WorldWideScience

Sample records for bioactive nanofibrous scaffolds

  1. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekaran, Arun Richard; Venugopal, J; Sundarrajan, S; Ramakrishna, S, E-mail: nnijrv@nus.edu.s [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore (Singapore)

    2011-02-15

    Engineering dermal substitutes with electrospun nanofibres have lately been of prime importance for skin tissue regeneration. Simple electrospinning technology served to produce nanofibrous scaffolds morphologically and structurally similar to the extracellular matrix of native tissues. The nanofibrous scaffolds of poly(l-lactic acid)-co-poly({epsilon}-caprolactone) (PLACL) and PLACL/gelatin complexes were fabricated by the electrospinning process. These nanofibres were characterized for fibre morphology, membrane porosity, wettability and chemical properties by FTIR analysis to culture human foreskin fibroblasts for skin tissue engineering. The nanofibre diameter was obtained between 282 and 761 nm for PLACL and PLACL/gelatin scaffolds; expressions of amino and carboxyl groups and porosity up to 87% were obtained for these fibres, while they also exhibited improved hydrophilic properties after plasma treatment. The results showed that fibroblasts proliferation, morphology, CMFDA dye expression and secretion of collagen were significantly increased in plasma-treated PLACL/gelatin scaffolds compared to PLACL nanofibrous scaffolds. The obtained results prove that the plasma-treated PLACL/gelatin nanofibrous scaffold is a potential biocomposite material for skin tissue regeneration.

  2. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix

    OpenAIRE

    Stankus, John J.; Freytes, Donald O.; Badylak, Stephen F.; Wagner, William R.

    2008-01-01

    Synthetic materials can be electrospun into submicron or nanofibrous scaffolds to mimic extracellular matrix (ECM) scale and architecture with reproducible composition and adaptable mechanical properties. However, these materials lack the bioactivity present in natural ECM. ECM-derived scaffolds contain bioactive molecules that exert in vivo mimicking effects as applied for soft tissue engineering, yet do not possess the same flexibility in mechanical property control as some synthetics. The ...

  3. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    Science.gov (United States)

    Prabhakaran, Molamma P.; Venugopal, J.; Chan, Casey K.; Ramakrishna, S.

    2008-11-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ɛ-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  4. Partially Nanofibrous Architecture of 3D Tissue Engineering Scaffolds

    OpenAIRE

    Wei, Guobao; Ma, Peter X.

    2009-01-01

    An ideal tissue-engineering scaffold should provide suitable pores and appropriate pore surface to induce desired cellular activities and to guide 3D tissue regeneration. In the present work, we have developed macroporous polymer scaffolds with varying pore wall architectures from smooth (solid), microporous, partially nanofibrous, to entirely nanofibrous ones. All scaffolds are designed to have well-controlled interconnected macropores, resulting from leaching sugar sphere template. We exami...

  5. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.

    Science.gov (United States)

    Shanmugavel, Suganya; Reddy, Venugopal Jayarama; Ramakrishna, Seeram; Lakshmi, B S; Dev, Vr Giri

    2014-07-01

    Advances in electrospun nanofibres with bioactive materials have enhanced the scope of fabricating biomimetic scaffolds for tissue engineering. The present research focuses on fabrication of polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds by electrospinning followed by hydroxyapatite deposition by calcium-phosphate dipping method for bone tissue engineering. Morphology, composition, hydrophilicity and mechanical properties of polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds along with controls polycaprolactone and polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds were examined by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle and tensile tests, respectively. Adipose-derived stem cells cultured on polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds displayed highest cell proliferation, increased osteogenic markers expression (alkaline phosphatase and osteocalcin), osteogenic differentiation and increased mineralization in comparison with polycaprolactone control. The obtained results indicate that polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds have appropriate physico-chemical and biological properties to be used as biomimetic scaffolds for bone tissue regeneration.

  6. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone nanofibrous scaffolds for bone regeneration

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-04-01

    Full Text Available Zi Wang,1,* Ming Lin,1,* Qing Xie,1 Hao Sun,1 Yazhuo Huang,1 DanDan Zhang,1 Zhang Yu,1 Xiaoping Bi,1 Junzhao Chen,1 Jing Wang,2 Wodong Shi,1 Ping Gu,1 Xianqun Fan1 1Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 2Biomaterials and Tissue Engineering Laboratory, College of Chemistry & Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: Tissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM. Poly(lactide-co-ε-caprolactone (PLCL has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the surface of PLCL scaffold is hydrophobic. Silk fibroin (SF is a kind of natural polymer with inherent bioactivity, and supports mesenchymal stem cell attachment, osteogenesis, and ECM deposition. Therefore, we fabricated hybrid nanofibrous scaffolds by adding different weight ratios of SF to PLCL in order to find a scaffold with improved properties for bone regeneration.Methods: Hybrid nanofibrous scaffolds were fabricated by blending different weight ratios of SF with PLCL. Human adipose-derived stem cells (hADSCs were seeded on SF/PLCL nanofibrous scaffolds of various ratios for a systematic evaluation of cell adhesion, proliferation, cytotoxicity, and osteogenic differentiation; the efficacy of the composite of hADSCs and scaffolds in repairing critical-sized calvarial defects in rats was investigated.Results: The SF/PLCL (50/50 scaffold exhibited favorable tensile strength, surface roughness, and hydrophilicity, which facilitated cell adhesion and proliferation. Moreover, the SF/PLCL (50/50 scaffold promoted the osteogenic differentiation of hADSCs by elevating the

  7. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration

    Science.gov (United States)

    Wang, Zi; Lin, Ming; Xie, Qing; Sun, Hao; Huang, Yazhuo; Zhang, DanDan; Yu, Zhang; Bi, Xiaoping; Chen, Junzhao; Wang, Jing; Shi, Wodong; Gu, Ping; Fan, Xianqun

    2016-01-01

    Background Tissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM). Poly(lactide-co-ε-caprolactone) (PLCL) has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the surface of PLCL scaffold is hydrophobic. Silk fibroin (SF) is a kind of natural polymer with inherent bioactivity, and supports mesenchymal stem cell attachment, osteogenesis, and ECM deposition. Therefore, we fabricated hybrid nanofibrous scaffolds by adding different weight ratios of SF to PLCL in order to find a scaffold with improved properties for bone regeneration. Methods Hybrid nanofibrous scaffolds were fabricated by blending different weight ratios of SF with PLCL. Human adipose-derived stem cells (hADSCs) were seeded on SF/PLCL nanofibrous scaffolds of various ratios for a systematic evaluation of cell adhesion, proliferation, cytotoxicity, and osteogenic differentiation; the efficacy of the composite of hADSCs and scaffolds in repairing critical-sized calvarial defects in rats was investigated. Results The SF/PLCL (50/50) scaffold exhibited favorable tensile strength, surface roughness, and hydrophilicity, which facilitated cell adhesion and proliferation. Moreover, the SF/PLCL (50/50) scaffold promoted the osteogenic differentiation of hADSCs by elevating the expression levels of osteogenic marker genes such as BSP, Ocn, Col1A1, and OPN and enhanced ECM mineralization. In vivo assays showed that SF/PLCL (50/50) scaffold improved the repair of the critical-sized calvarial defect in rats, resulting in increased bone volume, higher trabecular number, enhanced bone mineral density, and increased new bone areas, compared with the pure PLCL scaffold. Conclusion The SF/PLCL (50/50) nanofibrous scaffold facilitated hADSC proliferation and osteogenic differentiation in

  8. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenjie [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@hotmail.com [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Wang, Heyun [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002 (China); Yang, Dazhi [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); An, Bo [Department of Orthopedics, Affiliated Hospital of Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Zhang, Wencheng [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guo, Jintang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China)

    2013-10-15

    The electrospun scaffolds are potential application in vascular tissue engineering since they can mimic the nano-sized dimension of natural extracellular matrix (ECM). We prepared a fibrous scaffold from polycarbonateurethane (PCU) by electrospinning technology. In order to improve the hydrophilicity and hemocompatibility of the fibrous scaffold, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto the fiber surface by surface-initiated atom transfer radical polymerization (SI-ATRP) method. Although SI-ATRP has been developed and used for surface modification for many years, there are only few studies about the modification of electrospun fiber by this method. The modified fibrous scaffolds were characterized by SEM, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The scaffold morphology showed no significant difference when PEGMA was grafted onto the scaffold surface. Based on the water contact angle measurement, the surface hydrophilicity of the scaffold surface was improved significantly after grafting hydrophilic PEGMA (P = 0.0012). The modified surface showed effective resistance for platelet adhesion compared with the unmodified surface. Activated partial thromboplastin time (APTT) of the PCU-g-PEGMA scaffold was much longer than that of the unmodified PCU scaffold. The cyto-compatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells (HUVECs). The images of 7-day cultured cells on the scaffold surface were observed by SEM. The modified scaffolds showed high tendency to induce cell adhesion. Moreover, the cells reached out pseudopodia along the fibrous direction and formed a continuous monolayer. Hemolysis test showed that the grafted chains of PEGMA reduced blood coagulation. These results indicated that the modified electrospun nanofibrous scaffolds were potential application as artificial blood vessels. Highlights: • Electrospun nanofibrous scaffolds were successfully

  9. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification

    International Nuclear Information System (INIS)

    The electrospun scaffolds are potential application in vascular tissue engineering since they can mimic the nano-sized dimension of natural extracellular matrix (ECM). We prepared a fibrous scaffold from polycarbonateurethane (PCU) by electrospinning technology. In order to improve the hydrophilicity and hemocompatibility of the fibrous scaffold, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto the fiber surface by surface-initiated atom transfer radical polymerization (SI-ATRP) method. Although SI-ATRP has been developed and used for surface modification for many years, there are only few studies about the modification of electrospun fiber by this method. The modified fibrous scaffolds were characterized by SEM, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The scaffold morphology showed no significant difference when PEGMA was grafted onto the scaffold surface. Based on the water contact angle measurement, the surface hydrophilicity of the scaffold surface was improved significantly after grafting hydrophilic PEGMA (P = 0.0012). The modified surface showed effective resistance for platelet adhesion compared with the unmodified surface. Activated partial thromboplastin time (APTT) of the PCU-g-PEGMA scaffold was much longer than that of the unmodified PCU scaffold. The cyto-compatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells (HUVECs). The images of 7-day cultured cells on the scaffold surface were observed by SEM. The modified scaffolds showed high tendency to induce cell adhesion. Moreover, the cells reached out pseudopodia along the fibrous direction and formed a continuous monolayer. Hemolysis test showed that the grafted chains of PEGMA reduced blood coagulation. These results indicated that the modified electrospun nanofibrous scaffolds were potential application as artificial blood vessels. Highlights: • Electrospun nanofibrous scaffolds were successfully

  10. Fabrication and Application of Nanofibrous Scaffolds in Tissue Engineering

    Science.gov (United States)

    Li, Wan-Ju; Tuan, Rocky S.

    2009-01-01

    Nanofibers fabricated by electrospinning are morphological mimics of fibrous components of the native extracellular matrix, making nanofibrous scaffolds ideal for three-dimensional cell culture and tissue engineering applications. Although electrospinning is not a conventional technique in cell biology, the experimental set-up may be constructed in a relatively straightforward manner and the procedure can be carried by individuals with limited engineering experience. We detail here a protocol for electrospinning of nanofibers and provide relevant specific details concerning the optimization of fiber formation. The protocol also includes conditions required for preparing biodegradable polymer solutions for the fabrication of non-woven and aligned nanofibrous scaffolds suitable for various cell/tissue applications. In addition, the information on effective cell loading into nanofibrous scaffolds is provided. Instructions for building the electrospinning apparatus are also included. PMID:19283731

  11. Synthesis of polyester urethane urea and fabrication of elastomeric nanofibrous scaffolds for myocardial regeneration.

    Science.gov (United States)

    Jamadi, Elham Sadat; Ghasemi-Mobarakeh, Laleh; Morshed, Mohammad; Sadeghi, Morteza; Prabhakaran, Molamma P; Ramakrishna, Seeram

    2016-06-01

    Fabrication of bioactive scaffolds is one of the most promising strategies to reconstruct the infarcted myocardium. In this study, we synthesized polyester urethane urea (PEUU), further blended it with gelatin and fabricated PEUU/G nanofibrous scaffolds. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and X-ray diffraction were used for the characterization of the synthesized PEUU and properties of nanofibrous scaffolds were evaluated using scanning electron microscopy (SEM), ATR-FTIR, contact angle measurement, biodegradation test, tensile strength analysis and dynamic mechanical analysis (DMA). In vitro biocompatibility studies were performed using cardiomyocytes. DMA analysis showed that the scaffolds could be reshaped with cyclic deformations and might remain stable in the frequencies of the physiological activity of the heart. On the whole, our study suggests that aligned PEUU/G 70:30 nanofibrous scaffolds meet the required specifications for cardiac tissue engineering and could be used as a promising construct for myocardial regeneration. PMID:27040201

  12. Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering

    Science.gov (United States)

    Venugopal, J.; Zhang, Y. Z.; Ramakrishna, S.

    2005-10-01

    Electrospun polymer nanofibres were originally developed for their durability and resistance to all forms of degradation and biodegradation. Some polymer nanofibres are biocompatible and biodegradable and therefore suitable for replacement of structurally or physiologically deficient tissues and organs in humans. Here, biocompatible polycaprolactone (PCL) nanofibre scaffolds modified with collagen types I and III were used for vascular tissue engineering. Coronary artery smooth muscle cells (SMCs) were grown on PCL nanofibres, modified PCL/collagen biocomposite nanofibres and collagen nanofibres. The results show that the modified PCL/collagen biocomposite nanofibre scaffolds provide required mechanical properties for regulation of normal cell function in vascular tissue engineering.

  13. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Gayathri; Bialorucki, Callan [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Yildirim-Ayan, Eda, E-mail: eda.yildirimayan@utoledo.edu [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614 (United States)

    2015-06-01

    In this work, we developed a nanofibrous, yet injectable orthobiologic tissue scaffold that is capable of hosting osteoprogenitor cells and controlling kinetic release profile of the encapsulated pro-osteogenic factor without diminishing its bioactivity over 21 days. This innovative injectable scaffold was synthesized by incorporating electrospun and subsequently O{sub 2} plasma-functionalized polycaprolactone (PCL) nanofibers within the collagen type-I solution along with MC3T3-E1 cells (pre-osteoblasts) and bone morphogenetic protein-2 (BMP2). Through changing the PCL nanofiber concentration within the injectable scaffolds, we were able to tailor the mechanical strength, protein retention capacity, bioactivity preservation, and osteoinductive potential of the scaffolds. The nanofibrous internal structure of the scaffold allowed us to use a low dose of BMP2 (200 ng/ml) to achieve osteoblastic differentiation in in vitro culture. The osteogenesis capacity of the injectable scaffolds were evaluated though measuring MC3T3-E1 cell proliferation, ALP activity, matrix mineralization, and early- and late-osteoblast specific gene expression profiles over 21 days. The results demonstrated that the nanofibrous injectable scaffold provides not only an osteoinductive environment for osteoprogenitor cells to differentiate, but also a suitable biomechanical and biochemical environment to act as a reservoir for osteogenic factors with controlled release profile. - Highlights: • Injectable nanofibrous scaffold with osteoprogenitor cells and BMP2 was synthesized. • PCL nanofiber concentration within collagen scaffold affected the BMP2 retention and bioactivity. • Optimal PCL concentration was identified for mechanical stability, injectability, and osteogenic activity. • Scaffolds exhibited long-term osteoinductive capacity for bone repair and regeneration.

  14. Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Amir Doustgani

    2013-01-01

    Full Text Available Abstract  Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL, poly (vinyl alcohol (PVA and hydroxyapatite nanoparticles (nHA. The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 32 nm and 339 ± 107 nm for aligned and random nanofibers, respectively. The mechanical data indicated the higher tensile strength and elastic modulus of aligned nanofibers. The in vitro biocompatibility of aligned and random nanofibrous scaffolds was also assessed by growing mesenchymal stem cells (MSCs, and investigating the proliferation and alkaline phosphatase activity (ALP on different nanofibrous scaffolds. Our  findings  showed  that  the  alignment  orientation  of  nanofibers  enhanced  the osteogenic differentiation of stem cells. The in vitro results showed that the aligned biocomposite nanofibrous scaffolds of PCL/nHA/PVA could be a potential substrate for tissue engineering applications, especially in the field of artificial bone implant.

  15. Electrodeposition on nanofibrous polymer scaffolds: Rapid mineralization, tunable calcium phosphate composition and topography

    OpenAIRE

    He, Chuanglong; Xiao, Guiyong; Jin, Xiaobing; Sun, Chenghui; Ma, Peter X.

    2010-01-01

    We developed a straightforward, fast, and versatile technique to fabricate mineralized nanofibrous polymer scaffolds for bone regeneration in this work. Nanofibrous poly(l-lactic acid) scaffolds were fabricated using both electrospinning and phase separation techniques. An electrodeposition process was designed to deposit calcium phosphate on the nanofibrous scaffolds. Such scaffolds contain a high quality mineral coating on the fiber surface with tunable surface topography and chemical compo...

  16. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhaarathy, V. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Lee Kong Chian School of Medicine, Nanyang Technological University, 138673 (Singapore); Venugopal, J., E-mail: nnijrv@nus.edu.sg [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Gandhimathi, C. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Ramakrishna, S. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore)

    2014-11-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  17. Investigation of cancer cell behavior on nanofibrous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Szot, Christopher S.; Buchanan, Cara F. [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Gatenholm, Paul [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Rylander, Marissa Nichole [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Freeman, Joseph W., E-mail: jwfreeman@vt.edu [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2011-01-01

    Tissue engineering and the use of nanofibrous biomaterial scaffolds offer a unique perspective for studying cancer development in vitro. Current in vitro models of tumorigenesis are limited by the use of static, two-dimensional (2D) cell culture monolayers that lack the structural architecture necessary for cell-cell interaction and three-dimensional (3D) scaffolds that are too simplistic for studying basic pathological mechanisms. In this study, two nanofibrous biomaterials that mimic the structure of the extracellular matrix, bacterial cellulose and electrospun polycaprolactone (PCL)/collagen I, were investigated as potential 3D scaffolds for an in vitro cancer model. Multiple cancer cell lines were cultured on each scaffold material and monitored for cell viability, proliferation, adhesion, infiltration, and morphology. Both bacterial cellulose and electrospun PCL/collagen I, which have nano-scale structures on the order of 100-500 nm, have been used in many diverse tissue engineering applications. Cancer cell adhesion and growth were limited on bacterial cellulose, while all cellular processes were enhanced on the electrospun scaffolds. This initial analysis has demonstrated the potential of electrospun PCL/collagen I scaffolds toward the development of an improved 3D in vitro cancer model.

  18. In Vivo Study of Ligament-Bone Healing after Anterior Cruciate Ligament Reconstruction Using Autologous Tendons with Mesenchymal Stem Cells Affinity Peptide Conjugated Electrospun Nanofibrous Scaffold

    Directory of Open Access Journals (Sweden)

    Jingxian Zhu

    2013-01-01

    Full Text Available Electrospinning nanofibrous scaffold was commonly used in tissue regeneration recently. Nanofibers with specific topological characteristics were reported to be able to induce osteogenic differentiation of MSCs. In this in vivo study, autologous tendon grafts with lattice-like nanofibrous scaffold wrapping at two ends of autologous tendon were used to promote early stage of ligament-bone healing after rabbit ACL reconstruction. To utilize native MSCs from bone marrow, an MSCs specific affinity peptide E7 was conjugated to nanofibrous meshes. After 3 months, H-E assessment and specific staining of collagen type I, II, and III showed direct ligament-bone insertion with typical four zones (bone, calcified fibrocartilage, fibrocartilage, and ligament in bioactive scaffold reconstruction group. Diameters of bone tunnel were smaller in nanofibrous scaffold conjugated E7 peptide group than those in control group. The failure load of substitution complex also indicated a stronger ligament-bone insertion healing using bioactive scaffold. In conclusion, lattice-like nanofibrous scaffold with specific MSCs affinity peptide has great potential in promoting early stage of ligament-bone healing after ACL reconstruction.

  19. Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing.

    Science.gov (United States)

    Wang, Zhenbei; Qian, Yuna; Li, Linhao; Pan, Lianhong; Njunge, Lucy W; Dong, Lili; Yang, Li

    2016-01-01

    Wound healing scaffolds provide cells with structural integrity and can also deliver biological agents to establish a skin tissue-specific microenvironment to regulate cell functions and to accelerate the healing process. In this study, we fabricated biodegradable nanofibrous scaffolds with an emulsion electrospinning technique. The scaffolds were composed of polycaprolactone, hyaluronan and encapsulating epidermal growth factor. The morphology and core-sheath structure of the nanofibers were characterized by scanning electron microscopy and transmission electron microscopy. The scaffolds were also characterized for chemical composition and hydrophilicity with a Fourier-transform infrared analysis, energy dispersive spectroscopy and the water contact angle. An in vitro model protein bovine serum albumin and epidermal growth factor release study was conducted to evaluate the sustained release potential of the core-sheath structured nanofibers with and without the hyaluronan component. Additionally, an in vitro cultivation of human skin keratinocytes (HaCaT) and fibroblasts on polycaprolactone/hyaluronan and polycaprolactone/hyaluronan-epidermal growth factor scaffolds showed a significant synergistic effect of hyaluronan and epidermal growth factor on cell proliferation and infiltration. Furthermore, there was an up-regulation of the wound-healing-related genes collagen I, collagen III and TGF-β in polycaprolactone/hyaluronan/epidermal growth factor scaffolds compared with control groups. In the full-thickness wound model, the enhanced regeneration of fully functional skin was facilitated by epidermal regeneration in the polycaprolactone/hyaluronan/epidermal growth factor treatment group. Our findings suggest that bioactivity and hemostasis of the hyaluronan-based nanofibrous scaffolds have the capability to encapsulate and control the release of growth factors that can serve as skin tissue engineering scaffolds for wound healing.

  20. Nanofibrous Scaffolds of Bio-Polyesters: In Vitro and In Vivo Characterizations and Tissue Response

    OpenAIRE

    Tang, Hui Ying; Ishii, Daisuke; Sudesh, Kumar; Yamaoka, Tetsuji; Iwata, Tadahisa

    2010-01-01

    The overall aim of this research was to electrospin P(3HB-co-97mol%-4HB) for fabricating tissue-engineering scaffold with enhanced mechanical properties, bioabsorption and biocompatibility. Its performance as a nanofibrous scaffold for tissue engineering was compared with electrospun homopolymer P(3HB) and its copolymers containing 5mol%3HHx and 7mol%-4HB as well as with electrospun PLA-based scaffolds. All of these nanofibrous scaffolds were implanted subcutaneously in rats to evaluate their...

  1. In Vitro Biological Evaluation of Electrospun Polycaprolactone/Gelatine Nanofibrous Scaffold for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Mim Mim Lim

    2015-01-01

    Full Text Available The fabrication of biocompatible and biodegradable scaffolds which mimic the native extracellular matrix of tissues to promote cell adhesion and growth is emphasized recently. Many polymers have been utilized in scaffold fabrication, but there is still a need to fabricate hydrophilic nanosized fibrous scaffolds with an appropriate degradation rate for skin tissue engineering applications. In this study, nanofibrous scaffolds of a biodegradable synthetic polymer, polycaprolactone (PCL, and blends of PCL with a natural polymer, gelatine (Ge, in three different compositions: 85 : 15, 70 : 30, and 50 : 50 were fabricated via an electrospinning technique. The nanofibrous scaffold prepared from 14% w/v PCL/Ge (70 : 30 exhibited more balanced properties of homogeneous nanofibres with an average fibre diameter of 155.60 ± 41.13 nm, 83% porosity, and surface roughness of 176.27 ± 2.53 nm. In vitro cell culture study using human skin fibroblasts (HSF demonstrated improved cell attachment with a flattened morphology on the PCL/Ge (70 : 30 nanofibrous scaffold and accelerated proliferation on day 3 compared to the PCL nanofibrous scaffold. These results show that the PCL/Ge (70 : 30 nanofibrous scaffold was more favourable and has the potential to be a promising scaffold for skin tissue engineering applications.

  2. Development of polyamide-6,6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application.

    Science.gov (United States)

    Shrestha, Bishnu Kumar; Mousa, Hamouda M; Tiwari, Arjun Prasad; Ko, Sung Won; Park, Chan Hee; Kim, Cheol Sang

    2016-09-01

    The development of biofunctional and bioactive hybrid polymeric scaffolds seek to mitigate the current challenges in the emerging field of tissue engineering. In this paper, we report the fabrication of a biomimetic and biocompatible nanofibrous scaffolds of polyamide-6,6 (PA-6,6) blended with biopolymer chitosan via one step co-electrospinning technique. Different weight percentage of chitosan 10wt%, 15wt%, and 20wt% were blended with PA-6,6, respectively. The nanocomposite electrospun scaffolds mats enabled to provide the osteophilic environment for cells growth and biomineralization. The morphological and physiochemical properties of the resulted scaffolds were studied using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) spectroscopy. The improvement in hydrophilicity and mechanical strength of the bio-nanocomposite mesh with 20wt% chitosan embedded, was the desired avenue for adhesion, proliferation and maturation of osteoblast cells as compared to other sample groups and pure PA-6,6 fibrous mat. The biomineralization of the nanocomposite electrospun mats also showed higher ability to nucleate bioactive calcium phosphate (Ca/P) nanoparticles comparing to pristine PA-6,6. Furthermore, the biomimetic nature of scaffolds exhibited the cells viability and regeneration of pre-osteoblast (MC3T3-E1) cells which were assessed via in vitro cell culture test. Collectively, the results suggested that the optimized 20wt% of chitosan supplemented hybrid electrospun fibrous scaffold has significant effect in biomedical field to create osteogenic capabilities for tissue engineering. PMID:27185121

  3. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering.

    Science.gov (United States)

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad-Hossein; Ramakrishna, Seeram

    2008-12-01

    Nerve tissue engineering is one of the most promising methods to restore nerve systems in human health care. Scaffold design has pivotal role in nerve tissue engineering. Polymer blending is one of the most effective methods for providing new, desirable biocomposites for tissue-engineering applications. Random and aligned PCL/gelatin biocomposite scaffolds were fabricated by varying the ratios of PCL and gelatin concentrations. Chemical and mechanical properties of PCL/gelatin nanofibrous scaffolds were measured by FTIR, porometry, contact angle and tensile measurements, while the in vitro biodegradability of the different nanofibrous scaffolds were evaluated too. PCL/gelatin 70:30 nanofiber was found to exhibit the most balanced properties to meet all the required specifications for nerve tissue and was used for in vitro culture of nerve stem cells (C17.2 cells). MTS assay and SEM results showed that the biocomposite of PCL/gelatin 70:30 nanofibrous scaffolds enhanced the nerve differentiation and proliferation compared to PCL nanofibrous scaffolds and acted as a positive cue to support neurite outgrowth. It was found that the direction of nerve cell elongation and neurite outgrowth on aligned nanofibrous scaffolds is parallel to the direction of fibers. PCL/gelatin 70:30 nanofibrous scaffolds proved to be a promising biomaterial suitable for nerve regeneration. PMID:18757094

  4. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Z.X.; Zheng, W.; Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China)

    2011-02-15

    Graphical abstract: The fenbufen loaded PLGA/chitosan nanofibrous scaffolds were fabricated by electrospinning. The hydrophilicity of nanofibrous scaffold was enhanced with the increase of chitosan content. The drug release also is accelerated with chitosan increasing because the higher hydrophilicity makes drug diffusing from scaffold more easily. Research highlights: {yields} The average diameter increased with the increase of chitosan content and then decreased. {yields} The release rate of fenbufen increased with the increase of chitosan. {yields} The aligned nanofibrous scaffold exhibits lower drug release rate. {yields} The drug release could be controlled by crosslinking in glutaraldehyde vapor. - Abstract: In this study both aligned and randomly oriented poly(D,L-lactide-co-glycolide) (PLGA)/chitosan nanofibrous scaffold have been prepared by electrospinning. The ratio of PLGA to chitosan was adjusted to get smooth nanofiber surface. Morphological characterization using scanning electron microscopy showed that the aligned nanofiber diameter distribution obtained by electrospinning of polymer blend increased with the increase of chitosan content which was similar to that of randomly oriented nanofibers. The release characteristic of model drug fenbufen (FBF) from the FBF-loaded aligned and randomly oriented PLGA and PLGA/chitosan nanofibrous scaffolds was investigated. The drug release rate increased with the increase of chitosan content because the addition of chitosan enhanced the hydrophilicity of the PLGA/chitosan composite scaffold. Moreover, for the aligned PLGA/chitosan nanofibrous scaffold the release rate was lower than that of randomly oriented PLGA/chitosan nanofibrous scaffold, which indicated that the nanofiber arrangement would influence the release behavior. In addition, crosslinking in glutaraldehyde vapor would decrease the burst release of FBF from FBF-loaded PLGA/chitosan nanofibrous scaffold with a PLGA/chitosan ratio less than 9/1, which

  5. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold

    International Nuclear Information System (INIS)

    Graphical abstract: The fenbufen loaded PLGA/chitosan nanofibrous scaffolds were fabricated by electrospinning. The hydrophilicity of nanofibrous scaffold was enhanced with the increase of chitosan content. The drug release also is accelerated with chitosan increasing because the higher hydrophilicity makes drug diffusing from scaffold more easily. Research highlights: → The average diameter increased with the increase of chitosan content and then decreased. → The release rate of fenbufen increased with the increase of chitosan. → The aligned nanofibrous scaffold exhibits lower drug release rate. → The drug release could be controlled by crosslinking in glutaraldehyde vapor. - Abstract: In this study both aligned and randomly oriented poly(D,L-lactide-co-glycolide) (PLGA)/chitosan nanofibrous scaffold have been prepared by electrospinning. The ratio of PLGA to chitosan was adjusted to get smooth nanofiber surface. Morphological characterization using scanning electron microscopy showed that the aligned nanofiber diameter distribution obtained by electrospinning of polymer blend increased with the increase of chitosan content which was similar to that of randomly oriented nanofibers. The release characteristic of model drug fenbufen (FBF) from the FBF-loaded aligned and randomly oriented PLGA and PLGA/chitosan nanofibrous scaffolds was investigated. The drug release rate increased with the increase of chitosan content because the addition of chitosan enhanced the hydrophilicity of the PLGA/chitosan composite scaffold. Moreover, for the aligned PLGA/chitosan nanofibrous scaffold the release rate was lower than that of randomly oriented PLGA/chitosan nanofibrous scaffold, which indicated that the nanofiber arrangement would influence the release behavior. In addition, crosslinking in glutaraldehyde vapor would decrease the burst release of FBF from FBF-loaded PLGA/chitosan nanofibrous scaffold with a PLGA/chitosan ratio less than 9/1, which would be beneficial

  6. Fabrication and characterization of curcumin-loaded silk fibroin/P(LLA-CL) nanofibrous scaffold

    Science.gov (United States)

    Lian, Yuan; Zhan, Jian-Chao; Zhang, Kui-Hua; Mo, Xiu-Mei

    2014-12-01

    Curcumin exhibited excellent properties including antioxidant, antiinflammatory, antiviral, antibacterial, antifungal, anticancer, and anticoagulant activities. In this study, curcumin was incorporated into silk fibroin (SF)/poly(L-lactic acid- co-e-caprolactone) (P(LLA-CL)) nanofibrous scaffolds via electrospinning, and changes brought about by raising the curcumin content were observed: SEM images showed that the average nanofibrous diameter decreased at the beginning and then increased, and the nanofibers became uniform; FTIR showed that the conformation of SF transforming from random coil form to β-sheet structure had not been induced, while SF conformation converted to β-sheet after being treated with 75% ethanol vapor; XRD results confirmed that the crystal structure of (P(LLA-CL)) had been destroyed; The mechanical test illustrated that nanofibrous scaffolds still maintained good mechanical properties. Further, curcumin-loaded nanofibrous scaffolds were evaluated for drug release, antioxidant and antimicrobial activities in vitro. The results showed that curcumin presented a sustained release behavior from nanofibrous scaffolds and maintained its free radical scavenging ability, and such scaffolds could effectively inhibit S. aureus growth (> 95%). Thus, curcumin-loaded SF/P(LLA-CL) nanofibrous scaffolds might be potential candidates for wound dressing and tissue engineering scaffolds.

  7. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering.

    Science.gov (United States)

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Ramakrishna, Seeram

    2009-11-01

    Fabrication of scaffolds with suitable chemical, mechanical, and electrical properties is critical for the success of nerve tissue engineering. Electrical stimulation was directly applied to electrospun conductive nanofibrous scaffolds to enhance the nerve regeneration process. In the present study, electrospun conductive nanofibers were prepared by mixing 10 and 15 wt% doped polyaniline (PANI) with poly (epsilon-caprolactone)/gelatin (PG) (70:30) solution (PANI/PG) by electrospinning. The fiber diameter, pore size, hydrophilicity, tensile properties, conductivity, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy spectra of nanofibers were determined, and the in vitro biodegradability of the different nanofibrous scaffolds was also evaluated. Nanofibrous scaffolds containing 15% PANI was found to exhibit the most balanced properties to meet all the required specifications for electrical stimulation for its enhanced conductivity and is used for in vitro culture and electrical stimulation of nerve stem cells. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and scanning electron microscopy results showed that conductive nanofibrous scaffolds are suitable substrates for the attachment and proliferation of nerve stem cells. Electrical stimulation through conductive nanofibrous PANI/PG scaffolds showed enhanced cell proliferation and neurite outgrowth compared to the PANI/PG scaffolds that were not subjected to electrical stimulation.

  8. The influence of fiber thickness, wall thickness and gap distance on the spiral nanofibrous scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    We have developed a 3D nanofibrous spiral scaffold for bone tissue engineering which has shown enhanced cell attachment, proliferation and differentiation compared to traditional cylindrical scaffolds due to the spiral structures and the nanofiber incorporation. Some important parameters of these spiral scaffolds including gap distance, wall thickness and especially fiber thickness are crucial to the performance of the spiral structured scaffolds. In this study, we investigated the fiber thickness, gap distance and wall thickness of the spiral structure on the behavior of osteoblast cells. The human osteoblast cells are seeded on spiral structured scaffolds with various fiber thickness, gap distance and wall thickness and cell attachment, proliferation, differentiation and mineralized matrix deposition on the scaffolds are evaluated. It was found that increasing the thickness of nanofiber layer not only limited the cell infiltration into the scaffolds, but also restrained the osteoblastic cell phenotype development. Moreover, the geometric effect studies indicated that scaffolds with the thinner wall and gap distance 0.2 mm show the best bioactivity for osteoblasts.

  9. In Vitro Biological Evaluation of Electrospun Polycaprolactone/Gelatine Nanofibrous Scaffold for Tissue Engineering

    OpenAIRE

    Mim Mim Lim; Tao Sun; Naznin Sultana

    2015-01-01

    The fabrication of biocompatible and biodegradable scaffolds which mimic the native extracellular matrix of tissues to promote cell adhesion and growth is emphasized recently. Many polymers have been utilized in scaffold fabrication, but there is still a need to fabricate hydrophilic nanosized fibrous scaffolds with an appropriate degradation rate for skin tissue engineering applications. In this study, nanofibrous scaffolds of a biodegradable synthetic polymer, polycaprolactone (PCL), and bl...

  10. Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability.

    Science.gov (United States)

    Sato, Anna; Wang, Ran; Ma, Hongyang; Hsiao, Benjamin S; Chu, Benjamin

    2011-01-01

    We demonstrate a new class of composite fibrous membranes, consisting of an ultra-fine cellulose nanofibrous network infused into an electrospun polyacrylonitrile (PAN) nanofibrous scaffold on a melt-blown polyethylene terephthalate (PET) non-woven substrate for water purification. Depending on the infusion process and the ultra-fine cellulose nanofibers (UFCNs) used [e.g. modified ultra-fine cellulose nanofibers (m-UFCNs) or microcrystalline cellulose nanofibers (MCCNs)], different nanostructured scaffolds were formed as seen by electron microscopy. Membranes with UFCNs consist of an interwoven two-dimensional ultra-fine nanofibrous network that is deeply entangled with the electrospun scaffold and organized in a quasi-three-dimensional fashion, while those with MCCNs tend to locally wrap around the electrospun scaffolding nanofibers without forming a major network. Filtration tests illustrated that both membranes, while maintaining high permeation flux, exhibited excellent retention capabilities for simultaneous sieving for bacteria and adsorption for viruses. PMID:21562026

  11. Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, Abbas [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD (Australia); Seyedjafari, Ehsan [Department of Biotechnology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Sadat Taherzadeh, Elham [Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Dinarvand, Peyman [Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); The Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO (United States); Soleimani, Masoud [Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Brain and Spinal Injury Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-07-01

    Topographical cues can be exploited to regulate stem cell attachment, proliferation, differentiation and function in vitro and in vivo. In this study, we aimed to investigate the influence of different nanofibrous topographies on the chondrogenic differentiation potential of nasal septum derived progenitors (NSP) in vitro. Aligned and randomly oriented Ploy (L-lactide) (PLLA)/Polycaprolactone (PCL) hybrid scaffolds were fabricated via electrospinning. First, scaffolds were fully characterized, and then NSP were seeded on them to study their capacity to support stem cell attachment, proliferation and chondrogenic differentiation. Compared to randomly oriented nanofibers, aligned scaffolds showed a high degree of nanofiber alignment with much better tensile strength properties. Both scaffolds supported NSP adhesion, proliferation and chondrogenic differentiation. Despite the higher rate of cell proliferation on random scaffolds, a better chondrogenic differentiation was observed on aligned nanofibers as deduced from higher expression of chondrogenic markers such as collagen type II and aggrecan on aligned scaffolds. These findings demonstrate that electrospun constructs maintain NSP proliferation and differentiation, and that the aligned nanofibrous scaffolds can significantly enhance chondrogenic differentiation of nasal septum derived progenitors. - Highlights: • Electrospun nanofiber scaffolds with different topographies were fabricated. • Aligned nanofiber scaffolds had better tensile strength properties. • Nasal septum derived progenitors were cultured on nanofibrous scaffolds. • Both topographies support proliferation and chondrogenic differentiation. • Better chondrogenic differentiation was observed on aligned nanofibers.

  12. Evaluation of an air spinning process to produce tailored biosynthetic nanofibre scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Sabbatier, Gad, E-mail: gad.sabbatier.1@ulaval.ca [Laboratoire de Physique et Mécanique Textile, École Nationale Supérieure d' Ingénieurs du Sud Alsace, Université de Haute Alsace, 11 rue Alfred Werner, 68093 Mulhouse Cedex, Mulhouse (France); Laboratoire d' Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux, Université Laval 1045 avenue de la Médecine, Bureau 1033, Québec, G1V 0A6 Québec (Canada); Centre de recherche du CHU de Québec, Hôpital St François d' Assise, 10 rue de l' Espinay, local E0-165, Québec (QC), G1L 3L5 Québec (Canada); and others

    2014-02-01

    We optimised the working parameters of an innovative air spinning device to produce nanofibrous polymer scaffolds for tissue engineering applications. Scanning electron microscopy was performed on the fibre scaffolds which were then used to identify various scaffold morphologies based on the ratio of surface occupied by the polymer fibres on that covered by the entire polymer scaffold assembly. Scaffolds were then produced with the spinning experimental parameters, resulting in 90% of fibres in the overall polymer construct, and were subsequently used to perform a multiple linear regression analysis to highlight the relationship between nanofibre diameter and the air spinning parameters. Polymer solution concentration was deemed as the most significant parameter to control fibre diameter during the spinning process, despite interactions between experimental parameters. Based on these findings, viscosity measurements were performed to clarify the effect of the polymer solution property on scaffold morphology. - Highlights: • An air spinning device for nanofibre scaffold production was optimised. • Relationships between fibre diameter and spinning parameters were established. • Polymer solution concentration was the most significant parameter. • Interactions between experimental parameters also influence the spinning process. • Nanofibres were formed due to polymer chain entanglements.

  13. Evaluation of an air spinning process to produce tailored biosynthetic nanofibre scaffolds.

    Science.gov (United States)

    Sabbatier, Gad; Abadie, Pierre; Dieval, Florence; Durand, Bernard; Laroche, Gaétan

    2014-02-01

    We optimised the working parameters of an innovative air spinning device to produce nanofibrous polymer scaffolds for tissue engineering applications. Scanning electron microscopy was performed on the fibre scaffolds which were then used to identify various scaffold morphologies based on the ratio of surface occupied by the polymer fibres on that covered by the entire polymer scaffold assembly. Scaffolds were then produced with the spinning experimental parameters, resulting in 90% of fibres in the overall polymer construct, and were subsequently used to perform a multiple linear regression analysis to highlight the relationship between nanofibre diameter and the air spinning parameters. Polymer solution concentration was deemed as the most significant parameter to control fibre diameter during the spinning process, despite interactions between experimental parameters. Based on these findings, viscosity measurements were performed to clarify the effect of the polymer solution property on scaffold morphology.

  14. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, H.T. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Huang, L.F. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lu, P.S.; Chang, H.F. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, I.L., E-mail: 84004@cch.org.tw [Department of Orthopaedic Surgery, Chang-Hua Christian Hospital, Changhua 500, Taiwan (China)

    2010-06-15

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  15. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    International Nuclear Information System (INIS)

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO2-CaO-P2O5 mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  16. Preparation of Nanofibrous Structure of Mesoporous Bioactive Glass Microbeads for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    2016-06-01

    Full Text Available A highly ordered, mesoporous (pore size 2~50 nm bioactive glass (MBG structure has a greater surface area and pore volume and excellent bone-forming bioactivity compared with traditional bioactive glasses (BGs. Hence, MBGs have been used in drug delivery and bone tissue engineering. MBGs can be developed as either a dense or porous block. Compared with a block, microbeads provide greater flexibility for filling different-shaped cavities and are suitable for culturing cells in vitro. In contrast, the fibrous structure of a scaffold has been shown to increase cell attachment and differentiation due to its ability to mimic the three-dimensional structure of natural extracellular matrices. Hence, the aim of this study is to fabricate MBG microbeads with a fibrous structure. First, a sol-gel/electrospinning technique was utilized to fabricate the MBG nanofiber (MBGNF structure. Subsequently, the MBGNF microbeads (MFBs were produced by an electrospraying technology. The results show that the diameter of the MFBs decreases when the applied voltage increases. The drug loading and release profiles and mechanisms of the MFBs were also evaluated. MFBs had a better drug entrapment efficiency, could reduce the burst release of tetracycline, and sustain the release over 10 days. Hence, the MFBs may be suitable drug carriers. In addition, the cellular attachment of MG63 osteoblast-like cells is significantly higher for MFBs than for glass microbeads after culturing for 4 h. The nanofibrous structure of MFBs could provide an appropriate environment for cellular spreading. Therefore, MFBs have great potential for use as a bone graft material in bone tissue engineering applications.

  17. Electrospun silk fibroin-hydroxybutyl chitosan nanofibrous scaffolds to biomimic extracellular matrix.

    Science.gov (United States)

    Zhang, Kuihua; Qian, Yongfang; Wang, Hongsheng; Fan, Linpeng; Huang, Chen; Mo, Xiumei

    2011-01-01

    Silk fibroin (SF)-hydroxybutyl chitosan (HBC) blend nanofibrous scaffolds were fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and trifluoroacetic acid (TFA) as solvents to biomimic the native ECM by electrospinning. SEM results showed that the average nanofibrous diameter increased when the content of HBC was raised from 20% to 100%. Whereas water contact angle measurements confirmed that SF/HBC nanofibrous scaffolds with different weight ratios were of good hydrophilicity. Both the tensile strength and the elongation at break were improved obviously when the weight ratio of SF to HBC was 20:80. (13)C-NMR clarified that SF and HBC molecules existed in H-bond interactions, but HBC did not induce SF conformation to transform from random coil form to β-sheet structure. Moreover, the use of genipin vapour not only induced conformation of SF to convert from random coil to β-sheet structure but also acted as a cross-linking agent for SF and HBC. Cell viability studies demonstrated that SF/HBC nanofibrous scaffolds presented good cellular compatibility. Thus, electrospun SF/HBC blended nanofibres may provide an ideal biomimic tissue-engineering scaffold. PMID:20615313

  18. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications

    International Nuclear Information System (INIS)

    Composite scaffolds consisting of polymers reinforced with ceramic nanoparticles are widely applied for hard tissue engineering. However, due to the incompatible polarity of ceramic nanoparticles with polymers, they tend to agglomerate in the polymer matrix which results in undesirable effects on the integral properties of composites. In this research, forsterite (Mg2SiO4) nanoparticles was surface esterified by dodecyl alcohol and nanofibrous poly(ε-caprolactone)(PCL)/modified forsterite scaffolds were developed through electrospinning technique. The aim of this research was to investigate the properties of surface modified forsterite nanopowder and PCL/modified forsterite scaffolds, before and after hydrolytic treatment, as well as the cellular attachment and proliferation. Results demonstrated that surface modification of nanoparticles significantly enhanced the tensile strength and toughness of scaffolds upon 1.5- and 4-folds compared to unmodified samples, respectively, due to improved compatibility between matrix and filler. Hydrolytic treatment of scaffolds also modified the bioactivity and cellular attachment and proliferation due to greatly enhanced hydrophilicity of the forsterite nanoparticles after this process compared to surface modified samples. Results suggested that surface modification of forsterite nanopowder and hydrolytic treatment of the developed scaffolds were effective approaches to address the issues in the formation of composite fibers and resulted in development of bioactive composite scaffolds with ideal mechanical and structural properties for bone tissue engineering applications. - Highlights: • Forsterite nanopowder was surface modified with dodecyl alcohol. • Nanofibrous PCL/forsterite scaffolds were developed through electrospinning. • Composite scaffolds were treated in boiled water to remove the dodecyl chains. • Surface modification resulted in improved mechanical properties. • Hydrolytic treatment improved

  19. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Kharaziha, M., E-mail: Kharaziha.ma@yahoo.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Fathi, M.H. [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Edris, H. [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of)

    2013-12-01

    Composite scaffolds consisting of polymers reinforced with ceramic nanoparticles are widely applied for hard tissue engineering. However, due to the incompatible polarity of ceramic nanoparticles with polymers, they tend to agglomerate in the polymer matrix which results in undesirable effects on the integral properties of composites. In this research, forsterite (Mg{sub 2}SiO{sub 4}) nanoparticles was surface esterified by dodecyl alcohol and nanofibrous poly(ε-caprolactone)(PCL)/modified forsterite scaffolds were developed through electrospinning technique. The aim of this research was to investigate the properties of surface modified forsterite nanopowder and PCL/modified forsterite scaffolds, before and after hydrolytic treatment, as well as the cellular attachment and proliferation. Results demonstrated that surface modification of nanoparticles significantly enhanced the tensile strength and toughness of scaffolds upon 1.5- and 4-folds compared to unmodified samples, respectively, due to improved compatibility between matrix and filler. Hydrolytic treatment of scaffolds also modified the bioactivity and cellular attachment and proliferation due to greatly enhanced hydrophilicity of the forsterite nanoparticles after this process compared to surface modified samples. Results suggested that surface modification of forsterite nanopowder and hydrolytic treatment of the developed scaffolds were effective approaches to address the issues in the formation of composite fibers and resulted in development of bioactive composite scaffolds with ideal mechanical and structural properties for bone tissue engineering applications. - Highlights: • Forsterite nanopowder was surface modified with dodecyl alcohol. • Nanofibrous PCL/forsterite scaffolds were developed through electrospinning. • Composite scaffolds were treated in boiled water to remove the dodecyl chains. • Surface modification resulted in improved mechanical properties. • Hydrolytic treatment

  20. Electrospun PLGA-silk fibroin-collagen nanofibrous scaffolds for nerve tissue engineering.

    Science.gov (United States)

    Wang, Guanglin; Hu, Xudong; Lin, Wei; Dong, Changchao; Wu, Hui

    2011-03-01

    Electrospun nanofibrous scaffolds varying different materials are fabricated for tissue engineering. PLGA, silk fibroin, and collagen-derived scaffolds have been proved on good biocompatibility with neurons. However, no systematic studies have been performed to examine the PLGA-silk fibroin-collagen (PLGA-SF-COL) biocomposite fiber matrices for nerve tissue engineering. In this study, different weight ratio PLGA-SF-COL (50:25:25, 30:35:35) scaffolds were produced via electrospinning. The physical and mechanical properties were tested. The average fiber diameter ranged from 280 + 26 to 168 + 21 nm with high porosity and hydrophilicity; the tensile strength was 1.76 ± 0.32 and 1.25 ± 0.20 Mpa, respectively. The results demonstrated that electrospinning polymer blending is a simple and effective approach for fabricating novel biocomposite nanofibrous scaffolds. The properties of the scaffolds can be strongly influenced by the concentration of collagen and silk fibroin in the biocomposite. To assay the cytocompatibility, Schwann cells were seeded on the scaffolds; cell attachment, growth morphology, and proliferation were studied. SEM and MTT results confirmed that PLGA-SF-COL scaffolds particularly the one that contains 50% PLGA, 25% silk fibroin, and 25% collagen is more suitable for nerve tissue engineering compared to PLGA nanofibrous scaffolds. PMID:21181450

  1. Nanofibrous scaffolds supporting optimal central nervous system regeneration: an evidence-based review

    Directory of Open Access Journals (Sweden)

    Kamudzandu M

    2015-12-01

    Full Text Available Munyaradzi Kamudzandu, Paul Roach, Rosemary A Fricker, Ying Yang Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, UK Abstract: Restoration of function following damage to the central nervous system (CNS is severely restricted by several factors. These include the hindrance of axonal regeneration imposed by glial scars resulting from inflammatory response to damage, and limited axonal outgrowth toward target tissue. Strategies for promoting CNS functional regeneration include the use of nanotechnology. Due to their structural similarity, synthetic nanofibers could play an important role in regeneration of CNS neural tissue toward restoration of function following injury. Two-dimensional nanofibrous scaffolds have been used to provide contact guidance for developing brain and spinal cord neurites, particularly from neurons cultured in vitro. Three-dimensional nanofibrous scaffolds have been used, both in vitro and in vivo, for creating cell adhesion permissive milieu, in addition to contact guidance or structural bridges for axons, to control reconnection in brain and spinal cord injury models. It is postulated that nanofibrous scaffolds made from biodegradable and biocompatible materials can become powerful structural bridges for both guiding the outgrowth of neurites and rebuilding glial circuitry over the “lesion gaps” resulting from injury in the CNS. Keywords: scaffold, nanofibrous scaffold, CNS, regeneration, alignment

  2. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation.

    Science.gov (United States)

    Keivani, F; Shokrollahi, P; Zandi, M; Irani, S; F Shokrolahi; Khorasani, S C

    2016-11-01

    Polycaprolactone (PCL)/hydroxyapatite nano-composites are among the best candidates for tissue engineering. However, interactions between nHAp and PCL are difficult to control leading to inhomogeneous dispersion of the bio-ceramic particles. Grafting of polymer chains at high density/chain length while promotes the phase compatibility may result in reduced HAp exposed surface area and therefore, bioactivity is compromised. This issue is addressed here by grafting PCL chains onto HAp nano-particles through ring opening polymerization of ε-caprolactone (PCL-g-HAp). FTIR and TGA analysis showed that PCL (6.9wt%), was successfully grafted on the HAp. PCL/PCL-g-HAp nano-fibrous scaffold showed up to 10 and 33% enhancement in tensile strength and modulus, respectively, compared to those of PCL/HAp. The effects of HAp on the in vitro HAp formation were investigated for both the PCL/HAp and PCL/PCL-g-HAp scaffolds. Precipitation of HAp on the nano-composite scaffolds observed after 15days incubation in simulated body fluid (SBF), as confirmed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Human fibroblasts were seeded on PCL, PCL/HAp and PCL/PCL-g-HAp scaffolds. According to MTT assay, the highest cell proliferation was recorded for PCL/PCL-g-HAp nano-composite, at all time intervals (1-21days, P<0.001). Fluorescent microscopy (of DAPI stained samples) and electron microscopy images showed that all nano-fibrous scaffolds (PCL, PCL/HAp, and PCL/PCL-g-HAp), were non-toxic against cells, while more cell adhesion, and the most uniform cell distribution observed on the PCL/PCL-g-HAp. Overall, grafting of relatively short chains of PCL on the surface of HAp nano-particles stimulates fibroblasts adhesion and proliferation on the PCL/PCL-g-HAp nano-composite. PMID:27523999

  3. Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application

    OpenAIRE

    Fatemeh Roozbahani; Naznin Sultana; Ahmad Fauzi Ismail; Hamed Nouparvar

    2013-01-01

    Recently, nanofibrous scaffolds have been used in the field of biomedical engineering as wound dressings, tissue engineering scaffolds, and drug delivery applications. The electrospun nanofibrous scaffolds can be used as carriers for several types of drugs, genes, and growth factors. PCL is one of the most commonly applied synthetic polymers for medical use because of its biocompatibility and slow biodegradability. PCL is hydrophobic and has no cell recognition sites on its structure. Electro...

  4. Spray deposition of live cells throughout the electrospinning process produces nanofibrous three-dimensional tissue scaffolds

    Directory of Open Access Journals (Sweden)

    Seil J

    2011-05-01

    Full Text Available Justin T Seil, Thomas J WebsterLaboratories for Nanomedicine Research, School of Engineering, Brown University, Providence, RI, USAAbstract: Compared with traditional in-vitro cell culture materials, three-dimensional nanofibrous scaffolds provide a superior environment for promoting cell functions. Since nanofibrous scaffolds have nanometer pore sizes, cells are unable to penetrate on their own, so must be incorporated into the scaffold during fabrication to ensure proper cell distribution. In this study, biodegradable and cytocompatible poly(DL-lactide-co-glycolide (PLGA nanofibers were produced using an electrospinning process. As a model cell line, fibroblasts were periodically sprayed from a pump-action spray bottle onto the developing scaffold. The viability of cells before and after spraying, and also after incorporation into the scaffold, was compared. Results indicated that cell spraying and the scaffold fabrication process did not significantly reduce cell viability. These findings, thus, contribute to the understanding of how to produce more physiological relevant cell-seeded nanofibrous scaffolds, an important element for the future of nanotechnology and tissue engineering.Keywords: nanomaterials, tissue engineering, PLGA, nanotechnology

  5. Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation.

    NARCIS (Netherlands)

    Ji, W.; Yang, F.; Seyednejad, H.; Chen, Z.; Hennink, W.E.; Anderson, J.M.; Beucken, J.J.J.P van den; Jansen, J.A.

    2012-01-01

    The aim of current study was to evaluate the effect of nano-apatitic particles (nAp) incorporation on the degradation characteristics and biocompatibility of poly(lactide-co-glycolide) (PLGA)-based nanofibrous scaffolds. Composite PLGA/poly(varepsilon-caprolactone) (PCL) blended (w/w = 3/1) polymeri

  6. A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization.

    Science.gov (United States)

    Vashisth, Priya; Nikhil, Kumar; Roy, Partha; Pruthi, Parul A; Singh, Rajesh P; Pruthi, Vikas

    2016-01-20

    In this investigation, we have introduced novel electrospun gellan based nanofibers as a hydrophilic scaffolding material for skin tissue regeneration. These nanofibers were fabricated using a blend mixture of gellan with polyvinyl alcohol (PVA). PVA reduced the repulsive force of resulting solution and lead to formation of uniform fibers with improved nanostructure. Field emission scanning electron microscopy (FESEM) confirmed the average diameter of nanofibers down to 50 nm. The infrared spectra (IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis evaluated the crosslinking, thermal stability and highly crystalline nature of gellan-PVA nanofibers, respectively. Furthermore, the cell culture studies using human dermal fibroblast (3T3L1) cells established that these gellan based nanofibrous scaffold could induce improved cell adhesion and enhanced cell growth than conventionally proposed gellan based hydrogels and dry films. Importantly, the nanofibrous scaffold are biodegradable and could be potentially used as a temporary substrate/or biomedical graft to induce skin tissue regeneration.

  7. Nanofibre-assisted alignment of carbon nanotubes in macroscopic polymer matrix via a scaffold-based method

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available A facile way for alignment of carbon nanotubes in macroscopic polymer matrix was developed by combining electrospinning and in-situ polymerization. The approach is based on the formation of nanofibre scaffolds with wellaligned arrays, which is filled with carbon nanotubes (CNTs. CNTs will be well aligned in macroscopic polymer matrix when the aligned nanofibre scaffold containing CNTs has been incorporated into the poly(methyl methacrylate (PMMA matrix by in-situ polymerization. We demonstrate that this scaffold approach is broadly applicable and allows for the fabrication of nanocomposites with accurately aligned nanofillers. The results presented in this report show that the approach is ideal by using polyacrylonitrile (PAN nanofibres as a scaffold of multiwalled carbon nanotubes (MWNTs, and PMMA as the macroscopic polymer matrix. The tensile strength (7.2 wt% MWNTs/PAN nanofibres loadings reaches 48.61 MPa, 87% higher than that pure PMMA, and the tensile modulus is increased by 175%.

  8. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.

    Science.gov (United States)

    Kharaziha, M; Fathi, M H; Edris, H

    2013-12-01

    Composite scaffolds consisting of polymers reinforced with ceramic nanoparticles are widely applied for hard tissue engineering. However, due to the incompatible polarity of ceramic nanoparticles with polymers, they tend to agglomerate in the polymer matrix which results in undesirable effects on the integral properties of composites. In this research, forsterite (Mg2SiO4) nanoparticles was surface esterified by dodecyl alcohol and nanofibrous poly(ε-caprolactone)(PCL)/modified forsterite scaffolds were developed through electrospinning technique. The aim of this research was to investigate the properties of surface modified forsterite nanopowder and PCL/modified forsterite scaffolds, before and after hydrolytic treatment, as well as the cellular attachment and proliferation. Results demonstrated that surface modification of nanoparticles significantly enhanced the tensile strength and toughness of scaffolds upon 1.5- and 4-folds compared to unmodified samples, respectively, due to improved compatibility between matrix and filler. Hydrolytic treatment of scaffolds also modified the bioactivity and cellular attachment and proliferation due to greatly enhanced hydrophilicity of the forsterite nanoparticles after this process compared to surface modified samples. Results suggested that surface modification of forsterite nanopowder and hydrolytic treatment of the developed scaffolds were effective approaches to address the issues in the formation of composite fibers and resulted in development of bioactive composite scaffolds with ideal mechanical and structural properties for bone tissue engineering applications.

  9. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  10. Electrospun Polyhydroxybutyrate and Poly(L-lactide-co-ε-caprolactone Composites as Nanofibrous Scaffolds

    Directory of Open Access Journals (Sweden)

    Donraporn Daranarong

    2014-01-01

    Full Text Available Electrospinning can produce nanofibrous scaffolds that mimic the architecture of the extracellular matrix and support cell attachment for tissue engineering applications. In this study, fibrous membranes of polyhydroxybutyrate (PHB with various loadings of poly(L-lactide-co-ε-caprolactone (PLCL were successfully prepared by electrospinning. In comparison to PLCL scaffolds, PLCL blends with PHB exhibited more irregular fibre diameter distributions and higher average fibre diameters but there were no significant differences in pore size. PLCL/PHB scaffolds were more hydrophilic (<120° with significantly reduced tensile strength (ca. 1 MPa compared to PLCL scaffolds (150.9±2.8∘ and 5.8±0.5 MPa. Increasing PLCL loading in PHB/PLCL scaffolds significantly increased the extension at break, (4–6-fold. PLCL/PHB scaffolds supported greater adhesion and proliferation of olfactory ensheathing cells (OECs than those exhibiting asynchronous growth on culture plates. Mitochondrial activity of cells cultivated on the electrospun blended membranes was enhanced compared to those grown on PLCL and PHB scaffolds (212, 179, and 153%, resp.. Analysis showed that PLCL/PHB nanofibrous membranes promoted cell cycle progression and reduced the onset of necrosis. Thus, electrospun PLCL/PHB composites promoted adhesion and proliferation of OECs when compared to their individual PLCL and PHB components suggesting potential in the repair and engineering of nerve tissue.

  11. Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer-sized polyethylene glycol fibers

    Energy Technology Data Exchange (ETDEWEB)

    Skotak, Maciej [Biomechanics, Biomaterials and Biomedicine Instrumentation Facility, College of Engineering, University of Nebraska-Lincoln, NE 68588-0642 (United States); Ragusa, Jorge; Gonzalez, Daniela; Subramanian, Anuradha, E-mail: asubramanian2@unl.edu [Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE 68588-0643 (United States)

    2011-10-15

    Gelatin-based nanofibrous scaffolds with a mean fiber diameter of 300 nm were prepared with and without micrometer-sized polyethylene glycol (PEG) fibers that served as sacrificial templates. Upon fabrication of the scaffolds via electrospinning, the gelatin fibers were crosslinked with glutaraldehyde, and the PEG templates were removed using tert-butanol to yield nanofibrous scaffolds with pore diameters ranging from 10 to 100 {mu}m, as estimated with mercury intrusion porosimetry. Non-templated gelatin-based nanofibrous matrices had an average pore size of 1 {mu}m. Fibroblasts were seeded onto both types of the gelatin-based nanofibrous surfaces and cultured for 14 days. For comparative purposes, chitosan-based and polyurethane-based macroporous scaffolds with pore sizes of 100 and 170 {mu}m, respectively, were also included. The number of cells as a function of the depth into the scaffold was judged and quantitatively assessed using nuclei staining. Cell penetration up to a depth of 250 and 90 {mu}m was noted in gelatin scaffolds prepared with sacrificial templates and gelatin-only nanofibrous scaffolds. Noticeably, scaffold preparation protocol presented here allowed the structural integrity to be maintained even with high template content (95%) and can easily be extended toward other classes of electrospun polymer matrices for tissue engineering.

  12. Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity

    NARCIS (Netherlands)

    Masaeli, E.; Wieringa, P.A.; Morshed, M.; Nasr-Esfahani, M.H.; Sadri, S.; Blitterswijk, van C.A.; Moroni, L.

    2014-01-01

    Interactions between Schwann cells (SCs) and scaffolds are important for tissue development during nerve regeneration, because SCs physiologically assist in directing the growth of regenerating axons. In this study, we prepared electrospun scaffolds combining poly (3-hydroxybutyrate) (PHB) and poly

  13. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Shaoping [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Teo, Wee Eong [Division of Bioengineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Zhu Xiao [Singapore Eye Research Institute, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751 (Singapore); Beuerman, Roger [Singapore Eye Research Institute, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751 (Singapore); Ramakrishna, Seeram [Division of Bioengineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Yung, Lin Yue Lanry [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore)]. E-mail: cheyly@nus.edu.sg

    2007-03-15

    Collagen and glycosaminoglycan (GAG) are native constituents of human tissues and are widely utilized to fabricate scaffolds serving as an analog of native extracellular matrix (ECM).The development of blended collagen and GAG scaffolds may potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native ECM. In this study, we were able to obtain a novel nanofibrous collagen-GAG scaffold by electrospinning with collagen and chondroitin sulfate (CS), a widely used GAG. The electrospun collagen-GAG scaffold exhibited a uniform fiber structure in nano-scale diameter. By crosslinking with glutaraldehyde vapor, the collagen-GAG scaffolds could resist from collagenase degradation and enhance the biostability of the scaffolds. This led to the increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without crosslinking did not increase the biostability but still promoted cell growth. In conclusion, the electrospun collagen-GAG scaffolds, with high surface-to-volume ratio, may potentially provide a better environment for tissue formation/biosynthesis compared with the traditional scaffolds.

  14. Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

    OpenAIRE

    Anna Maria Pappa; Varvara Karagkiozaki; Silke Krol; Spyros Kassavetis; Dimitris Konstantinou; Charalampos Pitsalidis; Lazaros Tzounis; Nikos Pliatsikas; Stergios Logothetidis

    2015-01-01

    Electrospun nanofibrous scaffolds have been extensively used in several biomedical applications for tissue engineering due to their morphological resemblance to the extracellular matrix (ECM). Especially, there is a need for the cardiovascular implants to exhibit a nanostructured surface that mimics the native endothelium in order to promote endothelialization and to reduce the complications of thrombosis and implant failure. Thus, we herein fabricated poly-ε-caprolactone (PCL) electrospun na...

  15. PREPARATION OF BIOACTIVE NANOSTRUCTURE SCAFFOLD WITH IMPROVED COMPRESSIVE STRENGTH

    Directory of Open Access Journals (Sweden)

    R. EMADI

    2011-03-01

    Full Text Available Highly porous scaffolds with open structure are today the best candidates for bone substitution to ensure bone oxygenation and angiogenesis. In this study, we developed a new route to enhance the compressive strength of porous hydroxyapatite scaffold made of natural bone. Briefly, the spongy bone of an adult bovine was extracted, annealed, and coated by a nanostructure bioactive glass layer to be subsequently sintered at different temperatures. The apatite formation ability on the surfaces of the coated scaffolds was investigated by standard procedures. Our results showed that the scaffold and coating microstructure consisted of the grains smaller than 100 nm. These nanostructures improved the compressive strength and bioactivity of highly porous scaffold. The results showed that with increasing the sintering temperature, the compressive strength of scaffolds increased while their in vitro bioactivity decreased.

