WorldWideScience

Sample records for bio science rockland

  1. New zircon (U-Th)/He and U/Pb eruption age for the Rockland tephra, western USA

    Science.gov (United States)

    Coble, Matthew A.; Burgess, Seth D.; Klemetti, Erik W.

    2017-09-01

    Eruption ages of a number of prominent Quaternary volcanic deposits remain inaccurately and/or imprecisely constrained, despite their importance as regional stratigraphic markers in paleo-environment reconstruction and as evidence of climate-altering eruptions. Accurately dating volcanic deposits presents challenging analytical considerations, including poor radiogenic yield, scarcity of datable minerals, and contamination of crystal populations by magma, eruption, and transport processes. One prominent example is the Rockland tephra, which erupted from the Lassen Volcanic Center in the southern Cascade arc. Despite a range in published eruption ages from 0.40 to 0.63 Ma, the Rockland tephra is extensively used as a marker bed across the western United States. To more accurately and precisely constrain the age of the Rockland tephra-producing eruption, we report U/Pb crystallization dates from the outermost ∼2 μm of zircon crystal faces (surfaces) using secondary ion mass spectrometry (SIMS). Our new weighted mean 238U/206Pb age for Rockland tephra zircon surfaces is 0.598 ± 0.013 Ma (2σ) and MSWD = 1.11 (mean square weighted deviation). As an independent test of the accuracy of this age, we obtained new (U-Th)/He dates from individual zircon grains from the Rockland tephra, which yielded a weighted mean age of 0.599 ± 0.012 Ma (2σ, MSWD = 5.13). We also obtained a (U-Th)/He age of 0.628 ± 0.014 Ma (MSWD = 1.19) for the Lava Creek Tuff member B, which was analyzed as a secondary standard to test the accuracy of the (U-Th)/He technique for Quaternary tephras, and to evaluate assumptions made in the model-age calculation. Concordance of new U/Pb and (U-Th)/He zircon ages reinforces the accuracy of our preferred Rockland tephra eruption age, and confirms that zircon surface dates sample zircon growth up to the time of eruption. We demonstrate the broad applicability of coupled U/Pb zircon-surface and single-grain zircon (U-Th)/He geochronology to accurate

  2. 76 FR 63342 - Environmental Impact Statement, Tappan Zee Hudson River Crossing Project (Rockland and...

    Science.gov (United States)

    2011-10-12

    ... connects the rapidly growing communities of Rockland and Orange Counties, New York with employment centers... correct substandard structural, operational, mobility, safety, and security features of the existing...

  3. Evaluation of Orange and Rockland Utilities, Inc.`s competitive bidding program for demand-side resources. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peters, J.S.; Stucky, L.; Seratt, P.; Darden-Butler, D. [Barakat and Chamberlin, Inc., Portland, OR (United States)

    1993-02-01

    The process evaluation reports on the implementation of Orange and Rockland Utilities demand-side bidding program in New York State during 1991 and 1992. The program is implemented by two energy service companies in Orange and rockland`s New York State service territory. The process evaluation methodology included interviews with utility staff (3), energy service company staff (2), and participating (6) and nonparticipating (7) utility customers. The two energy service companies had enrolled 14 customers in the program by summer 1992. One company had achieved 90% of their 2.75 MW bid and the other had achieved less than 90% of their 6.9 MW bid. Critical factors in success were determination of a reasonable bid amount for the market and marketing to the appropriate customers. Customers most interested in the program included those with limited access to capital and medium-sized firms with poor cash flows, particularly schools and hospitals. The findings also show that due to the incentive structure and associated need for substantial customer contributions, lighting measures dominate all installations. Customers, however, were interested in the potential savings and six of the nonparticipants chose to either install measures on their own or enroll in the utility`s rebate program.

  4. Computing Pathways in Bio-Models Derived from Bio-Science Text Sources

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik; Nilsson, Jørgen Fischer

    2015-01-01

    This paper outlines a system, OntoScape, serving to accomplish complex inference tasks on knowledge bases and bio-models derived from life-science text corpora. The system applies so-called natural logic, a form of logic which is readable for humans. This logic affords ontological representations...... of complex terms appearing in the text sources. Along with logical propositions, the system applies a semantic graph representation facilitating calculation of bio-pathways. More generally, the system aords means of query answering appealing to general and domain specic inference rules....

  5. Correlation among foetal number, corpora lutea and plasma progesterone in rockland-swiss mice. [Progesterone determination by radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N G; Bridges, R S; Gandelmann, R [Rutgers - the State Univ., New Brunswick. NJ (USA). Dept. of Psychology; Rutgers - the State Univ., Newark, NJ (USA). Inst. of Animal Behavior)

    1978-01-01

    The relationship among plasma progesterone, number of corpora lutea, and foetal number was assessed in Rockland-Swiss albino mice. While number of corpora lutea and foetal number were significantly correlated, neither was related to plasma progesterone level. This finding in the mouse is similar to results reported in the rabbit.

  6. BioSIGHT: Interactive Visualization Modules for Science Education

    Science.gov (United States)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high- speed network capabilities. The BioSIGHT project at IMSC is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches towards the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross

  7. Advanced biomass science and technology for bio-based products: proceedings

    Science.gov (United States)

    Chung Hse; Zehui Jiang; Mon-Lin Kuo

    2009-01-01

    This book was developed from the proceedings of the Advanced Biomass Science and Technology for Bio-Based Products Symposium held in Beijing, China, May 23-25, 2007. The symposium was designed to provide a forum for researchers, producers, and consumers of biomass and bio-based products; to exchange information and ideas; and to stimulate new research and...

  8. Social Science Insights for the BioCCS Industry

    Directory of Open Access Journals (Sweden)

    Anne-Maree Dowd

    2015-05-01

    Full Text Available BioCCS is a technology gaining support as a possible emissions reduction policy option to address climate change. The process entails the capture, transport and storage of carbon dioxide produced during energy production from biomass. Globally, the most optimistic energy efficiency scenarios cannot avoid an average temperature increase of +2 °C without bioCCS. Although very much at the commencement stage, bioCCS demonstration projects can provide opportunity to garner knowledge, achieve consensus and build support around the technology’s properties. Yet many challenges face the bioCCS industry, including no guarantee biomass will always be from sustainable sources or potentially result in carbon stock losses. The operating environment also has no or limited policies, regulations and legal frameworks, and risk and safety concerns abound. Some state the key problem for bioCCS is cultural, lacking in a ‘community of support’, awareness and credibility amongst its own key stakeholders and the wider public. Therefore, the industry can benefit from the growing social science literature, drawing upon other energy and resource based industries with regard to social choice for future energy options. To this end, the following scoping review was conducted in order to ascertain gaps in existing public perception and acceptance research focusing on bioCCS.

  9. The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry

    Directory of Open Access Journals (Sweden)

    Kate Brody Nooner

    2012-10-01

    Full Text Available The National Institute of Mental Health strategic plan for advancing psychiatric neuroscience calls for an acceleration of discovery and the delineation of developmental trajectories for risk and resilience across the lifespan. To attain these objectives, sufficiently powered datasets with broad and deep phenotypic characterization, state-of-the-art neuroimaging, and genetic samples must be generated and made openly available to the scientific community. The enhanced Nathan Kline Institute Rockland Sample (NKI-RS is a response to this need. NKI-RS is an ongoing, institutionally-centered endeavor aimed at creating a large-scale (N>1000, deeply phenotyped, community-ascertained, lifespan sample (ages 6-85 years old with advanced neuroimaging and genetics. These data will be publically shared, openly and prospectively (i.e., on a weekly basis. Herein, we describe the conceptual basis of the NKI-RS, including study design, sampling considerations, and steps to synchronize phenotypic and neuroimaging assessment. Additionally, we describe our process for sharing the data with the scientific community while protecting participant confidentiality, maintaining an adequate database, and certifying data integrity. The pilot phase of the NKI-RS, including challenges in recruiting, characterizing, imaging, and sharing data, is discussed while also explaining how this experience informed the final design of the enhanced NKI-RS. It is our hope that familiarity with the conceptual underpinnings of the enhanced NKI-RS will facilitate harmonization with future data collection efforts aimed at advancing psychiatric neuroscience and nosology.

  10. BioFed: federated query processing over life sciences linked open data.

    Science.gov (United States)

    Hasnain, Ali; Mehmood, Qaiser; Sana E Zainab, Syeda; Saleem, Muhammad; Warren, Claude; Zehra, Durre; Decker, Stefan; Rebholz-Schuhmann, Dietrich

    2017-03-15

    Biomedical data, e.g. from knowledge bases and ontologies, is increasingly made available following open linked data principles, at best as RDF triple data. This is a necessary step towards unified access to biological data sets, but this still requires solutions to query multiple endpoints for their heterogeneous data to eventually retrieve all the meaningful information. Suggested solutions are based on query federation approaches, which require the submission of SPARQL queries to endpoints. Due to the size and complexity of available data, these solutions have to be optimised for efficient retrieval times and for users in life sciences research. Last but not least, over time, the reliability of data resources in terms of access and quality have to be monitored. Our solution (BioFed) federates data over 130 SPARQL endpoints in life sciences and tailors query submission according to the provenance information. BioFed has been evaluated against the state of the art solution FedX and forms an important benchmark for the life science domain. The efficient cataloguing approach of the federated query processing system 'BioFed', the triple pattern wise source selection and the semantic source normalisation forms the core to our solution. It gathers and integrates data from newly identified public endpoints for federated access. Basic provenance information is linked to the retrieved data. Last but not least, BioFed makes use of the latest SPARQL standard (i.e., 1.1) to leverage the full benefits for query federation. The evaluation is based on 10 simple and 10 complex queries, which address data in 10 major and very popular data sources (e.g., Dugbank, Sider). BioFed is a solution for a single-point-of-access for a large number of SPARQL endpoints providing life science data. It facilitates efficient query generation for data access and provides basic provenance information in combination with the retrieved data. BioFed fully supports SPARQL 1.1 and gives access to the

  11. Water resources of Rockland County, New York, 2005-07, with emphasis on the Newark Basin Bedrock Aquifer

    Science.gov (United States)

    Heisig, Paul M.

    2011-01-01

    Concerns over the state of water resources in Rockland County, NY, prompted an assessment of current (2005-07) conditions. The investigation included a review of all water resources but centered on the Newark basin aquifer, a fractured-bedrock aquifer over which nearly 300,000 people reside. Most concern has been focused on this aquifer because of (1) high summer pumping rates, with occasional entrained-air problems and an unexplained water-level decline at a monitoring well, (2) annual withdrawals that have approached or even exceeded previous estimates of aquifer recharge, and (3) numerous contamination problems that have caused temporary or long-term shutdown of production wells. Public water supply in Rockland County uses three sources of water in roughly equal parts: (1) the Newark basin sedimentary bedrock aquifer, (2) alluvial aquifers along the Ramapo and Mahwah Rivers, and (3) surface waters from Lake DeForest Reservoir and a smaller, new reservoir supply in the Highlands part of the county. Water withdrawals from the alluvial aquifer in the Ramapo River valley and the Lake DeForest Reservoir are subject to water-supply application permits that stipulate minimum flows that must be maintained downstream into New Jersey. There is a need, therefore, at a minimum, to prevent any loss of the bedrock-aquifer resource--to maintain it in terms of both sustainable use and water-quality protection. The framework of the Newark basin bedrock aquifer included characterization of (1) the structure and fracture occurrence associated with the Newark basin strata, (2) the texture and thickness of overlying glacial and alluvial deposits, (3) the presence of the Palisades sill and associated basaltic units on or within the Newark basin strata, and (4) the streams that drain the aquifer system. The greatest concern regarding sustainability of groundwater resources is the aquifer response to the seasonal increase in pumping rates from May through October (an average increase

  12. The Evolution of Psychology as a Basic Bio-behavioral Science in Healthcare Education.

    Science.gov (United States)

    Carr, John E

    2017-12-01

    For over a century, researchers and educators have called for the integration of psychological science into medical school curricula, but such efforts have been impeded by barriers within medicine and psychology. In addressing these barriers, Psychology has re-examined its relationship to Medicine, incorporated psychological practices into health care, and redefined its parameters as a science. In response to interdisciplinary research into the mechanisms of bio-behavioral interaction, Psychology evolved from an ancillary social science to a bio-behavioral science that is fundamental to medicine and health care. However, in recent medical school curriculum innovations, psychological science is being reduced to a set of "clinical skills," and once again viewed as an ancillary social science. These developments warrant concern and consideration of new approaches to integrating psychological science in medical education.

  13. BioCreative Workshops for DOE Genome Sciences: Text Mining for Metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cathy H. [Univ. of Delaware, Newark, DE (United States). Center for Bioinformatics and Computational Biology; Hirschman, Lynette [The MITRE Corporation, Bedford, MA (United States)

    2016-10-29

    The objective of this project was to host BioCreative workshops to define and develop text mining tasks to meet the needs of the Genome Sciences community, focusing on metadata information extraction in metagenomics. Following the successful introduction of metagenomics at the BioCreative IV workshop, members of the metagenomics community and BioCreative communities continued discussion to identify candidate topics for a BioCreative metagenomics track for BioCreative V. Of particular interest was the capture of environmental and isolation source information from text. The outcome was to form a “community of interest” around work on the interactive EXTRACT system, which supported interactive tagging of environmental and species data. This experiment is included in the BioCreative V virtual issue of Database. In addition, there was broad participation by members of the metagenomics community in the panels held at BioCreative V, leading to valuable exchanges between the text mining developers and members of the metagenomics research community. These exchanges are reflected in a number of the overview and perspective pieces also being captured in the BioCreative V virtual issue. Overall, this conversation has exposed the metagenomics researchers to the possibilities of text mining, and educated the text mining developers to the specific needs of the metagenomics community.

  14. submitter BioSharing: curated and crowd-sourced metadata standards, databases and data policies in the life sciences

    CERN Document Server

    McQuilton, Peter; Rocca-Serra, Philippe; Thurston, Milo; Lister, Allyson; Maguire, Eamonn; Sansone, Susanna-Assunta

    2016-01-01

    BioSharing (http://www.biosharing.org) is a manually curated, searchable portal of three linked registries. These resources cover standards (terminologies, formats and models, and reporting guidelines), databases, and data policies in the life sciences, broadly encompassing the biological, environmental and biomedical sciences. Launched in 2011 and built by the same core team as the successful MIBBI portal, BioSharing harnesses community curation to collate and cross-reference resources across the life sciences from around the world. BioSharing makes these resources findable and accessible (the core of the FAIR principle). Every record is designed to be interlinked, providing a detailed description not only on the resource itself, but also on its relations with other life science infrastructures. Serving a variety of stakeholders, BioSharing cultivates a growing community, to which it offers diverse benefits. It is a resource for funding bodies and journal publishers to navigate the metadata landscape of the ...

