly, like these other targets, most small molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled the synthesis of a wide range of polyene frameworks covering all of this natural product chemical space, and first total syntheses of the polyene natural products asnipyrone B, physarigin A, and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach for making small molecules in the laboratory. PMID:24848233

  10. Challenges and solutions in natural gas engine development and productions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Mahdi; Izanloo, Hossein [Irankhodro Powertrain Co. (IPCO) (Iran)

    2008-07-01

    As an alternative fuel, natural gas is generally accepted for internal combustion engines and some developments have been conducted in order to adopt it for the road vehicles and stationary applications. Foresights shows natural gas vehicles will be a part of the future transportation technology regarding to their mid and long-term benefits. Therefore inherent problems of natural gas engine technology should be overcome to produce a competitive engine. In this paper major problems and their possible solutions in developing and producing natural gas engine for passenger cars are detailed and discussed. Challenging materials are sorted and presented in two categorizes: technical and econo-strategical problems. In the technical section major difficulties faced in components or systems of natural gas engine are analysed in different aspects of design, validation, and production. In addition problems arisen from the fuel characteristics which influence the function and durability of engine are argued. Subjects like freezing in gas regulator, cold start fuel injection, gas leakage, impurities within compressed natural gas, variation in fuel composition, thermo-mechanics of cylinder head and block, wear of valve seat inserts, spark plug erosion, back-fire phenomenon, engine oil quality requirement, low power density and mileage are described. In the econo-strategical discussion, challenges like limited gas distribution infrastructure, lack of specific manufacturing standards and codes, and non-dedicated emission standards are explained. In both part of the paper a comprehensive view is extended to clarify the effect, risk and solutions of each problem. Due to the fact that almost all information and analysis presented in this paper are based on the experience of developing a natural gas engine family, and an extensive literature review, discussions and conclusions could be useful as a guide line for future natural gas engine projects. (orig.)

  11. Characterization of the bioactive and mechanical behavior of dental ceramic/sol-gel derived bioactive glass mixtures.

    Science.gov (United States)

    Abbasi, Zahra; Bahrololoum, Mohammad E; Bagheri, Rafat; Shariat, Mohammad H

    2016-02-01

    Dental ceramics can be modified by bioactive glasses in order to develop apatite layer on their surface. One of the benefits of such modification is to prolong the lifetime of the fixed dental prosthesis by preventing the formation of secondary caries. Dental ceramic/sol-gel derived bioactive glass mixture is one of the options for this modification. In the current study, mixtures of dental ceramic/bioactive glass with different compositions were successfully produced. To evaluate their bioactive behavior, prepared samples were immersed in a simulated body fluid at various time intervals. The prepared and soaked specimens were characterized using Fourier transform infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. Since bioactive glasses have deleterious effects on the mechanical properties of dental ceramics, 3-point bending tests were used to evaluate the flexural strength, flexural strain, tangent modulus of elasticity and Weibull modulus of the specimens in order to find the optimal relationship between mechanical and bioactive properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. An innovative model for regulating supplement products: Natural health products in Canada

    International Nuclear Information System (INIS)

    Nestmann, Earle R.; Harwood, Melody; Martyres, Stephanie

    2006-01-01

    On 1 January 2004, Health Canada officially added a new term to the global list of synonyms for dietary supplements: natural health products (NHP). Developed with the intent of providing Canadian consumers with ready access to NHP that are safe, effective, and of high quality, the Natural Health Products Regulations (the NHP regulations) are applicable to the sale, manufacture, packaging, labelling, importation, distribution, and storage of NHP, and are administered by the recently formed Natural Health Products Directorate (NHPD) within Health Canada. This paper provides an overview of the process for regulating supplement products in Canada

  13. In Vitro Human Umbilical Vein Endothelial Cells Response to Ionic Dissolution Products from Lithium-Containing 45S5 Bioactive Glass

    Science.gov (United States)

    Haro Durand, Luis A.; Vargas, Gabriela E.; Vera-Mesones, Rosa; Baldi, Alberto; Zago, María P.; Fanovich, María A.; Boccaccini, Aldo R.; Gorustovich, Alejandro

    2017-01-01

    Since lithium (Li+) plays roles in angiogenesis, the localized and controlled release of Li+ ions from bioactive glasses (BGs) represents a promising alternative therapy for the regeneration and repair of tissues with a high degree of vascularization. Here, microparticles from a base 45S5 BG composition containing (wt %) 45% SiO2, 24.5% Na2O, 24.5% CaO, and 6% P2O5, in which Na2O was partially substituted by 5% Li2O (45S5.5Li), were obtained. The results demonstrate that human umbilical vein endothelial cells (HUVECs) have greater migratory and proliferative response and ability to form tubules in vitro after stimulation with the ionic dissolution products (IDPs) of the 45S5.5Li BG. The results also show the activation of the canonical Wnt/β-catenin pathway and the increase in expression of proangiogenic cytokines insulin like growth factor 1 (IGF1) and transforming growth factor beta (TGFβ). We conclude that the IDPs of 45S5.5Li BG would act as useful inorganic agents to improve tissue repair and regeneration, ultimately stimulating HUVECs behavior in the absence of exogenous growth factors. PMID:28773103

  14. Dihydrotanshinone I, a natural product, ameliorates DSS-induced experimental ulcerative colitis in mice.

    Science.gov (United States)

    Guo, Yanling; Wu, Xiaxia; Wu, Qin; Lu, Yuanfu; Shi, Jingshan; Chen, Xiuping

    2018-04-01

    Ulcerative colitis (UC) is a chronic and relapsing inflammatory disorder of the colon and rectum with increasing morbidity in recent years. 15,16-dihydrotanshinone Ӏ (DHT) is a natural product with multiple bioactivities. In this study, we aimed to investigate the protective effect and potential mechanisms of DHT on UC. Dextran sulfate sodium salt (DSS) was administrated in drinking water for 7 days to induce UC in mice. DHT (10 and 25 mg/kg) significantly alleviated DSS-induced body weight loss, disease activity index (DAI) scores, and improved histological alterations of colon tissues. DHT inhibited the myeloperoxidase (MPO) activity, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in colon tissues and decreased serum levels of TNF-α, IL-1β, IL-6, and high-mobility group box 1 (HMGB1). Furthermore, increased expression of kinases receptor-interacting protein 1 (RIP1), RIP3, mixed lineage kinase domain-like protein (MLKL) and decreased expression of caspase-8 in colon tissues were partially restored by DHT. In LPS-stimulated RAW264.7 macrophages, DHT significantly inhibited generation of nitric oxide, IL-6, TNF-α and protein expression of iNOS, COX-2. In addition, increased expression of iNOS, COX-2, and phosphorylated RIP1, RIP3, MLKL in response to LPS plus Z-VAD (LZ) were also suppressed by DHT. DHT had no effect on TNF-α + BV6 + Z-VAD (TBZ) induced phosphorylation of RIPs and MLKL in HT29 cells. Especially, DHT showed no effect on LZ and TBZ-induced necroptosis in RAW264.7 and HT29 cells, respectively. In summary, DHT alleviated DSS-induced UC in mice by suppressing pro-inflammatory mediators and regulating RIPs-MLKL-caspase-8 axis. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools.

    Science.gov (United States)

    Mamo, Gashaw

    Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.Anaerobes play health-promoting roles through their bioactive products as well as application of whole cells. The bioactive compounds produced by these microorganisms include antimicrobial agents and substances such as immunomodulators and vitamins. Bacteriocins produced by anaerobes have been in use as preservatives for about 40 years. Because these substances are effective at low concentrations, encounter relatively less resistance from bacteria and are safe to use, there is a growing interest in these antimicrobial agents. Moreover, several antibiotics have been reported from the cultures of anaerobes. Closthioamide and andrimid produced by Clostridium cellulolyticum and Pantoea agglomerans, respectively, are examples of novel antibiotics of anaerobe origin. The discovery of such novel bioactive compounds is expected to encourage further studies which can potentially lead to tapping of the antibiotic production potential of this fascinating group of microorganisms.Anaerobes are widely used in preparation of fermented foods and beverages. During the fermentation processes, these organisms produce a number of bioactive compounds including anticancer, antihypertensive and antioxidant substances. The well-known health promoting effect of fermented food is mostly due to these

  16. OrgTrace – No difference found in bioactive compounds of organic and conventional crops

    DEFF Research Database (Denmark)

    Knuthsen, Pia; Søltoft, Malene; Laursen, Kristian Holst

    years as well as soil types. The results showed that contents of neither polyacetylenes and carotenoids in carrots, flavonoids in onions, nor phenolic acids in carrots and potatoes were significantly influenced by growth system. Thus it could not be concluded that the organically grown crops had higher...... contents of bioactive compounds than the conventionally grown. This indicates that giving preference to organic products because they contain more bioactive components is doubtfull. However, there are many other reasons for the consumer to choose organic food products, including: no pesticide residues...