  16. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Sneh [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee (India); Chou, Chia-Fu [Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Dinda, Amit K. [Department of Pathology, All India Institute of Medical Science, New Delhi (India); Potdar, Pravin D. [Department of Molecular Medicine and Biology, Jaslok Hospital and Research Centre, Mumbai (India); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee (India)

    2014-01-01

    In the present study, a tri-polymer polycaprolactone (PCL)/gelatin/collagen type I composite nanofibrous scaffold has been fabricated by electrospinning for skin tissue engineering and wound healing applications. Firstly, PCL/gelatin nanofibrous scaffold was fabricated by electrospinning using a low cost solvent mixture [chloroform/methanol for PCL and acetic acid (80% v/v) for gelatin], and then the nanofibrous PCL/gelatin scaffold was modified by collagen type I (0.2–1.5 wt.%) grafting. Morphology of the collagen type I-modified PCL/gelatin composite scaffold that was analyzed by field emission scanning electron microscopy (FE-SEM), showed that the fiber diameter was increased and pore size was decreased by increasing the concentration of collagen type I. Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis indicated the surface modification of PCL/gelatin scaffold by collagen type I immobilization on the surface of the scaffold. MTT assay demonstrated the viability and high proliferation rate of L929 mouse fibroblast cells on the collagen type I-modified composite scaffold. FE-SEM analysis of cell-scaffold construct illustrated the cell adhesion of L929 mouse fibroblasts on the surface of scaffold. Characteristic cell morphology of L929 was also observed on the nanofiber mesh of the collagen type I-modified scaffold. Above results suggest that the collagen type I-modified PCL/gelatin scaffold was successful in maintaining characteristic shape of fibroblasts, besides good cell proliferation. Therefore, the fibroblast seeded PCL/gelatin/collagen type I composite nanofibrous scaffold might be a potential candidate for wound healing and skin tissue engineering applications. - Highlights: • PCL/gelatin/collagen type I scaffold was fabricated for skin tissue engineering. • PCL/gelatin/collagen type I scaffold showed higher fibroblast growth than PCL/gelatin one. • PCL/gelatin/collagen type I might be one of the ideal scaffold for

  17. Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

    Directory of Open Access Journals (Sweden)

    Anna Maria Pappa

    2015-01-01

    Full Text Available Electrospun nanofibrous scaffolds have been extensively used in several biomedical applications for tissue engineering due to their morphological resemblance to the extracellular matrix (ECM. Especially, there is a need for the cardiovascular implants to exhibit a nanostructured surface that mimics the native endothelium in order to promote endothelialization and to reduce the complications of thrombosis and implant failure. Thus, we herein fabricated poly-ε-caprolactone (PCL electrospun nanofibrous scaffolds, to serve as coatings for cardiovascular implants and guide tissue regeneration. Oxygen plasma treatment was applied in order to modify the surface chemistry of the scaffold and its effect on cell attachment and growth was evaluated. The conditions of the surface modification were properly adjusted in order to define those conditions of the treatment that result in surfaces favorable for cell growth, while maintaining morphological integrity and mechanical behavior. Goniometry (contact angle measurements, scanning electron microscopy (SEM, atomic force microscopy (AFM, and X-ray photoelectron spectroscopy (XPS measurements were used to evaluate the morphological and chemical changes induced by the plasma treatment. Moreover, depth-sensing nanoindentation was performed to study the resistance of the plasma-treated scaffolds to plastic deformation. Lastly, the cell studies indicated that all scaffolds were cytocompatible, with the plasma-treated ones expressing a more pronounced cell viability and adhesion. All the above findings demonstrate the great potential of these biomimetic tissue-engineering constructs as efficient coatings for enhanced compatibility of cardiovascular implants.

  18. Enhancing the Biomechanical Performance of Anisotropic Nanofibrous Scaffolds in Tendon Tissue Engineering: Reinforcement with Cellulose Nanocrystals.

    Science.gov (United States)

    Domingues, Rui M A; Chiera, Silvia; Gershovich, Pavel; Motta, Antonella; Reis, Rui L; Gomes, Manuela E

    2016-06-01

    Anisotropically aligned electrospun nanofibrous scaffolds based on natural/synthetic polymer blends have been established as a reasonable compromise between biological and biomechanical performance for tendon tissue engineering (TE) strategies. However, the limited tensile properties of these biomaterials restrict their application in this field due to the load-bearing nature of tendon/ligament tissues. Herein, the use of cellulose nanocrystals (CNCs) as reinforcing nanofillers in aligned electrospun scaffolds based on a natural/synthetic polymer blend matrix, poly-ε-caprolactone/chitosan (PCL/CHT) is reported. The incorporation of small amounts of CNCs (up to 3 wt%) into tendon mimetic nanofiber bundles has a remarkable biomaterial-toughing effect (85% ± 5%, p < 0.0002) and raises the scaffolds mechanical properties to tendon/ligament relevant range (σ = 39.3 ± 1.9 MPa and E = 540.5 ± 83.7 MPa, p < 0.0001). Aligned PCL/CHT/CNC nanocomposite fibrous scaffolds meet not only the mechanical requirements for tendon TE applications but also provide tendon mimetic extracellular matrix (ECM) topographic cues, a key feature for maintaining tendon cell's morphology and behavior. The strategy proposed here may be extended to other anisotropic aligned nanofibrous scaffolds based on natural/synthetic polymer blends and enable the full exploitation of the advantages provided by their tendon mimetic fibrous structures in tendon TE. PMID:27059281

  19. Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues.

    Science.gov (United States)

    Han, F; Liu, S; Liu, X; Pei, Y; Bai, S; Zhao, H; Lu, Q; Ma, F; Kaplan, D L; Zhu, H

    2014-02-01

    Although three-dimensional (3-D) porous regenerated silk scaffolds with outstanding biocompatibility, biodegradability and low inflammatory reactions have promising application in different tissue regeneration, the mechanical properties of regenerated scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This study presents woven silk fabric-reinforced silk nanofibrous scaffolds aimed at dermal tissue engineering. To improve the mechanical properties, silk scaffolds prepared by lyophilization were reinforced with degummed woven silk fabrics. The ultimate tensile strength, elongation at break and suture retention strength of the scaffolds were significantly improved, providing suitable mechanical properties strong enough for clinical applications. The stiffness and degradation behaviors were then further regulated by different after-treatment processes, making the scaffolds more suitable for dermal tissue regeneration. The in vitro cell culture results indicated that these scaffolds maintained their excellent biocompatibility after being reinforced with woven silk fabrics. Without sacrifice of porous structure and biocompatibility, the fabric-reinforced scaffolds with better mechanical properties could facilitate future clinical applications of silk as matrices in skin repair. PMID:24090985

  20. Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles.

    Science.gov (United States)

    Mohiti-Asli, Mahsa; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2014-05-01

    Nanofibers, with their morphological similarities to the extracellular matrix of skin, hold great potential for skin tissue engineering. Over the last decade, silver nanoparticles have been extensively investigated in wound-healing applications for their ability to provide antimicrobial benefits to nanofibrous scaffolds. However, the use of silver nanoparticles has raised concerns as these particles can penetrate into the stratum corneum of skin, or even diffuse into the cellular plasma membrane. We present and evaluate a new silver ion release polymeric coating that we have found can be applied to biocompatible, biodegradable poly(l-lactic acid) nanofibrous scaffolds. Using this compound, custom antimicrobial silver-ion-releasing nanofibers were created. The presence of a uniform, continuous silver coating on the nanofibrous scaffolds was verified by XPS analysis. The antimicrobial efficacy of the antimicrobial scaffolds against Staphylococcus aureus and Escherichia coli bacteria was determined via industry-standard AATCC protocols. Cytotoxicity analyses of the antimicrobial scaffolds toward human epidermal keratinocytes and human dermal fibroblasts were performed via quantitative analyses of cell viability and proliferation. Our results indicated that the custom antimicrobial scaffolds exhibited excellent antimicrobial properties while also maintaining human skin cell viability and proliferation for silver ion concentrations below 62.5μgml(-1) within the coating solution. This is the first study to show that silver ions can be effectively delivered with nanofibrous scaffolds without the use of silver nanoparticles.

  1. Synthesis of functional polyester for fabrication of nano-fibrous scaffolds and its effect on PC12 cells.

    Science.gov (United States)

    Qiang, Na; Tang, Shuo; Shi, Xiao-jun; Li, Hao; Ma, Yi-hong; Tao, Hai-xia; Lin, Qiang

    2016-01-01

    An ideal scaffold should mimic the advantageous characteristics of a natural extracellular matrix for cell attachment, proliferation, and differentiation. In this study, well-defined block copolymer with functional groups was synthesized. The structure of the block copolymer was characterized by nuclear magnetic resonance, gel permeation chromatography, and differential scanning calorimetry. Thermally induced phase separation was employed to fabricate nano-fibrous scaffolds based on the synthesized block copolymer. The scaffold, with fiber diameter ranging from 400 to 500 nm, was fabricated for in vitro culture of PC12 cells. The carboxyl groups on the side chain resulted in increased hydrophilicity of nano-fibrous scaffolds and enhanced cell proliferation. In addition, this scaffold structure was beneficial in directing the growth of regenerating axons in nerve tissue engineering. Results of 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay and scanning electron microscopy confirmed that the nano-fibrous scaffolds with functional groups were suitable for PC12 cells growth. Moreover, the carboxyl groups were suitable for coupling with biological signals. Thus, the nano-fibrous scaffolds have potential applications in tissue engineering. PMID:26514960

  2. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation.

    Science.gov (United States)

    Keivani, F; Shokrollahi, P; Zandi, M; Irani, S; F Shokrolahi; Khorasani, S C

    2016-11-01

    Polycaprolactone (PCL)/hydroxyapatite nano-composites are among the best candidates for tissue engineering. However, interactions between nHAp and PCL are difficult to control leading to inhomogeneous dispersion of the bio-ceramic particles. Grafting of polymer chains at high density/chain length while promotes the phase compatibility may result in reduced HAp exposed surface area and therefore, bioactivity is compromised. This issue is addressed here by grafting PCL chains onto HAp nano-particles through ring opening polymerization of ε-caprolactone (PCL-g-HAp). FTIR and TGA analysis showed that PCL (6.9wt%), was successfully grafted on the HAp. PCL/PCL-g-HAp nano-fibrous scaffold showed up to 10 and 33% enhancement in tensile strength and modulus, respectively, compared to those of PCL/HAp. The effects of HAp on the in vitro HAp formation were investigated for both the PCL/HAp and PCL/PCL-g-HAp scaffolds. Precipitation of HAp on the nano-composite scaffolds observed after 15days incubation in simulated body fluid (SBF), as confirmed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Human fibroblasts were seeded on PCL, PCL/HAp and PCL/PCL-g-HAp scaffolds. According to MTT assay, the highest cell proliferation was recorded for PCL/PCL-g-HAp nano-composite, at all time intervals (1-21days, Pg-HAp), were non-toxic against cells, while more cell adhesion, and the most uniform cell distribution observed on the PCL/PCL-g-HAp. Overall, grafting of relatively short chains of PCL on the surface of HAp nano-particles stimulates fibroblasts adhesion and proliferation on the PCL/PCL-g-HAp nano-composite.

  3. Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration

    NARCIS (Netherlands)

    Nandakumar, Anandkumar; Fernandes, Hugo; Boer, de Jan; Moroni, Lorenzo; Habibovic, Pamela; Blitterswijk, van Clemens A.

    2010-01-01

    Electrospun scaffolds are widely used for various biomedical applications. In this study, we prepared electrospun bioactive composite scaffolds combining hydroxyapatite, collagen (Col) and a synthetic polymer—PolyActive™—to mimic naturally occurring extracellular matrix for in situ bone regeneration

  4. Characterization of Electrospun Nanofibrous Scaffolds for Nanobiomedical Applications

    Science.gov (United States)

    Emul, E.; Saglam, S.; Ates, H.; Korkusuz, F.; Saglam, N.

    2016-08-01

    The electrospinning method is employed in the production of porous fiber scaffolds, and the usage of electrospun scaffolds especially as drug carrier and bone reconstructive material such as implants is promising for future applications in tissue engineering. The number of publications has grown very rapidly in this field through the fabrication of complex scaffolds, novel approaches in nanotechnology, and improvements of imaging methods. Hence, characterization of these materials has also grown significantly important for getting satisfied and accurate results. This advantageous and versatile method is ideal for mimicking bone extracellular matrix, and many biodegradable and biocompatible polymers are preferred in the field of bone reconstruction. In this study, gelatin, gelatin/nanohydroxyapatite (nHAp) and gelatin/PLLA/nHAp scaffolds were fabricated by the electrospinning process. These composite fibers showed clear and continuous morphology according to observation through a scanning electron microscope and their component analyses were also determined by Fourier transform infrared spectrometer analyses. These characterization experiments revealed the great effects of the electrospinning method for biomedical applications and have an especially important role in bone reconstruction and production of implant coating material.

  5. In Vitro Assessment of Antibacterial Activity and Cytocompatibility of Quercetin-Containing PLGA Nanofibrous Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Zhi-Cai Xing

    2012-01-01

    Full Text Available Flavonoids, such as quercetin, have been reported to exhibit a wide range of biological activities related to their antioxidant capacity. The aim of this study was to investigate the protective effect of quercetin on cell adhesion, and the viability and proliferation of KB epithelial cells. Quercetin- (1, 5 wt%-containing poly (l-lactide-co-glycolide (PLGA nanofibrous scaffolds (PLGA/Q 1, PLGA/Q 5 were prepared by electrospinning technique and their antibacterial properties were examined. Two types of bacteria strains, Staphylococcus aureus (SA and Klebsiella pneumoniae (KP, were used to evaluate the antibacterial properties of the scaffolds. The results showed that the quercetin-containing PLGA nanofibrous scaffolds exhibited significant antibacterial effects against the two bacterial strains. KB epithelial cells were also used to evaluate the cytocompatibility of the scaffolds. From the results, it was found that the PLGA nanofibrous scaffolds with 1 wt% of quercetin had good cell compatibility. It is considered that the PLGA nanofibrous scaffolds with 1 wt% quercetin have potential to be used in tissue engineering.

  6. The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using satellite cells.

    Science.gov (United States)

    Hosseinzadeh, Simzar; Mahmoudifard, Matin; Mohamadyar-Toupkanlou, Farzaneh; Dodel, Masomeh; Hajarizadeh, Atena; Adabi, Mahdi; Soleimani, Masoud

    2016-07-01

    Among polymers, polyaniline (PANi) has been introduced as a good candidate for muscle regeneration due to high conductivity and also biocompatibility. Herein, for the first time, we report the use of electrospun nanofibrous membrane of PAN-PANi as efficient scaffold for muscle regeneration. The prepared PAN-PANi electrospun nanofibrous membrane was characterized by scanning electron microscopy (SEM), Attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) and tensile examination. The softer scaffolds of non-composite electrospun nanofibrous PAN govern a higher rate of cell growth in spite of lower differentiation value. On the other hand, PAN-PANi electrospun nanofibrous membrane exposed high cell proliferation and also differentiation value. Thank to the conductive property and higher Young's modulus of composite type due to the employment of PANi, satellite cells were induced into more matured form as analyzed by Real-Time PCR. On the other hand, grafting of composite nanofibrous electrospun scaffold with gelatin increased the surface stiffness directing satellite cells into lower cell proliferation and highest value of differentiation. Our results for first time showed the significant role of combination between conductivity, mechanical property and surface modification of PAN-PANi electrospun nanofibers and provid new insights into most biocompatible scaffolds for muscle tissue engineering. The schematic figure conveys the effective combination of conductive and surface stiffness on muscle tissue engineering. PMID:27086138

  7. A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization.

    Science.gov (United States)

    Vashisth, Priya; Nikhil, Kumar; Roy, Partha; Pruthi, Parul A; Singh, Rajesh P; Pruthi, Vikas

    2016-01-20

    In this investigation, we have introduced novel electrospun gellan based nanofibers as a hydrophilic scaffolding material for skin tissue regeneration. These nanofibers were fabricated using a blend mixture of gellan with polyvinyl alcohol (PVA). PVA reduced the repulsive force of resulting solution and lead to formation of uniform fibers with improved nanostructure. Field emission scanning electron microscopy (FESEM) confirmed the average diameter of nanofibers down to 50 nm. The infrared spectra (IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis evaluated the crosslinking, thermal stability and highly crystalline nature of gellan-PVA nanofibers, respectively. Furthermore, the cell culture studies using human dermal fibroblast (3T3L1) cells established that these gellan based nanofibrous scaffold could induce improved cell adhesion and enhanced cell growth than conventionally proposed gellan based hydrogels and dry films. Importantly, the nanofibrous scaffold are biodegradable and could be potentially used as a temporary substrate/or biomedical graft to induce skin tissue regeneration. PMID:26572421

  8. Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold.

    Science.gov (United States)

    Kheradmandi, Mahsa; Vasheghani-Farahani, Ebrahim; Ghiaseddin, Ali; Ganji, Fariba

    2016-07-01

    Skeletal muscle tissue shows a remarkable potential in regeneration of injured tissue. However, in some of chronic and volumetric muscle damages, the native tissue is incapable to repair and remodeling the trauma. In the same condition, stem-cell therapy increased regeneration in situations of deficient muscle repair, but the major problem seems to be the lack of ability to attachment and survive of injected cells on the exact location. In this study, chitosan/poly(vinyl alcohol) nanofibrous scaffold was studied to promote cell attachment and provide mechanical support during regeneration. Scaffold was characterized using scanning electron microscope, X-ray diffraction, and tensile test. Degradation and swelling behavior of scaffold were studied for 20 days. The cell-scaffold interaction was characterized by MTT assay for 10 days and in vivo biocompatibility of scaffold in a rabbit model was evaluated. Results showed that cells had a good viability, adhesion, growth, and spread on the scaffold, which make this mat a desirable engineered muscular graft. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1720-1727, 2016. PMID:26945909

  9. A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture.

    Science.gov (United States)

    Nagashima, Aya; Tsuji, Tsubasa; Kondo, Tetsuo

    2016-01-01

    An aerobic, Gram-negative bacterium, Gluconacetobacter xylinus, was successfully employed to produce a stretchable cellulose nanofiber pellicle using dissolved oxygen in a conventional cultured medium. The obtained nanofibers were highly crystalline with the metastable cellulose Iα phase being apparently the dominant phase by more than 90%. The obtained pellicle could be stretched by up to 1.5 times to provide oriented crystalline nanofibrous films. Low heating of the nanofibrous film induced the transformation of the dominant cellulose Iα crystalline phase into the Iβ crystalline phase without a loss of crystallinity or the high Young's modulus. The film also exhibited unique and anisotropic viscoelastic and mechanical properties as well as superior thermal stability compared with conventional high-performance synthetic polymeric materials. In addition, when G. xylinus cells were transferred to the oriented surface after stretched, they started to synthesize cellulose ribbons that parallel the nanofiber orientation of the substrate. This function as a template was evidenced by direct video imaging of the motion of the bacteria. The application of a bacterial culture using dissolved oxygen in the medium offers the fabrication of novel anisotropic and nanofibrous scaffold of cellulose Iα. PMID:26453871

  10. Human unrestricted somatic stem cells loaded in nanofibrous PCL scaffold and their healing effect on skin defects.

    Science.gov (United States)

    Bahrami, Hoda; Keshel, Saeed Heidari; Chari, Aliakbar Jafari; Biazar, Esmaeil

    2016-09-01

    Unrestricted somatic stem cells (USSCs) loaded in nanofibrous polycaprolactone (PCL) scaffolds can be used for skin regeneration when grafted onto full-thickness skin defects of rats. Nanofibrous PCL scaffolds were designed by the electrospinning method and crosslinked with laminin protein. Afterwards, the scaffolds were evaluated by scanning electron microscopy, and physical and mechanical assays. In this study, nanofibrous PCL scaffolds loaded with USSCs were grafted onto the skin defects. The wounds were subsequently investigated 21 days after grafting. Results of mechanical and physical analyses showed good resilience and compliance to movement as a skin graft. In animal models; study samples exhibited the most pronounced effect on wound closure, with statistically significant improvement in wound healing being seen at 21 days post-operatively. Histological examinations of healed wounds from all samples showed a thin epidermis plus recovered skin appendages in the dermal layer for samples with cell. Thus, the graft of nanofibrous PCL scaffolds loaded with USSC showed better results during the healing process of skin defects in rat models. PMID:26140614

  11. Preparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    A. Doustgani

    2016-04-01

    Full Text Available Objective(s: In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA, poly (vinyl alcohol (PVA and calcium carbonate nanoparticles (nCaP. The surface morphology of prepared nanofibrous scaffolds with and without cell was examined using scanning electron microscopy. Mechanical properties of electrospun nanofibrous scaffolds were determined with a  universal testing machine. The in vitro properties of fabricated scaffolds was also investigated by the MTT assay and alkaline phosphatase activity (ALP.Results: The average fiber diameter for aligned and random nanofibers were 82 ± 12 nm and 124 ± 25 nm, respectively. The mechanical testing indicated the higher tensile strength and elastic modulus of aligned nanofibers. MTT and ALP results showed that alignment of nanofiber increased the osteogenic differentiation of stem cells.Conclusion: Aligned nanofibrous nanocomposite scaffolds of PLA/nCaP/PVA could be an excellent substrate for MSCs and represents a potential bone-filling material.

  12. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar-Mohammadi, Marziyeh [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Bahrami, S. Hajir, E-mail: hajirb@aut.ac.ir [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Center for excellence Modern Textile Characterization, Tehran (Iran, Islamic Republic of)

    2015-03-01

    Outstanding wound healing activity of gum tragacanth (GT) and higher mechanical strength of poly (ε-caprolactone) (PCL) may produce an excellent nanofibrous patch for either skin tissue engineering or wound dressing application. PCL/GT scaffold containing different concentrations of PCL with different blend ratios of GT/PCL was produced using 90% acetic acid as solvent. The results demonstrated that the PCL/GT (3:1.5) with PCL concentration of 20% (w/v) produced nanofibers with proper morphology. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were utilized to characterize the nanofibers. Surface wettability, functional groups analysis, porosity and tensile properties of nanofibers were evaluated. Morphological characterization showed that the addition of GT to PCL solution results in decreasing the average diameter of the PCL/GT nanofibers. However, the hydrophilicity increased in the PCL/GT nanofibers. Slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. PCL/GT nanofibers were used for in vitro cell culture of human fibroblast cell lines AGO and NIH 3T3 fibroblast cells. MTT assay and SEM results showed that the biocomposite PCL/GT mats enhanced the fibroblast adhesion and proliferation compared to PCL scaffolds. The antibacterial activity of PCL/GT and GT nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa was also examined. - Highlights: • A new skin tissue engineering scaffold from poly (ε-caprolactone) (PCL) and gum tragacanth (GT) has been developed. • These scaffolds might be an effectual simulator of the structure and composition of native skin. • Very slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. • Biodegradation, water uptake and hydrophilicity properties of these scaffolds showed that produced scaffolds were adherent. • The electrospun PCL/GT scaffold can promote the skin regeneration of full

  13. In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds.

    Science.gov (United States)

    Yeatts, Andrew B; Both, Sanne K; Yang, Wanxun; Alghamdi, Hamdan S; Yang, Fang; Fisher, John P; Jansen, John A

    2014-01-01

    The use of bioreactors for the in vitro culture of constructs for bone tissue engineering has become prevalent as these systems may improve the growth and differentiation of a cultured cell population. Here we utilize a tubular perfusion system (TPS) bioreactor for the in vitro culture of human mesenchymal stem cells (hMSCs) and implant the cultured constructs into rat femoral condyle defects. Using nanofibrous electrospun poly(lactic-co-glycolic acid)/poly(ε-caprolactone) scaffolds, hMSCs were cultured for 10 days in vitro in the TPS bioreactor with cellular and acellular scaffolds cultured statically for 10 days as a control. After 3 and 6 weeks of in vivo culture, explants were removed and subjected to histomorphometric analysis. Results indicated more rapid bone regeneration in defects implanted with bioreactor cultured scaffolds with a new bone area of 1.23 ± 0.35 mm(2) at 21 days compared to 0.99 ± 0.43 mm(2) and 0.50 ± 0.29 mm(2) in defects implanted with statically cultured scaffolds and acellular scaffolds, respectively. At the 21 day timepoint, statistical differences (pbioreactor to improve bone tissue regeneration and highlights the benefits of utilizing perfusion bioreactor systems to culture MSCs for bone tissue engineering.

  14. Biodegradable photo-crosslinked alginate nanofibre scaffolds with tuneable physical properties, cell adhesivity and growth factor release

    Directory of Open Access Journals (Sweden)

    SI Jeong

    2012-10-01

    Full Text Available Nanofibrous scaffolds are of interest in tissue engineering due to their high surface area to volume ratio, interconnected pores, and architectural similarity to the native extracellular matrix. Our laboratory recently developed a biodegradable, photo-crosslinkable alginate biopolymer. Here, we show the capacity of the material to be electrospun into a nanofibrous matrix, and the ability to enhance cell adhesion and proliferation on these matrices by covalent modification with cell adhesion peptides. Additionally, the potential of covalently incorporating heparin into the hydrogels during the photopolymerisation process to sustain the release of a heparin binding growth factor via affinity interactions was demonstrated. Electrospun photo-crosslinkable alginate nanofibrous scaffolds endowed with cell adhesion ligands and controlled delivery of growth factors may allow for improved regulation of cell behaviour for regenerative medicine.

  15. Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haiping, E-mail: zhp9810_a@163.com; Liu, Xiaotian, E-mail: xtianliu@126.com; Yang, Mingying, E-mail: yangm@zju.edu.cn; Zhu, Liangjun, E-mail: ljzhu@zju.edu.cn

    2015-10-01

    To mimic the natural fibrous structure of the tissue extracellular matrix, a nano-fibrous silk fibroin (SF)/sodium alginate (SA) composite scaffold was fabricated by a thermally-induced phase-separation method. The effects of SF/SA ratio on the structure and the porosity of the composite scaffolds were examined. Scanning electron microscopy and porosity results showed that the 5SF/1SA and 3SF/1SA scaffolds possessed an excellent nano-fibrous structure and a porosity of more than 90%. Fourier transform infrared, X-ray diffraction, and differential scanning calorimetry results indicated the physical interaction between SF and SA molecules and their good compatibility in the 5SF/1SA and 3SF/1SA scaffolds, whereas they showed less compatibility in the 1SF/1SA scaffold. Cell culture results showed that MG-63 cells can attach and grow well on the surface of the SF/SA scaffolds. The nano-fibrous SF/SA scaffold can be potentially used in tissue engineering. - Highlights: • We fabricate a nano-fibrous silk fibroin (SF)/sodium alginate (SA) composite scaffold. • The scaffold was prepared through a thermally induced phase separation method. • SF molecules are physically interacted with SA molecules. • Good molecular compatibility can be found in 5SF/1SA and 3SF/1SA scaffolds. • The nano-fibrous SF/SA scaffold is biocompatible.

  16. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering.

    Science.gov (United States)

    Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L

    2007-08-01

    Engineering a functional replacement for the annulus fibrosus (AF) of the intervertebral disc is contingent upon recapitulation of AF structure, composition, and mechanical properties. In this study, we propose a new paradigm for AF tissue engineering that focuses on the reconstitution of anatomic fiber architecture and uses constitutive modeling to evaluate construct function. A modified electrospinning technique was utilized to generate aligned nanofibrous polymer scaffolds for engineering the basic functional unit of the AF, a single lamella. Scaffolds were tested in uniaxial tension at multiple fiber orientations, demonstrating a nonlinear dependence of modulus on fiber angle that mimicked the nonlinearity and anisotropy of native AF. A homogenization model previously applied to native AF successfully described scaffold mechanical response, and parametric studies demonstrated that nonfibrillar matrix, along with fiber connectivity, are key contributors to tensile mechanics for engineered AF. We demonstrated that AF cells orient themselves along the aligned scaffolds and deposit matrix that contributes to construct mechanics under loading conditions relevant to the in vivo environment. The homogenization model was applied to cell-seeded constructs and provided quantitative measures for the evolution of matrix and interfibrillar interactions. Finally, the model demonstrated that at fiber angles of the AF (28 degrees -44 degrees ), engineered material behaved much like native tissue, suggesting that engineered constructs replicate the physiologic behavior of the single AF lamella. Constitutive modeling provides a powerful tool for analysis of engineered AF neo-tissue and native AF tissue alike, highlighting key mechanical design criteria for functional AF tissue engineering.

  17. Ionic solutes impact collagen scaffold bioactivity.

    Science.gov (United States)

    Pawelec, K M; Husmann, A; Wardale, R J; Best, S M; Cameron, R E

    2015-02-01

    The structure of ice-templated collagen scaffolds is sensitive to many factors. By adding 0.5 wt% of sodium chloride or sucrose to collagen slurries, scaffold structure could be tuned through changes in ice growth kinetics and interactions of the solute and collagen. With ionic solutes (sodium chloride) the entanglements of the collagen molecule decreased, leading to fibrous scaffolds with increased pore size and decreased attachment of chondrocytes. With non-ionic solutes (sucrose) ice growth was slowed, leading to significantly reduced pore size and up-regulated cell attachment. This highlights the large changes in structure and biological function stimulated by solutes in ice-templating systems. PMID:25649518

  18. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.

    Science.gov (United States)

    Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang

    2015-04-29

    The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the

  19. Nanofibrous Chitosan-Polyethylene Oxide Engineered Scaffolds: A Comparative Study between Simulated Structural Characteristics and Cells Viability

    Directory of Open Access Journals (Sweden)

    Mohammad Kazemi Pilehrood

    2014-01-01

    Full Text Available 3D nanofibrous chitosan-polyethylene oxide (PEO scaffolds were fabricated by electrospinning at different processing parameters. The structural characteristics, such as pore size, overall porosity, pore interconnectivity, and scaffold percolative efficiency (SPE, were simulated by a robust image analysis. Mouse fibroblast cells (L929 were cultured in RPMI for 2 days in the presence of various samples of nanofibrous chitosan/PEO scaffolds. Cell attachments and corresponding mean viability were enhanced from 50% to 110% compared to that belonging to a control even at packed morphologies of scaffolds constituted from pores with nanoscale diameter. To elucidate the correlation between structural characteristics within the depth of the scaffolds’ profile and cell viability, a comparative analysis was proposed. This analysis revealed that larger fiber diameters and pore sizes can enhance cell viability. On the contrary, increasing the other structural elements such as overall porosity and interconnectivity due to a simultaneous reduction in fiber diameter and pore size through the electrospinning process can reduce the viability of cells. In addition, it was found that manipulation of the processing parameters in electrospinning can compensate for the effects of packed morphologies of nanofibrous scaffolds and can thus potentially improve the infiltration and viability of cells.

  20. Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks

    International Nuclear Information System (INIS)

    In this article, we describe the synthesis of new and ion-selective nanofiltration (NF) membranes using polyvinylidene fluoride (PVDF) nanofibers and hyperbranched polyethylenimine (PEI) as building blocks. These new nanofibrous composite (NFC) membranes consist of crosslinked hyperbranched PEI networks supported by PVDF nanofibrous scaffolds that are electrospun onto commercial PVDF microfiltration (MF) membranes. A major objective of our study was to fabricate positively charged NF membranes that can be operated at low pressure with high water flux and improved rejection for monovalent cations. To achieve this, we investigated the effects of crosslinker chemistry on membrane properties (morphology, composition, hydrophobicity, and zeta potential) and membrane performance (salt rejection and permeate flux) in aqueous solutions (2,000 mg/L) of four salts (NaCl, MgCl2, Na2SO4, and MgSO4) at pH 4, 6, and 8. We found that an NFC–PVDF membrane with a network of PEI macromolecules crosslinked with trimesoyl chloride has a high water flux (∼30 L m−2 h−1) and high rejections for MgCl2 (∼88 %) and NaCl (∼65 %) at pH 6 using a pressure of 7 bar. The overall results of our study suggest that PVDF nanofibers and hyperbranched PEI are promising building blocks for the fabrication of high performance NF membranes for water purification.

  1. Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong-Jik [Hankyong National University, Department of Bioresources and Rural Systems Engineering (Korea, Republic of); Cheedrala, Ravi Kumar; Diallo, Mamadou S., E-mail: mdiallo@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of); Kim, Changmin; Kim, In S. [Gwangju Institute of Science and Technology (GIST), Department of Environmental Science and Engineering (Korea, Republic of); Goddard, William A. [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of)

    2012-07-15

    In this article, we describe the synthesis of new and ion-selective nanofiltration (NF) membranes using polyvinylidene fluoride (PVDF) nanofibers and hyperbranched polyethylenimine (PEI) as building blocks. These new nanofibrous composite (NFC) membranes consist of crosslinked hyperbranched PEI networks supported by PVDF nanofibrous scaffolds that are electrospun onto commercial PVDF microfiltration (MF) membranes. A major objective of our study was to fabricate positively charged NF membranes that can be operated at low pressure with high water flux and improved rejection for monovalent cations. To achieve this, we investigated the effects of crosslinker chemistry on membrane properties (morphology, composition, hydrophobicity, and zeta potential) and membrane performance (salt rejection and permeate flux) in aqueous solutions (2,000 mg/L) of four salts (NaCl, MgCl{sub 2}, Na{sub 2}SO{sub 4}, and MgSO{sub 4}) at pH 4, 6, and 8. We found that an NFC-PVDF membrane with a network of PEI macromolecules crosslinked with trimesoyl chloride has a high water flux ({approx}30 L m{sup -2} h{sup -1}) and high rejections for MgCl{sub 2} ({approx}88 %) and NaCl ({approx}65 %) at pH 6 using a pressure of 7 bar. The overall results of our study suggest that PVDF nanofibers and hyperbranched PEI are promising building blocks for the fabrication of high performance NF membranes for water purification.

  2. Biocompatibility evaluation of electrospun aligned poly(propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro

    Institute of Scientific and Technical Information of China (English)

    WANG Yu; ZHAO Zhe; ZHAO Bin; QI Hong-xu; PENG Jiang; ZHANG Li; XU Wen-jing; HU Ping; LU Shi-bi

    2011-01-01

    Background Peripheral nerve regeneration across large gaps is clinically challenging. Scaffold design plays a pivotal role in nerve tissue engineering. Recently, nanofibrous scaffolds have proven a suitable environment for cell attachment and proliferation due to similarities of their physical properties to natural extracellular matrix. Poly(propylene carbonate)(PPC) nanofibrous scaffolds have been investigated for vascular tissue engineering. However, no reports exist of PPC nanofibrous scaffolds for nerve tissue engineering. This study aimed to evaluate the potential role of aligned and random PPC nanofibrous scaffolds as substrates for peripheral nerve tissue and cells in nerve tissue engineering. Methods Aligned and random PPC nanofibrous scaffolds were fabricated by electrospinning and their chemical characterization were carried out using scanning electron microscopy (SEM). Dorsal root ganglia (DRG) from Sprague-Dawley rats were cultured on the nanofibrous substrates for 7 days. Neurite outgrowth and Schwann-cell migration from DRG were observed and quantified using immunocytochemistry and SEM. Schwann cells derived from rat sciatic nerves were cultured in electrospun PPC scaffold-extract fluid for 24, 48, 72 hours and 7 days. The viability of Schwann cells was evaluated by 3-[4,5-dimethyl(thiazol-2-yl)-2,5-diphenyl] tetrazolium bromide (MTT) assay. Results The diameter of aligned and random fibers ranged between 800 nm and 1200 nm, and the thickness of the films was approximately 10-20 μm. Quantification of aligned fiber films revealed approximately 90% alignment of all fibers along the longitudinal axis. However, with random fiber films, the alignment of fibers was random through all angle bins. Rat DRG explants were grown on PPC nanofiber films for up to 1 week. On the aligned fiber films, the majority of neurite outgrowth and Schwann cell migration from the DRG extended unidirectionally, parallel to the aligned fibers.However, on the random fiber films

  3. Bioactive Ca-P scaffolds used for bone reconstruction

    Institute of Scientific and Technical Information of China (English)

    RUAN Jian-ming(阮建明); ZOU Jian-peng(邹俭鹏); Goldie Elisabeth; LIU Bing(刘兵)

    2003-01-01

    Bioactive ceramic scaffolds HA*TCP, aimed to be applied in clinic, were evaluated both in vitro and in vivo models. HA*TCP was supposed as a completely biodegradable material and designed as a scaffold to be used for bone reconstruction or regeneration. Materials processing was proposed and physical properties as well as microstructure feature were characterized. Biological postulation of the relationship between seeding density and proliferation, and viability of human osteoblasts cultured on the porous HA*TCP were quantitatively measured. Bone reconstruction was investigated both in vitro and in vivo by using these biodegradable scaffolds with pore sizes ranged in 200-400 μm in diameter. The degradable scaffold supported cellular proliferation of seeded osteoblasts on the scaffold and shown normal differentiated function in vitro. Seeding density is an important factor for cell attachment and proliferation expression and has been considerably discussed. Suitable pore size of the scaffolds is required if promotion of bone reconstruction is desired. Clinical trials show that HA*TCP scaffolds are successful applied for bone reconstruction and regeneration and can be completely degraded in human body in 12 months. This approach suggests the feasibility of using porous HA*TCP scaffold materials for the transplantation of autogenous osteoblasts to regenerate bone tissue.

  4. Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma.

    Science.gov (United States)

    Bagó, Juli R; Pegna, Guillaume J; Okolie, Onyi; Mohiti-Asli, Mahsa; Loboa, Elizabeth G; Hingtgen, Shawn D

    2016-06-01

    Engineered stem cell (SC)-based therapy holds enormous promise for treating the incurable brain cancer glioblastoma (GBM). Retaining the cytotoxic SCs in the surgical cavity after GBM resection is one of the greatest challenges to this approach. Here, we describe a biocompatible electrospun nanofibrous scaffold (bENS) implant capable of delivering and retaining tumor-homing cytotoxic stem cells that suppress recurrence of post-surgical GBM. As a new approach to GBM therapy, we created poly(l-lactic acid) (PLA) bENS bearing drug-releasing human mesenchymal stem cells (hMSCs). We discovered that bENS-based implant increased hMSC retention in the surgical cavity 5-fold and prolonged persistence 3-fold compared to standard direct injection using our mouse model of GBM surgical resection/recurrence. Time-lapse imaging showed cytotoxic hMSC/bENS treatment killed co-cultured human GBM cells, and allowed hMSCs to rapidly migrate off the scaffolds as they homed to GBMs. In vivo, bENS loaded with hMSCs releasing the anti-tumor protein TRAIL (bENS(sTR)) reduced the volume of established GBM xenografts 3-fold. Mimicking clinical GBM patient therapy, lining the post-operative GBM surgical cavity with bENS(sTR) implants inhibited the re-growth of residual GBM foci 2.3-fold and prolonged post-surgical median survival from 13.5 to 31 days in mice. These results suggest that nanofibrous-based SC therapies could be an innovative new approach to improve the outcomes of patients suffering from terminal brain cancer. PMID:27016620

  5. Bioactivity of polyurethane-based scaffolds coated with Bioglass (registered)

    International Nuclear Information System (INIS)

    Polyurethane (PUR) and polyurethane/poly(d, l-lactide) acid (PUR/PDLLA) based scaffolds coated with Bioglass (registered) particles for application in bone tissue engineering were fabricated. The slurry-dipping method was used for coating preparation. The homogeneous structure of the Bioglass (registered) coatings on the surface of the PUR and PUR/PDLLA foams indicated a good adhesion of the bioactive glass particles to polyurethane without any additional surface treatment. In vitro studies in simulated body fluid (SBF) were performed to study the influence of Bioglass (registered) coating on biodegrability and bioactivity of PUR-based scaffolds. The surface of Bioglass (registered) -coated samples was covered by a layer of carbonate-containing apatite after 7 days of immersion in SBF, while in uncoated polymer samples apatite crystals were not detected even after 21 days of immersion in SBF. The apatite layer was characterized by scanning electron microscopy (SEM), EDS analysis and attenuated total reflectance-Fourier transform infrared spectrometry (FTIR-ATR). Weight loss measurements showed that the in vitro degradation rate of the composite scaffolds in SBF was higher in comparison to uncoated polyurethane samples. PUR and PUR/PDLLA foams with Bioglass (registered) coating have potential to be used as bioactive, biodegradable scaffolds in bone tissue engineering

  6. Mesoporous bioactive glass scaffolds for efficient delivery of vascular endothelial growth factor.

    Science.gov (United States)

    Wu, Chengtie; Fan, Wei; Chang, Jiang; Xiao, Yin

    2013-09-01

    In this article, we, for the first time, investigated mesoporous bioactive glass scaffolds for the delivery of vascular endothelial growth factor. We have found that mesoporous bioactive glass scaffolds have significantly higher loading efficiency and more sustained release of vascular endothelial growth factor than non-mesoporous bioactive glass scaffolds. In addition, vascular endothelial growth factor delivery from mesoporous bioactive glass scaffolds has improved the viability of endothelial cells. The study has suggested that mesopore structures in mesoporous bioactive glass scaffolds play an important role in improving the loading efficiency, decreasing the burst release, and maintaining the bioactivity of vascular endothelial growth factor, indicating that mesoporous bioactive glass scaffolds are an excellent carrier of vascular endothelial growth factor for potential bone tissue engineering applications.

  7. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Sneh [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 (India); Dinda, Amit Kumar [Department of Pathology, All India Institute of Medical Science, New Delhi, 110029 (India); Mishra, Narayan Chandra, E-mail: mishrawise@googlemail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 (India)

    2013-04-01

    In the present study, composite nanofibrous tissue engineering-scaffold consisting of polycaprolactone and gelatin, was fabricated by electrospinning method, using a new cost-effective solvent mixture: chloroform/methanol for polycaprolactone (PCL) and acetic acid for gelatin. The morphology of the nanofibrous scaffold was investigated by using field emission scanning electron microscopy (FE-SEM) which clearly indicates that the morphology of nanofibers was influenced by the weight ratio of PCL to gelatin in the solution. Uniform fibers were produced only when the weight ratio of PCL/gelatin is sufficiently high (10:1). The scaffold was further characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, and X-ray diffraction (XRD). FT-IR and TG analysis indicated some interactions between PCL and gelatin molecules within the scaffold, while XRD results demonstrated crystalline nature of PCL/gelatin composite scaffold. Cytotoxicity effect of scaffold on L929 mouse fibroblast cells was evaluated by MTT assay and cell proliferation on the scaffold was confirmed by DNA quantification. Positive results of MTT assay and DNA quantification L929 mouse fibroblast cells indicated that the scaffold made from the combination of natural polymer (gelatin) and synthetic polymer (PCL) may serve as a good candidate for tissue engineering applications. - Highlights: ► PCL/Gelatin scaffold was successfully fabricated by electrospinning method. ► PCL in CHCl{sub 3}/CH{sub 3}OH and gelatin in acetic acid: a novel polymer-solvent system. ► The morphology of nanofibers was influenced by the weight ratio of PCL/gelatin. ► Chemical interactions between PCL and gelatin molecules enhanced cell growth. ► Cell culture studies indicate the suitability of scaffold for tissue regeneration.

  8. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica.

    Science.gov (United States)

    Özarslan, Ali Can; Yücel, Sevil

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering. PMID:27524030

  9. Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration

    OpenAIRE

    Sirivisoot, Sirinrath; Pareta, Rajesh; Harrison, Benjamin S.

    2014-01-01

    It has been established that nerves and skeletal muscles respond and communicate via electrical signals. In regenerative medicine, there is current emphasis on using conductive nanomaterials to enhance electrical conduction through tissue-engineered scaffolds to increase cell differentiation and tissue regeneration. We investigated the role of chemically synthesized polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT) conductive polymer nanofibres for conductive gels. To mimic a na...

  10. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics

    Directory of Open Access Journals (Sweden)

    Yun HS

    2011-10-01

    Full Text Available Hui-suk Yun1, Sang-Hyun Kim2, Dongwoo Khang3, Jungil Choi4, Hui-hoon Kim2, Minji Kang31Functional Materials Division, Korea Institute of Materials Science, Gyeongnam, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Jung-Gu, Daegu, Korea; 3School of Nano and Advanced Materials Science and Engineering and Center for NMBE, Gyeongsang National University, Jinju, Korea; 4Department of Anatomy, Institute of Health Science and School of Medicine, Gyeongsang National University, Jinju, Gyeongnam, KoreaBackground: Mesoporous bioactive glasses (MBGs are very attractive materials for use in bone tissue regeneration because of their extraordinarily high bone-forming bioactivity in vitro. That is, MBGs may induce the rapid formation of hydroxy apatite (HA in simulated body fluid (SBF, which is a major inorganic component of bone extracellular matrix (ECM and comes with both good osteoconductivity and high affinity to adsorb proteins. Meanwhile, the high bioactivity of MBGs may lead to an abrupt initial local pH variation during the initial Ca ion-leaching from MBGs at the initial transplant stage, which may induce unexpected negative effects on using them in in vivo application. In this study we suggest a new way of using MBGs in bone tissue regeneration that can improve the strength and make up for the weakness of MBGs. We applied the outstanding bone-forming bioactivity of MBG to coat the main ECM components HA and collagen on the MBG-polycarplolactone (PCL composite scaffolds for improving their function as bone scaffolds in tissue regeneration. This precoating process can also expect to reduce initial local pH variation of MBGs.Methods and materials: The MBG-PCL scaffolds were immersed in the mixed solution of the collagen and SBF at 37°C for 24 hours. The coating of ECM components on the MBG-PCL scaffolds and the effect of ECM coating on in vitro cell behaviors were confirmed.Results: The ECM components were fully

  11. A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration

    Science.gov (United States)

    Raspa, A.; Marchini, A.; Pugliese, R.; Mauri, M.; Maleki, M.; Vasita, R.; Gelain, F.

    2015-12-01

    effective therapy will require contribution of different disciplines such as materials science, cell biology, drug delivery and nanotechnology. One of the biggest challenges in SCI regeneration is to create an artificial scaffold that could mimic the extracellular matrix (ECM) and support nervous system regeneration. Electrospun constructs and hydrogels based on self-assembling peptides (SAPs) have been recently preferred. In this work SAPs and polymers were assembled by using a coaxial electrospinning setup. We tested the biocompatibility of two types of coaxially electrospun microchannels: the first one made by a core of poly(ε-caprolactone) and poly(d,l-lactide-co-glycolide) (PCL-PLGA) and a shell of an emulsion of PCL-PLGA and a functionalized self-assembling peptide Ac-FAQ and the second one made by a core of Ac-FAQ and a shell of PCL-PLGA. Moreover, we tested an annealed scaffold by PCL-PLGA microchannel heat-treatment. The properties of coaxial scaffolds were analyzed using scanning electron microscopy (SEM), Fourier transform spectroscopy (FTIR), contact angle measurements and differential scanning calorimetry (DSC). In vitro cytotoxicity was assessed via viability and differentiation assays with neural stem cells (NSCs); whereas in vivo inflammatory response was evaluated following scaffold implantation in rodent spinal cords. Emulsification of the outer shell turned out to be the best choice in terms of cell viability and tissue response: thus suggesting the potential of using functionalized SAPs in coaxial electrospinning for applications in regenerative medicine. Electronic supplementary information (ESI) available: In vivo analysis to evaluate tissue reaction in the scaffold implant walls (Fig. S1) and to test axonal regeneration (Fig. S2). Waters LC-MS Alliance-3100 analysis to confirm the molecular weight and the integrity of peptides following the electrospray process (Fig. S3). Water contact angle of electrospun nanofibrous mats (Fig. S4). See DOI: 10

  12. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.

    Science.gov (United States)

    Tian, Lingling; Prabhakaran, Molamma P; Hu, Jue; Chen, Menglin; Besenbacher, Flemming; Ramakrishna, Seeram

    2016-09-01

    Electrospun nanofibrous nerve implants is a promising therapy for peripheral nerve injury, and its performance can be tailored by chemical cues, topographical features as well as electrical properties. In this paper, a surface modified, electrically conductive, aligned nanofibrous scaffold composed of poly (lactic acid) (PLA) and polypyrrole (Ppy), referred to as o-PLAPpy_A, was fabricated for nerve regeneration. The morphology, surface chemistry and hydrophilicity of nanofibers were characterized by Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle, respectively. The effects of these nanofibers on neuronal differentiation using PC12 cells were evaluated. A hydrophilic surface was created by Poly-ornithine coating, which was able to provide a better environment for cell attachment, and furthermore aligned fibers were proved to be able to guide PC12 cells grow along the fiber direction and be beneficial for neurite outgrowth. The cellular response of PC12 cells to pulsed electrical stimulation was evaluated by NF 200 and alpha tubulin expression, indicating that electrical stimulation with a voltage of 40mV could enhance the neurite outgrowth. The PC12 cells stimulated with electrical shock showed greater level of neurite outgrowth and smaller cell body size. Moreover, the PC12 cells under electrical stimulation showed better viability. In summary, the o-PLAPpy_A nanofibrous scaffold supported the attachment, proliferation and differentiation of PC12 cells in the absence of electrical stimulation, which could be potential candidate for nerve regeneration applications. PMID:27232305

  13. Structural characterization of electrospun micro/nanofibrous scaffolds by liquid extrusion porosimetry: A comparison with other techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cortez Tornello, Pablo R., E-mail: pablocortez@fi.mdp.edu.ar; Caracciolo, Pablo C., E-mail: pcaracciolo@fi.mdp.edu.ar; Cuadrado, Teresita R., E-mail: trcuadra@fi.mdp.edu.ar; Abraham, Gustavo A., E-mail: gabraham@fi.mdp.edu.ar

    2014-08-01

    Poly(ε-caprolactone) micro/nanofibrous scaffolds obtained by electrospinning technique from polymer solutions were characterized in terms of fiber diameter (as measured by scanning electron microscopy-SEM), pore size and its distribution (as measured by liquid extrusion porosimetry), and porosity (as determined by gravimetric measurement, liquid intrusion method, SEM image analysis and liquid extrusion porosimetry — LEP). Nonwoven micro/nanofibrous scaffolds were formed by uniform bead-free fibers with mean diameters in the range of 0.4 to 7 μm. The results indicate that pore size and pore size distribution are strongly associated to fiber diameter. Porosity results were analyzed taking into account the accuracy and limitations of each method. LEP resulted as the most suitable technique for measuring through-pore diameter and porosity. In order to compare empirical data of pore size from LEP, a theoretical multiplanar model for stochastic fiber networks was applied. The results predicted by the model were in good agreement with the experimental data provided by LEP for mean diameters higher than 1 μm. The present study shows the potential of LEP as a valuable instrumental technique for characterizing the porous structure of electrospun fibrous scaffolds. - Highlights: • Pore size and pore size distribution are strongly associated to fiber diameter. • SEM image analysis shows porosity values close to those measured by LEP. • LEP is a valuable technique for characterizing the electrospun scaffold structure. • The multiplanar model is in good agreement with LEP in predicting the pore sizes.

  14. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.

    Science.gov (United States)

    Shuai, Cijun; Huang, Wei; Feng, Pei; Gao, Chengde; Shuai, Xiong; Xiao, Tao; Deng, Youwen; Peng, Shuping; Wu, Ping

    2016-01-01

    The biological properties of porous poly (vinylidene fluoride) (PVDF) scaffolds fabricated by selective laser sintering were tailored through nano-sized 58s bioactive glass. The results showed that 58s bioactive glass distributed evenly in the PVDF matrix. There were some exposed particles on the surface which provided attachment sites for biological response. It was confirmed that the scaffolds had highly bioactivity by the formation of bone-like apatite in simulated body fluid. And the bone-like apatite became dense with the increase in 58s bioactive glass and culture time. Moreover, the scaffolds were suitable for cell adhesion and proliferation compared with the PVDF scaffolds without 58s bioactive glass. The research showed that the PVDF/58s bioactive glass scaffolds had latent application in bone tissue engineering.

  15. Electrospun Poly(lactide-co-glycolide-co-3(S-methyl-morpholine-2,5-dione Nanofibrous Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yakai Feng

    2016-01-01

    Full Text Available Biomimetic scaffolds have been investigated in vascular tissue engineering for many years. Excellent biodegradable materials are desired as temporary scaffolds to support cell growth and disappear gradually with the progress of guided tissue regeneration. In the present paper, a series of biodegradable copolymers were synthesized and used to prepared micro/nanofibrous scaffolds for vascular tissue engineering. Poly(lactide-co-glycolide-co-3(S-methyl-morpholine-2,5-dione [P(LA-co-GA-co-MMD] copolymers with different l-lactide (LA, glycolide (GA, and 3(S-methyl-2,5-morpholinedione (MMD contents were synthesized using stannous octoate as a catalyst. Moreover, the P(LA-co-GA-co-MMD nanofibrous scaffolds were prepared by electrospinning technology. The morphology of scaffolds was analyzed by scanning electron microscopy (SEM, and the results showed that the fibers are smooth, regular, and randomly oriented with diameters of 700 ± 100 nm. The weight loss of scaffolds increased significantly with the increasing content of MMD, indicating good biodegradable property of the scaffolds. In addition, the cytocompatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells. It is demonstrated that the cells could attach and proliferate well on P(LA-co-GA-co-MMD scaffolds and, consequently, form a cell monolayer fully covering on the scaffold surface. Furthermore, the P(LA-co-GA-co-MMD scaffolds benefit to excellent cell infiltration after subcutaneous implantation. These results indicated that the P(LA-co-GA-co-MMD nanofibrous scaffolds could be potential candidates for vascular tissue engineering.

  16. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering

    Directory of Open Access Journals (Sweden)

    Naghavi Alhosseini S

    2012-01-01

    Full Text Available Sanaz Naghavi Alhosseini1, Fathollah Moztarzadeh1, Masoud Mozafari1, Shadnaz Asgari2, Masumeh Dodel3, Ali Samadikuchaksaraei4,5, Saeid Kargozar6, Newsha Jalali11Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence, Amirkabir University of Technology, Tehran, Iran; 2Neural Systems and Dynamics Laboratory, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; 3Nanotechnology and Tissue Engineering Department, Stem Cell Technology Research Center, Tehran, Iran; 4Department of Biotechnology and Cellular and Molecular Research Center, Tehran University of Medical Sciences, Tehran, Iran; 5Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, UK; 6Department of Biotechnology, Tehran University of Medical Sciences, Tehran, IranAbstract: Among several attempts to integrate tissue engineering concepts into strategies to repair different parts of the human body, neuronal repair stands as a challenging area due to the complexity of the structure and function of the nervous system and the low efficiency of conventional repair approaches. Herein, electrospun polyvinyl alcohol (PVA/chitosan nanofibrous scaffolds have been synthesized with large pore sizes as potential matrices for nervous tissue engineering and repair. PVA fibers were modified through blending with chitosan and porosity of scaffolds was measured at various levels of their depth through an image analysis method. In addition, the structural, physicochemical, biodegradability, and swelling of the chitosan nanofibrous scaffolds were evaluated. The chitosan-containing scaffolds were used for in vitro cell culture in contact with PC12 nerve cells, and they were found to exhibit the most balanced properties to meet the basic required specifications for nerve cells. It could be concluded that addition of chitosan to the PVA

  17. The Effects of Plasma Treated Electrospun Nanofibrous Poly (ε-caprolactone Scaffolds with Different Orientations on Mouse Embryonic Stem Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Naghmeh Abbasi

    2014-04-01

    Full Text Available Objective: Assessments of cell reactions such as motility, orientation and activation to the topography of the substratum will assist with the fabrication of a proper implantable scaffold for future tissue engineering applications.The current challenge is to analyze the orientation effect of elecrospun nanofibers of poly (ε-caprolactone (PCL on viability and proliferation of mouse embryonic stem cells (mESCs. Materials and Methods: In this experimental study, we used the electrospinning method to fabricate nanofibrous PCL scaffolds. Chemical and mechanical characterizations were specified by the contact angle and tensile test. O2 plasma treatment was used to improve surface hydrophilicity. We used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay to evaluate mESCs adhesion and proliferation before and after surface modification. The influence of the orientation of the nanofibers on mESCs growth was evaluated by scanning electron microscopy (SEM. Statistical analysis was performed using one-way analysis of variance (ANOVA With differences considered statistically significant at p≤0.05. Results: The results showed that plasma treatment improved the hydrophilic property of PCL scaffolds. MTT assay showed a significant increase in proliferation of mESCs on plasma treated PCL (p-PCL scaffolds compared to non-treated PCL (p≤0.05. However gelatin coated tissue culture plate (TCP had a better effect in initial cell attachment after one day of cell seeding. There was more cell proliferation on day 3 in aligned plasma treated (AP nanofibers compared to the TCP. SEM showed optical density of the cell colonies. Aligned nanofibrous scaffolds had larger colony sizes and spread more than random nanofibrous scaffolds. Conclusion: This study showed that plasma treating of scaffolds was a more suitable substrate for growth and cell attachment. In addition, aligned nanofibrous scaffolds highly supported the proliferation and spreading

  18. Electrospun chitosan-graft-poly (ε-caprolactone/poly (ε-caprolactone nanofibrous scaffolds for retinal tissue engineering

    Directory of Open Access Journals (Sweden)

    Honglin Chen

    2011-02-01

    Full Text Available Honglin Chen1,2, Xianqun Fan1, Jing Xia1, Ping Chen1, Xiaojian Zhou1, Jin Huang2, Jiahui Yu2, Ping Gu11Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; 2Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, ChinaAbstract: A promising therapy for retinal diseases is to employ biodegradable scaffolds to deliver retinal progenitor cells (RPCs for repairing damaged or diseased retinal tissue. In the present study, cationic chitosan-graft-poly(ε-caprolactone/polycaprolactone (CS-PCL/PCL hybrid scaffolds were successfully prepared by electrospinning. Characterization of the obtained nanofibrous scaffolds indicated that zeta-potential, fiber diameter, and the content of amino groups on their surface were closely correlated with the amount of CS-PCL in CS-PCL/PCL scaffolds. To assess the cell–scaffold interaction, mice RPCs (mRPCs were cultured on the electrospun scaffolds for 7 days. In-vitro proliferation assays revealed that mRPCs proliferated faster on the CS-PCL/PCL (20/80 scaffolds than the other electrospun scaffolds. Scanning electron microscopy and the real-time quantitative polymerase chain reaction results showed that mRPCs grown on CS-PCL/PCL (20/80 scaffolds were more likely to differentiate towards retinal neurons than those on PCL scaffolds. Taken together, these results suggest that CS-PCL/PCL(20/80 scaffolds have potential application in retinal tissue engineering.Keywords: electrospun, retinal progenitor cells, proliferation, differentiation, tissue engineering

  19. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study.

    Science.gov (United States)

    Bhowmick, Sirsendu; Scharnweber, Dieter; Koul, Veena

    2016-05-01

    Fortifying the scaffold with bioactive molecules and glycosaminoglycans (GAGs), is an efficient way to design new generation tissue engineered biomaterials. In this study, we evaluated the synergistic effect of electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) loaded with sericin and, contact co-culture of human mesenchymal stem cells (hMSCs)-keratinocytes on hMSCs' differentiation towards epithelial lineage. Cationic gelatin is prepared with one step novel synthesis process by grafting quaternary ammonium salts to the backbone of gelatin. Release kinetics studies showed that Fickian diffusion is the major release mechanism for both GAGs and sericin/gelatin. In vitro biocompatibility of the electrospun scaffold was evaluated in terms of LDH and DNA quantification assay on human foreskin fibroblast, human keratinocyte and hMSC. Significant proliferation (∼ 4-6 fold) was detected after culturing all three cell on the electrospun scaffold containing sericin. After 5 days of contact co-culture, results revealed that electrospun scaffold containing sericin promote epithelial differentiation of hMSC in terms of several protein markers (keratin 14, ΔNp63α and Pan-cytokeratin) and gene expression of some dermal proteins (keratin 14, ΔNp63α). Findings of this study will foster the progress of current skin tissue engineering scaffolds by understanding the skin regeneration and wound healing process. PMID:26946262

  20. Nanofibrous scaffolds incorporating PDGF-BB microspheres induce chemokine expression and tissue neogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Qiming Jin

    Full Text Available Platelet-derived growth factor (PDGF exerts multiple cellular effects that stimulate wound repair in multiple tissues. However, a major obstacle for its successful clinical application is the delivery system, which ultimately controls the in vivo release rate of PDGF. Polylactic-co-glycolic acid (PLGA microspheres (MS in nanofibrous scaffolds (NFS have been shown to control the release of rhPDGF-BB in vitro. In order to investigate the effects of rhPDGF-BB release from MS in NFS on gene expression and enhancement of soft tissue engineering, rhPDGF-BB was incorporated into differing molecular weight (MW polymeric MS. By controlling the MW of the MS over a range of 6.5 KDa-64 KDa, release rates of PDGF can be regulated over periods of weeks to months in vitro. The NFS-MS scaffolds were divided into multiple groups based on MS release characteristics and PDGF concentration ranging from 2.5-25.0 microg and evaluated in vivo in a soft tissue wound repair model in the dorsa of rats. At 3, 7, 14 and 21 days post-implantation, the scaffold implants were harvested followed by assessments of cell penetration, vasculogenesis and tissue neogenesis. Gene expression profiles using cDNA microarrays were performed on the PDGF-releasing NFS. The percentage of tissue invasion into MS-containing NFS at 7 days was higher in the PDGF groups when compared to controls. Blood vessel number in the HMW groups containing either 2.5 or 25 microg PDGF was increased above those of other groups at 7d (p<0.01. Results from cDNA array showed that PDGF strongly enhanced in vivo gene expression of the CXC chemokine family members such as CXCL1, CXCL2 and CXCL5. Thus, sustained release of rhPDGF-BB, controlled by slow-releasing MS associated with the NFS delivery system, enhanced cell migration and angiogenesis in vivo, and may be related to an induced expression of chemokine-related genes. This approach offers a technology to accurately control growth factor release to promote

  1. Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Fatemeh Roozbahani

    2013-01-01

    Full Text Available Recently, nanofibrous scaffolds have been used in the field of biomedical engineering as wound dressings, tissue engineering scaffolds, and drug delivery applications. The electrospun nanofibrous scaffolds can be used as carriers for several types of drugs, genes, and growth factors. PCL is one of the most commonly applied synthetic polymers for medical use because of its biocompatibility and slow biodegradability. PCL is hydrophobic and has no cell recognition sites on its structure. Electrospinning of chitosan and PCL blend was investigated in formic acid/acetic acid as the solvent with different PCL/chitosan ratios. High viscosity of chitosan solutions makes difficulties in the electrospinning process. Strong hydrogen bonds in a 3D network in acidic condition prevent the movement of polymeric chains exposed to the electrical field. Consequently, the amount of chitosan in PCL/chitosan blend was limited and more challenging when the concentration of PCL increases. The treatment of chitosan in alkali condition under high temperature reduced its molecular weight. Longer treatment time further decreased the molecular weight of chitosan and hence its viscosity. Electrospinning of PCL/chitosan blend was possible at higher chitosan ratio, and SEM images showed a decrease in fiber diameter and narrower distribution with increase in the chitosan ratio.

  2. Fabrication, characterization and cellular compatibility of poly(hydroxy alkanoate composite nanofibrous scaffolds for nerve tissue engineering.

    Directory of Open Access Journals (Sweden)

    Elahe Masaeli

    Full Text Available Tissue engineering techniques using a combination of polymeric scaffolds and cells represent a promising approach for nerve regeneration. We fabricated electrospun scaffolds by blending of Poly (3-hydroxybutyrate (PHB and Poly (3-hydroxy butyrate-co-3- hydroxyvalerate (PHBV in different compositions in order to investigate their potential for the regeneration of the myelinic membrane. The thermal properties of the nanofibrous blends was analyzed by differential scanning calorimetry (DSC, which indicated that the melting and glass temperatures, and crystallization degree of the blends decreased as the PHBV weight ratio increased. Raman spectroscopy also revealed that the full width at half height of the band centered at 1725 cm(-1 can be used to estimate the crystalline degree of the electrospun meshes. Random and aligned nanofibrous scaffolds were also fabricated by electrospinning of PHB and PHBV with or without type I collagen. The influence of blend composition, fiber alignment and collagen incorporation on Schwann cell (SCs organization and function was investigated. SCs attached and proliferated over all scaffolds formulations up to 14 days. SCs grown on aligned PHB/PHBV/collagen fibers exhibited a bipolar morphology that oriented along the fiber direction, while SCs grown on the randomly oriented fibers had a multipolar morphology. Incorporation of collagen within nanofibers increased SCs proliferation on day 14, GDNF gene expression on day 7 and NGF secretion on day 6. The results of this study demonstrate that aligned PHB/PHBV electrospun nanofibers could find potential use as scaffolds for nerve tissue engineering applications and that the presence of type I collagen in the nanofibers improves cell differentiation.

  3. Fabrication, characterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering.

    Science.gov (United States)

    Masaeli, Elahe; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Sadri, Saeid; Hilderink, Janneke; van Apeldoorn, Aart; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2013-01-01

    Tissue engineering techniques using a combination of polymeric scaffolds and cells represent a promising approach for nerve regeneration. We fabricated electrospun scaffolds by blending of Poly (3-hydroxybutyrate) (PHB) and Poly (3-hydroxy butyrate-co-3- hydroxyvalerate) (PHBV) in different compositions in order to investigate their potential for the regeneration of the myelinic membrane. The thermal properties of the nanofibrous blends was analyzed by differential scanning calorimetry (DSC), which indicated that the melting and glass temperatures, and crystallization degree of the blends decreased as the PHBV weight ratio increased. Raman spectroscopy also revealed that the full width at half height of the band centered at 1725 cm(-1) can be used to estimate the crystalline degree of the electrospun meshes. Random and aligned nanofibrous scaffolds were also fabricated by electrospinning of PHB and PHBV with or without type I collagen. The influence of blend composition, fiber alignment and collagen incorporation on Schwann cell (SCs) organization and function was investigated. SCs attached and proliferated over all scaffolds formulations up to 14 days. SCs grown on aligned PHB/PHBV/collagen fibers exhibited a bipolar morphology that oriented along the fiber direction, while SCs grown on the randomly oriented fibers had a multipolar morphology. Incorporation of collagen within nanofibers increased SCs proliferation on day 14, GDNF gene expression on day 7 and NGF secretion on day 6. The results of this study demonstrate that aligned PHB/PHBV electrospun nanofibers could find potential use as scaffolds for nerve tissue engineering applications and that the presence of type I collagen in the nanofibers improves cell differentiation. PMID:23468923

  4. Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold

    Directory of Open Access Journals (Sweden)

    Esmaeil Mirzaei

    2014-04-01

    Full Text Available   Objective(s: To improve water stability of electrospun chitosan/ Polyethylene oxide (PEO nanofibers, genipin, a biocompatible and nontoxic agent, was used to crosslink chitosan based nanofibers.   Materials and Methods: Different amounts of genipin were added to the chitosan/PEO solutions, chitosan/PEO weight ratio 90/10 in 80 % acetic acid, and the solutions were then electrospun to form nanofibers. The spun nanofibers were exposed to water vapor to complete crosslinking. The nanofibrous membranes were subjected to detailed analysis by scanning electron microscopy (SEM, Fourier transform infrared-attenuated total reflection (FTIR-ATR spectroscopy, swelling test, MTT cytotoxicity, and cell attachment. Results: SEM images of electrospun mats showed that genipin-crosslinked nanofibers retained their fibrous structure after immerging in PBS (pH=7.4 for 24 hours, while the uncrosslinked samples lost their fibrous structure, indicating the water stability of genipin-crosslinked nanofibers. The genipin-crosslinked mats also showed no significant change in swelling ratio in comparison with uncrosslinked ones. FTIR-ATR spectrum of uncrosslinked and genipin-crosslinked chitosan nanofibers revealed the reaction between genipin and amino groups of chitosan. Cytotoxicity of genipin-crosslinked nanofibers was examined by MTT assay on human fibroblast cells in the presence of nanofibers extraction media. The genipin-crosslinked nanofibers did not show any toxic effects on fibroblast cells at the lowest and moderate amount of genipin. The fibroblast cells also showed a good adhesion on genipin-crosslinked nanofibers. Conclusion: This electrospun matrix would be used for biomedical applications such as wound dressing and scaffold for tissue engineering without the concern of toxicity.