  15. Pathway computation in models derived from bio-science text sources

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik; Jensen, Per Anker

    2017-01-01

    This paper outlines a system, OntoScape, serving to accomplish complex inference tasks on knowledge bases and bio-models derived from life-science text corpora. The system applies so-called natural logic, a form of logic which is readable for humans. This logic affords ontological representations...

  16. BioCatalogue: a universal catalogue of web services for the life sciences.

    Science.gov (United States)

    Bhagat, Jiten; Tanoh, Franck; Nzuobontane, Eric; Laurent, Thomas; Orlowski, Jerzy; Roos, Marco; Wolstencroft, Katy; Aleksejevs, Sergejs; Stevens, Robert; Pettifer, Steve; Lopez, Rodrigo; Goble, Carole A

    2010-07-01

    The use of Web Services to enable programmatic access to on-line bioinformatics is becoming increasingly important in the Life Sciences. However, their number, distribution and the variable quality of their documentation can make their discovery and subsequent use difficult. A Web Services registry with information on available services will help to bring together service providers and their users. The BioCatalogue (http://www.biocatalogue.org/) provides a common interface for registering, browsing and annotating Web Services to the Life Science community. Services in the BioCatalogue can be described and searched in multiple ways based upon their technical types, bioinformatics categories, user tags, service providers or data inputs and outputs. They are also subject to constant monitoring, allowing the identification of service problems and changes and the filtering-out of unavailable or unreliable resources. The system is accessible via a human-readable 'Web 2.0'-style interface and a programmatic Web Service interface. The BioCatalogue follows a community approach in which all services can be registered, browsed and incrementally documented with annotations by any member of the scientific community.

  17. Project BioEYES: Accessible Student-Driven Science for K-12 Students and Teachers.

    Science.gov (United States)

    Shuda, Jamie R; Butler, Valerie G; Vary, Robert; Farber, Steven A

    2016-11-01

    BioEYES, a nonprofit outreach program using zebrafish to excite and educate K-12 students about science and how to think and act like scientists, has been integrated into hundreds of under-resourced schools since 2002. During the week-long experiments, students raise zebrafish embryos to learn principles of development and genetics. We have analyzed 19,463 participating students' pre- and post-tests within the program to examine their learning growth and attitude changes towards science. We found that at all grade levels, BioEYES effectively increased students' content knowledge and produced favorable shifts in students' attitudes about science. These outcomes were especially pronounced in younger students. Having served over 100,000 students, we find that our method for providing student-centered experiences and developing long-term partnerships with teachers is essential for the growth and sustainability of outreach and school collaborations.

  18. BioHack*Kolding

    DEFF Research Database (Denmark)

    Wilde, Danielle

    Short Abstract BioHack*Kolding explores the potential of do-it-together biology to support community building in a town that lacks strong science representation, assisting participants to reflect on the bio-potential of their personal, social and political ecologies and to translate their ideas...... into action. Long Abstract Organisations that support lay people to practice bioscience alongside experts are proliferating. They enable interested people to join the global discussion on Bio Engineering by supporting them to gain the necessary knowledge and skills to do it themselves. Such organisations play...... an important role in facilitating informed debate around the biological sciences. Yet they cannot reach everyone. BioHack*Kolding asks how community-focused biology initiatives can reach people in smaller towns that lack science representation, so that they too can join the debate and ensure that its...

  19. Development of a Biological Science Quantitative Reasoning Exam (BioSQuaRE)

    Science.gov (United States)

    Stanhope, Liz; Ziegler, Laura; Haque, Tabassum; Le, Laura; Vinces, Marcelo; Davis, Gregory K.; Zieffler, Andrew; Brodfuehrer, Peter; Preest, Marion; Belitsky, Jason M.; Umbanhowar, Charles, Jr.; Overvoorde, Paul J.

    2017-01-01

    Multiple reports highlight the increasingly quantitative nature of biological research and the need to innovate means to ensure that students acquire quantitative skills. We present a tool to support such innovation. The Biological Science Quantitative Reasoning Exam (BioSQuaRE) is an assessment instrument designed to measure the quantitative…

  20. Water Source Utilization of Hammock and Pine Rockland Plant Communities in the Everglades, USA.

    Science.gov (United States)

    Saha, A. K.; Sternberg, L.; Miralles-Wilhelm, F.

    2007-12-01

    South Florida has a mosaic of plant communities resulting from topographical differences, spatially varying hydroperiods and fire. The only plant communities not flooded in the wet season are hardwood hammocks and often pine rocklands. Natural fires burn off litter accumulated in pine rocklands, with the exception of organic matter in sinkholes in the limestone bedrock. This relative lack of soil is thought to constrain pineland plants in the Everglades to depend upon groundwater that is typically low in nutrients. In contrast, adjoining hardwood hammocks have accumulated an organic soil layer that traps rainwater and nutrients. Plants in hammocks may be able to utilize this water and thereby access nutrients present in the litter. Hammocks are thus viewed as localized areas of high nutrients and instances of vegetation feedback upon the oligotrophic everglades landscape enabling establishment and survival of flood-intolerant tropical hardwood species. This study examines water source use and couples it to foliar nutrient concentrations of plants found in hammocks and pinelands. We examined the δ2H and δ18O of stem waters in plants in Everglades National Park and compared those with the δ2H and δ18O of potential water sources. In the wet season hammock plants accessed both groundwater and water in the surface organic soil layer while in the dry season they relied more on groundwater. A similar seasonal shift was observed in pineland plants; however groundwater constituted a much higher proportion of total water uptake throughout the year under observation. Concomitant with differential water utilization by hammock and pineland plant communities, we observed hammock plants having a significantly higher annual mean foliar N and P concentration than pineland plants. Most hammock species are intolerant of flooded soils and are thus constrained by the high water table in the wet season, yet access the lowered groundwater table in the dry season due to drying up of

  1. The problem of bio-concepts: biopolitics, bio-economy and the political economy of nothing

    Science.gov (United States)

    Birch, Kean

    2017-12-01

    Scholars in science and technology studies—and no doubt other fields—have increasingly drawn on Michel Foucault's concept of biopolitics to theorize a variety of new `bio-concepts'. While there might be some theoretical value in such exercises, many of these bio-concepts have simply replaced more rigorous—and therefore time-consuming—analytical work. This article provides a (sympathetic) critique of these various bio-concepts, especially as they are applied to the emerging `bio-economy'. In so doing, the article seeks to show that the analysis of the bio-economy could be better framed as a political economy of nothing. This has several implications for science education, which are raised in the article.

  2. Worldwide Engagement for Digitizing Biocollections (WeDigBio): The Biocollections Community's Citizen-Science Space on the Calendar.

    Science.gov (United States)

    Ellwood, Elizabeth R; Kimberly, Paul; Guralnick, Robert; Flemons, Paul; Love, Kevin; Ellis, Shari; Allen, Julie M; Best, Jason H; Carter, Richard; Chagnoux, Simon; Costello, Robert; Denslow, Michael W; Dunckel, Betty A; Ferriter, Meghan M; Gilbert, Edward E; Goforth, Christine; Groom, Quentin; Krimmel, Erica R; LaFrance, Raphael; Martinec, Joann Lacey; Miller, Andrew N; Minnaert-Grote, Jamie; Nash, Thomas; Oboyski, Peter; Paul, Deborah L; Pearson, Katelin D; Pentcheff, N Dean; Roberts, Mari A; Seltzer, Carrie E; Soltis, Pamela S; Stephens, Rhiannon; Sweeney, Patrick W; von Konrat, Matt; Wall, Adam; Wetzer, Regina; Zimmerman, Charles; Mast, Austin R

    2018-02-01

    The digitization of biocollections is a critical task with direct implications for the global community who use the data for research and education. Recent innovations to involve citizen scientists in digitization increase awareness of the value of biodiversity specimens; advance science, technology, engineering, and math literacy; and build sustainability for digitization. In support of these activities, we launched the first global citizen-science event focused on the digitization of biodiversity specimens: Worldwide Engagement for Digitizing Biocollections (WeDigBio). During the inaugural 2015 event, 21 sites hosted events where citizen scientists transcribed specimen labels via online platforms (DigiVol, Les Herbonautes, Notes from Nature, the Smithsonian Institution's Transcription Center, and Symbiota). Many citizen scientists also contributed off-site. In total, thousands of citizen scientists around the world completed over 50,000 transcription tasks. Here, we present the process of organizing an international citizen-science event, an analysis of the event's effectiveness, and future directions-content now foundational to the growing WeDigBio event.

  3. Bio-objects and the media: the role of communication in bio-objectification processes.

    Science.gov (United States)

    Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia

    2013-06-01

    The representation of biological innovations in and through communication and media practices is vital for understanding the nature of "bio-objects" and the process we call "bio-objectification." This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific.

  4. Diamond bio electronics.

    Science.gov (United States)

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions.

  5. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    Science.gov (United States)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  6. BioMEMS

    CERN Document Server

    Urban, Gerald A

    2007-01-01

    Explosive growth in the field of Microsystem Technology has introduced a variety of promising products in major disciplines from microelectronics to life sciences. 'Biomes' is a discipline which focuses on microsystems for living systems. This work presents the exciting field of bio-microsystems.

  7. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences.

    Science.gov (United States)

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org.

  8. Bio-tribology.

    Science.gov (United States)

    Dowson, Duncan

    2012-01-01

    It is now forty six years since the separate topics of friction, lubrication, wear and bearing design were integrated under the title 'Tribology' [Department of Education and Science, Lubrication (Tribology) Education and Research. A Report on the Present Position and Industry's Needs, HMSO, London, 1966]. Significant developments have been reported in many established and new aspects of tribology during this period. The subject has contributed to improved performance of much familiar equipment, such as reciprocating engines, where there have been vast improvements in engine reliability and efficiency. Nano-tribology has been central to remarkable advances in information processing and digital equipment. Shortly after widespread introduction of the term tribology, integration with biology and medicine prompted rapid and extensive interest in the fascinating sub-field now known as Bio-tribology [D. Dowson and V. Wright, Bio-tribology, in The Rheology of Lubricants, ed. T. C. Davenport, Applied Science Publishers, Barking, 1973, pp. 81-88]. An outline will be given of some of the developments in the latter field.

  9. Quantum Bio-Informatics:From Quantum Information to Bio-Informatics

    CERN Document Server

    Freudenberg, W; Ohya, M

    2008-01-01

    The purpose of this volume is examine bio-informatics and quantum information, which are growing rapidly at present, and to attempt to connect the two, with a view to enumerating and solving the many fundamental problems they entail. To this end, we look for interdisciplinary bridges in mathematics, physics, and information and life sciences. In particular, research into a new paradigm for information science and life science on the basis of quantum theory is emphasized. Sample Chapter(s). Markov Fields on Graphs (599 KB). Contents: Markov Fields on Graphs (L Accardi & H Ohno); Some Aspects of

  10. Superfund Record of Decision (EPA Region 2): Ramapo Landfill Site, Rockland County, NY. (First remedial action), March 1992. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The 60-acre former landfill site is located on a 96-acre tract in the Town of Ramapo, Rockland County, New York, about 35 miles northwest of New York City. Utility corridors lie on three sides of the site, including high-voltage power transmission lines. The site is currently being used as a compaction and transfer facility by the Town of Ramapo. Trash and debris are weighed at a weigh station/guardhouse, compacted at a baler facility in the northeastern corner of the site, and transferred to the Al Turi Landfill in Goshen, New York. The ROD represents the entire remedial action for the site by controlling source of contamination and the generation of leachate, and treatment of contaminated ground water. The primary contaminants of concern affecting soil, ground water, and surface water are VOCs, including benzene; other organics; and metals, including arsenic, chromium, and lead. The selected remedial action for the site is included

  11. A preliminary exploration of the advanced molecular bio-sciences research center

    International Nuclear Information System (INIS)

    Yanai, Takanori; Yamada, Yutaka; Tanaka, Kimio; Yamagami, Mutsumi; Sota, Masahiro; Takemura, Tatsuo; Koyama, Kenji; Sato, Fumiaki

    2001-01-01

    Low dose and low dose rate radiation effects on lifespan, pathological changes, hemopoiesis and cytokine production in mice have been investigated in our laboratory. In the intermediate period of the investigation, an expert committee on radiation biology was organized. The purposes of the committee were to assess previous studies and advise on a future research plan for the Advanced Molecular Bio-Sciences Research Center (AMBIC). The committee emphasized the necessity of molecular research in radiation biology, and proposed the following five subjects: 1) molecular carcinogenesis by low dose radiation; 2) radiation effects on the immune and hemopoietic systems; 3) molecular mechanisms of hereditary effect; 4) noncancer diseases of low dose radiation, and 5) cellular mechanisms by low dose radiation. (author)

  12. Bio and health informatics meets cloud : BioVLab as an example.

    Science.gov (United States)

    Chae, Heejoon; Jung, Inuk; Lee, Hyungro; Marru, Suresh; Lee, Seong-Whan; Kim, Sun

    2013-01-01

    The exponential increase of genomic data brought by the advent of the next or the third generation sequencing (NGS) technologies and the dramatic drop in sequencing cost have driven biological and medical sciences to data-driven sciences. This revolutionary paradigm shift comes with challenges in terms of data transfer, storage, computation, and analysis of big bio/medical data. Cloud computing is a service model sharing a pool of configurable resources, which is a suitable workbench to address these challenges. From the medical or biological perspective, providing computing power and storage is the most attractive feature of cloud computing in handling the ever increasing biological data. As data increases in size, many research organizations start to experience the lack of computing power, which becomes a major hurdle in achieving research goals. In this paper, we review the features of publically available bio and health cloud systems in terms of graphical user interface, external data integration, security and extensibility of features. We then discuss about issues and limitations of current cloud systems and conclude with suggestion of a biological cloud environment concept, which can be defined as a total workbench environment assembling computational tools and databases for analyzing bio/medical big data in particular application domains.