  17. Bioengineering natural product biosynthetic pathways for therapeutic applications.

    Science.gov (United States)

    Wu, Ming-Cheng; Law, Brian; Wilkinson, Barrie; Micklefield, Jason

    2012-12-01

    With the advent of next-generation DNA sequencing technologies, the number of microbial genome sequences has increased dramatically, revealing a vast array of new biosynthetic gene clusters. Genomics data provide a tremendous opportunity to discover new natural products, and also to guide the bioengineering of new and existing natural product scaffolds for therapeutic applications. Notably, it is apparent that the vast majority of biosynthetic gene clusters are either silent or produce very low quantities of the corresponding natural products. It is imperative therefore to devise methods for activating unproductive biosynthetic pathways to provide the quantities of natural products needed for further development. Moreover, on the basis of our expanding mechanistic and structural knowledge of biosynthetic assembly-line enzymes, new strategies for re-programming biosynthetic pathways have emerged, resulting in focused libraries of modified products with potentially improved biological properties. In this review we will focus on the latest bioengineering approaches that have been utilised to optimise yields and increase the structural diversity of natural product scaffolds for future clinical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Nigerian Journal of Natural Products and Medicine

    African Journals Online (AJOL)

    Nigerian Journal of Natural Products and Medicine is published by the Nigerian Society of Pharmacognosy, a non profit organisation established in 1982 dedicated to the promotion of Pharmacognosy, Natural Products and Traditional Medicine. It has a current circulation of about 500 to scientists in Nigeria and abroad.

  19. Absorption and metabolic fate of bioactive dietary benzoxazinoids in humans

    DEFF Research Database (Denmark)

    Adhikari, Khem B; Laursen, Bente B; Gregersen, Per L

    2013-01-01

    benzoxazinoids with abundant HBOA-Glc (219 nmol × μmol−1 of creatinine). The sulfate and glucuronide conjugates of 2-hydroxy-1,4-benzoxazin-3-one (HBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) were detected in plasma and urine, indicating substantial phase II metabolism. Direct absorption of lactam......Scope Benzoxazinoids, which are natural compounds recently identified in mature whole grain cereals and bakery products, have been suggested to have a range of pharmacological properties and health-protecting effects. There are no published reports concerned with the absorption and metabolism...... of bioactive benzoxazinoids in humans. Methods and results The absorption, metabolism, and excretion of ten different dietary benzoxazinoids were examined by LC-MS/MS by analyzing plasma and urine from 20 healthy human volunteers after daily intake of 143 μmol of total benzoxazinoids from rye bread and rye...

  20. Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria

    DEFF Research Database (Denmark)

    Machado, Henrique; Sonnenschein, Eva; Melchiorsen, Jette

    2015-01-01

    Background: Antibiotic resistance in bacteria spreads quickly, overtaking the pace at which new compounds are discovered and this emphasizes the immediate need to discover new compounds for control of infectious diseases. Terrestrial bacteria have for decades been investigated as a source......- and Gammaproteobacteria collected during the Galathea 3 expedition were sequenced and mined for natural product encoding gene clusters. Results: Independently of genome size, bacteria of all tested genera carried a large number of clusters encoding different potential bioactivities, especially within the Vibrionaceae...... and Pseudoalteromonas species that commonly live in close association with eukaryotic organisms in the environment. Chitin regulation by the ChiS histidine-kinase seems to be a general trait of the Vibrionaceae family, however it is absent in the Pseudomonadaceae. Hence, the degree to which chitin influences secondary...

  1. Bio-Activity and Dereplication-Based Discovery of Ophiobolins and Other Fungal Secondary Metabolites Targeting Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Tanja Thorskov Bladt

    2013-11-01

    Full Text Available The purpose of this study was to identify and characterize fungal natural products (NPs with in vitro bioactivity towards leukemia cells. We based our screening on a combined analytical and bio-guided approach of LC-DAD-HRMS dereplication, explorative solid-phase extraction (E-SPE, and a co-culture platform of CLL and stromal cells. A total of 289 fungal extracts were screened and we tracked the activity to single compounds in seven of the most active extracts. The novel ophiobolin U was isolated together with the known ophiobolins C, H, K as well as 6-epiophiobolins G, K and N from three fungal strains in the Aspergillus section Usti. Ophiobolins A, B, C and K displayed bioactivity towards leukemia cells with induction of apoptosis at nanomolar concentrations. The remaining ophiobolins were mainly inactive or only slightly active at micromolar concentrations. Dereplication of those ophiobolin derivatives possessing different activity in combination with structural analysis allowed a correlation of the chemical structure and conformation with the extent of bioactivity, identifying the hydroxy group at C3 and an aldehyde at C21, as well as the A/B-cis ring structure, as indispensible for the strong activity of the ophiobolins. The known compounds penicillic acid, viridicatumtoxin, calbistrin A, brefeldin A, emestrin A, and neosolaniol monoacetate were identified from the extracts and also found generally cytotoxic.

  2. Transglycosidase-like activity of Mucor hiemalis endoglycosidase mutants enabling the synthesis of glycoconjugates using a natural glycan donor.

    Science.gov (United States)

    Sakaguchi, Kouta; Katoh, Toshihiko; Yamamoto, Kenji

    2016-11-01

    Glycan conversion of glycoprotein via the transglycosylation activity of endo-β-N-acetylglucosaminidase is a promising chemoenzymatic technology for the production of glycoproteins including bio-medicines with a homogeneous glycoform. Although Endo-M is a key enzyme in this process, its product undergoes rehydrolysis, which leads to a lower yield, and limits the practical application of this enzyme. We developed several Endo-M mutant enzymes including N175Q with glycosynthase-like activity and/or transglycosidase-like activity. We found that the Endo-M N175H mutant showed glycosynthase-like activity comparable to N175Q as well as transglycosidase-like activity superior to N175Q. Using a natural sialylglycopeptide as a donor substrate, N175H readily transferred the sialo-glycan onto an N-acetylglucosamine residue attached to bovine ribonuclease B (RNase B), yielding a nonnative sialoglycosylated RNase B. These results demonstrate that use of Endo-M N175H is an alternative glycoengineering technique, which provides a relatively high yield of transglycosylation product and avoids the laborious synthesis of a sugar oxazoline as a donor substrate. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  3. Natural Products in the Discovery of Agrochemicals.

    Science.gov (United States)

    Loiseleur, Olivier

    2017-12-01

    Natural products have a long history of being used as, or serving as inspiration for, novel crop protection agents. Many of the discoveries in agrochemical research in the last decades have their origin in a wide range of natural products from a variety of sources. In light of the continuing need for new tools to address an ever-changing array of fungal, weed and insect pests, new agricultural practices and evolving regulatory requirements, the needs for new agrochemical tools remains as critical as ever. In that respect, nature continues to be an important source for novel chemical structures and biological mechanisms to be applied for the development of pest control agents. Here we review several of the natural products and their derivatives which contributed to shape crop protection research in past and present.

  4. Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents.