  5. Polycaprolactone-Chitin Nanofibrous Mats as Potential Scaffolds for Tissue Engineering

    OpenAIRE

    Min Sup Kim; Sang Jun Park; Bon Kang Gu; Chun-Ho Kim

    2012-01-01

    We describe here the preparation of poly(caprolactone) (PCL)-chitin nanofibrous mats by electrospinning from a blended solution of PCL and chitin dissolved in a cosolvent, 1,1,1,3,3,3-hexafluoro-2-propanol and trifluoroacetic acid. Scanning electron microscopy showed that the neutralized PCL-chitin nanofibrous mats were morphologically stable, with a mean diameter of 340.5±2.6 nm, compared with a diameter of 524.2±12.1 nm for PCL mats. The nanofibrous mats showed decreased water contact angle...

  6. Fabrication and characterization of bioactive silk fibroin/wollastonite composite scaffolds

    International Nuclear Information System (INIS)

    Composite scaffolds of silk fibroin (SF) with bioactive wollastonite were prepared by freeze-drying. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy analysis showed that random coil and β-sheet structure co-existed in the SF scaffold. The mechanical performance, surface hydrophilicity and water-uptake capacity of the composite scaffolds were improved compared with those of pure SF scaffold. The bioactivity of the composite scaffold was evaluated by soaking in a simulated body fluid (SBF), and formation of a hydroxycarbonate apatite (HCA) layer was determined by FT-IR and XRD. The results showed that the SF/wollastonite composite scaffold was bioactive as it induced the formation of HCA on the surface of the composite scaffold after soaking in SBF for 5 days. In vitro cell attachment and proliferation tests showed that the composite scaffold was a good matrix for the growth of L929 mouse fibroblast cells. Consequently, the incorporation of wollastonite into the SF scaffold can enhance both the mechanical strength and bioactivity of the scaffold, which suggests that the SF/wollastonite composite scaffold may be a potential biomaterial for tissue engineering.

  7. Polycaprolactone-Chitin Nanofibrous Mats as Potential Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Min Sup Kim

    2012-01-01

    Full Text Available We describe here the preparation of poly(caprolactone (PCL-chitin nanofibrous mats by electrospinning from a blended solution of PCL and chitin dissolved in a cosolvent, 1,1,1,3,3,3-hexafluoro-2-propanol and trifluoroacetic acid. Scanning electron microscopy showed that the neutralized PCL-chitin nanofibrous mats were morphologically stable, with a mean diameter of 340.5±2.6 nm, compared with a diameter of 524.2±12.1 nm for PCL mats. The nanofibrous mats showed decreased water contact angles as the proportion of chitin increased. However, the tensile properties of nanofibrous mats containing 30~50% (wt/wt chitin were enhanced compared with PCL-only mats. In vitro studies showed that the viability of human dermal fibroblasts (HDFs for up to 7 days in culture was higher on composite (OD value: 1.42±0.09 than on PCL-only (0.51±0.14 nanofibrous mats, with viability correlated with chitin concentration. Together, our results suggest that PCL-chitin nanofibrous mats can be used as an implantable substrate to modulate HDF viability in tissue engineering.

  8. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration

    International Nuclear Information System (INIS)

    Tissue engineering scaffolds for skin tissue regeneration is an ever expounding area of research, as the products that meet the necessary requirements are far and elite. The nanofibrous poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/Collagen (PLLA/PAA/Col I and III) scaffolds were fabricated by electrospinning and characterized by SEM, contact angle and FTIR analysis for skin tissue regeneration. The cell-scaffold interactions were analyzed by cell proliferation and their morphology observed in SEM. The results showed that the cell proliferation was significantly increased (p ≤ 0.05) in PLLA/PAA/Col I and III scaffolds compared to PLLA and PLLA/PAA nanofibrous scaffolds. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for dermal tissue regeneration. The differentiation of ADSCs was confirmed using collagen expression and their morphology by CMFDA dye extrusion technique. The current study focuses on the application of PLLA/PAA/Col I and III nanofibrous scaffolds for skin tissue engineering and their potential use as substrate for the culture and differentiation of ADSCs. The objective for inclusion of a novel cell binding moiety like PAA was to replace damaged extracellular matrix and to guide new cells directly into the wound bed with enhanced proliferation and overall organization. This combinatorial epitome of PLLA/PAA/Col I and III nanofibrous scaffold with stem cell therapy to induce the necessary paracrine signalling effect would favour faster regeneration of the damaged skin tissues. - Highlights: ► Differentiation of adipose derived stem cells in the presence of bFGF for wound healing ► Introduction of PAA as ECM mimetic cell binding moiety ► Combination of PLLA/PAA/Col I and III nanofibers and stem cell therapy for skin regeneration.

  9. Composite poly-L-lactic acid/poly-({alpha},{beta})-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, Rajeswari [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Venugopal, Jayarama Reddy, E-mail: nnijrv@nus.edu.sg [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Sundarrajan, Subramanian [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Mukherjee, Shayanti [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Sridhar, Radhakrishnan [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Ramakrishna, Seeram, E-mail: seeram@nus.edu.sg [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore)

    2012-08-01

    Tissue engineering scaffolds for skin tissue regeneration is an ever expounding area of research, as the products that meet the necessary requirements are far and elite. The nanofibrous poly-L-lactic acid/poly-({alpha},{beta})-DL-aspartic acid/Collagen (PLLA/PAA/Col I and III) scaffolds were fabricated by electrospinning and characterized by SEM, contact angle and FTIR analysis for skin tissue regeneration. The cell-scaffold interactions were analyzed by cell proliferation and their morphology observed in SEM. The results showed that the cell proliferation was significantly increased (p {<=} 0.05) in PLLA/PAA/Col I and III scaffolds compared to PLLA and PLLA/PAA nanofibrous scaffolds. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for dermal tissue regeneration. The differentiation of ADSCs was confirmed using collagen expression and their morphology by CMFDA dye extrusion technique. The current study focuses on the application of PLLA/PAA/Col I and III nanofibrous scaffolds for skin tissue engineering and their potential use as substrate for the culture and differentiation of ADSCs. The objective for inclusion of a novel cell binding moiety like PAA was to replace damaged extracellular matrix and to guide new cells directly into the wound bed with enhanced proliferation and overall organization. This combinatorial epitome of PLLA/PAA/Col I and III nanofibrous scaffold with stem cell therapy to induce the necessary paracrine signalling effect would favour faster regeneration of the damaged skin tissues. - Highlights: Black-Right-Pointing-Pointer Differentiation of adipose derived stem cells in the presence of bFGF for wound healing Black-Right-Pointing-Pointer Introduction of PAA as ECM mimetic cell binding moiety Black-Right-Pointing-Pointer Combination of PLLA/PAA/Col I and III nanofibers and stem cell therapy for skin regeneration.

  10. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Here we fabricate and characterize bioactive composite scaffolds for bone tissue engineering applications. 45S5 Bioglass® (45S5) or strontium-substituted bioactive glass (SrBG) were incorporated into polycaprolactone (PCL) and fabricated into 3D bioactive composite scaffolds utilizing additive manufacturing technology. We show that composite scaffolds (PCL/45S5 and PCL/SrBG) can be reproducibly manufactured with a scaffold morphology highly resembling that of PCL scaffolds. Additionally, micro-CT analysis reveals BG particles were homogeneously distributed throughout the scaffolds. Mechanical data suggested that PCL/45S5 and PCL/SrBG composite scaffolds have higher compressive Young's modulus compared to PCL scaffolds at similar porosity (∼75%). After 1 day in accelerated degradation conditions using 5M NaOH, PCL/SrBG, PCL/45S5 and PCL lost 48.6 ± 3.8%, 12.1 ± 1% and 1.6 ± 1% of the original mass, respectively. In vitro studies were conducted using MC3T3 cells under normal and osteogenic conditions. All scaffolds were shown to be non-cytotoxic, and supported cell attachment and proliferation. Our results also indicate that the inclusion of bioactive glass (BG) promotes precipitation of calcium phosphate on the scaffold surfaces which leads to earlier cell differentiation and matrix mineralization when compared to PCL scaffolds. However, as indicated by alkaline phosphatase activity, no significant difference in osteoblast differentiation was found between PCL/45S5 and PCL/SrBG scaffolds. These results suggest that PCL/45S5 and PCL/SrBG composite scaffolds show potential as next generation bone scaffolds. (paper)

  11. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects.

    Directory of Open Access Journals (Sweden)

    Ji Liu

    Full Text Available The discovery of induced pluripotent stem cells (iPSCs rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3D nanofibrous scaffolds on the chondrogenesis of iPSCs and articular cartilage defect restoration. Super-hydrophilic and durable mechanic polycaprolactone (PCL/gelatin scaffolds were fabricated using two separate electrospinning processes. The morphological structure and mechanical properties of the scaffolds were characterized. The chondrogenesis of the iPSCs in vitro and the restoration of the cartilage defect was investigated using scanning electron microscopy (SEM, the Cell Counting Kit-8 (CCK-8, histological observation, RT-qPCR, and western blot analysis. iPSCs on the scaffolds expressed higher levels of chondrogenic markers than the control group. In an animal model, cartilage defects implanted with the scaffold-cell complex exhibited an enhanced gross appearance and histological improvements, higher cartilage-specific gene expression and protein levels, as well as subchondral bone regeneration. Therefore, we showed scaffolds with a 3D nanofibrous structure enhanced the chondrogenesis of iPSCs and that iPSC-containing scaffolds improved the restoration of cartilage defects to a greater degree than did scaffolds alone in vivo.

  12. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.

    Science.gov (United States)

    Fiorilli, Sonia; Baino, Francesco; Cauda, Valentina; Crepaldi, Marco; Vitale-Brovarone, Chiara; Demarchi, Danilo; Onida, Barbara

    2015-01-01

    In this work, the coating of 3-D foam-like glass-ceramic scaffolds with a bioactive mesoporous glass (MBG) was investigated. The starting scaffolds, based on a non-commercial silicate glass, were fabricated by the polymer sponge replica technique followed by sintering; then, electrophoretic deposition (EPD) was applied to deposit a MBG layer on the scaffold struts. EPD was also compared with other techniques (dipping and direct in situ gelation) and it was shown to lead to the most promising results. The scaffold pore structure was maintained after the MBG coating by EPD, as assessed by SEM and micro-CT. In vitro bioactivity of the scaffolds was assessed by immersion in simulated body fluid and subsequent evaluation of hydroxyapatite (HA) formation. The deposition of a MBG coating can be a smart strategy to impart bioactive properties to the scaffold, allowing the formation of nano-structured HA agglomerates within 48 h from immersion, which does not occur on uncoated scaffold surfaces. The mechanical properties of the scaffold do not vary after the EPD (compressive strength ~19 MPa, fracture energy ~1.2 × 10(6) J m(-3)) and suggest the suitability of the prepared highly bioactive constructs as bone tissue engineering implants for load-bearing applications.

  13. A modular and supramolecular approach to bioactive scaffolds for tissue engineering

    NARCIS (Netherlands)

    Dankers, PYW; Harmsen, MC; Brouwer, LA; Van Luyn, MJA; Meijer, EW

    2005-01-01

    Bioactive polymeric scaffolds are a prerequisite for the ultimate formation of functional tissues. Here, we show that supramolecular polymers based on quadruple hydrogen bonding ureido- pyrimidinone ( UPy) moieties are eminently suitable for producing such bioactive materials owing to their low- tem

  14. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis

    Science.gov (United States)

    Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie

    2015-11-01

    The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (~100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue

  15. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.

    Science.gov (United States)

    Arcaute, Karina; Mann, Brenda; Wicker, Ryan

    2010-03-01

    Challenges remain in tissue engineering to control the spatial, mechanical, temporal and biochemical architectures of scaffolds. Unique capabilities of stereolithography (SL) for fabricating multi-material spatially controlled bioactive scaffolds were explored in this work. To accomplish multi-material builds, a mini-vat setup was designed allowing for self-aligning X-Y registration during fabrication. The mini-vat setup allowed the part to be easily removed and rinsed, and different photocrosslinkable solutions to be easily removed and added to the vat. Two photocrosslinkable hydrogel biopolymers, poly(ethylene glycol) dimethacrylate (PEG-dma, MW 1000) and poly(ethylene glycol) diacrylate (PEG-da, MW 3400), were used as the primary scaffold materials. Multi-material scaffolds were fabricated by including controlled concentrations of fluorescently labeled dextran, fluorescently labeled bioactive PEG or bioactive PEG in different regions of the scaffold. The presence of the fluorescent component in specific regions of the scaffold was analyzed with fluorescent microscopy, while human dermal fibroblast cells were seeded on top of the fabricated scaffolds with selective bioactivity and phase contrast microscopy images were used to show specific localization of cells in the regions patterned with bioactive PEG. Multi-material spatial control was successfully demonstrated in features down to 500 microm. In addition, the equilibrium swelling behavior of the two biopolymers after SL fabrication was determined and used to design constructs with the specified dimensions at the swollen state. The use of multi-material SL and the relative ease of conjugating different bioactive ligands or growth factors to PEG allows for the fabrication of tailored three-dimensional constructs with specified spatially controlled bioactivity.

  16. Human Bone Marrow Mesenchymal Stem Cell Behaviors on PCL/Gelatin Nanofibrous Scaffolds Modified with A Collagen IV-Derived RGD-Containing Peptide

    Directory of Open Access Journals (Sweden)

    Ali Mota

    2014-03-01

    Full Text Available Objective: We introduce an RGD (Arg-Gly-Asp-containing peptide of collagen IV origin that possesses potent cell adhesion and proliferation properties. Materials and Methods: In this experimental study, the peptide was immobilized on an electrospun nanofibrous polycaprolactone/gelatin (PCL/Gel hybrid scaffold by a chemical bonding approach to improve cell adhesion properties of the scaffold. An iodine-modified phenylalanine was introduced in the peptide to track the immobilization process. Native and modified scaffolds were characterized with scanning electron microscopy (SEM and fourier transform infrared spectroscopy (FTIR. We studied the osteogenic and adipogenic differentiation potential of human bone marrow-derived mesenchymal stem cells (hBMSCs. In addition, cell adhesion and proliferation behaviors of hBMSCs on native and peptide modified scaffolds were evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and 4',6-diamidino-2-phenylindole (DAPI staining, and the results compared with tissue culture plate, as the control. Results: FTIR results showed that the peptide successfully immobilized on the scaffold. MTT assay and DAPI staining results indicated that peptide immobilization had a dramatic effect on cell adhesion and proliferation. Conclusion: This peptide modified nanofibrous scaffold can be a promising biomaterial for tissue engineering and regenerative medicine with the use of hBMSCs.

  17. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.

    Science.gov (United States)

    Deliormanli, Aylin M; Liu, Xin; Rahaman, Mohamed N

    2014-01-01

    Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900 µm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation.

  18. Laser sintering of nano 13-93 glass scaffolds: Microstructure, mechanical properties and bioactivity

    Directory of Open Access Journals (Sweden)

    Cao Y.

    2015-01-01

    Full Text Available As the only bioactive material that can bond with both hard tissues and soft tissues, bioactive glass has become much important in the field of tissue engineering. 13-93 bioactive glass scaffolds were fabricated via selective laser sintering (SLS. It was focused on the effects of laser sintering on microstructure and mechanical properties of the scaffolds. The experimental results showed that the sintered layer gradually became dense with the laser power increasing and then some defects occurred, such as macroscopic caves. The optimum compressive strength and fracture toughness were 21.43±0.87 MPa and 1.14±0.09 MPa.m1/2, respectively. In vitro bioactivity showed that there was the bone-like apatite layer on the surface of the scaffolds after soaking in simulated body fluid (SBF, which was further evaluated by Fourier transform infrared spectroscopy (FTIR. Moreover, cell culture study showed MG-63 cells adhered and spread well on the scaffolds, and proliferated with increasing time in cell culture. These indicated excellent bioactivity and biocompatibility of nano 13-93 glass scaffolds.

  19. Electrospun poly(L-lactide/poly(ε-caprolactone blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available The essence of tissue engineering is the fabrication of autologous cells or induced stem cells in naturally derived or synthetic scaffolds to form specific tissues. Polymer is thought as an appealing source of cell-seeded scaffold owing to the diversity of its physicochemical property and can be electrospun into nano-size to mimic natural structure. Poly (L-lactic acid (PLLA and poly (ε-caprolactone (PCL are both excellent aliphatic polyester with almost "opposite" characteristics. The controlling combination of PLLA and PCL provides varying properties and makes diverse applications. Compared with the copolymers of the same components, PLLA/PCL blend demonstrates its potential in regenerative medicine as a simple, efficient and scalable alternative. In this study, we electrospun PLLA/PCL blends of different weight ratios into nanofibrous scaffolds (NFS and their properties were detected including morphology, porosity, degradation, ATR-FTIR analysis, stress-stain assay, and inflammatory reaction. To explore the biocompatibility of the NFS we synthesized, human adipose-derived stem cells (hASCs were used to evaluate proliferation, attachment, viability and multi-lineage differentiation. In conclusion, the electrospun PLLA/PCL blend nanofibrous scaffold with the indicated weight ratios all supported hASCs well. However, the NFS of 1/1 weight ratio showed better properties and cellular responses in all assessments, implying it a biocompatible scaffold for tissue engineering.

  20. Magnetic scaffolds enriched with bioactive nanoparticles for tissue engineering.

    Science.gov (United States)

    Skaat, Hadas; Ziv-Polat, Ofra; Shahar, Abraham; Last, David; Mardor, Yael; Margel, Shlomo

    2012-03-01

    Novel magnetic fibrin hydrogel scaffolds for cell implantation and tissue engineering are reported. The magnetic scaffolds are produced by the interaction between thrombin-conjugated maghemite nanoparticles of narrow size distribution and fibrinogen. These scaffolds, enriched with growth factor conjugated fluorescent maghemite nanoparticles, provide a supporting 3D environment for massive proliferation of various cell types, and can be successfully visualized by MRI. PMID:23184719

  1. Healing of critical-size segmental defects in rat femora using strong porous bioactive glass scaffolds.

    Science.gov (United States)

    Bi, Lianxiang; Zobell, Brett; Liu, Xin; Rahaman, Mohamed N; Bonewald, Lynda F

    2014-09-01

    The repair of structural bone defects such as segmental defects in the long bones of the limbs is a challenging clinical problem. In this study, the capacity of silicate (13-93) and borate (13-93B3) bioactive glass scaffolds (porosity=47-50%) to heal critical-size segmental defects in rat femurs was evaluated and compared with autografts. Defects were implanted with 13-93 and 13-93B3 scaffolds with a grid-like microstructure (compressive strength=86 MPa and 40 MPa, respectively), 13-93B3 scaffolds with an oriented microstructure (compressive strength=32 MPa) and autografts using intramedullary fixation. Twelve weeks post-implantation, the defects were harvested and evaluated using histomorphometric analysis. The percentage of new bone in the defects implanted with the three groups of glass scaffolds (25-28%) and the total von Kossa-positive area (32-38%) were not significantly different from the autografts (new bone=38%; von Kossa-positive area=40%) (p>0.05). New blood vessel area in the defects implanted with the glass scaffolds (4-8%) and the autografts (5%) showed no significant difference among the four groups. New cartilage formed in the 13-93 grid-like scaffolds (18%) was significantly higher than in 13-93B3 grid-like scaffolds (8%) and in the autografts (8%) (p=0.02). The results indicate that these strong porous bioactive glass scaffolds are promising synthetic implants for structural bone repair.

  2. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration.

    Science.gov (United States)

    Zhang, Jianhua; Zhao, Shichang; Zhu, Yufang; Huang, Yinjun; Zhu, Min; Tao, Cuilian; Zhang, Changqing

    2014-05-01

    In this study, we fabricated strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds with controlled architecture and enhanced mechanical strength using a three-dimensional (3-D) printing technique. The study showed that Sr-MBG scaffolds had uniform interconnected macropores and high porosity, and their compressive strength was ∼170 times that of polyurethane foam templated MBG scaffolds. The physicochemical and biological properties of Sr-MBG scaffolds were evaluated by ion dissolution, apatite-forming ability and proliferation, alkaline phosphatase activity, osteogenic expression and extracelluar matrix mineralization of osteoblast-like cells MC3T3-E1. The results showed that Sr-MBG scaffolds exhibited a slower ion dissolution rate and more significant potential to stabilize the pH environment with increasing Sr substitution. Importantly, Sr-MBG scaffolds possessed good apatite-forming ability, and stimulated osteoblast cells' proliferation and differentiation. Using dexamethasone as a model drug, Sr-MBG scaffolds also showed a sustained drug delivery property for use in local drug delivery therapy, due to their mesoporous structure. Therefore, the 3-D printed Sr-MBG scaffolds combined the advantages of Sr-MBG such as good bone-forming bioactivity, controlled ion release and drug delivery and enhanced mechanical strength, and had potential application in bone regeneration. PMID:24412143

  3. Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds

    OpenAIRE

    Poh, Patrina S.P.; Hutmacher, Dietmar W.; Holzapfel, Boris M; Solanki, Anu K.; Woodruff, Maria A.

    2016-01-01

    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (Na...

  4. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles.

    Science.gov (United States)

    Novajra, G; Boetti, N G; Lousteau, J; Fiorilli, S; Milanese, D; Vitale-Brovarone, C

    2016-10-01

    Novel bone glass fibre scaffolds were developed by thermally bonding phosphate glass fibres belonging to the P2O5-CaO-Na2O-SiO2-MgO-K2O-TiO2 system (TiPS2.5 glass). Scaffolds with fibres of 85 or 110μm diameter were fabricated, showing compressive strength in the range of 2-3.5MPa, comparable to that of the trabecular bone. The effect of different thermal treatments and fibre diameters and length on the final scaffold structure was investigated by means of micro-CT analysis. The change of the sintering time from 30 to 60min led to a decrease in the scaffold overall porosity from 58 to 21vol.% for the 85μm fibre scaffold and from 50 to 40vol.% when increasing the sintering temperature from 490 to 500°C for the 110μm fibre scaffold. The 85μm fibres resulted in an increase of the scaffold overall porosity, increased pore size and lower trabecular thickness; the use of different fibre diameters allowed the fabrication of a scaffold showing a porosity gradient. In order to impart bioactive properties to the scaffold, for the first time in the literature the introduction in these fibre scaffolds of a bioactive phase, a melt-derived bioactive glass (CEL2) powder or spray-dried mesoporous bioactive glass particles (SD-MBG) was investigated. The scaffold bioactivity was assessed through soaking in simulated body fluid. CEL2/glass fibre scaffold did not show promising results due to particle detachment from the fibres during soaking in simulated body fluid. Instead the use of mesoporous bioactive powders showed to be an effective way to impart bioactivity to the scaffold and could be further exploited in the future through the ability of mesoporous particles to act as systems for the controlled release of drugs. PMID:27287156

  5. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.

    Science.gov (United States)

    Milovac, Dajana; Gallego Ferrer, Gloria; Ivankovic, Marica; Ivankovic, Hrvoje

    2014-01-01

    In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200°C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88MPa) and the elastic modulus (15.5MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. PMID:24268280

  6. Porous nanoapatite scaffolds synthesized using an approach of interfacial mineralization reaction and their bioactivity.

    Science.gov (United States)

    Wang, Jianxin; Yan, Haoran; Chen, Taijun; Wang, Yingying; Li, Huiyong; Zhi, Wei; Feng, Bo; Weng, Jie; Zhu, Minghua

    2014-11-01

    There is a growing interest in the use of calcium phosphate, used to fabricate porous scaffolds for bone tissue regeneration and repair. However, it is difficult to obtain interconnected pores with very high porosity and to engineer the topography of the pore walls for calcium phosphate ceramic scaffolds. In this study, a novelty method interfacial mineralization reaction was used to fabricate porous nano-calcium phosphate ceramic scaffolds with three-dimensional surface topography of walls, which was tuned using different surfactants; using this method, porous scaffolds with different shapes were obtained, which demonstrates that interfacial mineralization reaction is not only a good method to prepare porous ceramic scaffolds of calcium phosphate but also an efficient approach to engineer the topography of the pore walls. The as-prepared porous ceramic scaffolds have also been proved to have good biocompatibility, bioactivity, and biodegradability, which are necessary for the clinical application. In vivo experimental results revealed that not only osteoconduction but also osteoinduction was responsible for the bone formation in our scaffolds, which accelerated the formation of new bone, and that the degradation process of our porous scaffolds could match osteoinduction, mineralization of matrix and bone, and reconstruction of new bone very well, and porous scaffolds could be completely substituted by the new bone.

  7. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis

    Science.gov (United States)

    Ahmed, Maqsood; Ramos, Tiago André Da Silva; Damanik, Febriyani; Quang Le, Bach; Wieringa, Paul; Bennink, Martin; van Blitterswijk, Clemens; de Boer, Jan; Moroni, Lorenzo

    2015-10-01

    The extracellular matrix (ECM) is a three-dimensional (3D) structure composed of proteinaceous fibres that provide physical and biological cues to direct cell behaviour. Here, we build a library of hybrid collagen-polymer fibrous scaffolds with nanoscale dimensions and screen them for their ability to grow chondrocytes for cartilage repair. Poly(lactic acid) and poly (lactic-co-glycolic acid) at two different monomer ratios (85:15 and 50:50) were incrementally blended with collagen. Physical properties (wettability and stiffness) of the scaffolds were characterized and related to biological performance (proliferation, ECM production, and gene expression) and structure-function relationships were developed. We found that soft scaffolds with an intermediate wettability composed of the highly biodegradable PLGA50:50 and collagen, in two ratios (40:60 and 60:40), were optimal for chondrogenic differentiation of ATDC5 cells as determined by increased ECM production and enhanced cartilage specific gene expression. Long-term cultures indicated a stable phenotype with minimal de-differentiation or hypertrophy. The combinatorial methodology applied herein is a promising approach for the design and development of scaffolds for regenerative medicine.

  8. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds.

    NARCIS (Netherlands)

    Yang, X.; Yang, F.; Walboomers, X.F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2010-01-01

    The aim of current study is to investigate the in vitro and in vivo behavior of dental pulp stem cells (DPSCs) seeded on electrospun poly(epsilon-caprolactone) (PCL)/gelatin scaffolds with or without the addition of nano-hydroxyapatite (nHA). For the in vitro evaluation, DNA content, alkaline phosph

  9. Nanofibrous poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) scaffolds provide a functional microenvironment for cartilage repair.

    Science.gov (United States)

    Ching, Kuan Y; Andriotis, Orestis G; Li, Siwei; Basnett, Pooja; Su, Bo; Roy, Ipsita; Tare, Rahul S; Sengers, Bram G; Stolz, Martin

    2016-07-01

    Articular cartilage defects, when repaired ineffectively, often lead to further deterioration of the tissue, secondary osteoarthritis and, ultimately, joint replacement. Unfortunately, current surgical procedures are unable to restore normal cartilage function. Tissue engineering of cartilage provides promising strategies for the regeneration of damaged articular cartilage. As yet, there are still significant challenges that need to be overcome to match the long-term mechanical stability and durability of native cartilage. Using electrospinning of different blends of biodegradable poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate), we produced polymer scaffolds and optimised their structure, stiffness, degradation rates and biocompatibility. Scaffolds with a poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) ratio of 1:0.25 exhibit randomly oriented fibres that closely mimic the collagen fibrillar meshwork of native cartilage and match the stiffness of native articular cartilage. Degradation of the scaffolds into products that could be easily removed from the body was indicated by changes in fibre structure, loss of molecular weight and a decrease in scaffold stiffness after one and four months. Histological and immunohistochemical analysis after three weeks of culture with human articular chondrocytes revealed a hyaline-like cartilage matrix. The ability to fine tune the ultrastructure and mechanical properties using different blends of poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) allows to produce a cartilage repair kit for clinical use to reduce the risk of developing secondary osteoarthritis. We further suggest the development of a toolbox with tailor-made scaffolds for the repair of other tissues that require a 'guiding' structure to support the body's self-healing process.

  10. Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.

    Science.gov (United States)

    Poh, Patrina S P; Hutmacher, Dietmar W; Holzapfel, Boris M; Solanki, Anu K; Woodruff, Maria A

    2016-06-01

    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period. PMID:27081669

  11. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Razavi, Mehdi [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Pothineni, Venkata Raveendra [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Rajadas, Jayakumar [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2015-05-30

    Highlights: • PCL-BaG/Gel-BaG coating was applied on the surface of Mg scaffolds. • Mg scaffold/PCL-BaG/Gel-BaG presented improved biodegradation resistance. • Mg scaffold coated with the PCL-BaG layer indicated better bioactivity. - Abstract: Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  12. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    Kanayama I

    2014-07-01

    Full Text Available Izumi Kanayama,1 Hirofumi Miyaji,1 Hiroko Takita,2 Erika Nishida,1 Maiko Tsuji,3 Bunshi Fugetsu,4,5 Ling Sun,4,5 Kana Inoue,1 Asako Ibara,1 Tsukasa Akasaka,6 Tsutomu Sugaya,1 Masamitsu Kawanami1 1Department of Periodontology and Endodontology, 2Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; 3Mitsubishi Gas Chemical Company, Inc., Tokyo, Japan; 4Division of Frontier Research, Research Department, Creative Research Institution Sousei, 5Graduate School of Environmental Science, 6Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan Background: Graphene oxide (GO is a single layer carbon sheet with a thickness of less than 1 nm. GO has good dispersibility due to surface modifications with numerous functional groups. Reduced graphene oxide (RGO is produced via the reduction of GO, and has lower dispersibility. We examined the bioactivity of GO and RGO films, and collagen scaffolds coated with GO and RGO. Methods: GO and RGO films were fabricated on a culture dish. Some GO films were chemically reduced using either ascorbic acid or sodium hydrosulfite solution, resulting in preparation of RGO films. The biological properties of each film were evaluated by scanning electron microscopy (SEM, atomic force microscopy, calcium adsorption tests, and MC3T3-E1 cell seeding. Subsequently, GO- and RGO-coated collagen scaffolds were prepared and characterized by SEM and compression tests. Each scaffold was implanted into subcutaneous tissue on the backs of rats. Measurements of DNA content and cell ingrowth areas of implanted scaffolds were performed 10 days post-surgery.Results: The results show that GO and RGO possess different biological properties. Calcium adsorption and alkaline phosphatase activity were strongly enhanced by RGO, suggesting that RGO is effective for osteogenic differentiation. SEM showed that

  13. A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration.

    Science.gov (United States)

    Raspa, A; Marchini, A; Pugliese, R; Mauri, M; Maleki, M; Vasita, R; Gelain, F

    2016-01-01

    The development of therapeutic approaches for spinal cord injury (SCI) is still a challenging goal to achieve. The pathophysiological features of chronic SCI are glial scar and cavity formation: an effective therapy will require contribution of different disciplines such as materials science, cell biology, drug delivery and nanotechnology. One of the biggest challenges in SCI regeneration is to create an artificial scaffold that could mimic the extracellular matrix (ECM) and support nervous system regeneration. Electrospun constructs and hydrogels based on self-assembling peptides (SAPs) have been recently preferred. In this work SAPs and polymers were assembled by using a coaxial electrospinning setup. We tested the biocompatibility of two types of coaxially electrospun microchannels: the first one made by a core of poly(ε-caprolactone) and poly(d,l-lactide-co-glycolide) (PCL-PLGA) and a shell of an emulsion of PCL-PLGA and a functionalized self-assembling peptide Ac-FAQ and the second one made by a core of Ac-FAQ and a shell of PCL-PLGA. Moreover, we tested an annealed scaffold by PCL-PLGA microchannel heat-treatment. The properties of coaxial scaffolds were analyzed using scanning electron microscopy (SEM), Fourier transform spectroscopy (FTIR), contact angle measurements and differential scanning calorimetry (DSC). In vitro cytotoxicity was assessed via viability and differentiation assays with neural stem cells (NSCs); whereas in vivo inflammatory response was evaluated following scaffold implantation in rodent spinal cords. Emulsification of the outer shell turned out to be the best choice in terms of cell viability and tissue response: thus suggesting the potential of using functionalized SAPs in coaxial electrospinning for applications in regenerative medicine. PMID:26607419

  14. Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Panda, N.; Bissoyi, A.; Pramanik, K.; Biswas, A., E-mail: amitb79@gmail.com

    2015-03-01

    Biomaterials that stimulate cell attachment and proliferation without any surface modification (e.g. RGD coating) provide potent and cost effective scaffold for regenerative medicine. This study assessed the physico-chemical properties and cell supportive potential of a silk fibroin blend scaffold derived from eri (Philosamia ricini) and tasar (Antheraea mylitta) silk (ET) respectively by electrospinning process. The scanning electron microscopy and transmission electron microscopy study found that the fiber diameters are in 200 to 800 nm range with flat morphology. The porosity of ET scaffold is found to be 79 ± 5% with majority of pore diameter between 2.5 to 5 nm. Similarly, Bombyx mori (BM) silk fibroin and gelatin nanofibrous scaffolds were prepared and taken as control. The ultimate tensile strength of the ET and BM scaffold are found to be 1.83 ± 0.13 MPa and 1.47 ± 0.10 MPa respectively. The measured contact angle (a measure of hydrophilicity) for ET (54.7° ± 1.8°) is found to be lower than BM (62° ± 2.3°). The ability to deposit apatite over ET is comparable to that of BM nanofibers. All the scaffolds were seeded with cord blood derived mesenchymal stem cells (hMSCs) and cultured for 14 days in vitro. The immunofluorescence study reveals enhanced cell attachment with higher metabolic activity for MSCs grown over ET than BM and gelatin. The ET scaffold also demonstrated expression of higher amount cell adhesion molecules (CD29/CD44) and higher proliferation rate than BM and gelatin as confirmed by MTT assay, DNA content estimation assay, flow cytometry study and SEM study. Overall, it may be concluded that ET scaffold may have potential in developing bone tissue grafts for clinical applications in the future. - Highlights: • We have fabricated eri–tasar blended electrospun silk fibroin nanofiber with superior surface property. • The hydrophilicity is higher than the silk fibroin nanofiber derived from Bombyx mori (BM). • The nanofibrous

  15. Quantitatively Controlled Fabrication of Uniaxially Aligned Nanofibrous Scaffold for Cell Adhesion

    Directory of Open Access Journals (Sweden)

    Suk Hee Park

    2011-01-01

    Full Text Available In light of tissue engineering, development of a functional and controllable scaffold which can promote cell proliferation and differentiation is crucial. In this study, we introduce a controllable collection method of the electrospinning process for regularly-distributed and uniaxially oriented nanofiber scaffold and evaluate the effects of aligned nanofiber density on adhesion of dermal fibroblasts. The suggested spinning collector features an inclined void gap, which allows easy transfer of uniformly aligned fibers onto other surfaces. By undergoing multiple transfers, the density of the nanofibers can be quantitatively controlled. The resultant polycaprolactone (PCL nanofibers had well-defined nanotopography in a 400–600 nm range. Human dermal fibroblasts were seeded on aligned nanofiber scaffolds of different densities achieved by varying the number of transfers. Cell morphology and actin stress fiber formation was accessed after seven days. The experimental results indicate that the contact guidance of the cells along the fiber alignment can be more activated with more than one guidance feature on a cell; that is, the high density of fiber is attained in so much that fiber spacing gets below the cell size.

  16. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Goudouri, O.M., E-mail: menti.goudouri@ww.uni-erlangen.de [Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Theodosoglou, E. [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, E. [Department of Fixed Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Will, J. [Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Chrissafis, K. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, P. [Department of Fixed Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Boccaccini, A.R. [Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of an Mg-based glass-ceramic via the sol–gel technique. • The heat treatment of the glass-ceramic promoted the crystallization of akermanite. • Akermanite scaffolds coated with gelatin were successfully fabricated. • An HCAp layer was developed on the surface of all scaffolds after 9 days in SBF. - Abstract: Various scaffolding materials, ceramics and especially Mg-based ceramic materials, including akermanite (Ca{sub 2}MgSi{sub 2}O{sub 7}) and diopside (CaMgSi{sub 2}O{sub 6}), have attracted interest for dental tissue regeneration because of their improved mechanical properties and controllable biodegradation. The aim of the present work was the synthesis of an Mg-based glass-ceramic, which would be used for the construction of workable akermanite scaffolds. The characterization of the synthesized material was performed by Fourier Transform Infrared Spectroscopy (FTIR) X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). Finally, the apatite forming ability of the scaffolds was assessed by immersion in simulated body fluid. The scaffolds were fabricated by the foam replica technique and were subsequently coated with gelatin to provide a functional surface for increased cell attachment. Finally, SEM microphotographs and FTIR spectra of the scaffolds after immersion in SBF solution indicated the inorganic bioactive character of the scaffolds suitable for the intended applications in dental tissue engineering.

  17. Bioceramic Nanofibres by Electrospinning

    Directory of Open Access Journals (Sweden)

    Rajkamal Balu

    2014-08-01

    Full Text Available Nanoscale three-dimensional (3D scaffolds offer great promise for improved tissue integration and regeneration by their physical and chemical property enhancements. Electrospinning is a versatile bottom-up technique for producing porous 3D nanofibrous scaffolds that could closely mimic the structure of extracellular matrix. Much work has been committed to the development of this process through the years, and the resultant nanostructures have been subjugated to a wide range of applications in the field of bioengineering. In particular, the application of ceramic nanofibres in hard tissue engineering, such as dental and bone regeneration, is of increased research interest. This mini-review provides a brief overview of the bioceramic nanofibre scaffolds fabricated by electrospinning and highlights some of the significant process developments over recent years with their probable future trends and potential applications as biomedical implants.

  18. Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration

    Directory of Open Access Journals (Sweden)

    Chengde Gao

    2014-03-01

    Full Text Available Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration.

  19. The Fabrication and Characterization of PCL/Rice Husk Derived Bioactive Glass-Ceramic Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    Farnaz Naghizadeh

    2014-01-01

    Full Text Available The present study was conducted to fabricate a 3D scaffold using polycaprolactone (PCL and silicate based bioactive glass-ceramic (R-SBgC. Different concentrations of R-SBgC prepared from rice husk ash (RHA were combined with PCL to fabricate a composite scaffold using thermally induced phase separation (TIPS method. The products were then characterized using SEM and EDX. The results demonstrated that R-SBgC in PCL matrix produced a bioactive material which has highly porous structure with interconnected porosities. There appears to be a relationship between the increase in R-SBgC concentration and increased material density and compressive modulus; however, increasing R-SBgC concentration result in reduced scaffold porosity. In conclusion, it is possible to fabricate a PCL/bioactive glass-ceramic composite from processed rice husk. Varying the R-SBgC concentrations can control the properties of this material, which is useful in the development of the ideal scaffold intended for use as a bone substitute in nonload bearing sites.

  20. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Milovac, Dajana, E-mail: dmilovac@fkit.hr [Faculty of Chemical Engineering and Technology, University of Zagreb (Croatia); Gallego Ferrer, Gloria [Center for Biomaterials and Tissue Engineering, Polytechnic University of Valencia (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Ivankovic, Marica; Ivankovic, Hrvoje [Faculty of Chemical Engineering and Technology, University of Zagreb (Croatia)

    2014-01-01

    In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200 °C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88 MPa) and the elastic modulus (15.5 MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. - Highlights: • Hydroxyapatite/poly(ε-caprolactone) scaffolds with interconnected pores were prepared. • Hydrothermal transformation of cuttlefish bone and vacuum impregnation were used. • A material with improved mechanical properties was obtained. • The in vitro mineralization of calcium phosphate was observed.

  1. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity

    International Nuclear Information System (INIS)

    In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200 °C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88 MPa) and the elastic modulus (15.5 MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. - Highlights: • Hydroxyapatite/poly(ε-caprolactone) scaffolds with interconnected pores were prepared. • Hydrothermal transformation of cuttlefish bone and vacuum impregnation were used. • A material with improved mechanical properties was obtained. • The in vitro mineralization of calcium phosphate was observed

  2. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian

    2012-09-11

    In this study, the in vivo recellularization and neovascularization of nanosized bioactive glass (n-BG)-coated decellu-larized trabecular bone scaffolds were studied in a rat model and quantified using stereological analyses. Based on the highest amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm 2), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating density of 0.263 mg/cm2, human fibroblasts produced 4.3 times more VEGF than on uncoated controls. After 8 weeks of implantation in Sprague-Dawley rats, both uncoated and n-BG-coated samples were well infiltrated with newly formed tissue (47-48%) and blood vessels (3-4%). No significant differences were found in cellularization and vascularization between uncoated bone scaffolds and n-BG-coated scaffolds. This finding indicates that the decellularized bone itself may exhibit growth-promoting properties induced by the highly interconnected pore microarchitecture and/or proteins left behind on decellularized scaffolds. Even if we did not find proangiogenic effects in n-BG-coated bone scaffolds, a bioactive coating is considered to be beneficial to impart osteoinductive and osteoconductive properties to decellularized bone. n-BG-coated bone grafts have thus high clinical potential for the regeneration of complex tissue defects given their ability for recellularization and neovascularization. © 2012 Wiley Periodicals, Inc.

  3. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering

    International Nuclear Information System (INIS)

    Bioactive glasses are promising materials for bone scaffolds due to their ability to assist in tissue regeneration. When implanted in vivo, bioactive glasses can convert into hydroxyapatite, the main mineral constituent of human bone, and form a strong bond with the surrounding tissues, thus providing an advantage over polymer scaffold materials. Bone scaffold fabrication using additive manufacturing techniques can provide control over pore interconnectivity during fabrication of the scaffold, which helps in mimicking human trabecular bone. 13-93 glass, a third-generation bioactive material designed to accelerate the body's natural ability to heal itself, was used in the research described herein to fabricate bone scaffolds using the selective laser sintering (SLS) process. 13-93 glass mixed with stearic acid (as the polymer binder) by ball milling was used as the powder feedstock for the SLS machine. The fabricated green scaffolds underwent binder burnout to remove the stearic acid binder and were then sintered at temperatures between 675 deg. C and 695 deg. C. The sintered scaffolds had pore sizes ranging from 300 to 800 μm with 50% apparent porosity and an average compressive strength of 20.4 MPa, which is excellent for non-load bearing applications and among the highest reported for an interconnected porous scaffold fabricated with bioactive glasses using the SLS process. The MTT labeling experiment and measurements of MTT formazan formation are evidence that the rough surface of SLS scaffolds provides a cell-friendly surface capable of supporting robust cell growth.

  4. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Kolan, Krishna C R; Leu, Ming C [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Hilmas, Gregory E [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Brown, Roger F [Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO (United States); Velez, Mariano, E-mail: kkd7b@mail.mst.edu, E-mail: mleu@mst.edu [Mo-Sci Corporation, Rolla, MO (United States)

    2011-06-15

    Bioactive glasses are promising materials for bone scaffolds due to their ability to assist in tissue regeneration. When implanted in vivo, bioactive glasses can convert into hydroxyapatite, the main mineral constituent of human bone, and form a strong bond with the surrounding tissues, thus providing an advantage over polymer scaffold materials. Bone scaffold fabrication using additive manufacturing techniques can provide control over pore interconnectivity during fabrication of the scaffold, which helps in mimicking human trabecular bone. 13-93 glass, a third-generation bioactive material designed to accelerate the body's natural ability to heal itself, was used in the research described herein to fabricate bone scaffolds using the selective laser sintering (SLS) process. 13-93 glass mixed with stearic acid (as the polymer binder) by ball milling was used as the powder feedstock for the SLS machine. The fabricated green scaffolds underwent binder burnout to remove the stearic acid binder and were then sintered at temperatures between 675 deg. C and 695 deg. C. The sintered scaffolds had pore sizes ranging from 300 to 800 {mu}m with 50% apparent porosity and an average compressive strength of 20.4 MPa, which is excellent for non-load bearing applications and among the highest reported for an interconnected porous scaffold fabricated with bioactive glasses using the SLS process. The MTT labeling experiment and measurements of MTT formazan formation are evidence that the rough surface of SLS scaffolds provides a cell-friendly surface capable of supporting robust cell growth.

  5. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide

    OpenAIRE

    Kanayama, Izumi; Miyaji, Hirofumi; Takita, Hiroko; Nishida, Erika; Tsuji, Maiko; Fugetsu, Bunshi; Sun, Ling; Inoue, Kana; Ibara, Asako; Akasaka, Tsukasa; Sugaya, Tsutomu; Kawanami, Masamitsu

    2014-01-01

    Background Graphene oxide (GO) is a single layer carbon sheet with a thickness of less than 1 nm. GO has good dispersibility due to surface modifications with numerous functional groups. Reduced graphene oxide (RGO) is produced via the reduction of GO, and has lower dispersibility. We examined the bioactivity of GO and RGO films, and collagen scaffolds coated with GO and RGO. Methods GO and RGO films were fabricated on a culture dish. Some GO films were chemically reduced using either ascorbi...

  6. Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications

    International Nuclear Information System (INIS)

    Nanomedicine utilizes engineered nanodevices and nanostructures for monitoring, repair, construction and control of human biological systems at the molecular level. In this study, we investigated the feasibility and potential of zein nanofiber as a delivery vehicle for curcumin in biomedical applications. By optimizing the electrospinning parameters, ultrafine zein fluorescence nanofibers containing curcumin were developed with interconnected fibrous networks. We found that these nanofibers show an increase in fluorescence due to the incorporation of curcumin. The morphology and material properties of the resulting multifunctional nanofiber including the surface area were examined by a field emission-scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and confocal microscopy. The surface area and pore size were characterized by N2 adsorption–desorption isotherm. SEM and fluorescence images showed that the uniform fibers with smooth surface had an average diameter of about 310 nm. An in vitro degradation study showed significant morphological changes. The in vitro evaluations suggested that the curcumin incorporated zein nanofibers showed sustained release of curcumin and maintained its free radical scavenging ability. It provides an attractive structure for the attachment and growth of fibroblast as cell culture surfaces. The results demonstrate that the curcumin loaded zein nanofiber could be a good candidate for soft tissue engineering scaffolds and has the potential for further applications in drug delivery system. (paper)

  7. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shengjie [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006 (China); Sun, Junying, E-mail: wodaoshi@sohu.com [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006 (China); Li, Yadong [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Li, Jun [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006 (China); Cui, Wenguo [Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, Jiangsu 215007 (China); Li, Bin, E-mail: binli@suda.edu.cn [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006 (China)

    2014-02-01

    Polymeric nanofibrous composite scaffolds incorporating bioglass and bioceramics have been increasingly promising for bone tissue engineering. In the present study, electrospun poly (L-lactic acid) (PLLA) scaffolds containing dicalcium silicate (C{sub 2}S) nanoparticles (approximately 300 nm) were fabricated. Using a novel ultrasonic dispersion and aging method, uniform C{sub 2}S nanoparticles were prepared and they were homogenously distributed in the PLLA nanofibers upon electrospinning. In vitro, the PLLA-C{sub 2}S fibers induced the formation of HAp on the surface when immersed in simulated body fluid (SBF). During culture, the osteoblastic MC3T3-E1 cells adhered well on PLLA-C{sub 2}S scaffolds, as evidenced by the well-defined actin stress fibers and well-spreading morphology. Further, compared to pure PLLA scaffolds without C{sub 2}S, PLLA-C{sub 2}S scaffolds markedly promoted the proliferation of MC3T3-E1 cells as well as their osteogenic differentiation, which was characterized by the enhanced alkaline phosphatase (ALP) activity. Together, findings from this study clearly demonstrated that PLLA-C{sub 2}S composite scaffold may function as an ideal candidate for bone tissue engineering. - Highlights: • Dicalcium silicate (C{sub 2}S) nanoparticles were prepared via a sol–gel process. • C{sub 2}S nanoparticles were stabilized using ultrasonic-aging technique. • PLLA-C{sub 2}S composite nanofibers were fabricated through electrospinning technique. • C{sub 2}S nanoparticles could be homogenously distributed in nanofibers. • The composite scaffolds enhanced proliferation and differentiation of osteoblasts.

  8. Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications.

    Science.gov (United States)

    Hoppe, Alexander; Jokic, Bojan; Janackovic, Djordje; Fey, Tobias; Greil, Peter; Romeis, Stefan; Schmidt, Jochen; Peukert, Wolfgang; Lao, Jonathan; Jallot, Edouard; Boccaccini, Aldo R

    2014-02-26

    Loading biomaterials with angiogenic therapeutics has emerged as a promising approach for developing superior biomaterials for engineering bone constructs. In this context, cobalt-releasing materials are of interest as Co is a known angiogenic agent. In this study, we report on cobalt-releasing three-dimensional (3D) scaffolds based on a silicate bioactive glass. Novel melt-derived "1393" glass (53 wt % SiO2, 6 wt % Na2O, 12 wt % K2O, 5 wt % MgO, 20 wt % CaO, and 4 wt % P2O5) with CoO substituted for CaO was fabricated and was used to produce a 3D porous scaffold by the foam replica technique. Glass structural and thermal properties as well as scaffold macrostructure, compressive strength, acellular bioactivity, and Co release in simulated body fluid (SBF) were investigated. In particular, detailed insights into the physicochemical reactions occurring at the scaffold-fluid interface were derived from advanced micro-particle-induced X-ray emission/Rutherford backscattering spectrometry analysis. CoO is shown to act in a concentration-dependent manner as both a network former and a network modifier. At a concentration of 5 wt % CoO, the glass transition point (Tg) of the glass was reduced because of the replacement of stronger Si-O bonds with Co-O bonds in the glass network. Compressive strengths of >2 MPa were measured for Co-containing 1393-derived scaffolds, which are comparable to values of human spongy bone. SBF studies showed that all glass scaffolds form a calcium phosphate (CaP) layer, and for 1393-1Co and 1393-5Co, CaP layers with incorporated traces of Co were observed. The highest Co concentrations of ∼12 ppm were released in SBF after reaction for 21 days, which are known to be within therapeutic ranges reported for Co(2+) ions.

  9. Europium-Containing Mesoporous Bioactive Glass Scaffolds for Stimulating in Vitro and in Vivo Osteogenesis.

    Science.gov (United States)

    Wu, Chengtie; Xia, Lunguo; Han, Pingping; Mao, Lixia; Wang, Jiacheng; Zhai, Dong; Fang, Bing; Chang, Jiang; Xiao, Yin

    2016-05-11

    Bone tissue engineering offers a possible strategy for regenerating large bone defects, in which how to design beneficial scaffolds for accelerating bone formation remains significantly challenging. Europium, as an important rare earth element, has been used as a solid-state lighting material. However, there are few reports on whether Eu can be used for labeling bone tissue engineering scaffolds, and its biological effect on bone cells and bone tissue regeneration is unknown. In this study, we incorporated Eu into mesoporous bioactive glass (Eu-MBG) scaffolds by an in situ cotemplate method to achieve a bifunctional biomaterial with biolabeling and bone regeneration. The prepared Eu-MBG scaffolds have highly interconnective large pores (300-500 μm), a high specific surface area (140-290 m(2)/g), and well-ordered mesopores (5 nm) as well as uniformly distributed Eu. The incorporation of 2-5 mol % Eu into MBG scaffolds gives them a luminescent property. The in vitro degradation of Eu-MBG scaffolds has a functional effect on the change of the luminescence intensity. In addition, Eu-MBG can be used for labeling bone marrow stromal cells (BMSCs) in vitro and still presents a distinct luminescence signal in deep bone tissues in vivo to label new bone tissue via release of Eu ions. Furthermore, the incorporation of different contents of Eu (1, 2, and 5 mol %) into MBG scaffolds significantly enhances the osteogenic gene expression of BMSCs in the scaffolds. The Eu- and Si-containing ionic products released from Eu-MBG scaffolds distinctly promote the osteogenic differentiation of BMSCs. Critically sized femur defects in ovariectomized (OVX) rats are created to simulate an osteoporotic phenotype. The results show that Eu-MBG scaffolds significantly stimulate new bone formation in osteoporotic bone defects when compared to MBG scaffolds alone and Eu may be involved in the acceleration of bone regeneration in OVX rats. Our study for the first time reports that the

  10. Degradation studies of 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate) - bioactive glass scaffolds for bone tissue repair applications

    Science.gov (United States)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2016-05-01

    Bio composite scaffolds prepared from polymer and bio glass provide necessary sites for bone tissue regeneration. In the presented work, bioactive glass scaffolds have been prepared from 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate) with different amount of bioactive glass powder by solvent casting method. Prepared scaffolds have been characterized by XRD, FTIR and FESEM techniques. Effect of content of bioactive glass on biodegradability has been investigated in detail.

  11. The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian

    2011-06-01

    The angiogenic properties of micron-sized (m-BG) and nano-sized (n-BG) bioactive glass (BG) filled poly(D,L lactide) (PDLLA) composites were investigated. On the basis of cell culture work investigating the secretion of vascular endothelial growth factor (VEGF) by human fibroblasts in contact with composite films (0, 5, 10, 20 wt %), porous 3D composite scaffolds, optimised with respect to the BG filler content capable of inducing angiogenic response, were produced. The in vivo vascularisation of the scaffolds was studied in a rat animal model and quantified using stereological analyses. The prepared scaffolds had high porosities (81-93%), permeability (k = 5.4-8.6 × 10-9 m2) and compressive strength values (0.4-1.6 MPa) all in the range of trabecular bone. On composite films containing 20 wt % m-BG or n-BG, human fibroblasts produced 5 times higher VEGF than on pure PDLLA films. After 8 weeks of implantation, m-BG and n-BG containing scaffolds were well-infiltrated with newly formed tissue and demonstrated higher vascularisation and percentage blood vessel to tissue (11.6-15.1%) than PDLLA scaffolds (8.5%). This work thus shows potential for the regeneration of hard-soft tissue defects and increased bone formation arising from enhanced vascularisation of the construct. © 2011 Elsevier Ltd.

  12. Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function.

    Science.gov (United States)

    Li, Wei; Ding, Yaping; Rai, Ranjana; Roether, Judith A; Schubert, Dirk W; Boccaccini, Aldo R

    2014-08-01

    PHBV microsphere/45S5 bioactive glass (BG) composite scaffolds with drug release function were developed for bone tissue engineering. BG-based glass-ceramic scaffolds with high porosity (94%) and interconnected pore structure prepared by foam replication method were coated with PHBV microspheres (nominal diameter=3.5 μm) produced by water-in-oil-in-water double emulsion solvent evaporation method. A homogeneous microsphere coating throughout the porous structure of scaffolds was obtained by a simple dip coating method, using the slurry of PHBV microspheres in hexane. Compressive strength tests showed that the microsphere coating slightly improved the mechanical properties of the scaffolds. It was confirmed that the microsphere coating did not inhibit the bioactivity of the scaffolds in SBF. Hydroxyapatite crystals homogeneously grew not only on the struts of the scaffolds but also on the surface of microspheres within 7 days of immersion in SBF. Vancomycin was successfully encapsulated into the PHBV microspheres. The encapsulated vancomycin was released with a dual release profile involving a relatively low initial burst release (21%) and a sustained release (1 month), which is favorable compared to the high initial burst release (77%) and short release period (4 days) measured on uncoated scaffolds. The developed bioactive composite scaffold with drug delivery function has thus the potential to be used advantageously in bone tissue engineering.

  13. Synthesis of Bioactive Three-dimensional Silicon-oxide Nanofibrous Structures on the Silicon Substrate for Bionic Devices’ Fabrication

    OpenAIRE

    Candace Colpitts; Amirkianoosh Kiani

    2016-01-01

    Bionic devices are implants that replace biological functions that have been lost due to damaged or lost tissue. The challenge of this area is to find the appropriate materials to match the biocompatible criteria with the same mechanical and electrical performance. In this research, a new method is introduced for the enhance‐ ment of silicon biocompatibility by fabrication of a 3D nanofibrous layer on the silicon surface, induced by nanosecond laser pulses at a high repetition rate and power....

  14. Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique.

    Science.gov (United States)

    Fu, Qiang; Rahaman, Mohamed N; Bal, B Sonny; Brown, Roger F; Day, Delbert E

    2008-11-01

    A polymer foam replication technique was used to prepare porous scaffolds of 13-93 bioactive glass with a microstructure similar to that of human trabecular bone. The scaffolds, with a porosity of 85+/-2% and pore size of 100-500 microm, had a compressive strength of 11+/-1 MPa, and an elastic modulus of 3.0+/-0.5 GPa, approximately equal to the highest values reported for human trabecular bone. The strength was also considerably higher than the values reported for polymeric, bioactive glass-ceramic and hydroxyapatite constructs prepared by the same technique and with the equivalent level of porosity. The in vitro bioactivity of the scaffolds was observed by the conversion of the glass surface to a nanostructured hydroxyapatite layer within 7 days in simulated body fluid at 37 degrees C. Protein and MTT assays of in vitro cell cultures showed an excellent ability of the scaffolds to support the proliferation of MC3T3-E1 preosteoblastic cells, both on the surface and in the interior of the porous constructs. Scanning electron microscopy showed cells with a closely adhering, well-spread morphology and a continuous increase in cell density on the scaffolds during 6 days of culture. The results indicate that the 13-93 bioactive glass scaffolds could be applied to bone repair and regeneration. PMID:18519173

  15. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Science.gov (United States)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-05-01

    Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  16. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method

    International Nuclear Information System (INIS)

    Borate-based bioactive glass scaffolds with a microstructure similar to that of human trabecular bone were prepared using a polymer foam replication method, and evaluated in vitro for potential bone repair applications. The scaffolds (porosity = 72 ± 3%; pore size = 250-500 μm) had a compressive strength of 6.4 ± 1.0 MPa. The bioactivity of the scaffolds was confirmed by the formation of a hydroxyapatite (HA) layer on the surface of the glass within 7 days in 0.02 M K2HPO4 solution at 37 deg. C. The biocompatibility of the scaffolds was assessed from the response of cells to extracts of the dissolution products of the scaffolds, using assays of MTT hydrolysis, cell viability, and alkaline phosphatase activity. For boron concentrations below a threshold value (0.65 mM), extracts of the glass dissolution products supported the proliferation of bone marrow stromal cells, as well as the proliferation and function of murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed attachment and continuous increase in the density of MLO-A5 cells cultured on the surface of the glass scaffolds. The results indicate that borate-based bioactive glass could be a potential scaffold material for bone tissue engineering provided that the boron released from the glass could be controlled below a threshold value.

  17. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method

    Energy Technology Data Exchange (ETDEWEB)

    Fu Hailuo, E-mail: fuhailuo@hotmail.com [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China); Fu Qiang, E-mail: fuharry@hotmail.com [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Zhou Nai [Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China); Huang Wenhai, E-mail: whhuang@mail.tongji.edu.cn [Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China); Rahaman, Mohamed N. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Wang Deping [Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China); Liu Xin [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China)

    2009-08-31

    Borate-based bioactive glass scaffolds with a microstructure similar to that of human trabecular bone were prepared using a polymer foam replication method, and evaluated in vitro for potential bone repair applications. The scaffolds (porosity = 72 {+-} 3%; pore size = 250-500 {mu}m) had a compressive strength of 6.4 {+-} 1.0 MPa. The bioactivity of the scaffolds was confirmed by the formation of a hydroxyapatite (HA) layer on the surface of the glass within 7 days in 0.02 M K{sub 2}HPO{sub 4} solution at 37 deg. C. The biocompatibility of the scaffolds was assessed from the response of cells to extracts of the dissolution products of the scaffolds, using assays of MTT hydrolysis, cell viability, and alkaline phosphatase activity. For boron concentrations below a threshold value (0.65 mM), extracts of the glass dissolution products supported the proliferation of bone marrow stromal cells, as well as the proliferation and function of murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed attachment and continuous increase in the density of MLO-A5 cells cultured on the surface of the glass scaffolds. The results indicate that borate-based bioactive glass could be a potential scaffold material for bone tissue engineering provided that the boron released from the glass could be controlled below a threshold value.

  18. Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration.

    Science.gov (United States)

    Nourmohammadi, Jhamak; Ghaee, Azadeh; Liavali, Samira Hosseini

    2016-03-15

    The objective of this study was to fabricate and investigate the characteristics of a suitable scaffold for bone regeneration. Therefore, chitosan was combined with various amounts of oxidized starch through reductive alkylation process. Afterwards, chopped CaP-coated PCL nanofibers were added into the chitosan-starch composite scaffolds in order to obtain bioactivity and mimic bone extracellular matrix structure. Scanning electron microscopy confirmed that all scaffolds had well-interconnected porous structure. The mean pore size, porosity, and water uptake of the composite scaffolds increased by incorporation of higher amounts of starch, while this trend was opposite for compressive modulus and strength. Osteoblast-like cells (MG63) culturing on the scaffolds demonstrated that higher starch content could improve cell viability. Moreover, the cells spread and anchored well on the scaffolds, on which the surface was covered with a monolayer of cells. PMID:26794750

  19. Low-temperature fabrication of macroporous scaffolds through foaming and hydration of tricalcium silicate paste and their bioactivity

    OpenAIRE

    Huan, Z.; Chang, J.; Zhou, J.

    2009-01-01

    A low-temperature fabrication method for highly porous bioactive scaffolds was developed. The two-step method involved the foaming of tricalcium silicate cement paste and hydration to form calcium silicate hydrate and calcium hydroxide. Scaffolds with a combination of interconnected macro- and micro-sized pores were fabricated by making use of the decomposition of a hydrogen peroxide (H2O2) solution that acted as a foaming agent and through the hydration of tricalcium silicate cement. It was ...

  20. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration.

    Science.gov (United States)

    Chen, Shijie; Jian, Zhiyuan; Huang, Linsheng; Xu, Wei; Liu, Shaohua; Song, Dajiang; Wan, Zongmiao; Vaughn, Amanda; Zhan, Ruisen; Zhang, Chaoyue; Wu, Song; Hu, Minghua; Li, Jinsong

    2015-01-01

    A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration. PMID:26082632

  1. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration.

    Science.gov (United States)

    Chen, Shijie; Jian, Zhiyuan; Huang, Linsheng; Xu, Wei; Liu, Shaohua; Song, Dajiang; Wan, Zongmiao; Vaughn, Amanda; Zhan, Ruisen; Zhang, Chaoyue; Wu, Song; Hu, Minghua; Li, Jinsong

    2015-01-01

    A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration.

  2. 组织工程用纳米纤维支架制备方法的进展%Research Progress of Preparation of Nano-fibrous Scaffolding for Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    刘淑琼; 许祯毅

    2012-01-01

    Tissue engineering is a rapidly evolving field. As the template for three dimensional tissue growth, the scaffold should emulate the native extracellular matrix, which is nano-fibrous. Nano-fibrous scaffolds have been found to play a positive role in cell attachment,proliferation,and differentiation function in tissue cultures,and such mimicking structure may lead to engineered tissue more closely resembling native tissue.Currently, there are several kinds of basic techniques for preparation nano-fibrous scaffold: electrospinning, molecular self-assembly, thermally induced phase separation and so on. This review focuses on these basic techniques for nano-fibrous scaffolding.%组织工程是一个迅速发展的领域。随着组织工程的发展,支架的构造已趋向于模拟天然细胞外基质的结构,即含有纳米纤维结构。相对传统类型的支架,纳米纤维支架更有利于细胞的粘附、增殖、生长及组织的构建。目前制备纳米纤维支架的技术方法主要有:静电纺丝、分子自组装和热致相分离等。本文主要综述了这几种纳米纤维支架的制备方法及其影响因素的研究进展。

  3. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering

    International Nuclear Information System (INIS)

    Constructing bioactive scaffolds with controllable architecture for bone tissue engineering and drug delivery still maintains a significant challenge. In this study, we have developed a composite material consisting of mesoporous bioactive glass (MBG) and concentrated alginate pastes for fabrication of hierarchical scaffolds by 3D plotting. The scaffold structure contains well-ordered nano-channels, micropores as well as controllable macropores beneficial for bone tissue engineering applications and drug delivery. The structural architecture of the scaffolds has been optimized by efficient designing of the plotting coordination. The effects of MBG on mechanical strength, apatite mineralization, cytocompatibility and drug delivery properties of the composite scaffolds have been systematically studied. Transmission electron microscopy, scanning electron microscopy and energy-dispersive spectrometry were used to characterize composition and microstructure of the composite scaffolds. The MBG/alginate pastes showed good processability in the 3D plotting process, in which stable MBG/alginate composite scaffolds with controllable architecture can be prepared. The incorporation of MBG particles significantly improved the mechanical properties and apatite-mineralization ability of alginate scaffolds as well as enhanced the attachment and alkaline phosphatase activity of human bone marrow-derived mesenchymal stem cells cultivated onto the scaffolds. Dexamethasone, used as a model drug, can be efficiently loaded in MBG particles and then incorporated into alginate scaffolds resulting in a more sustained release as a function of the MBG content. Our results have indicated that 3D-plotted MBG incorporated alginate scaffolds with well-ordered nano-pores, controllable large pores, and significantly improved physicochemical, biological and drug-delivery properties could be a platform for bone tissue engineering. (paper)

  4. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds.

    Science.gov (United States)

    Wang, Hui; Zhao, Shichang; Xiao, Wei; Xue, Jingzhe; Shen, Youqu; Zhou, Jie; Huang, Wenhai; Rahaman, Mohamed N; Zhang, Changqing; Wang, Deping

    2016-01-01

    Copper doped borosilicate glasses (BG-Cu) were studied by means of FT-IR, Raman, UV-vis and NMR spectroscopies to investigate the changes that appeared in the structure of borosilicate glass matrix by doping copper ions. Micro-fil and immunohistochemistry analysis were applied to study the angiogenesis of its derived scaffolds in vivo. Results indicated that the Cu ions significantly increased the B-O bond of BO4 groups at 980 cm(-1), while they decrease that of BO2O(-) groups at 1440-1470 cm(-1) as shown by Raman spectra. A negative shift was observed from (11)B and (29)Si NMR spectra. The (11)B NMR spectra exhibited a clear transformation from BO3 into BO4 groups, caused by the agglutination effect of the Cu ions and the charge balance of the agglomerate in the glass network, leading to a more stable glass network and lower ions release rate in the degradation process. Furthermore, the BG-Cu scaffolds significantly enhanced blood vessel formation in rat calvarial defects at 8 weeks post-implantation. Generally, it suggested that the introduction of Cu into borosilicate glass endowed glass and its derived scaffolds with good properties, and the cooperation of Cu with bioactive glass may pave a new way for tissue engineering.