  13. Bio-objects’ political capacity: a research agenda

    Science.gov (United States)

    Maeseele, Pieter; Hendrickx, Kim; Pavone, Vincenzo; Van Hoyweghen, Ine

    2013-01-01

    This article explores the merits of foregrounding the dichotomy of politicization vs de-politicization for our understanding of bio-objects in order to study their production, circulation, and governance in European societies. By asking how bio-objects are configured in science, policy, public, and media discourses and practices, we focus on the role of socio-technical configurations in generating political relations. The bio-object thereby serves as an entry point to approach and conceptualize “the political” in an innovative way. PMID:23630150

  14. BioVeL: a virtual laboratory for data analysis and modelling in biodiversity science and ecology.

    Science.gov (United States)

    Hardisty, Alex R; Bacall, Finn; Beard, Niall; Balcázar-Vargas, Maria-Paula; Balech, Bachir; Barcza, Zoltán; Bourlat, Sarah J; De Giovanni, Renato; de Jong, Yde; De Leo, Francesca; Dobor, Laura; Donvito, Giacinto; Fellows, Donal; Guerra, Antonio Fernandez; Ferreira, Nuno; Fetyukova, Yuliya; Fosso, Bruno; Giddy, Jonathan; Goble, Carole; Güntsch, Anton; Haines, Robert; Ernst, Vera Hernández; Hettling, Hannes; Hidy, Dóra; Horváth, Ferenc; Ittzés, Dóra; Ittzés, Péter; Jones, Andrew; Kottmann, Renzo; Kulawik, Robert; Leidenberger, Sonja; Lyytikäinen-Saarenmaa, Päivi; Mathew, Cherian; Morrison, Norman; Nenadic, Aleksandra; de la Hidalga, Abraham Nieva; Obst, Matthias; Oostermeijer, Gerard; Paymal, Elisabeth; Pesole, Graziano; Pinto, Salvatore; Poigné, Axel; Fernandez, Francisco Quevedo; Santamaria, Monica; Saarenmaa, Hannu; Sipos, Gergely; Sylla, Karl-Heinz; Tähtinen, Marko; Vicario, Saverio; Vos, Rutger Aldo; Williams, Alan R; Yilmaz, Pelin

    2016-10-20

    Making forecasts about biodiversity and giving support to policy relies increasingly on large collections of data held electronically, and on substantial computational capability and capacity to analyse, model, simulate and predict using such data. However, the physically distributed nature of data resources and of expertise in advanced analytical tools creates many challenges for the modern scientist. Across the wider biological sciences, presenting such capabilities on the Internet (as "Web services") and using scientific workflow systems to compose them for particular tasks is a practical way to carry out robust "in silico" science. However, use of this approach in biodiversity science and ecology has thus far been quite limited. BioVeL is a virtual laboratory for data analysis and modelling in biodiversity science and ecology, freely accessible via the Internet. BioVeL includes functions for accessing and analysing data through curated Web services; for performing complex in silico analysis through exposure of R programs, workflows, and batch processing functions; for on-line collaboration through sharing of workflows and workflow runs; for experiment documentation through reproducibility and repeatability; and for computational support via seamless connections to supporting computing infrastructures. We developed and improved more than 60 Web services with significant potential in many different kinds of data analysis and modelling tasks. We composed reusable workflows using these Web services, also incorporating R programs. Deploying these tools into an easy-to-use and accessible 'virtual laboratory', free via the Internet, we applied the workflows in several diverse case studies. We opened the virtual laboratory for public use and through a programme of external engagement we actively encouraged scientists and third party application and tool developers to try out the services and contribute to the activity. Our work shows we can deliver an operational

  15. Geohydrology of the valley-fill aquifer in the Ramapo and Mahwah rivers area, Rockland County, New York

    Science.gov (United States)

    Moore, Richard Bridge; Cadwell, D.H.; Stelz, W.G.; Belli, J.L.

    1982-01-01

    This report is the eighth in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Rockland County. The maps include surficial geology, geologic sections, water-infiltration potential of soil zone, aquifer thickness, water-table elevations, well yields, and land use. The valley-fill deposits consists of alluvial silt and sand, glacial outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities, whereas the till, silt, and clay deposits have relatively low permeabilities. Water-table conditions prevail in unconfined sand and gravel along the Ramapo River valley and much of the Mahwah River valley. Artesian conditions prevail in confined sand and gravel buried under silt and clay and till in parts of the Mahway valley. The aquifer is recharged throughout, where the land surface is most permeable and is greatest along the margin of the valley, where runoff from the hillsides is concentrated. The use of land overlying the aquifer is predominantly commercial, agricultural and residential, with lesser industrial uses. (USGS)

  16. A preliminary exploration of Advanced Molecular Bio-Sciences Research Center

    International Nuclear Information System (INIS)

    Yamada, Yutaka; Yanai, Takanori; Onodera, Jun'ichi; Yamagami, Mutsumi; Sakata, Hiroshi; Sota, Masahiro; Takemura, Tatsuo; Koyama, Kenji; Sato, Fumiaki

    2000-01-01

    Low-dose and low-dose-rate radiation effects on life-span, pathological changes, hemopoiesis and cytokine production in experimental animals have been investigated in our laboratory. In the intermediate period of the investigation, an expert committee on radiation biology, which was composed of two task groups, was organized. The purposes of the committee were to assess of previous studies and plan future research for Advanced Molecular Bio-Sciences Research Center (AMBIC). In its report, the committee emphasized the necessity of molecular research in radiation biology and ecology, and proposed six subjects for the research: 1) Molecular carcinogenesis of low-dose radiation; 2) Radiation effects on the immune system and hemopoietic system; 3) Molecular mechanisms of hereditary effect; 4) Non cancer effect of low-dose radiation; 5) Gene targeting for ion transport system in plants; 6) Bioremediation with transgenic plant and bacteria. Exploration of the AMBIC project will continue under the committee's direction. (author)

  17. Innovative curriculum: Integrating the bio-behavioral and social science principles across the LifeStages in basic science years.

    Science.gov (United States)

    Lele Mookerjee, Anuradha; Fischer, Bradford D; Cavanaugh, Susan; Rajput, Vijay

    2018-05-20

    Behavioral and social science integration in clinical practice improves health outcomes across the life stages. The medical school curriculum requires an integration of the behavioral and social science principles in early medical education. We developed and delivered a four-week course entitled "LifeStages" to the first year medical students. The learning objectives of the bio-behavioral and social science principles along with the cultural, economic, political, and ethical parameters were integrated across the lifespan in the curriculum matrix. We focused on the following major domains: Growth and Brain Development; Sexuality, Hormones and Gender; Sleep; Cognitive and Emotional Development; Mobility, Exercise, Injury and Safety; Nutrition, Diet and Lifestyle; Stress and coping skills, Domestic Violence; Substance Use Disorders; Pain, Illness and Suffering; End of Life, Ethics and Death along with Intergenerational issues and Family Dynamics. Collaboration from the clinical and biomedical science departments led to the dynamic delivery of the course learning objectives and content. The faculty developed and led a scholarly discussion, using the case of a multi-racial, multi-generational family during Active Learning Group (ALG) sessions. The assessment in the LifeStages course involved multiple assessment tools: including the holistic assessment by the faculty facilitator inside ALGs, a Team-Based Learning (TBL) exercise, multiple choice questions and Team Work Assessment during which the students had to create a clinical case on a LifeStages domain along with the facilitators guide and learning objectives.

  18. Anatomy of BioJS, an open source community for the life sciences.

    Science.gov (United States)

    Yachdav, Guy; Goldberg, Tatyana; Wilzbach, Sebastian; Dao, David; Shih, Iris; Choudhary, Saket; Crouch, Steve; Franz, Max; García, Alexander; García, Leyla J; Grüning, Björn A; Inupakutika, Devasena; Sillitoe, Ian; Thanki, Anil S; Vieira, Bruno; Villaveces, José M; Schneider, Maria V; Lewis, Suzanna; Pettifer, Steve; Rost, Burkhard; Corpas, Manuel

    2015-07-08

    BioJS is an open source software project that develops visualization tools for different types of biological data. Here we report on the factors that influenced the growth of the BioJS user and developer community, and outline our strategy for building on this growth. The lessons we have learned on BioJS may also be relevant to other open source software projects.

  19. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  20. Bio-Nanotechnology: Challenges for Trainees in a Multidisciplinary Research Program

    Science.gov (United States)

    Koehne, Jessica Erin

    2009-01-01

    The recent developments in the field of nanotechnology have provided scientists with a new set of nanoscale materials, tools and devices in which to investigate the biological science thus creating the mulitdisciplinary field of bio-nanotechnology. Bio-nanotechnology merges the biological sciences with other scientific disciplines ranging from chemistry to engineering. Todays students must have a working knowledge of a variety of scientific disciplines in order to be successful in this new field of study. This talk will provide insight into the issue of multidisciplinary education from the perspective of a graduate student working in the field of bio-nanotechnology. From the classes we take to the research we perform, how does the modern graduate student attain the training required to succeed in this field?

  1. Bio energy: Bio fuel - Properties and Production

    International Nuclear Information System (INIS)

    Wilhelmsen, Gunnar; Martinsen, Arnold Kyrre; Sandberg, Eiliv; Fladset, Per Olav; Kjerschow, Einar; Teslo, Einar

    2001-01-01

    This is Chapter 3 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Definitions and properties, (2) Bio fuel from the forest, (3) Processed bio fuel - briquettes, pellets and powder, (4) Bio fuel from agriculture, (5) Bio fuel from agro industry, (6) Bio fuel from lakes and sea, (7) Bio fuel from aquaculture, (8) Bio fuel from wastes and (9) Hydrogen as a fuel. The exposition largely describes the conditions in Norway. The chapter on energy from the forest includes products from the timber and sawmill industry, the pulp and paper industry, furniture factories etc. Among agricultural sources are straw, energy forests, vegetable oil, bio ethanol, manure

  2. Back to the Future - Part 2. Post-mortem assessment and evolutionary role of the bio-medicolegal sciences.

    Science.gov (United States)

    Ferrara, Santo Davide; Cecchetto, Giovanni; Cecchi, Rossana; Favretto, Donata; Grabherr, Silke; Ishikawa, Takaki; Kondo, Toshikazu; Montisci, Massimo; Pfeiffer, Heidi; Bonati, Maurizio Rippa; Shokry, Dina; Vennemann, Marielle; Bajanowski, Thomas

    2017-07-01

    Part 2 of the review "Back to the Future" is dedicated to the evolutionary role of the bio-medicolegal sciences, reporting the historical profiles, the state of the art, and prospects for future development of the main related techniques and methods of the ancillary disciplines that have risen to the role of "autonomous" sciences, namely, Genetics and Genomics, Toxicology, Radiology, and Imaging, involved in historic synergy in the "post-mortem assessment," together with the mother discipline Legal Medicine, by way of its primary fundament, universally denominated as Forensic Pathology. The evolution of the scientific research and the increased accuracy of the various disciplines will be oriented towards the elaboration of an "algorithm," able to weigh the value of "evidence" placed at the disposal of the "justice system" as real truth and proof.

  3. Bio-based targeted chemical engineering education : Role and impact of bio-based energy and resourcedevelopment projects

    NARCIS (Netherlands)

    N.M. Márquez Luzardoa; Dr. ir. Jan Venselaar

    2012-01-01

    Avans University of Applied Sciences is redrafting its courses and curricula in view of sustainability. For chemical engineering in particular that implies a focus on 'green' and bio-based processes, products and energy. Avans is situated in the Southwest region of the Netherlands and specifically

  4. Monolithic photonic integration for visible and short near-infrared wavelengths: technologies and platforms for bio and life science applications

    Science.gov (United States)

    Porcel, Marco A. G.; Artundo, Iñigo; Domenech, J. David; Geuzebroek, Douwe; Sunarto, Rino; Hoofman, Romano

    2018-04-01

    This tutorial aims to provide a general overview on the state-of-the-art of photonic integrated circuits (PICs) in the visible and short near-infrared (NIR) wavelength ranges, mostly focusing in silicon nitride (SiN) substrates, and a guide to the necessary steps in the design toward the fabrication of such PICs. The focus is put on bio- and life sciences, given the adequacy and, thus, a large number of applications in this field.

  5. The DBCLS BioHackathon: standardization and interoperability for bioinformatics web services and workflows. The DBCLS BioHackathon Consortium*

    Directory of Open Access Journals (Sweden)

    Katayama Toshiaki

    2010-08-01

    Full Text Available Abstract Web services have become a key technology for bioinformatics, since life science databases are globally decentralized and the exponential increase in the amount of available data demands for efficient systems without the need to transfer entire databases for every step of an analysis. However, various incompatibilities among database resources and analysis services make it difficult to connect and integrate these into interoperable workflows. To resolve this situation, we invited domain specialists from web service providers, client software developers, Open Bio* projects, the BioMoby project and researchers of emerging areas where a standard exchange data format is not well established, for an intensive collaboration entitled the BioHackathon 2008. The meeting was hosted by the Database Center for Life Science (DBCLS and Computational Biology Research Center (CBRC and was held in Tokyo from February 11th to 15th, 2008. In this report we highlight the work accomplished and the common issues arisen from this event, including the standardization of data exchange formats and services in the emerging fields of glycoinformatics, biological interaction networks, text mining, and phyloinformatics. In addition, common shared object development based on BioSQL, as well as technical challenges in large data management, asynchronous services, and security are discussed. Consequently, we improved interoperability of web services in several fields, however, further cooperation among major database centers and continued collaborative efforts between service providers and software developers are still necessary for an effective advance in bioinformatics web service technologies.

  6. Engineering BioBrick vectors from BioBrick parts

    Directory of Open Access Journals (Sweden)

    Knight Thomas F

    2008-04-01

    Full Text Available Abstract Background The underlying goal of synthetic biology is to make the process of engineering biological systems easier. Recent work has focused on defining and developing standard biological parts. The technical standard that has gained the most traction in the synthetic biology community is the BioBrick standard for physical composition of genetic parts. Parts that conform to the BioBrick assembly standard are BioBrick standard biological parts. To date, over 2,000 BioBrick parts have been contributed to, and are available from, the Registry of Standard Biological Parts. Results Here we extended the same advantages of BioBrick standard biological parts to the plasmid-based vectors that are used to provide and propagate BioBrick parts. We developed a process for engineering BioBrick vectors from BioBrick parts. We designed a new set of BioBrick parts that encode many useful vector functions. We combined the new parts to make a BioBrick base vector that facilitates BioBrick vector construction. We demonstrated the utility of the process by constructing seven new BioBrick vectors. We also successfully used the resulting vectors to assemble and propagate other BioBrick standard biological parts. Conclusion We extended the principles of part reuse and standardization to BioBrick vectors. As a result, myriad new BioBrick vectors can be readily produced from all existing and newly designed BioBrick parts. We invite the synthetic biology community to (1 use the process to make and share new BioBrick vectors; (2 expand the current collection of BioBrick vector parts; and (3 characterize and improve the available collection of BioBrick vector parts.

  7. Bio-engineering in the Baltic Sea

    DEFF Research Database (Denmark)

    Zandersen, Marianne

    2011-01-01

    Bio-engineering in the Baltic Sea – value of water quality improvements & risk perceptions Dr. Marianne Zandersen1 Department of Environmental Science, Aarhus University Abstract The Baltic Sea is heavily eutrofied and the trend has gone from bad to worse. The hypoxic zone has increased about 4...... of the water column to the bottom waters/deepwater. The expected effects include a slowing down of the sediment release from the bottom and improvement of the possibilities for aerobic bacterial decomposition and over time for the establishment of fauna. The projects test a bio-engineered approach to speeding...

  8. Creating a Bio-Inspired Solution to Prevent Erosion

    Science.gov (United States)

    Reher, R.; Martinez, A.; Cola, J.; Frost, D.