    Science.gov (United States)

    Jabeur, Inès; Pereira, Eliana; Barros, Lillian; Calhelha, Ricardo C; Soković, Marina; Oliveira, M Beatriz P P; Ferreira, Isabel C F R

    2017-10-01

    The nutritional and bioactive composition of plants have aroused much interest not only among scientists, but also in people's daily lives. Apart from the health benefits, plants are a source of pigments that can be used as natural food colorants. In this work, the nutritional composition of Hibiscus sabdariffa L. was analysed, as well as its bioactive compounds and natural pigments. Glucose (sugar), malic acid (organic acid), α-tocopherol (tocopherol) and linoleic acid (fatty acid) were the major constituents in the corresponding classes. 5-(Hydroxymethyl) furfural was the most abundant non-anthocyanin compound, while delphinidin-3-O-sambubioside was the major anthocyanin both in its hydroethanolic extract and infusion. H. sabdariffa extracts showed antioxidant and antimicrobial activities, highlighting that the hydroethanol extract presents not only lipid peroxidation inhibition capacity, but also bactericidal/fungicidal inhibition ability for all the bacteria and fungi tested. Furthermore, both extracts revealed the absence of toxicity using porcine primary liver cells. The studied plant species was thus not only interesting for nutritional purposes but also for bioactive and colouring applications in food, cosmetic and pharmaceutical industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Review of the Latest Advances in Encrypted Bioactive Peptides from Protein-Rich Waste

    Directory of Open Access Journals (Sweden)

    Ailton Cesar Lemes

    2016-06-01

    Full Text Available Bioactive peptides are considered the new generation of biologically active regulators that not only prevent the mechanism of oxidation and microbial degradation in foods but also enhanced the treatment of various diseases and disorders, thus increasing quality of life. This review article emphasizes recent advances in bioactive peptide technology, such as: (i new strategies for transforming bioactive peptides from residual waste into added-value products; (ii nanotechnology for the encapsulation, protection and release of controlled peptides; and (iii use of techniques of large-scale recovery and purification of peptides aiming at future applications to pharmaceutical and food industries.

  6. Effect of substrate on the growth, nutritional and bioactive ...

    African Journals Online (AJOL)

    rosemary

    2016-07-06

    Jul 6, 2016 ... growth, determining nutritional and bioactive components of two oyster mushroom, Pleurotus ostreatus and. Pleurotus ... and the method of cultivation are of major importance ..... rendered alkaline with a few drops of ammonia solution. 5 ..... production and non-enzymatic antioxidant activity of Pleurotus.

  7. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Higher Learning. ... The Series on "learning Organic Chemistry Through Natural Products". Nature is a remarkable ... skeletal structure to the interior electronic configu- ration ... Among the advantages of this approach are the fact that unlike the.

  8. Natural products mediating ecological interactions in Antarctic benthic communities: a mini-review of the known molecules.

    Science.gov (United States)

    Núñez-Pons, L; Avila, C

    2015-07-01

    Out of the many bioactive compounds described from the oceans, only a small fraction have been studied for their ecological significance. Similarly, most chemically mediated interactions are not well understood, because the molecules involved remain unrevealed. In Antarctica, this gap in knowledge is even more acute in comparison to tropical or temperate regions, even though polar organisms are also prolific producers of chemical defenses, and pharmacologically relevant products are being reported from the Southern Ocean. The extreme and unique marine environments surrounding Antarctica along with the numerous unusual interactions taking place in benthic communities are expected to select for novel functional secondary metabolites. There is an urgent need to comprehend the evolutionary role of marine derived substances in general, and particularly at the Poles, since molecules of keystone significance are vital in species survival, and therefore, in structuring the communities. Here we provide a mini-review on the identified marine natural products proven to have an ecological function in Antarctic ecosystems. This report recapitulates some of the bibliography from original Antarctic reviews, and updates the new literature in the field from 2009 to the present.

  9. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries.

    Science.gov (United States)

    Lee, M L; Schneider, G

    2001-01-01

    Natural products were analyzed to determine whether they contain appealing novel scaffold architectures for potential use in combinatorial chemistry. Ring systems were extracted and clustered on the basis of structural similarity. Several such potential scaffolds for combinatorial chemistry were identified that are not present in current trade drugs. For one of these scaffolds a virtual combinatorial library was generated. Pharmacophoric properties of natural products, trade drugs, and the virtual combinatorial library were assessed using a self-organizing map. Obviously, current trade drugs and natural products have several topological pharmacophore patterns in common. These features can be systematically explored with selected combinatorial libraries based on a combination of natural product-derived and synthetic molecular building blocks.

  10. Comparison of Bioactive Compound Content in Egg Yolk Oil Extracted from Eggs Obtained from Different Laying Hen Housing Systems

    OpenAIRE

    Aleksandrs Kovalcuks

    2015-01-01

    Egg yolk oil is a natural source of bioactive compounds such as unsaturated fatty acids, oil soluble vitamins, pigments and others. Bioactive compound content in egg yolk oil depends from its content in eggs, from which oil was extracted. Many studies show that bioactive compound content in egg is correlated to the content of these compounds in hen feed, but there is also an opinion that hen housing systems also have influence on egg chemical content. The aim of this stud...

  11. Natural product-based nanomedicine: recent advances and issues

    Science.gov (United States)

    Watkins, Rebekah; Wu, Ling; Zhang, Chenming; Davis, Richey M; Xu, Bin

    2015-01-01

    Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications. PMID:26451111

  12. The potential contribution of the natural products from Brazilian biodiversity to bioeconomy

    Directory of Open Access Journals (Sweden)

    MARILIA VALLI

    2018-04-01

    Full Text Available ABSTRACT The development of our society has been based on the use of biodiversity, especially for medicines and nutrition. Brazil is the nation with the largest biodiversity in the world accounting for more than 15% of all living species. The devastation of biodiversity in Brazil is critical and may not only cause the loss of species and genes that encode enzymes involved in the complex metabolism of organisms, but also the loss of a rich chemical diversity, which is a potential source for bioeconomy based on natural products and new synthetic derivatives. Bioeconomy focus on the use of bio-based products, instead of fossil-based ones and could address some of the important challenges faced by society. Considering the chemical and biological diversity of Brazil, this review highlights the Brazilian natural products that were successfully used to develop new products and the value of secondary metabolites from Brazilian biodiversity with potential application for new products and technologies. Additionally, we would like to address the importance of new technologies and scientific programs to support preservation policies, bioeconomy and strategies for the sustainable use of biodiversity.

  13. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    Science.gov (United States)

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  14. Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: Structural and biological properties

    Science.gov (United States)

    Mokhtari, H.; Ghasemi, Z.; Kharaziha, M.; Karimzadeh, F.; Alihosseini, F.

    2018-05-01

    Bacterial infection and insignificant osseointegration have been recognized as the main reasons of the failures of titanium based implants. The aim of this study was to apply titanium oxide nanotube (TNT) array on titanium using electrochemical anodization process as a more appropriate substrate for chitosan and chitosan-58S bioactive glass (BG) (58S-BG-Chitosan) nanocomposite coatings covered TNTs (TNT/Chiosan, TNT/58S-BG-Chitosan, respectively) through a conventional dip-coating process. Results showed that a TNT layer with average inner diameter of 82 ± 19 nm and wall's thickness of 23 ± 9 nm was developed on titanium surface using electrochemical anodization process. Roughness and contact angle measurement showed that TNT with Ra = 449 nm had highest roughness and hydrophilicity which then reduced to 86 nm and 143 nm for TNT/Chitosan and TNT/58S-BG-Chitosan, respectively. In vitro bioactivity evaluation in simulated buffer fluid (SBF) solution and antibacterial activity assay predicted that TNT/58S-BG-Chitosan was superior in bone like apatite formation and antibacterial activity against both gram-positive and gram-negative bacteria compared to Ti, TNT and TNT/Chitosan samples, respectively. Results revealed the noticeable MG63 cell attachment and proliferation on TNT/58S-BG-Chitosan coating compared to those of uncoated TNTs. These results confirmed the positive effect of using TNT substrate for natural polymer coating on improved bioactivity of implant.

  15. Natural product mode of action (MOA) studies: a link between natural and synthetic worlds.

    Science.gov (United States)

    La Clair, James J

    2010-07-01

    In our understanding of matter, natural products deliver plots that would stun even the best productions of the legendary filmmaker, Sergio Leone. While every decade heralds a new genre of film (as well as avenues of small-molecule discovery), natural products and their "untamed prehistoric" plots continue to dazzle the fields of biotechnology, drug discovery, fragrances, food additives and agrochemistry. This review provides an abridged synopsis of the modes of natural product action discovered within the last decade and the tools and methods used in their discovery. Their stories are united in a common theme that unveils one of the more vital aspects of chemical biological research:understanding the global activity of Nature's arsenal of secondary metabolites.