  5. Preparation, characterization and cytocompatibility of bioactive coatings on porous calcium-silicate-hydrate scaffolds

    International Nuclear Information System (INIS)

    The major goal of this research was to investigate and characterize the deposition of a biomimetic apatite-like coating onto the surface of 3D porous calcium-silicate-hydrate scaffolds with suitable bioactivity for potential application in bone tissue engineering. Basically, Portland cement, water, sand and lime were mixed for preparing the slurry which was poured into molds, and fine aluminum powder was added as foaming agent resulting on the formation of porous 3D structures. After aging for 28 days, these porous inorganic scaffolds were immersed in calcium chloride supersaturated solution in PBS for 7 days at 37 deg. C for the biomimetic layer deposition. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier Transformed Infrared Spectroscopy (FTIR) techniques were used in order to characterize the porous scaffolds and the apatite-like biomimetic coating. The results have showed that 3D constructs were successfully produced with interconnected porosity, compressive strength and cytocompatibility appropriate for potential use as an alternative in trabecular bone repair.

  6. Bilayer porous scaffold based on poly-({epsilon}-caprolactone) nanofibrous membrane and gelatin sponge for favoring cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Zhihua; Zhou Yang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Chen Yiwang, E-mail: ywchen@ncu.edu.cn [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Nie Huarong, E-mail: niehr@iccas.ac.cn [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang Yang [First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Road, Nanchang 330006 (China); Li Fan; Zheng Yan [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China)

    2011-12-15

    Electrospun poly-({epsilon}-caprolactone) (PCL) nanofibers has been widely used in the medical prosthesis. However, poor hydrophilicity and the lack of natural recognition sites for covalent cell-recognition signal molecules to promote cell attachment have limited its utility as tissue scaffolds. In this study, Bilayer porous scaffolds based on PCL electrospun membranes and gelatin (GE) sponges were fabricated through soft hydrolysis of PCL electrospun followed by grafting gelatin onto the fiber surface, through crosslinking and freeze drying treatment of additional gelatin coat and grafted gelatin surface. GE sponges were stably anchored on PCL membrane surface with the aid of grafted GE molecules. The morphologies of bilayer porous scaffolds were observed through SEM. The contact angle of the scaffolds was 0 Degree-Sign , the mechanical properties of scaffolds were measured by tensile test, Young's moduli of PCL scaffolds before and after hydrolysis are 66-77.3 MPa and 62.3-75.4 MPa, respectively. Thus, the bilayer porous scaffolds showed excellent hydrophilic surface and desirable mechanical strength due to the soft hydrolysis and GE coat. The cell culture results showed that the adipose derived mesenchymal stem cells did more favor to adhere and grow on the bilayer porous scaffolds than on PCL electrospun membranes. The better cell affinity of the final bilayer scaffolds not only attributed to the surface chemistry but also the introduction of bilayer porous structure.

  7. Bilayer porous scaffold based on poly-(ɛ-caprolactone) nanofibrous membrane and gelatin sponge for favoring cell proliferation

    Science.gov (United States)

    Zhou, Zhihua; Zhou, Yang; Chen, Yiwang; Nie, Huarong; Wang, Yang; Li, Fan; Zheng, Yan

    2011-12-01

    Electrospun poly-(ɛ-caprolactone) (PCL) nanofibers has been widely used in the medical prosthesis. However, poor hydrophilicity and the lack of natural recognition sites for covalent cell-recognition signal molecules to promote cell attachment have limited its utility as tissue scaffolds. In this study, Bilayer porous scaffolds based on PCL electrospun membranes and gelatin (GE) sponges were fabricated through soft hydrolysis of PCL electrospun followed by grafting gelatin onto the fiber surface, through crosslinking and freeze drying treatment of additional gelatin coat and grafted gelatin surface. GE sponges were stably anchored on PCL membrane surface with the aid of grafted GE molecules. The morphologies of bilayer porous scaffolds were observed through SEM. The contact angle of the scaffolds was 0°, the mechanical properties of scaffolds were measured by tensile test, Young's moduli of PCL scaffolds before and after hydrolysis are 66-77.3 MPa and 62.3-75.4 MPa, respectively. Thus, the bilayer porous scaffolds showed excellent hydrophilic surface and desirable mechanical strength due to the soft hydrolysis and GE coat. The cell culture results showed that the adipose derived mesenchymal stem cells did more favor to adhere and grow on the bilayer porous scaffolds than on PCL electrospun membranes. The better cell affinity of the final bilayer scaffolds not only attributed to the surface chemistry but also the introduction of bilayer porous structure.

  8. A new composite scaffold of bioactive glass nanoparticles/graphene: Synchronous improvements of cytocompatibility and mechanical property.

    Science.gov (United States)

    Fan, Zengjie; Wang, Jinqing; Liu, Fengzhen; Nie, Yingying; Ren, Liling; Liu, Bin

    2016-09-01

    This study presents a simple method of synthesizing bioactive glass nanoparticles/graphene nanosheets composite (BGs/GNS) scaffolds using the sol-gel and mold-compressing strategies. Characterizations of BGs/GNS scaffold revealed that BGs with an average diameter of 28.75nm were densely anchored onto both sides of GNS. When the mass ratio of BGs to graphene oxide was set as 10, this scaffold showed better cytocompatibility and higher osseointegration ability with surrounding tissues than the other scaffolds. The introduction of GNS also significantly enhanced the hardness and Young's modulus of BGs. Given the excellent performance of this scaffold, it has potential applications in bone regeneration and implantation. PMID:27232307

  9. Enhancement of osteoinduction by continual simvastatin release from poly(lactic-co-glycolic acid)-hydroxyapatite-simvastatin nano-fibrous scaffold.

    Science.gov (United States)

    Jiang, Liming; Sun, Haizhu; Yuan, Anliang; Zhang, Kai; Li, Daowei; Li, Chen; Shi, Ce; Li, Xiangwei; Gao, Kai; Zheng, Changyu; Yang, Bai; Sun, Hongchen

    2013-11-01

    Simvastatin is considered as a stimulator for bone formation. However, the half-life for simvastatin is generally 2 hours, which means, it is difficult to maintain biologically active simvastatin in vivo. To overcome this limitation, we created a system to slowly release simvastatin in vitro and in vivo. We constructed a poly(lactic-co-glycolic acid)/hydroxyapatite nano-fibrous scaffold to carry simvastatin. Releasing assays showed that simvastatin was released from poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin quickly within - 15 days, and small amounts continued to be released through day 56 (experiments terminated). MTT assays demonstrated that both poly(lactic-co-glycolic acid)/hydroxyapatite and poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin promoted MC3T3-E1 cell proliferation. However, Alkaline phosphatase assays showed that only poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin scaffold significantly promoted the osteogenic differentiation of MC3T3-E1 cells in vitro on day 14. To further test in vivo, we created calvaria bone defect models and implanted either poly(lactic-co-glycolic acid)/hydroxyapatite or poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin. After 4 or 8 weeks post-implantation, the results indicated that poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin scaffold induced bone formation more efficiently than poly(lactic-co-glycolic acid)/hydroxyapatite alone. Our data demonstrates that poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin has the potential to aid in healing bone defects and promoting bone regeneration in the future although we still need to optimize this complex to efficiently promote bone regeneration.

  10. Synthesis of Bioactive Three-dimensional Silicon-oxide Nanofibrous Structures on the Silicon Substrate for Bionic Devices’ Fabrication

    Directory of Open Access Journals (Sweden)

    Candace Colpitts

    2016-02-01

    Full Text Available Bionic devices are implants that replace biological functions that have been lost due to damaged or lost tissue. The challenge of this area is to find the appropriate materials to match the biocompatible criteria with the same mechanical and electrical performance. In this research, a new method is introduced for the enhance‐ ment of silicon biocompatibility by fabrication of a 3D nanofibrous layer on the silicon surface, induced by nanosecond laser pulses at a high repetition rate and power. It was found that the laser treatment with small‐ er line spacing and a higher overlap number enhanced the biocompatibility of silicon. The results display a promis‐ ing improvement in the biocompatibility of silicon for the production of biomedical devices such as sensors, bio- MEMS and nano-biomaterial fabrications.

  11. Micro PIXE-RBS for the study of Sr release at bioactive glass scaffolds/biological medium interface

    International Nuclear Information System (INIS)

    Strontium is a very interesting element in bone regeneration as it can promote bone formation and limit bone resorption. Bone tissue engineering has a very high potential as a method for bone healing and it requires a 3D macroporous scaffold to serve as a support for cell growth. In that purpose, strontium containing bioactive glass foams made with the sol–gel foaming process are very promising scaffolds as they combine the high bioactivity of bioactive glasses, the beneficial effects of strontium on bone growth and a structure that would allow cell adhesion, cell invasion and vascularization. This paper reports the synthesis of such a material and its in vitro bioactivity study. The release of strontium ions from the material to the biological medium occurs quickly, as shown by ICP-AES results, with the delivery of quantities of Sr ions that should be adequate for bone regeneration. Ion microbeam techniques evidence a very specific behavior of strontium: it is rapidly removed from the inner part of the material but remains in the calcium phosphate layer that is deposited on the surface of the foam pores. It reveals the particular behavior of glass foams compared to other materials suitable for implantation like glass powders of same composition and highlights the interest of ion microbeam techniques in the study of strontium-containing bioactive glass scaffolds

  12. Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering.

    Science.gov (United States)

    Deliormanlı, Aylin M

    2015-02-01

    Bioactive glasses are widely used in biomedical applications due to their ability to bond to bone and even to soft tissues. In this study, borate based (13-93B3) bioactive glass powders containing up to 5 wt% Ce2O3 and Ga2O3 were prepared by the melt quench technique. Cerium (Ce+3) and gallium (Ga+3) were chosen because of their low toxicity associated with bacteriostatic properties. Bioactive glass scaffolds were fabricated using the polymer foam replication method. In vitro degradation and bioactivity of the scaffolds were evaluated in SBF under static conditions. Results revealed that the cerium- and gallium-containing borate glasses have much lower degradation rates compared to the bare borate glass 13-93B3. In spite of the increased chemical durability, substituted glasses exhibited a good in vitro bioactive response except when the Ce2O3 content was 5 wt%. Taking into account the high in vitro hydroxyapatite forming ability, borate glass scaffolds containing Ce+3 and Ga+3 therapeutic ions are promising candidates for bone tissue engineering applications. PMID:25631259

  13. 静电纺纳米纤维基组织工程大孔支架的研究进展%Progress in Electrospun 3D Macroporous Nanofibrous Scaffolds for Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    赵仕芳; 袁卉华; 张彦中

    2012-01-01

    Electrospinning technique has received increasing attention in tissue engineering and regenerative medicine community due to its capability of making biomimetic nanofibrous scaffolds for engineering a variety of tissues. However, one of the major problems with electrospun nanofibrous scaffolds is that the densely arranged nanofibers and small pores ( or interstices) in the scaffolds would inhibit proper infiltration of the cells and consequently limit tissue regeneration in vivo. To address this challenge, in recent years many concepts or strategies applicable at the electrospinning procedures have been devised to enlarge pore size of the electrospun scaffolds. This article addressed importance of porosity, pore size, and pore interconnectivity pertaining to tissue engineering scaffolds, and provided a detailed review on various approaches available for preparing 3 D macroporous nanofibrous scaffolds from electrospinning. Efficiencies, challenges, and prospects in the application of such electrospun nanofibrous scaffolds for tissue engineering were also briefly discussed.%静电纺丝作为一种纳米纤维支架的仿生构建方法,已在组织工程和再生医学领域中得到越来越多的应用和关注.但是,静电纺支架的主要问题是密集排列的纳米纤维之间的空隙很小,阻碍细胞的长入和三维(3 D)组织的形成.为了解决这一问题,近年来已发展了许多用于扩大静电纺纳米纤维支架孔尺寸的制备方法.首先概述组织工程支架中大孔对细胞行为的影响,然后对静电纺纳米纤维3D大孔支架的制备方法和技术研究进展进行综述,讨论这些3D大孔支架促进细胞长入的效果,最后对静电纺3D大孔支架在组织工程中应用的主要挑战和前景,提出了看法.

  14. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds

    Directory of Open Access Journals (Sweden)

    Lai GJ

    2015-01-01

    Full Text Available Guo-Jyun Lai,1,* KT Shalumon,1,* Jyh-Ping Chen1,2 1Department of Chemical and Materials Engineering, 2Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China *These authors contributed equally to this work Abstract: Incorporation of nanohydroxyapatite (nHAP within a chitosan (CS/silk fibroin (SF nanofibrous membrane scaffold (NMS may provide a favorable microenvironment that more closely mimics the natural bone tissue physiology and facilitates enhanced osteogensis of the implanted cell population. In this study, we prepared pristine CS/SF NMS, composite CS/SF/nHAP NMS containing intrafibrillar nHAP by in situ blending of 10% or 30% nHAP before the electrospinning step, and composite CS/SF/nHAP NMS containing extrafibrillar nHAP by depositing 30% nHAP through alternative soaking surface mineralization. We investigated the effect of the incorporation of HAP nanoparticles on the physicochemical properties of pristine and composite NMS. We confirmed the presence of ~30 nm nHAP in the composite nanofibrous membranes by thermogravimetry analysis (TGA, X-ray diffraction (XRD, and scanning electron microscopy (SEM, either embedded in or exposed on the nanofiber. Nonetheless, the alternative soaking surface mineralization method drastically influenced the mechanical properties of the NMS with 88% and 94% drop in Young’s modulus and ultimate maximum stress. Using in vitro cell culture experiments, we investigated the effects of nHAP content and location on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs. The proliferation of hMSCs showed no significant difference among pristine and composite NMS. However, the extent of osteogenic differentiation of hMSCs was found to be positively correlated with the content of nHAP in the NMS, while its location within the nanofiber played a less significant role. In vivo experiments were carried

  15. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds.

    Science.gov (United States)

    Lai, Guo-Jyun; Shalumon, K T; Chen, Jyh-Ping

    2015-01-01

    Incorporation of nanohydroxyapatite (nHAP) within a chitosan (CS)/silk fibroin (SF) nanofibrous membrane scaffold (NMS) may provide a favorable microenvironment that more closely mimics the natural bone tissue physiology and facilitates enhanced osteogensis of the implanted cell population. In this study, we prepared pristine CS/SF NMS, composite CS/SF/nHAP NMS containing intrafibrillar nHAP by in situ blending of 10% or 30% nHAP before the electrospinning step, and composite CS/SF/nHAP NMS containing extrafibrillar nHAP by depositing 30% nHAP through alternative soaking surface mineralization. We investigated the effect of the incorporation of HAP nanoparticles on the physicochemical properties of pristine and composite NMS. We confirmed the presence of ~30 nm nHAP in the composite nanofibrous membranes by thermogravimetry analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM), either embedded in or exposed on the nanofiber. Nonetheless, the alternative soaking surface mineralization method drastically influenced the mechanical properties of the NMS with 88% and 94% drop in Young's modulus and ultimate maximum stress. Using in vitro cell culture experiments, we investigated the effects of nHAP content and location on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). The proliferation of hMSCs showed no significant difference among pristine and composite NMS. However, the extent of osteogenic differentiation of hMSCs was found to be positively correlated with the content of nHAP in the NMS, while its location within the nanofiber played a less significant role. In vivo experiments were carried out with hMSCs seeded in CS/SF/30%nHAP NMS prepared by in situ blending and subcutaneous implantation in nude mice. Micro-computed tomography images as well as histological and immunohistochemical analysis of the retrieved hMSCs/NMS construct 1 and 2 months postimplantation indicated that NMS had the

  16. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Danish [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom); Kiamehr, Mostafa [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); Yang, Xuebin [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds LS7 4SA (United Kingdom); Su, Bo, E-mail: b.su@bristol.ac.uk [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom)

    2013-07-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO{sub 2}, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  17. Hierarchically micro-patterned nanofibrous scaffolds with a nanosized bio-glass surface for accelerating wound healing

    Science.gov (United States)

    Xu, He; Lv, Fang; Zhang, Yali; Yi, Zhengfang; Ke, Qinfei; Wu, Chengtie; Liu, Mingyao; Chang, Jiang

    2015-11-01

    A composite scaffold with a controlled micro-pattern, nano-sized fiber matrix and surface-modified nanobioglass component was successfully prepared for skin wound healing by combining the patterning electrospinning with pulsed laser deposition strategies, and the hierarchical micro/nano structures and nano-sized bioglass in the scaffolds could synergistically improve the efficiency and re-epithelialization of wound healing.A composite scaffold with a controlled micro-pattern, nano-sized fiber matrix and surface-modified nanobioglass component was successfully prepared for skin wound healing by combining the patterning electrospinning with pulsed laser deposition strategies, and the hierarchical micro/nano structures and nano-sized bioglass in the scaffolds could synergistically improve the efficiency and re-epithelialization of wound healing. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04802h

  18. Enhancement of bioactivity of pulsed magnetron sputtered TiC{sub x}N{sub y} with bioactive glass (BAG) incorporated polycaprolactone (PCL) composite scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Anusha Thampi, V.V.; Subramanian, B., E-mail: subramanianb3@gmail.com

    2015-11-15

    Titanium carbonitride (TiC{sub x}N{sub y}) thin films were fabricated on SS 316 L by pulsed reactive DC magnetron sputtering using titanium and graphite targets. The sputtered film was characterized microstructurally by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD pattern revealed that the film was preferentially oriented along (200) axis with a grain size of 20 nm. A globular morphology was observed from electron micrograph while Energy dispersive X-ray spectroscopy (EDS) showed the compositional purity of the film. To improve the bioactivity, bioactive glass (BAG) nanopowders of size 60 nm, synthesized by sol–gel method, was incorporated into a polycaprolactone (PCL) scaffold (BAG-PCL), which was applied over TiC{sub x}N{sub y}/SS (BAG-PCL/TiCN/SS). In-vitro bioactivity studies of BAG-PCL showed the apatite formation, which was confirmed from fourier transform infrared (FTIR) spectrum and SEM. In-vitro corrosion studies in simulated body fluid (SBF) solution showed that the coated specimen had a higher charge transfer resistance than stainless steel (SS) bare. The enhancement of bioactivity was monitored by hemocompatibility and cytocompatibility, where an improved cell attachment and lower thrombus formation was observed for the coatings with BAG-PCL. - Highlights: • Fabrication of TiC{sub x}N{sub y} thin films on SS 316 L (TiCN/SS) by reactive pulsed DC magnetron sputtering. • Synthesis of BAG nanopowders (45S5) by sol–gel method. • Incorporation of BAG nanopowders into PCL matrix to form polymer composite scaffold. • BAG-PCL scaffold was coated on TiCN/SS to enhance the bioactivity.

  19. In vitro performance of 13-93 bioactive glass fiber and trabecular scaffolds with MLO-A5 osteogenic cells.

    Science.gov (United States)

    Modglin, Vernon C; Brown, Roger F; Fu, Qiang; Rahaman, Mohamed N; Jung, Steven B; Day, Delbert E

    2012-10-01

    This in vitro study was performed to evaluate the ability of two types of porous bioactive glass scaffolds to support the growth and differentiation of an established osteogenic cell line. The two scaffold types tested included 13-93 glass fiber and trabecular-like scaffolds seeded with murine MLO-A5 cells and cultured for intervals of 2 to 12 days. Culture in MTT-containing medium showed metabolically active cells both on the surface and within the interior of the scaffolds. Scanning electron microscopy revealed well-attached cells on both types of scaffolds with a continual increase in cell density over a 6-day period. Protein measurements also showed a linear increase in cell density during the incubation. Activity of alkaline phosphatase, a key indicator of osteoblast differentiation, increased about 10-fold during the 6-day incubation with both scaffold types. The addition of mineralization media to MLO-A5 seeded scaffolds triggered extensive formation of alizarin red-positive mineralized extracellular material, additional evidence of cell differentiation and completion of the final step of bone formation on the constructs. Collectively, the results indicate that the 13-93 glass fiber and trabecular scaffolds promote the attachment, growth, and differentiation of MLO-A5 osteogenic cells and could potentially be used for bone tissue engineering applications. PMID:22528984

  20. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects.

    Science.gov (United States)

    Zhao, Shichang; Zhang, Jianhua; Zhu, Min; Zhang, Yadong; Liu, Zhongtang; Tao, Cuilian; Zhu, Yufang; Zhang, Changqing

    2015-01-01

    The development of a new generation of biomaterials with high osteogenic ability for fast osseointegration with host bone is being intensively investigated. In this study, we have fabricated three-dimensional (3-D) strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds by a 3-D printing technique. Sr-MBG scaffolds showed uniform interconnected macropores (∼400μm), high porosity (∼70%) and enhanced compressive strength (8.67±1.74MPa). Using MBG scaffolds as a control, the biological properties of Sr-MBG scaffolds were evaluated by apatite-forming ability, adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteoblast-like cells MC3T3-E1. Furthermore, Sr-MBG scaffolds were used to repair critical-sized rat calvarial defects. The results showed that Sr-MBG scaffolds possessed good apatite-forming ability and stimulated MC3T3-E1 cell proliferation and differentiation. Importantly, the in vivo results revealed that Sr-MBG scaffolds had good osteogenic capability and stimulated new blood vessel formation in critical-sized rat calvarial defects within 8 weeks. Therefore, 3-D printed Sr-MBG scaffolds with favorable pore structure and high osteogenic ability have more potential applications in bone regeneration. PMID:25449915

  1. Effect of a new bioactive fibrous glassy scaffold on bone repair.

    Science.gov (United States)

    Gabbai-Armelin, P R; Souza, M T; Kido, H W; Tim, C R; Bossini, P S; Magri, A M P; Fernandes, K R; Pastor, F A C; Zanotto, E D; Parizotto, N A; Peitl, O; Renno, A C M

    2015-05-01

    Researchers have investigated several therapeutic approaches to treat non-union fractures. Among these, bioactive glasses and glass ceramics have been widely used as grafts. This class of biomaterial has the ability to integrate with living bone. Nevertheless, bioglass and bioactive materials have been used mainly as powder and blocks, compromising the filling of irregular bone defects. Considering this matter, our research group has developed a new bioactive glass composition that can originate malleable fibers, which can offer a more suitable material to be used as bone graft substitutes. Thus, the aim of this study was to assess the morphological structure (via scanning electron microscope) of these fibers upon incubation in phosphate buffered saline (PBS) after 1, 7 and 14 days and, also, evaluate the in vivo tissue response to the new biomaterial using implantation in rat tibial defects. The histopathological, immunohistochemistry and biomechanical analyzes after 15, 30 and 60 days of implantation were performed to investigate the effects of the material on bone repair. The PBS incubation indicated that the fibers of the glassy scaffold degraded over time. The histological analysis revealed a progressive degradation of the material with increasing implantation time and also its substitution by granulation tissue and woven bone. Histomorphometry showed a higher amount of newly formed bone area in the control group (CG) compared to the biomaterial group (BG) 15 days post-surgery. After 30 and 60 days, CG and BG showed a similar amount of newly formed bone. The novel biomaterial enhanced the expression of RUNX-2 and RANK-L, and also improved the mechanical properties of the tibial callus at day 15 after surgery. These results indicated a promising use of the new biomaterial for bone engineering. However, further long-term studies should be carried out to provide additional information concerning the material degradation in the later stages and the bone

  2. Incorporation of sol–gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties

    International Nuclear Information System (INIS)

    In this study, 3D porous bioactive composite scaffolds were produced and evaluated for their physico-chemical and biological properties. Polymer poly-L-lactide-co-glycolide (PLGA) matrix scaffolds were modified with sol–gel-derived bioactive glasses (SBGs) of CaO–SiO2–P2O5 systems. We hypothesized that SBG incorporation into PLGA matrix would improve the chemical and biological activity of composite materials as well as their mechanical properties. We applied two bioactive glasses, designated as S2 or A2, differing in the content of SiO2 and CaO (i.e. 80 mol% SiO2, 16 mol% CaO for S2 and 40 mol% SiO2, 52 mol% CaO for A2). The composites were characterized for their porosity, bioactivity, microstructure and mechanical properties. The osteoinductive properties of these composites were evaluated in human bone marrow stromal cell (hBMSC) cultures grown in either standard growth medium or treated with recombinant human bone morphogenetic protein-2 (rhBMP-2) or dexamethasone (Dex). After incubation in simulated body fluid, calcium phosphate precipitates formed inside the pores of both A2-PLGA and S2-PLGA scaffolds. The compressive strength of the latter was increased slightly compared to PLGA. Both composites promoted superior hBMSC attachment to the material surface and stimulated the expression of several osteogenic markers in hBMSC compared to cells grown on unmodified PLGA. There were also marked differences in the response of hBMSC to composite scaffolds, depending on chemical compositions of the scaffolds and culture treatments. Compared to silica-rich S2-PLGA, hBMSC grown on calcium-rich A2-PLGA were overall less responsive to rhBMP-2 or Dex and the osteoinductive properties of these A2-PLGA scaffolds seemed partially dependent on their ability to induce BMP signaling in untreated hBMSC. Thus, beyond the ability of currently studied composites to enhance hBMSC osteogenesis, it may become possible to modulate the osteogenic response of h

  3. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(d,l-lactic acid) coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mantsos, T; Chatzistavrou, X; Roether, J A; Boccaccini, A R [Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hupa, L; Arstila, H, E-mail: a.boccaccini@imperial.ac.u [Process Chemistry Centre, Abo Akademi University, Piispankatu 8, FI-20500 Turku (Finland)

    2009-10-15

    The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO{sub 2}, 22.6 CaO, 5.9 Na{sub 2}O, 4 P{sub 2}O{sub 5}, 12 K{sub 2}O, 5.3 MgO and 0.2 B{sub 2}O{sub 3}. The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 deg, C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly({sub D,L}-lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications.

  4. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D,L-lactic acid) coatings.

    Science.gov (United States)

    Mantsos, T; Chatzistavrou, X; Roether, J A; Hupa, L; Arstila, H; Boccaccini, A R

    2009-10-01

    The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO(2), 22.6 CaO, 5.9 Na(2)O, 4 P(2)O(5), 12 K(2)O, 5.3 MgO and 0.2 B(2)O(3). The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 degrees C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly((D,L)-lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications. PMID:19776493

  5. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(d,l-lactic acid) coatings

    International Nuclear Information System (INIS)

    The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO2, 22.6 CaO, 5.9 Na2O, 4 P2O5, 12 K2O, 5.3 MgO and 0.2 B2O3. The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 deg, C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly(D,L-lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications.

  6. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    Science.gov (United States)

    Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K.; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K.; Mandal, Chitra

    2016-09-01

    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering.

  7. Synthesis and Characterization of Poly(lactic-co-glycolic Acid Nanoparticles-Loaded Chitosan/Bioactive Glass Scaffolds as a Localized Delivery System in the Bone Defects

    Directory of Open Access Journals (Sweden)

    K. Nazemi

    2014-01-01

    Full Text Available The functionality of tissue engineering scaffolds can be enhanced by localized delivery of appropriate biological macromolecules incorporated within biodegradable nanoparticles. In this research, chitosan/58S-bioactive glass (58S-BG containing poly(lactic-co-glycolic acid (PLGA nanoparticles has been prepared and then characterized. The effects of further addition of 58S-BG on the structure of scaffolds have been investigated to optimize the characteristics of the scaffolds for bone tissue engineering applications. The results showed that the scaffolds had high porosity with open pores. It was also shown that the porosity decreased with increasing 58S-BG content. Furthermore, the PLGA nanoparticles were homogenously distributed within the scaffolds. According to the obtained results, the nanocomposites could be considered as highly bioactive bone tissue engineering scaffolds with the potential of localized delivery of biological macromolecules.

  8. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.

    Science.gov (United States)

    Lu, Helen H; El-Amin, Saadiq F; Scott, Kimberli D; Laurencin, Cato T

    2003-03-01

    In the past decade, tissue engineering-based bone grafting has emerged as a viable alternative to biological and synthetic grafts. The biomaterial component is a critical determinant of the ultimate success of the tissue-engineered graft. Because no single existing material possesses all the necessary properties required in an ideal bone graft, our approach has been to develop a three dimensional (3-D), porous composite of polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) that is biodegradable, bioactive, and suitable as a scaffold for bone tissue engineering (PLAGA-BG composite). The objectives of this study were to examine the mechanical properties of a PLAGA-BG matrix, to evaluate the response of human osteoblast-like cells to the PLAGA-BG composite, and to evaluate the ability of the composite to form a surface calcium phosphate layer in vitro. Structural and mechanical properties of PLAGA-BG were measured, and the formation of a surface calcium phosphate layer was evaluated by surface analysis methods. The growth and differentiation of human osteoblast-like cells on PLAGA-BG were also examined. A hypothesis was that the combination of PLAGA with BG would result in a biocompatible and bioactive composite, capable of supporting osteoblast adhesion, growth and differentiation, with mechanical properties superior to PLAGA alone. The addition of bioactive glass granules to the PLAGA matrix resulted in a structure with higher compressive modulus than PLAGA alone. Moreover, the PLAGA-BA composite was found to be a bioactive material, as it formed surface calcium phosphate deposits in a simulated body fluid (SBF), and in the presence of cells and serum proteins. The composite supported osteoblast-like morphology, stained positively for alkaline phosphatase, and supported higher levels of Type I collagen synthesis than tissue culture polystyrene controls. We have successfully developed a degradable, porous, polymer bioactive glass composite possessing

  9. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid electrospun fibrous scaffold for bone regeneration

    Directory of Open Access Journals (Sweden)

    Chen SJ

    2015-06-01

    Full Text Available Shijie Chen,1,* Zhiyuan Jian,2,* Linsheng Huang,2,* Wei Xu,3,* Shaohua Liu,4 Dajiang Song,3 Zongmiao Wan,3 Amanda Vaughn,5 Ruisen Zhan,1 Chaoyue Zhang,1 Song Wu,1 Minghua Hu,6 Jinsong Li1 1Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 2The First General Surgery Department of Shiyan Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, People’s Republic of China; 3Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, People’s Republic of China; 4Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 5Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA; 6Department of Anthropotomy, Changsha Medical College, Changsha, Hunan, People’s Republic of China *These authors contributed equally to this work Abstract: A mesoporous bioactive glass (MBG surface modified with poly(lactic-co-glycolic acid (PLGA electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds

  10. Controlled release of antibiotics encapsulated in the electrospinning polylactide nanofibrous scaffold and their antibacterial and biocompatible properties

    International Nuclear Information System (INIS)

    In this research, the drug loaded polylactide nanofibers are fabricated by electrospinning. Morphology, microstructure and mechanical properties are characterized. Properties and mechanism of the controlled release of the nanofibers are investigated. The results show that the drug loaded polylactide nanofibers do not show dispersed phase, and there is a good compatibility between polylactide and drugs. FTIR spectra show that drugs are encapsulated inside the polylactide nanofibers, and drugs do not break the structure of polylcatide. Flexibility of drug loaded polylactide scaffolds is higher than that of the pure polylactide nanofibers. Release rate of the drug loaded nanofibers is significantly slower than that of the drug powder. Release rate increases with the increase of the drugs’ concentration. The research mechanism suggests a typical diffusion-controlled release of the three loaded drugs. Antibacterial and cell culture show that drug loaded nanofibers possess effective antibacterial activity and biocompatible properties. (papers)

  11. Enhancement of a magnetic nanofibrous composite scaffold for bone regeneration%磁性纳米纤维复合材料原位诱导体内成骨的研究

    Institute of Scientific and Technical Information of China (English)

    许振; 孟洁; 张宇; 常晓; 边焱焱; 孔桦; 顾宁; 许海燕

    2011-01-01

    目的:研究一种新型顺磁性的纳米纤维复合支架γ-Fe2O3/nHAP/PDLLA在弱磁场下体内诱导新骨形成的功效.方法:纳米纤维复合材料支架通过电纺丝方法制成,支架内部的微观结构用扫描电镜(SEM)进行表征.将支架植入兔横突根部骨缺损处并在12周后处死动物,应用组织学方法研究支架在动物体内原位诱导新骨形成和胶原蛋白沉积的情况.结果:与对照的nHAP/PDLLA纳米纤维支架相比,磁性纳米纤维复合支架上有更多的Ⅰ型胶原沉积,新骨的生成量也明显增加.结论:磁性纳米纤维复合支架能够促进骨缺损部位的新骨生成,在引导骨组织再生与修复方面具有应用潜能.%Objective: To investigate the function of inducing bone regeneration of a novel paramagnetic nanofibrous composite scaffold of γ-Fe2O3/nHAP/PDLLA in vivo under a weak applied magnetic field.Methods: The scaffold was fabricated with the composite by electrospinning technique.The microstructure of the scaffold was characterized by scanning electron microscopy.The scaffold was implanted in defects at the root segment of the lumbar transverse process on a rabbit model.Bone tissue samples were collected after 12 weeks of implant surgery.New bone formation in the defects was assessed using histological analysis in reference to a control nanofibrous composite of nHAP/PDLLA.Deposition of type Ⅰ collagen fibers were examined by Sirius red staining.Results: There was new bone formation observed in the scaffold.Type Ⅰ collagen was deposited abundantly on the scaffold.Together all, the bone regeneration was enhanced obviously in comparison with that induced by control scaffold of nHAP/PDLLA.Conclusion: The scaffold of γ-Fe2O3/nHAP/PDLLA enhanced osteogenesis under a weak static magnetic field, and exhibited promising potential for use in bone repair.

  12. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering.

    Science.gov (United States)

    Bakhtiyari, Sanaz Soleymani Eil; Karbasi, Saeed; Monshi, Ahmad; Montazeri, Mahbobeh

    2016-01-01

    To emulate bone structure, porous composite scaffold with suitable mechanical properties should be designed. In this research the effects of nano-titania (nTiO2) on the bioactivity and mechanical properties of nano-bioglass-poly-3-hydroxybutyrate (nBG/P3HB)-composite scaffold were evaluated. First, nBG powder was prepared by melting method of pure raw materials at a temperature of 1400 °C and then the porous ceramic scaffold of nBG/nTiO2 with 30 wt% of nBG containing different weight ratios of nTiO2 (3, 6, and 9 wt% of nTiO2 with grain size of 35-37 nm) was prepared by using polyurethane sponge replication method. Then the scaffolds were coated with P3HB in order to increase the scaffold's mechanical properties. Mechanical strength and modulus of scaffolds were improved by adding nTiO2 to nBG scaffold and adding P3HB to nBG/nTiO2 composite scaffold. The results of the compressive strength and porosity tests showed that the best scaffold is 30 wt% of nBG with 6 wt% of nTiO2 composite scaffold immersed for 30 s in P3HB with 79.5-80 % of porosity in 200-600 μm, with a compressive strength of 0.15 MPa and a compressive modulus of 30 MPa, which is a good candidate for bone tissue engineering. To evaluate the bioactivity of the scaffold, the simulated body fluid (SBF) solution was used. The best scaffold with 30 wt% of nBG, 6 wt% of P3HB and 6 wt% of nTiO2 was immersed in SBF for 4 weeks at an incubation temperature of 37 °C. The bioactivity of the scaffolds was characterized by AAS, SEM, EDXA and XRD. The results of bioactivity showed that bone-like apatite layer formed well at scaffold surface and adding nTiO2 to nBG/P3HB composite scaffold helped increase the bioactivity rate.

  13. Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application.

    Science.gov (United States)

    Fereshteh, Zeinab; Nooeaid, Patcharakamon; Fathi, Mohammadhossein; Bagri, Akbar; Boccaccini, Aldo R

    2015-09-01

    This article presents data related to the research article entitled "The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering" [1]. We provide data on mechanical properties, in vitro bioactivity and drug release of bioactive glass (BG) scaffolds coated by poly (ε-caprolactone) (PCL) and zein used as a controlled release device for tetracycline hydrochloride (TCH). By coating the BG scaffolds with PCL or PCL/zein blend the mechanical properties of the scaffolds were substantially improved, i.e., the compressive strength increased from 0.004±0.001 MPa (uncoated BG scaffolds) to 0.15±0.02 MPa (PCL/zein coated BG scaffolds). A dense bone-like apatite layer formed on the surface of PCL/zein coated scaffolds immersed for 14 days in simulated body fluid (SBF). The data describe control of drug release and in vitro degradation behavior of coating by engineering the concentration of zein. Thus, the developed scaffolds exhibit attractive properties for application in bone tissue engineering research.

  14. Composite scaffolds of mesoporous bioactive glass and polyamide for bone repair.

    Science.gov (United States)

    Su, Jiacan; Cao, Liehu; Yu, Baoqing; Song, Shaojun; Liu, Xinwei; Wang, Zhiwei; Li, Ming

    2012-01-01

    A bone-implanted porous scaffold of mesoporous bioglass/polyamide composite (m-BPC) was fabricated, and its biological properties were investigated. The results indicate that the m-BPC scaffold contained open and interconnected macropores ranging 400-500 μm, and exhibited a porosity of 76%. The attachment ratio of MG-63 cells on m-BPC was higher than polyamide scaffolds at 4 hours, and the cells with normal phenotype extended well when cultured with m-BPC and polyamide scaffolds. When the m-BPC scaffolds were implanted into bone defects of rabbit thighbone, histological evaluation confirmed that the m-BPC scaffolds exhibited excellent biocompatibility and osteoconductivity, and more effective osteogenesis than the polyamide scaffolds in vivo. The results indicate that the m-BPC scaffolds improved the efficiency of new bone regeneration and, thus, have clinical potential for bone repair. PMID:22679367

  15. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells.

    Science.gov (United States)

    Gao, Guifang; Schilling, Arndt F; Yonezawa, Tomo; Wang, Jiang; Dai, Guohao; Cui, Xiaofeng

    2014-10-01

    Bioprinting based on thermal inkjet printing is a promising but unexplored approach in bone tissue engineering. Appropriate cell types and suitable biomaterial scaffolds are two critical factors to generate successful bioprinted tissue. This study was undertaken in order to evaluate bioactive ceramic nanoparticles in stimulating osteogenesis of printed bone marrow-derived human mesenchymal stem cells (hMSCs) in poly(ethylene glycol)dimethacrylate (PEGDMA) scaffold. hMSCs suspended in PEGDMA were co-printed with nanoparticles of bioactive glass (BG) and hydroxyapatite (HA) under simultaneous polymerization so the printed substrates were delivered with highly accurate placement in three-dimensional (3D) locations. hMSCs interacted with HA showed the highest cell viability (86.62 ± 6.02%) and increased compressive modulus (358.91 ± 48.05 kPa) after 21 days in culture among all groups. Biochemical analysis showed the most collagen production and highest alkaline phosphatase activity in PEG-HA group, which is consistent with gene expression determined by quantitative PCR. Masson's trichrome staining also showed the most collagen deposition in PEG-HA scaffold. Therefore, HA is more effective comparing to BG for hMSCs osteogenesis in bioprinted bone constructs. Combining with our previous experience in vasculature, cartilage, and muscle bioprinting, this technology demonstrates the capacity for both soft and hard tissue engineering with biomimetic structures. PMID:25130390

  16. Optimized Solid Phase-Assisted Synthesis of Dendrons Applicable as Scaffolds for Radiolabeled Bioactive Multivalent Compounds Intended for Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Gabriel Fischer

    2014-05-01

    Full Text Available Dendritic structures, being highly homogeneous and symmetric, represent ideal scaffolds for the multimerization of bioactive molecules and thus enable the synthesis of compounds of high valency which are e.g., applicable in radiolabeled form as multivalent radiotracers for in vivo imaging. As the commonly applied solution phase synthesis of dendritic scaffolds is cumbersome and time-consuming, a synthesis strategy was developed that allows for the efficient assembly of acid amide bond-based highly modular dendrons on solid support via standard Fmoc solid phase peptide synthesis protocols. The obtained dendritic structures comprised up to 16 maleimide functionalities and were derivatized on solid support with the chelating agent DOTA. The functionalized dendrons furthermore could be efficiently reacted with structurally variable model thiol-bearing bioactive molecules via click chemistry and finally radiolabeled with 68Ga. Thus, this solid phase-assisted dendron synthesis approach enables the fast and straightforward assembly of bioactive multivalent constructs for example applicable as radiotracers for in vivo imaging with Positron Emission Tomography (PET.

  17. Balancing mechanical strength with bioactivity in chitosan-calcium phosphate 3D microsphere scaffolds for bone tissue engineering: air- vs. freeze-drying processes.

    Science.gov (United States)

    Nguyen, D T; McCanless, J D; Mecwan, M M; Noblett, A P; Haggard, W O; Smith, R A; Bumgardner, J D

    2013-01-01

    The objective of this study was to evaluate the potential benefit of 3D composite scaffolds composed of chitosan and calcium phosphate for bone tissue engineering. Additionally, incorporation of mechanically weak lyophilized microspheres within those air-dried (AD) was considered for enhanced bioactivity. AD microsphere, alone, and air- and freeze-dried microsphere (FDAD) 3D scaffolds were evaluated in vitro using a 28-day osteogenic culture model with the Saos-2 cell line. Mechanical testing, quantitative microscopy, and lysozyme-driven enzymatic degradation of the scaffolds were also studied. FDAD scaffold showed a higher concentration (p mechanical strength was sacrificed through introduction of the less stiff, porous FD spheres.

  18. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.

    Science.gov (United States)

    Lou, Tao; Wang, Xuejun; Song, Guojun; Gu, Zheng; Yang, Zhen

    2014-08-01

    Polymer and ceramic composite scaffolds play a crucial role in bone tissue engineering. In an attempt to mimic the architecture of natural extracellular matrix (ECM), poly(l-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) nanocomposite scaffolds with a hierarchical pore structure were fabricated by combining thermal induced phase separation and salt leaching techniques. The nanocomposite scaffold consisted of a nanofibrous PLLA matrix with a highly interconnected, high porosity (>93%) hierarchical pore structure with pore diameters ranging from 500nm to 300μm and a homogeneously distributed β-TCP nanoparticle phase. The nanofibrous PLLA matrix had a fiber diameter of 70-300nm. The nanocomposite scaffolds possess three levels of hierarchical structure: (1) porosity; (2) nanofibrous PLLA struts comprising the pore walls; and (3) β-TCP nanoparticle phase. The β-TCP nanoparticle phase improved the mechanical properties and bioactivity of the PLLA matrix. The nanocomposite scaffolds supported MG-63 osteoblast proliferation, penetration, and ECM deposition, indicating the potential of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering applications.

  19. Microsphere-integrated gelatin-siloxane hybrid scaffolds for bone tissue engineering :in vitro bioactivity & antibacterial activity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Microsphere integrated gelatin-siloxane hybrid scaffolds were successfully synthesized by using a combined sol-gel processing,post-gelation soaking and freeze-drying process.A bone-like apatite layer was able to form in the Ca2+-containing porous hybrids upon soaking in a simulated body fluid (SBF) up to 1 day.The rate of gentamicin sulfate (GS) release from the GS-loaded gelatin-siloxane hybrid microsphere became constant after a 4 h burst.The antibacterial activity was assessed by the agar diffusion test (ADT) and the bactericidal effect test.It is evident that the as-synthesized porous scaffolds have excellent bioactivity and antibacterial activity,and may be favorable in bone tissue engineering.

  20. Nanofibrous electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di Jia; Shui, Jianglan; Chen, Chen

    2016-05-24

    A nanofibrous catalyst and method of manufacture. A precursor solution of a transition metal based material is formed into a plurality of interconnected nanofibers by electro-spinning the precursor solution with the nanofibers converted to a catalytically active material by a heat treatment. Selected subsequent treatments can enhance catalytic activity.

  1. Nanosized Mesoporous Bioactive Glass/Poly(lactic-co-glycolic Acid Composite-Coated CaSiO3 Scaffolds with Multifunctional Properties for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Mengchao Shi

    2014-01-01

    Full Text Available It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering.

  2. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.

    Science.gov (United States)

    Fu, Qiang; Rahaman, Mohamed N; Fu, Hailuo; Liu, Xin

    2010-10-01

    Bioactive glass scaffolds with a microstructure similar to that of dry human trabecular bone but with three different compositions were evaluated for potential applications in bone repair. The preparation of the scaffolds and the effect of the glass composition on the degradation and conversion of the scaffolds to a hydroxyapatite (HA)-type material in a simulated body fluid (SBF) are reported here (Part I). The in vitro response of osteogenic cells to the scaffolds and the in vivo evaluation of the scaffolds in a rat subcutaneous implantation model are described in Part II. Scaffolds (porosity = 78-82%; pore size = 100-500 microm) were prepared using a polymer foam replication technique. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. The conversion rate of the scaffolds to HA in the SBF increased markedly with the B2O3 content of the glass. Concurrently, the pH of the SBF also increased with the B2O3 content of the scaffolds. The compressive strengths of the as-prepared scaffolds (5-11 MPa) were in the upper range of values reported for trabecular bone, but they decreased markedly with immersion time in the SBF and with increasing B2O3 content of the glass. The results show that scaffolds with a wide range of bioactivity and degradation rate can be achieved by replacing varying amounts of SiO(2) in silicate bioactive glass with B2O3. PMID:20544804

  3. Composite scaffolds of mesoporous bioactive glass and polyamide for bone repair

    Directory of Open Access Journals (Sweden)

    Su J

    2012-05-01

    Full Text Available Jiacan Su, Liehu Cao, Baoqing Yu, Shaojun Song, Xinwei Liu, Zhiwei Wang, Ming LiDepartment of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, ChinaAbstract: A bone-implanted porous scaffold of mesoporous bioglass/polyamide composite (m-BPC was fabricated, and its biological properties were investigated. The results indicate that the m-BPC scaffold contained open and interconnected macropores ranging 400–500 µm, and exhibited a porosity of 76%. The attachment ratio of MG-63 cells on m-BPC was higher than polyamide scaffolds at 4 hours, and the cells with normal phenotype extended well when cultured with m-BPC and polyamide scaffolds. When the m-BPC scaffolds were implanted into bone defects of rabbit thighbone, histological evaluation confirmed that the m-BPC scaffolds exhibited excellent biocompatibility and osteoconductivity, and more effective osteogenesis than the polyamide scaffolds in vivo. The results indicate that the m-BPC scaffolds improved the efficiency of new bone regeneration and, thus, have clinical potential for bone repair.Keywords: mesoporous bioglass, polyamide, composite scaffolds, biocompatibility, bone repair

  4. 3D nanocomposite chitosan/bioactive glass scaffolds obtained using two different routes: an evaluation of the porous structure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Elke M. F. Lemos

    2016-05-01

    Full Text Available Porous synthetic substrates are developed through tissue engineering technologies to grow new tissue, restoring the function of tissue or an organ. For bone regeneration, these scaffolds must support the dynamic load exerted on this tissue, achieved primarily by increasing their compression strength, as established in the literature. The aim of this paper was to incorporate an inorganic composite bioactive glass (60%SiO2 - 36%CaO - 4%P2O5 as a reinforcing agent in mechanical 3D scaffolds that must remain porous. Two strategies were adopted: a co-precipitation method to obtain a nanoparticulate dispersion of bioactive glass (BGNP and a sol-gel method to combine a bioactive glass solution (BG with a previously prepared chitosan polymer solution. Moreover, a lyophilization process was also used, generating highly porous scaffolds. Various aspects of the scaffold were evaluated, including the morphology, orientation and size of the pores, and mechanical strength, as obtained using the two synthetic methods. The data for compressive strength revealed increased strength after the incorporation of bioactive glass, which was more pronounced when utilizing the nanoscale bioactive glass.

  5. Bone Tissue Engineering with Adipose-Derived Stem Cells in Bioactive Composites of Laser-Sintered Porous Polycaprolactone Scaffolds and Platelet-Rich Plasma

    OpenAIRE

    Han-Tsung Liao; Jyh-Ping Chen; Ming-Yih Lee

    2013-01-01

    Three-dimensional porous polycaprolactone (PCL) scaffolds with consistent inter-pore channels, 83% porosity and 300–400 μm pore size were fabricated via selective laser sintering. The PCL scaffold was combined with platelet-rich plasma (PRP) to form a bioactive composite and studied for potential application in bone tissue engineering using porcine adipose-derived stem cells (PASCs). The PCL/PRP/PASCs construct showed enhanced cell seeding efficiency and synergistically increased the differen...

  6. Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration

    International Nuclear Information System (INIS)

    The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D β-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric–bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. - Graphical abstract: B-TCP:HA–alginate hybrid 3D porous scaffolds for application in bone regeneration. - Highlights: • The produced hybrid 3D scaffolds are prone to be applied in bone tissue engineering. • Alginate coated 3D scaffolds present high mechanical and biological properties. • In vitro assays for evaluation of human osteoblast cell attachment in the presence of the scaffolds • The hybrid 3D scaffolds present suitable mechanical and biological properties for use in bone regenerative medicine

  7. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells.

    Science.gov (United States)

    Zhou, Mi; Smith, Andrew M; Das, Apurba K; Hodson, Nigel W; Collins, Richard F; Ulijn, Rein V; Gough, Julie E

    2009-05-01

    We report here the design of a biomimetic nanofibrous hydrogel as a 3D-scaffold for anchorage-dependent cells. The peptide-based bioactive hydrogel is formed through molecular self-assembly and the building blocks are a mixture of two aromatic short peptide derivatives: Fmoc-FF (Fluorenylmethoxycarbonyl-diphenylalanine) and Fmoc-RGD (arginine-glycine-aspartate) as the simplest self-assembling moieties reported so far for the construction of small-molecule-based bioactive hydrogels. This hydrogel provides a highly hydrated, stiff and nanofibrous hydrogel network that uniquely presents bioactive ligands at the fibre surface; therefore it mimics certain essential features of the extracellular matrix. The RGD sequence as part of the Fmoc-RGD building block plays a dual role of a structural component and a biological ligand. Spectroscopic and imaging analysis using CD, FTIR, fluorescence, TEM and AFM confirmed that FF and RGD peptide sequences self-assemble into beta-sheets interlocked by pi-pi stacking of the Fmoc groups. This generates the cylindrical nanofibres interwoven within the hydrogel with the presence of RGDs in tunable densities on the fibre surfaces. This rapid gelling material was observed to promote adhesion of encapsulated dermal fibroblasts through specific RGD-integrin binding, with subsequent cell spreading and proliferation; therefore it may offer an economical model scaffold to 3D-culture other anchorage-dependent cells for in-vitro tissue regeneration. PMID:19201459

  8. Bioactive composite scaffolds for bone regeneration:from the process to the biological validation

    OpenAIRE

    Ronca, Alfredo

    2010-01-01

    In this work, we have discussed the preparation and characterization of composite scaffolds for bone regeneration. The scaffolds were made with different techniques: salt leaching / phase inversion,filament winding and stereolithography. The phase of preparation is followed by a characterization from a morphological, mechanical and biological point of view. Results were very promising especially regarding the biological response of the substrates that appear to be promising for future in v...

  9. Composite scaffolds of mesoporous bioactive glass and polyamide for bone repair

    OpenAIRE

    Su J; Cao L; Yu B; Song S; Liu X; Wang Z; Li M

    2012-01-01

    Jiacan Su, Liehu Cao, Baoqing Yu, Shaojun Song, Xinwei Liu, Zhiwei Wang, Ming LiDepartment of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, ChinaAbstract: A bone-implanted porous scaffold of mesoporous bioglass/polyamide composite (m-BPC) was fabricated, and its biological properties were investigated. The results indicate that the m-BPC scaffold contained open and interconnected macropores ranging 400–500 µm, and exhibited a porosity of 76%...

  10. Degradability, bioactivity, and osteogenesis of biocomposite scaffolds of lithium-containing mesoporous bioglass and mPEG-PLGA-b-PLL copolymer

    Directory of Open Access Journals (Sweden)

    Cai Y

    2015-06-01

    Full Text Available Yanrong Cai,1 Lieping Guo,2 Hongxing Shen,2 Xiaofei An,2 Hong Jiang,3 Fang Ji,2 Yunfei Niu21The College of Basic Science of Medicine, Hunan University of Traditional Chinese Medicine, Changsha, 2Department of Orthopaedics, Changhai Hospital, Second Military Medical University, 3School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of ChinaAbstract: Biocomposite scaffolds of lithium (Li-containing mesoporous bioglass and monomethoxy poly(ethylene glycol-poly(D,L-lactide-co-glycolide-poly(L-lysine (mPEG-PLGA-b-PLL copolymer were fabricated in this study. The results showed that the water absorption and degradability of Li-containing mesoporous bioglass/mPEG-PLGA-b-PLL composite (l-MBPC scaffolds were obviously higher than Li-containing bioglass/mPEG-PLGA-b-PLL composite (l-BPC scaffolds. Moreover, the apatite-formation ability of l-MBPC scaffolds was markedly enhanced as compared with l-BPC scaffolds, indicating that l-MBPC scaffolds containing mesoporous bioglass exhibited good bioactivity. The cell experimental results showed that cell attachment, proliferation, and alkaline phosphatase activity of MC3T3-E1 cells on l-MBPC scaffolds were remarkably improved as compared to l-BPC scaffolds. In animal experiments, the histological elevation results revealed that l-MBPC scaffolds significantly promoted new bone formation, indicating good osteogenesis. l-MBPC scaffolds with improved properties would be an excellent candidate for bone tissue repair.Keywords: MBG, copolymer, degradability, bioactivity, osteogenesis, cell proliferation, bone repair

  11. Effects of annealing on the structural and mechanical properties of electrospun polymeric nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eunice P S [Division of Bioengineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore (Singapore); Lim, C T [Division of Bioengineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore (Singapore)

    2006-05-28

    Biodegradable polymeric nanofibres produced by electrospinning have been used as scaffolds for tissue engineering. Before these nanofibrous scaffolds can be implanted into the human body, it is important to know if the individual nanofibres are strong enough to withstand the forces exerted by the cells as they grow and migrate on the scaffold. However, due to the small size of the nanofibres, it is a challenge to characterize the mechanical properties of individual nanofibres. Therefore, we aim to mechanically characterize a single nanofibre using both a tensile test and a nanoscale three-point bend test. As some scaffolds may be heat-treated by annealing to enhance the stiffness and strength of the nanofibres, we also investigate the effects of annealing on the structural and mechanical properties of single nanofibres. The material properties of as-spun and annealed nanofibres were studied using differential scanning calorimetry and atomic force microscopy. Annealing was found to increase the Young's modulus of the nanofibre mainly due to the increase in crystallinity and the change in morphology from a purely fibrillar structure to a mixture of fibrillar and nano-granular structure with enhanced interfibrillar bonding.

  12. Experimental study of affinity of endothelial outgrowth cells cultured on aligned plla nanofibrous scaffolds%纳米化左旋聚乳酸有序膜的细胞亲和性研究

    Institute of Scientific and Technical Information of China (English)

    卢辉俊; 冯章启; 顾忠泽; 刘长建

    2009-01-01

    on the growth EOCs, both aligned and super-aligned PLLA nanofibrous scaffolds significantly enhanced their growth (P < 0.05). These results indicate that not only the PLLA scaffolds are bio-logically compatible with the EOCs, the aligned nanofibers actually promote growth of EOCs. This conclusion was further corroborated by the observation with EOCs grown on and attached to PLLA scaffolds. Adherency of EOCs was completed during 12 hours incuba-tion. Both aligned and super-aligned PLLA nanofibrous scaffolds was significantly higher than the rate of adherency and proliferation of random PLLA scaffolds after 12 hours incubation (P <0.01). The rate of proliferation after 24 hours incubation between aligned and super-aligned PLLA nanofibrous scaffolds was also significant (P<0.05). When grown in composite cultures, we found that EOCs maintained the spindle-shaped morphology in the presence of all types of PLLA scaffolds. Importantly, cell orientations correlated with the structures of the scaffolds-they were randomly oriented in the presence of random scaffolds and aligned reasonably well along the aligned and super-aligned scaffolds EOCs. We also observed intimate intercellular contacts among adjacent cells, suggesting the forma-tion of tight endothelial cell layers surrounding the fibers of the scaffolding material. Conclusion EOCs can be adhere well to aligned and super-aligned scaffolds of PLLA and proliferate, keep well on cell morphology. EOCs are ideal seeding ceils for vascular tissue en-gineering. We found that PLLA nanofibers are not only biocompatible with EOCs, the aligned PLLA fibers actually promoted and guid-ed their sustained proliferation. These results suggest that aligned PLLA could be excellent both as the scaffolds and as a promoter of cell growth during vascular tissue engineering.

  13. Synthesis of biomedical composite scaffolds by laser sintering: Mechanical properties and in vitro bioactivity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fwu-Hsing, E-mail: fhliu@mail.lhu.edu.tw

    2014-04-01

    Graphical abstract: Synthesis of biomedical composite scaffold obtained by selective laser sintering. - Highlights: • A layer additive manufacturing technique for fabricating the bio-composites scaffolds is developed. • The slurry state biomaterials are solidified via a laser beam in a self-developed apparatus. • The osteoblast-like cells can be cultured on the scaffold. • This technology has potential for fabricating the bone scaffolds in tissue engineering. - Abstract: In this study, biomedical composite materials were employed to fabricate bone scaffolds using a self-developed rapid prototyping (RP) apparatus. The slurry formed by combining hydroxyapatite (HA), silica sol, and sodium tripolyphosphate (STPP) was heated by a CO{sub 2} laser. Under appropriate processing parameters, a biocomposite green body was subsequently fabricated. Its mechanical properties, including surface roughness, bending and compression strengths, volume shrinkage rate, and surface microstructure, were analyzed after heat treatment to 1200 °C, 1300 °C, and 1400 °C. The results showed that after heating the specimen to 1200 °C, its compression and bending strengths increased significantly to 43.26 MPa and 1.28 MPa, respectively; the surface roughness was 12 μm; and surface pores were of size 5–25 μm. Furthermore, the results of WST-1 and LDH assay indicate that the biocomposites showed no cytotoxicity on 3T3 fibroblast. An optical density (OD) of 1.1 was also achieved, and the specimen was suitable for the adhesion and growth of osteoblast-like cells (MG63). Therefore, the biocomposite bone scaffolds fabricated in this study have potential to be bone implants for developing hard tissue.

  14. Synthesis of biomedical composite scaffolds by laser sintering: Mechanical properties and in vitro bioactivity evaluation

    International Nuclear Information System (INIS)

    Graphical abstract: Synthesis of biomedical composite scaffold obtained by selective laser sintering. - Highlights: • A layer additive manufacturing technique for fabricating the bio-composites scaffolds is developed. • The slurry state biomaterials are solidified via a laser beam in a self-developed apparatus. • The osteoblast-like cells can be cultured on the scaffold. • This technology has potential for fabricating the bone scaffolds in tissue engineering. - Abstract: In this study, biomedical composite materials were employed to fabricate bone scaffolds using a self-developed rapid prototyping (RP) apparatus. The slurry formed by combining hydroxyapatite (HA), silica sol, and sodium tripolyphosphate (STPP) was heated by a CO2 laser. Under appropriate processing parameters, a biocomposite green body was subsequently fabricated. Its mechanical properties, including surface roughness, bending and compression strengths, volume shrinkage rate, and surface microstructure, were analyzed after heat treatment to 1200 °C, 1300 °C, and 1400 °C. The results showed that after heating the specimen to 1200 °C, its compression and bending strengths increased significantly to 43.26 MPa and 1.28 MPa, respectively; the surface roughness was 12 μm; and surface pores were of size 5–25 μm. Furthermore, the results of WST-1 and LDH assay indicate that the biocomposites showed no cytotoxicity on 3T3 fibroblast. An optical density (OD) of 1.1 was also achieved, and the specimen was suitable for the adhesion and growth of osteoblast-like cells (MG63). Therefore, the biocomposite bone scaffolds fabricated in this study have potential to be bone implants for developing hard tissue

  15. Novel bioactive polyester scaffolds prepared from unsaturated resins based on isosorbide and succinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Śmiga-Matuszowicz, Monika, E-mail: monika.smiga-matuszowicz@polsl.pl [Silesian University of Technology, Department of Physical Chemistry and Technology of Polymers, M. Strzody Street 9, 44-100 Gliwice (Poland); Janicki, Bartosz; Jaszcz, Katarzyna; Łukaszczyk, Jan [Silesian University of Technology, Department of Physical Chemistry and Technology of Polymers, M. Strzody Street 9, 44-100 Gliwice (Poland); Kaczmarek, Marcin [Silesian University of Technology, Department of Biomaterials and Medical Devices Engineering, de Gaulle' a Street 66, 41-800 Zabrze (Poland); Lesiak, Marta; Sieroń, Aleksander L. [Medical University of Silesia, Department of General and Molecular Biology and Genetics, Medyków Street 18, 40-752 Katowice (Poland); Simka, Wojciech [Silesian University of Technology, Department of Chemistry, Inorganic Technology and Fuels, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Mierzwiński, Maciej; Kusz, Damian [Medical University of Silesia, Department of Orthopedics and Traumatology, Ziołowa Street 45, 40-635 Katowice (Poland)

    2014-12-01

    In this study new biodegradable materials obtained by crosslinking poly(3-allyloxy-1,2-propylene succinate) (PSAGE) with oligo(isosorbide maleate) (OMIS) and small amount of methyl methacrylate were investigated. The porous scaffolds were obtained in the presence of a foaming system consisted of calcium carbonate/carboxylic acid mixture, creating in situ porous structure during crosslinking of liquid formulations. The maximum crosslinking temperature and setting time, the cured porous materials morphology as well as the effect of their porosity on mechanical properties and hydrolytic degradation process were evaluated. It was found that the kind of carboxylic acid used in the foaming system influenced compressive strength and compressive modulus of porous scaffolds. The MTS cytotoxicity assay was carried out for OMIS using hFOB1.19 cell line. OMIS resin was found to be non-toxic in wide range of concentrations. On the ground of scanning electron microscopy (SEM) observations and energy X-ray dispersive analysis (EDX) it was found that hydroxyapatite (HA) formation at the scaffolds surfaces within short period of soaking in phosphate buffer solution occurs. After 3 h immersion a compact layer of HA was observed at the surface of the samples. The obtained results suggest potential applicability of resulted new porous crosslinked polymeric materials as temporary bone void fillers. - Highlights: • Isosorbide-based resin was used as a component of biodegradable scaffolds. • CAC/carboxylic acid system was proven as facile method to obtain porous scaffolds. • Porous scaffolds displayed the formation of hydroxyapatite at their surfaces.

  16. Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Wang, Mian; Cheng, Xiaoqian; Zhu, Wei; Holmes, Benjamin; Keidar, Michael; Zhang, Lijie Grace

    2014-03-01

    The objective of this study was to design a biomimetic and bioactive tissue-engineered bone construct via a cold atmospheric plasma (CAP) treatment for directed osteogenic differentiation of human bone morrow mesenchymal stem cells (MSCs). Porous nanocrystalline hydroxyapatite/chitosan scaffolds were fabricated via a lyophilization procedure. The nanostructured bone scaffolds were then treated with CAP to create a more favorable surface for cell attachment, proliferation, and differentiation. The CAP-modified scaffolds were characterized via scanning electron microscope, Raman spectrometer, contact angle analyzer, and white light interferometer. In addition, optimal CAP treatment conditions were determined. Our in vitro study shows that MSC adhesion and infiltration were significantly enhanced on CAP modified scaffolds. More importantly, it was demonstrated that CAP-modified nanostructured bone constructs can greatly promote total protein, collagen synthesis, and calcium deposition after 3 weeks of culture, thus making them a promising implantable scaffold for bone regeneration. Moreover, the fibronectin and vitronection adsorption experiments by enzyme-linked immunosorbent assay demonstrated that more adhesion-mediated protein adsorption on the CAP-treated scaffolds. Since the initial specific protein absorption on scaffold surfaces can lead to further recruitment as well as activation of favorable cell functions, it is suggested that our enhanced stem cell growth and osteogenic function may be related to more protein adsorption resulting from surface roughness and wettability modification. The CAP modification method used in this study provides a quick one-step process for cell-favorable tissue-engineered scaffold architecture remodeling and surface property alteration.

  17. Sol-gel derived bioactive glasses with low tendency to crystallize: synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds.

    Science.gov (United States)

    Bellucci, Devis; Sola, Antonella; Salvatori, Roberta; Anesi, Alexandre; Chiarini, Luigi; Cannillo, Valeria

    2014-10-01

    A new sol-gel (SG) method is proposed to produce special bioactive glasses (BG_Ca family) characterized by a low tendency to devitrify. These formulations, derived from 45S5 Bioglass®, are characterized by a high content of CaO (45.6 mol%) and by a partial or complete substitution of sodium oxide with potassium oxide (total amount of alkaline oxides: 4.6 mol%), which increases the crystallization temperature up to 900°C. In this way, it is possible to produce them by SG preserving their amorphous nature, in spite of the calcination at 850°C. The sintering behavior of the obtained SG powders is thoroughly investigated and the properties of the sintered bodies are compared to those of the melt-derived (M) counterparts. Furthermore, the SG glass powders are successfully used to produce scaffolds by means of a modified replication technique based on the combined use of polyurethane sponges and polyethylene particles. Finally, in the view of a potential application for bone tissue engineering, the cytotoxicity of the produced materials is evaluated in vitro. PMID:25175252

  18. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol-Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering.

    Science.gov (United States)

    Ding, Yaping; Li, Wei; Müller, Teresa; Schubert, Dirk W; Boccaccini, Aldo R; Yao, Qingqing; Roether, Judith A

    2016-07-13

    Electrospinning of biopolymer and inorganic substances is one of the efficient ways to combine various advantageous properties in one single fibrous structure with potential for tissue engineering applications. In the present study, to integrate the high stiffness of polyhydroxybutyrate (PHB), the flexibility of poly(ε-caprolactone) (PCL) and the bioactivity of 58S bioactive glass, PHB/PCL/58S sol-gel bioactive glass hybrid scaffolds were fabricated using combined electrospinning and sol-gel method. Physical features such as fiber diameter distribution, mechanical strength and Young's modulus were characterized thoroughly. FTIR analysis demonstrated the successful incorporation of 58S bioactive glass into the blend polymers, which greatly improved the hydrophilicity of PHB/PCL fibermats. The primary biological response of MG-63 osteoblast-like cells on the prepared fibrous scaffolds was evaluated, proving that the 58S glass sol containing hybrid scaffold were not only favorable to MG-63 cell adhesion but also slightly enhanced cell viability and significantly increased alkaline phosphate activity . PMID:27295496

  19. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol-Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering.