    2016-12-01

    Through the study of geophysical sciences, lessons can be developed which allow for the introduction of bio-inspired design and art concepts to K-5 elementary students. Students are placed into an engineering mindset in which they must apply the concepts of bio-geotechnics to observe how we can use nature to prevent and abate erosion. Problems are staged for students using realistic engineering scenarios such as erosion prevention through biomimicry and the study of anchorage characteristics of root structures in regard to stability of soil. Specifically, a lesson is introduced where students research, learn, and present information about bio-inspired designs to understand these concepts. They lean how plant roots differ in size and shape to stabilize soil. In addition, students perform a series of hands-on experiments which demonstrate how bio-cements and roots can slow erosion.

  9. BioMatriX: Sequence analysis, structure visualization, phylogenetics ...

    African Journals Online (AJOL)

    bmx-biomatrix.blogspot.com) developed for biological science community to augment scientific research regarding genomics, proteomics, phylogenetics and linkage analysis in one platform. BioMatriX offers multi-functional services to perform ...

  10. Springer handbook of bio-/neuroinformatics

    CERN Document Server

    2014-01-01

    The Springer Handbook of Bio-/Neuro-Informatics is the first published book in one volume that explains together the basics and the state-of-the-art of two major science disciplines in their interaction and mutual relationship, namely: information sciences, bioinformatics and neuroinformatics. Bioinformatics is the area of science which is concerned with the information processes in biology and the development and applications of methods, tools and systems for storing and processing of biological information thus facilitating new knowledge discovery. Neuroinformatics is the area of science which is concerned with the information processes in biology and the development and applications of methods, tools and systems for storing and processing of biological information thus facilitating new knowledge discovery. The text contains 62 chapters organized in 12 parts, 6 of them covering topics from information science and bioinformatics, and 6 cover topics from information science and neuroinformatics. Each chapter ...

  11. Implementation of linked data in the life sciences at BioHackathon 2011.

    Science.gov (United States)

    Aoki-Kinoshita, Kiyoko F; Kinjo, Akira R; Morita, Mizuki; Igarashi, Yoshinobu; Chen, Yi-An; Shigemoto, Yasumasa; Fujisawa, Takatomo; Akune, Yukie; Katoda, Takeo; Kokubu, Anna; Mori, Takaaki; Nakao, Mitsuteru; Kawashima, Shuichi; Okamoto, Shinobu; Katayama, Toshiaki; Ogishima, Soichi

    2015-01-01

    Linked Data has gained some attention recently in the life sciences as an effective way to provide and share data. As a part of the Semantic Web, data are linked so that a person or machine can explore the web of data. Resource Description Framework (RDF) is the standard means of implementing Linked Data. In the process of generating RDF data, not only are data simply linked to one another, the links themselves are characterized by ontologies, thereby allowing the types of links to be distinguished. Although there is a high labor cost to define an ontology for data providers, the merit lies in the higher level of interoperability with data analysis and visualization software. This increase in interoperability facilitates the multi-faceted retrieval of data, and the appropriate data can be quickly extracted and visualized. Such retrieval is usually performed using the SPARQL (SPARQL Protocol and RDF Query Language) query language, which is used to query RDF data stores. For the database provider, such interoperability will surely lead to an increase in the number of users. This manuscript describes the experiences and discussions shared among participants of the week-long BioHackathon 2011 who went through the development of RDF representations of their own data and developed specific RDF and SPARQL use cases. Advice regarding considerations to take when developing RDF representations of their data are provided for bioinformaticians considering making data available and interoperable. Participants of the BioHackathon 2011 were able to produce RDF representations of their data and gain a better understanding of the requirements for producing such data in a period of just five days. We summarize the work accomplished with the hope that it will be useful for researchers involved in developing laboratory databases or data analysis, and those who are considering such technologies as RDF and Linked Data.

  12. BrisSynBio: a BBSRC/EPSRC-funded Synthetic Biology Research Centre.

    Science.gov (United States)

    Sedgley, Kathleen R; Race, Paul R; Woolfson, Derek N

    2016-06-15

    BrisSynBio is the Bristol-based Biotechnology and Biological Sciences Research Council (BBSRC)/Engineering and Physical Sciences Research Council (EPSRC)-funded Synthetic Biology Research Centre. It is one of six such Centres in the U.K. BrisSynBio's emphasis is on rational and predictive bimolecular modelling, design and engineering in the context of synthetic biology. It trains the next generation of synthetic biologists in these approaches, to facilitate translation of fundamental synthetic biology research to industry and the clinic, and to do this within an innovative and responsible research framework. © 2016 The Author(s).

  13. Jatropha bio-diesel production and use

    International Nuclear Information System (INIS)

    Achten, W.M.J.; Aerts, R.; Muys, B.; Verchot, L.; Franken, Y.J.; Mathijs, E.; Singh, V.P.

    2008-01-01

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  14. Jatropha bio-diesel production and use

    Energy Technology Data Exchange (ETDEWEB)

    Achten, W.M.J.; Aerts, R.; Muys, B. [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E Box 2411, BE-3001 Leuven (Belgium); Verchot, L. [World Agroforestry Centre (ICRAF) Head Quarters, United Nations Avenue, P.O. Box 30677, Nairobi (Kenya); Franken, Y.J. [FACT Foundation, Horsten 1, 5612 AX Eindhoven (Netherlands); Mathijs, E. [Katholieke Universiteit Leuven, Division Agricultural and Food Economics, Willem de Croylaan 42 Box 2424, BE-3001 Leuven (Belgium); Singh, V.P. [World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India)

    2008-12-15

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  15. BioSentinel: Developing a Space Radiation Biosensor

    Science.gov (United States)

    Santa Maria, Sergio R.

    2015-01-01

    BioSentinel is an autonomous fully self-contained science mission that will conduct the first study of the biological response to space radiation outside low Earth orbit (LEO) in over 40 years. The 4-unit (4U) BioSentinel biosensor system, is housed within a 6-Unit (6U) spacecraft, and uses yeast cells in multiple independent microfluidic cards to detect and measure DNA damage that occurs in response to ambient space radiation. Cell growth and metabolic activity will be measured using a 3-color LED detection system and a metabolic indicator dye with a dedicated thermal control system per fluidic card.

  16. BioCreative V BioC track overview: collaborative biocurator assistant task for BioGRID.

    Science.gov (United States)

    Kim, Sun; Islamaj Doğan, Rezarta; Chatr-Aryamontri, Andrew; Chang, Christie S; Oughtred, Rose; Rust, Jennifer; Batista-Navarro, Riza; Carter, Jacob; Ananiadou, Sophia; Matos, Sérgio; Santos, André; Campos, David; Oliveira, José Luís; Singh, Onkar; Jonnagaddala, Jitendra; Dai, Hong-Jie; Su, Emily Chia-Yu; Chang, Yung-Chun; Su, Yu-Chen; Chu, Chun-Han; Chen, Chien Chin; Hsu, Wen-Lian; Peng, Yifan; Arighi, Cecilia; Wu, Cathy H; Vijay-Shanker, K; Aydın, Ferhat; Hüsünbeyi, Zehra Melce; Özgür, Arzucan; Shin, Soo-Yong; Kwon, Dongseop; Dolinski, Kara; Tyers, Mike; Wilbur, W John; Comeau, Donald C

    2016-01-01

    BioC is a simple XML format for text, annotations and relations, and was developed to achieve interoperability for biomedical text processing. Following the success of BioC in BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an assistant system for BioGRID curation. In this paper, we describe the framework of the collaborative BioC task and discuss our findings based on the user survey. This track consisted of eight subtasks including gene/protein/organism named entity recognition, protein-protein/genetic interaction passage identification and annotation visualization. Using BioC as their data-sharing and communication medium, nine teams, world-wide, participated and contributed either new methods or improvements of existing tools to address different subtasks of the BioC track. Results from different teams were shared in BioC and made available to other teams as they addressed different subtasks of the track. In the end, all submitted runs were merged using a machine learning classifier to produce an optimized output. The biocurator assistant system was evaluated by four BioGRID curators in terms of practical usability. The curators' feedback was overall positive and highlighted the user-friendly design and the convenient gene/protein curation tool based on text mining.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-1-bioc/. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  17. Bio politics - The bio-environment - bio-culture of the Danube

    International Nuclear Information System (INIS)

    Vlavianos-Arvanitis, A.

    1997-01-01

    The bio-environment has been the single most important correlation in human history and can successfully promote international co-operational co-operation and understanding. With the construction of a network for collaboration, the 'Danube Countries' can come together in celebration of their culture and heritage. As the Danube flows from the Black Forest to the Black Sea, it carries messages of peace, hope and co-operation. Applying these messages to every endeavour can improve our quality of life and lead to a brighter future. Since its inception in 1985, the Bio politics International Organization (B.I.O.) has been labouring to raise awareness of the urgent need to instate a new system of norms and principles, compatible with sound environmental management and with the most important task of ensuring global literacy on environmental issues. Along with critically re-assessing the concept of profit, the goal is to adopt a system of bio centric values, where respect for the bio-environment will govern our every action and thought

  18. BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

    Directory of Open Access Journals (Sweden)

    Yuxin Liu

    2011-01-01

    Full Text Available With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS and microfluidic-based lab-on-a-chip (LOC technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU. The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements.

  19. A brief review of extrusion-based tissue scaffold bio-printing.

    Science.gov (United States)

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Bio-films and processes of bio-corrosion and bio-deterioration in oil-and gas-processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Kholodenko, V.P.; Irkhina, I.A.; Chugunov, V.A.; Rodin, V.B.; Zhigletsova, S.K.; Yermolenko, Z.M.; Rudavin, V.V. [State Research Center for Applied Microbiology, Obolensk, Moscow region (Russian Federation)

    2004-07-01

    As a rule, oil- and gas-processing equipment and pipelines are attacked by different microorganisms. Their vital ability determines processes of bio-deterioration and bio-corrosion that lead often to technological accidents and severe environmental contamination. Bio-films presenting a complex association of different microorganisms and their metabolites are responsible for most of damages. In this context, to study the role bio-films may play in processes of bio-damages and in efficacy of protective measures is important. We have developed method of culturing bio-films on the surface of metal coupons by using a natural microbial association isolated from oil-processing sites. Simple and informative methods of determining microbiological parameters of bio-films required to study bio-corrosion processes are also developed. In addition, a method of electron microscopic analysis of bio-films and pitting corrosion is offered. Using these methods, we conducted model experiments to determine the dynamics of corrosion processes depending on qualitative and quantitative composition of bio-films, aeration conditions and duration of the experiment. A harmful effect of soil bacteria and micro-mycetes on different pipeline coatings was also investigated. Experiments were conducted within 3-6 months and revealed degrading action of microorganisms. This was confirmed by axial tension testing of coatings. All these approaches will be used for further development of measures to protect gas- and oil-processing equipment and pipelines against bio-corrosion and bio-damages (first of all biocides). (authors)

  1. 1st International Symposium ‘Physics, Engineering and Technologies for Bio-Medicine’

    International Nuclear Information System (INIS)

    2017-01-01

    The 1st International Symposium “Physics, Engineering and Technologies for BioMedicine” was held in Moscow at the occasion of the foundation of the new Institute PhysBio at MEPHI (Russia) on October 20-23, 2016. Under the auspices of the Russian Ministry of Science and Education, the Ministry of Health and the State Company Rosatom, the Symposium is organized by the Institute of Engineering Physics for Biomedicine (PhysBio), which has recently been established at National Research Nuclear University MEPhI (Moscow Engineering Physics Institute). The PhysBio’s goal is to train highly-skilled personnel through the research and development in engineering physics for biomedicine, including nuclear medicine, material science, laser physics and biophotonic technologies. The Symposium was aimed to meet the leading scientists and experts in nuclear medicine, biophysics, biophotonics, and emerging fields to present their works and to have invited lectures. (paper)

  2. Bio-Organic Electronics—Overview and Prospects for the Future

    Directory of Open Access Journals (Sweden)

    Susan Mühl

    2014-07-01

    Full Text Available In recent years, both biodegradable and bio-based electronics have attracted increasing interest, but are also controversially discussed at the same time. Yet, it is not clear whether they will contribute to science and technology or whether they will disappear without major impact. The present review will address several aspects while showing the potential opportunities of bio-organic electronics. An overview about the complex terminology of this emerging field is given and test methods are presented which are used to evaluate the biodegradable properties. It will be shown that the majority of components of organic electronics can be substituted by biodegradable or bio-based materials. Moreover, application scenarios are presented where bio-organic materials have advantages compared to conventional ones. A variety of publications are highlighted which encompass typical organic devices like organic light emitting diodes, organic solar cells and organic thin film transistors as well as applications in the field of medicine or agriculture.

  3. Rethinking Value in the Bio-economy

    Science.gov (United States)

    2016-01-01

    Current debates in science and technology studies emphasize that the bio-economy—or, the articulation of capitalism and biotechnology—is built on notions of commodity production, commodification, and materiality, emphasizing that it is possible to derive value from body parts, molecular and cellular tissues, biological processes, and so on. What is missing from these perspectives, however, is consideration of the political-economic actors, knowledges, and practices involved in the creation and management of value. As part of a rethinking of value in the bio-economy, this article analyzes three key political-economic processes: financialization, capitalization, and assetization. In doing so, it argues that value is managed as part of a series of valuation practices, it is not inherent in biological materialities. PMID:28458406

  4. Recent approaches in food bio-preservation - a review

    African Journals Online (AJOL)

    Ibrahim Eldaghayes

    2018-03-19

    Mar 19, 2018 ... Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen ... bacteriophages may also be helpful in bio-preservation, however; their safety issues must be addressed properly before selection ... Fermentation process produces numbers of beneficial ...

  5. Bio-prospecting of distillery yeasts as bio-control and bio-remediation agents.

    Science.gov (United States)

    Ubeda, Juan F; Maldonado, María; Briones, Ana I; Francisco, J Fernández; González, Francisco J

    2014-05-01

    This work constitutes a preliminary study in which the capacity of non-Saccharomyces yeasts isolated from ancient distilleries as bio-control agents against moulds and in the treatment of waste waters contaminated by heavy metals-i.e. bio-remediation-is shown. In the first control assays, antagonist effect between non-Saccharomyces yeasts, their extracts and supernatants against some moulds, analysing the plausible (not exhaustive) involved factors were qualitatively verified. In addition, two enzymatic degrading properties of cell wall plant polymers, quitinolitic and pectinolitic, were screened. Finally, their use as agents of bio-remediation of three heavy metals (cadmium, chromium and lead) was analysed semi-quantitatively. The results showed that all isolates belonging to Pichia species effectively inhibited all moulds assayed. Moreover, P. kudriavzevii is a good candidate for both bio-control and bio-remediation because it inhibited moulds and accumulated the major proportion of the three tested metals.