  16. Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process

    International Nuclear Information System (INIS)

    Shih, Chi-Chung; Chien, Chi-Sheng; Kung, Jung-Chang; Chen, Jian-Chih; Chang, Shy-Shin; Lu, Pei-Shan; Shih, Chi-Jen

    2013-01-01

    Highlights: ► All the unwanted organic contents were removed completely at temperatures above 600 °C. ► Specific surface area and pore volume of Mesoporous bioactive glasses reached maximum at the critical surfactant concentration. ► SAED pattern suggests that some glassy structures in the Bioactive Glasses became crystalline due to the heat treatment. ► The MBGs can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods. - Abstract: Mesoporous bioactive glasses were prepared by the evaporation-induced self-assembly method. The main objective of the present study is to determine the effect of surfactant concentration on the synthesis of SiO 2 –CaO–P 2 O 5 mesoporous bioactive glasses; the characterization techniques used include X-ray diffraction, scanning electron microscopy and nitrogen adsorption and desorption isotherms. The results show that the specific surface area initially increased with increasing surfactant concentrations in the range of 2.1–9.1 wt% and significantly decreased from 328.7 to 204.0 m 2 /g in the concentration range of 9.1–12.5 wt%. For texture evaluation, the selected area electron diffraction patterns of the mesoporous bioactive glass precursor gels (9.1 wt% F127) calcined at different temperatures were analyzed; these patterns support the notion that some glassy structures in bioactive glasses become crystalline following heat treatment. The scanning electron microscopy images and X-ray diffraction patterns obtained agree with the inductively coupled plasma with atomic emission spectroscopy results as the mesoporous bioactive glasses can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods.

  17. Bioactive and inert dental glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Zanotto, Edgar Dutra

    2017-02-01

    The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.

  18. In Vitro Bioactivity and Antimicrobial Tuning of Bioactive Glass Nanoparticles Added with Neem (Azadirachta indica) Leaf Powder

    Science.gov (United States)

    Prabhu, M.; Ruby Priscilla, S.; Kavitha, K.; Manivasakan, P.; Rajendran, V.; Kulandaivelu, P.

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications. PMID:25276834

  19. In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder.

    Science.gov (United States)

    Prabhu, M; Ruby Priscilla, S; Kavitha, K; Manivasakan, P; Rajendran, V; Kulandaivelu, P

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications.

  20. Divergent solid-phase synthesis of natural product-inspired bipartite cyclodepsipeptides : total synthesis of seragamide A

    NARCIS (Netherlands)

    Arndt, H.-D.; Rizzo, S.; Nöcker, Chr.; Wackchaure, V.N.; Milroy, L.G.; Bieker, V.; Calderon, A.; Tran, T.T.N.; Brand, S.; Dehmelt, L.; Waldmann, H.

    2015-01-01

    Macrocyclic natural products (NPs) and analogues thereof often show high affinity, selectivity, and metabolic stability, and methods for the synthesis of NP-like macrocycle collections are of major current interest. We report an efficient solid-phase/cyclorelease method for the synthesis of a

  1. [Diversity and bioactivity of culturable actinobacteria from animal feces].

    Science.gov (United States)

    Jiang, Yi; Cao, Yanru; Han, Li; Jin, Rongxian; Zheng, Dan; He, Wenxiang; Li, Youlong; Huang, Xueshi

    2012-10-04

    In order to provide new source for discovering new lead compounds of drugs and other products, the diversity and some bioactivities of culturable actinobacteria in animal feces were studied. Five animals' fecal samples were collected from Yunnan Wild Animal Park. The pure cultures of actinobacteria were isolated from these samples by using 5 different media. The 16S rRNA gene sequences of 119 selected strains were determined; the phylogenetic analysis was carried out; and antimicrobial and anti-tumor activities were determined by using agar diffusion method, tumor cell lines k562and HL60 respectively. In total 20 genera of actinobacteria from the 5 animals' feces were identified. Many strains inhibited Bacillus subtilis, Staphylococcus lentus, Mycobacterium tuberculosis, Candida albicans and Aspergillus niger. Some strains presented antitumor activities. Some known secondary metabolites and Sannastatin, a novel macrolactam polyketide glycoside with bioactivities, were isolated and identified. Fecal actinobacteria are a new potential source for discovering drug lead and other industry products.

  2. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite.

    Science.gov (United States)

    Fahami, Abbas; Beall, Gary W; Betancourt, Tania

    2016-02-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl-F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20±5 to 70±5nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl-F will lead to the formation of new apatite particles and therefore be a potential implant material. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. High-performance thin-layer chromatography linked with (bio)assays and mass spectrometry - a suited method for discovery and quantification of bioactive components? Exemplarily shown for turmeric and milk thistle extracts.

    Science.gov (United States)

    Taha, Mahmoud N; Krawinkel, Michael B; Morlock, Gertrud E

    2015-05-15

    Extraction parameters, chemical fingerprint, and the single compounds' activity levels were considered for the selection of active botanicals. For an initial survey, the total bioactivity (i.e., total reducing capacity, total flavonoids contents and free radical scavenging capacity) of 21 aqueous and 21 ethanolic plant extracts was investigated. Ethanolic extracts showed a higher yield and were further analyzed by HPTLC in detail to obtain fingerprints of single flavonoids and further bioactive components. Exemplarily shown for turmeric (Curcuma longa) and milk thistle (Silybum marianum), effect-directed analysis (EDA) was performed using three selected (bio)assays, the Aliivibrio fischeri bioassay, the Bacillus subtilis bioassay and the 2,2-diphenyl-1-picrylhydrazyl (DPPH*) assay. As a proof of principle, the bioactive components found in the extracts were confirmed by HPTLC-MS. Bioassays in combination with planar chromatography directly linked to the known, single effective compounds like curcumin and silibinin. However, also some unknown bioactive components were discovered and exemplarily characterized, which demonstrated the strength of this kind of EDA. HPTLC-UV/Vis/FLD-EDA-MS could become a useful tool for selection of active botanicals and for the activity profiling of the active ingredients therein. The flexibility in effect-directed detections allows a comprehensive survey of effective ingredients in samples. This streamlined methodology comprised a non-targeted, effect-directed screening first, followed by a highly targeted characterization of the discovered bioactive compounds. HPTLC-EDA-MS can also be recommended for bioactivity profiling of food on the food intake side, as not only effective phytochemicals, but also unknown bioactive degradation products during food processing or contamination products or residues or metabolites can be detected. Thus, an efficient survey on potential food intake effects on wellness could be obtained. Having performed

  4. Separation process design for isolation and purification of natural products

    DEFF Research Database (Denmark)

    Malwade, Chandrakant R.

    Natural products are defined as secondary metabolites produced by plants and form a vast pool of compounds with unlimited chemical and functional diversity. Many of these secondary metabolites are high value added chemicals that are frequently used as ingredients in food, cosmetics, pharmaceuticals...... and other consumer products. Therefore, process technology towards industrial scale production of such high value chemicals from plants has significant value. Natural products can be obtained in pure form via synthetic or semi-synthetic route, but due to their complicated nature these methods have not been...... developed to the extent of industrial production for majority of natural products. Thus, isolation and purification of such natural products from plants is the most viable way to obtain natural products in pure form. This PhD project is mainly concerned with the design of separation process to isolate...

  5. Natural gas and production of electricity

    International Nuclear Information System (INIS)

    Defago, E.

    2005-01-01

    The forthcoming power supply shortage in Switzerland due to increasing consumption is discussed, as are the possibilities for securing the future supply. Today, the main sources are hydroelectric (roughly 55 %) and nuclear (40 %) power. The share of electricity from natural gas amounts to only 1.4 %. The possibilities of further economic production of hydropower are practically exhausted. Therefore, further electric power has to be either imported or generated from other energy sources (renewable, nuclear, fossil) in the country itself. Due to the low acceptance of nuclear energy and the limited potential of renewable energy sources, natural gas is the most favoured candidate. The advantages of distributed production in cogeneration plants are compared with the centralized production in larger plants using combined cycles. Finally, a project currently under development is presented: an existing thermal power plant fueled with heavy fuel oil shall be refurbished and converted to natural gas as the new fuel

  6. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S.P., E-mail: spsinghceram@gmail.com

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1 − X) SiO{sub 2−}–24.3 Na{sub 2}O–26.9 CaO–2.6 P{sub 2}O{sub 5}, where X = 0, 0.4, 0.8, 1.2 and 1.6 mol% of BaO was chosen and melted in an electric furnace at 1400 ± 5 °C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. - Highlights: • In vitro bioactivity of soda-lime–baria-phospho-silicate glass was investigated. • HCA formed on surface of glasses was confirmed by XRD, SEM and FTIR spectrometry. • Mechanical properties of glasses were found to increase with barium addition. • Hemolysis showed that 1.2 mol% BaO bioactive glass exhibited better biocompatibility. • Barium substituted bioactive glasses can be used as bone implants.