    Science.gov (United States)

    Ding, Yaping; Li, Wei; Müller, Teresa; Schubert, Dirk W; Boccaccini, Aldo R; Yao, Qingqing; Roether, Judith A

    2016-07-13

    Electrospinning of biopolymer and inorganic substances is one of the efficient ways to combine various advantageous properties in one single fibrous structure with potential for tissue engineering applications. In the present study, to integrate the high stiffness of polyhydroxybutyrate (PHB), the flexibility of poly(ε-caprolactone) (PCL) and the bioactivity of 58S bioactive glass, PHB/PCL/58S sol-gel bioactive glass hybrid scaffolds were fabricated using combined electrospinning and sol-gel method. Physical features such as fiber diameter distribution, mechanical strength and Young's modulus were characterized thoroughly. FTIR analysis demonstrated the successful incorporation of 58S bioactive glass into the blend polymers, which greatly improved the hydrophilicity of PHB/PCL fibermats. The primary biological response of MG-63 osteoblast-like cells on the prepared fibrous scaffolds was evaluated, proving that the 58S glass sol containing hybrid scaffold were not only favorable to MG-63 cell adhesion but also slightly enhanced cell viability and significantly increased alkaline phosphate activity .

  20. Characterization of Hybrid Bioactive Glass-polyvinyl Alcohol Scaffolds Containing a PTHrP-derived Pentapeptide as Implants for Tissue Engineering Applications

    Science.gov (United States)

    Coletta, D.J.; Lozano, D.; Rocha-Oliveira, A.A.; Mortarino, P.; Bumaguin, G.E.; Vitelli, E.; Vena, R.; Missana, L.; Jammal, M. V.; Portal-Núñez, S.; Pereira, M.; Esbrit, P.; Feldman, S.

    2014-01-01

    Hybrid foam (BG-PVA) with 50 % Bioactive glass (BG) and 50 % polyvinyl alcohol (PVA) was prepared by sol-gel process to produce scaffolds for bone tissue engineering. The pore structure of hydrated foams was evaluated by 3-D confocal microscopy, confirming 70% porosity and interconnected macroporous network. In this study, we assessed the putative advantage of coating with osteostatin pentapeptide into BG-PVA hybrid scaffolds to improve their bioactivity. In vitro cell culture experiments were performed using mouse pre-osteoblastic MC3T3-E1 cell line. The exposure to osteostatin loaded-BG-PVA scaffolds increase cell proliferation in contrast with the unloaded scaffolds. An in vivo study was selected to implant BG-PVA scaffolds, non-coated (Group A) or coated (Group B) with osteostatin into non critical bone defect at rabbit femur. Both groups showed new compact bone formation on implant surface, with lamellae disposed around a haversian canal forming osteons-like structure. We observed signs of inflammation around the implanted unloaded scaffold at one month, but resolved at 3 months. This early inflammation did not occur in Group B; supporting the notion that osteostatin may act as anti-inflammatory inhibitor. On the other hand, Group B showed increased bone formation, as depicted by many new trabeculae partly mineralized in the implant regenerating area, incipient at 1 month and more evident at 3 months after implantation. PVA/BG hybrid scaffolds present a porous structure suitable to support osteoblast proliferation and differentiation. Our in vitro and in vivo findings indicate that osteostatin coating improves the osteogenic features of these scaffolds PMID:24772196

  1. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.

    Science.gov (United States)

    Boccardi, Elena; Melli, Virginia; Catignoli, Gabriele; Altomare, Lina; Jahromi, Maryam Tavafoghi; Cerruti, Marta; Lefebvre, Louis-Philippe; De Nardo, Luigi

    2016-02-02

    Large bone defects are challenging to heal, and often require an osteoconductive and stable support to help the repair of damaged tissue. Bioglass-based scaffolds are particularly promising for this purpose due to their ability to stimulate bone regeneration. However, processing technologies adopted so far do not allow for the synthesis of scaffolds with suitable mechanical properties. Also, conventional sintering processes result in glass de-vitrification, which generates concerns about bioactivity. In this work, we studied the bioactivity and the mechanical properties of Bioglass(®) based scaffolds, produced via a powder technology inspired process. The scaffolds showed compressive strengths in the range of 5-40 MPa, i.e. in the upper range of values reported so far for these materials, had tunable porosity, in the range between 55 and 77%, and pore sizes that are optimal for bone tissue regeneration (100-500 μm). We immersed the scaffolds in simulated body fluid (SBF) for 28 d and analyzed the evolution of the scaffold mechanical properties and microstructure. Even if, after sintering, partial de-vitrification occurred, immersion in SBF caused ion release and the formation of a Ca-P coating within 2 d, which reached a thickness of 10-15 μm after 28 d. This coating contained both hydroxyapatite and an amorphous background, indicating microstructural amorphization of the base material. Scaffolds retained a good compressive strength and structural integrity also after 28 d of immersion (6 MPa compressive strength). The decrease in mechanical properties was mainly related to the increase in porosity, caused by its dissolution, rather than to the amorphization process and the formation of a Ca-P coating. These results suggest that Bioglass(®) based scaffolds produced via powder metallurgy-inspired technique are excellent candidates for bone regeneration applications.

  2. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.

    Science.gov (United States)

    Boccardi, Elena; Melli, Virginia; Catignoli, Gabriele; Altomare, Lina; Jahromi, Maryam Tavafoghi; Cerruti, Marta; Lefebvre, Louis-Philippe; De Nardo, Luigi

    2016-02-01

    Large bone defects are challenging to heal, and often require an osteoconductive and stable support to help the repair of damaged tissue. Bioglass-based scaffolds are particularly promising for this purpose due to their ability to stimulate bone regeneration. However, processing technologies adopted so far do not allow for the synthesis of scaffolds with suitable mechanical properties. Also, conventional sintering processes result in glass de-vitrification, which generates concerns about bioactivity. In this work, we studied the bioactivity and the mechanical properties of Bioglass(®) based scaffolds, produced via a powder technology inspired process. The scaffolds showed compressive strengths in the range of 5-40 MPa, i.e. in the upper range of values reported so far for these materials, had tunable porosity, in the range between 55 and 77%, and pore sizes that are optimal for bone tissue regeneration (100-500 μm). We immersed the scaffolds in simulated body fluid (SBF) for 28 d and analyzed the evolution of the scaffold mechanical properties and microstructure. Even if, after sintering, partial de-vitrification occurred, immersion in SBF caused ion release and the formation of a Ca-P coating within 2 d, which reached a thickness of 10-15 μm after 28 d. This coating contained both hydroxyapatite and an amorphous background, indicating microstructural amorphization of the base material. Scaffolds retained a good compressive strength and structural integrity also after 28 d of immersion (6 MPa compressive strength). The decrease in mechanical properties was mainly related to the increase in porosity, caused by its dissolution, rather than to the amorphization process and the formation of a Ca-P coating. These results suggest that Bioglass(®) based scaffolds produced via powder metallurgy-inspired technique are excellent candidates for bone regeneration applications. PMID:26836444

  3. Enhancing the bioactivity of Poly(lactic-co-glycolic acid scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model

    Directory of Open Access Journals (Sweden)

    Wang DX

    2013-05-01

    the group of virgin PLGA scaffolds, as shown by X-ray, Micro-computerized tomography and histological examinations.Conclusion: nHA coating on the interior pore surfaces can significantly improve the bioactivity of PLGA porous scaffolds.Keywords: PLGA, nano-hydroxyapatite, bone tissue engineering, BMSCs, bone defect

  4. Multilayered Scaffolds for Osteochondral Tissue Engineering Based on Bioactive Glass and Biodegradable Polymers

    OpenAIRE

    Nooeaid, Patcharakamon

    2014-01-01

    Injuries of the articular cartilage may penetrate to the underlying subchondral bone, forming osteochondral defects which have a limited capacity of self-regeneration. Accompanied with limited surgical treatments and the fact that the causes are not understood well, an approach based in tissue engineering becomes a promising strategy for osteochondral repair. Such tissue engineering approaches are based on the combination of synthetic scaffolds, suitable cell sources and active molecules or g...

  5. A layered electrospun and woven surgical scaffold to enhance endogenous tendon repair.

    Science.gov (United States)

    Hakimi, O; Mouthuy, P A; Zargar, N; Lostis, E; Morrey, M; Carr, A

    2015-10-01

    Surgical reattachments of tendon to bone in the rotator cuff are reported to fail in around 40% of cases. There are no adequate solutions to improve tendon healing currently available. Electrospun, sub-micron materials, have been extensively studied as scaffolds for tendon repair with promising results, but are too weak to be surgically implanted or to mechanically support the healing tendon. To address this, we developed a bonding technique that enables the processing of electrospun sheets into multi-layered, robust, implantable fabrics. Here, we show a first prototype scaffold created with this method, where an electrospun sheet was reinforced with a woven layer. The resulting scaffold presents a maximum suture pull out strength of 167N, closely matched with human rotator cuff tendons, and the desired nanofibre-mediated bioactivity in vitro and in vivo. This type of scaffold has potential for broader application for augmenting other soft tissues. PMID:26275911

  6. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones

    International Nuclear Information System (INIS)

    Reconstruction of critical size defects in the load-bearing area has long been a challenge in orthopaedics. In the past, we have demonstrated the feasibility of using a biodegradable load-sharing scaffold fabricated from poly(propylene fumarate)/tricalcium phosphate (PPF/TCP) loaded with bone morphogenetic protein-2 (BMP-2) to successfully induce healing in those defects. However, there is limited osteoconduction observed with the PPF/TCP scaffold itself. For this reason, 13-93 bioactive glass scaffolds with local BMP-2 delivery were investigated in this study for inducing segmental defect repairs in a load-bearing region. Furthermore, a recent review on BMP-2 revealed greater risks in radiculitis, ectopic bone formation, osteolysis and poor global outcome in association with the use of BMP-2 for spinal fusion. We also evaluated the potential side effects of locally delivered BMP-2 on the structures of adjacent bones. Therefore, cylindrical 13-93 glass scaffolds were fabricated by indirect selective laser sintering with side holes on the cylinder filled with dicalcium phosphate dehydrate as a BMP-2 carrier. The scaffolds were implanted into critical size defects created in rat femurs with and without 10 μg of BMP-2. The x-ray and micro-CT results showed that a bridging callus was found as soon as three weeks and progressed gradually in the BMP group while minimal bone formation was observed in the control group. Degradation of the scaffolds was noted in both groups. Stiffness, peak load and energy to break of the BMP group were all higher than the control group. There was no statistical difference in bone mineral density, bone area and bone mineral content in the tibiae and contralateral femurs of the control and BMP groups. In conclusion, a 13-93 bioactive glass scaffold with local BMP-2 delivery has been demonstrated for its potential application in treating large bone defects. (paper)

  7. The Influence of Lyophilized EmuGel Silica Microspheres on the Physicomechanical Properties, In Vitro Bioactivity and Biodegradation of a Novel Ciprofloxacin-Loaded PCL/PAA Scaffold

    Directory of Open Access Journals (Sweden)

    Mostafa Mabrouk

    2016-06-01

    Full Text Available A new composite poly(caprolactone (PCL and poly(acrylic acid (PAA (PCL:PAA 1:5 scaffold was synthesized via dispersion of PCL particles into a PAA network. Silica microspheres (Si (2–12 μm were then prepared by a lyophilized micro-emulsion/sol-gel (Emugel system using varying weight ratios. The model drug ciprofloxacin (CFX was used for in situ incorporation into the scaffold. The physicochemical and thermal integrity, morphology and porosity of the system was analyzed by X-Ray Diffraction (XRD, Attenuated Total Refelctance Fourier Transform Infrared (ATR-FTIR, Differential Scanning Calorimetry (DSC, SEM, surface area analysis and liquid displacement, respectively. The mechanical properties of the scaffold were measured by textural analysis and in vitro bioactivity, biodegradation and pH variations were evaluated by XRD, FTIR and SEM after immersion in Simulated Body Fluid (SBF. The in vitro and in vivo studies of the prepared scaffold were considered as future aspects for this study. CFX release was determined in phosphate buffer saline (PBS (pH 7.4; 37 °C. The incorporation of the Si microspheres and CFX into the scaffold was confirmed by XRD, FTIR, DSC and SEM, and the scaffold microstructure was dependent on the concentration of Si microspheres and the presence of CFX. The system displayed enhanced mechanical properties (4.5–14.73 MPa, in vitro bioactivity, biodegradation and controlled CFX release. Therefore, the PCL/PAA scaffolds loaded with Si microspheres and CFX with a porosity of up to 87% may be promising for bone tissue engineering.

  8. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.

    Science.gov (United States)

    Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng

    2015-07-01

    Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials.

  9. Synthesis of biomedical composite scaffolds by laser sintering: Mechanical properties and in vitro bioactivity evaluation

    Science.gov (United States)

    Liu, Fwu-Hsing

    2014-04-01

    In this study, biomedical composite materials were employed to fabricate bone scaffolds using a self-developed rapid prototyping (RP) apparatus. The slurry formed by combining hydroxyapatite (HA), silica sol, and sodium tripolyphosphate (STPP) was heated by a CO2 laser. Under appropriate processing parameters, a biocomposite green body was subsequently fabricated. Its mechanical properties, including surface roughness, bending and compression strengths, volume shrinkage rate, and surface microstructure, were analyzed after heat treatment to 1200 °C, 1300 °C, and 1400 °C. The results showed that after heating the specimen to 1200 °C, its compression and bending strengths increased significantly to 43.26 MPa and 1.28 MPa, respectively; the surface roughness was 12 μm; and surface pores were of size 5-25 μm. Furthermore, the results of WST-1 and LDH assay indicate that the biocomposites showed no cytotoxicity on 3T3 fibroblast. An optical density (OD) of 1.1 was also achieved, and the specimen was suitable for the adhesion and growth of osteoblast-like cells (MG63). Therefore, the biocomposite bone scaffolds fabricated in this study have potential to be bone implants for developing hard tissue.

  10. Processing and characterization of poly(lactic acid based bioactive composites for biomedical scaffold application

    Directory of Open Access Journals (Sweden)

    J. Goswami

    2013-09-01

    Full Text Available The current study focuses on three-components material systems (poly(lactic acid (PLA, poly(ε-caprolactone (PCL and wollastonite (W in view of possible application a biomedical scaffold constructs. Melt extruded PLA/PCL/W composites (PLCL15, PLCLW1, PLCLW4, PLCLW8 containing 0, 1, 4, 8 phr filler respectively are batch foamed using compressed CO2 and the porous foams are studied for in vitro biocompatibility by seeding osteoblast cells. SEM images of the unfoamed polymers show immiscibility in all compositions. Materials have been tested under compressive load using dry and wet conditions (using phosphate buffered saline at pH 7.4 for in vitro study. Contact angle measurement shows enhanced hydrophilicity in the composites changing from 80° in PLCL15 to 72° in PLCLW8. The foams are found to be microcellular (5–8 µm in morphology showing quite uniform pore distribution in the composites. The prepared foams, when studied as scaffold constructs, show osteoblast cell attachment and proliferation over the incubation period of 7 days. As expected, PLCLW8 containing highest amount of CaSiO3 supported maximum cell growth on its surface as visible from MTT assay data and SEM scans.

  11. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Gandhimathi, Chinnasamy [Cellular and Molecular Epigenetics Lab, Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Venugopal, Jayarama Reddy [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, National University of Singapore (Singapore); Tham, Allister Yingwei [Cellular and Molecular Epigenetics Lab, Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, National University of Singapore (Singapore); Kumar, Srinivasan Dinesh, E-mail: dineshkumar@ntu.edu.sg [Cellular and Molecular Epigenetics Lab, Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore)

    2015-04-01

    Mimicking native extracellular matrix with electrospun porous bio-composite nanofibrous scaffolds has huge potential in bone tissue regeneration. The aim of this study is to fabricate porous poly(L-lactic acid)-co-poly-(ε-caprolactone)/silk fibroin/ascorbic acid/tetracycline hydrochloride (PLACL/SF/AA/TC) and nanohydroxyapatite (n-HA) was deposited by calcium-phosphate dipping method for bone tissue engineering (BTE). Fabricated nanofibrous scaffolds were characterized for fiber morphology, hydrophilicity, porosity, mechanical test and chemical properties by FT-IR and EDX analysis. The results showed that the fiber diameter and pore size of scaffolds observed around 228 ± 62–320 ± 22 nm and 1.5–6.9 μm respectively. Resulting nanofibrous scaffolds are highly porous (87–94%) with ultimate tensile strength observed in the range of 1.51–4.86 MPa and also showed better hydrophilic properties after addition of AA, TC and n-HA. Human mesenchymal stem cells (MSCs) cultured on these bio-composite nanofibrous scaffolds and stimulated to osteogenic differentiation in the presence of AA/TC/n-HA for BTE. The cell proliferation and biomaterial interactions were studied using MTS assay, SEM and CMFDA dye exclusion methods. Osteogenic differentiation of MSCs was proven by using alkaline phosphatase activity, mineralization and double immunofluorescence staining of both CD90 and osteocalcin. The observed results suggested that the fabricated PLACL/SF/AA/TC/n-HA biocomposite hybrid nanofibrous scaffolds have good potential for the differentiation of MSCs into osteogenesis for bone tissue engineering. - Highlights: • We fabricated and characterized hybrid porous nanofibrous scaffolds. • PLACL/SF/AA/TC/n-HA scaffolds promote cell differentiation and mineralization. • Porous nanofibrous scaffolds initiate MSC differentiation into osteogenic cells. • Biomimetic nanofibrous scaffolds have good potential for bone tissue engineering.

  12. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells

    International Nuclear Information System (INIS)

    Mimicking native extracellular matrix with electrospun porous bio-composite nanofibrous scaffolds has huge potential in bone tissue regeneration. The aim of this study is to fabricate porous poly(L-lactic acid)-co-poly-(ε-caprolactone)/silk fibroin/ascorbic acid/tetracycline hydrochloride (PLACL/SF/AA/TC) and nanohydroxyapatite (n-HA) was deposited by calcium-phosphate dipping method for bone tissue engineering (BTE). Fabricated nanofibrous scaffolds were characterized for fiber morphology, hydrophilicity, porosity, mechanical test and chemical properties by FT-IR and EDX analysis. The results showed that the fiber diameter and pore size of scaffolds observed around 228 ± 62–320 ± 22 nm and 1.5–6.9 μm respectively. Resulting nanofibrous scaffolds are highly porous (87–94%) with ultimate tensile strength observed in the range of 1.51–4.86 MPa and also showed better hydrophilic properties after addition of AA, TC and n-HA. Human mesenchymal stem cells (MSCs) cultured on these bio-composite nanofibrous scaffolds and stimulated to osteogenic differentiation in the presence of AA/TC/n-HA for BTE. The cell proliferation and biomaterial interactions were studied using MTS assay, SEM and CMFDA dye exclusion methods. Osteogenic differentiation of MSCs was proven by using alkaline phosphatase activity, mineralization and double immunofluorescence staining of both CD90 and osteocalcin. The observed results suggested that the fabricated PLACL/SF/AA/TC/n-HA biocomposite hybrid nanofibrous scaffolds have good potential for the differentiation of MSCs into osteogenesis for bone tissue engineering. - Highlights: • We fabricated and characterized hybrid porous nanofibrous scaffolds. • PLACL/SF/AA/TC/n-HA scaffolds promote cell differentiation and mineralization. • Porous nanofibrous scaffolds initiate MSC differentiation into osteogenic cells. • Biomimetic nanofibrous scaffolds have good potential for bone tissue engineering

  13. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    International Nuclear Information System (INIS)

    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(L-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, hmax max >75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells. - Highlights: ► Polyaniline and its copolymer's nanofibres were prepared by electrospinning. ► The elastic modulus of a single polyaniline composite nanofibres were determined. ► Elastic moduli of the nanofibres are much higher at the surface than the inner core. ► The electrospun mats supported the cell adhesion and proliferation. ► The nanofibres show great promise as a scaffold for adipose derived stem cells

  14. Poly (L-lactide-co-e caprolactone) microspheres laden with bioactive glass-ceramic and alendronate sodium as bone regenerative scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Titash [Sree Chitra Tirunal Institute of Medical Science and Technology, Biomedical Technology Wing, Thiruvananthpuram-695012 (India); Rubber Technology Centre, Indian Institute of Technology, Kharagpur-721302, West Bengal (India); Sunny, M.C. [Sree Chitra Tirunal Institute of Medical Science and Technology, Biomedical Technology Wing, Thiruvananthpuram-695012 (India); Khastgir, D. [Rubber Technology Centre, Indian Institute of Technology, Kharagpur-721302, West Bengal (India); Varma, H.K. [Sree Chitra Tirunal Institute of Medical Science and Technology, Biomedical Technology Wing, Thiruvananthpuram-695012 (India); Ramesh, P., E-mail: rameshsct@gmail.com [Sree Chitra Tirunal Institute of Medical Science and Technology, Biomedical Technology Wing, Thiruvananthpuram-695012 (India)

    2012-05-01

    Microspheric scaffolds of poly-(lactide-co-caprolactone) loaded with alendronate sodium, a family precursor of bisphosphonate drug and bioactive glass-ceramic (BGS) were prepared for the treatment of osteoporosis like bone defects with the rationale of getting a combined effect/concurrent advantage of osteoclast apoptosis as well as the augmentation of bone regeneration. The porous microspheres were generated by oil in water/solvent evaporation technique. The distribution of bioactive glass-ceramic was evidenced by the microcomputed tomography ({mu}-CT) and scanning electron microscopy analyses. The microspheres were evaluated for their in vitro cytocompatibility using L929 cell line and were found to be noncytotoxic. The osteoinductivity of the scaffold was assessed by its response in simulated body fluid and observed an excellent hydroxy carbonate apatite (HCA) layer formation on the surface which revealed the bone bonding and bone regeneration capability of the scaffold. The cell adhesion studies was performed with L-929 cell line and a marking cell growth on the surface as well as in the pores of the bioactive glass-ceramic as well as bioactive glass-ceramic cum drug incorporated microspheres was evidenced by the Confocal laser scanning microscopy (CLSM) investigation. No cell adhesion was observed onto the surface of the bare microspheres prepared by the copolymer alone where as the bioactive glass-ceramic and drug cum bioactive glass-ceramic loaded microspheres were found to promote the cell adhesion. The viability of the adhered cells on the microspheres was checked by flourescein diacetate (FDA) staining and it was observed that the adhered cells were viable and metabolically active. The release of the drug, alendronate sodium, directly into the problem site makes the presently prepared microsphere superior to the oral variety of drug available which is associated with oral discomfort and low bioavailability. - Highlights: Black

  15. Engineered Hybrid Scaffolds of Poly(vinyl alcohol)/Bioactive Glass for Potential Bone Engineering Applications: Synthesis, Characterization, Cytocompatibility, and Degradation

    OpenAIRE

    Costa, Hermes S; Mansur, Alexandra A.P.; Marivalda M. Pereira; Mansur, Herman S

    2012-01-01

    The synthesis, characterization, preliminary cytocompatibility, and degradation behavior of the hybrids based on 70% Poly(vinyl alcohol) and 30% bioactive glass (58SiO2–33CaO–9P2O5, BaG) with macroporous tridimensional structure is reported for the first time. The effect of glutaraldehyde covalent crosslinker in the organic-inorganic nanostructures produced and, as a consequence, tailoring the hybrids properties was investigated. The PVA/BaG hybrids scaffolds are characterized by Fourier tran...

  16. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis

    Science.gov (United States)

    Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.

    2015-11-01

    Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes.

  17. Fabrication and Properties of Poly(L-Lactide)/Nano-Hydroxyapatite Composite Nano-Fibrous Scaffold by a Phase Separation Technique%相分离法构建聚乳酸/纳米羟基磷灰石复合纳米纤维支架及性能

    Institute of Scientific and Technical Information of China (English)

    韩婉清; 屠美; 赵剑豪; 曾戎; 施云峰; 查振刚; 周长忍

    2011-01-01

    通过液.液相分离法构建纳米纤维聚左旋乳酸/蚋米羟基磷灰石(NF-PLLA/nHA)仿生复合支架,利用扫描电镜、压缩测试、微量二喹啉甲酸(BCA)法、X射线衍射及差示扫描量热等手段对其进行表征.结果显示,nHA均匀馕嵌在PLLA纳米纤维间隙中,不影响其纳米纤维结构且明显提高力学性能.同时,nHA的引入还能增加对牛血清白蛋白的吸附.PUA的结晶度稍有下降,但结晶形态不变.因此,NF-PLLA/nHA复合支架有望成为优良的仿生骨组织工程支架.%The composite nano-fibrous scaffold of poly (L-lactic acid) (PLLA) and nano-hydroxyapatite (nHA),named as NF-PLLA/nHA, was prepared by a liquid-liquid phase separation technique. The properties of the scaffold were characterized by scanning electron microscopy, compression test, micro-Bicinchoninic acid (BCA) analysis, Xray diffraction and differential scanning calorimetry, respectively. The results show that nHA uniformly distributes among PLLA nano-fibers without obvious effect on the PLLA nano-fibrous structure. The compressive modulus and the adsorption amount of the bovine serum albumin of NF-PLLA/nHA scaffold were distinctly improved by increasing nHA content, whereas the crystallinity of PLLA was somewhat reduced with unchangeable crystal form.Hence, the NF-PLLA/nHA scaffold will be a promising candidate for the bone tissue engineering.

  18. Bioactive Gyroid Scaffolds Formed by Sacrificial Templating of Nanocellulose and Nanochitin Hydrogels as Instructive Platforms for Biomimetic Tissue Engineering

    OpenAIRE

    Torres-Rendon, Jose Guillermo; Femmer, Tim; De Laporte, Laura; Tigges, Thomas; Rahimi, Khoshrow; Gremse, Felix; Zafarnia, Sara; Lederle, Wiltrud; Ifuku, Shinsuke; Wessling, Matthias; Hardy, John G.; Walther, Andreas

    2015-01-01

    A sacrificial templating process using lithographically printed minimal surface structures allows complex de novo geometries of delicate hydrogel materials. The hydrogel scaffolds based on cellulose and chitin nanofibrils show differences in terms of attachment of human mesenchymal stem cells, and allow their differentiation into osteogenic outcomes. The approach here serves as a first example toward designer hydrogel scaffolds viable for biomimetic tissue engineering.

  19. Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Calcium phosphate (Ca-P scaffolds have been widely employed as a supportive matrix and delivery system for bone tissue engineering. Previous studies using osteoinductive growth factors loaded Ca-P scaffolds via passive adsorption often experience issues associated with easy inactivation and uncontrolled release. In present study, a new delivery system was fabricated using bone morphogenetic protein-2 (BMP-2 loaded calcium-deficient hydroxyapatite (CDHA scaffold by lyophilization with addition of trehalose. The in vitro osteogenesis effects of this formulation were compared with lyophilized BMP-2/CDHA construct without trehalose and absorbed BMP-2/CDHA constructs with or without trehalose. The release characteristics and alkaline phosphatase (ALP activity analyses showed that addition of trehalose could sufficiently protect BMP-2 bioactivity during lyophilization and achieve sustained BMP-2 release from lyophilized CDHA construct in vitro and in vivo. However, absorbed BMP-2/CDHA constructs with or without trehalose showed similar BMP-2 bioactivity and presented a burst release. Quantitative real-time PCR (RT-qPCR and enzyme-linked immunosorbent assay (ELISA demonstrated that lyophilized BMP-2/CDHA construct with trehalose (lyo-tre-BMP-2 promoted osteogenic differentiation of bone marrow stromal cells (bMSCs significantly and this formulation could preserve over 70% protein bioactivity after 5 weeks storage at 25°C. Micro-computed tomography, histological and fluorescent labeling analyses further demonstrated that lyo-tre-BMP-2 formulation combined with bMSCs led to the most percentage of new bone volume (38.79% ± 5.32% and area (40.71% ± 7.14% as well as the most percentage of fluorochrome stained bone area (alizarin red S: 2.64% ± 0.44%, calcein: 6.08% ± 1.37% and mineral apposition rate (4.13 ± 0.62 µm/day in critical-sized rat cranial defects healing. Biomechanical tests also indicated the maximum stiffness (118.17 ± 15.02 Mpa and

  20. Bone Tissue Engineering with Adipose-Derived Stem Cells in Bioactive Composites of Laser-Sintered Porous Polycaprolactone Scaffolds and Platelet-Rich Plasma

    Directory of Open Access Journals (Sweden)

    Han-Tsung Liao

    2013-10-01

    Full Text Available Three-dimensional porous polycaprolactone (PCL scaffolds with consistent inter-pore channels, 83% porosity and 300–400 μm pore size were fabricated via selective laser sintering. The PCL scaffold was combined with platelet-rich plasma (PRP to form a bioactive composite and studied for potential application in bone tissue engineering using porcine adipose-derived stem cells (PASCs. The PCL/PRP/PASCs construct showed enhanced cell seeding efficiency and synergistically increased the differentiation capability of PASCs in osteogenic medium toward the osteoblast lineage, judging from elevated alkaline phosphatase activity and up-regulated osteogenic genes expression. For in vivo study, a 3 cm × 3 cm mandible defect was created in pigs and reconstructed by implanting acellular PCL scaffolds or PCL/PRP/PASCs constructs. Both groups showed new bone formation, however, the new bone volume was 5.1 times higher for PCL/PRP/PASCs 6 months post-operation. The bone density was less and loose in the acellular PCL group and the Young’s modulus was only 29% of normal bone. In contrast, continued and compact bone formation was found in PCL/PRP/PASCs and the Young’s modulus was 81% that of normal bone. Masson’s trichrome stain, immunohistochemical analysis of osteocalcin and collagen type I also confirmed new bone formation.

  1. A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Tambralli, Ajay; Blakeney, Bryan; Anderson, Joel; Kushwaha, Meenakshi; Andukuri, Adinarayana; Jun, Ho-Wook [Department of Biomedical Engineering, University of Alabama at Birmingham, 801 Shelby Building, 1825 University Boulevard, Birmingham, AL 35294 (United States); Dean, Derrick [Department of Materials Science and Engineering, University of Alabama at Birmingham, BEC 254, 1150 10th Ave South, Birmingham, AL 35294 (United States)], E-mail: hwjun@uab.edu

    2009-06-01

    Nanofibrous electrospun poly ({epsilon}-caprolactone) (ePCL) scaffolds have inherent structural advantages, but lack of bioactivity has limited their usefulness in biomedical applications. Thus, here we report the development of a hybrid, nanostructured, extracellular matrix (ECM) mimicking scaffold by a combination of ePCL nanofibers and self-assembled peptide amphiphile (PA) nanofibers. The PAs have ECM mimicking characteristics including a cell adhesive ligand (RGDS) and matrix metalloproteinase-2 (MMP-2) mediated degradable sites. Transmission electron microscope imaging verified successful PA self-assembly into nanofibers (diameters of 8-10 nm) using a solvent evaporation method. This evaporation method was then used to successfully coat PAs onto ePCL nanofibers (diameters of 300-400 nm), to develop hybrid, bioactive scaffolds. Scanning electron microscope characterization showed that the PA coatings did not interfere with the porous ePCL nanofiber network. Human mesenchymal stem cells (hMSCs) were seeded onto the hybrid scaffolds to evaluate their bioactivity. Significantly greater attachment and spreading of hMSCs were observed on ePCL nanofibers coated with PA-RGDS as compared to ePCL nanofibers coated with PA-S (no cell adhesive ligand) and uncoated ePCL nanofibers. Overall, this novel strategy presents a new solution to overcome the current bioactivity challenges of electrospun scaffolds and combines the unique characteristics of ePCL nanofibers and self-assembled PA nanofibers to provide an ECM mimicking environment. This has great potential to be applied to many different electrospun scaffolds for various biomedical applications.

  2. FGL-functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells

    International Nuclear Information System (INIS)

    A class of designed self-assembling peptide nanofiber scaffolds has been shown to be a good biomimetic material in tissue engineering. Here, we specifically made a new peptide hydrogel scaffold FGLmx by mixing the pure RADA16 and designer functional peptide RADA16-FGL solution, and we analyzed the physiochemical properties of each peptide with atomic force microscopy (AFM) and circular dichroism (CD). In addition, we examined the biocompatibility and bioactivity of FGLmx as well as RADA16 scaffold on spinal cord-derived neural stem cells (SC-NSCs) isolated from neonatal rats. Our results showed that RADA16-FGL displayed a weaker β-sheet structure and FGLmx could self-assemble into nanofibrous morphology. Moreover, we found that FGLmx was not only noncytotoxic to SC-NSCs but also promoted SC-NSC proliferation and migration into the three-dimensional (3-D) scaffold, meanwhile, the adhesion and lineage differentiation of SC-NSCs on FGLmx were similar to that on RADA16. Our results indicated that the FGL-functionalized peptide scaffold might be very beneficial for tissue engineering and suggested its further application for spinal cord injury (SCI) repair. - Highlights: • RADA16 and RADA16-FGL peptides were synthesized and characterized. • Rat spinal cord neural stem cells were successfully isolated and characterized. • We provided an induction method for mixed differentiation of neural stem cells. • FGL scaffold had good biocompatibility and bioactivity with neural stem cells

  3. Cellulose acetate electrospun nanofibrous membrane: fabrication, characterization, drug loading and antibacterial properties

    Indian Academy of Sciences (India)

    NAZNIN SULTANA; ANISAH ZAINAL

    2016-04-01

    Cellulose-based materials are one of the most commonly used materials for biomedical applications, which normally applied as carriers for pharmaceuticals and drug-releasing scaffolds. In this study, cellulose acetate (CA) was used to fabricate the nanofibrous membrane using the electrospinning technique. CA solutions at different concentrations were prepared by dissolving the polymer in a mixture of acetic acid/acetone solvents with the ratio of 3:1. The field emission scanning electron microscope results showed that electrospinning of 10% (w/v) CA produced nanofibres with many beads. When the CA concentration was increased to 14% (w/v), bead-free nanofibres were produced. The contact angle measurement results confirmed the hydrophilic properties of nanofibres. In order to prevent common bacterial infections, a model drug, Tetracycline · HCL was incorporated into the CA nanofibres. The drug-loaded CA nanofibres showed antibacterial activity against Gram-positive and Gram-negative bacteria.CA nanofibres had high water uptake properties. The CA nanofibrous membrane was non-toxic to human skin fibroblast cells. Thus the CA nanofibres with 14% (w/v) concentration exerted suitable properties for wound healingapplication.

  4. 聚丙烯腈静电纺丝膜表面界面聚合制备复合纳滤膜%Preparation of novel nanofiltration membrane by interfacial polymerization on polyacrylonitrile nanofibrous scaffolds

    Institute of Scientific and Technical Information of China (English)

    顾红霞; 潘凯; 董泽刚; 曹兵

    2012-01-01

    A novel composite nanofiltration membranes were prepared by interfacial polymerization method using polyacrylonitrile nanofibrous electrospinned scaffolds as support, piperazine (PIP) and trimesoyl chloride (TMC) as monomers. The properties of composite membranes were characterized. This research concentrated on the effect of monomer concentration. The surface chemical composition was investigated by ATR-FTIR; and the surface and cross-section microstructure was characterized by SEM. The separation properties was also tested, and the composite membrane's rejection rates of 2 000 mg/L NaCl, 2 000 mg/L Na2SO4, 10 mg/L Fast Green and 10 mg/L methyl orange were 27. 92%, 95. 13%, 93. 59% and 95. 81% respectively, under 0. 3 Mpa and 25℃. And the water flux was about 14 L/(m2·h) under 0. 3 Mpa and 25 ℃.%以聚丙烯腈静电纺丝膜为基膜,哌嗪(PIP)和均苯三甲酰氯(TMC)为单体,采用界面聚合法制备新型的复合纳滤膜,并对其性能进行了表征.实验重点研究了界面聚合中参加反应单体的浓度对界面聚合的影响.并用表面全反射红外光谱(ATR-FTIR)和扫描电镜(SEM)分别对界面聚合前后膜表面化学组成和膜表面、断面的微观结构进行了表征.最后还对复合膜的分离性能进行了测试,在0.3 MPa、25℃条件下,膜的纯水通量为14 L/(m2· h),复合膜对2 000 mg/L NaCl和Na2 SO4以及10 mg/L的固绿和甲基橙小分子的截留率分别为27.92%、95.13%、93.59%和95.81%,达到了纳滤分离级别.

  5. 45S5 Bioactive Glass-Based Composite Scaffolds with Polymer Coatings for Bone Tissue Engineering Therapeutics

    OpenAIRE

    Li, Wei

    2015-01-01

    Bone tissue engineering is a rapidly developing interdisciplinary field. An effective approach to bone tissue engineering aims to restore the function of damaged bone tissue or to regenerate bone tissue with the aid of scaffolds made from engineered biomaterials. The scaffolds should act as temporary matrices for cell attachment, proliferation, migration, differentiation and extracellular matrix deposition, with consequent bone ingrowth until the new bone tissue is totally restored or regener...

  6. Mechanical properties of single electrospun drug-encapsulated nanofibres

    Science.gov (United States)

    Yian Chew, Sing; Hufnagel, Todd C.; Teck Lim, Chwee; Leong, Kam W.

    2006-08-01

    The mechanical and structural properties of a surface play an important role in determining the morphology of attached cells, and ultimately their cellular functions. As such, mechanical and structural integrity are important design parameters for a tissue scaffold. Electrospun fibrous meshes are widely used in tissue engineering. When in contact with electrospun scaffolds, cells see the individual micro- or nanofibres as their immediate microenvironment. In this study, tensile testing of single electrospun nanofibres composed of poly(ɛ-caprolactone) (PCL), and its copolymer, poly(caprolactone-co-ethyl ethylene phosphate) (PCLEEP), revealed a size effect in the Young's modulus, E, and tensile strength, σT. Both strength and stiffness increase as the fibre diameter decreases from bulk (~5 µm) into the nanometre region (200 300 nm). In particular, E and σT of individual PCL nanofibres were at least two-fold and an order of magnitude higher than that of PCL film, respectively. PCL films were observed to have more pronounced crystallographic texture than the nanofibres; however no difference in crystalline fraction, perfection, or texture was detected among the various fibres. When drugs were encapsulated into single PCLEEP fibres, mechanical properties were enhanced with 1 20 wt% of loaded retinoic acid, but weakened by 10 20 wt% of encapsulated bovine serum albumin. This understanding of the effect of size and drug and protein encapsulation on the mechanical properties of electrospun fibres may help in the optimization of tissue scaffold design that combines biochemical and biomechanical cues for tissue regeneration.

  7. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Rahman, Norizah, E-mail: norizah@science.putra.edu.my [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Department of Chemistry, University of Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan (Malaysia); Feisst, Vaughan [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dickinson, Michelle E. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Malmström, Jenny [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dunbar, P. Rod [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Maurice Wilkins Centre, Private Bag 92019, Auckland (New Zealand); Travas-Sejdic, Jadranka, E-mail: j.travas-sejdic@auckland.ac.nz [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, P.O. Box 600, Wellington 6140 (New Zealand)

    2013-02-15

    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(L-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, h{sub max} <75 nm) than in the inner fibre core (2–4 GPa, h{sub max} >75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells. - Highlights: ► Polyaniline and its copolymer's nanofibres were prepared by electrospinning. ► The elastic modulus of a single polyaniline composite nanofibres were determined. ► Elastic moduli of the nanofibres are much higher at the surface than the inner core. ► The electrospun mats supported the cell adhesion and proliferation. ► The nanofibres show great promise as a scaffold for adipose derived stem cells.

  8. Impact of electrospun nanofibres orientation on mesenchymal stem cell adhesion and morphology

    International Nuclear Information System (INIS)

    Electrospun nanofibrous materials mimicking the architecture of native extracellular matrix (ECM) hold great promise as scaffolds in tissue engineering. In order to optimize the properties of nanofibrous scaffolds it is important to understand the impact of fibres’ organization on cell behaviour. Herein, we investigated the effect of nanofibres (NFs) alignment on human adipose-derived mesenchymal stem cells (hAD-MSCs) adhesion and morphology. Electrospun composite fibrinogen/poly-lactic acid (FNG/PLA) NF scaffolds with same composition and comparable fibre size were fabricated into randomly oriented and aligned configuration and stem cells adhesion was characterized by the meaning of overall cell morphology, actin cytoskeleton organization and expression of molecules, involved in the development of focal adhesion complexes. We found that hAD-MSCs altered their morphology, actin cytoskeleton and cell attachment in accordance with nanofibre orientation while cell spreading, focal adhesions and expression of β1 and αN integrin receptors were not influenced significantly by fibre orientation. These results confirmed that fibre alignment of scaffold guide cellular arrangement and could be beneficial for stem differentiation and therefore for the successful scaffolds development if its contact guidance coincided with the cell shape and cytoskeletal tension. Key words: electrospinning, human adipose-derived stem cells, fibrinogen/polylactic acid hybrid nanofibres

  9. Preparation of different ratio of PLGA / β-tricalcium phosphate electrospun nanofibrous scaffolds and test%不同比例PLGA/β-TCP电纺纤维支架的制备与性能研究

    Institute of Scientific and Technical Information of China (English)

    谢江徽; 贾骏; 刘一涵; 延卫; 张少锋

    2011-01-01

    目的:通过静电纺丝法制备不同比例PLGA/β-TCP纳米纤维支架,筛选出最合适比例,以便为进一步的体内植入提供依据.方法:利用静电纺丝法制备比例为10:0、9:1、8:2、7:3、6:4、5:5的PLGA/β-TCP纳米纤维支架,扫描电镜观察纤维支架的多孔结构,液体置换法测量支架的孔隙率:分别于1%胰酶PBS溶液中进行体外降解,测定材料的降解性;接触角仪测量材料的接触角,评价其亲水性能.结果:电镜观察显示制备的不同比例的PLGA/β-TCP纤维中(除6:4、5:5组),直径均一,呈相互联通的三维多孔结构,各组支架材料的孔隙率均>80%,其中6:4、5:5组的孔隙率>85%,电镜下观察纤维成分有限,大部分为颗粒状,不具有多孔支架的三维结构;体外降解实验中7:3、6:4、5:5组均在第7周时完全降解.结论:通过静电纺丝法制备不同比例的PLGA/TCP支架材料,9:1、8:2、7:3组均符合骨组织工程要求,体外降解实验中,7:3组的降解率较另两组材料为优,具有用作体内骨修复材料的潜力.%Objective:To prepare the different ratio of PLGA / β-tricalcium phosphate electrospun nanofibrous scaf-folds and select the more suitable ratio so as to procide a basis for further research of implant. Method: The nanofiber scaf-folds of PLGA / β-TCP with different component ratio(10:0,9:1,8:2,7:3,6:4,5:5) were prefabricated by electrospinning technology. The porous structure of nanofiber was observed under scanning electron microscope (SEM), and the porosity was assayed with stereometry .The materials were placed into 1 % pancreatin PBS, then degraded in vitro, measured the biodegradability of the materials. The hydrophilic of the materials was evaluated by the contact angle which measured by contact angle mater. Result: The SEM images showed that the different ratio of PLGA / p-TCP nanofibers (except 6:4 and 5:5) are smooth and uniform with the interwoven and porous morphology.The average porosity

  10. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold

    Directory of Open Access Journals (Sweden)

    Chen XH

    2015-01-01

    Full Text Available Xiaohui Chen,1,2,* Yanbing Zhao,3,* Shinan Geng,3 Richard J Miron,1 Qiao Zhang,1 Chengtie Wu,4 Yufeng Zhang1,2 1State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, People’s Republic of China; 2Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, People’s Republic of China; 3National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China; 4State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl methylacrylate (PIB nanogels was combined with boron-containing mesoporous bioactive glass (B-MBG scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds were tested for mechanical strength and the ability to promote new bone formation in vivo.Patients and methods: To evaluate the potential of each scaffold in bone regeneration, ovariectomized rats were chosen as a study model to determine the ability of PIB nanogels to stimulate bone formation in a complicated anatomical bone defect. PIB nanogels and PIB nanogels/B-MBG composites were respectively implanted into ovariectomized rats with critical-sized femur defects following treatment periods of 2, 4, and 8 weeks post-implantation.Results: Results from the present study demonstrate that PIB nanogels/B-MBG composites showed greater improvement in mechanical strength when compared to PIB nanogels alone. In vivo, hematoxylin and eosin staining revealed significantly more newly formed bone in defects containing PIB

  11. Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro.

    NARCIS (Netherlands)

    Susante, J.L.C. van; Pieper, J.S.; Buma, P.; Kuppevelt, A.H.M.S.M. van; Beuningen, H.M. van; Kraan, P.M. van der; Veerkamp, J.H.; Berg, W.B. van den; Veth, R.P.H.

    2001-01-01

    An increasing amount of interest is focused on the potential use of tissue-engineered articular cartilage implants, for repair of defects in the joint surface. In this perspective, various biodegradable scaffolds have been evaluated as a vehicle to deliver chondrocytes into a cartilage defect. This

  12. Aligning 3D nanofibrous networks from self-assembled phenylalanine nanofibers†

    Science.gov (United States)

    Wang, Xianfeng; Chen, Yi Charlie

    2015-01-01

    Self-assembled synthetic materials are typically disordered, and controlling the alignment of such materials at the nanometer scale may be important for a variety of biological applications. In this study, we have applied directional freeze-drying, for the first time, to develop well aligned three dimensional (3D) nanofibrous materials using amino acid like L-phenylalanine (Phe). 3D free-standing Phe nanofibrous monoliths have been successfully prepared using directional freeze-drying, and have presented a unique hierarchical structure with well-aligned nanofibers at the nanometer scale and an ordered compartmental architecture at the micrometer scale. We have found that the physical properties (e.g. nanofiber density and alignment) of the nanofibrous materials could be tuned by controlling the concentration and pH of the Phe solution and the freezing temperature. Moreover, the same strategy (i.e. directional freeze-drying) has been successfully applied to assemble peptide nanofibrous materials using a dipeptide (i.e. diphenylalanine), and to assemble Phe-based nanofibrous composites using polyethylenimine and poly(vinyl alcohol). The tunability of the nanofibrous structures together with the biocompatibility of Phe may make these 3D nanofibrous materials suitable for a variety of applications, including biosensor templates, tissue scaffolds, filtration membranes, and absorbents. The strategy reported here is likely applicable to create aligned nanofibrous structures using other amino acids, peptides, and polymers. PMID:25621167

  13. Shape-Related Toxicity of Titanium Dioxide Nanofibres.

    Directory of Open Access Journals (Sweden)

    Manfredi Allegri

    Full Text Available Titanium dioxide (TiO2 nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence, ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of

  14. Shape-Related Toxicity of Titanium Dioxide Nanofibres

    Science.gov (United States)

    Allegri, Manfredi; Bianchi, Massimiliano G.; Chiu, Martina; Varet, Julia; Costa, Anna L.; Ortelli, Simona; Blosi, Magda; Bussolati, Ovidio; Poland, Craig A.; Bergamaschi, Enrico

    2016-01-01

    Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials

  15. Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nanohydroxyapatite–gelatin–polyvinyl alcohol macroporous scaffold

    Directory of Open Access Journals (Sweden)

    Sanjaya Kumar Swain

    2014-09-01

    Full Text Available Freeze casting and cryogenic treatment both low temperature process have been employed to fabricate nanobiocomposite hydroxyapatite (HA–gelatin–polyvinyl alcohol (PVA macroporous scaffolds from synthesized three different spherical, rod and fibrous HA nanoparticles and composition optimized vis-á-vis porosity architecture, content and compressive strength. A critical HA morphology, solid loading and liquid nitrogen interaction time have a significant effect to enhance the mechanical response of developed scaffolds. Cryo-treated 40 wt.% nanorod HA–gelatin–PVA scaffold posses interconnected pore structure with 80 vol.% porosity, average pore diameter 50–200 μm and highest 5.8 MPa compressive strength. Different degree of the apatite deposition phenomenon in simulated body fluid solution at 37 °C and pH ∼ 7.4 varies with respect to time. In vitro cytotoxicity and L929 mouse fibroblast cell culture in the presence of Dulbecco's Modified Eagle Medium and 10% Fetal Bovine Serum at 37 °C and 5% CO2 atmosphere exhibit excellent cytocompatibility and cell viability at low extract concentration up to 25%.

  16. A Nanofibre Tag

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Johansen, Stefan; Rubahn, Horst-Günter

    on stochastic generation of marking templates. Difficulty of manual manipulation of nanofibres, together with simplicity of their optical examination, makes them preferred candidates for such applications. Fibres obtained by molecular beam epitaxy of parahexaphenylene (p6P), form a unique pattern, which can...

  17. Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration

    Directory of Open Access Journals (Sweden)

    Gandhimathi C

    2014-10-01

    Full Text Available Chinnasamy Gandhimathi,1 Jayarama Reddy Venugopal,2 Velmurugan Bhaarathy,2 Seeram Ramakrishna,2 Srinivasan Dinesh Kumar1 1Cellular and Molecular Epigenetics Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; 2Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore Abstract: Nanotechnology and tissue engineering have enabled engineering of nanostructured strategies to meet the current challenges in skin tissue regeneration. Electrospinning technology creates porous nanofibrous scaffolds to mimic extracellular matrix of the native tissues. The present study was performed to gain some insights into the applications of poly(L-lactic acid-co-poly-(ε-caprolactone (PLACL/silk fibroin (SF/vitamin E (VE/curcumin (Cur nanofibrous scaffolds and to assess their potential for being used as substrates for the culture of human dermal fibroblasts for skin tissue engineering. PLACL/SF/VE/Cur nanofibrous scaffolds were fabricated by electrospinning and characterized by fiber morphology, membrane porosity, wettability, mechanical strength, and chemical properties by Fourier transform infrared (FTIR analysis. Human dermal fibroblasts were cultured on these scaffolds, and the cell scaffold interactions were analyzed by cell proliferation, cell morphology, secretion of collagen, expression of F-actin, and 5-chloromethylfluorescein diacetate (CMFDA dye. The electrospun nanofiber diameter was obtained between 198±4 nm and 332±13 nm for PLACL, PLACL/SF, PLACL/SF/VE, and PLACL/SF/VE/Cur nanofibrous scaffolds. FTIR analysis showed the presence of the amide groups I, II, and III, and a porosity of up to 92% obtained on these nanofibrous scaffolds. The results showed that the fibroblast proliferation, cell morphology, F-actin, CMFDA dye expression, and secretion of collagen were significantly increased in PLACL/SF/VE/Cur when compared

  18. Fabrication of Aligned Nanofiber Polymer Yarn Networks for Anisotropic Soft Tissue Scaffolds.

    Science.gov (United States)

    Wu, Shaohua; Duan, Bin; Liu, Penghong; Zhang, Caidan; Qin, Xiaohong; Butcher, Jonathan T

    2016-07-01

    Nanofibrous scaffolds with defined architectures and anisotropic mechanical properties are attractive for many tissue engineering and regenerative medicine applications. Here, a novel electrospinning system is developed and implemented to fabricate continuous processable uniaxially aligned nanofiber yarns (UANY). UANY were processed into fibrous tissue scaffolds with defined anisotropic material properties using various textile-forming technologies, i.e., braiding, weaving, and knitting techniques. UANY braiding dramatically increased overall stiffness and strength compared to the same number of UANY unbraided. Human adipose derived stem cells (HADSC) cultured on UANY or woven and knitted 3D scaffolds aligned along local fiber direction and were >90% viable throughout 21 days. Importantly, UANY supported biochemical induction of HADSC differentiation toward smooth muscle and osteogenic lineages. Moreover, we integrated an anisotropic woven fiber mesh within a bioactive hydrogel to mimic the complex microstructure and mechanical behavior of valve tissues. Human aortic valve interstitial cells (HAVIC) and human aortic root smooth muscle cells (HASMC) were separately encapsulated within hydrogel/woven fabric composite scaffolds for generating scaffolds with anisotropic biomechanics and valve ECM like microenvironment for heart valve tissue engineering. UANY have great potential as building blocks for generating fiber-shaped tissues or tissue microstructures with complex architectures. PMID:27304080

  19. 3D Macroporous Nanofibrous Scaffolds of Gelatin Made by One-step Crosslink in Ethanol Bath%乙醇浴“一步交联”法制备明胶三维大孔纳米纤维支架

    Institute of Scientific and Technical Information of China (English)

    丁慧芬; 滕方君; 韩雨亭; 尹苗; 余淼; 王家伟

    2015-01-01

    Objective:To prepare electrospinning nanofibrous scaffolds of water-soluble polymers with one-step crosslink technique in ethanol bath.Methods:The fibers received by the ethanol bath were prepared by the technique of one-step crosslink or two-step crosslink.The effect of different crosslink methods on the morphology,structure,crosslink degree,and stability of the fibers was analyzed.Results:Compared with the fibers prepared by the two-step crosslink,the gelatin fibers of one-step crosslink had thinner fiber diameters,larger pores,and higher water up-take,which could sustain the structure of the fibers and scaffolds.The degree of the crosslink could be changed by adjusting the concentration of the crosslinker and the time of crosslinking.The fibers of one-step crosslink were stable enough that additional crosslink treatment was not needed.Conclusion:The technique of one-step crosslink using ethanol bath could sustain the morphology and structure of the fibers,improve the efficiency of crosslink,and prepare the 3D macroporous nanofibrous scaffolds.%目的:探讨采用乙醇浴“一步交联”法制备静电纺丝水溶性大分子纤维支架.方法:分别采用乙醇浴“一步交联”法和“二步交联”法制备明胶静电纺丝纤维,分析两种方法对纤维形貌、结构、交联度及稳定性的影响.结果:与“二步交联”纤维相比,“一步交联”法收集的明胶纤维直径更细,孔隙更大,吸水率更高,能维持纤维及支架的结构.通过对交联剂浓度及交联时间进行调整,可以改变纤维的交联度.“一步交联”纤维已具有良好的稳定性,无需再进行交联处理.结论:乙醇浴“一步交联”技术能有效维持明胶纤维的形貌及结构,提高交联效率,制备出较理想的三维大孔纳米支架.

  20. Engineered Hybrid Scaffolds of Poly(vinyl alcohol/Bioactive Glass for Potential Bone Engineering Applications: Synthesis, Characterization, Cytocompatibility, and Degradation

    Directory of Open Access Journals (Sweden)

    Hermes S. Costa

    2012-01-01

    Full Text Available The synthesis, characterization, preliminary cytocompatibility, and degradation behavior of the hybrids based on 70% Poly(vinyl alcohol and 30% bioactive glass (58SiO2–33CaO–9P2O5, BaG with macroporous tridimensional structure is reported for the first time. The effect of glutaraldehyde covalent crosslinker in the organic-inorganic nanostructures produced and, as a consequence, tailoring the hybrids properties was investigated. The PVA/BaG hybrids scaffolds are characterized by Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, X-ray diffraction (XRD, and X-ray Microcomputed tomography analysis (μCT. Cytotoxicity assessment is performed by the MTT method with VERO cell culture. Additionally, the hybrid in vitro degradation assay is conducted by measuring the mass loss by soaking in deionized water at 37°C for up to 21 days. The results have clearly shown that it is possible to modify the PVA/BaG hybrids properties and degradation behavior by engineering the structure using different concentrations of the chemical crosslinker. Moreover, these hybrid crosslinked nanostructures have presented 3D hierarchical pore size architecture varying within 10–450 μm and a suitable cytocompatibility for potential use in bone tissue engineering applications.

  1. Mechanical properties of single electrospun drug-encapsulated nanofibres

    International Nuclear Information System (INIS)

    The mechanical and structural properties of a surface play an important role in determining the morphology of attached cells, and ultimately their cellular functions. As such, mechanical and structural integrity are important design parameters for a tissue scaffold. Electrospun fibrous meshes are widely used in tissue engineering. When in contact with electrospun scaffolds, cells see the individual micro- or nanofibres as their immediate microenvironment. In this study, tensile testing of single electrospun nanofibres composed of poly(ε-caprolactone) (PCL), and its copolymer, poly(caprolactone-co-ethyl ethylene phosphate) (PCLEEP), revealed a size effect in the Young's modulus, E, and tensile strength, σT. Both strength and stiffness increase as the fibre diameter decreases from bulk (∼5 μm) into the nanometre region (200-300 nm). In particular, E and σT of individual PCL nanofibres were at least two-fold and an order of magnitude higher than that of PCL film, respectively. PCL films were observed to have more pronounced crystallographic texture than the nanofibres; however no difference in crystalline fraction, perfection, or texture was detected among the various fibres. When drugs were encapsulated into single PCLEEP fibres, mechanical properties were enhanced with 1-20 wt% of loaded retinoic acid, but weakened by 10-20 wt% of encapsulated bovine serum albumin. This understanding of the effect of size and drug and protein encapsulation on the mechanical properties of electrospun fibres may help in the optimization of tissue scaffold design that combines biochemical and biomechanical cues for tissue regeneration

  2. Mechanical properties of single electrospun drug-encapsulated nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Sing Yian [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Hufnagel, Todd C [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Lim, Chwee Teck [Division of Bioengineering and Department of Mechanical Engineering, National University of Singapore, 117576, Singapore (Singapore); Leong, Kam W [Department of Biomedical Engineering, Duke University, Durham, NC 27708 (United States)

    2006-08-14

    The mechanical and structural properties of a surface play an important role in determining the morphology of attached cells, and ultimately their cellular functions. As such, mechanical and structural integrity are important design parameters for a tissue scaffold. Electrospun fibrous meshes are widely used in tissue engineering. When in contact with electrospun scaffolds, cells see the individual micro- or nanofibres as their immediate microenvironment. In this study, tensile testing of single electrospun nanofibres composed of poly({epsilon}-caprolactone) (PCL), and its copolymer, poly(caprolactone-co-ethyl ethylene phosphate) (PCLEEP), revealed a size effect in the Young's modulus, E, and tensile strength, {sigma}{sub T}. Both strength and stiffness increase as the fibre diameter decreases from bulk ({approx}5 {mu}m) into the nanometre region (200-300 nm). In particular, E and {sigma}{sub T} of individual PCL nanofibres were at least two-fold and an order of magnitude higher than that of PCL film, respectively. PCL films were observed to have more pronounced crystallographic texture than the nanofibres; however no difference in crystalline fraction, perfection, or texture was detected among the various fibres. When drugs were encapsulated into single PCLEEP fibres, mechanical properties were enhanced with 1-20 wt% of loaded retinoic acid, but weakened by 10-20 wt% of encapsulated bovine serum albumin. This understanding of the effect of size and drug and protein encapsulation on the mechanical properties of electrospun fibres may help in the optimization of tissue scaffold design that combines biochemical and biomechanical cues for tissue regeneration.

  3. Effect of copper-doped silicate 13-93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo.

    Science.gov (United States)

    Lin, Yinan; Xiao, Wei; Bal, B Sonny; Rahaman, Mohamed N

    2016-10-01

    The release of inorganic ions from biomaterials could provide an alternative approach to the use of growth factors for improving tissue healing. In the present study, the release of copper (Cu) ions from bioactive silicate (13-93) glass scaffolds on the response of cells in vitro and on bone regeneration and angiogenesis in vivo was studied. Scaffolds doped with varying concentrations of Cu (0-2.0wt.% CuO) were created with a grid-like microstructure by robotic deposition. When immersed in simulated body fluid in vitro, the Cu-doped scaffolds released Cu ions into the medium in a dose-dependent manner and converted partially to hydroxyapatite. The proliferation and alkaline phosphatase activity of pre-osteoblastic MC3T3-E1 cells cultured on the scaffolds were not affected by 0.4 and 0.8wt.% CuO in the glass but they were significantly reduced by 2.0wt.% CuO. The percent new bone that infiltrated the scaffolds implanted for 6weeks in rat calvarial defects (46±8%) was not significantly affected by 0.4 or 0.8wt.% CuO in the glass whereas it was significantly inhibited (0.8±0.7%) in the scaffolds doped with 2.0wt.% CuO. The area of new blood vessels in the fibrous tissue that infiltrated the scaffolds increased with CuO content of the glass and was significantly higher for the scaffolds doped with 2.0wt.% CuO. Loading the scaffolds with bone morphogenetic protein-2 (1μg/defect) significantly enhanced bone infiltration and reduced fibrous tissue in the scaffolds. These results showed that doping the 13-93 glass scaffolds with up to 0.8wt.% CuO did not affect their biocompatibility whereas 2.0wt.% CuO was toxic to cells and detrimental to bone regeneration. PMID:27287141

  4. A novel approach for the fabrication of carbon nanofibre/ceramic porous structures

    KAUST Repository

    Walter, Claudia

    2013-11-01

    This paper describes the fabrication of hybrid ceramic/carbon scaffolds in which carbon nanofibres and multi-walled carbon nanotubes fully cover the internal walls of a microporous ceramic structure that provides mechanical stability. Freeze casting is used to fabricate a porous, lamellar ceramic (Al2O3) structure with aligned pores whose width can be controlled between 10 and 90μm. Subsequently, a two step chemical vapour deposition process that uses iron as a catalyst is used to grow the carbon nanostructures inside the scaffold. This catalyst remains in the scaffold after the growth process. The formation of the alumina scaffold and the influence of its structure on the growth of nanofibres and tubes are investigated. A set of growth conditions is determined to produce a dense covering of the internal walls of the porous ceramic with the carbon nanostructures. The limiting pore size for this process is located around 25μm. © 2013 Elsevier Ltd.

  5. Emerging chitin and chitosan nanofibrous materials for biomedical applications

    Science.gov (United States)

    Ding, Fuyuan; Deng, Hongbing; Du, Yumin; Shi, Xiaowen; Wang, Qun

    2014-07-01

    Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.

  6. Thin Film Nanofibrous Composite Membrane for Dead-End Seawater Desalination

    Directory of Open Access Journals (Sweden)

    Baturalp Yalcinkaya

    2016-01-01

    Full Text Available The aim of the study was to prepare a thin film nanofibrous composite membrane utilized for nanofiltration technologies. The composite membrane consists of a three-layer system including a nonwoven part as the supporting material, a nanofibrous scaffold as the porous surface, and an active layer. The nonwoven part and the nanofibrous scaffold were laminated together to improve the mechanical properties of the complete membrane. Active layer formations were done successfully via interfacial polymerization. A filtration test was carried out using solutions of MgSO4, NaCl, Na2SO4, CaCl2, and real seawater using the dead-end filtration method. The results indicated that the piperazine-based membrane exhibited higher rejection of divalent salt ions (>98% with high flux. In addition, the m-phenylenediamine-based membrane exhibited higher rejection of divalent and monovalent salt ions (>98% divalent and >96% monovalent with reasonable flux. The desalination of real seawater results showed that thin film nanofibrous composite membranes were able to retain 98% of salt ions from highly saline seawater without showing any fouling. The electrospun nanofibrous materials proved to be an alternative functional supporting material instead of the polymeric phase-inverted support layer in liquid filtration.

  7. Pigmented Silk Nanofibrous Composite for Skeletal Muscle Tissue Engineering.

    Science.gov (United States)

    Manchineella, Shivaprasad; Thrivikraman, Greeshma; Khanum, Khadija K; Ramamurthy, Praveen C; Basu, Bikramjit; Govindaraju, T

    2016-05-01

    Skeletal muscle tissue engineering (SMTE) employs designed biomaterial scaffolds for promoting myogenic differentiation of myoblasts to functional myotubes. Oxidative stress plays a significant role in the biocompatibility of biomaterials as well as in the fate of myoblasts during myogenesis and is also associated with pathological conditions such as myotonic dystrophy. The inherent electrical excitability of muscle cells inspired the use of electroactive scaffolds for SMTE. Conducting polymers attracted the attention of researchers for their use in muscle tissue engineering. However, poor biocompatibility, biodegradability and development of oxidative stress associated immunogenic response limits the extensive use of synthetic conducting polymers for SMTE. In order to address the limitations of synthetic polymers, intrinsically electroactive and antioxidant silk fibroin/melanin composite films and electrospun fiber mats were fabricated and evaluated as scaffolds for promoting myogenesis in vitro. Melanin incorporation modulated the thermal stability, electrical conductivity of scaffolds, fiber alignment in electrospun mats and imparted good antioxidant properties to the scaffolds. The composite electrospun scaffolds promoted myoblast assembly and differentiation into uniformly aligned high aspect ratio myotubes. The results highlight the significance of scaffold topography along with conductivity in promoting myogenesis and the potential application of silk nanofibrous composite as electoractive platform for SMTE. PMID:27226037

  8. FGL-functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng, Jin [Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qixin, E-mail: zheng-qx@163.com [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Wu, Yongchao; Wu, Bin; Huang, Shuai; Fang, Weizhi; Guo, Xiaodong [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2015-01-01

    A class of designed self-assembling peptide nanofiber scaffolds has been shown to be a good biomimetic material in tissue engineering. Here, we specifically made a new peptide hydrogel scaffold FGLmx by mixing the pure RADA{sub 16} and designer functional peptide RADA{sub 16}-FGL solution, and we analyzed the physiochemical properties of each peptide with atomic force microscopy (AFM) and circular dichroism (CD). In addition, we examined the biocompatibility and bioactivity of FGLmx as well as RADA{sub 16} scaffold on spinal cord-derived neural stem cells (SC-NSCs) isolated from neonatal rats. Our results showed that RADA{sub 16}-FGL displayed a weaker β-sheet structure and FGLmx could self-assemble into nanofibrous morphology. Moreover, we found that FGLmx was not only noncytotoxic to SC-NSCs but also promoted SC-NSC proliferation and migration into the three-dimensional (3-D) scaffold, meanwhile, the adhesion and lineage differentiation of SC-NSCs on FGLmx were similar to that on RADA{sub 16}. Our results indicated that the FGL-functionalized peptide scaffold might be very beneficial for tissue engineering and suggested its further application for spinal cord injury (SCI) repair. - Highlights: • RADA{sub 16} and RADA{sub 16}-FGL peptides were synthesized and characterized. • Rat spinal cord neural stem cells were successfully isolated and characterized. • We provided an induction method for mixed differentiation of neural stem cells. • FGL scaffold had good biocompatibility and bioactivity with neural stem cells.

  9. Preparation and Properties of Mesoporous Bioactive Glass / Demineralized Bone Composite Scaffolds%介孔生物活性玻璃/脱钙骨复合支架的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    薛士壮; 朱海霖; 陈建勇; 冯新星; 常江

    2011-01-01

    The composite scaffolds (MBG/DB) were prepared successfully through immersing the mesoporous bioactive glass powders into the demineralized bones. The bovine cancellous bone, demineralized bone, composite scaffold were investigated and characterized by FTIR, SEM, XRD and universal electromechanical testing machine. The results show that the compressive strength of the demineralized bones is about (1.10+0.31)Mpa, the porosity is about 71% and the pore size is in the range from 200 to 600μm. However, the porosity and the compressive strength of the composite scaffolds are decreased to 40% and increase markedly to (8.49 + 2.14)Mpa, respectively. Meanwhile, the composite scaffolds show good bioactivity in vitro.%将介孔生物活性玻璃(MBG)与脱钙骨(DB)复合,利用浸渍法制备出MBG/DB复合支架材料.采用红外光谱(FTIR),扫描电镜(SEM),X射线衍射(XRD),电子万能材料试验机等方法对牛松质骨(CB)、DB、MBG/DB复合支架进行表征.结果表明,CB经浸酸处理后制备的DB,孔径大小在200-600μm范围内,孔隙率约为71%,抗压性能比CB明显降低(1.10±0.31)MPa,而采用浸渍法制备的复合支架,孔隙率降为40%左右,而压缩强度明显提高(8.49±2.14)MPa.体外生物活性测试表明:复合支架具有良好的生物活性.