  6. Bio-fuels

    International Nuclear Information System (INIS)

    2008-01-01

    This report presents an overview of the technologies which are currently used or presently developed for the production of bio-fuels in Europe and more particularly in France. After a brief history of this production since the beginning of the 20. century, the authors describe the support to agriculture and the influence of the Common Agricultural Policy, outline the influence of the present context of struggle against the greenhouse effect, and present the European legislative context. Data on the bio-fuels consumption in the European Union in 2006 are discussed. An overview of the evolution of the activity related to bio-fuels in France, indicating the locations of ethanol and bio-diesel production facilities, and the evolution of bio-fuel consumption, is given. The German situation is briefly presented. Production of ethanol by fermentation, the manufacturing of ETBE, the bio-diesel production from vegetable oils are discussed. Second generation bio-fuels are then presented (cellulose enzymatic processing), together with studies on thermochemical processes and available biomass resources

  7. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...

  8. Cross-Discipline Bio-Nanostructured Enhanced Photonic Multimode-Sensor Science

    Science.gov (United States)

    2017-05-23

    AFRL-AFOSR-CL-TR-2017-0007 Multimode bio-nano sensor Fernando Danilo Gonzalez-Nilo UNIVERSIDAD NACIONAL ANDRES BELLO Final Report 05/23/2017...5e.  TASK NUMBER 5f.  WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) UNIVERSIDAD NACIONAL ANDRES BELLO REPUBLICA 237 SANTIAGO...Ciencias Biologicas Universidad Andres Bello Avenida Republica 239, Santiago, Chile. Objective: The proposed cross-discipline experimental study aims to

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Pal. Articles written in Bulletin of Materials Science. Volume 24 Issue 4 August 2001 pp 415-420 Biomaterials. A novel bio-inorganic bone implant containing deglued bone, chitosan and gelatin · G Saraswathy S Pal C Rose T P Sastry · More Details Abstract Fulltext PDF.

  10. Bio-fuel barometer

    International Nuclear Information System (INIS)

    2015-01-01

    After a year of doubt and decline the consumption of bio-fuel resumed a growth in 2014 in Europe: +6.1% compared to 2013, to reach 14 millions tep (Mtep) that is just below the 2012 peak. This increase was mainly due to bio-diesel. By taking into account the energy content and not the volume, the consumption of bio-diesel represented 79.7% of bio-fuel consumption in 2014, that of bio-ethanol only 19.1% and that of biogas 1%. The incorporating rate of bio-fuels in fuels used for transport were 4.6% in 2013 and 4.9% in 2014. The trend is good and the future of bio-fuel seems clearer as the European Union has set a not-so-bad limit of 7% for first generation bio-fuels in order to take into account the CASI effect. The CASI effect shows that an increase of the consumption of first generation bio-fuels (it means bio-fuels produced from food crops like rape, soy, cereals, sugar beet,...) implies in fact a global increase in greenhouse gas release that is due to a compensation phenomenon. More uncultivated lands (like forests, grasslands, bogs are turned into cultivated lands in order to compensate lands used for bio-fuel production. In most European countries the consumption of bio-diesel increased in 2014 while it was a bad year for the European industry of ethanol because ethanol prices dropped by 16 %. Oil companies are now among the most important producers of bio-diesel in Europe.

  11. Know Your Personal Computer Basic Input-Output System (BIOS)

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 7. Know Your Personal Computer Basic Input-Output System (BIOS). Siddhartha Kumar Ghoshal. Series Article Volume 2 Issue 7 July 1997 pp 48-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. L C GUPTA. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1121-1125. High-pressure studies of superconductivity in BiO 0.75 F 0.25 BiS 2 · ZEBA HAQUE GOHIL S THAKUR GANESAN KALAI SELVAN SONACHALAM ARUMUGAM L C ...

  13. BioData: a national aquatic bioassessment database

    Science.gov (United States)

    MacCoy, Dorene

    2011-01-01

    BioData is a U.S. Geological Survey (USGS) web-enabled database that for the first time provides for the capture, curation, integration, and delivery of bioassessment data collected by local, regional, and national USGS projects. BioData offers field biologists advanced capabilities for entering, editing, and reviewing the macroinvertebrate, algae, fish, and supporting habitat data from rivers and streams. It offers data archival and curation capabilities that protect and maintain data for the long term. BioData provides the Federal, State, and local governments, as well as the scientific community, resource managers, the private sector, and the public with easy access to tens of thousands of samples collected nationwide from thousands of stream and river sites. BioData also provides the USGS with centralized data storage for delivering data to other systems and applications through automated web services. BioData allows users to combine data sets of known quality from different projects in various locations over time. It provides a nationally aggregated database for users to leverage data from many independent projects that, until now, was not feasible at this scale. For example, from 1991 to 2011, the USGS Idaho Water Science Center collected more than 816 bioassessment samples from 63 sites for the National Water Quality Assessment (NAWQA) Program and more than 477 samples from 39 sites for a cooperative USGS and State of Idaho Statewide Water Quality Network (fig. 1). Using BioData, 20 years of samples collected for both of these projects can be combined for analysis. BioData delivers all of the data using current taxonomic nomenclature, thus relieving users of the difficult and time-consuming task of harmonizing taxonomy among samples collected during different time periods. Fish data are reported using the Integrated Taxonomic Information Service (ITIS) Taxonomic Serial Numbers (TSN's). A simple web-data input interface and self-guided, public data

  14. BIOS Security Analysis and a Kind of Trusted BIOS

    Science.gov (United States)

    Zhou, Zhenliu; Xu, Rongsheng

    The BIOS's security threats to computer system are analyzed and security requirements for firmware BIOS are summarized in this paper. Through discussion about TCG's trust transitivity, a new approach about CRTM implementation based on BIOS is developed. In this paper, we also put forward a new trusted BIOS architecture-UTBIOS which is built on Intel Framework for EFI/UEFI. The trustworthiness of UTBIOS is based on trusted hardware TPM. In UTBIOS, trust encapsulation and trust measurement are used to construct pre-OS trust chain. Performance of trust measurement is also analyzed in the end.

  15. TO APPLICATION OF BIO-GAS UNITS: ORGANIZATIONAL AND TECHNOLOGICAL MODEL

    Directory of Open Access Journals (Sweden)

    Thuy Nga Nguyen

    2011-01-01

    Full Text Available Analysis of the published papers written by national and foreign researchers reveals that an increasing global energy deficit, exhaustion of  fossil organic and nuclear fuels, chemical and radio-active contamination of the environment are main reasons in favour of  thorough investigation  and wide introduction of non-conventional and renewable energy sources. Nowadays Vietnamese Institute of Energy Science has been developing the state-of-the-art bio-gas technologies on the  basis of application and modernization of Chinese and Dutch family-style technologies. The most rational technologies are combined ones which operate using various types of energy raw materials, for example, solar and bio-gas energy because usage of solar energy expands operational possibilities of the bio-gas system, ensures its operation within wide temperature range creating necessary parameters for the required technological task.

  16. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  17. Study of bio-oil and bio-char production from algae by slow pyrolysis

    International Nuclear Information System (INIS)

    Chaiwong, K.; Kiatsiriroat, T.; Vorayos, N.; Thararax, C.

    2013-01-01

    This study examined bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. A thermogravimetric analyser (TGA) was used to investigate the pyrolytic characteristics and essential components of algae. It was found that the temperature for the maximum degradation, 322 °C, is lower than that of other biomass. With our fixed-bed reactor, 125 g of dried Spirulina Sp. algae was fed under a nitrogen atmosphere until the temperature reached a set temperature between 450 and 600 °C. It was found that the suitable temperature to obtain bio-char and bio-oil were at approximately 500 and 550 °C respectively. The bio-oil components were identified by a gas chromatography/mass spectrometry (GC–MS). The saturated functional carbon of the bio-oil was in a range of heavy naphtha, kerosene and diesel oil. The energy consumption ratio (ECR) of bio-oil and bio-char was calculated, and the net energy output was positive. The ECR had an average value of 0.49. -- Highlights: •Bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. •Suitable temperature to obtained bio-oil and bio-char were at about 550 and 500 °C. •Saturated functional carbon of bio-oil was heavy naphtha, kerosene, diesel oil. •ECR had an average value of 0.49

  18. From marine bio-corrosion to new bio-processes

    International Nuclear Information System (INIS)

    Bergel, A.; Dasilva, S.; Basseguy, R.; Feron, D.; Mollica, A.

    2004-01-01

    Full text of publication follows: From the middle of the last century it has been observed that the development of marine bio-films on the surface of stainless steels and different metallic materials induces the ennoblement of their free corrosion potential. A main step in deciphering the mechanisms of aerobic marine bio-corrosion has been achieved around 1976 with the demonstration that the potential ennoblement was due to the modification of the cathodic process. Since this date, the catalysis of oxygen reduction by marine bio-films has been the topic of numerous controversies, but it is now commonly agreed as a basic phenomena in aerobic corrosion. Several hypotheses have been proposed to explain the fine mechanisms of the bio-film-catalysed reduction of oxygen: intermediate formation of hydrogen peroxide, modification of the oxide layer on the stainless steel surface, involvement of manganese species and manganese oxidising bacteria, catalysis by proteins produced by the micro-organisms... Recent results may confirm the possible involvement of hemic enzymes or proteins. Whatever the mechanisms, very promising results have been obtained with the possible application of bio-film-catalysed oxygen reduction to conceive innovative biofuel cells with stainless steel electrodes. Actually, the catalysis of oxygen reduction is a key step that still drastically hinders the development of economically efficient hydrogen/oxygen fuel cells. The current technology requires high amounts of platinum or platinum-based materials to catalyze oxygen reduction on the cathode of these cells. The prohibitive cost of platinum is a main obstacle to the commercialization of low-cost fuel cells. Unpublished results recently showed that adapting the enzyme-catalysed reaction that was assumed for bio-corrosion on the cathode of hydrogen/oxygen fuel cells may lead to a significant decrease in the charge of platinum. Moreover, it was demonstrated on a laboratory-scale fuel cell pilot that

  19. From bioethics to a sociology of bio-knowledge.

    Science.gov (United States)

    Petersen, Alan

    2013-12-01

    Growing recognition of bioethics' shortcomings, associated in large part with its heavy reliance on abstract principles, or so-called principlism, has led many scholars to propose that the field should be reformed or reconceptualised. Principlism is seen to de-contextualise the process of ethical decision-making, thus restricting bioethics' contributions to debate and policy on new and emergent biotechnologies. This article examines some major critiques of bioethics and argues for an alternative normative approach; namely, a sociology of bio-knowledge focussing on human rights. The article discusses the need for such an approach, including the challenges posed by the recent rise of 'the bio-economy'. It explores some potential alternative bases for a normative sociology of bio-knowledge, before presenting the elements of the proposed human rights-focused approach. This approach, it is argued, will benefit from the insights and concepts offered by various fields of critical scholarship, particularly the emergent sociology of human rights, science and technology studies, Foucaultian scholarship, and feminist bioethics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. BioMoby extensions to the Taverna workflow management and enactment software

    Directory of Open Access Journals (Sweden)

    Senger Martin

    2006-11-01

    Full Text Available Abstract Background As biology becomes an increasingly computational science, it is critical that we develop software tools that support not only bioinformaticians, but also bench biologists in their exploration of the vast and complex data-sets that continue to build from international genomic, proteomic, and systems-biology projects. The BioMoby interoperability system was created with the goal of facilitating the movement of data from one Web-based resource to another to fulfill the requirements of non-expert bioinformaticians. In parallel with the development of BioMoby, the European myGrid project was designing Taverna, a bioinformatics workflow design and enactment tool. Here we describe the marriage of these two projects in the form of a Taverna plug-in that provides access to many of BioMoby's features through the Taverna interface. Results The exposed BioMoby functionality aids in the design of "sensible" BioMoby workflows, aids in pipelining BioMoby and non-BioMoby-based resources, and ensures that end-users need only a minimal understanding of both BioMoby, and the Taverna interface itself. Users are guided through the construction of syntactically and semantically correct workflows through plug-in calls to the Moby Central registry. Moby Central provides a menu of only those BioMoby services capable of operating on the data-type(s that exist at any given position in the workflow. Moreover, the plug-in automatically and correctly connects a selected service into the workflow such that users are not required to understand the nature of the inputs or outputs for any service, leaving them to focus on the biological meaning of the workflow they are constructing, rather than the technical details of how the services will interoperate. Conclusion With the availability of the BioMoby plug-in to Taverna, we believe that BioMoby-based Web Services are now significantly more useful and accessible to bench scientists than are more traditional

  1. Utilizing social media for informal ocean conservation and education: The BioOceanography Project

    Science.gov (United States)

    Payette, J.

    2016-02-01

    Science communication through the use of social media is a rapidly evolving and growing pursuit in academic and scientific circles. Online tools and social media are being used in not only scientific communication but also scientific publication, education, and outreach. Standards and usage of social media as well as other online tools for communication, networking, outreach, and publication are always in development. Caution and a conservative attitude towards these novel "Science 2.0" tools is understandable because of their rapidly changing nature and the lack of professional standards for using them. However there are some key benefits and unique ways social media, online systems, and other Open or Open Source technologies, software, and "Science 2.0" tools can be utilized for academic purposes such as education and outreach. Diverse efforts for ocean conservation and education will continue to utilize social media for a variety of purposes. The BioOceanography project is an informal communication, education, outreach, and conservation initiative created for enhancing knowledge related to Oceanography and Marine Science with an unbiased yet conservation-minded approach and in an Open Source format. The BioOceanography project is ongoing and still evolving, but has already contributed to ocean education and conservation communication in key ways through a concerted web presence since 2013, including a curated Twitter account @_Oceanography and BioOceanography blog style website. Social media tools like those used in this project, if used properly can be highly effective and valuable for encouraging students, networking with researchers, and educating the general public in Oceanography.

  2. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  3. Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming

    International Nuclear Information System (INIS)

    Zhang, Yanan; Brown, Tristan R.; Hu, Guiping; Brown, Robert C.