  7. Bioactive Lipids in Dairy Fat

    DEFF Research Database (Denmark)

    Hellgren, Lars; Nordby, Pernille

    2017-01-01

    Milk fat is the most important energy source for the newborn infant beside its important role as energy source, milk fat also contain a range of bioactive lipids, that potentially can modulate the immune response and metabolic regulation in the child. In this chapter we review the literature on b...... on bioactive dairy fatty acids: conjugated linoleic acid, branched chained and odd chained fatty acids, as well as bioactive complex lipids such as sphingomyelin and gangliosides....

  8. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  9. Physicochemical properties of newly developed bioactive glass cement and its effects on various cells.

    Science.gov (United States)

    Washio, Ayako; Nakagawa, Aika; Nishihara, Tatsuji; Maeda, Hidefumi; Kitamura, Chiaki

    2015-02-01

    Biomaterials used in dental treatments are expected to have favorable properties such as biocompatibility and an ability to induce tissue formation in dental pulp and periapical tissue, as well as sealing to block external stimuli. Bioactive glasses have been applied in bone engineering, but rarely applied in the field of dentistry. In the present study, bioactive glass cement for dental treatment was developed, and then its physicochemical properties and effects on cell responses were analyzed. To clarify the physicochemical attributes of the cement, field emission scanning electron microscopy, X-ray diffraction, and pH measurement were carried out. Cell attachment, morphology, and viability to the cement were also examined to clarify the effects of the cement on odontoblast-like cells (KN-3 cells), osteoblastic cells (MC3T3-E1 cells), human periodontal ligament stem/progenitor cells and neuro-differentiative cells (PC-12 cells). Hydroxyapatite-like precipitation was formed on the surface of the hardened cement and the pH level changed from pH10 to pH9, then stabilized in simulate body fluid. The cement had no cytotxic effects on these cells, and particulary induced process elongation of PC-12 cells. Our results suggest that the newly developed bioactive glass cement have capability of the application in dental procedures as bioactive cement. © 2014 Wiley Periodicals, Inc.

  10. Bioinformatics approaches for identifying new therapeutic bioactive peptides in food

    Directory of Open Access Journals (Sweden)

    Nora Khaldi

    2012-10-01

    Full Text Available ABSTRACT:The traditional methods for mining foods for bioactive peptides are tedious and long. Similar to the drug industry, the length of time to identify and deliver a commercial health ingredient that reduces disease symptoms can take anything between 5 to 10 years. Reducing this time and effort is crucial in order to create new commercially viable products with clear and important health benefits. In the past few years, bioinformatics, the science that brings together fast computational biology, and efficient genome mining, is appearing as the long awaited solution to this problem. By quickly mining food genomes for characteristics of certain food therapeutic ingredients, researchers can potentially find new ones in a matter of a few weeks. Yet, surprisingly, very little success has been achieved so far using bioinformatics in mining for food bioactives.The absence of food specific bioinformatic mining tools, the slow integration of both experimental mining and bioinformatics, and the important difference between different experimental platforms are some of the reasons for the slow progress of bioinformatics in the field of functional food and more specifically in bioactive peptide discovery.In this paper I discuss some methods that could be easily translated, using a rational peptide bioinformatics design, to food bioactive peptide mining. I highlight the need for an integrated food peptide database. I also discuss how to better integrate experimental work with bioinformatics in order to improve the mining of food for bioactive peptides, therefore achieving a higher success rates.

  11. Update on Bioactive Prosthetic Material for the Treatment of Hernias.

    Science.gov (United States)

    Edelman, David S; Hodde, Jason P

    2011-12-01

    The use of mesh in the repair of hernias is commonplace. Synthetic mesh, like polypropylene, has been the workhorse for hernia repairs since the 1980s. Surgisis® mesh (Cook Surgical, Bloomington, IN), a biologic hernia graft material composed of purified porcine small intestinal submucosa (SIS), was first introduced to the United States in 1998 as an alternative to synthetic mesh materials. This mesh, composed of extracellular matrix collagen, fibronectin and associated glycosaminoglycans and growth factors, has been extensively investigated in animal models and used clinically in many types of surgical procedures. SIS acts as a scaffold for natural growth and strength. We reported our initial results in this publication in July 2006. Since then, there have been many more reports and numerous other bioactive prosthetic materials (BPMs) released. The object of this article is to briefly review some of the current literature on the use of BPM for inguinal hernias, sports hernias, and umbilical hernias.

  12. High content live cell imaging for the discovery of new antimalarial marine natural products

    Directory of Open Access Journals (Sweden)

    Cervantes Serena

    2012-01-01

    Full Text Available Abstract Background The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. Methods A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Results Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Conclusion Collectively, our results show that high-content live cell-imaging (HCLCI can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials.

  13. High content live cell imaging for the discovery of new antimalarial marine natural products.

    Science.gov (United States)

    Cervantes, Serena; Stout, Paige E; Prudhomme, Jacques; Engel, Sebastian; Bruton, Matthew; Cervantes, Michael; Carter, David; Tae-Chang, Young; Hay, Mark E; Aalbersberg, William; Kubanek, Julia; Le Roch, Karine G

    2012-01-03

    The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. © 2011 Cervantes et al; licensee BioMed Central Ltd.

  14. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products.

    Directory of Open Access Journals (Sweden)

    Marnix H Medema

    2014-09-01

    Full Text Available Nonribosomally and ribosomally synthesized bioactive peptides constitute a source of molecules of great biomedical importance, including antibiotics such as penicillin, immunosuppressants such as cyclosporine, and cytostatics such as bleomycin. Recently, an innovative mass-spectrometry-based strategy, peptidogenomics, has been pioneered to effectively mine microbial strains for novel peptidic metabolites. Even though mass-spectrometric peptide detection can be performed quite fast, true high-throughput natural product discovery approaches have still been limited by the inability to rapidly match the identified tandem mass spectra to the gene clusters responsible for the biosynthesis of the corresponding compounds. With Pep2Path, we introduce a software package to fully automate the peptidogenomics approach through the rapid Bayesian probabilistic matching of mass spectra to their corresponding biosynthetic gene clusters. Detailed benchmarking of the method shows that the approach is powerful enough to correctly identify gene clusters even in data sets that consist of hundreds of genomes, which also makes it possible to match compounds from unsequenced organisms to closely related biosynthetic gene clusters in other genomes. Applying Pep2Path to a data set of compounds without known biosynthesis routes, we were able to identify candidate gene clusters for the biosynthesis of five important compounds. Notably, one of these clusters was detected in a genome from a different subphylum of Proteobacteria than that in which the molecule had first been identified. All in all, our approach paves the way towards high-throughput discovery of novel peptidic natural products. Pep2Path is freely available from http://pep2path.sourceforge.net/, implemented in Python, licensed under the GNU General Public License v3 and supported on MS Windows, Linux and Mac OS X.

  15. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste.

    Science.gov (United States)

    Nour, Violeta; Ionica, Mira Elena; Trandafir, Ion

    2015-12-01

    The tomato processing industry generates high amounts of waste, mainly tomato skins and seeds, which create environmental problems. These residues are attractive sources of valuable bioactive components and pigments. A relatively simple recovery technology could consist of production of powders to be directly incorporated into foods. Tomato waste coming from a Romanian tomato processing unit were analyzed for the content of several bioactive compounds like ascorbic acid, β-carotene, lycopene, total phenolics, mineral and trace elements. In addition, its antioxidant capacity was assayed. Results revealed that tomato waste (skins and seeds) could be successfully utilized as functional ingredient for the formulation of antioxidant rich functional foods. Dry tomato processing waste were used to supplement wheat flour at 6 and 10 % levels (w/w flour basis) and the effects on the bread's physicochemical, baking and sensorial characteristics were studied. The following changes were observed: increase in moisture content, titratable acidity and bread crumb elasticity, reduction in specific volume and bread crumb porosity. The addition of dry tomato waste at 6 % resulted in bread with good sensory characteristics and overall acceptability but as the amount of dry tomato waste increased to 10 %, bread was less acceptable.