  10. Growth ability of human dental pulp cells on three bioactive scaffolds%人牙髓细胞在3种生物活性支架上的生长能力

    Institute of Scientific and Technical Information of China (English)

    魏蔷薇; 董艳梅; 陈晓峰; 李玉莉; 苗国厚

    2013-01-01

    目的:观察人牙髓细胞(human dental pulp cells,hDPCs)在生物活性支架上的增殖及分化情况.方法:采用酶消化法培养hDPCs,传至第4代用于实验.用免疫组织化学法鉴定细胞并测定细胞基质前体细胞抗原-1(stromal precursor antigen-1,STRO-1)表达率.实验使用3种支架,包括胶原(collagen,COL)支架、胶原-生物活性玻璃(collagen-bioglass,COL-BG)支架及胶原-生物活性玻璃-聚己内酯(collagen-bioglass-polycaprolacton,COL-BG-PCL)支架.将hDPCs植入支架,采用MTT法于6h、1d、3d、5d、7d、14 d和21 d测定hDPCs增殖,在14 d进行碱性磷酸酶染色.结果:实验所用hDPCs中含有STRO-1阳性细胞;hDPCs在COL-BG支架及COL-BG-PCL支架上的增殖显著高于COL支架(P<0.05),尤其在14d和21 d COL-BG支架及COL-BG-PCL支架的光密度值是COL支架的5倍;COL-BG支架及COL-BG-PCL支架上的碱性磷酸酶染色区明显较COL支架广泛.结论:hDPCs在COL-BG支架及COL-BG-PCL支架上增殖和分化活跃,优于传统的COL支架.%Objective:To investigate the proliferation and differentiation of the human dental pulp cells (hDPCs) on the bioactive scaffolds.Methods:Primary HDPCs were harvested from impacted third molars of healthy adult individuals (18-25 years of age) by enzyme digestion,expanded and cultured.The cells used for this investigation were the 4 th passage.Immunohistochemical methods were used to verify that the cells were dental pulp cells.The expression of stromal precursor antigen-1 (STRO-1) was determined by flow cytometry.Three different types of scaffolds were used:collagen (COL),collagen/bioglass (COL-BG) and collagen/ bioglass/ polycaprolactone (COL-BG-PCL).Cell proliferation on the scaffolds was determined using a MTT assay at hour 6,on days 1,3,5,7,14 and 21.On day 14,the scaffolds were stained with the alkaline phosphatase (ALP) staining kit.Results:The tested cells had STRO-1 positive cells.The proliferation of HDPCs was significantly higher on the

  11. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs

    Science.gov (United States)

    Peng, Hongju; Yin, Zi; Liu, Huanhuan; Chen, Xiao; Feng, Bei; Yuan, Huihua; Su, Bo; Ouyang, Hongwei; Zhang, Yanzhong

    2012-12-01

    Engaging functional biomaterial scaffolds to regulate stem cell differentiation has drawn a great deal of attention in the tissue engineering and regenerative medicine community. In this study, biomimetic composite nanofibrous scaffolds of hydroxyapatite/chitosan (HAp/CTS) were prepared to investigate their capacity for inducing murine mesenchymal stem cells (mMSCs) to differentiate into the osteogenic lineage, in the absence and presence of an osteogenic supplementation (i.e., ascorbic acid, β-glycerol phosphate, and dexamethasone), respectively. Using electrospun chitosan (CTS) nanofibrous scaffolds as the control, cell morphology, growth, specific osteogenic genes expression, and quantified proteins secretion on the HAp/CTS scaffolds were sequentially examined and assessed. It appeared that the HAp/CTS scaffolds supported better attachment and proliferation of the mMSCs. Most noteworthy was that in the absence of the osteogenic supplementation, expression of osteogenic genes including collagen I (Col I), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) were significantly upregulated in mMSCs cultured on the HAp/CTS nanofibrous scaffolds. Also increased secretion of the osteogenesis protein markers of alkaline phosphatase and collagen confirmed that the HAp/CTS nanofibrous scaffold markedly promoted the osteogenic commitment in the mMSCs. Moreover, the presence of osteogenic supplementation proved an enhanced efficacy of mMSC osteogenesis on the HAp/CTS nanofibrous scaffolds. Collectively, this study demonstrated that the biomimetic nanofibrous HAp/CTS scaffolds could support and enhance the adhesion, proliferation, and particularly osteogenic differentiation of the mMSCs. It also substantiated the potential of using biomimetic nanofibrous scaffolds of HAp/CTS for functional bone repair and regeneration applications.

  12. Xylan polysaccharides fabricated into nanofibrous substrate for myocardial infarction

    International Nuclear Information System (INIS)

    Myocardial infarction, a main cause of heart failure, leads to loss of cardiac tissue impairment of left ventricular function. Repair of diseased myocardium with in vitro engineered cardiac muscle patch/injectable biopolymers with cells may become a viable option for myocardial infarction. We attempted to solve these problems by in vitro study by selecting a plant based polysaccharides beech wood Xylan for the normal functioning of infarcted myocardium. The present study fabricated Xylan based nanofibrous scaffolds cross-linked with glutaraldehyde (Glu) vapors for 24 h, 48 h and 1% Glu blended fibers for the culture of neonatal rat cardiac cells for myocardial infarction. These nanofibers were characterized by SEM, FT-IR, tensile testing and cell culture studies for the normal expression of cardiac proteins. The observed results showed that the Xylan/polyvinyl alcohol (PVA) 24 h Glu vapor cross-linked nanofibers (427 nm) having mechanical strength of 2.43 MPa and Young modulus of 3.74 MPa are suitable for the culture of cardiac cells. Cardiac cells proliferation increased only by 11% in Xylan/PVA 24 h Glu cross-linked nanofibers compared to control tissue culture plate (TCP). The normal cardiac cell morphology was observed in 24 h cross-linked Xylan/PVA nanofibers but 48 h cross-linked fibers cell morphology was changed to flattened and elongated on the fibrous surfaces. Confocal analysis for cardiac expression proteins actinin, connexin 43 was observed normally in 24 h Glu cross-linked nanofibers compared to all other nanofibrous scaffolds. The fabricated Xylan/PVA nanofibrous scaffold may have good potential for the normal functioning of infarcted myocardium. - Highlights: ► Fabrication of polysaccharides Xylan/PVA nanofibers for cardiac tissue engineering ► Nanofibers characterized by SEM, FT-IR, tensile testing and cell culture studies ► Isolation of cardiac cells and cultured on Xylan/PVA nanofibrous scaffolds ► Cultured cells on 24 h Glu cross

  13. Xylan polysaccharides fabricated into nanofibrous substrate for myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Venugopal, J., E-mail: nnijrv@nus.edu.sg; Rajeswari, R.; Shayanti, M.; Sridhar, R.; Sundarrajan, S.; Balamurugan, R.; Ramakrishna, S.

    2013-04-01

    Myocardial infarction, a main cause of heart failure, leads to loss of cardiac tissue impairment of left ventricular function. Repair of diseased myocardium with in vitro engineered cardiac muscle patch/injectable biopolymers with cells may become a viable option for myocardial infarction. We attempted to solve these problems by in vitro study by selecting a plant based polysaccharides beech wood Xylan for the normal functioning of infarcted myocardium. The present study fabricated Xylan based nanofibrous scaffolds cross-linked with glutaraldehyde (Glu) vapors for 24 h, 48 h and 1% Glu blended fibers for the culture of neonatal rat cardiac cells for myocardial infarction. These nanofibers were characterized by SEM, FT-IR, tensile testing and cell culture studies for the normal expression of cardiac proteins. The observed results showed that the Xylan/polyvinyl alcohol (PVA) 24 h Glu vapor cross-linked nanofibers (427 nm) having mechanical strength of 2.43 MPa and Young modulus of 3.74 MPa are suitable for the culture of cardiac cells. Cardiac cells proliferation increased only by 11% in Xylan/PVA 24 h Glu cross-linked nanofibers compared to control tissue culture plate (TCP). The normal cardiac cell morphology was observed in 24 h cross-linked Xylan/PVA nanofibers but 48 h cross-linked fibers cell morphology was changed to flattened and elongated on the fibrous surfaces. Confocal analysis for cardiac expression proteins actinin, connexin 43 was observed normally in 24 h Glu cross-linked nanofibers compared to all other nanofibrous scaffolds. The fabricated Xylan/PVA nanofibrous scaffold may have good potential for the normal functioning of infarcted myocardium. - Highlights: ► Fabrication of polysaccharides Xylan/PVA nanofibers for cardiac tissue engineering ► Nanofibers characterized by SEM, FT-IR, tensile testing and cell culture studies ► Isolation of cardiac cells and cultured on Xylan/PVA nanofibrous scaffolds ► Cultured cells on 24 h Glu cross

  14. Neuroregenerative effects of olfactory ensheathing cells transplanted in a multi-layered conductive nanofibrous conduit in peripheral nerve repair in rats

    OpenAIRE

    Kabiri, Mahboubeh; Oraee-Yazdani, Saeed; Shafiee, Abbas; Hanaee-Ahvaz, Hana; Dodel, Masumeh; Vaseei, Mohammad; Soleimani, Masoud

    2015-01-01

    Background The purpose of this study was to evaluate the efficacy of a multi-layered conductive nanofibrous hollow conduit in combination with olfactory ensheathing cells (OEC) to promote peripheral nerve regeneration. We aimed to harness both the topographical and electrical cues of the aligned conductive nanofibrous single-walled carbon nanotube/ poly (L-lactic acid) (SWCNT/PLLA) scaffolds along with the neurotrophic features of OEC in a nerve tissue engineered approach. Results We demonstr...

  15. Design, fabrication and perivascular implantation of bioactive scaffolds engineered with human adventitial progenitor cells for stimulation of arteriogenesis in peripheral ischemia.

    Science.gov (United States)

    Carrabba, M; De Maria, C; Oikawa, A; Reni, C; Rodriguez-Arabaolaza, I; Spencer, H; Slater, S; Avolio, E; Dang, Z; Spinetti, G; Madeddu, P; Vozzi, G

    2016-03-01

    Cell therapy represents a promising option for revascularization of ischemic tissues. However, injection of dispersed cells is not optimal to ensure precise homing into the recipient's vasculature. Implantation of cell-engineered scaffolds around the occluded artery may obviate these limitations. Here, we employed the synthetic polymer polycaprolactone for fabrication of 3D woodpile- or channel-shaped scaffolds by a computer-assisted writing system (pressure assisted micro-syringe square), followed by deposition of gelatin (GL) nanofibers by electro-spinning. Scaffolds were then cross-linked with natural (genipin, GP) or synthetic (3-glycidyloxy-propyl-trimethoxy-silane, GPTMS) agents to improve mechanical properties and durability in vivo. The composite scaffolds were next fixed by crown inserts in each well of a multi-well plate and seeded with adventitial progenitor cells (APCs, 3 cell lines in duplicate), which were isolated/expanded from human saphenous vein surgical leftovers. Cell density, alignment, proliferation and viability were assessed 1 week later. Data from in vitro assays showed channel-shaped/GPTMS-crosslinked scaffolds confer APCs with best alignment and survival/growth characteristics. Based on these results, channel-shaped/GPTMS-crosslinked scaffolds with or without APCs were implanted around the femoral artery of mice with unilateral limb ischemia. Perivascular implantation of scaffolds accelerated limb blood flow recovery, as assessed by laser Doppler or fluorescent microspheres, and increased arterial collaterals around the femoral artery and in limb muscles compared with non-implanted controls. Blood flow recovery and perivascular arteriogenesis were additionally incremented by APC-engineered scaffolds. In conclusion, perivascular application of human APC-engineered scaffolds may represent a novel option for targeted delivery of therapeutic cells in patients with critical limb ischemia.

  16. 静电纺丝纳米纤维膜作为骨骼肌组织工程支架材料的细胞相容性%Cytocompatibility of electro-spinning nano-fibrous scaffolds for skeletal muscle tissue engineering

    Institute of Scientific and Technical Information of China (English)

    梁爽; 李权; 唐休发; 冯扬; 何等旗

    2011-01-01

    背景:有报道以生物可降解的胶原盘或聚L-乳酸、聚羟基乙酸、聚L-乳酸/聚羟基乙酸共聚物等作为骨骼肌组织工程的支架材料,各有优缺点,不能完全满足骨骼肌组织工程的需要.目的:探讨静电纺丝纳米纤维膜作为骨骼肌组织工程支架材料的可行性.方法:制备7种不同组分的静电纺丝纳米纤维膜,以其浸提液为培养基培养第3代SD乳鼠成肌细胞,以含体积分数20%新生小牛血清的F12培养基培养的为对照.采用MTT法和扫描电镜检测成肌细胞在各组材料的黏附及生长情况.结果与结论:各组分静电纺丝纳米纤维膜吸光度值与对照组间差异无显著性意义(P > 0.05).各组分静电纺丝纳米纤维膜组成肌细胞黏附率差异有显著性意义(P < 0.05).扫描电镜与上述结果一致.含70%聚乳酸+20%蚕丝蛋白+10%胶原组成电纺丝纳米纤维膜组可见大量成肌细胞黏附,呈梭形,两极伸展,排列规律,效果最好.其他各组细胞少,形态不规则,似衰退期成肌细胞.提示静电纺丝纳米纤维膜无细胞毒性,对成肌细胞的增殖无影响,成肌细胞能良好地黏附;以70%聚乳酸+ 20%蚕丝蛋白+10%胶原组分效果最佳.%BACKGROUND:Some scholars reported that biodegradable collagen plate or poly L-lactic acid (PLLA), poly glycolic acid (PGA),PLLA/PGA copolymer, serve as scaffold materials of skeletal muscle tissue engineering. But these materials have their own advantages and disadvantages, and still can not fulfill the needs of skeletal muscle tissue engineering.OBJECTIVE:To study the feasibility of the electro-spinning nano-fibrous membrane as scaffolds for skeletal muscle tissue engineering.METHODS:The rat myoblasts at the third passage were cultured with extracts obtaining from different kinds of electro-spinning nano-fibrous membranes (7 groups), with an extractant of F12 media containing 20% bovine calf serum. The adhesion and growth of myoblasts on the nano-fibrous

  17. Fabrication and Characterization of Electrospun Polycaprolactone Blended with Chitosan-Gelatin Complex Nanofibrous Mats

    Directory of Open Access Journals (Sweden)

    Yongfang Qian

    2014-01-01

    Full Text Available Design and fabrication of nanofibrous scaffolds should mimic the native extracellular matrix. This study is aimed at investigating electrospinning of polycaprolactone (PCL blended with chitosan-gelatin complex. The morphologies were observed from scanning electron microscope. As-spun blended mats had thinner fibers than pure PCL. X-ray diffraction was used to analyze the degree of crystallinity. The intensity at two peaks at 2θ of 21° and 23.5° gradually decreased with the percentage of chitosan-gelatin complex increasing. Moreover, incorporation of the complex could obviously improve the hydrophilicity of as-spun blended mats. Mechanical properties of as-spun nanofibrous mats were also tested. The elongation at break of fibrous mats increased with the PCL content increasing and the ultimate tensile strength varied with different weight ratios. The as-spun mats had higher tensile strength when the weight ratio of PCL to CS-Gel was 75/25 compared to pure PCL. Both as-spun PCL scaffolds and PCL/CS-Gel scaffolds supported the proliferation of porcine iliac endothelial cells, and PCL/CS-Gel had better cell viability than pure PCL. Therefore, electrospun PCL/Chitosan-gelatin nanofibrous mats with weight ratio of 75/25 have better hydrophilicity mechanical properties, and cell proliferation and thus would be a promising candidate for tissue engineering scaffolds.

  18. Optical nanofibres and neutral atoms

    CERN Document Server

    Nieddu, Thomas; Chormaic, Sile Nic

    2015-01-01

    Optical nanofibres are increasingly being used in cold atom experiments due to their versatility and the clear advantages they have when developing all-fibred systems for quantum technologies. They provide researchers with a method of overcoming the Rayleigh range for achieving high intensities in a focussed beam over a relatively long distance, and can act as a noninvasive tool for probing cold atoms. In this review article, we will briefly introduce the theory of mode propagation in an ultrathin optical fibre and highlight some of the more significant theoretical and experimental progresses to date, including the early work on atom probing, manipulation and trapping, the study of atom-dielectric surface interactions, and the more recent observation of nanofibre-mediated nonlinear optics phenomena in atomic media. The functionality of optical nanofibres in relation to the realisation of atom-photon hybrid quantum systems is also becoming more evident as some of the earlier technical challenges are surpassed ...

  19. MCR synthesis of a tetracyclic tetrazole scaffold

    NARCIS (Netherlands)

    Patil, Pravin; Khoury, Kareem; Herdtweck, Eberhardt; Dömling, Alexander

    2015-01-01

    Scaffold diversity is key in the ongoing exercise of discovery of novel bioactive compounds using high throughput screening (HTS). Based on the Ugi tetrazole synthesis we have designed novel bi- and tri-cyclic scaffolds featuring interesting pharmacophore properties. The compounds of the scaffold (B

  20. Pcl/Chitosan Blended Nanofibrous Tubes Made by Dual Syringe Electrospinning

    Directory of Open Access Journals (Sweden)

    Hild Martin

    2015-03-01

    Full Text Available 3D tubular scaffolds made from Poly-(Ɛ-caprolactone (PCL/chitosan (CS nanofibres are very promising candidate as vascular grafts in the field of tissue engineering. In this work, the fabrication of PCL/CS-blended nanofibrous tubes with small diameters by electrospinning from separate PCL and CS solutions is studied. The influence of different CS solutions (CS/polyethylene glycol (PEO/glacial acetic acid (AcOH, CS/trifluoroacetic acid (TFA, CS/ AcOH on fibre formation and producibility of nanofibrous tubes is investigated. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR is used to verify the presence of CS in the blended samples. Tensile testing and pore size measurements are done to underline the good prerequisites of the fabricated blended PCL/ CS nanofibrous tubes as potential scaffolds for vascular grafts. Tubes fabricated from the combination of PCL and CS dissolved in AcOH possesses properties, which are favourable for future cell culture studies.

  1. Biocompatibility of electrospun poly(lactide-co-glycolide)/polyethylene glycol nanofibrous scaffold with mouse neural stem cells%静电纺丝聚乳酸复合物纳米纤维材料与小鼠神经干细胞的生物相容性

    Institute of Scientific and Technical Information of China (English)

    刘畅; 戎利民; 李尚福; 庞卯; 杨阳; 刘斌

    2014-01-01

    neural stem cels. In conclusion, PLGA-PEG nanofibrous scaffolds prepared by electrospinning are safe, non-toxic and suitable for neural stem cels growth with wel biocompatibility, appropriate aperture and porosity.

  2. Optical nanofibres and neutral atoms

    Science.gov (United States)

    Nieddu, Thomas; Gokhroo, Vandna; Chormaic, Síle Nic

    2016-05-01

    Optical nanofibres are increasingly being used in cold atom experiments due to their versatility and the clear advantages they have when developing all-fibred systems for quantum technologies. They provide researchers with a method of overcoming the Rayleigh range for achieving high intensities in a focussed beam over a relatively long distance, and can act as a noninvasive tool for probing cold atoms. In this review article, we will briefly introduce the theory of mode propagation in an ultrathin optical fibre and highlight some of the more significant theoretical and experimental progresses to date, including the early work on atom probing, manipulation and trapping, the study of atom-dielectric surface interactions, and the more recent observation of nanofibre-mediated nonlinear optics phenomena in atomic media. The functionality of optical nanofibres in relation to the realisation of atom-photon hybrid quantum systems is also becoming more evident as some of the earlier technical challenges are surpassed and, recently, several schemes to implement optical memories have been proposed. We also discuss some possible directions where this research field may head, in particular, in relation to the use of optical nanofibres that can support higher-order modes with an associated orbital angular momentum.

  3. Optical nanofibres and neutral atoms

    International Nuclear Information System (INIS)

    Optical nanofibres are increasingly being used in cold atom experiments due to their versatility and the clear advantages they have when developing all-fibred systems for quantum technologies. They provide researchers with a method of overcoming the Rayleigh range for achieving high intensities in a focussed beam over a relatively long distance, and can act as a noninvasive tool for probing cold atoms. In this review article, we will briefly introduce the theory of mode propagation in an ultrathin optical fibre and highlight some of the more significant theoretical and experimental progresses to date, including the early work on atom probing, manipulation and trapping, the study of atom-dielectric surface interactions, and the more recent observation of nanofibre-mediated nonlinear optics phenomena in atomic media. The functionality of optical nanofibres in relation to the realisation of atom–photon hybrid quantum systems is also becoming more evident as some of the earlier technical challenges are surpassed and, recently, several schemes to implement optical memories have been proposed. We also discuss some possible directions where this research field may head, in particular, in relation to the use of optical nanofibres that can support higher-order modes with an associated orbital angular momentum. (topical review)

  4. Fabrication and Characterization of Electrospun Polycaprolactone Blended with Chitosan-Gelatin Complex Nanofibrous Mats

    OpenAIRE

    Yongfang Qian; Zhen Zhang; Laijiu Zheng; Ruoyuan Song; Yuping Zhao

    2014-01-01

    Design and fabrication of nanofibrous scaffolds should mimic the native extracellular matrix. This study is aimed at investigating electrospinning of polycaprolactone (PCL) blended with chitosan-gelatin complex. The morphologies were observed from scanning electron microscope. As-spun blended mats had thinner fibers than pure PCL. X-ray diffraction was used to analyze the degree of crystallinity. The intensity at two peaks at 2θ of 21° and 23.5° gradually decreased with the percentage of chit...

  5. Electrospun multifunctional tissue engineering scaffolds

    Science.gov (United States)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  6. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions.

    Science.gov (United States)

    Beachley, Vince; Wen, Xuejun

    2010-07-01

    Extracellular matrix fibers (ECM) such as collagen, elastin, and keratin provide biological and physical support for cell attachment, proliferation, migration, differentiation and ultimately cell fate. Therefore, ECM fibers are an important component in tissue and organ development and regeneration. Meanwhile, polymer nanofibers could play the same critical role in tissue regeneration process. Fibrous structures can be fabricated from a variety of materials and methods with diameters ranging throughout the size scale where cells can sense individual fibers (several nanometers to several microns). Polymer nanofiber scaffolds can be designed in a way that predictably modulates a variety of important cell behaviors towards a desired overall function. The nanofibrous topography itself, independent of the fiber material, has demonstrated the potential to modulate cell behaviors desirable in tissue engineering such as: unidirectional alignment; increased viability, attachment, and ECM production; guided migration; and controlled differentiation. The versatility of polymer nanofibers for functionalization with biomolecules opens the door to vast opportunities for the design of tissue engineering scaffolds with even greater control over cell incorporation and function. Despite the promise of polymer nanofibers as tissue engineering scaffolds there have been few clinically relevant successes because no single fabrication technique currently combines control over structural arrangement, material composition, and biofunctionalization, while maintaining reasonable cost and yield. Promising strategies are currently being investigated to allow for the fabrication of optimal polymer nanofiber tissue engineering scaffolds with the goal of treating damaged and degenerated tissues in a clinical setting.

  7. Advances in skin regeneration: application of electrospun scaffolds.

    Science.gov (United States)

    Norouzi, Mohammad; Boroujeni, Samaneh Moghadasi; Omidvarkordshouli, Noushin; Soleimani, Masoud

    2015-06-01

    The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin substitutes and wound dressings. Furthermore, the application of biomolecules and therapeutic agents in the nanofibrous scaffolds viz growth factors, genes, antibiotics, silver nanoparticles, and natural medicines with the aim of ameliorating cellular behavior, wound healing, and skin regeneration are discussed. PMID:25721694

  8. Non-destructive imaging of optical nanofibres

    CERN Document Server

    Madsen, Lars S; Rubinsztein-Dunlop, Halina; Bowen, Warwick P

    2016-01-01

    Single-mode optical nanofibres are a central component of a broad range of applications and emerging technologies. Their fabrication has been extensively studied over the past decade, but imaging of the final sub-micrometre products has been restricted to destructive or low-precision techniques. Here we demonstrate an optical scattering-based scanning method that uses a probe nanofibre to locally scatter the evanescent field of a sample nanofibre. The method does not damage the sample nanofibre and is easily implemented only using the same equipment as in a standard fibre puller setup. We demonstrate sub-nanometre radial resolution at video rates (0.7 nm in 10 ms) on single mode nanofibres, allowing for a complete high-precision profile to be obtained within minutes of fabrication. The method thus enables non-destructive, fast and precise characterisation of optical nanofibers, with applications ranging from optical sensors and cold atom traps to non-linear optics.

  9. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jae Baek Lee

    2015-01-01

    Full Text Available Biodegradable poly(lactide-co-glycolide (PLGA has found widespread use in modern medical practice. However, the degradation rate of PLGA should be adjusted for specific biomedical applications such as tissue engineering, drug delivery, and surgical implantation. This study focused on the effect of electron beam radiation on nanofibrous PLGA mats in terms of physical properties and degradation behavior with cell proliferation. PLGA nanofiber mats were prepared by electrospinning, and electron beam was irradiated at doses of 50, 100, 150, 200, 250, and 300 kGy. PLGA mats showed dimensional integrity after electron beam irradiation without change of fiber diameter. The degradation behavior of a control PLGA nanofiber (0 kGy and electron beam-irradiated PLGA nanofibers was analyzed by measuring the molecular weight, weight loss, change of chemical structure, and fibrous morphology. The molecular weight of the PLGA nanofibers decreased with increasing electron beam radiation dose. The mechanical properties of the PLGA nanofibrous mats were decreased with increasing electron beam irradiation dose. Cell proliferation behavior on all electron beam irradiated PLGA mats was similar to the control PLGA mats. Electron beam irradiation of PLGA nanofibrous mats is a potentially useful approach for modulating the biodegradation rate of tissue-specific nonwoven nanofibrous scaffolds, specifically for soft tissue engineering applications.

  10. Preparation of Antibacterial Nanofibre/Nanoparticle Covered Composite Yarns

    OpenAIRE

    Fatma Yalcinkaya; Michal Komarek; Daniela Lubasova; Filip Sanetrnik; Jiri Maryska

    2016-01-01

    The antibacterial efficiency of nanofibre composite yarns with an immobilized antibacterial agent was tested. This novel type of nanofibrous composite material combines the good mechanical properties of the core yarn with the high specific surface of the nanofibre shell to gain specific targeted qualities. The main advantages of nanofibre covered composite yarns over the standard planar nanofibre membranes include high tensile strength, a high production rate, and their ability to be processe...

  11. Composite Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Min Wang

    2006-01-01

    Full Text Available Biomaterial and scaffold development underpins the advancement of tissue engineering. Traditional scaffolds based on biodegradable polymers such as poly(lactic acid and poly(lactic acid-co-glycolic acid are weak and non-osteoconductive. For bone tissue engineering, polymer-based composite scaffolds containing bioceramics such as hydroxyapatite can be produced and used. The bioceramics can be either incorporated in the scaffolds as a dispersed secondary phase or form a thin coating on the pore surface of polymer scaffolds. This bioceramic phase renders the scaffolds bioactive and also strengthens the scaffolds. There are a number of methods that can be used to produce bioceramic-polymer composite scaffolds. This paper gives an overview of our efforts in developing composite scaffolds for bone tissue engineering.

  12. Electrospun nanofibrous materials for tissue engineering and drug delivery

    Directory of Open Access Journals (Sweden)

    Wenguo Cui, Yue Zhou and Jiang Chang

    2010-01-01

    Full Text Available The electrospinning technique, which was invented about 100 years ago, has attracted more attention in recent years due to its possible biomedical applications. Electrospun fibers with high surface area to volume ratio and structures mimicking extracellular matrix (ECM have shown great potential in tissue engineering and drug delivery. In order to develop electrospun fibers for these applications, different biocompatible materials have been used to fabricate fibers with different structures and morphologies, such as single fibers with different composition and structures (blending and core-shell composite fibers and fiber assemblies (fiber bundles, membranes and scaffolds. This review summarizes the electrospinning techniques which control the composition and structures of the nanofibrous materials. It also outlines possible applications of these fibrous materials in skin, blood vessels, nervous system and bone tissue engineering, as well as in drug delivery.

  13. Fabrication of ultra thin and aligned carbon nanofibres from electrospun polyacrylonitrile nanofibres

    Indian Academy of Sciences (India)

    Javed Rafique; Jie Yu; Xiaoxiong Zha; Khalid Rafique

    2010-10-01

    Ultra thin and aligned carbon nanofibres (CNFs) have been fabricated by heat treatment from aligned polyacrylonitrile (PAN) nanofibre precursors prepared by electrospinning. The alignment of the precursor nanofibres was achieved by using a modified electrospinning set up developed recently, where a tip collector was used to collect and align the nanofibres. The average diameter of the aligned CNFs is about 80 nm. The stabilization and carbonization behaviour were studied mainly based on the randomly oriented PAN nanofibres. The effects of stabilization and carbonization temperatures, temperature-increasing rates, and with and without substrates on the morphology and structure of the CNFs were investigated. Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, transmission electron microscopy and Raman spectroscopy were used to characterize the structure of the CNFs and thermogravimetric/differential temperature analysis was used to evaluate the thermal behaviour of PAN nanofibres.

  14. Hydrogen storage in graphitic nanofibres

    OpenAIRE

    McCaldin, Simon Roger

    2007-01-01

    There is huge need to develop an alternative to hydrocarbons fuel, which does not produce CO2 or contribute to global warming - 'the hydrogen economy' is such an alternative, however the storage of hydrogen is the key technical barrier that must be overcome. The potential of graphitic nanofibres (GNFs) to be used as materials to allow the solid-state storage of hydrogen has thus been investigated. This has been conducted with a view to further developing the understanding of the mechanism(s) ...

  15. Flexible Yttrium-Stabilized Zirconia Nanofibers Offer Bioactive Cues for Osteogenic Differentiation of Human Mesenchymal Stromal Cells.

    Science.gov (United States)

    Cadafalch Gazquez, Gerard; Chen, Honglin; Veldhuis, Sjoerd A; Solmaz, Alim; Mota, Carlos; Boukamp, Bernard A; van Blitterswijk, Clemens A; Ten Elshof, Johan E; Moroni, Lorenzo

    2016-06-28

    Currently, the main drawback of ceramic scaffolds used in hard tissue regeneration is their low mechanical strength. Stabilized zirconia, especially the tetragonal 3% yttrium-stabilized zirconia (YSZ) phase, has been considered as a bioinert ceramic material with high mechanical strength. In the present work, flexible nanofibrous YSZ scaffolds were prepared by electrospinning. The obtained scaffolds showed remarkable flexibility at the macroscopic scale, while retaining their stiffness at the microscopic scale. The surface nanoroughness of the scaffolds could be tailored by varying the heat treatment method. Our results demonstrate that the osteogenic differentiation and mineralization of seeded human mesenchymal stromal cells were supported by the nanofibrous YSZ scaffolds, in contrast to the well-known bioinert behavior of bulk YSZ. These findings highlight that flexible ceramic scaffolds are an appealing alternative to the current brittle ceramics for bone tissue regeneration applications. PMID:27294434

  16. Bioactive substances

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.

    Chemistry related to certain bioactive molecules, from Indian Ocean Region, developed into drugs or which served as models for the synthesis of more effective bioactive substances or in use in fundamental studies of physiological and biochemical...

  17. Perspectives of Chitin and Chitosan Nanofibrous Scaffolds in Tissue Engineering

    OpenAIRE

    Jayakumar, R.; Nair, S. V.; Furuike, T.; Tamura, H.

    2010-01-01

    This review summarized the preparation and tissue engineering applications of chitin and chitosan based nanofibers. Additional studies are necessary before clinical applications and for commercialization of the chitin and chitosan based nanofibers. We hope that this review article will bring new innovative types of chitin and chitosan nanofibers for tissue engineering applications in the future.

  18. Fabrication and characterization of nanofibrous scaffold developed by electrospinning

    Directory of Open Access Journals (Sweden)

    Brahatheeswaran Dhandayuthapani

    2011-09-01

    Full Text Available Electrospinning has been recognized as an efficient technique for the forming of polymer nanofibers. Silk fibroin (SF nanofibers were electrospun from SF solution using trifluoroacetic acid solution as a solvent. In the present work, we have systematically evaluated the effects of instrument parameters, including applied voltage, tip-target distance, solution flow rate, solution parameters; such as polymer concentration and solution viscosity on the morphology of electrospun SF fibers. The applied voltage and flow rate was monitored at fixed tip target distance during the electrospinning process and it was correlated with the characteristics of the fibers obtained. The number of deposited fibers also increases with the applied voltage. Also, viscosity, flow rate and applied voltage strongly affect the shape and morphology of the fibers. A particular interest, we demonstrated that by monitoring the applied voltage and flow rate it is possible to control the fibers morphology and bead concentration. Rheological study showed a strong dependence of spinnability and fiber morphology on solution viscosity. Solution concentrations has been found to most strongly affect fiber size, with fiber diameter increasing with increasing solution concentration and the morphology of the deposition on the collector changed from spherical beads to interconnected fibrous networks. FTIR analysis clearly shows that there are no spectral differences between fibers and which suggests that there was no chemical modification developed during the process. Under optimized conditions, homogenous (not interconnected SF fibers with a mean diameter of 234 nm were prepared.

  19. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    Science.gov (United States)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2016-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  20. Electrical properties of polyaniline nanofibre synthesized with biocatalyst

    Science.gov (United States)

    Kim, Byoung-Kye; Kim, Yong Hwan; Won, Keehoon; Chang, Hyunju; Choi, Youngmin; Kong, Ki-jeong; Rhyu, Beoyong Whan; Kim, Ju-Jin; Lee, Jeong-O.

    2005-08-01

    Polyaniline (PANI) nanofibres were synthesized using a biocatalyst (recombinant Coprinus cinereus peroxidase) instead of toxic chemical oxidants. Relatively uniform nanofibres with 50-100 nm diameter were easily obtained with this method, and the doping state of the PANI nanofibre could be controlled either with 1N camphorsulfonic acid (CSA) or with 30% NH4OH. Doped (or dedoped) PANI nanofibres were deposited on pre-patterned Au electrodes for electrical characterization. Completely dedoped PANI behaves as an insulator, while a larger current, by more than four orders of magnitude, was observed from doped PANI nanofibres. A weak p-type gate effect was observed for PANI nanofibre devices as well. As one could expect from the easy doping nature of PANI, PANI nanofibre devices show high sensitivity toward dedoping (NH3) gases, thereby demonstrating the possibility of using enzyme-synthesized PANI nanofibre devices as sensitive chemical sensors.

  1. In Vitro Biocompatibility of Electrospun Chitosan/Collagen Scaffold

    Directory of Open Access Journals (Sweden)

    Peiwei Wang

    2013-01-01

    Full Text Available Chitosan/collagen composite nanofibrous scaffold has been greatly concerned in recent years for its favorable physicochemical properties which mimic the native extracellular matrix (ECM both morphologically and chemically. In a previous study, we had successfully fabricated nanofibrous chitosan/collagen composite by electrospinning. In the present study, we further investigate the biocompatibility of such chitosan/collagen composite nanofiber to be used as scaffolds in vascular tissue engineering. The porcine iliac artery endothelial cells (PIECs were employed for morphogenesis, attachment, proliferation, and phenotypic studies. Four characteristic EC markers, including two types of cell adhesion molecules, one proliferation molecule (PCNA, and one function molecule (p53, were studied by semiquantitative RT-PCR. Results showed that the chitosan/collagen composite nanofibrous scaffold could enhance the attachment, spreading, and proliferation of PIECs and preserve the EC phenotype. Our work provides profound proofs for the applicable potency of scaffolds made from chitosan/collagen composite nanofiber to be used in vascular tissue engineering.

  2. Fabrication of triple layered vascular scaffolds by combining electrospinning, braiding, and thermally induced phase separation

    Science.gov (United States)

    Mi, Hao-Yang; Jing, Xin; Yu, Emily; McNulty, Jason; Turng, Lih-Sheng

    2015-12-01

    Triple layered small diameter vascular scaffolds, which consisted of thermoplastic polyurethane (TPU) and silk, were fabricated in this study for the first time by combining electrospinning, braiding, and thermally induced phase separation methods. These novel vascular scaffolds, which possess three layers of different structures (nanofibrous inner layer, woven silk filament middle layer, and porous outer layer) have a desired toe region in the tensile test and sufficient suture retention and burst pressure for vascular graft applications. The endothelia cell culture tests showed that a cell layer could form on the inner surface of a scaffold with high cell viability. Furthermore, the cells showed favorable morphology on the scaffold.

  3. PLLA-PEG-TCH-labeled bioactive molecule nanofibers for tissue engineering

    Directory of Open Access Journals (Sweden)

    Chen J

    2011-10-01

    Full Text Available Jun Chen1,2, Beth Zhou1–3, Qi Li1,2, Jun Ouyang4, Jiming Kong2,4,5, Wen Zhong3,6, Malcolm MQ Xing1,2,4,71Department of Mechanical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada; 2Manitoba Institute of Child Health, Winnipeg, MB, Canada; 3Department of Textile Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, MB, Canada; 4School of Basic Medical Science, Southern Medical University, Guangzhoug, China; 5Department of Human Anatomy and Cell Sciences, 6Department of Medical Microbiology, Faculty of Medicine, 7Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, MB, CanadaAbstract: By mimicking the native extracellular matrix, electrospun nanofibrous scaffolds (ENSs can provide both chemical and physical cues to modulate cell adherence and differentiation and to promote tissue regeneration while retaining bioresorbable and biocompatible properties. In this study, ENSs were developed to deliver multiple biomolecules by loading them into the core-sheath structure and/or by conjugating them to the nanofiber surfaces. In this work, poly(L-lactide-poly(ethylene glycol-NH2 and poly(L-lactide were emulsion electrospun into nanofibers with a core-sheath structure. A model drug, tetracycline hydrochloride, was loaded within the nanofibers. Amino and carboxyl reactive groups were then activated on the fiber surfaces using saturated water vapor exposure and base hydrolysis, respectively. These reactive groups allowed the surface of the ENS to be functionalized with two other bioactive molecules, fluorescein isothiocyanate- and rhodamine-labeled bovine serum albumins, which were used as model proteins. The ENSs were shown to retain their antimicrobial capacity after two functionalization reactions, indicating that multifunctional nanofibers can potentially be developed into functional wound dressings or periodontal membranes or used in more complicated

  4. High-sensitivity acoustic sensors from nanofibre webs

    Science.gov (United States)

    Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong

    2016-03-01

    Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa-1. They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors.

  5. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.

    Science.gov (United States)

    Entekhabi, Elahe; Haghbin Nazarpak, Masoumeh; Moztarzadeh, Fathollah; Sadeghi, Ali

    2016-12-01

    Given the large differences in nervous tissue and other tissues of the human body and its unique features, such as poor and/or lack of repair, there are many challenges in the repair process of this tissue. Tissue engineering is one of the most effective approaches to repair neural damages. Scaffolds made from electrospun fibers have special potential in cell adhesion, function and cell proliferation. This research attempted to design a high porous nanofibrous scaffold using hyaluronic acid and polycaprolactone to provide ideal conditions for nerve regeneration by applying proper physicochemical and mechanical signals. Chemical and mechanical properties of pure PCL and PCL/HA nanofibrous scaffolds were measured by FTIR and tensile test. Morphology, swelling behavior, and biodegradability of the scaffolds were evaluated too. Porosity of various layers of scaffolds was measured by image analysis method. To assess the cell-scaffold interaction, SH-SY5Y human neuroblastoma cell line were cultured on the electrospun scaffolds. Taken together, these results suggest that the blended nanofibrous scaffolds PCL/HA 95:5 exhibit the most balanced properties to meet all of the required specifications for neural cells and have potential application in neural tissue engineering. PMID:27612726

  6. Novel transparent and flexible nanocomposite film prepared from chrysotile nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kun, E-mail: kliu@csu.edu.cn [School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 (China); Zhu, Binnan; Feng, Qiming [School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 (China); Duan, Tao [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP, Mianyang 621010 (China)

    2013-10-01

    In the present study, chrysotile nanofibres, obtained from physicochemical dispersion of natural chrysotile, were used to prepare nanofibre sheets by vacuum filtration. As-prepared sheets were then impregnated by UV-curable resin and cured by ultraviolet light to fabricate the flexible and transparent nanocomposite films. Observed from SEM, the transparent films showed a smooth surface and a typical sandwich structure in cross section, viz. nanofibre sheet filled with resin was sandwiched by two layers of resin. XRD patterns indicated the amorphous nature of cured resin and characteristic crystallographic structure of chrysotile in nanocomposite films. Though the nanofibre sheets were white in colour, and nanofibre contents in nanocomposites were as much as 43.4 wt%, the nanocomposite films displayed an excellent optical transparency with about 85% light transmittance in the visible light range. Tensile tests showed that the addition of nanofibres resulted in a great improvement in mechanical strength of the nanocomposite films; with the increase of nanofibre contents, the modulus and tensile strength of nanocomposite films increased gradually. - Graphical abstract: Photos show the experimental phenomenon. The white nanofibre sheets can be written or printed like paper, and it's very interested that the handwriting is clearly visible from the front and back of the transparent films prepared from nanofibre sheets by vacuum impregnation and UV curing. This phenomenon can be attributed to the increase of transparency of film, which results from the replacement of air interstices in nanofibre sheet by resin with higher refractive index. Visible light can pass easily through the transparent film without obvious loss, but can be apparently adsorbed and scattered by ink particles that adhered to nanofibres and embedded in resin. - Highlights: • A flexible and transparent film is prepared from chrysotile nanofibres. • The nanofibre sheet is sandwiched by two

  7. Measuring Electrospun Nanofibre Diameter: a Novel Approach

    Institute of Scientific and Technical Information of China (English)

    M. Ziabari; V. Mottaghitalab; S. T. McGovern; A. K. Haghi

    2008-01-01

    @@ A new method based on image analysis for electrospun nanofibre diameter measurement is presented. First, the SEM micrograph of the nanofibre web obtained by electrospinning process is converted to binary image using local thresholding method. In the next step, skeleton and distance transformed image are generated. Then, the intersection points which bring about untrue measurements axe identified and removed from the skeleton. Finally, the resulting skeleton and distance transformed image are used to determine fibre diameter. The method is evaluated by a simulated image with known characteristics generated by ?.-randomness procedure. The results indicate that this approach is successful in making fast, accurate automated measurements of electrospun fibre diameters.

  8. Collagen scaffold remodeling by human mesenchymal stem cells

    OpenAIRE

    Han, SJ; Chan, BP

    2011-01-01

    Type I collagen has been widely used as scaffold for tissue engineering because of its excellent biocompatibility and negligible immunogenicity. We previously have developed a collagen microencapsulation technology entrapping many cells including human mesenchymal stem cells (hMSCs) in microspheres made of nanofibrous collagen meshwork. Nevertheless, little is understood about how stem cells interact with and remodel the collagen meshwork. This study aims to investigate collagen remodeling by...

  9. PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering

    Directory of Open Access Journals (Sweden)

    Fariba Mansourizadeh

    2013-03-01

    Full Text Available Due to their mulitpotency, Mesenchymal stem cells (MSCs, have the ability to proliferate and differentiate into multiple mesodermal tissues. The aim of this study was to isolate MSCs from human Umbilical Cord (hUCMSCs to determine their osteogenic potential on nanofibrous scaffolds. To this end, Poly (L-lactic acid (PLLA/Nano hydroxyapatite (HA composite nanofibrous scaffolds were prepared by electrospinning. The structure and morphology of the scaffolds were investigated using scanning electron microscopy. Human mesenchymal stem cells (MSCs were isolated from the umbilical cords and cultured in the PLLA/HA scaffold. The viability and proliferation of the cells was then determined by an MTT assay. Cellular adhesion, proliferation and osteogenic differentiation were assessed in these constructs using a range of histological and microscopic techniques. The osteogenesis assays indicated the superiority of nanofibrous scaffolds in supporting MSCs undergoing bone differentiation. Collectively, the bone construct prepared with PLLA/HA scaffold and proliferated MSCs would be a suitable candidate for use in bone regenerative medicine.

  10. PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering

    Directory of Open Access Journals (Sweden)

    Fariba Mansourizadeh

    2013-01-01

    Full Text Available Due to their mulitpotency, Mesenchymal stem cells (MSCs, have the ability to proliferate and differentiate into multiple mesodermal tissues. The aim of this study was to isolate MSCs from human Umbilical Cord (hUCMSCs to determine their osteogenic potential on nanofibrous scaffolds. To this end, Poly (L-lactic acid (PLLA/Nano hydroxyapatite (HA composite nanofibrous scaffolds were prepared by electrospinning. The structure and morphology of the scaffolds were investigated using scanning electron microscopy. Human mesenchymal stem cells (MSCs were isolated from the umbilical cords and cultured in the PLLA/HA scaffold. The viability and proliferation of the cells was then determined by an MTT assay. Cellular adhesion, proliferation and osteogenic differentiation were assessed in these constructs using a range of histological and microscopic techniques. The osteogenesis assays indicated the superiority of nanofibrous scaffolds in supporting MSCs undergoing bone differentiation. Collectively, the bone construct prepared with PLLA/HA scaffold and proliferated MSCs would be a suitable candidate for use in bone regenerative medicine.

  11. Metal–polyaniline nanofibre composite for supercapacitor applications

    Indian Academy of Sciences (India)

    S H Kazemi; M A Kiani; R Mohamadi; L Eskandarian

    2014-08-01

    The aim of the present work is to increase the electrical conductivity and specific capacitance of the polyaniline (PANi) nanofibres by introducing the metallic nanostructures. Herein, metal nanoparticleincorporated PANi nanofibres were prepared from interfacially synthesized PANi nanofibres as seeds. In the main step of aniline polymerization, the seeds were employed to produce a large amount of PANi nanofibres in the next steps. Also, metal–PANi nanofibres were chemically prepared by adding inorganic salts (nickel and copper salts) which incorporated PANi nanofibres via the self-assembly process. Increased conductivity and good electrochemical behaviour were observed for these metal–PANi nanofibres at room temperature compared with the single PANi nanofibres, which was previously reported. SEM, FT–IR and UV–Vis techniques were applied for characterization of the products. Finally, the potential application of the composites to use as electrode materials for supercapacitor was examined. Elevated specific capacitance in addition to good cycle stability was observed for the metal–PANi nanofibres. Also, electrochemical impedance spectroscopy and charge/discharge experiments show that these metal–PANi nanofibres possess the high conductivity and low charge transfer resistance, which make them suitable candidates for high-performance supercapacitors.

  12. Nanofibrous Resonant Membrane for Acoustic Applications

    Directory of Open Access Journals (Sweden)

    K. Kalinová

    2011-01-01

    Full Text Available Because the absorption of lower-frequency sound is problematic with fibrous material made up of coarser fibers, highly efficient sound absorption materials must be developed. The focus of this paper is on the development of a new material with high acoustic absorption characteristics. For low-frequency absorption, structures based upon the resonance principle of nanofibrous layers are employed in which the resonance of some elements allows acoustic energy to be converted into thermal energy. A nanofibrous membrane was produced by an electrostatic spinning process from an aqueous solution of polyvinyl alcohol and the acoustic characteristics of the material measured. The resonant frequency prediction for the nanofibrous membrane is based on research into its production parameters. The distance between electrodes during the electrostatic spinning process determines the average diameter of the nanofibers, and the outlet velocity of the material determines its area density. The average diameter of nanofibers was measured using the Lucia software package directly from an electron microscope image. The resonant frequency of nanofibrous membranes was determined from the sound absorption coefficient and transmission loss measurement.

  13. Innovations with protein nano-fibres

    NARCIS (Netherlands)

    Linden, van der E.

    2006-01-01

    Proteins in solution can form objects of various shapes. One fascinating possibility is the formation of fibres with a length up to micrometers, but with a thickness of a few nanometers, therefore referring to them as nano-fibres. Many proteins show this behaviour under the appropriate conditions. G

  14. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues

    OpenAIRE

    Liu, Jia; Dvir, Tal; Jin, Lihua; Tsui, Jonathan H.; Qing, Quan; Suo, Zhigang; Langer, Robert S.; Kohane, Daniel Solomon; Lieber, Charles M.; Tian, Bozhi

    2012-01-01

    The development of three-dimensional (3D) synthetic biomaterials as structural and bioactive scaffolds is central to fields ranging from cellular biophysics to regenerative medicine. As of yet, these scaffolds cannot electrically probe the physicochemical and biological micro-environments throughout their 3D and macroporous interior, although this capability could have a marked impact in both electronics and biomaterials. Here, we address this challenge using macroporous, flexible and free-st...

  15. Review: current international research into cellulose nanofibres and nanocomposites

    OpenAIRE

    Eichhorn, S. J.; Dufresne, A; Aranguren, M.; Marcovich, N. E.; Capadona, J R; Rowan, S. J.; Weder, Christoph; Thielemans, W.; Roman, M.; Renneckar, S.; Gindl, W.; Veigel, S.; Keckes, J.; Yano, H.; Abe, K.

    2010-01-01

    This paper provides an overview of recent progress made in the area of cellulose nanofibre-based nanocomposites. An introduction into the methods used to isolate cellulose nanofibres (nanowhiskers, nanofibrils) is given, with details of their structure. Following this, the article is split into sections dealing with processing and characterisation of cellulose nanocomposites and new developments in the area, with particular emphasis on applications. The types of cellulose nanofibres covered a...

  16. The Tissue Response and Degradation of Electrospun Poly(ε-caprolactone/Poly(trimethylene-carbonate Scaffold in Subcutaneous Space of Mice

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2014-01-01

    Full Text Available Due to the advantage of controllability on the mechanical property and the degradation rates, electrospun PCL/PTMC nanofibrous scaffold could be appropriate for vascular tissue engineering. However, the tissue response and degradation of electrospun PCL/PTMC scaffold in vivo have never been evaluated in detail. So, electrospun PCL/PTMC scaffolds with different blend ratios were prepared in this study. Mice subcutaneous implantation showed that the continuous degradation of PCL/PTMC scaffolds induced a lasted macrophage-mediated foreign body reaction, which could be in favor of the tissue regeneration in graft.

  17. Preparation of Aligned Polymer Micro/Nanofibres by Electrospinning

    Institute of Scientific and Technical Information of China (English)

    TAN Jin-Shan; LONG Yun-Ze; LI Meng-Meng

    2008-01-01

    @@ Polymer micro/nanofibres are prepared by typical and modified methods of electrospinning. The morphologies and microstructures of the electrospun micro/nanofibres are characterized by a scanning electron microscope (SEM). The micro/nanofibres prepared by the typical electrospinning are usually collected in the form of non-woven mats lacking of structural orientation. However, by modifying collector(s) of the electrospinning setup, the resulting polymer fibres show aligned structures to some extent. We analyse all the forces that the fibres experienced during electrospinning and find that the electrostatic force originating from the splitting electric field plays a key role in the alignment of the micro/nanofibres.

  18. Preparation of Antibacterial Nanofibre/Nanoparticle Covered Composite Yarns

    Directory of Open Access Journals (Sweden)

    Fatma Yalcinkaya

    2016-01-01

    Full Text Available The antibacterial efficiency of nanofibre composite yarns with an immobilized antibacterial agent was tested. This novel type of nanofibrous composite material combines the good mechanical properties of the core yarn with the high specific surface of the nanofibre shell to gain specific targeted qualities. The main advantages of nanofibre covered composite yarns over the standard planar nanofibre membranes include high tensile strength, a high production rate, and their ability to be processed by standard textile techniques. The presented paper describes a study of the immobilization of an antibacterial agent and its interaction with two types of bacterial colonies. The aim of the study is to assess the applicability of the new composite nanomaterial in antibacterial filtration. During the experimental tests copper(II oxide particles were immobilized in the polyurethane and polyvinyl butyral nanofibre components of a composite yarn. The antibacterial efficiency was evaluated by using both Gram-negative Escherichia coli and Gram-positive Staphylococcus gallinarum bacteria. The results showed that the composite yarn with polyvinyl butyral nanofibres incorporating copper(II oxide nanoparticles exhibited better antibacterial efficiency compared to the yarn containing the polyurethane nanofibres. The nanofibre/nanoparticle covered composite yarns displayed good antibacterial activity against a number of bacteria.

  19. SCAFFOLD: TISSUE ENGINEERING AND REGENERATIVE MEDICINE

    Directory of Open Access Journals (Sweden)

    Garg Tarun

    2011-12-01

    Full Text Available Scaffolds are the central components, which are used to deliver the cells, drug and gene into the body. Polymeric scaffolds may be prepared as typical 3-D porous matrix, nanofibrous matrix, thermo sensitive sol-gel transition hydrogel or porous microsphere, which provide suitable substrate for cell attachment, cell proliferation, differentiated function, and cell migration. Scaffold matrices have specific advantage over other novel drug delivery systems by achieving high drug loading. This study has been conducted to illustrate the various fabrication techniques of scaffold like Particulate leaching, freeze-drying, Supercritical fluid technology, thermally induced phase separation, Rapid prototyping, powder compaction, sol-gel, melt moulding etc. These techniques allow the preparation of porous structures with regular porosity. The main conclusion of this study is Scaffold provides adequate signals (e.g., through the use of adhesion peptides and growth factors to the cells, to induce and maintain them in their desired differentiation stage and for their survival and growth and their successful utilisation in various fields like bone formation, joint pain inflammation, tumor, periodontal regeneration, In-vivo generation of dental pulp, diabetes, osteochondrogenesis, wound dressing, inhibit bacterial growth, heart disease, repair of nasal and auricular malformation, cartilage development, regulated non-viral gene delivery, as artificial corneas, as heart valve, antiepileptic effect, tendon repair, ligament replacement, plasmid delivery, etc.

  20. Carbon nanofibre reinforcement of soft materials

    International Nuclear Information System (INIS)

    In elastomeric matrices carbon nanofibres are found to be twenty times more effective than carbon black as a reinforcing filler. In hard matrices, by contrast, reinforcement is minimal. Tensile and dynamic mechanical tests were performed to elucidate the mechanism of reinforcement in order to explain the superior performance in soft matrices. Small-angle neutron scattering and ultra-small-angle X-ray scattering were used to quantify filler morphology, which turns out to be the key factor that limits reinforcement potential. The presence of fractal cluster formed by agglomeration of the nanofibres reduces the effective aspect ratio of the nanotubes. Clustering, however, introduces a new reinforcement mechanism based on elastic deformation of the fibre clusters. This mechanism is operative in soft matrices but not in hard matrices, thus explaining the enhanced performance in soft matrices.

  1. Nanostructured optical nanofibres for atom trapping

    CERN Document Server

    Daly, Mark; Phelan, Ciarán; Deasy, Kieran; Chormaic, Síle Nic

    2013-01-01

    We propose an optical dipole trap for cold neutral atoms based on the electric field produced from the evanescent fields in a hollow rectangular slot cut through an optical nanofibre. In particular, we discuss the trap performance in relation to laser-cooled rubidium atoms and show that a far off-resonance, blue-detuned field combined with the attractive surface-atom interaction potential from the dielectric material forms a stable trapping configuration. With the addition of a red-detuned field, we demonstrate how three dimensional confinement of the atoms at a distance of 140 - 200 nm from the fibre surface within the slot can be accomplished. This scheme facilitates optical coupling between the atoms and the nanofibre that could be exploited for quantum communication schemes using ensembles of laser-cooled atoms.

  2. Electrospun nanofibrous SF/P(LLA-CL membrane: a potential substratum for endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Chen JZ

    2015-05-01

    Full Text Available Junzhao Chen,1,* Chenxi Yan,1,* Mengyu Zhu,1,* Qinke Yao,1 Chunyi Shao,1 Wenjuan Lu,1 Jing Wang,2 Xiumei Mo,2 Ping Gu,1 Yao Fu,1 Xianqun Fan1 1Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 2Biomaterials and Tissue Engineering Laboratory, College of Chemistry and Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: Cornea transplant technology has progressed markedly in recent decades, allowing surgeons to replace diseased corneal endothelium by a thin lamellar structure. A thin, transparent, biocompatible, tissue-engineered substratum with corneal endothelial cells for endothelial keratoplasty is currently of interest. Electrospinning a nanofibrous structure can simulate the extracellular matrix and have beneficial effects for cell culture. Silk fibroin (SF has good biocompatibility but poor mechanical properties, while poly(L-lactic acid-co-Ɛ-caprolactone (P(LLA-CL has good mechanical properties but poor biocompatibility. Blending SF with P(LLA-CL can maintain the advantages of both these materials and overcome their disadvantages. Blended electrospun nanofibrous membranes may be suitable for regeneration of the corneal endothelium. The aim of this study was to produce a tissue-engineered construct suitable for endothelial keratoplasty.Methods: Five scaffolds containing different SF:P(LLA-CL blended ratios (100:0, 75:25, 50:50, 25:75, 0:100 were manufactured. A human corneal endothelial (B4G12 cell line was cultured on the membranes. Light transmission, speed of cell adherence, cell viability (live-dead test, cell proliferation (Ki-67, BrdU staining, and cell monolayer formation were detected on membranes with the different blended ratios, and expression of some functional genes was also detected by real-time polymerase chain reaction.Results: Different blended ratios of scaffolds

  3. Electrospun aliphatic polycarbonates as tailored tissue scaffold materials.

    Science.gov (United States)

    Welle, Alexander; Kröger, Mario; Döring, Manfred; Niederer, Kerstin; Pindel, Elvira; Chronakis, Ioannis S

    2007-04-01

    Two different aliphatic polycarbonates were synthesised from CO(2) and the respective epoxides. Poly(propyl carbonate) (PPC) was prepared by heterogeneous catalysis with zinc glutarate. Poly(cyclohexyl carbonate) (PCHC) was prepared via living copolymerisation homogeneously catalysed by a 3-amino-2-cyanoimidoacrylate zinc acetate complex and subjected to electrospinning. The obtained nanofibres had a well-defined morphology free of beads along the fibres and with slightly porous structures on their surface. Subsequently, low-power deep UV irradiations, previously applied for photochemical surface modifications of two-dimensional and three-dimensional scaffolds from biostable polymers, were performed. Here, an effect on surface and bulk properties of PPC nanofibres was observed. Surface modifications of both polymers affected plasma protein adsorption. Photochemical bulk modifications observed for the first time on PPC nanofibres are indicating the possibility of spatial control of biodegradation rates, hence allow for control of the progression of host/implant interactions in vivo. In particular PPC was used for cell culture of L929 fibroblasts and primary rat hepatocytes. Even delicate primary cells showed good adhesion to the scaffolds and high viability.

  4. Electrospun Scaffolds for Corneal Tissue Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Bin Kong

    2016-07-01

    Full Text Available Corneal diseases constitute the second leading cause of vision loss and affect more than 10 million people globally. As there is a severe shortage of fresh donated corneas and an unknown risk of immune rejection with traditional heterografts, it is very important and urgent to construct a corneal equivalent to replace pathologic corneal tissue. Corneal tissue engineering has emerged as a practical strategy to develop corneal tissue substitutes, and the design of a scaffold with mechanical properties and transparency similar to that of natural cornea is paramount for the regeneration of corneal tissues. Nanofibrous scaffolds produced by electrospinning have high surface area–to-volume ratios and porosity that simulate the structure of protein fibers in native extra cellular matrix (ECM. The versatilities of electrospinning of polymer components, fiber structures, and functionalization have made the fabrication of nanofibrous scaffolds with suitable mechanical strength, transparency and biological properties for corneal tissue engineering feasible. In this paper, we review the recent developments of electrospun scaffolds for engineering corneal tissues, mainly including electrospun materials (single and blended polymers, fiber structures (isotropic or anisotropic, functionalization (improved mechanical properties and transparency, applications (corneal cell survival, maintenance of phenotype and formation of corneal tissue and future development perspectives.

  5. The Effect of Aligned and Random Electrospun Fibrous Scaffolds on Rat Mesenchymal Stem Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Zahra Zonoubi

    2012-01-01

    Full Text Available Objective: The development of combining mesenchymal stem cells (MSCs with surface modified three-dimensional (3D biomaterial scaffold provides a desirable alternative for replacement of damaged and diseased tissue. Nanofibrous scaffolds serve as suitable environment for cell attachment and proliferation due to their similarity to the physical dimension of the natural extracellular matrix. In this study the properties of plasma treated poly-C-caprolactone nanofiber scaffolds (p-PCL and unaltered PCL scaffolds were compared,and then p-PCL scaffolds were evaluated for MSC culture.Materials and Methods: Aligned and random PCL nanofibrus scaffolds were fabricatedby electrospining and their surface modified with O2 plasma treatment to enhanceMSC proliferation, adhesion and interaction. Chemical and mechanical characterizationswere carried out using scanning electron microscopy (SEM, water contact angle and tensile testing. Cell adhesion and morphology were evaluated using SEM 1 day after culture. Statistical analysis was carried out using one way analysis of variance(ANOVA.Results: The proliferation of MSCs were evaluated using 3-(4,5-Dimethylthiazol-2-yl-2,5-DiphenyltetrazoliumBromide(MTT assay on day 1, 3, and 5 after cell culture. Results showed that the numbers of cells that had grown on PCL nanofibrous scaffolds were significantly higher than those of control surfaces without nanofibers. Furthermore, the proliferation of MSCs on random nanofiber was significantly higher compared to that on aligned nanofiber.Conclusion: This study showed that while both aligned and random plasma treated PCL nanofibrous scaffold are more suitable substrates for MSC growth than tissue culture plates, random nanofiber best supported the proliferation of MSCs.

  6. A carbon nanofibre scanning probe assembled using an electrothermal microgripper

    DEFF Research Database (Denmark)

    Carlson, Kenneth; Dyvelkov, Karin Nordström; Eicchorn, V.;

    2007-01-01

    nanofibre from a fixed position on a substrate to the tip of an atomic force microscope cantilever, inside a scanning electron microscope. Scanning of high aspect ratio trenches using the nanofibre supertip shows a significantly better performance than that with standard pyramidal silicon tips. Based...

  7. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation.

    Science.gov (United States)

    Ho, Ming-Hua; Liao, Mei-Hsiu; Lin, Yi-Ling; Lai, Chien-Hao; Lin, Pei-I; Chen, Ruei-Ming

    2014-01-01

    Osteoblast maturation plays a key role in regulating osteogenesis. Electrospun nanofibrous products were reported to possess a high surface area and porosity. In this study, we developed chitosan nanofibers and examined the effects of nanofibrous scaffolds on osteoblast maturation and the possible mechanisms. Macro- and micro observations of the chitosan nanofibers revealed that these nanoproducts had a flat surface and well-distributed fibers with nanoscale diameters. Mouse osteoblasts were able to attach onto the chitosan nanofiber scaffolds, and the scaffolds degraded in a time-dependent manner. Analysis by scanning electron microscopy further showed mouse osteoblasts adhered onto the scaffolds along the nanofibers, and cell-cell communication was also detected. Mouse osteoblasts grew much better on chitosan nanofiber scaffolds than on chitosan films. In addition, human osteoblasts were able to adhere and grow on the chitosan nanofiber scaffolds. Interestingly, culturing human osteoblasts on chitosan nanofiber scaffolds time-dependently increased DNA replication and cell proliferation. In parallel, administration of human osteoblasts onto chitosan nanofibers significantly induced osteopontin, osteocalcin, and alkaline phosphatase (ALP) messenger (m)RNA expression. As to the mechanism, chitosan nanofibers triggered runt-related transcription factor 2 mRNA and protein syntheses. Consequently, results of ALP-, alizarin red-, and von Kossa-staining analyses showed that chitosan nanofibers improved osteoblast mineralization. Taken together, results of this study demonstrate that chitosan nanofibers can stimulate osteoblast proliferation and maturation via runt-related transcription factor 2-mediated regulation of osteoblast-associated osteopontin, osteocalcin, and ALP gene expression. PMID:25246786

  8. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    Science.gov (United States)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  9. SOUND ABSORPTION BEHAVIOR OF ELECTROSPUN POLYACRYLONITRILE NANOFIBROUS MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Hai-fan Xiang; Shuai-xia Tan; Xiao-lan Yu; Yu-hua Long; Xiao-li Zhang; Ning Zhao; Jian Xu

    2011-01-01

    The acoustical damping property of electrospun polyacrylonitrile (PAN) nanofibrous membranes with different thicknesses and porosities was investigated.The sound absorption coefficients were measured using the impedance tube instrument based on ISO10534-2:1998(E).Results indicate that the first resonance absorption frequency of nanofibrous membranes shifts to the lower frequency with the increase of the back cavity or the thickness of membranes.Moreover,the sound absorption performance of the perforated panel can be greatly improved by combination with a thin layer of PAN nanofibrous membrane.Traditional acoustical damping materials (foam,fiber) coated with nanofibrous membranes have better acoustical performance in the low and medium frequency range than that of acoustical materials alone.All of the results demonstrate the PAN nanofibrous membrane is a suitable candidate for noise reduction.

  10. Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings

    International Nuclear Information System (INIS)

    The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. - Highlights: • Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. • Titanate nanotube deposition was carried out without binding compounds or additives. • Titanate nanotube coatings enhanced cell viability and proliferation

  11. Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Barenghi, R. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Farkas, B.; Romano, I. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scaglione, S. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Brandi, F. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, 56124-Pisa (Italy)

    2014-11-01

    The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. - Highlights: • Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. • Titanate nanotube deposition was carried out without binding compounds or additives. • Titanate nanotube coatings enhanced cell viability and proliferation.