    2013-01-01

    This paper evaluates the economic feasibility of biohydrogen production via two bio-oil processing pathways: bio-oil gasification and bio-oil reforming. Both pathways employ fast pyrolysis to produce bio-oil from biomass stock. The two pathways are modeled using Aspen Plus ® for a 2000 t d −1 facility. Equipment sizing and cost calculations are based on Aspen Economic Evaluation® software. Biohydrogen production capacity at the facility is 147 t d −1 for the bio-oil gasification pathway and 160 t d −1 for the bio-oil reforming pathway. The biomass-to-fuel energy efficiencies are 47% and 84% for the bio-oil gasification and bio-oil reforming pathways, respectively. Total capital investment (TCI) is 435 million dollars for the bio-oil gasification pathway and is 333 million dollars for the bio-oil reforming pathway. Internal rates of return (IRR) are 8.4% and 18.6% for facilities employing the bio-oil gasification and bio-oil reforming pathways, respectively. Sensitivity analysis demonstrates that biohydrogen price, biohydrogen yield, fixed capital investment (FCI), bio-oil yield, and biomass cost have the greatest impacts on facility IRR. Monte-Carlo analysis shows that bio-oil reforming is more economically attractive than bio-oil gasification for biohydrogen production. -- Highlights: ► Biohydrogen production via bio-oil reforming has higher energy efficiency compared to gasification. ► Hydrogen price, fixed capital cost, and feedstock cost most strongly affect IRR. ► Lower risk investment is biohydrogen production via bio-oil reforming

  4. Successful Preoperative Chemoembolization in the Treatment of a Giant Malignant Phyllodes Tumor

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kazuki, E-mail: kazkik1980@gmail.com; Mimura, Hidefumi; Arai, Yasunori [St. Marianna University School of Medicine, Department of Radiology (Japan); Doi, Masatomo [St. Marianna University School of Medicine, Department of Pathology (Japan); Kojima, Yasuyuki; Tsugawa, Koichiro [St. Marianna University School of Medicine, Division of Breast and Endocrine Surgery, Department of Surgery (Japan); Nakajima, Yasuo [St. Marianna University School of Medicine, Department of Radiology (Japan)

    2016-07-15

    The malignant phyllodes tumor is a relatively rare neoplasm and has not previously been a therapeutic target of interventional radiology. Herein, we report a successful case of preoperative chemoembolization of a giant malignant phyllodes tumor. The objective was to achieve sufficient tumor shrinkage before surgery to avoid the requirement for skin grafting after resection. Intra-arterial epirubicin infusion and subsequent embolization with Embosphere Microspheres (BioSphere Medical, Rockland, MA, USA) was undertaken three times over the course of 6 weeks and was well tolerated. The patient underwent surgery without skin grafting. Neither local recurrence nor distant metastasis was observed at 6 months after surgery.

  5. Successful Preoperative Chemoembolization in the Treatment of a Giant Malignant Phyllodes Tumor

    International Nuclear Information System (INIS)

    Hashimoto, Kazuki; Mimura, Hidefumi; Arai, Yasunori; Doi, Masatomo; Kojima, Yasuyuki; Tsugawa, Koichiro; Nakajima, Yasuo

    2016-01-01

    The malignant phyllodes tumor is a relatively rare neoplasm and has not previously been a therapeutic target of interventional radiology. Herein, we report a successful case of preoperative chemoembolization of a giant malignant phyllodes tumor. The objective was to achieve sufficient tumor shrinkage before surgery to avoid the requirement for skin grafting after resection. Intra-arterial epirubicin infusion and subsequent embolization with Embosphere Microspheres (BioSphere Medical, Rockland, MA, USA) was undertaken three times over the course of 6 weeks and was well tolerated. The patient underwent surgery without skin grafting. Neither local recurrence nor distant metastasis was observed at 6 months after surgery.

  6. potenti ls of two bio-pesticides in the control of some field insect

    African Journals Online (AJOL)

    USER

    2017-05-24

    May 24, 2017 ... Teaching and Research Farm, University of Ilorin, P.M.B. 1515 Ilorin, Nigeria ... effective of the bio-pesticides evaluated and can be used by ..... grasses: The genus Cymbopogon. ... Tropical Crop Science, Wageningen.

  7. D-Amino acid oxidase bio-functionalized platforms: Toward an enhanced enzymatic bio-activity

    Science.gov (United States)

    Herrera, Elisa; Valdez Taubas, Javier; Giacomelli, Carla E.

    2015-11-01

    The purpose of this work is to study the adsorption process and surface bio-activity of His-tagged D-amino acid oxidase (DAAO) from Rhodotorula gracilis (His6-RgDAAO) as the first step for the development of an electrochemical bio-functionalized platform. With such a purpose this work comprises: (a) the His6-RgDAAO bio-activity in solution determined by amperometry, (b) the adsorption mechanism of His6-RgDAAO on bare gold and carboxylated modified substrates in the absence (substrate/COO-) and presence of Ni(II) (substrate/COO- + Ni(II)) determined by reflectometry, and (c) the bio-activity of the His6-RgDAAO bio-functionalized platforms determined by amperometry. Comparing the adsorption behavior and bio-activity of His6-RgDAAO on these different solid substrates allows understanding the contribution of the diverse interactions responsible for the platform performance. His6-RgDAAO enzymatic performance in solution is highly improved when compared to the previously used pig kidney (pk) DAAO. His6-RgDAAO exhibits an amperometrically detectable bio-activity at concentrations as low as those expected on a bio-functional platform; hence, it is a viable bio-recognition element of D-amino acids to be coupled to electrochemical platforms. Moreover, His6-RgDAAO bio-functionalized platforms exhibit a higher surface activity than pkDAAO physically adsorbed on gold. The platform built on Ni(II) modified substrates present enhanced bio-activity because the surface complexes histidine-Ni(II) provide with site-oriented, native-like enzymes. The adsorption mechanism responsible of the excellent performance of the bio-functionalized platform takes place in two steps involving electrostatic and bio-affinity interactions whose prevalence depends on the degree of surface coverage.

  8. Failure by fracture and fatigue in 'NANO' and 'BIO'materials

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, R.O.; Muhlstein, C.L.; Nalla, R.K.

    2003-12-19

    The behavior of nanostructured materials/small-volumestructures and biologi-cal/bio-implantable materials, so-called "nano"and "bio" materials, is currently much in vogue in materials science. Oneaspect of this field, which to date has received only limited attention,is their fracture and fatigue properties. In this paper, we examine twotopics in this area, namely the premature fatigue failure ofsilicon-based micron-scale structures for microelectromechanical systems(MEMS), and the fracture properties of mineralized tissue, specificallyhuman bone.

  9. BioLab: Using Yeast Fermentation as a Model for the Scientific Method.

    Science.gov (United States)

    Pigage, Helen K.; Neilson, Milton C.; Greeder, Michele M.

    This document presents a science experiment demonstrating the scientific method. The experiment consists of testing the fermentation capabilities of yeasts under different circumstances. The experiment is supported with computer software called BioLab which demonstrates yeast's response to different environments. (YDS)

  10. Bio-inks for 3D bioprinting : recent advances and future prospects

    NARCIS (Netherlands)

    Donderwinkel, I.; van Hest, J.C.M.; Cameron, N.R.

    2017-01-01

    In the last decade, interest in the field of three-dimensional (3D) bioprinting has increased enormously. 3D bioprinting combines the fields of developmental biology, stem cells, and computer and materials science to create complex bio-hybrid structures for various applications. It is able to

  11. tmBioC: improving interoperability of text-mining tools with BioC.

    Science.gov (United States)

    Khare, Ritu; Wei, Chih-Hsuan; Mao, Yuqing; Leaman, Robert; Lu, Zhiyong

    2014-01-01

    The lack of interoperability among biomedical text-mining tools is a major bottleneck in creating more complex applications. Despite the availability of numerous methods and techniques for various text-mining tasks, combining different tools requires substantial efforts and time owing to heterogeneity and variety in data formats. In response, BioC is a recent proposal that offers a minimalistic approach to tool interoperability by stipulating minimal changes to existing tools and applications. BioC is a family of XML formats that define how to present text documents and annotations, and also provides easy-to-use functions to read/write documents in the BioC format. In this study, we introduce our text-mining toolkit, which is designed to perform several challenging and significant tasks in the biomedical domain, and repackage the toolkit into BioC to enhance its interoperability. Our toolkit consists of six state-of-the-art tools for named-entity recognition, normalization and annotation (PubTator) of genes (GenNorm), diseases (DNorm), mutations (tmVar), species (SR4GN) and chemicals (tmChem). Although developed within the same group, each tool is designed to process input articles and output annotations in a different format. We modify these tools and enable them to read/write data in the proposed BioC format. We find that, using the BioC family of formats and functions, only minimal changes were required to build the newer versions of the tools. The resulting BioC wrapped toolkit, which we have named tmBioC, consists of our tools in BioC, an annotated full-text corpus in BioC, and a format detection and conversion tool. Furthermore, through participation in the 2013 BioCreative IV Interoperability Track, we empirically demonstrate that the tools in tmBioC can be more efficiently integrated with each other as well as with external tools: Our experimental results show that using BioC reduces >60% in lines of code for text-mining tool integration. The tmBioC toolkit

  12. BioSWR--semantic web services registry for bioinformatics.

    Directory of Open Access Journals (Sweden)

    Dmitry Repchevsky

    Full Text Available Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL. Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL. BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license.

  13. BioSWR--semantic web services registry for bioinformatics.

    Science.gov (United States)

    Repchevsky, Dmitry; Gelpi, Josep Ll

    2014-01-01

    Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license.

  14. Bio-oil fractionation and condensation

    Science.gov (United States)

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  15. Combinatorial Nano-Bio Interfaces.

    Science.gov (United States)

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  16. 2010 World bio-energy conference

    International Nuclear Information System (INIS)

    2010-01-01

    After having evoked the bio-energy price awarded to a Brazilian for his works on the use of eucalyptus as energy source, this report proposes a synthesis of the highlights of the conference: discussions about sustainability, bio-energies as an opportunity for developing countries, the success of bio-energies in Sweden, and more particularly some technological advances in the field of biofuels: a bio-LPG by Biofuel-solution AB, catalysis, bio-diesel from different products in a Swedish farm, a second generation ethanol by the Danish company Inbicon, a large scale methanization in Goteborg, a bio-refinery concept in Sweden, bio-gases

  17. Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, Kawagoe 350-8585 (Japan); Muramatsu, M.; Kitagawa, A.; Drentje, A. G. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (ATOMKI), H-4026 Debrecen (Hungary); Asaji, T. [Oshima National College of Maritime Technology, Yamaguchi 742-2193 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2014-02-15

    In the paper, the material science experiments, carried out recently using the Bio-Nano electron cyclotron resonance ion source (ECRIS) at Toyo University, are reported. We have investigated several methods to synthesize endohedral C{sub 60} using ion-ion and ion-molecule collision reaction in the ECRIS. Because of the simplicity of the configuration, we can install a large choice of additional equipment in the ECRIS. The Bio-Nano ECRIS is suitable not only to test the materials production but also to test technical developments to improve or understand the performance of an ECRIS.

  18. Functionally graded bio-ceramic reinforced PVA hydrogel composites for knee joint artificial cartilages

    Science.gov (United States)

    Kumar, G. C. Mohan

    2018-04-01

    Research progress in materials science for bio-based materials for cartilage repair or supportive to host tissue has become a fashionable, worldwide. Few efforts in biomedical engineering has attempted in the development of newer biomaterials successfully. Bio ceramics, a class of materials been used in particulate form as a reinforcement with polymers those ensure its biocompatibility. Every artificial biomedical system has to meet the minimum in Vitro requirements for successful application. Equally the biological behavior of normal and diseased tissues is also essential to understand the artificial systems to human body.

  19. Plan for the active utilization of incentive system for preserving bio-diversity

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Hyun; Park, Yong Ha; Kim, Seung Woo; Choi, Yong Jae [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    The issue on bio diversity becomes an important subject of 21C environmental problem with UNFCCC. As {sup A}greements on bio diversity{sup b}ecame effective in December 1993, the establishment of information exchange system, use and limit of intellectual property right, financial support on developing countries, and adoption of protocols on life science stability are discussed as pending issues in major international conferences. This study examined international trends related to this issue and case studies in foreign countries and then recommended a fundamental direction and a method of introducing policy after understanding domestic policy situation. 39 refs., 5 figs., 37 tabs.

  20. Changes in Urban Youths' Attitude Towards Science and Perception of a Mobile Science Lab Experience

    Science.gov (United States)

    Fox, Jared

    This dissertation examined changes in urban youth's attitude towards science as well as their perception of the informal science education setting and third space opportunity provided by the BioBus, a mobile science lab. Science education researchers have often suggested that informal science education settings provide one possible way to positively influence student attitude towards science and engage marginalized urban youth within the traditional science classroom (Banks et al., 2007; Hofstein & Rosenfeld, 1996; National Research Council, 2009; Schwarz & Stolow, 2006; Stocklmayer, Rennie, & Gilbert, 2010). However, until now, this possibility has not been explored within the setting of a mobile science lab nor examined using a theoretical framework intent on analyzing how affective outcomes may occur. The merits of this analytical stance were evaluated via observation, attitudinal survey, open-response questionnaire, and interview data collected before and after a mobile science lab experience from a combination of 239 students in Grades 6, 8, 9, 11, and 12 from four different schools within a major Northeastern metropolitan area. Findings from this study suggested that urban youth's attitude towards science changed both positively and negatively in statistically significant ways after a BioBus visit and that the experience itself was highly enjoyable. Furthermore, implications for how to construct a third space within the urban science classroom and the merits of utilizing the theoretical framework developed to analyze cultural tensions between urban youth and school science are discussed. Key Words: Attitude towards science, third space, mobile science lab, urban science education.

  1. BioPortal: An Open-Source Community-Based Ontology Repository

    Science.gov (United States)

    Noy, N.; NCBO Team

    2011-12-01

    Advances in computing power and new computational techniques have changed the way researchers approach science. In many fields, one of the most fruitful approaches has been to use semantically aware software to break down the barriers among disparate domains, systems, data sources, and technologies. Such software facilitates data aggregation, improves search, and ultimately allows the detection of new associations that were previously not detectable. Achieving these analyses requires software systems that take advantage of the semantics and that can intelligently negotiate domains and knowledge sources, identifying commonality across systems that use different and conflicting vocabularies, while understanding apparent differences that may be concealed by the use of superficially similar terms. An ontology, a semantically rich vocabulary for a domain of interest, is the cornerstone of software for bridging systems, domains, and resources. However, as ontologies become the foundation of all semantic technologies in e-science, we must develop an infrastructure for sharing ontologies, finding and evaluating them, integrating and mapping among them, and using ontologies in applications that help scientists process their data. BioPortal [1] is an open-source on-line community-based ontology repository that has been used as a critical component of semantic infrastructure in several domains, including biomedicine and bio-geochemical data. BioPortal, uses the social approaches in the Web 2.0 style to bring structure and order to the collection of biomedical ontologies. It enables users to provide and discuss a wide array of knowledge components, from submitting the ontologies themselves, to commenting on and discussing classes in the ontologies, to reviewing ontologies in the context of their own ontology-based projects, to creating mappings between overlapping ontologies and discussing and critiquing the mappings. Critically, it provides web-service access to all its

  2. Bio-oil and bio-char production from biomass and their structural analyses

    International Nuclear Information System (INIS)

    Kilic, Murat; Özsin, Gamzenur; Pütün, Ayşe E.; Pütün, Ersan

    2015-01-01

    Energy demand is increasing day by day because of the rapid developments in the population, industrialization and urbanisation. Since, fossil fuels will be at the verge of getting extinct, researches are mostly focused on the renewable sources, such as biomass, in recent years. This paper provides an environmentally friendly process to convert waste biomass samples to bio-oil and bio-char by pyrolysis. For this purpose, pyrolysis characteristics of pomegranate peels under inert atmosphere were studied by using both TGA to analysis decomposition behaviour and a batch reactor to investigate product yields and properties. The properties of bio-oil and bio-char were investigated by different analytical techniques such as GC-MS, FT-IR, SEM, He pycnometry and elemental analysis. As a consequence, it is possible to obtain bio-oil, which has similar properties like petroleum hydrocarbons, and to obtain bio-char, which can be further used as a solid fuel or a carbonaceous adsorbent material via pyrolysis process. (full text)

  3. Bioética clínica: ciência e humanidade = Clinical bioethics: science and humanity

    Directory of Open Access Journals (Sweden)

    Batista, Cristiano Corrêa

    2005-01-01

    Resultados e conclusão: Nossa conclusão é de a medicina não ser apenas uma ciência, mas também uma arte. Ela exige, em situações particulares, elaborar julgamentos de valor. A Bioética Clínica, surge para guiar caminhos combinando o conhecimento técnico- científico das ciências biomédicas com o conhecimento filosófico. Por meio da Bioética Clínica é possível resgatar os aspectos humanos da arte da medicina

  4. Bio-jETI: a service integration, design, and provisioning platform for orchestrated bioinformatics processes.

    Science.gov (United States)

    Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard

    2008-04-25

    With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way.