  16. In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites.

    Science.gov (United States)

    Ji, Lijun; Wang, Wenjun; Jin, Duo; Zhou, Songtao; Song, Xiaoli

    2015-01-01

    Nanoparticles of bioactive glass (NBG) with a diameter of 50-90 nm were synthesized using the Stöber method. NBG/PCL composites with different NBG contents (0 wt.%, 10 wt.%, 20 wt.%, 30 wt.% and 40 wt.%) were prepared by a melt blending and thermal injection moulding technique, and characterized with XRD, FTIR, and SEM to study the effect of NBG on the mechanical properties and in vitro bioactivity of the NBG/PCL composites. In spite of the high addition up to 40 wt.%, the NBG could be dispersed homogeneously in the PCL matrix. The elastic modulus of the NBG/PCL composites was improved remarkably from 198±13 MPa to 851±43 MPa, meanwhile the tensile strength was retained in the range of 19-21.5 MPa. The hydrophilic property and degradation behavior of the NBG/PCL composites were also improved with the addition of the NBG. Moreover, the composites with high NBG content showed outstanding in vitro bioactivity after being immersed in simulated body fluid, which could be attributed to the excellent bioactivity of the synthesized NBG. Copyright © 2014. Published by Elsevier B.V.

  17. Therapeutic potential of abalone and status of bioactive molecules: A comprehensive review.

    Science.gov (United States)

    Suleria, H A R; Masci, P P; Gobe, G C; Osborne, S A

    2017-05-24

    Marine organisms are increasingly being investigated as sources of bioactive molecules with therapeutic applications as nutraceuticals and pharmaceuticals. In particular, nutraceuticals are gaining popularity worldwide owing to their therapeutic potential and incorporation in functional foods and dietary supplements. Abalone, a marine gastropod, contains a variety of bioactive compounds with anti-oxidant, anti-thrombotic, anti-inflammatory, anti-microbial, and anti-cancer activities. For thousands of years different cultures have used abalone as a traditional functional food believing consumption provides health benefits. Abalone meat is one of the most precious commodities in Asian markets where it is considered a culinary delicacy. Recent research has revealed that abalone is composed of many vital moieties like polysaccharides, proteins, and fatty acids that provide health benefits beyond basic nutrition. A review of past and present research is presented with relevance to the therapeutic potential of bioactive molecules from abalone.

  18. Bioactivity of immobilized hyaluronic acid derivatives regarding protein adsorption and cell adhesion

    DEFF Research Database (Denmark)

    Köwitsch, Alexander; Yang, Yuan; Ma, Ning

    2011-01-01

    with HA on physicochemical surface properties of these substrata and estimates of the quantities of immobilized HA were obtained by different physical methods such as contact angle measurements, ellipsometry, and atomic force microscopy. The bioactivity of aHA and tHA toward their natural binding partner...... affects cell growth and differentiation. A lower number and spreading of cells were observed on HA-modified surfaces compared to amino- and vinyl-terminated glass and silicon surfaces. Immunofluorescence microscopy also revealed that adhesion of fibroblast plated on HA-modified surfaces was mediated...... primarily by HA receptor CD44, indicating that bioactivity of HA was not significantly reduced by chemical modification....

  19. Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products

    Science.gov (United States)

    Gomez-Escribano, Juan Pablo; Alt, Silke; Bibb, Mervyn J.

    2016-01-01

    Like many fields of the biosciences, actinomycete natural products research has been revolutionised by next-generation DNA sequencing (NGS). Hundreds of new genome sequences from actinobacteria are made public every year, many of them as a result of projects aimed at identifying new natural products and their biosynthetic pathways through genome mining. Advances in these technologies in the last five years have meant not only a reduction in the cost of whole genome sequencing, but also a substantial increase in the quality of the data, having moved from obtaining a draft genome sequence comprised of several hundred short contigs, sometimes of doubtful reliability, to the possibility of obtaining an almost complete and accurate chromosome sequence in a single contig, allowing a detailed study of gene clusters and the design of strategies for refactoring and full gene cluster synthesis. The impact that these technologies are having in the discovery and study of natural products from actinobacteria, including those from the marine environment, is only starting to be realised. In this review we provide a historical perspective of the field, analyse the strengths and limitations of the most relevant technologies, and share the insights acquired during our genome mining projects. PMID:27089350

  20. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, S., E-mail: sara.ferraris@polito.it [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Miola, M. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Cochis, A.; Azzimonti, B.; Rimondini, L. [Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Prenesti, E. [Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, Torino, 10125 (Italy); Vernè, E. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy)

    2017-02-28

    Highlights: • Gallic acid and natural polyphenols were grafted onto bioactive glasses. • Grafting ability was dependent on glass reactivity. • In situ reduction of silver nanoparticles was performed onto functionalized glasses. • Bioactive glasses decorated with silver nanoparticles showed antibacterial activity. - Abstract: The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules – showing reducing ability to directly obtain in situ metallic silver – and silver nanoparticles was investigated by means of UV–vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  1. Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chi-Chung [Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Department of Family Medicine, Chang Gung Memorial Hospital, Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Chien, Chi-Sheng [Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Department of Orthopaedics, Chi Mei Foundation Hospital, Tainan, Taiwan (China); Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Kung, Jung-Chang [Department of Family Dentistry, Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Shy-Shin [Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Lu, Pei-Shan [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Shih, Chi-Jen, E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer All the unwanted organic contents were removed completely at temperatures above 600 Degree-Sign C. Black-Right-Pointing-Pointer Specific surface area and pore volume of Mesoporous bioactive glasses reached maximum at the critical surfactant concentration. Black-Right-Pointing-Pointer SAED pattern suggests that some glassy structures in the Bioactive Glasses became crystalline due to the heat treatment. Black-Right-Pointing-Pointer The MBGs can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods. - Abstract: Mesoporous bioactive glasses were prepared by the evaporation-induced self-assembly method. The main objective of the present study is to determine the effect of surfactant concentration on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glasses; the characterization techniques used include X-ray diffraction, scanning electron microscopy and nitrogen adsorption and desorption isotherms. The results show that the specific surface area initially increased with increasing surfactant concentrations in the range of 2.1-9.1 wt% and significantly decreased from 328.7 to 204.0 m{sup 2}/g in the concentration range of 9.1-12.5 wt%. For texture evaluation, the selected area electron diffraction patterns of the mesoporous bioactive glass precursor gels (9.1 wt% F127) calcined at different temperatures were analyzed; these patterns support the notion that some glassy structures in bioactive glasses become crystalline following heat treatment. The scanning electron microscopy images and X-ray diffraction patterns obtained agree with the inductively coupled plasma with atomic emission spectroscopy results as the mesoporous bioactive glasses can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods.

  2. Plants as natural antioxidants for meat products

    Science.gov (United States)

    Tomović, V.; Jokanović, M.; Šojić, B.; Škaljac, S.; Ivić, M.

    2017-09-01

    The meat industry is demanding antioxidants from natural sources to replace synthetic antioxidants because of the negative health consequences or beliefs regarding some synthetic ones. Plants materials provide good alternatives. Spices and herbs, generally used for their flavouring characteristics, can be added to meat products in various forms: whole, ground, or as isolates from their extracts. These natural antioxidants contain some active compounds, which exert antioxidative potential in meat products. This antioxidant activity is most often due to phenolic acids, phenolic diterpenes, flavonoids and volatile oils. Each of these compounds often has strong H-donating activity, thus making them extremely effective antioxidants; some compounds can chelate metals and donate H to oxygen radicals, thus slowing oxidation via two mechanisms. Numerous studies have demonstrated the efficacy of natural antioxidants when used in meat products. Based on this literature review, it can be concluded that natural antioxidants are added to fresh and processed meat and meat products to delay, retard, or prevent lipid oxidation, retard development of off-flavours (rancidity), improve colour stability, improve microbiological quality and extend shelf-life, without any damage to the sensory or nutritional properties.