  12. Enhancement of tendon–bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt

    Science.gov (United States)

    Chou, Ying-Chao; Yeh, Wen-Lin; Chao, Chien-Lin; Hsu, Yung-Heng; Yu, Yi-Hsun; Chen, Jan-Kan; Liu, Shih-Jung

    2016-01-01

    A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA) bolt as the bone anchor and a poly(D,L-lactide-co-glycolide) (PLGA) nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon–bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon–bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon–bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon–bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction. PMID:27601901

  13. Enhancement of tendon-bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt.

    Science.gov (United States)

    Chou, Ying-Chao; Yeh, Wen-Lin; Chao, Chien-Lin; Hsu, Yung-Heng; Yu, Yi-Hsun; Chen, Jan-Kan; Liu, Shih-Jung

    2016-01-01

    A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA) bolt as the bone anchor and a poly(D,L-lactide-co-glycolide) (PLGA) nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon-bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon-bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon-bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon-bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction. PMID:27601901

  14. Recent progress concerning the production of controlled highly oriented electrospun nanofibrous arrays

    Science.gov (United States)

    Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.

    2016-08-01

    Among the foreground domains of all the research-development programs at national and international level, a special place is occupied by that concerning the nanosciences, nanotechnologies, new materials and technologies. Electrospinning found a well-deserved place in this space, offering the preparation of nanomaterials with distinctive properties and applications in medicine, environment, photonic sensors, filters, etc. These multiple applications are generated by the fact that the electrospinning technology makes available the production of nanofibers with controllable characteristics (length, porosity, density, and mechanical characteristics), complexity and architecture. The apparition of 3D printing technology favors the production of complex nanofibrous structures, controlled assembly, self-assembly of electrospun nanofibers for the production of scaffolds used in various medical applications. The architecture of fibrous deposits has a special influence on the subsequent development of the cells of the reconstructed organism. The present work proposes to study of recent progress concerning the production of controlled highly oriented electrospun nanofibrous arrays and progress in research on the production of complex 2D and 3D structures.

  15. Preparation and bioactivity of sol-gel macroporous bioactive glass

    Institute of Scientific and Technical Information of China (English)

    Zhihua Zhou; Jianming Ruan; Jianpeng Zou; Zhongcheng Zhou

    2008-01-01

    Bioactive glass is well known for its ability of bone regeneration, and sol-gel bioactive glass has many advantages com-pared with melt-derived bioactive glass. 3-D scaffold prepared by the sol-gel method is a promising substrate material for bone tissue engineering and large-scale bone repair. Porous sol-gel glass in the CaO-SiO2-P2O5 system with macropores larger than 100 μm was prepared by the addition of stearic acid as a pore former. The diameter of the pore created by the pore former varied from 100 to 300μm. The formation of a hydroxyapatite layer on the glass was analyzed by studying the surface of the porous glass by scanning elec-tron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Raman spectra after they had been immersed in simulated body fluid (SBF) for some time, and the porous glass shows good bioactivity.

  16. Composite scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Moutos, Franklin T; Guilak, Farshid

    2008-01-01

    Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.

  17. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration.

    Science.gov (United States)

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days' implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days' implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration. PMID:25709432

  18. Fabrication and evaluation of biomimetic scaffolds by using collagen-alginate fibrillar gels for potential tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Sang Lin; Luo Dongmei; Xu Songmei; Wang Xiaoliang; Li Xudong, E-mail: xli20004@yahoo.com

    2011-03-12

    Pore architecture and its stable functionality under cell culturing of three dimensional (3D) scaffolds are of great importance for tissue engineering purposes. In this study, alginate was incorporated with collagen to fabricate collagen-alginate composite scaffolds with different collagen/alginate ratios by lyophilizing the respective composite gels formed via collagen fibrillogenesis in vitro and then chemically crosslinking. The effects of alginate amount and crosslinking treatment on pore architecture, swelling behavior, enzymatic degradation and tensile property of composite scaffolds were systematically investigated. The relevant results indicated that the present strategy was simple but efficient to fabricate highly interconnected strong biomimetic 3D scaffolds with nanofibrous surface. NIH3T3 cells were used as a model cell to evaluate the cytocompatibility, attachment to the nanofibrous surface and porous architectural stability in terms of cell proliferation and infiltration within the crosslinked scaffolds. Compared with the mechanically weakest crosslinked collagen sponges, the cell-cultured composite scaffolds presented a good porous architecture, thus permitting cell proliferation on the top surface as well as infiltration into the inner part of 3D composite scaffolds. These composite scaffolds with pore size ranging from 150 to 300 {mu}m, over 90% porosity, tuned biodegradability and water-uptake capability are promising for tissue engineering applications.

  19. Fabrication and evaluation of biomimetic scaffolds by using collagen-alginate fibrillar gels for potential tissue engineering applications

    International Nuclear Information System (INIS)

    Pore architecture and its stable functionality under cell culturing of three dimensional (3D) scaffolds are of great importance for tissue engineering purposes. In this study, alginate was incorporated with collagen to fabricate collagen-alginate composite scaffolds with different collagen/alginate ratios by lyophilizing the respective composite gels formed via collagen fibrillogenesis in vitro and then chemically crosslinking. The effects of alginate amount and crosslinking treatment on pore architecture, swelling behavior, enzymatic degradation and tensile property of composite scaffolds were systematically investigated. The relevant results indicated that the present strategy was simple but efficient to fabricate highly interconnected strong biomimetic 3D scaffolds with nanofibrous surface. NIH3T3 cells were used as a model cell to evaluate the cytocompatibility, attachment to the nanofibrous surface and porous architectural stability in terms of cell proliferation and infiltration within the crosslinked scaffolds. Compared with the mechanically weakest crosslinked collagen sponges, the cell-cultured composite scaffolds presented a good porous architecture, thus permitting cell proliferation on the top surface as well as infiltration into the inner part of 3D composite scaffolds. These composite scaffolds with pore size ranging from 150 to 300 μm, over 90% porosity, tuned biodegradability and water-uptake capability are promising for tissue engineering applications.

  20. Fabrication and characterization of hydroxyapatite-coated forsterite scaffold for tissue regeneration applications

    Indian Academy of Sciences (India)

    Roya Saidi; Mohammad Hossein Fathi; Hamidreza Salimijazi

    2015-09-01

    In this study, a novel hydroxyapatite (HA)-coated forsterite scaffold with a desired porous structure, high mechanical properties and good bioactivity was successfully fabricated via gel-casting and sol–gel in low pressure methods. X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray map techniques were utilized in order to evaluate the phase composition, dimension, morphology, interconnectivity of the pores and state of the coating on the porosities of the synthesized scaffold. The porosity and compressive strength of the scaffolds were measured and the bioactivity was investigated by soaking the scaffolds in simulated body fluid (SBF). The results show that the prepared scaffolds had highly interconnected spherical pores with size in the range of 65–245 μm. Additionally, compressive strength and elastic modulus were 7.5 ± 0.2 and 291 ± 10 MPa, respectively. The crystallite size of the scaffolds was less than 60 nm. True (total) and apparent (interconnected) porosity of the scaffolds were in the range of 75–80 and 65–70%, respectively. In vitro tests in the SBF also confirmed good bioactivity of the prepared scaffolds. While bone-like apatite formation started from the first day of soaking and apatite covered the entire surface and inner wall of the scaffolds pores at long immersion time. Conclusion suggested that HA coating on forsterite scaffolds could significantly improve the mechanical properties and bioactivity, which might be promising for tissue engineering applications.

  1. Chitosan microspheres with an extracellular matrix-mimicking nanofibrous structure as cell-carrier building blocks for bottom-up cartilage tissue engineering

    Science.gov (United States)

    Zhou, Yong; Gao, Huai-Ling; Shen, Li-Li; Pan, Zhao; Mao, Li-Bo; Wu, Tao; He, Jia-Cai; Zou, Duo-Hong; Zhang, Zhi-Yuan; Yu, Shu-Hong

    2015-12-01

    Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation. Recently, as a valuable alternative, a bottom-up TE approach utilizing cell-loaded micrometer-scale modular components as building blocks to reconstruct a new tissue in vitro or in vivo has been proved to demonstrate a number of desirable advantages compared with the traditional bulk scaffold based top-down TE approach. Nevertheless, micro-components with an ECM-mimicking nanofibrous structure are still very scarce and highly desirable. Chitosan (CS), an accessible natural polymer, has demonstrated appealing intrinsic properties and promising application potential for TE, especially the cartilage tissue regeneration. According to this background, we report here the fabrication of chitosan microspheres with an ECM-mimicking nanofibrous structure for the first time based on a physical gelation process. By combining this physical fabrication procedure with microfluidic technology, uniform CS microspheres (CMS) with controlled nanofibrous microstructure and tunable sizes can be facilely obtained. Especially, no potentially toxic or denaturizing chemical crosslinking agent was introduced into the products. Notably, in vitro chondrocyte culture tests revealed that enhanced cell attachment and proliferation were realized, and a macroscopic 3D geometrically shaped cartilage-like composite can be easily constructed with the nanofibrous CMS (NCMS) and chondrocytes, which demonstrate significant application potential of NCMS as the bottom-up cell-carrier components for cartilage tissue engineering.Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation

  2. Nanostructured Tendon-Derived Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Ko, Eunkyung; Alberti, Kyle; Lee, Jong Seung; Yang, Kisuk; Jin, Yoonhee; Shin, Jisoo; Yang, Hee Seok; Xu, Qiaobing; Cho, Seung-Woo

    2016-09-01

    Decellularized matrix-based scaffolds can induce enhanced tissue regeneration due to their biochemical, biophysical, and mechanical similarity to native tissues. In this study, we report a nanostructured decellularized tendon scaffold with aligned, nanofibrous structures to enhance osteogenic differentiation and in vivo bone formation of human adipose-derived stem cells (hADSCs). Using a bioskiving method, we prepared decellularized tendon scaffolds from tissue slices of bovine Achilles and neck tendons with or without fixation, and investigated the effects on physical and mechanical properties of decellularized tendon scaffolds, based on the types and concentrations of cross-linking agents. In general, we found that decellularized tendon scaffolds without fixative treatments were more effective in inducing osteogenic differentiation and mineralization of hADSCs in vitro. When non-cross-linked decellularized tendon scaffolds were applied together with hydroxyapatite for hADSC transplantation in critical-sized bone defects, they promoted bone-specific collagen deposition and mineralized bone formation 4 and 8 weeks after hADSC transplantation, compared to conventional collagen type I scaffolds. Interestingly, stacking of decellularized tendon scaffolds cultured with osteogenically committed hADSCs and those containing human cord blood-derived endothelial progenitor cells (hEPCs) induced vascularized bone regeneration in the defects 8 weeks after transplantation. Our study suggests that biomimetic nanostructured scaffolds made of decellularized tissue matrices can serve as functional tissue-engineering scaffolds for enhanced osteogenesis of stem cells. PMID:27502160

  3. Impact of scaffold micro and macro architecture on Schwann cell proliferation under dynamic conditions in a rotating wall vessel bioreactor

    International Nuclear Information System (INIS)

    Over the last decade tissue engineering has emerged as a powerful alternative to regenerate lost tissues owing to trauma or tumor. Evidence shows that Schwann cell containing scaffolds have improved performance in vivo as compared to scaffolds that depend on cellularization post implantation. However, owing to limited supply of cells from the patients themselves, several approaches have been taken to enhance cell proliferation rates to produce complete and uniform cellularization of scaffolds. The most common approach is the application of a bioreactor to enhance cell proliferation rate and therefore reduce the time needed to obtain sufficiently significant number of glial cells, prior to implantation. In this study, we show the application of a rotating wall bioreactor system for studying Schwann cell proliferation on nanofibrous spiral shaped scaffolds, prepared by solvent casting and salt leaching techniques. The scaffolds were fabricated from polycaprolactone (PCL), which has ideal mechanical properties and upon degradation does not produce acidic byproducts. The spiral scaffolds were coated with aligned or random nanofibers, produced by electrospinning, to provide a substrate that mimics the native extracellular matrix and the essential contact guidance cues. At the 4 day time point, an enhanced rate of cell proliferation was observed on the open structured nanofibrous spiral scaffolds in a rotating wall bioreactor, as compared to static culture conditions. However, the cell proliferation rate on the other contemporary scaffolds architectures such as the tubular and cylindrical scaffolds show reduced cell proliferation in the bioreactor as compared to static conditions, at the same time point. Moreover, the rotating wall bioreactor does not alter the orientation or the phenotype of the Schwann cells on the aligned nanofiber containing scaffolds, wherein, the cells remain aligned along the length of the scaffolds. Therefore, these open structured spiral

  4. Impact of scaffold micro and macro architecture on Schwann cell proliferation under dynamic conditions in a rotating wall vessel bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Valmikinathan, Chandra M.; Hoffman, John [Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030 (United States); Yu, Xiaojun, E-mail: xyu@stevens.edu [Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030 (United States)

    2011-01-01

    Over the last decade tissue engineering has emerged as a powerful alternative to regenerate lost tissues owing to trauma or tumor. Evidence shows that Schwann cell containing scaffolds have improved performance in vivo as compared to scaffolds that depend on cellularization post implantation. However, owing to limited supply of cells from the patients themselves, several approaches have been taken to enhance cell proliferation rates to produce complete and uniform cellularization of scaffolds. The most common approach is the application of a bioreactor to enhance cell proliferation rate and therefore reduce the time needed to obtain sufficiently significant number of glial cells, prior to implantation. In this study, we show the application of a rotating wall bioreactor system for studying Schwann cell proliferation on nanofibrous spiral shaped scaffolds, prepared by solvent casting and salt leaching techniques. The scaffolds were fabricated from polycaprolactone (PCL), which has ideal mechanical properties and upon degradation does not produce acidic byproducts. The spiral scaffolds were coated with aligned or random nanofibers, produced by electrospinning, to provide a substrate that mimics the native extracellular matrix and the essential contact guidance cues. At the 4 day time point, an enhanced rate of cell proliferation was observed on the open structured nanofibrous spiral scaffolds in a rotating wall bioreactor, as compared to static culture conditions. However, the cell proliferation rate on the other contemporary scaffolds architectures such as the tubular and cylindrical scaffolds show reduced cell proliferation in the bioreactor as compared to static conditions, at the same time point. Moreover, the rotating wall bioreactor does not alter the orientation or the phenotype of the Schwann cells on the aligned nanofiber containing scaffolds, wherein, the cells remain aligned along the length of the scaffolds. Therefore, these open structured spiral

  5. Amphiphilic Beads as Depots for Sustained Drug Release Integrated into Fibrillar Scaffolds

    NARCIS (Netherlands)

    Gaharwar, A.K.; Mihaila, S.M.; Kulkarni, A.A.; Patel, A.; Di Luca, A.; Reis, R.L.; Gomes, M.E.; Blitterswijk, van C.A.; Moroni, L.; Khademhosseini, A.

    2014-01-01

    Native extracellular matrix (ECM) is a complex fibrous structure loaded with bioactive cues that affects the surrounding cells. A promising strategy to mimicking native tissue architecture for tissue engineering applications is to engineer fibrous scaffolds using electrospinning. By loading appropri

  6. Cellulose Nanofibre Mesh for Use in Dental Materials

    Directory of Open Access Journals (Sweden)

    Anthony J. Ireland

    2012-07-01

    Full Text Available The aim of this study was to produce a 3D mesh of defect free electrospun cellulose acetate nanofibres and to use this to produce a prototype composite resin containing nanofibre fillers. This might find use as an aesthetic orthodontic bracket material or composite veneer for restorative dentistry. In this laboratory based study cellulose acetate was dissolved in an acetone and dimethylacetamide solvent solution and electrospun. The spinning parameters were optimised and lithium chloride added to the solution to produce a self supporting nanofibre mesh. This mesh was then silane coated and infiltrated with either epoxy resin or an unfilled Bis-GMA resin. The flexural strength of the produced samples was measured and compared to that of unfilled resin samples. Using this method cellulose acetate nanofibres were successfully electrospun in the 286 nm range. However, resin infiltration of this mesh resulted in samples with a flexural strength less than that of the unfilled control samples. Air inclusion during preparation and incomplete wetting of the nanofibre mesh was thought to cause this reduction in flexural strength. Further work is required to reduce the air inclusions before the true effect of resin reinforcement with a 3D mesh of cellulose acetate nanofibres can be determined.

  7. Preparation of thin film nanofibrous composite NF membrane based on EDC/NHS modified PAN-AA nanofibrous substrate

    Science.gov (United States)

    Yang, Y.; Wang, X.; Hsiao, B. S.

    2016-07-01

    A novel kind of thin-film nanofibrous composite (TFNC) nanofiltration (NF) membranes consisting of a polyamide (PA) barrier layer were successfully fabricated by interfacial polymerization (IFP) based on electrospun double-layer nanofibrous substrates, which have an ultrathin poly (acrylonitrile-co-acrylic acid) (PAN-AA) nanofibrous layer as top layer and a thicker polyacrylonitrile (PAN) nanofiber layer as bottom porous support layer. Immersing PAN/PAN-AA nanofibrous substrates into 1-ethyl-(3-3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) aqueous solution and piperazine (PIP) aqueous solution (0.20 wt%) sequentially for a period of time, the carboxyl groups on PAN-AA nanofibers were activated by carbodiimide and then reacted with the amide groups. The as prepared composite membrane has an integrated structure with high rejection rate (98.0%); high permeate flux (40.4 L/m2h) for MgSO4 aqueous solution (2 g/L).

  8. Scaffolds of polycaprolactone with hydroxyapatite fibers

    International Nuclear Information System (INIS)

    Scaffolds of poly (ε-caprolactone) has been studied in many researches in tissue engineering. The used of hydroxyapatite fibers, allowed increase its resistance mechanical, beside the character bioactive and osteoconductive. Improving, its role in tissue engineering. The aim in this study was developed polycaprolactone matrix with dispersed hydroxyapatite fibers. The characterizations were by scanning electron microscopy (SEM), X- Ray Diffractometer (XRD), X-Ray Fluorescence (XRF) and Energy dispersive X-Ray Detector (EDX). Was able reviewed its composition, morphology and possible contaminations. The results were scaffolds with porosity and distribution of the fibers in all its area. (author)

  9. Semiotic scaffolding

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2015-01-01

    Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings...... implies that genes do not control the life of organisms, they merely scaffold it. The nature-nurture dynamics is thus far more complex and open than is often claimed. Contrary to physically based interactions, semiotic interactions do not depend on any direct causal connection between the sign vehicle...... (the representamen) and the effect. Semiotic interaction patterns therefore provide fast and versatile mechanisms for adaptations, mechanisms that depend on communication and “learning” rather than on genetic preformation. Seen as a stabilizing agency supporting the emergence of higher-order structure...

  10. Microscale diffusion measurements and simulation of a scaffold with a permeable strut.

    Science.gov (United States)

    Lee, Seung Youl; Lee, Byung Ryong; Lee, Jongwan; Kim, Seongjun; Kim, Jung Kyung; Jeong, Young Hun; Jin, Songwan

    2013-10-10

    Electrospun nanofibrous structures provide good performance to scaffolds in tissue engineering. We measured the local diffusion coefficients of 3-kDa FITC-dextran in line patterns of electrospun nanofibrous structures fabricated by the direct-write electrospinning (DWES) technique using the fluorescence recovery after photobleaching (FRAP) method. No significant differences were detected between DWES line patterns fabricated with polymer supplied at flow rates of 0.1 and 0.5 mL/h. The oxygen diffusion coefficients of samples were estimated to be ~92%-94% of the oxygen diffusion coefficient in water based on the measured diffusion coefficient of 3-kDa FITC-dextran. We also simulated cell growth and distribution within spatially patterned scaffolds with struts consisting of either oxygen-permeable or non-permeable material. The permeable strut scaffolds exhibited enhanced cell growth. Saturated depths at which cells could grow to confluence were 15% deeper for the permeable strut scaffolds than for the non-permeable strut scaffold.

  11. Microscale Diffusion Measurements and Simulation of a Scaffold with a Permeable Strut

    Directory of Open Access Journals (Sweden)

    Songwan Jin

    2013-10-01

    Full Text Available Electrospun nanofibrous structures provide good performance to scaffolds in tissue engineering. We measured the local diffusion coefficients of 3-kDa FITC-dextran in line patterns of electrospun nanofibrous structures fabricated by the direct-write electrospinning (DWES technique using the fluorescence recovery after photobleaching (FRAP method. No significant differences were detected between DWES line patterns fabricated with polymer supplied at flow rates of 0.1 and 0.5 mL/h. The oxygen diffusion coefficients of samples were estimated to be ~92%–94% of the oxygen diffusion coefficient in water based on the measured diffusion coefficient of 3-kDa FITC-dextran. We also simulated cell growth and distribution within spatially patterned scaffolds with struts consisting of either oxygen-permeable or non-permeable material. The permeable strut scaffolds exhibited enhanced cell growth. Saturated depths at which cells could grow to confluence were 15% deeper for the permeable strut scaffolds than for the non-permeable strut scaffold.

  12. Preparation and in vitro degradation of bioactive composite fiber scaffolds using electrospinning techniques%电纺丝技术制备生物活性复合纤维支架及其体外降解性

    Institute of Scientific and Technical Information of China (English)

    姜岩; 李晓龙; 于利

    2011-01-01

    BACKGROUND: The common method of preparing poly(I-lactic acid) (PLLA)/hydroxyapatite (HA) composite scaffold includes cold-press method, granule filter method, heat partition method. But there are many respects that can not meet requirements in the interfacial combination, degradation rate, intensity of the materials.OBJECTIVE: To prepare a PLLA/HA composite nanofiber scaffold .METHODS: PLLA/HA composite nanofiber scaffold was prepared by electrospinning method. The structure and morphology were studied by scanning electron microscopy. The degradation in PBS was observed in vitro.RESULTS AND CONCLUSION: There was chemical bonding between HA nanoparticles and PLLA/base, the nanoparticles increased the fiber diameter and the surface roughness, this structure will be conducive to cell extension and reproduction in fiber membrane. HA inhibits the selfcatalys during the PLLA degradation, and slows down the degradation rates of PLLA. The PLLA/HA composite scaffold prepared by electrospinning technique may be potentially applied in tissue engineering scaffolds.%背景:聚乳酸/羟基磷灰石类复合材料支架常用的制备方法主要有冷压法、粒子沥滤法、热致相分离法等,但是在增强材料界面的结合、调节材料的降解速率、改善材料的强度等方面仍不能满足要求.目的:制备左旋聚乳酸/羟基磷灰石复合纳米纤维支架.方法:采用静电纺丝法制备聚乳酸/羟基磷灰石复合纳米纤维支架.以扫面电镜对纤维的结构形态进行分析,并观察其在PBS中浸泡不同时间的体外降解过程.结果与结论:羟基磷灰石纳米粒子与聚乳酸/基体间存在化学键合,纳米粒子使纤维直径增大且表面粗糙程度增加,这种结构将有利于细胞在纤维膜上的伸展和和繁殖.羟基磷灰石的引入,抑制了聚乳酸降解过程中的自催化作用,减缓了聚乳酸的降解速度.说明电纺丝技术制备的聚乳酸/羟基磷灰石复合支架在组织工程

  13. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering.

    Science.gov (United States)

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration-culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.

  14. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.

    Directory of Open Access Journals (Sweden)

    Paul P Bonvallet

    Full Text Available Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone electrospun scaffold (70:30 col/PCL containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM, and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344 rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14% over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold. Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration

  15. Developmental Scaffolding

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio

    2015-01-01

    The concept of scaffolding has wide resonance in several scientific fields. Here we attempt to adopt it for the study of development. In this perspective, the embryo is conceived as an integral whole, comprised of several hierarchical modules as in a recurrent circularity of emerging patterns...... molecular signalling to the complexity of sign recognition proper of a cellular community. In this semiotic perspective, the apparent goal directness of any developmental strategy should no longer be accounted for by a predetermined genetic program, but by the gradual definition of the relationships...

  16. Parameters optimization for the fabrication of phosphate glass/hydroxyapatite nanocomposite scaffold

    Science.gov (United States)

    Govindan, R.; Girija, E. K.

    2015-06-01

    Three-dimensional, highly porous, bioactive and biodegradable phosphate glass and nanohydroxyapatite (n-HA) composite scaffolds was fabricated by the polymer foam replication technique. Polyurethane foam (PU) and polyvinyl alcohol (PVA) were used as template and binder, respectively. Optimization of composition and sintering temperature is carried out for tissue engineering scaffold fabrication.

  17. Tri-layered chitosan scaffold as a potential skin substitute.

    Science.gov (United States)

    Lin, Hsin-Yi; Chen, Shin-Hung; Chang, Shih-Hsin; Huang, Sheng-Tung

    2015-01-01

    A tri-layered chitosan-based scaffold was successfully made to replicate the striation of a full-thickness skin more accurately than a single- or bi-layered scaffold, which needed weeks of co-culturing of fibroblasts and keratinocytes to achieve similar striation. Chitosan solution was freeze-dried and made into porous disks. Chitosan or chitosan-pectin in acetic acid solution was electrospun onto the chitosan disk to form a nanofibrous layer and a thin film. Examinations based on scanning electron spectroscopy showed that the scaffold was composed of a porous layer (2 mm) to simulate the dermis, a thin film (25-45 μm) to mimic the basement membrane, and a layer of nanofibers (100-200 μm) to serve as the protective epidermis. The tensile strength and modulus of the composite scaffold were significantly higher than those of the chitosan disk (p < 0.01). The composite was able to quickly absorb water and stayed intact throughout the course of the 14-day cell culture tests. The fibroblast cells seeded on both sides of the scaffolds were able to proliferate and stayed separated by the thin film. PMID:26155720

  18. Case studies of the synthesis of bioactive cyclodepsipeptide natural products

    OpenAIRE

    Markus Kaiser; Stolze, Sara C.

    2013-01-01

    Cyclodepsipeptide natural products often display intriguing biological activities that along with their complex molecular scaffolds, makes them interesting targets for chemical synthesis. Although cyclodepsipeptides feature highly diverse chemical structures, their synthesis is often associated with similar synthetic challenges such as the establishment of a suitable macrocyclization methodology. This review therefore compiles case studies of synthetic approaches to different bioactive cyclod...

  19. Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering.

    Science.gov (United States)

    Yao, Qingqing; Nooeaid, Patcharakamon; Detsch, Rainer; Roether, Judith A; Dong, Yanming; Goudouri, Ourania-Menti; Schubert, Dirk W; Boccaccini, Aldo R

    2014-12-01

    Polymer-coated 45S5 Bioglass(®) (BG)/chitosan-polycaprolactone (BG/CS-PCL) bilayered composite scaffolds were prepared via foam replication and freeze-drying techniques for application in osteochondral tissue engineering. The CS-PCL coated and uncoated BG scaffolds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The mechanical properties of the coated scaffolds were significantly improved in comparison to uncoated scaffolds. The bioactivity and biodegradation behavior of scaffolds were studied in simulated body fluid (SBF) for up to 28 days. The interface between the BG scaffold and the polymer coating layer was observed by SEM and a suitable interpenetration of the polymer into the scaffold struts was found. The effects of coated and uncoated BG scaffolds on MG-63 osteoblast-like cells were evaluated by cell viability, adhesion and proliferation.

  20. Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering.

    Science.gov (United States)

    Yao, Qingqing; Nooeaid, Patcharakamon; Detsch, Rainer; Roether, Judith A; Dong, Yanming; Goudouri, Ourania-Menti; Schubert, Dirk W; Boccaccini, Aldo R

    2014-12-01

    Polymer-coated 45S5 Bioglass(®) (BG)/chitosan-polycaprolactone (BG/CS-PCL) bilayered composite scaffolds were prepared via foam replication and freeze-drying techniques for application in osteochondral tissue engineering. The CS-PCL coated and uncoated BG scaffolds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The mechanical properties of the coated scaffolds were significantly improved in comparison to uncoated scaffolds. The bioactivity and biodegradation behavior of scaffolds were studied in simulated body fluid (SBF) for up to 28 days. The interface between the BG scaffold and the polymer coating layer was observed by SEM and a suitable interpenetration of the polymer into the scaffold struts was found. The effects of coated and uncoated BG scaffolds on MG-63 osteoblast-like cells were evaluated by cell viability, adhesion and proliferation. PMID:24677705

  1. 新型活性修饰对聚乳酸组织工程骨支架上种子细胞生物学行为的影响%Effects of bioactive modification of poly-D,L-lactide acid scaffolds on the biological behaviors of the seed cells

    Institute of Scientific and Technical Information of China (English)

    许子星; 陈建庭; 李涛; 查丁胜; 张鑫鑫; 姜晓锐; 肖文德; 朱青安

    2011-01-01

    Objective To study the changes in the biological behavior of bone marrow mesenchymal stem cells (BMSCs) transfected with red fluorescent protein by lentivirus (RFP-BMSCs) seeded on in poly-D, L-lactide acid (PDLLA) scaffolds with bioactive modification by ammonia plasma and Gly-Arg-Gly-Asp-Ser (GRGDS) in vitro. Methods Circular sheets of PDLLA scaffolds (8 mm in diameter and 1 mm in thickness) were prepared and aminated with PDLLA (group A) or modified with the peptide conjugate A/PDLLA (group PA), with untreated PDLLA as the control (group P). The RFP-BMSCs were seeded on the scaffold materials and their proliferation and metabolic activity were detected using CyQuant NF and Alamar blue staining. The mineralization on the scaffolds was observed using calcein fluorescent dye under a fluorescent microscope. The adhesion and proliferation of RFP-BMSCs were observed by fluorescent microscope, and scanning electron microscope (SEM) was used to confirm the observed adhesion of the seed cells. Results The RFP-BMSCs seeded on the 3 scaffolds all showed proliferative activity at different time points after cell seeding, and the cell numbers decreased significantly in the order of PA>A>P (P0.001). The cell number was significantly greater in group PA than in group A at all the time points except for days 10 (P=0.077) and 12 (P=0.491), and gradually became similar with the passage of time. The metabolic changes of the cells follow a similar pattern of cell proliferation. RFP-BMSCs showed more active proliferation in group A and group PA than in group P. On days 14 and 21, the intensity of green fluorescence decreased in the order of group PA, A and P. The RFP-BMSCs showed better adhesion in group PA than in group A, and the cells in group P appeared more scattered under scanning electron microscope. Conclusion Bioactive modification of PDLLA by ammonia treatment and conjugation withGRGDS peptides may promotes the adhesion, proliferation, metabolism and mineralization of RFP

  2. Electrospinning of silver nanoparticles loaded highly porous cellulose acetate nanofibrous membrane for treatment of dye wastewater

    Science.gov (United States)

    Wang, Ke; Ma, Qian; Wang, Shu-Dong; Liu, Hua; Zhang, Sheng-Zhong; Bao, Wei; Zhang, Ke-Qin; Ling, Liang-Zhong

    2016-01-01

    In this paper, silver nanoparticles (NPs) were reduced form silver nitrate. Morphology and distribution of the synthesized silver NPs were characterized. In order to obtain cellulose acetate (CA), nanofibrous membrane with high effective adsorption performance to carry silver NPs for treatment of dye wastewater, different solvent systems were used to fabricate CA nanofibrous membranes with different morphologies and porous structures via electrospinning. Morphologies and structures of the obtained CA nanofibrous membranes were compared by scanning electron microscopy (SEM), which showed that CA nanofibrous membrane obtained from acetone/dichloromethane (1/2, v/v) was with the highly porous structure. SEM, energy-dispersive spectrometry and Fourier transform infrared spectrometry showed that the silver NPs were effectively incorporated in the CA nanofibrous membrane and the addition of silver NPs did not damage the porous structure of the CA nanofibrous membrane. Adsorption of dye solution (rhodamine B aqueous solution) revealed that the highly porous CA nanofibrous membrane exhibited effective adsorption performance and the addition of silver NPs did not affect the adsorption of the dye. Antibacterial property of the CA nanofibrous membrane showed that the silver-loaded highly porous CA nanofibrous membrane had remarkable antibacterial property when compared to the CA nanofibrous membrane without silver NPs. The silver-loaded highly porous CA nanofibrous membrane could be considered as an ideal candidate for treatment of the dye wastewater.

  3. Novel PVA/MOF Nanofibres: Fabrication, Evaluation and Adsorption of Lead Ions from Aqueous Solution

    Science.gov (United States)

    Shooto, Ntaote David; Dikio, Charity Wokwu; Wankasi, Donbebe; Sikhwivhilu, Lucky Mashudu; Mtunzi, Fanyana Moses; Dikio, Ezekiel Dixon

    2016-09-01

    Plain polyvinyl alcohol (PVA) nanofibres and novel polyvinyl alcohol benzene tetracarboxylate nanofibres incorporated with strontium, lanthanum and antimony ((PVA/Sr-TBC), (PVA/La-TBC) and (PVA/Sb-TBC)), respectively, where TBC is benzene 1,2,4,5-tetracarboxylate adsorbents, were fabricated by electrospinning. The as-prepared electrospun nanofibres were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). Only plain PVA nanofibres followed the Freundlich isotherm with a correlation coefficient of 0.9814, while novel nanofibres (PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC) followed the Langmuir isotherm with correlation coefficients of 0.9999, 0.9994 and 0.9947, respectively. The sorption process of all nanofibres followed a pseudo second-order kinetic model. Adsorption capacity of novel nanofibres was twofold and more compared to that of plain PVA nanofibres. The thermodynamic studies: apparent enthalpy (Δ H°) and entropy (Δ S°), showed that the adsorption of Pb(II) onto nanofibres was spontaneous and exothermic. The novel nanofibres exhibited higher potential removal of Pb(II) ions than plain PVA nanofibres. Ubiquitous cations adsorption test was also investigated and studied.

  4. HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties

    Directory of Open Access Journals (Sweden)

    Mehrabanian M

    2011-08-01

    Full Text Available Mehran Mehrabanian1, Mojtaba Nasr-Esfahani21Member of Young Researchers Club, Najafabad Branch, Islamic Azad University, Isfahan, Iran; 2Department of Materials Science and Engineering, Najafabad Branch, Islamic Azad University, Isfahan, IranAbstract: Nanohydroxyapatite (n-HA/nylon 6,6 composite scaffolds were produced by means of the salt-leaching/solvent casting technique. NaCl with a distinct range size was used with the aim of optimizing the pore network. Composite powders with different n-HA contents (40%, 60% for scaffold fabrication were synthesized and tested. The composite scaffolds thus obtained were characterized for their microstructure, mechanical stability and strength, and bioactivity. The microstructure of the composite scaffolds possessed a well-developed interconnected porosity with approximate optimal pore size ranging from 200 to 500 µm, ideal for bone regeneration and vascularization. The mechanical properties of the composite scaffolds were evaluated by compressive strength and modulus tests, and the results confirmed their similarity to cortical bone. To characterize bioactivity, the composite scaffolds were immersed in simulated body fluid for different lengths of time and results monitored by scanning electron microscopy and energy dispersive X-ray microanalysis to determine formation of an apatite layer on the scaffold surface.Keywords: scaffold, nanohydroxyapatite, nylon 6,6, salt-leaching/solvent casting, bioactivity

  5. Room and low temperature synthesis of carbon nanofibres

    CERN Document Server

    Boskovic, B O

    2002-01-01

    Carbon nanotubes and nanofibres have attracted attention in recent years as new materials with a number of very promising potential applications. Carbon nanotubes are potential candidates for field emitters in flat panel displays. Carbon nanofibres could also be used as a hydrogen storage material and as a filling material in polymer composites. Carbon nanotubes are already used as tips in scanning probe microscopy due to their remarkable mechanical and electrical properties, and could be soon used as nanotweezers. Use of carbon nanotubes in nanoelectronics will open further miniaturisation prospects. Temperatures ranging from 450 to 1000 deg C have been a required for catalytic growth of carbon nanotubes and nanofibres. Researchers have been trying to reduce the growth temperatures for decades. Low temperature growth conditions will allow the growth of carbon nanotubes on different substrates, such glass (below 650 deg C) and as plastics (below 150 deg C) over relatively large areas, which is especially suit...

  6. Modal coupling of single photons to a nanofibre

    CERN Document Server

    Gaio, Michele; Castro-Lopez, Marta; Pisignano, Dario; Camposeo, Andrea; Sapienza, Riccardo

    2015-01-01

    Nanoscale quantum optics of individual light emitters placed in confined geometries is developing as an exciting new research field aiming at efficient manipulation of single-photons . This requires selective channelling of light into specific optical modes of nanophotonic structures. Hybrid photonic systems combining emitters with nanostructured media can yield this functionality albeit limited by the required nanometre-scale spatial and spectral coupling. Furthermore, assessing the coupling strength presents significant challenges and disentangling the different modal contribution is often impossible. Here, we show that momentum spectroscopy of individually addressed emitters, embedded in a nanofibre, can be used to quantify the modal coupling efficiency to the nanofibre modes. For free-standing polymer nanofibres doped with colloidal quantum dots, we report broadband coupling to the fundamental mode of up $\\beta_{01}=31\\pm2\\%$, in robust agreement with theoretical calculations. Electrospun soft-matter nano...

  7. Localized and guided electroluminescence from roll printed organic nanofibres

    DEFF Research Database (Denmark)

    Tavares, Luciana; Kjelstrup-Hansen, Jakob; Rubahn, Horst-Günter

    2012-01-01

    that this scheme can facilitate EL from a nanofibre made from a different type of molecule with altered spectral characteristics. The realization of an electrically biased organic nanoscale light-emitter demonstrates the ability to fabricate on-chip light sources with tunable emission spectrum via synthesis......Here, we report localized, polarized, and waveguidedelectroluminescence (EL) from well aligned organic nanofibres integrated via roll printing on transistor platforms. The localized emission is due to the application of an AC voltage to the transistor gate electrodes, which causes sequential...... injection of holes and electrons into the organic material with subsequent charge carrier recombination and light emission from a small area near the metal-nanofibre interface. The polarization results from the mutually parallel ordering of the molecular constituents, in which the emitting dipole...

  8. Different Structures of PVA Nanofibrous Membrane for Sound Absorption Application

    Directory of Open Access Journals (Sweden)

    Jana Mohrova

    2012-01-01

    Full Text Available The thin nanofibrous layer has different properties in the field of sound absorption in comparison with porous fibrous material which works on a principle of friction of air particles in contact with walls of pores. In case of the thin nanofibrous layer, which represents a sound absorber here, the energy of sonic waves is absorbed by the principle of membrane resonance. The structure of the membrane can play an important role in the process of converting the sonic energy to a different energy type. The vibration system acts differently depending on the presence of smooth fibers in the structure, amount of partly merged fibers, or structure of polymer foil as extreme. Polyvinyl alcohol (PVA was used as a polymer because of its good water solubility. It is possible to influence the structure of nanofibrous layer during the production process thanks to this property of polyvinyl alcohol.

  9. Enhancement of tendon–bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt

    Directory of Open Access Journals (Sweden)

    Chou YC

    2016-08-01

    Full Text Available Ying-Chao Chou,1,2 Wen-Lin Yeh,2 Chien-Lin Chao,1 Yung-Heng Hsu,1,2 Yi-Hsun Yu,1,2 Jan-Kan Chen,3 Shih-Jung Liu1,2 1Department of Mechanical Engineering, Chang Gung University, 2Department of Orthopedic Surgery, Chang Gung Memorial Hospital, 3Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan Abstract: A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA bolt as the bone anchor and a poly(D,L-lactide-co-glycolide (PLGA nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon–bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon–bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon–bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon–bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction. Keywords: polylactide–polyglycolide nanofibers, PLGA, collagen, 3D printing, polylactide, PLA, bone-anchoring bolts, tendon healing

  10. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Lin [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Center for Nanofibers and Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Center for Nanofibers and Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Qin, Xiaohong, E-mail: xhqin@dhu.edu.cn [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2013-12-01

    Nanotechnology has enabled the engineering of a variety of materials to meet the current challenges and requirements in vascular tissue regeneration. In our study, poly-L-lactide (PLLA) and hybrid PLLA/collagen (PLLA/Coll) nanofibers (3:1 and 1:1) with fiber diameters of 210 to 430 nm were fabricated by electrospinning. Their morphological, chemical and mechanical characterizations were carried out using scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and tensile instrument, respectively. Bone marrow derived mesenchymal stem cells (MSCs) seeded on electrospun nanofibers that are capable of differentiating into vascular cells have great potential for repair of the vascular system. We investigated the potential of MSCs for vascular cell differentiation in vitro on electrospun PLLA/Coll nanofibrous scaffolds using endothelial differentiation media. After 20 days of culture, MSC proliferation on PLLA/Coll(1:1) scaffolds was found 256% higher than the cell proliferation on PLLA scaffolds. SEM images showed that the MSC differentiated endothelial cells on PLLA/Coll scaffolds showed cobblestone morphology in comparison to the fibroblastic type of undifferentiated MSCs. The functionality of the cells in the presence of ‘endothelial induction media’, was further demonstrated from the immunocytochemical analysis, where the MSCs on PLLA/Coll (1:1) scaffolds differentiated to endothelial cells and expressed the endothelial cell specific proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1 or CD31) and Von Willebrand factor (vWF). From the results of the SEM analysis and protein expression studies, we concluded that the electrospun PLLA/Coll nanofibers could mimic the native vascular ECM environment and might be promising substrates for potential application towards vascular regeneration. - Highlights: • PLLA and PLLA/Coll nanofibers were electrospun. • Incorporation of collagen reduced fiber

  11. Hydrogen storage in graphite nanofibres : new developments

    Energy Technology Data Exchange (ETDEWEB)

    Shutz, W. [Vodafone Pilotentwicklung GmbH, Munich (Germany); Maneck, E. [Bundesanstalt fur Materialforschung, Berlin (Germany)

    2002-07-01

    Carbon materials show high potential as candidates for hydrogen storage for automotive applications, but the price of hydrogen-driven vehicles is too high and customer acceptance is low. In this study, carbon nanofibers were synthesized through the reaction of carbon containing gases over a suitable catalyst. Essentially, carbon nanofibres were created by chemical catalytic vapour deposition of carbon containing gases using a horizontal quartz tube reactor at 500 to 1000 degrees C. The size and shape of the product was found to be dependent on the catalyst used and by the reaction temperature and time. The presentation illustrates gravimetric and volumetric storage capacity measurements, pressure dependent X-ray diffraction and temperature programmed desorption spectroscopy measurements. It was shown that the intercalated hydrogen in carbon nanofibers can be released during heating. Future studies will focus on examining the effects of the interaction between carbon nanofibers and hydrogen with focus on the potential of these materials for technical use in hydrogen storage systems. 7 refs., 2 figs.

  12. Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?

    Directory of Open Access Journals (Sweden)

    S. Bindschedler

    2014-01-01

    Full Text Available Calcitic nanofibres are ubiquitous habits of secondary calcium carbonate (CaCO3 accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enigmatic. Three possible mechanisms fuel the debate: (i purely physicochemical processes, (ii mineralization of rod-shaped bacteria, and (iii crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic or organic in nature. They are very often observed in association with Needle Fibre Calcite (NFC, another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent association is likely to be an important fact to help understanding the origin of nanofibres. In this manuscript the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothesis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morphological resemblance when compared to their natural counterparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hypothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically-influenced mineralization process, generating calcitic nanofibres. This highlights the possible involvement of Fungi in CaCO3 biomineralization processes, a role still poorly documented at

  13. Investigation of fabrication and environmental effects on bioceramic bone scaffolds

    Science.gov (United States)

    Vivanco Morales, Juan Francisco

    2011-12-01

    Bioactive ceramic materials like tricalcium phosphates (TCP) have been emerging as viable material alternatives to the current therapies of bone scaffolding to target fracture healing and osteoporosis. Once scaffolds are implanted at the defect site they should provide mechanical and biological functions, ultimately serving to facilitate with surrounding native tissue. Optimal osteogenic signal expression and subsequent differentiation of cells seeded on the scaffold in both in vivo and in vitro conditions is known to be influenced by scaffold properties and biomechanical environmental conditions. Thus, the objective of this research was to investigate the effect of fabrication and environmental variables on the properties of bioceramic scaffolds for bone tissue engineering applications. Specifically, the effect of sintering temperature in the range of 950°C -1150°C of a cost-effective on a large scale manufacturing process, on the physical and mechanical properties of bioceramic bone scaffolds, was investigated. In addition, the effect of a controlled environment was investigated by implementing a bioreactor and bone loading system to study the response of ex vivo trabecular bone to compressive load while perfused with culture medium. Collectively, this thesis demonstrates that: (1) the sintering temperature to fabricate bioceramic scaffolds can be tuned to structural properties, and (2) the use of a controlled mechanical and biochemical environment can enhance bone tissue development. These findings support the development of clinically successful bioceramic scaffolds that may stimulate bone regeneration and scaffold integration while providing structural integrity.

  14. Piperazine scaffolds via isocyanide-based multicomponent reactions

    NARCIS (Netherlands)

    Dömling, Alexander; Huang, Yijun

    2010-01-01

    Piperazine scaffolds are amongst the most extensively used backbones in medicinal chemistry and many bioactive compounds are built upon this template. The physicochemical properties and the three-dimensional structures of the different piperazine chemotypes are of utmost importance to understanding

  15. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration

    Directory of Open Access Journals (Sweden)

    Eap S

    2015-02-01

    Full Text Available Sandy Eap,1,2,* Laetitia Keller,1–3,* Jessica Schiavi,1,2 Olivier Huck,1,2 Leandro Jacomine,4 Florence Fioretti,1,2 Christian Gauthier,4 Victor Sebastian,1,3,5 Pascale Schwinté,1,2 Nadia Benkirane-Jessel1,21INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, FMTS, Faculté de Médecine, Strasbourg, France; 2Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; 3Department of Chemical Engineering, Aragon Nanoscience Institute, University of Zaragoza, Zaragoza, Spain; 4CNRS (National Center for Scientific Research, ICS (Charles Sadron Institute, Strasbourg, France; 5Networking Research Center of Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain*These authors contributed equally to this workAbstract: New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone nanofibrous implant (from 700 µm to 1 cm thick was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII, 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days’ implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7

  16. Magnetic biodegradable Fe{sub 3}O{sub 4}/CS/PVA nanofibrous membranes for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wei Yan; Zhang Xuehui; Hu Xiaoyang; Deng Xuliang [Department of Geriatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, 100081 (China); Song Yu; Lin Yuanhua [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Han Bing [Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, 100081 (China); Wang Xinzhi, E-mail: kqdengxuliang@bjmu.edu.cn [Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, 100081 (China)

    2011-10-15

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. The aim of this study is to develop magnetic biodegradable fibrous materials with potential use in bone regeneration. Magnetic biodegradable Fe{sub 3}O{sub 4}/chitosan (CS)/poly vinyl alcohol (PVA) nanofibrous membranes were achieved by electrospinning with average fiber diameters ranging from 230 to 380 nm and porosity of 83.9-85.1%. The influences of polymer concentration, applied voltage and Fe{sub 3}O{sub 4} nanoparticles loading on the fabrication of nanofibers were investigated. The polymer concentration of 4.5 wt%, applied voltage of 20 kV and Fe{sub 3}O{sub 4} nanoparticles loading of lower than 5 wt% could produce homogeneous, smooth and continuous Fe{sub 3}O{sub 4}/CS/PVA nanofibrous membranes. X-ray diffraction (XRD) data confirmed that the crystalline structure of the Fe{sub 3}O{sub 4}, CS and PVA were maintained during electrospinning process. Fourier transform infrared spectroscopy (FT-IR) demonstrated that the Fe{sub 3}O{sub 4} loading up to 5 wt% did not change the functional groups of CS/PVA greatly. Transmission electron microscopy (TEM) showed islets of Fe{sub 3}O{sub 4} nanoparticles evenly distributed in the fibers. Weak ferrimagnetic behaviors of membranes were revealed by vibrating sample magnetometer (VSM) test. Tensile test exhibited Young's modulus of membranes that were gradually enhanced with the increase of Fe{sub 3}O{sub 4} nanoparticles loading, while ultimate tensile stress and ultimate strain were slightly reduced by Fe{sub 3}O{sub 4} nanoparticles loading of 5%. Additionally, MG63 human osteoblast-like cells were seeded on the magnetic nanofibrous membranes to evaluate their bone biocompatibility. Cell growth dynamics according to MTT assay and scanning electron microscopy (SEM) observation exhibited good cell adhesion and proliferation, suggesting that this magnetic biodegradable Fe{sub 3}O{sub 4}/CS/PVA nanofibrous

  17. Electrospun Nanofibrous Materials for Neural Tissue Engineering

    OpenAIRE

    Yee-Shuan Lee; Treena Livingston Arinzeh

    2011-01-01

    The use of biomaterials processed by the electrospinning technique has gained considerable interest for neural tissue engineering applications. The tissue engineering strategy is to facilitate the regrowth of nerves by combining an appropriate cell type with the electrospun scaffold. Electrospinning can generate fibrous meshes having fiber diameter dimensions at the nanoscale and these fibers can be nonwoven or oriented to facilitate neurite extension via contact guidance. This article review...

  18. Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing.

    Science.gov (United States)

    Mabrouk, Mostafa; Choonara, Yahya E; Marimuthu, Thashree; Kumar, Pradeep; du Toit, Lisa C; van Vuuren, Sandy; Pillay, Viness

    2016-06-30

    The aim of this study was to develop an in situ hybridized poly(vinyl alcohol)/calcium silicate (PVA/Ca2OSi) nanofibrous antibacterial wound dressing with calcium phosphate [Ca3(PO4)2] surface precipitation for enhanced bioactivity. This was achieved by hybridizing the antibacterial ions Zn(2+) and/or Ag(+) in a Ca2O4Si composite. The hybridization effect on the thermal behavior, physicochemical, morphological, and physicomechanical properties of the nanofibers was studied using Differential Scanning calorimetric (DSC), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Textural Analysis, respectively. In vitro bioactivity, biodegradation and pH variations of the nanofiber composite were evaluated in Simulated Body Fluid (SBF). The antibacterial activity was assessed against Staphylococcus aureus and Pseudomonas aeruginosa. Hybridization of Zn(2+) and/or Ag(+) into the PVA/Ca2O4Si nanofiber composite was confirmed by DSC, XRD and FTIR. The thickness of the nanofibers was dependent on the presence of Zn(2+) and Ag(+) as confirmed by SEM. The nanofibers displayed enhanced tensile strength (19-115.73MPa) compared to native PVA. Zn(2+) and/or Ag(+) hybridized nanofibers showed relatively enhanced in vitro bioactivity, biodegradation (90%) and antibacterial activity compared with the native PVA/Ca2O4Si nanofiber composite. Results of this study has shown that the PVA/Ca2O4Si composite hybridized with both Zn(2+) and Ag(+) may be promising as an antibacterial wound dressing with a nanofibrous archetype with enhanced bioactivity. PMID:27154257

  19. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering

    Directory of Open Access Journals (Sweden)

    Fu W

    2014-05-01

    Full Text Available Wei Fu,1,2,* Zhenling Liu,1,* Bei Feng,1,2 Renjie Hu,1 Xiaomin He,1 Hao Wang,1 Meng Yin,1 Huimin Huang,1 Haibo Zhang,1 Wei Wang11Department of Pediatric Cardiothoracic Surgery, 2Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China*These authors contributed equally to this workAbstract: Electrospun hybrid nanofibers prepared using combinations of natural and synthetic polymers have been widely investigated in cardiovascular tissue engineering. In this study, electrospun gelatin/polycaprolactone (PCL and collagen/poly(l-lactic acid-co-ε-caprolactone (PLCL scaffolds were successfully produced. Scanning electron micrographs showed that fibers of both membranes were smooth and homogeneous. Water contact angle measurements further demonstrated that both scaffolds were hydrophilic. To determine cell attachment and migration on the scaffolds, both hybrid scaffolds were seeded with human umbilical arterial smooth muscle cells. Scanning electron micrographs and MTT assays showed that the cells grew and proliferated well on both hybrid scaffolds. Gross observation of the transplanted scaffolds revealed that the engineered collagen/PLCL scaffolds were smoother and brighter than the gelatin/PCL scaffolds. Hematoxylin and eosin staining showed that the engineered blood vessels constructed by collagen/PLCL electrospun membranes formed relatively homogenous vessel-like tissues. Interestingly, Young's modulus for the engineered collagen/PLCL scaffolds was greater than for the gelatin/PCL scaffolds. Together, these results indicate that nanofibrous collagen/PLCL membranes with favorable mechanical and biological properties may be a desirable scaffold for vascular tissue engineering.Keywords: electrospinning, gelatin, collagen, polycaprolactone, poly(l-lactic acid-co-ε-caprolactone

  20. Fabrication of three-dimensional nanofibrous macrostructures by electrospinning

    Directory of Open Access Journals (Sweden)

    Ping Zhu

    2016-05-01

    Full Text Available Electrospinning has been widely used in fabricating nanofibers and nanofibrous membranes. Recently, the fabrication of three-dimensional (3D nanofibrous macrostructures has become a hot subject in the development of electrospinning technology. In this paper, the 3D nanofibrous macrostructure was constructed by using electrospinning apparatus with both dynamic and static 3D collecting templates. The effect of the governing parameters on the formation process of 3D macrostructure is studied, such as the applied voltage, the flow rate, the needle-tip-to-collector distance, and the rotating speed. It was found that laying the collecting device either in parallel or perpendicularly with some gap in between, would lead to orderly deposition of nanofibers. In this study, a “dumbbell” dynamic collector was used to fabricate special 3D macrostructures consisting of multilayers of fibrous membranes. By adjusting the rotating speed of the collector, the formation process of multilayer 3D macrostructure can be controlled. An umbrella-shaped static structure collector was used to fabricate 3D framework structures. It is feasible to fabricate various 3D nanofibrous structures via electrospinning with 3D collecting templates, which has great potential in tissue engineering.

  1. Fabrication of three-dimensional nanofibrous macrostructures by electrospinning

    Science.gov (United States)

    Zhu, Ping; Lin, Aimin; Tang, Xuchong; Lu, Xizhao; Zheng, Jianyi; Zheng, Gaofeng; Lei, Tingping

    2016-05-01

    Electrospinning has been widely used in fabricating nanofibers and nanofibrous membranes. Recently, the fabrication of three-dimensional (3D) nanofibrous macrostructures has become a hot subject in the development of electrospinning technology. In this paper, the 3D nanofibrous macrostructure was constructed by using electrospinning apparatus with both dynamic and static 3D collecting templates. The effect of the governing parameters on the formation process of 3D macrostructure is studied, such as the applied voltage, the flow rate, the needle-tip-to-collector distance, and the rotating speed. It was found that laying the collecting device either in parallel or perpendicularly with some gap in between, would lead to orderly deposition of nanofibers. In this study, a "dumbbell" dynamic collector was used to fabricate special 3D macrostructures consisting of multilayers of fibrous membranes. By adjusting the rotating speed of the collector, the formation process of multilayer 3D macrostructure can be controlled. An umbrella-shaped static structure collector was used to fabricate 3D framework structures. It is feasible to fabricate various 3D nanofibrous structures via electrospinning with 3D collecting templates, which has great potential in tissue engineering.

  2. Mechanical performance of laminated composites incorporated with nanofibrous membranes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L. [School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai (China); Huang, Z.-M. [School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai (China)]. E-mail: huangzm@mail.tongji.edu.cn; He, C.L. [School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai (China); Han, X.J. [School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai (China)

    2006-11-05

    The effect of non-woven nanofibrous membranes as interlaminar interfaces on the mechanical performance of laminated composites was investigated experimentally. The nanofibrous membranes are porous, thin and lightweight, and exhibit toughness and strength to some extent. They give little increase in weight and thickness when incorporated into a laminate. More important, they can be used as a functional agent carrier for the laminate. The nanofiber membranes used in this paper were prepared by electrospinning of Nylon-6 (PA6), Epoxy 609 (EPO 1691-410) and thermoplastic polyurethane (TPU), with a thickness ranging from 20 to 150 {mu}m. The non-woven fabrics were attached to one side of a glass/epoxy fabric lamina prior to lamination and each fabric was arranged in between two adjacent plies of the laminate. The nanofibrous membranes were characterized through scanning electron microscopy (SEM) and tensile testing, whereas the mechanical properties of the laminate were understood in terms of three-point bending and short-beam shear tests. Results have shown that the nanofibrous membranes in the ply interfaces with a proper thickness did not affect the mechanical performance of the composite laminates significantly.

  3. Scaffolder - software for manual genome scaffolding

    Directory of Open Access Journals (Sweden)

    Barton Michael D

    2012-05-01

    Full Text Available Abstract Background The assembly of next-generation short-read sequencing data can result in a fragmented non-contiguous set of genomic sequences. Therefore a common step in a genome project is to join neighbouring sequence regions together and fill gaps. This scaffolding step is non-trivial and requires manually editing large blocks of nucleotide sequence. Joining these sequences together also hides the source of each region in the final genome sequence. Taken together these considerations may make reproducing or editing an existing genome scaffold difficult. Methods The software outlined here, “Scaffolder,” is implemented in the Ruby programming language and can be installed via the RubyGems software management system. Genome scaffolds are defined using YAML - a data format which is both human and machine-readable. Command line binaries and extensive documentation are available. Results This software allows a genome build to be defined in terms of the constituent sequences using a relatively simple syntax. This syntax further allows unknown regions to be specified and additional sequence to be used to fill known gaps in the scaffold. Defining the genome construction in a file makes the scaffolding process reproducible and easier to edit compared with large FASTA nucleotide sequences. Conclusions Scaffolder is easy-to-use genome scaffolding software which promotes reproducibility and continuous development in a genome project. Scaffolder can be found at http://next.gs.

  4. Fabrication and biocompatibility of poly(l-lactic acid) and chitosan composite scaffolds with hierarchical microstructures.

    Science.gov (United States)

    Lou, Tao; Wang, Xuejun; Yan, Xu; Miao, Yu; Long, Yun-Ze; Yin, Hai-Lei; Sun, Bin; Song, Guojun

    2016-07-01

    The scaffold microstructure is crucial to reconstruct tissue normal functions. In this article, poly(l-lactic acid) and chitosan fiber (PLLA/CTSF) composite scaffolds with hierarchical microstructures both in fiber and pore sizes were successfully fabricated by combining thermal induced phase separation and salt leaching techniques. The composite scaffolds consisted of a nanofibrous PLLA matrix with diameter of 50-500nm, and chitosan fibers with diameter of about 20μm were homogenously distributed in the PLLA matrix as a microsized reinforcer. The composite scaffolds also had high porosity (>94%) and hierarchical pore size, which were consisted of both micropores (50nm-10μm) and macropores (50-300μm). By tailoring the microstructure and chemical composition, the mechanical property, pH buffer and protein adsorption capacity of the composite scaffold were improved significantly compared with those of PLLA scaffold. Cell culture results also revealed that the PLLA/CTSF composite scaffolds supported MG-63 osteoblast proliferation and penetration. PMID:27127062

  5. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  6. Mechanical and cytotoxicity evaluation of nanostructured hydroxyapatite-bredigite scaffolds for bone regeneration.

    Science.gov (United States)

    Eilbagi, Marjan; Emadi, Rahmatollah; Raeissi, Keyvan; Kharaziha, Mahshid; Valiani, Ali

    2016-11-01

    Despite the attractive characteristics of three-dimensional pure hydroxyapatite (HA) scaffolds, due to their weak mechanical properties, researches have focused on the development of composite scaffolds via introducing suitable secondary components. The aim of this study was to develop, for the first time, three-dimensional HA-bredigite (Ca7MgSi4O16) scaffolds containing various amounts of bredigite nanopowder (0, 5, 10 and 15wt.%) using space holder technique. Transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction spectroscopy were applied in order to study the morphology, fracture surface and phase compositions of nanopowders and scaffolds. Furthermore, the effects of scaffold composition on the mechanical properties, bioactivity, biodegradability, and cytotoxicity were also evaluated. Results showed that the composite scaffolds with average pore size in the range of 220-310μm, appearance porosity of 63.1-75.9% and appearance density of 1.1±0.04g/cm(3) were successfully developed, depending on bredigite content. Indeed, the micropore size of the scaffolds reduced with increasing bredigite content confirming that the sinterability of the scaffolds was improved. Furthermore, the compression strength and modulus of the scaffolds significantly enhanced via incorporation of bredigite content from 0 to 15wt.%. The composite scaffolds revealed superior bioactivity and biodegradability with increasing bredigite content. Moreover, MTT assay confirmed that HA-15wt.% bredigite scaffold significantly promoted cell proliferation compared to tissue culture plate (control) and HA scaffold. Based on these results, three-dimensional HA-bredigite scaffolds could be promising replacements for HA scaffolds in bone regeneration. PMID:27524060

  7. Mechanically Stiff, Zinc Cross-Linked Nanocomposite Scaffolds with Improved Osteostimulation and Antibacterial Properties.

    Science.gov (United States)

    Sehgal, Rekha R; Carvalho, Edmund; Banerjee, Rinti

    2016-06-01

    Nanocomposite scaffolds are studied widely due to their resemblance with the natural extracellular matrix of bone; but their use as a bone tissue engineered scaffold is clinically hampered due to low mechanical stiffness, inadequate osteoconduction, and graft associated infections. The purpose of the current study was the development of a mechanically stiff nanocomposite scaffold using biodegradable gellan and xanthan polymers reinforced with bioglass nanoparticles (nB) (Size: 20-120 nm). These nanocomposite scaffolds were cross-linked with zinc sulfate ions to improve their osteoconduction and antibacterial properties for the regeneration of a functional bone. The compressive strength and modulus of the optimized nanocomposite scaffold (1% w/v polymer reinforced with 4%w/v nB nanoparticles, cross-linked with 1.5 mM zinc sulfate) was 1.91 ± 0.31 MPa and 20.36 ± 1.08 MPa, respectively, which was comparable to the trabecular bone and very high compared to nanocomposite scaffolds reported in earlier studies. Further, in vitro simulated body fluid (SBF) study suggested deposition of biomimetic apatite on the surface of zinc cross-linked nanocomposite scaffolds confirming their bioactivity. MG 63 osteoblast-like cells cultured with the nanocomposite scaffolds responded to matrix stiffness with better adhesion, spreading and cellular interconnections compared to the polymeric gellan and xanthan scaffolds. Incorporation of bioglass nanoparticles and zinc cross-linker in nanocomposite scaffolds demonstrated 62% increment in expression of alkaline phosphatase activity (ALP) and 150% increment in calcium deposition of MG 63 osteoblast-like cells compared to just gellan and xanthan polymeric scaffolds. Furthermore, zinc cross-linked nanocomposite scaffolds significantly inhibited the growth of Gram-positive Bacillus subtilis (70% reduction) and Gram-negative Escherichia coli (81% reduction) bacteria. This study demonstrated a facile approach to tune the mechanical stiffness

  8. Self-assembling peptide nanofiber scaffolds accelerate wound healing.

    Directory of Open Access Journals (Sweden)

    Aurore Schneider

    Full Text Available Cutaneous wound repair regenerates skin integrity, but a chronic failure to heal results in compromised tissue function and increased morbidity. To address this, we have used an integrated approach, using nanobiotechnology to augment the rate of wound reepithelialization by combining self-assembling peptide (SAP nanofiber scaffold and Epidermal Growth Factor (EGF. This SAP bioscaffold was tested in a bioengineered Human Skin Equivalent (HSE tissue model that enabled wound reepithelialization to be monitored in a tissue that recapitulates molecular and cellular mechanisms of repair known to occur in human skin. We found that SAP underwent molecular self-assembly to form unique 3D structures that stably covered the surface of the wound, suggesting that this scaffold may serve as a viable wound dressing. We measured the rates of release of EGF from the SAP scaffold and determined that EGF was only released when the scaffold was in direct contact with the HSE. By measuring the length of the epithelial tongue during wound reepithelialization, we found that SAP scaffolds containing EGF accelerated the rate of wound coverage by 5 fold when compared to controls without scaffolds and by 3.5 fold when compared to the scaffold without EGF. In conclusion, our experiments demonstrated that biomaterials composed of a biofunctionalized peptidic scaffold have many properties that are well-suited for the treatment of cutaneous wounds including wound coverage, functionalization with bioactive molecules, localized growth factor release and activation of wound repair.

  9. Morphology of electrospun nanofibres of polyhydroxybutyrate

    Energy Technology Data Exchange (ETDEWEB)

    Olkhov, A. A., E-mail: aolkhov72@yandex.ru [Plekhanov Russian University of Economics, Stremyanny per. 36, 117997, Moscow and N.N. Semenov Institute of Chemical Physics, RAS, 119991 Moscow, street Kosygina, 4 (Russian Federation); Staroverova, O. V.; Iordanskii, A. L. [N.N. Semenov Institute of Chemical Physics, RAS, 119991 Moscow, street Kosygina, 4 (Russian Federation); Zaikov, G. E. [L.Ya. Karpov Physicochemical Research Institute, N.M. Emanuel Institute of Biochemical Physics, 119991 Moscow, street Kosygina, 4 (Russian Federation)

    2014-05-15

    This research work focuses on process characteristics of polymer solutions, such as viscosity and electrical conductivity, as well as the parameters of electrospinning using poly-3-hydroxybutyrate modified by titanium dioxide nanoparticles, which have been optimized. Both physical-mechanical characteristics and photooxidation stability of materials have been improved. The structure of materials has been examined by means of X-ray diffraction, differential scanning calorimetry (DSC), IR-spectroscopy, and physical-mechanical testing. The fibrous materials obtained can find a wide application in medicine and filtration techniques as scaffolds for cell growth, filters for body fluids and gas-air media, and sorbents.

  10. Synthesis of Y-junction carbon nanofibres by ethanol catalytic combustion technique

    Institute of Scientific and Technical Information of China (English)

    LI Fei; ZOU Xiao-ping; CHENG Jin; ZHANG Hong-dan; REN Peng-fei

    2006-01-01

    Y-shaped structure was synthesized by ethanol catalytic combustion(ECC) technique on the copper plate substrate,without directly seeding catalyst into the flame. The as-grown Y-junction carbon nanofibres were investigated by transmission electron microscopy (TEM). The very common laboratory ethanol burner was used for synthesizing carbon nanofibres. Two kinds of the catalyst precursor,which are iron nitrate (Fe(NO3)3) and nickel nitrate (Ni(NO3)2),were respectively employed to assist the formation of Y-junction carbon nanofibres. TEM analysis confirm the formation of Y-junction in the coiled and noncoiled carbon nanofibres. The type of the catalyst is found to be crucial to grow different Y-junction carbon nanofibres. Different Y-shaped structure may possess different mechanical and electronic properties. These three-terminal nanofibres provide the nanoelectronics community with a novel material for the development of molecular-scale electronic devices.