  5. Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures

    Science.gov (United States)

    Hennige, S. J.; Suggett, D. J.; Warner, M. E.; McDougall, K. E.; Smith, D. J.

    2009-03-01

    Light is often the most abundant resource within the nutrient-poor waters surrounding coral reefs. Consequently, zooxanthellae ( Symbiodinium spp.) must continually photoacclimate to optimise productivity and ensure coral success. In situ coral photobiology is becoming dominated by routine assessments using state-of-the-art non-invasive bio-optical or chlorophyll a fluorescence (bio-physical) techniques. Multiple genetic types of Symbiodinium are now known to exist; however, little focus has been given as to how these types differ in terms of characteristics that are observable using these techniques. Therefore, this investigation aimed to revisit and expand upon a pivotal study by Iglesias-Prieto and Trench (1994) by comparing the photoacclimation characteristics of different Symbiodinium types based on their bio-physical (chlorophyll a fluorescence, reaction centre counts) and bio-optical (optical absorption, pigment concentrations) ‘signatures’. Signatures described here are unique to Symbiodinium type and describe phenotypic responses to set conditions, and hence are not suitable to describe taxonomic structure of in hospite Symbiodinium communities. In this study, eight Symbiodinium types from clades and sub-clades (A-B, F) were grown under two PFDs (Photon Flux Density) and examined. The photoacclimation response by Symbiodinium was highly variable between algal types for all bio-physical and for many bio-optical measurements; however, a general preference to modifying reaction centre content over effective antennae-absorption was observed. Certain bio-optically derived patterns, such as light absorption, were independent of algal type and, when considered per photosystem, were matched by reaction centre stoichiometry. Only by better understanding genotypic and phenotypic variability between Symbiodinium types can future studies account for the relative taxonomic and physiological contribution by Symbiodinium to coral acclimation.

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 3. Volume 117, Issue 3. May 2005, pages 207-282. Recent Advances in Bio-Inorganic Chemistry. pp 207-218. Underpotential deposition of metals - Progress and prospects in modelling · V Sudha M V Sangaranarayanan · More Details Abstract Fulltext PDF.

  7. PLA/Bio-PE blends: effect of the Bio-PE content on the crystallinity rheological properties

    International Nuclear Information System (INIS)

    Araujo, Aylanna P.M. de; Agrawal, Pankaj; Cavalcanti, Shirley N.; Alves, Amanda M.; Melo, Tomas J.A. de; Brito, Gustavo F.

    2014-01-01

    The aim of this work is to evaluate the effect of the Bio-PE content on the crystallinity and rheological properties of PLA/Bio-PE blend. The blends containing 05 and 15% of Bio-PE were prepared by extrusion followed by injection molding and characterized by X-Ray Diffraction (XRD) and rheological properties at low and high shear rates. XRD results indicated that the PLA present low crystallinity and this behavior was not changed with the addition of Bio-PE, regardless of Bio-PE content. Rheological properties results indicated that at low shear rates the viscosity of the PLA/Bio-PE increased with the increase in the Bio-PE content while at high shear rates the viscosities where almost similar, which may be ascribed to the orientation of Bio-PE particles in the flow direction or by the viscous dissipation. (author)

  8. Bio-fuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    European Union bio-fuel use for transport reached 12 million tonnes of oil equivalent (mtoe) threshold during 2009. The slowdown in the growth of European consumption deepened again. Bio-fuel used in transport only grew by 18.7% between 2008 and 2009, as against 30.3% between 2007 and 2008 and 41.8% between 2006 and 2007. The bio-fuel incorporation rate in all fuels used by transport in the E.U. is unlikely to pass 4% in 2009. We can note that: -) the proportion of bio-fuel in the German fuels market has plummeted since 2007: from 7.3% in 2007 to 5.5% in 2009; -) France stays on course with an incorporation rate of 6.25% in 2009; -) In Spain the incorporation rate reached 3.4% in 2009 while it was 1.9% in 2008. The European bio-diesel industry has had another tough year. European production only rose by 16.6% in 2009 or by about 9 million tonnes which is well below the previous year-on-year growth rate recorded (35.7%). France is leading the production of bio-ethanol fuels in Europe with an output of 1250 million liters in 2009 while the total European production reached 3700 million litters and the world production 74000 million liters. (A.C.)

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 2. Volume 117, Issue 2. March 2005, pages 71-201. Recent Advances in Bio-Inorganic Chemistry. pp 71-71. Foreword · T K Chandrashekar · More Details Fulltext PDF. pp 73-84. Meso-functionalized octamethoxyporphyrins: A new class of nonasubstituted ...

  10. BioSWR – Semantic Web Services Registry for Bioinformatics

    Science.gov (United States)

    Repchevsky, Dmitry; Gelpi, Josep Ll.

    2014-01-01

    Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license. PMID:25233118

  11. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis

    International Nuclear Information System (INIS)

    Mullen, Charles A.; Boateng, Akwasi A.; Goldberg, Neil M.; Lima, Isabel M.; Laird, David A.; Hicks, Kevin B.

    2010-01-01

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are ∼20 MJ kg -1 , and densities >1.0 Mg m -3 ) were realized from both corn cobs and from corn stover. The high energy density of bio-oil, ∼20-32 times on a per unit volume basis over the raw corn residues, offers potentially significant savings in transportation costs particularly for a distributed 'farm scale' bio-refinery system. Bio-char yield was 18.9% and 17.0% (mass/mass) from corn cobs and corn stover, respectively. Deploying the bio-char co-product, which contains most of the nutrient minerals from the corn residues, as well as a significant amount of carbon, to the land can enhance soil quality, sequester carbon, and alleviate environmental problems associated with removal of crop residues from fields.

  12. Bio-methane & Bio-hydrogen. Status and perspectives of biological methane and hydrogen production

    NARCIS (Netherlands)

    Wijffels, R.H.; Janssen, M.G.J.

    2003-01-01

    Eerst wordt het kader geschetst voor de potentiële rol van bio-methaan en bio-waterstof in de energiehuishouding en de invloeden daarop van de ontwikkeling van eindgebruikstechnologie en infrastructuur, en het energiebeleid. Daarna wordt uitvoerig ingegaan op de technieken voor bio-methaan en

  13. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    UAS, Bangalore). Date of birth: 19 March 1956. Specialization: Biodiversity, Endophytes, Plant Evolutionary Biology, Conservation Genetics, Bio-prospecting. Address: Professor, Department of Crop Physiology, Univeristy of Agricultural Sciences, ...

  14. BioAir: Bio-Inspired Airborne Infrastructure Reconfiguration

    Science.gov (United States)

    2016-01-01

    must also minimize resource usage due to limitations on the amount of processing , memory and power onboard a node. BioAIR assumes the availability of...subsequent maintenance of tentacles, each node will take one of the following roles: “ orphan ”, “free”, “tip”, “backbone” or “extra”. The BioAIR...algorithm dictates that when a node is disconnected from the tentacle or origin it is an orphan , and as such it will change its target to the nearest

  15. Production of bio-energies

    International Nuclear Information System (INIS)

    Gurtler, J.L.; Femenias, A.; Blondy, J.

    2009-01-01

    After having indicated the various possible origins of biomass, this paper considers the issue of bio-energies, i.e., energies produced with biomass related to forest or agriculture production. Some indicators are defined (share of renewable energies, share of biomass in the energy production and consumption, number of production units). Stake holders are identified. Then, major and emerging trends are identified and discussed. The major trends are: development and diversification of renewable energies, development of bio-fuels with the support of incentive policies, prevalence of the wood-energy sector on the whole renewable energies, increase of surfaces dedicated to bio-fuels since the end of the 1990's, a French biogas sector which is late with respect to other countries. The emerging trends are: the important role of oil price in the development of bio-fuels, a necessary public support for the development of biogas, mobilization of research and development of competitiveness poles for bio-industries. Some prospective issues are also discussed in terms of uncertainties (soil availabilities, environmental performance of bio-fuels, available biomass resource, need of a technological advance, and evolution of energy needs on a medium term, tax and public policy). Three hypotheses of bio-energy evolutions are discussed

  16. A new era in sports science: the launch of BMC Sports Science, Medicine and Rehabilitation

    OpenAIRE

    Moylan, Elizabeth C; Horne, Genevieve

    2013-01-01

    This Editorial celebrates the launch of BMC Sports Science, Medicine and Rehabilitation within the BMC series of journals published by BioMed Central. BMC Sports Science, Medicine and Rehabilitation incorporates the recently closed Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology (SMARTT) with an expanded scope and Editorial Board. BMC Sports Science, Medicine and Rehabilitation will fill its own niche in the BMC series alongside other companion journals including BMC Physio...

  17. Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis

    Science.gov (United States)

    Ploykrathok, T.; Chanyotha, S.

    2017-06-01

    Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated.

  18. Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis

    International Nuclear Information System (INIS)

    Ploykrathok, T; Chanyotha, S

    2017-01-01

    Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated. (paper)

  19. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, Charles A.; Boateng, Akwasi A.; Goldberg, Neil M.; Hicks, Kevin B. [Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 E. Mermaid Lane, Wyndmoor, PA 19038 (United States); Lima, Isabel M. [Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, LA 70124 (United States); Laird, David A. [National Soil Tilth Laboratory, U.S. Agricultural Research Service, U.S. Department of Agriculture, 2110 University Blvd., Ames, IA 50011 (United States)

    2010-01-15

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are {proportional_to}20 MJ kg{sup -1}, and densities >1.0 Mg m{sup -3}) were realized from both corn cobs and from corn stover. The high energy density of bio-oil, {proportional_to}20-32 times on a per unit volume basis over the raw corn residues, offers potentially significant savings in transportation costs particularly for a distributed ''farm scale'' bio-refinery system. Bio-char yield was 18.9% and 17.0% (mass/mass) from corn cobs and corn stover, respectively. Deploying the bio-char co-product, which contains most of the nutrient minerals from the corn residues, as well as a significant amount of carbon, to the land can enhance soil quality, sequester carbon, and alleviate environmental problems associated with removal of crop residues from fields. (author)

  20. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Anand, Dr V G . Specialization: Bio-inorganic Chemistry, Pi-Conjugated Macrocycles, Supramolecular Chemistry Address during Associateship: Indian Institute of Science Edn., and Research, 900, NCL Innovation Park, Pashan, Pune 411 008

  1. Charge migration induced by attosecond pulses in bio-relevant molecules

    International Nuclear Information System (INIS)

    Calegari, Francesca; Castrovilli, Mattea C; Nisoli, Mauro; Trabattoni, Andrea; Palacios, Alicia; Ayuso, David; Martín, Fernando; Greenwood, Jason B; Decleva, Piero

    2016-01-01

    After sudden ionization of a large molecule, the positive charge can migrate throughout the system on a sub-femtosecond time scale, purely guided by electronic coherences. The possibility to actively explore the role of the electron dynamics in the photo-chemistry of bio-relevant molecules is of fundamental interest for understanding, and perhaps ultimately controlling, the processes leading to damage, mutation and, more generally, to the alteration of the biological functions of the macromolecule. Attosecond laser sources can provide the extreme time resolution required to follow this ultrafast charge flow. In this review we will present recent advances in attosecond molecular science: after a brief description of the results obtained for small molecules, recent experimental and theoretical findings on charge migration in bio-relevant molecules will be discussed. (topical review)

  2. BioClips of symmetric and asymmetric cell division.

    Science.gov (United States)

    Lu, Fong-Mei; Eliceiri, Kevin W; White, John G

    2007-05-01

    Animations have long been used as tools to illustrate complex processes in such diverse fields as mechanical engineering, astronomy, bacteriology and physics. Animations in biology hold particular educational promise for depicting complex dynamic processes, such as photosynthesis, motility, viral replication and cellular respiration, which cannot be easily explained using static two-dimensional images. However, these animations have often been restrictive in scope, having been created for a specific classroom or research audience. In recent years, a new type of animation has emerged called the BioClip (http://www.bioclips.com) that strives to present science in an interactive multimedia format, which is, at once, informative and entertaining, by combining animations, text descriptions and music in one portable cross-platform document. In the present article, we illustrate the educational value of this new electronic resource by reviewing in depth two BioClips our group has created which describe the processes of symmetric and asymmetric cell division (http://www.wormclassroom.org/cb/bioclip).

  3. 77 FR 66788 - Proposed Flood Elevation Determinations

    Science.gov (United States)

    2012-11-07

    ... Town of Clarkstown. Old Mill Road. Approximately 600 feet +150 +151 downstream of Rockland Lake. Golf..., Orangetown/Town of Town of Orangetown. Clarkstown corporate limit. At the downstream side +67 +66 of Old Mill... and modified elevations, and communities affected for Rockland County, New York (All Jurisdictions...

  4. The Evaluation of Science Learning Program, Technology and Society Application of Audio Bio Harmonic System with Solar Energy to Improve Crop Productivity

    Directory of Open Access Journals (Sweden)

    D. Rosana

    2017-04-01

    Full Text Available One of the greatest challenges in science learning is how to integrate a wide range of basic scientific concepts of physics, chemistry, and biology into an integrated learning material. Research-based teaching material in this area is still very poor and does not much involve students of science education in its implementation as part of the learning program science technology and society (STS. The purpose of this study is to get the result of evaluation of the teaching and learning of STS in the form of public service in Kulon Progo, Yogyakarta. The program to improve crop productivity through the application of Audio Bio Harmonic System (ABHS with solar energy have been selected for utilizing the natural animal sounds to open stomata of the leaves conducted during foliar fertilization, making it suitable for integrated science lessons. Component of evaluation model used is Stufflebeam model evaluation (CIPP. CIPP evaluation in these activities resulted in two aspects: The first aspect was improving the skills of students and farmers in using ABHS, and these two aspects, namely food crop productivity; (1 cayenne increased 76.4%, (2 increased red onions (56.3% and (3 of maize increased by 67.8%. Besides, it was also the effect of the application of ABHS on the rate of plant growth. The outcome of this study is the STS teaching materials and appropriate technology of ABHS with solar energy.