  3. X-hitting: A new algorithm for novelty detection and dereplication by UV spectra of complex mixtures of natural products

    DEFF Research Database (Denmark)

    Hansen, Michael Edberg; Smedsgaard, Jørn; Larsen, Thomas Ostenfeld

    2005-01-01

    A major challenge in lead discovery is to detect well-known and trivial compounds rapidly, a process known as dereplication, so that isolation, structure elucidation, and pharmacological investigations can be focused on novel compounds. In this paper, we present a new algorithm, X-hitting, based...... on cross sample comparison of full UV spectra from HPLC analysis of highly complex natural product extracts/samples. X-Hitting allows automatic identification of known compounds but more important also allows finding of potentially new or similar compounds. We demonstrate this new algorithm by automatic...... identification of known structures, a task we call cross-hitting, and tentative identification of potentially new bioactive compounds, a task we call new-hitting, in HPLC data from analysis of fungal extracts. Both tasks are illustrated using 18 important reference compounds and complex fungal extracts obtained...

  4. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Sztiller-Sikorska

    Full Text Available BACKGROUND: Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. METHODS: We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. FINDINGS: Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF and proto-oncogene c-MYC. CONCLUSION: Selected anti-clonogenic compounds might be further investigated as potential adjuvants

  5. Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in Ringer’s solution with BSA

    Directory of Open Access Journals (Sweden)

    Nabian Nima

    2013-01-01

    Full Text Available The paper reports the first attempt at changing cooling treatment of synthesizing method in order to investigate its effect on the physical properties of sol-gel derived nano bioactive glass-ceramic in the system 58SiO2-33CaO-9P2O5 (wt.%. We hypothesized that the method of cooling may affect the properties of nano bioactive glass-ceramic. To test this hypothesis, two different method of cooling treatment was applied after calcinations in synthesizing method. Both quenched and unquenched nano bioactive glass-ceramics were soaked in Ringer’s solution with bovine serum albumin (BSA for bioactivity evaluation. The obtained samples were analyzed for their composition, crystalinity and morphology through X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, surface electron microscope (SEM and transmission electron microscope (TEM. The SEM images showed that the morphology of nano bioactive glass-ceramics was completely changed by quenching process. Results of in vitro bioactivity evaluation revealed that the unquenched attains faster apatite formation ability than the quenched sample. Other properties of these two morphologically different nano bioactive glass-ceramics were strongly discussed.

  6. Bioactivity-guided mixed synthesis accelerate the serendipity in lead optimization: Discovery of fungicidal homodrimanyl amides.

    Science.gov (United States)

    Li, Dangdang; Zhang, Shasha; Song, Zehua; Wang, Guotong; Li, Shengkun

    2017-08-18

    The bioactivity-guided mixed synthesis was conceived, in which the designed mix-reactions were run in parallel for simultaneous construction of different kinds of analogs. The valuable ones were protruded by biological screening. This tactic will facilitate more rapid incorporation of bioactive candidates into pesticide chemists' repertoire, exemplified by the optimization of less explored homodrimanes as antifungal ingredients. The discovery of D9 as a potent fungicidal agent can be completed in <2 weeks by one student, with EC 50 of 3.33 mg/L and 2.45 mg/L against S. sclerotiorum and B. cinerea, respectively. To confirm the practicability, time-efficiency, and reliability, specific homodrimanes (82 derivatives) were synthesized and elucidated separately and determined for EC 50 values. The SAR correlated well with the intentionally mixed synthesis and the potential was further confirmed by the in vivo bioassay. This methodology will foster more efficient exploration of biologically relevant chemical space of natural products in pesticide discovery, and can also be tailored readily for the lead optimization in medicinal chemistry. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Neutral atom beam technique enhances bioactivity of PEEK

    International Nuclear Information System (INIS)

    Khoury, Joseph; Kirkpatrick, Sean R.; Maxwell, Melissa; Cherian, Raymond E.; Kirkpatrick, Allen; Svrluga, Richard C.

    2013-01-01

    Polyetheretherketone (PEEK) is currently gaining popularity in orthopedic and spinal applications but has potential drawbacks in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent; however, it has been shown to be inert and does not integrate well with bone. Recent efforts have focused on increasing the bioactivity of PEEK by modifying the surface to improve the bone-implant interface. We have employed a novel Accelerated Neutral Atom Beam technique (ANAB) to enhance the bioactivity of PEEK. ANAB employs an intense beam of cluster-like packets of accelerated unbonded neutral argon (Ar) gas atoms. These beams are created by first producing a highly energetic Gas Cluster Ion Beam (GCIB) comprised of van der Waals bonded Ar atoms, then transferring energy to the clusters so as to cause release of most of the interatomic bonds, and finally deflecting away the remaining electrically charged cluster cores of still bonded atoms. We identified that ANAB treatment of PEEK results in nanometer scale surface modifications as well as increased surface hydrophilicity. Human osteoblasts seeded onto the surface of ANAB-treated PEEK exhibited enhanced growth as compared to control PEEK as evidenced by cell proliferation assays and microscopy. This increase in bioactivity resulted in cell proliferation levels comparable to native titanium. An in vivo study using a rat calvarial critical size defect model revealed enhanced osseointegration where bone tissue formation was evident only on the ANAB treated PEEK. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, resulting in bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants

  8. Alternative solvents for natural products extraction

    CERN Document Server

    Chemat, Farid

    2014-01-01

    This book presents a complete picture of the current state-of-the-art in alternative and green solvents used for laboratory and industrial natural product extraction in terms of the latest innovations, original methods and safe products. It provides the necessary theoretical background and details on extraction, techniques, mechanisms, protocols, industrial applications, safety precautions and environmental impacts. This book is aimed at professionals from industry, academicians engaged in extraction engineering or natural product chemistry research, and graduate level students. The individual chapters complement one another, were written by respected international researchers and recognized professionals from the industry, and address the latest efforts in the field. It is also the first sourcebook to focus on the rapid developments in this field.

  9. Linking neuroethology to the chemical biology of natural products

    DEFF Research Database (Denmark)

    Olivera, Baldomero M.; Raghuraman, Shrinivasan; Schmidt, Eric W.

    2017-01-01

    From a biological perspective, a natural product can be defined as a compound evolved by an organism for chemical interactions with another organism including prey, predator, competitor, pathogen, symbiont or host. Natural products hold tremendous potential as drug leads and have been extensively...... a better understanding of the evolution, biology and biochemistry of natural products will facilitate both neuroscience and the potential for drug leads. The larger goal is to establish a new sub-discipline in the broader field of neuroethology that we refer to as “Chemical Neuroethology”, linking...... the substantial work carried out by chemists on natural products with accelerating advances in neuroethology....

  10. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Razavi, Mehdi [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Pothineni, Venkata Raveendra [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Rajadas, Jayakumar [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2015-05-30

    Highlights: • PCL-BaG/Gel-BaG coating was applied on the surface of Mg scaffolds. • Mg scaffold/PCL-BaG/Gel-BaG presented improved biodegradation resistance. • Mg scaffold coated with the PCL-BaG layer indicated better bioactivity. - Abstract: Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  11. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    International Nuclear Information System (INIS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-01-01

    Highlights: • PCL-BaG/Gel-BaG coating was applied on the surface of Mg scaffolds. • Mg scaffold/PCL-BaG/Gel-BaG presented improved biodegradation resistance. • Mg scaffold coated with the PCL-BaG layer indicated better bioactivity. - Abstract: Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability

  12. Bioactive glasses potential biomaterials for future therapy

    CERN Document Server

    Kaur, Gurbinder

    2017-01-01

    This book describes the history, origin and basic characteristics of bioactive materials. It includes a chapter dedicated to hydroxyapatite mineral, its formation and its bioactive properties. The authors address how cytotoxicity is a determining step for bioactivity. Applications of bioactive materials in the contexts of tissue regeneration, bone regeneration and cancer therapy are also covered. Silicate, metallic and mesoporous glasses are described, as well as the challenges and future prospects of research in this field.

  13. Stabilization of emulsion and butter like products containing essential fatty acids using kalonji seeds extract and curcuminoids.

    Science.gov (United States)

    Rege, Sameera A; Momin, Shamim A; Bhowmick, Dipti N; Pratap, Amit A

    2012-01-01

    Owing to the tendency of essential fatty acids (EFAs) to undergo autoxidation, their storage becomes a key problem. Generally, they are stabilized by synthetic antioxidants like TBHQ that are toxic in nature. Recently many studies were reported where these EFAs are stabilized by natural antioxidants. In the present study, curcuminoids and kalonji seeds ethanol extract (KEE) were used to stabilize these EFAs in refined sunflower oil (RSFO), water-in-oil (w/o) emulsion and butter like products (BLPs). In RSFO, though curcuminoids alone exerted pro-oxidant effect, KEE and curcuminoids showed synergistic antioxidant activity that was comparable to TBHQ. KEE exhibited good antioxidant activity in emulsions and BLPs, providing fine physical properties like slipping point, dropping point and spreadability. EFAs increased the nutritional value of BLPs and antioxidants added for their stabilization provided their medicinal benefits.