  11. Crosslinked gelatin nanofibres: Preparation, characterisation and in vitro studies using glial-like cells

    International Nuclear Information System (INIS)

    Gelatin (GL) nanofibrous matrices mimicking the complex biological structure of the natural extracellular matrix (ECM) were prepared from aqueous solutions by electrospinning technique. GL nanofibres with a diameter size of around 300 nm were obtained optimising the process and solution parameters. To increase the GL stability in aqueous environment γ-glycidoxypropyltrimethoxysilane (GPTMS) was used as GL crosslinker. GPTMS crosslinking did not modify the nanofibrous matrix morphology: fibre diameter and membrane pores size were 327 ± 45 nm and 1.64 ± 0.37 μm, respectively. The produced GPTMS crosslinked GL nanofibres (GL/GPTMSNF) were found to support the in vitro adhesion, proliferation and survival of neonatal olfactory bulb ensheating cells (NOBECs). - Highlights: • Gelatin nanofibres were prepared from aqueous solution. • A silane-coupling agent was used as gelatin crosslinker. • Glial-like cells adhered and proliferated on the developed nanofibres. • Elongated morphology of glial-like cells was observed

  12. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Ramier, Julien [Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS, Université Paris-Est Créteil, 2, rue Henri Dunant, 94320 Thiais (France); Bouderlique, Thibault [Laboratoire “Croissance, Réparation et Régénération Tissulaires”, EAC 7149 CNRS, Université Paris-Est Créteil, 61, avenue du Général de Gaulle, 94010 Créteil (France); Stoilova, Olya; Manolova, Nevena; Rashkov, Iliya [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Langlois, Valérie; Renard, Estelle [Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS, Université Paris-Est Créteil, 2, rue Henri Dunant, 94320 Thiais (France); Albanese, Patricia [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Grande, Daniel, E-mail: grande@icmpe.cnrs.fr [Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS, Université Paris-Est Créteil, 2, rue Henri Dunant, 94320 Thiais (France)

    2014-05-01

    The electrospinning technique combined with the electrospraying process provides a straightforward and versatile approach for the fabrication of novel nanofibrous biocomposite scaffolds with structural, mechanical, and biological properties potentially suitable for bone tissue regeneration. In this comparative investigation, three types of poly(3-hydroxybutyrate) (PHB)-based scaffolds were engineered: (i) PHB mats by electrospinning of a PHB solution, (ii) mats of PHB/hydroxyapatite nanoparticle (nHA) blends by electrospinning of a mixed solution containing PHB and nHAs, and (iii) mats constituted of PHB nanofibers and nHAs by simultaneous electrospinning of a PHB solution and electrospraying of a nHA dispersion. Scaffolds based on PHB/nHA blends displayed improved mechanical properties compared to those of neat PHB mats, due to the incorporation of nHAs within the fibers. The electrospinning/electrospraying approach afforded biocomposite scaffolds with lower mechanical properties, due to their higher porosity, but they displayed slightly better biological properties. In the latter case, the bioceramic, i.e. nHAs, largely covered the fiber surface, thus allowing for a direct exposure to cells. The 21 day-monitoring through the use of MTS assays and SEM analyses demonstrated that human mesenchymal stromal cells (hMSCs) remained viable on PHB/nHA biocomposite scaffolds and proliferated continuously until reaching confluence. - Highlights: • Three different types of PHB-based scaffolds are engineered and thoroughly investigated. • The combination of electrospinning and electrospraying affords original nanofibrous biocomposite scaffolds. • PHB-based scaffolds show a strong capability of supporting viable cell development for 21 days.

  13. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications

    International Nuclear Information System (INIS)

    The electrospinning technique combined with the electrospraying process provides a straightforward and versatile approach for the fabrication of novel nanofibrous biocomposite scaffolds with structural, mechanical, and biological properties potentially suitable for bone tissue regeneration. In this comparative investigation, three types of poly(3-hydroxybutyrate) (PHB)-based scaffolds were engineered: (i) PHB mats by electrospinning of a PHB solution, (ii) mats of PHB/hydroxyapatite nanoparticle (nHA) blends by electrospinning of a mixed solution containing PHB and nHAs, and (iii) mats constituted of PHB nanofibers and nHAs by simultaneous electrospinning of a PHB solution and electrospraying of a nHA dispersion. Scaffolds based on PHB/nHA blends displayed improved mechanical properties compared to those of neat PHB mats, due to the incorporation of nHAs within the fibers. The electrospinning/electrospraying approach afforded biocomposite scaffolds with lower mechanical properties, due to their higher porosity, but they displayed slightly better biological properties. In the latter case, the bioceramic, i.e. nHAs, largely covered the fiber surface, thus allowing for a direct exposure to cells. The 21 day-monitoring through the use of MTS assays and SEM analyses demonstrated that human mesenchymal stromal cells (hMSCs) remained viable on PHB/nHA biocomposite scaffolds and proliferated continuously until reaching confluence. - Highlights: • Three different types of PHB-based scaffolds are engineered and thoroughly investigated. • The combination of electrospinning and electrospraying affords original nanofibrous biocomposite scaffolds. • PHB-based scaffolds show a strong capability of supporting viable cell development for 21 days

  14. Mineralization and drug release of hydroxyapatite/poly(l-lactic acid) nanocomposite scaffolds prepared by Pickering emulsion templating.

    Science.gov (United States)

    Hu, Yang; Zou, Shengwen; Chen, Weike; Tong, Zhen; Wang, Chaoyang

    2014-10-01

    Biodegradable and bioactive nanocomposite (NC) biomaterials with controlled microstructures and able to deliver special drugs have gained increasing attention in bone tissue engineering. In this study, the hydroxyapatite (HAp)/poly(l-lactic acid) (PLLA) NC scaffolds were facilely prepared using solvent evaporation from templating Pickering emulsions stabilized with PLLA-modified HAp (g-HAp) nanoparticles. Then, in vitro mineralization experiments were performed in a simulated body fluid (SBF) to evaluate the bioactivity of the NC scaffolds. Moreover, in vitro drug release of the NC scaffolds using anti-inflammatory drug (ibuprofen, IBU) as the model drug was also investigated. The results showed that the NC scaffolds possessed interconnected pore structures, which could be modulated by varying the g-HAp nanoparticle concentration. The NC scaffolds exhibited excellent bioactivity, since they induced the formation of calcium-sufficient, carbonated apatite nanoparticles on the scaffolds after mineralization in SBF for 3 days. The IBU loaded in the NC scaffolds showed a sustained release profile, and the release kinetic followed the Higuchi model with diffusion process. Thus, solvent evaporation based on Pickering emulsion droplets is a simple and effective method to prepare biodegradable and bioactive porous NC scaffolds for bone repair and replacement applications. PMID:25127362

  15. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive electrospun cartilage substitute by integrating cold atmospheric plasma (CAP treatment with sustained growth factor delivery microspheres. Specifically, CAP was applied to a poly(ε-caprolactone electrospun scaffold with homogeneously distributed bioactive factors (transforming growth factor-β1 and bovine serum albumin loaded poly(lactic-co-glycolic acid microspheres. We have shown that CAP treatment renders electrospun scaffolds more hydrophilic thus facilitating vitronectin adsorption. More importantly, our results demonstrate, for the first time, CAP and microspheres can synergistically enhance stem cell growth as well as improve chondrogenic differentiation of human marrow-derived mesenchymal stem cells (such as increased glycosaminoglycan, type II collagen, and total collagen production. Furthermore, CAP can substantially enhance 3D cell infiltration (over two-fold increase in infiltration depth after 1 day of culture in the scaffolds. By integrating CAP, sustained bioactive factor loaded microspheres, and electrospinning, we have fabricated a promising bioactive scaffold for cartilage regeneration.

  16. Structural and Photoluminescence Properties of β-Ga2O3 Nanofibres Fabricated by Electrospinning Method

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jian-Guo; ZHANG Zhen-Xing; MA Zi-Wei; DUAN Hui-Gao; GUO Xiao-Song; XIE Er-Qing

    2008-01-01

    We have prepared the β-Ga2Oa nanofibres by electrospinning method followed by calcining in air at 900℃. The morphology and structure of the nanofibres are characterized by field emission scanning electron microscopy(FE-SEM), x-ray diffraction (XRD) and Raman technique. These nanofibres have diameters ranging from 60 to 13Onm and lengths up to several millimetres. Photoluminescence (PL) spectrum under excitation at 325nm shows that these β-Ga2Oa nanofibres have a blue emission peaking at 466nm, which may be attributed to defects such as the oxygen vacancies, gallium vacancies and gallium-oxygen vacancy pairs.

  17. Surface Modification of Electrospun PVDF/PAN Nanofibrous Layers by Low Vacuum Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Fatma Yalcinkaya

    2016-01-01

    Full Text Available Nanofibres are very promising for water remediation due to their high porosity and small pore size. Mechanical properties of nanofibres restrict the application of pressure needed water treatments. Various PAN, PVDF, and PVDF/PAN nanofibre layers were produced, and mechanical properties were improved via a lamination process. Low vacuum plasma treatment was applied for the surface modification of nanofibres. Atmospheric air was used to improve hydrophilicity while sulphur hexafluoride gas was used to improve hydrophobicity of membranes. Hydrophilic membranes showed higher affinity to attach plasma particles compared to hydrophobic membranes.

  18. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Charlotte Vichery

    2016-04-01

    Full Text Available Thanks to their high biocompatibility and bioactivity, bioactive glasses are very promising materials for soft and hard tissue repair and engineering. Because bioactivity and specific surface area intrinsically linked, the last decade has seen a focus on the development of highly porous and/or nano-sized materials. This review emphasizes the synthesis of bioactive glass nanoparticles and materials design strategies. The first part comprehensively covers mainly soft chemistry processes, which aim to obtain dispersible and monodispersed nanoparticles. The second part discusses the use of bioactive glass nanoparticles for medical applications, highlighting the design of materials. Mesoporous nanoparticles for drug delivery, injectable systems and scaffolds consisting of bioactive glass nanoparticles dispersed in a polymer, implant coatings and particle dispersions will be presented.

  19. Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds.

    Science.gov (United States)

    Kim, Beom Su; Park, Ko Eun; Kim, Min Hee; You, Hyung Keun; Lee, Jun; Park, Won Ho

    2015-01-01

    The broad application of electrospun nanofibrous scaffolds in tissue engineering is limited by their small pore size, which has a negative influence on cell migration. This disadvantage could be significantly improved through the combination of nano- and microfibrous structure. To accomplish this, different nano/microfibrous scaffolds were produced by hybrid electrospinning, combining solution electrospinning with melt electrospinning, while varying the content of the nanofiber. The morphology of the silk fibroin (SF)/poly(ε-caprolactone) (PCL) nano/microfibrous composite scaffolds was investigated with field-emission scanning electron microscopy, while the mechanical and pore properties were assessed by measurement of tensile strength and mercury porosimetry. To assay cell proliferation, cell viability, and infiltration ability, human mesenchymal stem cells were seeded on the SF/PCL nano/microfibrous composite scaffolds. From in vivo tests, it was found that the bone-regenerating ability of SF/PCL nano/microfibrous composite scaffolds was closely associated with the nanofiber content in the composite scaffolds. In conclusion, this approach of controlling the nanofiber content in SF/PCL nano/microfibrous composite scaffolds could be useful in the design of novel scaffolds for tissue engineering. PMID:25624762

  20. Fabrication of Nerve Growth Factor Encapsulated Aligned Poly(ε-Caprolactone) Nanofibers and Their Assessment as a Potential Neural Tissue Engineering Scaffold

    OpenAIRE

    Jue Hu; Lingling Tian; Prabhakaran, Molamma P.; Xin Ding; Seeram Ramakrishna

    2016-01-01

    Peripheral nerve injury is a serious clinical problem to be solved. There has been no breakthrough so far and neural tissue engineering offers a promising approach to promote the regeneration of peripheral neural injuries. In this study, emulsion electrospinning technique was introduced as a flexible and promising technique for the fabrication of random (R) and aligned (A) Poly(ε-caprolactone) (PCL)-Nerve Growth Factor (NGF)&Bovine Serum Albumin (BSA) nanofibrous scaffolds [(R/A)-PCL-NGF&...

  1. Electrospun Nanofibrous Materials for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2011-02-01

    Full Text Available The use of biomaterials processed by the electrospinning technique has gained considerable interest for neural tissue engineering applications. The tissue engineering strategy is to facilitate the regrowth of nerves by combining an appropriate cell type with the electrospun scaffold. Electrospinning can generate fibrous meshes having fiber diameter dimensions at the nanoscale and these fibers can be nonwoven or oriented to facilitate neurite extension via contact guidance. This article reviews studies evaluating the effect of the scaffold’s architectural features such as fiber diameter and orientation on neural cell function and neurite extension. Electrospun meshes made of natural polymers, proteins and compositions having electrical activity in order to enhance neural cell function are also discussed.

  2. Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Heyun [School of Chemistry and Chemical Engineering, Shihezi University, Beisi Road, Shihezi 830002 (China); Feng, Yakai, E-mail: fengyakai@yahoo.cn [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-GKSS Research Centre, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Fang, Zichen; Yuan, Wenjie; Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072 (China)

    2012-12-01

    A small-diameter vascular graft (inner diameter 4 mm) was fabricated from polyurethane (PU) and poly(ethylene glycol) (PEG) solutions by blend electrospinning technology. The fiber diameter decreased from 1023 {+-} 185 nm to 394 {+-} 106 nm with the increasing content of PEG in electrospinning solutions. The hybrid PU/PEG scaffolds showed randomly nanofibrous morphology, high porosity and well-interconnected porous structure. The hydrophilicity of these scaffolds had been improved significantly with the increasing contents of PEG. The mechanical properties of electrospun hybrid PU/PEG scaffolds were obviously different from that of PU scaffold, which was caused by plasticizing or hardening effect imparted by PEG composition. Under hydrated state, the hybrid PU/PEG scaffolds demonstrated low mechanical performance due to the hydrophilic property of materials. Compared with dry PU/PEG scaffolds with the same content of PEG, the tensile strength and elastic modulus of hydrated PU/PEG scaffolds decreased significantly, while the elongation at break increased. The hybrid PU/PEG scaffolds demonstrated a lower possibility of thrombi formation than blank PU scaffold in platelet adhesion test. The hemolysis assay illustrated that all scaffolds could act as blood contacting materials. To investigate further in vitro cytocompatibility, HUVECs were seeded on the scaffolds and cultured over 14 days. The cells could attach and proliferate well on the hybrid scaffolds than blank PU scaffold, and form a cell monolayer fully covering on the PU/PEG (80/20) hybrid scaffold surface. The results demonstrated that the electrospun hybrid PU/PEG tubular scaffolds possessed the special capacity with excellent hemocompatibility while simultaneously supporting extensive endothelialization with the 20 and 30% content of PEG in hybrid scaffolds. - Highlights: Black-Right-Pointing-Pointer We develop small-diameter vascular grafts made of PU and PEG by electrospinning. Black

  3. Engineered Biopolymeric Scaffolds for Chronic Wound Healing.

    Science.gov (United States)

    Dickinson, Laura E; Gerecht, Sharon

    2016-01-01

    Skin regeneration requires the coordinated integration of concomitant biological and molecular events in the extracellular wound environment during overlapping phases of inflammation, proliferation, and matrix remodeling. This process is highly efficient during normal wound healing. However, chronic wounds fail to progress through the ordered and reparative wound healing process and are unable to heal, requiring long-term treatment at high costs. There are many advanced skin substitutes, which mostly comprise bioactive dressings containing mammalian derived matrix components, and/or human cells, in clinical use. However, it is presently hypothesized that no treatment significantly outperforms the others. To address this unmet challenge, recent research has focused on developing innovative acellular biopolymeric scaffolds as more efficacious wound healing therapies. These biomaterial-based skin substitutes are precisely engineered and fine-tuned to recapitulate aspects of the wound healing milieu and target specific events in the wound healing cascade to facilitate complete skin repair with restored function and tissue integrity. This mini-review will provide a brief overview of chronic wound healing and current skin substitute treatment strategies while focusing on recent engineering approaches that regenerate skin using synthetic, biopolymeric scaffolds. We discuss key polymeric scaffold design criteria, including degradation, biocompatibility, and microstructure, and how they translate to inductive microenvironments that stimulate cell infiltration and vascularization to enhance chronic wound healing. As healthcare moves toward precision medicine-based strategies, the potential and therapeutic implications of synthetic, biopolymeric scaffolds as tunable treatment modalities for chronic wounds will be considered. PMID:27547189

  4. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  5. AFM-based mechanical characterization of single nanofibres

    Science.gov (United States)

    Neugirg, Benedikt R.; Koebley, Sean R.; Schniepp, Hannes C.; Fery, Andreas

    2016-04-01

    Nanofibres are found in a broad variety of hierarchical biological systems as fundamental structural units, and nanofibrillar components are playing an increasing role in the development of advanced functional materials. Accurate determination of the mechanical properties of single nanofibres is thus of great interest, yet measurement of these properties is challenging due to the intricate specimen handling and the exceptional force and deformation resolution that is required. The atomic force microscope (AFM) has emerged as an effective, reliable tool in the investigation of nanofibrillar mechanics, with the three most popular approaches--AFM-based tensile testing, three-point deformation testing, and nanoindentation--proving preferable to conventional tensile testing in many (but not all) cases. Here, we review the capabilities and limitations of each of these methods and give a comprehensive overview of the recent advances in this field.

  6. NANOFIBROUS MATS WITH BIRD'S NEST PATTERNS BY ELECTROSPINNING

    Institute of Scientific and Technical Information of China (English)

    Xiang-yu Ye; Xiao-jun Huang; Zhi-kang Xu

    2012-01-01

    Electrospun material with bio-inspired ordered architectures and patterns is very interesting,yet remains a challenge.We report here that nanofibrous mats with bird's nest patterned structures can be directly electrospun from chlorinated polypropylene solutions doped with an ionic liquid.The solution viscosity and the ionic liquid content are two dominant factors to influence the lopological morphology of the nanofibrous mats.The patterned structures can be further modulated by the collection time of electrospinning,the humidity of environment and the design of collector.We suggest the electrostatic repulsion between the residual charges of the mat surface and the upcoming nanofibers plays a key role in the formation of the bird's nest patterns.

  7. Extracellular matrix formation in self-assembled minimalistic bioactive hydrogels based on aromatic peptide amphiphiles

    OpenAIRE

    ZHOU, MI; Ulijn, Rein V.; Gough, Julie E

    2014-01-01

    The hitherto inconsistency in clinical performance for engineered skin drives the current development of novel cell-scaffolding materials; one challenge is to only extract essential characteristics from the complex native ECM (extracellular matrix) and incorporate them into a scaffold with minimal complexity to support normal cell functions. This study involved small-molecule-based bioactive hydrogels produced by the co-assembly of two aromatic peptide amphiphiles: Fmoc-FF (Fluorenylmethoxyca...

  8. Large Scale Synthesis of Carbon Nanofibres on Sodium Chloride Support

    OpenAIRE

    Ravindra Rajarao; Badekai Ramachandra Bhat

    2012-01-01

    Large scale synthesis of carbon nanofibres (CNFs) on a sodium chloride support has been achieved. CNFs have been synthesized using metal oxalate (Ni, Co and Fe) as catalyst precursors at 680 C by chemical vapour deposition method. Upon pyrolysis, this catalyst precursors yield catalyst nanoparticles directly. The sodium chloride was used as a catalyst support, it was chosen because of its non‐toxic and water soluble nature. Problems, such as the detrimental effect of CNFs, the detrimental ef...

  9. Diopside-fluorapatite-wollastonite based bioactive glasses and glass-ceramics

    OpenAIRE

    Kansal, Ishu

    2015-01-01

    Bioactive glasses and glass–ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses...

  10. A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning.

    Science.gov (United States)

    Wu, Tong; Huang, Chen; Li, Dawei; Yin, Anlin; Liu, Wei; Wang, Jing; Chen, Jianfeng; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2015-09-01

    Multi-layered scaffolds are advantageous in vascular tissue engineering, in consideration of better combination of biomechanics, biocompatibility and biodegradability than the scaffolds with single structure. In this study, a bi-directional gradient electrospinning method was developed to fabricate poly(l-lactide-co-caprolactone) (P(LLA-CL)), collagen and chitosan based tubular scaffold with multi-layered symmetrical structure. The multi-layered composite scaffold showed improved mechanical property and biocompatibility, in comparison to the blended scaffold using the same proportion of raw materials. Endothelialization on the multi-layered scaffold was accelerated owing to the bioactive surface made of pure natural materials. hSMCs growth showed the similar results because of its better biocompatibility. Additionally, fibers morphology change, pH value balance and long term mechanical support results showed that the gradient structure effectively improved biodegradability. PMID:26101818

  11. Functionalization of Carbon Nanofibres Obtained by Floating Catalyst Method

    Directory of Open Access Journals (Sweden)

    Adolfo Fernández

    2015-01-01

    Full Text Available The excellent physicochemical and electrical properties of carbon nanofibres (CNF combined with the possibility of being produced at industrial scale at reasonable costs have promoted the interest in their use in very diverse areas. However, there are still some drawbacks that must be solved in order to optimize their set of properties such as the presence of impurities or the imperfections in the crystalline structure. In this work, different modification treatments of CNFs produced by the floating catalyst method have been studied. Three types of modification processes have been explored that can be grouped as mechanical, thermal, and chemical functionalization processes. Mechanical processing has allowed solving the agglomeration problem related to CNFs produced by floating catalyst method and the resulting modified product ensures the secure handling of carbon nanofibres. Thermal and chemical treatments lead to purer and more crystalline products by removing catalyst impurities and amorphous carbon. Functionalization processes explored in this work open the possibility of customized posttreatment of carbon nanofibres according to the desired requirements.

  12. Electrospun silk-based nanofibrous scaffolds: fiber diameter and oxygen transfer

    OpenAIRE

    Chomachayi, Masoud Dadras; Solouk, Atefeh; Mirzadeh, Hamid

    2016-01-01

    In this study, silk fibroin was extracted from cocoons of silkworms and fabricated into nonwoven mats by electrospinning method. A new model based on the group method of data handling (GMDH) and artificial neural network (ANN) was developed for estimation of the average diameter of electrospun silk fibroin nanofibers. In this regard, concentration, flow rate, voltage, distance, and speed of collector were used as input parameters and average diameter of the fibers was considered as output par...

  13. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Vinoy [Center for Nanoscale Materials and Biointegration (CNMB), Department of Physics, University of Alabama at Birmingham (UAB), AL 35294 (United States); Zhang Xing [Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham (UAB), AL 35294 (United States); Catledge, Shane A [Center for Nanoscale Materials and Biointegration (CNMB), Department of Physics, University of Alabama at Birmingham (UAB), AL 35294 (United States); Vohra, Yogesh K [Center for Nanoscale Materials and Biointegration (CNMB), Department of Physics, University of Alabama at Birmingham (UAB), AL 35294 (United States)

    2007-12-15

    Electrospun tubular scaffolds (4 mm inner diameter) based on bio-artificial blends of polyglyconate (Maxon (registered) ) and proteins such as gelatin and elastin having a spatially designed multilayer structure were prepared for use as vascular tissue scaffolds. Scanning electron microscopy analysis of scaffolds showed a random nanofibrous morphology with fiber diameter in the range of 200-400 nm for protein-blended Maxon, which mimics the nanoscale dimensions of collagen (50-500 nm). The scaffolds have a well interconnected pore structure and porosity up to 82%, with protein blending and multi-layering in contrast to electrospun Maxon (registered) scaffolds (67%). Fourier-transform infrared spectroscopy, x-ray diffraction and differential scanning calorimetry results confirmed the blended composition and crystallinity of fibers. Uniaxial tensile testing revealed a strength of 14.46 {+-} 0.42 MPa and a modulus of 15.44 {+-} 2.53 MPa with a failure strain of 322.5 {+-} 10% for a pure Maxon (registered) scaffold. The blending of polyglyconate with biopolymers decreased the tensile properties in general, with an exception of the tensile modulus (48.38 {+-} 2 MPa) of gelatin/Maxon mesh, which was higher than that of the pure Maxon (registered) scaffold. Trilayered tubular scaffolds of gelatin/elastin, gelatin/elastin/Maxon and gelatin/Maxon (GE-GEM-GM) that mimic the complex trilayer matrix structure of natural artery have been prepared by sequential electrospinning. Tensile testing under dry conditions revealed a tensile strength of 2.71 {+-} 0.2 MPa and a modulus of 20.4 {+-} 3 MPa with a failure strain of 140 {+-} 10%. However, GE-GEM-GM scaffolds tested under wet conditions after soaking in a phosphate buffered saline medium at 37 {sup 0}C for 24 h exhibited mechanical properties (2.5 MPa tensile strength and 9 MPa tensile modulus) comparable to those of native femoral artery.

  14. Release of lysozyme from electrospun PVA/lysozyme-gelatin scaffolds

    Institute of Scientific and Technical Information of China (English)

    Dong-zhi YANG; Yu-hua LONG; Jun NIE

    2008-01-01

    This article describes an electrospinning process in fabricating ultra fine fibers with core-shell structure. A biodegradable polymer, poly(vinyl alcohol) (PVA), was used as the shell; lysozyme was a kind of antioxidant; and gelatin were used as the core. Morphology and microstruc-ture of the ultra fine fibers were characterized by scanning electron microscope (SEM), transmission electron micro-scopy (TEM) and X-ray photoelectron spectroscopy (XPS) analysis. As a comparison, composite nanofiber PVA/lysozyme-gelatin blend was prepared by a normal electrospinning process. In vitro drug release behaviors of the nanofibrous membranes were determined in phosphate-buffered saline (PBS) solution. It was found that core-shell nanofibers PVA/lysozyme-gelatin obviously exhibit higher initial release rates compared to that of PVA/lysozyme-gelatin blend nanofibers. The current method may find wide application in controlled release of bioactive proteins and tissue engineering.

  15. Carbon nanofibre composites, preparation and use, EP application 04076211.4

    NARCIS (Netherlands)

    2005-01-01

    The invention is directed to a carbon nanofibre composite having a bulk density of at least 800kg/m3, obtainable by the process of growing carbon nanofibres on the surface of a supported carbon fibre producing metal catalyst, such as a catalyst based on nickel, cobalt, iron, ruthenium or combination

  16. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants

    DEFF Research Database (Denmark)

    Homaeigohar, Shahin; Zillohu, Ahnaf; Abdelaziz, Ramzy;

    2016-01-01

    In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES) for removal of methylene blue (MB) dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption...

  17. Scaffolds of polycaprolactone with hydroxyapatite fibers;Scaffolds de poli(epsilon-caprolactona) com fibras de hidroxiapatita

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Guinea B.C.; Zavaglia, Cecilia A.C., E-mail: guicardoso@fem.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Materiais; Ramos, Sergio L.F. [Universidade Federal Santa Catarina (UFSC), Florianopolis, SC (Brazil); Arruda, Antonio Celso F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. do Petroleo

    2009-07-01

    Scaffolds of poly (epsilon-caprolactone) has been studied in many researches in tissue engineering. The used of hydroxyapatite fibers, allowed increase its resistance mechanical, beside the character bioactive and osteoconductive. Improving, its role in tissue engineering. The aim in this study was developed polycaprolactone matrix with dispersed hydroxyapatite fibers. The characterizations were by scanning electron microscopy (SEM), X- Ray Diffractometer (XRD), X-Ray Fluorescence (XRF) and Energy dispersive X-Ray Detector (EDX). Was able reviewed its composition, morphology and possible contaminations. The results were scaffolds with porosity and distribution of the fibers in all its area. (author)

  18. Amphiphilic Beads as Depots for Sustained Drug Release Integrated into Fibrillar Scaffolds

    Science.gov (United States)

    Gaharwar, Akhilesh K.; Mihaila, Silvia M.; Kulkarni, Ashish A.; Patel, Alpesh; Di Luca, Andrea; Reis, Rui L.; Gomes, Manuela E.; van Blitterswijk, Clemens; Moroni, Lorenzo; Khademhosseini, Ali

    2014-01-01

    Native extracellular matrix (ECM) is a complex fibrous structure loaded with bioactive cues that affects the surrounding cells. A promising strategy to mimicking native tissue architecture for tissue engineering applications is to engineer fibrous scaffolds using electrospinning. By loading appropriate bioactive cues within these fibrous scaffolds, various cellular functions such as cell adhesion, proliferation and differentiation can be regulated. Here, we report on the encapsulation and sustained release of model hydrophobic drug (dexamethasone (Dex)) within beaded fibrillar scaffold of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT), a polyether-ester multiblock copolymer to direct differentiation of human mesenchymal stem cells (hMSCs). The amphiphilic beads act as depots for sustained drug release that is integrated into the fibrillar scaffolds. The entrapment of Dex within the beaded structure results in sustained release of drug over the period of 28 days. This is mainly attributed to the diffusion driven release of Dex from the amphiphilic electrospun scaffolds. In vitro results indicate that hMSCs cultured on Dex containing beaded fibrillar scaffolds exhibit an increase in osteogenic differentiation potential, as evidenced by increased alkaline phosphatase (ALP) activity, compared to the direct infusion of Dex in culture medium. The formation of mineralized matrix is also significantly enhanced due to the controlled Dex release from the fibrous scaffolds. This approach can be used to engineer scaffolds with appropriate chemical cues to direct tissue regeneration. PMID:24794894

  19. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Sell, Scott A; Garg, Koyal; McClure, Michael J; Bowlin, Gary L [Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284-3067 (United States); Francis, Michael P [Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298-0709 (United States); Simpson, David G [Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709 (United States)], E-mail: glbowlin@vcu.edu

    2008-12-15

    The purpose of this study was to enhance the mechanical properties and slow the degradation of an electrospun fibrinogen scaffold, while maintaining the scaffold's high level of bioactivity. Three different cross-linkers were used to achieve this goal: glutaraldehyde vapour, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and genipin in ethanol. Scaffolds with a fibrinogen concentration of 120 mg ml{sup -1} were electrospun and cross-linked with one of the aforementioned cross-linkers. Mechanical properties were determined through uniaxial tensile testing performed on scaffolds incubated under standard culture conditions for 1 day, 7 days and 14 days. Cross-linked scaffolds were seeded with human foreskin fibroblasts (BJ-GFP-hTERT) and cultured for 7, 14 and 21 days, with histology and scanning electron microscopy performed upon completion of the time course. Mechanical testing revealed significantly increased peak stress and modulus values for the EDC and genipin cross-linked scaffolds, with significantly slowed degradation. However, cross-linking with EDC and genipin was shown to have some negative effect on the bioactivity of the scaffolds as cell migration throughout the thickness of the scaffold was slowed.

  20. A novel electrospun biphasic scaffold provides optimal three-dimensional topography for in vitro co-culture of airway epithelial and fibroblast cells

    International Nuclear Information System (INIS)

    Conventional airway in vitro models focus upon the function of individual structural cells cultured in a two-dimensional monolayer, with limited three-dimensional (3D) models of the bronchial mucosa. Electrospinning offers an attractive method to produce defined, porous 3D matrices for cell culture. To investigate the effects of fibre diameter on airway epithelial and fibroblast cell growth and functionality, we manipulated the concentration and deposition rate of the non-degradable polymer polyethylene terephthalate to create fibres with diameters ranging from nanometre to micrometre. The nanofibre scaffold closely resembles the basement membrane of the bronchiole mucosal layer, and epithelial cells cultured at the air–liquid interface on this scaffold showed polarized differentiation. The microfibre scaffold mimics the porous sub-mucosal layer of the airway into which lung fibroblast cells showed good penetration. Using these defined electrospinning parameters we created a biphasic scaffold with 3D topography tailored for optimal growth of both cell types. Epithelial and fibroblast cells were co-cultured onto the apical nanofibre phase and the basal microfibre phase respectively, with enhanced epithelial barrier formation observed upon co-culture. This biphasic scaffold provides a novel 3D in vitro platform optimized to mimic the different microenvironments the cells encounter in vivo on which to investigate key airway structural cell interactions in airway diseases such as asthma. (paper)

  1. Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering.

    Science.gov (United States)

    Hwang, Patrick T J; Murdock, Kyle; Alexander, Grant C; Salaam, Amanee D; Ng, Joshua I; Lim, Dong-Jin; Dean, Derrick; Jun, Ho-Wook

    2016-04-01

    Electrospinning has been widely used to fabricate scaffolds imitating the structure of natural extracellular matrix (ECM). However, conventional electrospinning produces tightly compacted nanofiber layers with only small superficial pores and a lack of bioactivity, which limit the usefulness of electrospinning in biomedical applications. Thus, a porous poly(ε-caprolactone) (PCL)/gelatin composite electrospun scaffold with crater-like structures was developed. Porous crater-like structures were created on the scaffold by a gas foaming/salt leaching process; this unique fiber structure had more large pore areas and higher porosity than the conventional electrospun fiber network. Various ratios of PCL/gelatin (concentration ratios: 100/0, 75/25, and 50/50) composite electrospun scaffolds with and without crater-like structures were characterized by their microstructures, surface chemistry, degradation, mechanical properties, and ability to facilitate cell growth and infiltration. The combination of PCL and gelatin endowed the scaffold with both structural stability of PCL and bioactivity of gelatin. All ratios of scaffolds with crater-like structures showed fairly similar surface chemistry, degradation rates, and mechanical properties to equivalent scaffolds without crater-like structures; however, craterized scaffolds displayed higher human mesenchymal stem cell (hMSC) proliferation and infiltration throughout the scaffolds after 7-day culture. Therefore, these results demonstrated that PCL/gelatin composite electrospun scaffolds with crater-like structures can provide a structurally and biochemically improved three-dimensional ECM-mimicking microenvironment. PMID:26567028

  2. Functionality in Electrospun Nanofibrous Membranes Based on Fiber’s Size, Surface Area, and Molecular Orientation

    Directory of Open Access Journals (Sweden)

    Akihiko Tanioka

    2011-08-01

    Full Text Available Electrospinning is a versatile method for forming continuous thin fibers based on an electrohydrodynamic process. This method has the following advantages: (i the ability to produce thin fibers with diameters in the micrometer and nanometer ranges; (ii one-step forming of the two- or three-dimensional nanofiber network assemblies (nanofibrous membranes; and (iii applicability for a broad spectrum of molecules, such as synthetic and biological polymers and polymerless sol-gel systems. Electrospun nanofibrous membranes have received significant attention in terms of their practical applications. The major advantages of nanofibers or nanofibrous membranes are the functionalities based on their nanoscaled-size, highly specific surface area, and highly molecular orientation. These functionalities of the nanofibrous membranes can be controlled by their fiber diameter, surface chemistry and topology, and internal structure of the nanofibers. This report focuses on our studies and describes fundamental aspects and applications of electrospun nanofibrous membranes.

  3. Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface

    CERN Document Server

    Kumar, Ravi; Chormaic, Síle Nic

    2015-01-01

    Ultrathin optical fibres integrated into cold atom setups are proving to be ideal building blocks for atom-photon hybrid quantum networks. Such optical nanofibres (ONF) can be used for the demonstration of nonlinear optics and quantum interference phenomena in atomic media. Here, we report on the observation of multilevel cascaded electromagnetically induced transparency (EIT) using an optical nanofibre to interface cold $^{87}$Rb atoms through the intense evanescent fields that can be achieved at ultralow probe and coupling powers. Both the probe (at 780 nm) and the coupling (at 776 nm) beams propagate through the nanofibre. The observed multipeak transparency spectra of the probe beam could offer a method for simultaneously slowing down multiple wavelengths in an optical nanofibre or for generating ONF-guided entangled beams, showing the potential of such an atom-nanofibre system for quantum information. We also demonstrate all-optical-switching in the all fibred system using the obtained EIT effect.

  4. In vitro hemocompatibility and cytocompatibility of a three-layered vascular scaffold fabricated by sequential electrospinning of PCL, collagen, and PLLA nanofibers.

    Science.gov (United States)

    Haghjooy Javanmard, Shaghayegh; Anari, Jamal; Zargar Kharazi, Anousheh; Vatankhah, Elham

    2016-09-01

    Aiming to mimic a blood vessel structurally, morphologically, and mechanically, a sequential electrospinning technique using a small diameter mandrel collector was performed and a three-layered tubular scaffold composed of nanofibers of polycaprolactone, collagen, and poly(l-lactic acid) as inner, intermediate, and outer layers, respectively, was developed. Biological performances of the scaffold in terms of compatibility with blood and endothelial cells were assessed to get some insights into its potential use as a tissue engineered small-diameter vascular replacement compared to an expanded polytetrafluoroethylene vascular graft. Due to direct contact of the blood and endothelial cells with inner surface of the scaffold, polycaprolactone fibers were characterized using SEM, water contact angle measurement, and ATR-FTIR. Despite similar surface wettability of the electrospun scaffold and the expanded polytetrafluoroethylene graft, the three-layered scaffold significantly reduced platelet adhesion and hemolysis ratio compared to expanded polytetrafluoroethylene graft while comparable blood clotting profiles were observed for both electrospun scaffold and expanded polytetrafluoroethylene graft. However, inflammatory response to nanofibrous surface of the scaffold was reduced compared to expanded polytetrafluoroethylene graft. The electrospun scaffold also presented a significantly more supportive substrate for endothelialization than the expanded polytetrafluoroethylene graft. The results described herein suggested that the three-layered scaffold has superior biological properties compared to an expanded polytetrafluoroethylene graft for vascular tissue engineering. PMID:27247131

  5. In vitro evaluation of human endometrial stem cell-derived osteoblast-like cells' behavior on gelatin/collagen/bioglass nanofibers' scaffolds.

    Science.gov (United States)

    Sharifi, Esmaeel; Ebrahimi-Barough, Somayeh; Panahi, Maryam; Azami, Mahmoud; Ai, Arman; Barabadi, Zahra; Kajbafzadeh, Abdol-Mohammad; Ai, Jafar

    2016-09-01

    New biomimetic nanocomposite scaffold was prepared by the combination of nanofibrilar bioglass containing copper ion as the inorganic phase and gelatin/collagen as the organic phase of bone tissue. In this study for fabrication of the scaffold, freeze drying and electrospinning methods were used, and genipin was used as the cross-linking agent for increasing the mechanical properties of the scaffold. The growth and viability of human endometrial stem cell-derived osteoblast-like cells were investigated on this biomimetic scaffold. Cellular biocompatibility assays illustrated that this scaffold has more viabilities and osteoblast growths in comparison with two-dimensional culture. Copper ion increased growth of the osteoblasts on nanocomposite scaffold containing nanofibrous bioglass. Thus, the results obtained from this study indicate that the prepared scaffold is suitable for osteoblast growth and attachment; thus, potentially, this nanocomposite scaffold is an appropriate scaffold for bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2210-2219, 2016. PMID:27087544

  6. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration

    OpenAIRE

    Wei Zhu; Castro, Nathan J.; Xiaoqian Cheng; Michael Keidar; Lijie Grace Zhang

    2015-01-01

    Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive ele...

  7. Comparative Studies of Electrospinning and Solution Blow Spinning Processes for the Production of Nanofibrous Poly(L-Lactic Acid Materials for Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Wojasiński Michal

    2014-06-01

    Full Text Available Comparative statistical analysis of the infiuence of processing parameters, for electrospinning (ES and solution blow spinning (SBS processes, on nanofibrous poly(L-lactic acid (PLLA material morphology and average fiber diameter was conducted in order to identify the key processing parameter for tailoring the product properties. Further, a comparative preliminary biocompatibility evaluation was performed. Based on Design of Experiment (DOE principles, analysis of standard effects of voltage, air pressure, solution feed rate and concentration, on nanofibers average diameter was performed with the Pareto’s charts and the best fitted surface charts. Nanofibers were analyzed by scanning electron microscopy (SEM. The preliminary biocompatibility comparative tests were performed based on SEM microphotographs of CP5 cells cultured on materials derived from ES and SBS. Polymer solution concentration was identified as the key parameter infiuencing morphology and dimensions of nanofibrous mat produced from both techniques. In both cases, when polymer concentration increases the average fiber diameter increase. The preliminary biocompatibility test suggests that nanofibers produced by ES as well as SBS are suitable as the biomedical engineering scaffold material.

  8. Scaffold-based Drug Delivery for Cartilage Tissue Regeneration.

    Science.gov (United States)

    Shalumon, K T; Chen, Jyh-Ping

    2015-01-01

    Regenerative engineering is an advanced field comprising the collective benefit of biodegradable polymers with cells and tissue inducing factors. Current method of replacing the defective organ is through transplantation, but is limited due to immune rejection and availability. As a solution, new polymeric biomaterial-based three-dimensional (3D) scaffolds in combination with cells and inducing factors were aroused to fulfil the existing demands. These scaffolds apply material science, biomedical technology and translational medicine to develop functional tissue engineering constructs. Presence of small molecules and growth factors guides the cell phenotypes to specific organ development. The 3D scaffold thus could also be favorably used as carriers for various types of drugs and genes, with the release profile fine-tuned by modulation of the scaffold's morphology, porosity, and composition. An increasing trend was observed in recent years toward the combination of scaffolds and growth factors to fabricate a bioactive system, which not only provide a biomimetic biodegradable physical support for tissue growth but also explores biological signals to modulate tissue regeneration. In this review, along with general aspects of tissue engineering, we also discuss the importance of various scaffold architectures like nanofibers, hydrogels, beads, meshes, microspheres etc. in combination with specific drugs, growth factors and small molecules for cartilage regeneration. Growth factors may be incorporated into scaffolds by direct blending, physical adsorption, drop casting, surface grafting, covalent bonding, chemical immobilization, coaxial electrospinning, microparticle incorporation etc. This offers new possibilities for the development of biomimetic scaffolds that are endowed with a hierarchical architecture and sophisticated release kinetics of the growth factors. This review portrait the fundamentals of tissue engineering with emphasis on the role of inducing factors

  9. Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass 3D Porous Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kanchan Maji

    2016-01-01

    Full Text Available The aim of the present study was to prepare and characterize bioglass-natural biopolymer based composite scaffold and evaluate its bone regeneration ability. Bioactive glass nanoparticles (58S in the size range of 20–30 nm were synthesized using sol-gel method. Porous scaffolds with varying bioglass composition from 10 to 30 wt% in chitosan, gelatin matrix were fabricated using the method of freeze drying of its slurry at 40 wt% solids loading. Samples were cross-linked with glutaraldehyde to obtain interconnected porous 3D microstructure with improved mechanical strength. The prepared scaffolds exhibited >80% porosity with a mean pore size range between 100 and 300 microns. Scaffold containing 30 wt% bioglass (GCB 30 showed a maximum compressive strength of 2.2±0.1 MPa. Swelling and degradation studies showed that the scaffold had excellent properties of hydrophilicity and biodegradability. GCB 30 scaffold was shown to be noncytotoxic and supported mesenchymal stem cell attachment, proliferation, and differentiation as indicated by MTT assay and RUNX-2 expression. Higher cellular activity was observed in GCB 30 scaffold as compared to GCB 0 scaffold suggesting the fact that 58S bioglass nanoparticles addition into the scaffold promoted better cell adhesion, proliferation, and differentiation. Thus, the study showed that the developed composite scaffolds are potential candidates for regenerating damaged bone tissue.

  10. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering

    International Nuclear Information System (INIS)

    Three-dimensional printing (3DP) is a rapid prototyping technique that can create complex 3D structures by inkjet printing of a liquid binder onto powder biomaterials for tissue engineering scaffolds. Direct fabrication of scaffolds from 3DP, however, imposes a limitation on material choices by manufacturing processes. In this study, we report an indirect 3DP approach wherein a positive replica of desired shapes was printed using gelatin particles, and the final scaffold was directly produced from the printed mold. To create patient-specific scaffolds that match precisely to a patient's external contours, we integrated our indirect 3DP technique with imaging technologies and successfully created custom scaffolds mimicking human mandibular condyle using polycaprolactone and chitosan for potential osteochondral tissue engineering. To test the ability of the technique to precisely control the internal morphology of the scaffolds, we created orthogonal interconnected channels within the scaffolds using computer-aided-design models. Because very few biomaterials are truly osteoinductive, we modified inert 3D printed materials with bioactive apatite coating. The feasibility of these scaffolds to support cell growth was investigated using bone marrow stromal cells (BMSC). The BMSCs showed good viability in the scaffolds, and the apatite coating further enhanced cellular spreading and proliferation. This technique may be valuable for complex scaffold fabrication. (paper)

  11. Engineered polycaprolactone–magnesium hybrid biodegradable porous scaffold for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Hoi Man Wong

    2014-10-01

    Full Text Available In this paper, we describe the fabrication of a new biodegradable porous scaffold composed of polycaprolactone (PCL and magnesium (Mg micro-particles. The compressive modulus of PCL porous scaffold was increased to at least 150% by incorporating 29% Mg particles with the porosity of 74% using Micro-CT analysis. Surprisingly, the compressive modulus of this scaffold was further increased to at least 236% when the silane-coupled Mg particles were added. In terms of cell viability, the scaffold modified with Mg particles significantly convinced the attachment and growth of osteoblasts as compared with the pure PCL scaffold. In addition, the hybrid scaffold was able to attract the formation of apatite layer over its surface after 7 days of immersion in normal culture medium, whereas it was not observed on the pure PCL scaffold. This in vitro result indicated the enhanced bioactivity of the modified scaffold. Moreover, enhanced bone forming ability was also observed in the rat model after 3 months of implantation. Though bony in-growth was found in all the implanted scaffolds. High volume of new bone formation could be found in the Mg/PCL hybrid scaffolds when compared to the pure PCL scaffold. Both pure PCL and Mg/PCL hybrid scaffolds were degraded after 3 months. However, no tissue inflammation was observed. In conclusion, these promising results suggested that the incorporation of Mg micro-particles into PCL porous scaffold could significantly enhance its mechanical and biological properties. This modified porous bio-scaffold may potentially apply in the surgical management of large bone defect fixation.

  12. A novel porcine acellular dermal matrix scaffold used in periodontal regeneration

    Institute of Scientific and Technical Information of China (English)

    Jing Guo; Hui Chen; Ying Wang; Cheng-Bo Cao; Guo-Qiang Guan

    2013-01-01

    Regeneration of periodontal tissue is the most promising method for restoring periodontal structures. To find a suitable bioactive three- dimensional scaffold promoting cell proliferation and differentiation is critical in periodontal tissue engineering. The objective of this study was to evaluate the biocompatibility of a novel porcine acellular dermal matrix as periodontal tissue scaffolds both in vitroand in vivo. The scaffolds in this study were purified porcine acellular dermal matrix (PADM) and hydroxyapatite-treated PADM (HA-PADM). The biodegradation patterns of the scaffolds were evaluated in vitro. The biocompatibility of the scaffolds in vivo was assessed by implanting them into the sacrospinal muscle of 20 New Zealand white rabbits. The hPDL cells were cultured with PADM or HA-PADM scaffolds for 3, 7, 14, 21 and 28 days. Cell viability assay, scanning electron microscopy (SEM), hematoxylin and eosin (H&E) staining, immunohistochemistry and confocal microscopy were used to evaluate the biocompatibility of the scaffolds. In vitro, both PADM and HA-PADM scaffolds displayed appropriate biodegradation pattern, and also, demonstrated favorable tissue compatibility without tissue necrosis, fibrosis and other abnormal response. The absorbance readings of the WST-1 assay were increased with the time course, suggesting the cell proliferation in the scaffolds. The hPDL cells attaching, spreading and morphology on the surface of the scaffold were visualized by SEM, H&E staining, immnuohistochemistry and confocal microscopy, demonstrated that hPDL cells were able to grow into the HA-PADM scaffolds and the amount of cells were growing up in the course of time. This study proved that HA-PADM scaffold had good biocompatibility in animals in vivoand appropriate biodegrading characteristics in vitro. The hPDL cells were able to proliferate and migrate into the scaffold. These observations may suggest that HA-PADM scaffold is a potential cell carrier

  13. Viscoelastic, physical, and bio-degradable properties of dermal scaffolds and related cell behaviour.

    Science.gov (United States)

    Sharma, Vaibhav; Patel, Nimesha; Kohli, Nupur; Ravindran, Nivedita; Hook, Lilian; Mason, Chris; García-Gareta, Elena

    2016-01-01

    Dermal scaffolds promote healing of debilitating skin injuries caused by burns and chronic skin conditions. Currently available products present disadvantages and therefore, there is still a clinical need for developing new dermal substitutes. This study aimed at comparing the viscoelastic, physical and bio-degradable properties of two dermal scaffolds, the collagen-based and clinically well established Integra(®) and a novel fibrin-based dermal scaffold developed at our laboratory called Smart Matrix(®), to further evaluate our previous published findings that suggested a higher influx of cells, reduced wound contraction and less scarring for Smart Matrix(®) when used in vivo. Rheological results showed that Integra(®) (G'  =  313.74 kPa) is mechanically stronger than Smart Matrix(®) (G'  =  8.26 kPa), due to the presence of the silicone backing layer in Integra(®). Micro-pores were observed on both dermal scaffolds, although nano-pores as well as densely packed nano-fibres were only observed for Smart Matrix(®). Average surface roughness was higher for Smart Matrix(®) (Sa  =  114.776 nm) than for Integra(®) (Sa  =  75.565 nm). Both scaffolds possess a highly porous structure (80-90%) and display a range of pore micro-sizes that represent the actual in vivo scenario. In vitro proteolytic bio-degradation suggested that Smart Matrix(®) would degrade faster upon implantation in vivo than Integra(®). For both scaffolds, the enzymatic digestion occurs via bulk degradation. These observed differences could affect cell behaviour on both scaffolds. Our results suggest that fine-tuning of scaffolds' viscoelastic, physical and bio-degradable properties can maximise cell behaviour in terms of attachment, proliferation and infiltration, which are essential for tissue repair. PMID:27586397

  14. The dynamics of scaffolding

    NARCIS (Netherlands)

    Van Geert, P. L. C.; Steenbeek, H.W.

    2005-01-01

    In this article we have reinterpreted a relatively standard definition of scaffolding in the context of dynamic systems theory. Our main point is that scaffolding cannot be understood outside the context of a dynamic approach of learning and (formal or informal) teaching. We provide a dynamic system

  15. Synchrotron X-ray Absorption and In Vitro Bioactivity of Magnetic Macro/Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Thanida Charoensuk

    2015-12-01

    Full Text Available Iron oxides in macro/mesoporous bioactive glasses were characterized by synchrotron X-ray absorption near edge structure (XANES spectroscopy. This magnetic phase was introduced by adding Fe(NO33 9H2O during the sol-gel synthesis. The obtained bioactive glass scaffolds exhibited superparamagnetism, in which the magnetization was increased with the increase in the Fe molar ratio from 10 to 20%. The linear combination fits of the XANES spectra indicated that the increase in the Fe molar ratio to 20% enhanced the γ-Fe2O3 formation at the expense of the α- Fe2O3 phase. This variation also promoted the formation of fine-grained bone-like apatites on the surface of the scaffolds in the in vitro test. The apatite growth between three and seven days was confirmed by the changing elemental compositions. However, the highest magnetic proportion led to the distortion of the skeleton walls and the collapse of the porous networks.

  16. Uniform Surface Modification of 3D Bioglass®-Based Scaffolds with Mesoporous Silica Particles (MCM-41) for Enhancing Drug Delivery Capability

    OpenAIRE

    Boccardi, Elena; Philippart, Anahí; Juhasz-Bortuzzo, Judith A.; Beltrán, Ana M.; Novajra, Giorgia; Vitale-Brovarone, Chiara; Spiecker, Erdmann; Boccaccini , Aldo R.

    2015-01-01

    The design and characterization of a new family of multifunctional scaffolds based on bioactive glass (BG) of 45S5 composition for bone tissue engineering and drug delivery applications are presented. These BG-based scaffolds are developed via a replication method of polyurethane packaging foam. In order to increase the therapeutic functionality, the scaffolds were coated with mesoporous silica particles (MCM-41), which act as an in situ drug delivery system. These sub-micron spheres are char...

  17. Sol-Gel Derived Mg-Based Ceramic Scaffolds Doped with Zinc or Copper Ions: Preliminary Results on Their Synthesis, Characterization, and Biocompatibility

    OpenAIRE

    Georgios S. Theodorou; Eleana Kontonasaki; Anna Theocharidou; Athina Bakopoulou; Maria Bousnaki; Christina Hadjichristou; Eleni Papachristou; Lambrini Papadopoulou; Kantiranis, Nikolaos A.; Konstantinos Chrissafis; Paraskevopoulos, Konstantinos M.; Koidis, Petros T.

    2016-01-01

    Glass-ceramic scaffolds containing Mg have shown recently the potential to enhance the proliferation, differentiation, and biomineralization of stem cells in vitro, property that makes them promising candidates for dental tissue regeneration. An additional property of a scaffold aimed at dental tissue regeneration is to protect the regeneration process against oral bacteria penetration. In this respect, novel bioactive scaffolds containing Mg2+ and Cu2+ or Zn2+, ions known for their antimicro...

  18. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.

    Science.gov (United States)

    Hung, Kun-Che; Tseng, Ching-Shiow; Dai, Lien-Guo; Hsu, Shan-hui

    2016-03-01

    Conventional 3D printing may not readily incorporate bioactive ingredients for controlled release because the process often involves the use of heat, organic solvent, or crosslinkers that reduce the bioactivity of the ingredients. Water-based 3D printing materials with controlled bioactivity for customized cartilage tissue engineering is developed in this study. The printing ink contains the water dispersion of synthetic biodegradable polyurethane (PU) elastic nanoparticles, hyaluronan, and bioactive ingredients TGFβ3 or a small molecule drug Y27632 to replace TGFβ3. Compliant scaffolds are printed from the ink at low temperature. These scaffolds promote the self-aggregation of mesenchymal stem cells (MSCs) and, with timely release of the bioactive ingredients, induce the chondrogenic differentiation of MSCs and produce matrix for cartilage repair. Moreover, the growth factor-free controlled release design may prevent cartilage hypertrophy. Rabbit knee implantation supports the potential of the novel 3D printing scaffolds in cartilage regeneration. We consider that the 3D printing composite scaffolds with controlled release bioactivity may have potential in customized tissue engineering. PMID:26774563

  19. Fabrication and Characterization of Thermoresponsive Polystyrene Nanofibrous Mats for Cultured Cell Recovery

    Science.gov (United States)

    Oh, Hwan Hee; Uyama, Hiroshi; Park, Won Ho; Cho, Donghwan; Kwon, Oh Hyeong

    2014-01-01

    Rapid cell growth and rapid recovery of intact cultured cells are an invaluable technique to maintain the biological functions and viability of cells. To achieve this goal, thermoresponsive polystyrene (PS) nanofibrous mat was fabricated by electrospinning of PS solution, followed by the graft polymerization of thermoresponsive poly(N-isopropylacrylamide)(PIPAAm) on PS nanofibrous mats. Image analysis of the PS nanofiber revealed a unimodal distribution pattern with 400 nm average fiber diameter. Graft polymerization of PIPAAm on PS nanofibrous mats was confirmed by spectroscopic methods such as ATR-FTIR, ESCA, and AFM. Human fibroblasts were cultured on four different surfaces, PIPAAm-grafted and ungrafted PS dishes and PIPAAm-grafted and ungrafted PS nanofibrous mats, respectively. Cells on PIPAAm-grafted PS nanofibrous mats were well attached, spread, and proliferated significantly much more than those on other surfaces. Cultured cells were easily detached from the PIPAAm-grafted surfaces by decreasing culture temperature to 20°C, while negligible cells were detached from ungrafted surfaces. Moreover, cells on PIPAAm-grafted PS nanofibrous mats were detached more rapidly than those on PIPAAm-grafted PS dishes. These results suggest that thermoresponsive nanofibrous mats are attractive cell culture substrates which enable rapid cell growth and recovery from the culture surface for application to tissue engineering and regenerative medicine. PMID:24696851

  20. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    Science.gov (United States)

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-06-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer.

  1. Fabrication of electrospun nanofibres of BCS II drug for enhanced dissolution and permeation across skin.

    Science.gov (United States)

    Kamble, Ravindra N; Gaikwad, Sheetal; Maske, Akhil; Patil, Sharvil S

    2016-05-01

    The present work reports preparation of irbesartan (IBS) loaded nanofibre mats using electrospinning technique. The prepared nanofibres were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction analysis, in vitro diffusion and ex vivo skin permeation studies. FTIR studies revealed chemical compatibility of IBS and polyvinyl pyrrolidine (PVP K-30). SEM images confirmed formation of nanofibres wherein IBS existed in amorphous form as revealed by DSC and XRD analyses. The prepared nanofibre mats of IBS were found to be superior to IBS loaded as cast films when analysed for in vitro IBS release and ex vivo skin permeation studies since the flux of IBS loaded nanofibres was 17 times greater than as cast film. The improvement in drug delivery kinetics of IBS loaded nanofibres could be attributed to amorphization with reduction in particle size of IBS, dispersion of IBS at molecular level in PVP matrix and enormous increase in the surface area for IBS release due to nanonization. Thus transdermal patch of IBS loaded nanofibres can be considered as an alternative dosage form in order to improve its biopharmaceutical properties and enhance therapeutic efficacy in hypertension. PMID:27222753

  2. Nanofibre distribution in composites manufactured with epoxy reinforced with nanofibrillated cellulose: model prediction and verification

    Science.gov (United States)

    Aitomäki, Yvonne; Westin, Mikael; Korpimäki, Jani; Oksman, Kristiina

    2016-07-01

    In this study a model based on simple scattering is developed and used to predict the distribution of nanofibrillated cellulose in composites manufactured by resin transfer moulding (RTM) where the resin contains nanofibres. The model is a Monte Carlo based simulation where nanofibres are randomly chosen from probability density functions for length, diameter and orientation. Their movements are then tracked as they advance through a random arrangement of fibres in defined fibre bundles. The results of the model show that the fabric filters the nanofibres within the first 20 µm unless clear inter-bundle channels are available. The volume fraction of the fabric fibres, flow velocity and size of nanofibre influence this to some extent. To verify the model, an epoxy with 0.5 wt.% Kraft Birch nanofibres was made through a solvent exchange route and stained with a colouring agent. This was infused into a glass fibre fabric using an RTM process. The experimental results confirmed the filtering of the nanofibres by the fibre bundles and their penetration in the fabric via the inter-bundle channels. Hence, the model is a useful tool for visualising the distribution of the nanofibres in composites in this manufacturing process.

  3. In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration

    Science.gov (United States)

    Koh, H. S.; Yong, T.; Teo, W. E.; Chan, C. K.; Puhaindran, M. E.; Tan, T. C.; Lim, A.; Lim, B. H.; Ramakrishna, S.

    2010-08-01

    A novel nanofibrous construct for promoting peripheral nerve repair was fabricated and tested in a rat sciatic nerve defect model. The conduit is made out of bilayered nanofibrous membranes with the nanofibers longitudinally aligned in the lumen and randomly oriented on the outer surface. The intra-luminal guidance channel is made out of aligned nanofibrous yarns. In addition, biomolecules such as laminin and nerve growth factor were incorporated in the nanofibrous nerve construct to determine their efficacy in in vivo nerve regeneration. Muscle reinnervation, withdrawal reflex latency, histological, axon density and electrophysiology tests were carried out to compare the efficacy of nanofibrous constructs with an autograft. Our study showed mixed results when comparing the artificial constructs with an autograft. In some cases, the nanofibrous conduit with aligned nanofibrous yarn as an intra-luminal guidance channel performs better than the autograft in muscle reinnervation and withdrawal reflex latency tests. However, the axon density count is highest in the autograft at mid-graft. Functional recovery was improved with the use of the nerve construct which suggested that this nerve implant has the potential for clinical usage in reconstructing peripheral nerve defects.

  4. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    Science.gov (United States)

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-01-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer. PMID:27324595

  5. Near-Field Characterization of Optical Micro/Nanofibres

    Institute of Scientific and Technical Information of China (English)

    MA Zhe; WANG Shan-Shan; YANG Qing; TONG Li-Min

    2007-01-01

    Near-field scanning optical microscopy is used to investigate the waveguiding properties of optical micro/nanofibres (MNFs) by means of detecting optical power carried by evanescent waves. Taper drawn silica and tellurite MNFs,supported on low-index substrates, are used to guide a 532-nm-wavelength light beam for the test. Modification of the single-mode condition of the MNF in the presence of a substrate is observed. Spatial modulation of the longitudinal field intensity (with a 195-nm period) near the output end of a 760-nm-diameter silica MNF is well resolved. Energy exchange through evanescent coupling between two parallel MNFs is also investigated.

  6. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga-Arceo, L [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Orozco, E [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Garibay-Febles, V [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Bucio-Galindo, L [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Mendoza Leon, H [FM-UPALM, IPN, Apartado Postal 75-395 CP 07300, DF (Mexico); Castillo-Ocampo, P [UAM-Iztapalapa, Apartado Postal 55-334 CP 09340, DF (Mexico); Montoya, A [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico)

    2004-06-09

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 {mu}m in length and 20-200 nm in diameter and 0.6-1.2 {mu}m in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process.

  7. Mesoporous silica particle-PLA-PANI hybrid scaffolds for cell-directed intracellular drug delivery and tissue vascularization

    Science.gov (United States)

    Shokry, Hussein; Vanamo, Ulriika; Wiltschka, Oliver; Niinimäki, Jenni; Lerche, Martina; Levon, Kalle; Linden, Mika; Sahlgren, Cecilia

    2015-08-01

    Instructive materials are expected to revolutionize stem cell based tissue engineering. As many stem cell cues have adverse effects on normal tissue homeostasis, there is a need to develop bioactive scaffolds which offer locally retained and cell-targeted drug delivery for intracellular release in targeted cell populations. Further, the scaffolds need to support vascularization to promote tissue growth and function. We have developed an electrospun PLA-PANI fiber scaffold, and incorporated mesoporous silica nanoparticles within the scaffold matrix to obtain cell-targeted and localized drug delivery. The isotropy of the scaffold can be tuned to find the optimal morphology for a given application and the scaffold is electroactive to support differentiation of contractile tissues. We demonstrate that there is no premature drug release from particles under physiological conditions over a period of one week and that the drug is released upon internalization of particles by cells within the scaffold. The scaffold is biocompatible, supports muscle stem cell differentiation and cell-seeded scaffolds are vascularized in vivo upon transplantation on the chorioallantoic membrane of chicken embryos. The scaffold is a step towards instructive biomaterials for local control of stem cell differentiation, and tissue formation supported by vascularization and without adverse effects on the homeostasis of adjacent tissues due to diffusion of biological cues.Instructive materials are expected to revolutionize stem cell based tissue engineering. As many stem cell cues have adverse effects on normal tissue homeostasis, there is a need to develop bioactive scaffolds which offer locally retained and cell-targeted drug delivery for intracellular release in targeted cell populations. Further, the scaffolds need to support vascularization to promote tissue growth and function. We have developed an electrospun PLA-PANI fiber scaffold, and incorporated mesoporous silica nanoparticles within

  8. Low-Temperature Additive Manufacturing of Biomimic Three-Dimensional Hydroxyapatite/Collagen Scaffolds for Bone Regeneration.

    Science.gov (United States)

    Lin, Kai-Feng; He, Shu; Song, Yue; Wang, Chun-Mei; Gao, Yi; Li, Jun-Qin; Tang, Peng; Wang, Zheng; Bi, Long; Pei, Guo-Xian

    2016-03-23

    Low-temperature additive manufacturing (AM) holds promise for fabrication of three-dimensional (3D) scaffolds containing bioactive molecules and/or drugs. Due to the strict technical limitations of current approaches, few materials are suitable for printing at low temperature. Here, a low-temperature robocasting method was employed to print biomimic 3D scaffolds for bone regeneration using a routine collagen-hydroxyapatite (CHA) composite material, which is too viscous to be printed via normal 3D printing methods at low temperature. The CHA scaffolds had excellent 3D structure and maintained most raw material properties after printing. Compared to nonprinted scaffolds, printed scaffolds promoted bone marrow stromal cell proliferation and improved osteogenic outcome in vitro. In a rabbit femoral condyle defect model, the interconnecting pores within the printed scaffolds facilitated cell penetration and mineralization before the scaffolds degraded and enhanced repair, compared to nonprinted CHA scaffolds. Additionally, the optimal printing parameters for 3D CHA scaffolds were investigated; 600-μm-diameter rods were optimal in terms of moderate mechanical strength and better repair outcome in vivo. This low-temperature robocasting method could enable a variety of bioactive molecules to be incorporated into printed CHA materials and provides a method of bioprinting biomaterials without compromising their natural properties. PMID:26930140

  9. Enhanced Stem Cell Osteogenic Differentiation by Bioactive Glass Functionalized Graphene Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Xiaoju Mo

    2016-01-01

    Full Text Available An unmet need in engineered bone regeneration is to develop scaffolds capable of manipulating stem cells osteogenesis. Graphene oxide (GO has been widely used as a biomaterial for various biomedical applications. However, it remains challenging to functionalize GO as ideal platform for specifically directing stem cell osteogenesis. Herein, we report facile functionalization of GO with dopamine and subsequent bioactive glass (BG to enhance stem cell adhesion, spreading, and osteogenic differentiation. On the basis of graphene, we obtained dopamine functionalized graphene oxide/bioactive glass (DGO/BG hybrid scaffolds containing different content of DGO by loading BG nanoparticles on graphene oxide surface using sol-gel method. To enhance the dispersion stability and facilitate subsequent nucleation of BG in GO, firstly, dopamine (DA was used to modify GO. Then, the modified GO was functionalized with bioactive glass (BG using sol-gel method. The adhesion, spreading, and osteoinductive effects of DGO/BG scaffold on rat bone marrow mesenchymal stem cells (rBMSCs were evaluated. DGO/BG hybrid scaffolds with different content of DGO could influence rBMSCs’ behavior. The highest expression level of osteogenic markers suggests that the DGO/BG hybrid scaffolds have great potential or elicit desired bone reparative outcome.

  10. Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Killion, John A., E-mail: jkillion@research.ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Co. Westmeath (Ireland); Kehoe, Sharon, E-mail: sh625116@dal.ca [Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 34R2 (Canada); Geever, Luke M., E-mail: lgeever@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Co. Westmeath (Ireland); Devine, Declan M., E-mail: ddevine@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Co. Westmeath (Ireland); Sheehan, Eoin, E-mail: eoinsheehan@aol.com [Department of Trauma and Orthopaedics, MRHT, Tullamore, Co. Offaly (Ireland); Boyd, Daniel, E-mail: d.boyd@dal.ca [Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 34R2 (Canada); Higginbotham, Clement L., E-mail: chigginbotham@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Co. Westmeath (Ireland)

    2013-10-15

    Due to the deficiencies of current commercially available biological bone grafts, alternative bone graft substitutes have come to the forefront of tissue engineering in recent times. The main challenge for scientists in manufacturing bone graft substitutes is to obtain a scaffold that has sufficient mechanical strength and bioactive properties to promote formation of new tissue. The ability to synthesise hy