  14. Bioactive compounds of fresh and dehydrated green pepper

    Directory of Open Access Journals (Sweden)

    Ana Marinho do Nascimento

    2017-07-01

    Full Text Available Pepper Capsicum annuum L., belongs to the Solanaceae family, which contains approximately 31 species. Bioactive compounds also known as phytochemicals are chemical and biochemical components that are present in most fruits and vegetables. The objective of the present study was to verify if the bioactive compounds of the green pepper remain after being submitted to the drying process. The experiment was conducted in a completely randomized design with 2 treatments and 5 replicates. Green peppers were used from the (Economic Center of Supply Corporation of the city of Patos, Paraíba. The peppers were packed in plastic boxes and transported to the Laboratory of Chemistry, Biochemistry and Food Analysis of the Federal University of Campina Grande, Campus Pombal. Where they were selected, washed and sanitized. After that, the minimum processing was done and the drying was carried out in a circulation oven at 60 ºC. At the end of the drying, the samples were crushed and sieved. After this process, the analyzes of ascorbic acid, chlorophylls, carotenoids, anthocyanin flavonoids and phenolic compounds. It was found that there was a significant difference between treatments. The bioactive properties of green pepper were not lost after the heat treatment. Some phytochemicals as ascorbic acid, carotenoids and phenolic compounds were concentrated. Therefore the loss of water during the drying process increased the concentration of the bioactive compounds of dehydrated pepper, the product obtained with this method exhibited high levels of phytochemicals, the use of drying may be an alternative to prolong the shelf life of the vegetable.

  15. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Azadirachta indica Mediated Bioactive Lyocell Yarn: Chemical and Colour Characterization

    Directory of Open Access Journals (Sweden)

    B. H. Patel

    2014-01-01

    Full Text Available The study deals with preparing aesthetic textiles using methanolic extract of Azadirachta indica leaves. The extract with metallic and natural mordents was utilized to create various shades on lyocell yarn using exhaust technique of dyeing. Aesthetic values of dyed yarns were analyzed in terms of colourimetric parameters, that is, CIE L*  a*  b* and colour fastness. The attachment of Azadirachta indica compounds has been confirmed by using infrared spectroscopy (IR analysis. The dyed samples exhibit moderate to good fastness properties. The study showed that lyocell yarn treated at 15% (owf methanolic extract of Azadirachta indica leaves can be utilized as effective bioactive textiles. Azadirachta indica is an alternative to synthetic antimicrobial agents. This bioactive yarn can be used in fashion as well as in medicinal industry.

  17. Towards semisynthetic natural compounds with a biaryl axis: Oxidative phenol coupling in Aspergillus niger.

    Science.gov (United States)

    Hugentobler, Katharina Gloria; Müller, Michael

    2018-04-01

    Regio- and stereoselective phenol coupling is difficult to achieve using synthetic strategies. However, in nature, cytochrome P450 enzyme-mediated routes are employed to achieve complete axial stereo- and regiocontrol in the biosynthesis of compounds with potent bioactivity. Here, we report a synthetic biology approach whereby the bicoumarin metabolic pathway in Aspergillus niger was specifically tailored towards the formation of new coupling products. This strategy represents a manipulation of the bicoumarin pathway in A. niger via interchange of the phenol-coupling biocatalyst and could be applied to other components of the pathway to access a variety of atropisomeric natural product derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Thermoluminescence as a probe in bioactivity studies; the case of 58S sol-gel bioactive glass

    International Nuclear Information System (INIS)

    Polymeris, George S; Tsirliganis, Nestor C; Goudouri, Ourania Menti; Paraskevopoulos, Konstantinos M; Kontonasaki, Eleana; Kitis, George

    2011-01-01

    The formation of a carbonated hydroxyapatite (HCAp) layer on the surface of bioactive materials is the main reaction that takes place upon their immersion in physiological fluids. To date, all techniques used for the identification of this HCAp formation are rather time consuming and not well suited to detailed and rapid monitoring of changes in the bioactivity response of the material. The aim of this work is to explore the possibility of using thermoluminescence (TL) for the discrimination between different bioactive responses in the case of the 58S bioactive glass. Results provided strong indications that the 110 deg. C TL peak of quartz can be used effectively in the study of the bioactive behaviour of 58S bioactive glass, since it is unambiguously present in all samples and does not require deconvolution analysis. Furthermore, the intensity of the 110 deg. C TL peak is proven to be very sensitive to the different bioactive responses, identifying the loss of silica which takes place at the first stages of the sequence. The discontinuities of the 110 deg. C TL peak intensity plot versus immersion time at 8 and 1440 min provide experimental indications regarding the timescale for both the beginning of amorphous CaP formation as well as the end of crystalline hydroxyl-apatite formation respectively, while the spike in the sensitization of the 110 deg. C TL peak, which was observed for immersion times ranging between 20 and 40 min, could be an experimental feature indicating the beginning of the crystalline HCAp formation.

  19. Beebread from Apis mellifera and Apis dorsata. Comparative Chemical Composition and Bioactivity

    Directory of Open Access Journals (Sweden)

    Otilia BOBIS

    2017-05-01

    Full Text Available Beebread is a valuable bee product, both for bee nutrition and for humans. The high nutritional and bioactive properties of beebread were evaluated by chemical composition analysis of beebread from Apis mellifera and Apis dorsata. Bee bread harvested from Romania and India, coming from Apis mellifera and Apis dorsata bees, were evaluated for their chemical composition. Analyses were made in APHIS Laboratory from USAMV Cluj, using validated methods for bee products. Lipids were determined by the Soxhlet extraction method, total protein content was determined by Kjehldahl method, sugar spectrum was determined by high performance liquid chromatography with refractive index detection (HPLC-IR. Water content of beebread samples were situated between 11.45 and 16.46%, total protein content between 16.84 and 19.19% and total lipids between 6.36 and 13.47%.  Beebread has high bioactive properties which can be expressed as antioxidant and/or antibacterial activity. Chemical composition and bioactive properties of beebread is influenced by floral origin of the pollen which the bees collect and place in combs for fermentation. Also the climatic conditions have an important role in developing different fermentation compounds, that may act as antioxidants or antibacterial agents.

  20. Natural Products Combating Neurodegeneration: Parkinson's Disease.

    Science.gov (United States)

    Solayman, Md; Islam, Md Asiful; Alam, Fahmida; Khalil, Md Ibrahim; Kamal, Mohammad Amjad; Gan, Siew Hua

    2017-01-01

    Parkinson's disease (PD) is characterized by neurodegeneration and a progressive functional impairment of the midbrain nigral dopaminergic neurons. The cause remains unknown; however, several pathological processes and central factors, such as protein aggregation, mitochondrial dysfunction, iron accumulation, neuroinflammation and oxidative stress, have been reported. The current treatment method primarily targets symptoms by using anti-Parkinson drugs such as levodopa, carbidopa, dopamine (DA) agonists, monoamine oxidase type B inhibitors and anticholinergics to replace DA. When drug therapy is not satisfactory, surgical treatments are recommended. Unfortunately, the existing conventional strategies that target PD are associated with numerous side effects and possess an economic burden. Therefore, novel therapeutic approaches that regulate the pathways leading to neuronal death and dysfunction are necessary. For many years, nature has provided the primary resource for the discovery of potential therapeutic agents. Remarkably, many natural products from medicinal plants, fruits and vegetables have been demonstrated to be efficacious anti-Parkinson agents. These products possess neuroprotective properties as a result of not only their wellrecognized anti-oxidative and anti-inflammatory activities but also their inhibitory roles regarding iron accumulation, protein misfolding and the maintenance of proteasomal degradation, as well as mitochondrial homeostasis. The aim of this review is to report the available anti-Parkinson agents based on natural products and delineate their therapeutic actions, which act on various pathways. Overall, this review emphasizes the types of natural products that are potential future resources in the treatment of PD as novel regimens or supplementary agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.