  5. Bioética clínica: ciência e humanidade = Clinical bioethics: science and humanity

    Directory of Open Access Journals (Sweden)

    Batista, Cristiano Corrêa

    2005-01-01

    Full Text Available Objetivo: A medicina pré-moderna tinha por enfoque a harmonia entre o universo e a natureza e tudo era aparentemente possível para os médicos aptos a interpretarem sinais e sintomas. A partir da invenção do estetoscópio inicia-se o processo de investigação do interior dos corpos vivos. Ao longo do tempo, a medicina foi sendo impregnada com a tecnologia e, nos dias atuais, a chamada tecnociência se faz onipresente deixando em segundo plano, ou até mesmo ausente, a interação médico-paciente. Urge a criação de uma nova indústria intelectual com a capacidade de criticar essa nova forma de praticar a medicina embasada principalmente na tecnologia. O objetivo do presente artigo é fazer uma reflexão, por meio da bioética clínica, dessa nova forma de praticar a medicina na tentativa de resgatar o lado humano da ciência médica. Método: Foi realizada uma consulta na base de dados da Medline e LILACS nos últimos dez anos e uma revisão da literatura nacional em torno do tema medicina, bioética, ciência e humanidade. Resultados e conclusão: Nossa conclusão é de a medicina não ser apenas uma ciência, mas também uma arte. Ela exige, em situações particulares, elaborar julgamentos de valor. A Bioética Clínica, surge para guiar caminhos combinando o conhecimento técnico-científico das ciências biomédicas com o conhecimento filosófico. Por meio da Bioética Clínica é possí- vel resgatar os aspectos humanos da arte da medicina

  6. Method to upgrade bio-oils to fuel and bio-crude

    Science.gov (United States)

    Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

    2013-12-10

    This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

  7. A new era in sports science: the launch of BMC Sports Science, Medicine and Rehabilitation.

    Science.gov (United States)

    Moylan, Elizabeth C; Horne, Genevieve

    2013-03-28

    This Editorial celebrates the launch of BMC Sports Science, Medicine and Rehabilitation within the BMC series of journals published by BioMed Central. BMC Sports Science, Medicine and Rehabilitation incorporates the recently closed Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology (SMARTT) with an expanded scope and Editorial Board. BMC Sports Science, Medicine and Rehabilitation will fill its own niche in the BMC series alongside other companion journals including BMC Physiology, BMC Musculoskeletal Disorders and BMC Surgery.

  8. Microdrive- A research program on sustainable bio-ethanol and biogas systems

    International Nuclear Information System (INIS)

    Schnurer, J.; Schnurer, A.

    2009-01-01

    Microdrive Microbially Derived Energy is a thematic research program on sustainable bio fuel production at the Faculty for Natural Resources and Agriculture (NL), Swedish University of Agricultural Sciences (SLU). The program has the following long term goals: To maximise the energy yield of ethanol and biogas processes, improve overall process economy through development of novel co-products, and to minimise environmental impact. (Author)

  9. Bio diesel production from algae

    International Nuclear Information System (INIS)

    Khola, G.; Ghazala, B.

    2011-01-01

    Algae appear to be an emerging source of biomass for bio diesel that has the potential to completely displace fossil fuel. Two thirds of earth's surface is covered with water, thus alga e would truly be renewable option of great potential for global energy needs. This study discusses specific and comparative bio diesel quantitative potential of Cladophora sp., also highlighting its biomass (after oil extraction), pH and sediments (glycerine, water and pigments) quantitative properties. Comparison of Cladophora sp., with Oedogonium sp., and Spirogyra sp., (Hossain et al., 2008) shows that Cladophora sp., produce higher quantity of bio diesel than Spirogyra sp., whereas biomass and sediments were higher than the both algal specimens in comparison to the results obtained by earlier workers. No prominent difference in pH of bio diesel was found. In Pakistan this is a first step towards bio diesel production from algae. Results indicate that Cladophora sp., provide a reasonable quantity of bio diesel, its greater biomass after oil extraction and sediments make it a better option for bio diesel production than the comparing species. (author)

  10. Bio-optofluidics and Bio-photonics: Programmable Phase Optics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Pedersen, Finn

    We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optical...... tweezers, the BioPhotonics workstation is e.g. capable of long range 3D manipulation. This enables a variety of biological studies such as manipulation of intricate microfabricated assemblies or for automated and parallel optofluidic cell sorting. To further reduce its overhead, we propose ways of making...... the BioPhotonics Workstation platform more photon efficient by studying the 3D distribution of the counter propagating beams and utilizing the Generalized Phase Contrast (GPC) method for illuminating the applied spatial light modulators....

  11. Bio-energy status document 2012; Statusdocument bio-energie 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.L.; Van Grinsven, A.H.; Bergsma, G.C.; Croezen, H.C.

    2013-05-15

    In 2012 bio-energy contributed over 71 PJ to the Dutch energy supply, a rise of almost 2 PJ over 2011. This means that 75% of the renewable energy consumed in the Netherlands is now derived from biomass. The growth is due mainly to the increase in the mandatory biotransport fuel percentage from 4.25% to 4.5%. The use of energy from 'other biomass combustion' (incl. paper sludge, green waste and chicken excrement) recovered to the level of 2010, following a marked drop in 2011 due to plant maintenance, termination of the MEP ('Environmental Quality of Power Generation') subsidy scheme and high biomass prices. At large power stations there was a considerable decrease in co-incineration of biomass because of incidents (a fire at the Nijmegen coal-fired plant) and a maintenance backlog (at the Amer power station). These are some of the results reported in the 'Bio-energy status document 2012', prepared by CE Delft for NL Agency. In addition to a review and characterisation of the current situation, the report contains an update on government policies on bio-energy and a review of the sources and sustainability of the biomass used in the Netherlands [Dutch] De bijdrage van bio-energie aan de Nederlandse energievoorziening bedroeg in 2012 ruim 71 PJ, een stijging van bijna 2 PJ ten opzichte van 2011. Daarmee is 75% van het verbruik van hernieuwbare energie in Nederland afkomstig van bio-energie. De stijging wordt vooral veroorzaakt door de oplopende bijmengplicht van biotransportbrandstoffen van 4,25% naar 4,5%. Verbruik van energie uit 'overige biomassaverbranding' (o.a. papierslib, groenafval en kippenmest) herstelde zicht tot het niveau van 2010, na een forse daling in 2011 door onderhoud aan installaties, afloop van MEP-subsidies en hoge prijzen van biomassa. Het bij- en meestoken van biomassa in grote elektriciteitscentrales daalde juist aanzienlijk door calamiteiten en uitloop van onderhoud (brand kolencentrale bij Nijmegen

  12. A new method for face detection in colour images for emotional bio-robots

    Institute of Scientific and Technical Information of China (English)

    HAPESHI; Kevin

    2010-01-01

    Emotional bio-robots have become a hot research topic in last two decades. Though there have been some progress in research, design and development of various emotional bio-robots, few of them can be used in practical applications. The study of emotional bio-robots demands multi-disciplinary co-operation. It involves computer science, artificial intelligence, 3D computation, engineering system modelling, analysis and simulation, bionics engineering, automatic control, image processing and pattern recognition etc. Among them, face detection belongs to image processing and pattern recognition. An emotional robot must have the ability to recognize various objects, particularly, it is very important for a bio-robot to be able to recognize human faces from an image. In this paper, a face detection method is proposed for identifying any human faces in colour images using human skin model and eye detection method. Firstly, this method can be used to detect skin regions from the input colour image after normalizing its luminance. Then, all face candidates are identified using an eye detection method. Comparing with existing algorithms, this method only relies on the colour and geometrical data of human face rather than using training datasets. From experimental results, it is shown that this method is effective and fast and it can be applied to the development of an emotional bio-robot with further improvements of its speed and accuracy.

  13. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Arami-Niya, Arash; Wan Daud, W.M.A.; Sahu, J.N.; Noor, I.M.

    2013-01-01

    Highlights: • About 14.72% of the total landmass in Malaysia was used for oil palm plantations. • Oil palm tree residues were pyrolyzed to produce bio-oil and bio-char. • The process was performed at a temperature of 500 °C and reaction time of 60 min. • Characterization of the products was performed. - Abstract: Oil palm tree residues are a rich biomass resource in Malaysia, and it is therefore very important that they be utilized for more beneficial purposes, particularly in the context of the development of biofuels. This paper described the possibility of utilizing oil palm tree residues as biofuels by producing bio-oil and bio-char via pyrolysis. The process was performed in a fixed-bed reactor at a temperature of 500 °C, a nitrogen flow rate of 2 L/min and a reaction time of 60 min. The physical and chemical properties of the products, which are important for biofuel testing, were then characterized. The results showed that the yields of the bio-oil and bio-char obtained from different residues varied within the ranges of 16.58–43.50 wt% and 28.63–36.75 wt%, respectively. The variations in the yields resulted from differences in the relative amounts of cellulose, hemicellulose, lignin, volatiles, fixed carbon, and ash in the samples. The energy density of the bio-char was found to be higher than that of the bio-oil. The highest energy density of the bio-char was obtained from a palm leaf sample (23.32 MJ/kg), while that of the bio-oil was obtained from a frond sample (15.41 MJ/kg)

  14. Understanding bio-economics

    NARCIS (Netherlands)

    Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2008-01-01

    New plants for production of bio-based fuels, chemicals or plastics are being set up at an accelerating pace. However, this transition towards bio-based fuels, feedstocks and chemicals has not come without consequences. Increased demand has pushed up prices of key agricultural products such as maize

  15. Bio-inspired networking

    CERN Document Server

    Câmara, Daniel

    2015-01-01

    Bio-inspired techniques are based on principles, or models, of biological systems. In general, natural systems present remarkable capabilities of resilience and adaptability. In this book, we explore how bio-inspired methods can solve different problems linked to computer networks. Future networks are expected to be autonomous, scalable and adaptive. During millions of years of evolution, nature has developed a number of different systems that present these and other characteristics required for the next generation networks. Indeed, a series of bio-inspired methods have been successfully used to solve the most diverse problems linked to computer networks. This book presents some of these techniques from a theoretical and practical point of view. Discusses the key concepts of bio-inspired networking to aid you in finding efficient networking solutions Delivers examples of techniques both in theoretical concepts and practical applications Helps you apply nature's dynamic resource and task management to your co...

  16. Bio-PIXE marine science. Otoliths and plankton

    International Nuclear Information System (INIS)

    Malmqvist, K.G.; Buelow, K.; Elfman, M.; Kristiansson, P; Pallon, J.; Shariff, S.; Limburg, K.E.; Karlsson, C.

    1999-01-01

    Otoliths and phytoplanktons have been investigated using a nuclear microprobe. A brief description of sample preparation and irradiation conditions is given. The results indicate a great potential of the technique in marine sciences. (author)

  17. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    Energy Technology Data Exchange (ETDEWEB)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Kraiem, T. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia); Naoui, S. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Belayouni, H. [Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia)

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  18. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    International Nuclear Information System (INIS)

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-01

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy

  19. Nano-physics and bio-electronics a new odyssey

    CERN Document Server

    Chakraborty, T; Sivan, U

    2002-01-01

    This book is a collection of some of the invited talks presented at the international meeting held at the Max Planck Institut fuer Physik Komplexer Systeme, Dresden, Germany during August 6-30, 2001, on the rapidly developing field of nanoscale science in science and bio-electronics Semiconductor physics has experienced unprecedented developments over the second half of the twentieth century. The exponential growth in microelectronic processing power and the size of dynamic memorie has been achieved by significant downscaling of the minimum feature size. Smaller feature sizes result in increased functional density, faster speed, and lower costs. In this process one is reaching the limits where quantum effects and fluctuations are beginning to play an important role. This book reflects the achievements of the present times and future directions of research on nanoscopic dimensions.

  20. Maxillary sinus floor augmentation with Bio-Oss or Bio-Oss mixed with autogenous bone as graft in animals

    DEFF Research Database (Denmark)

    Jensen, T; Schou, S; Stavropoulos, Andreas

    2012-01-01

    The objective of the present systematic review was to test the hypothesis of no differences between the use of Bio-Oss or Bio-Oss mixed with autogenous bone as graft for maxillary sinus floor augmentation (MSFA) applying the lateral window technique, as evaluated in animals. A MEDLINE (Pub...... of the graft improved significantly with increased proportion of Bio-Oss. Bone regeneration, bone-to-implant contact (BIC), biomechanical implant test values, and biodegradation of Bio-Oss after MSFA with Bio-Oss or Bio-Oss mixed with autogenous bone have never been compared within the same study in animals....... Thus, the hypothesis of no differences between the use of Bio-Oss and Bio-Oss mixed with autogenous bone as graft for MSFA could neither be confirmed nor rejected based on existing animal studies....

  1. Navigating the Bio-Politics of Childhood

    Science.gov (United States)

    Lee, Nick; Motzkau, Johanna

    2011-01-01

    Childhood research has long shared a bio-political terrain with state agencies in which children figure primarily as "human futures". In the 20th century bio-social dualism helped to make that terrain navigable by researchers, but, as life processes increasingly become key sites of bio-political action, bio-social dualism is becoming…

  2. Genetic Bio-Ancestry and Social Construction of Racial Classification in Social Surveys in the Contemporary United States

    Science.gov (United States)

    Guo, Guang; Fu, Yilan; Lee, Hedwig; Cai, Tianji; Harris, Kathleen Mullan; Li, Yi

    2013-01-01

    Self-reported race is generally considered the basis for racial classification in social surveys, including the U.S. census. Drawing on recent advances in human molecular genetics and social science perspectives of socially constructed race, our study takes into account both genetic bio-ancestry and social context in understanding racial classification. This article accomplishes two objectives. First, our research establishes geographic genetic bio-ancestry as a component of racial classification. Second, it shows how social forces trump biology in racial classification and/or how social context interacts with bio-ancestry in shaping racial classification. The findings were replicated in two racially and ethnically diverse data sets: the College Roommate Study (N = 2,065) and the National Longitudinal Study of Adolescent Health (N = 2,281). PMID:24019100

  3. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bio-energy. Innovators talking; Bio-energie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on bio-energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar bio-energie.

  5. Bio-energy. Innovators talking; Bio-energie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on bio-energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar bio-energie.

  6. The BioC-BioGRID corpus: full text articles annotated for curation of protein–protein and genetic interactions

    Science.gov (United States)

    Kim, Sun; Chatr-aryamontri, Andrew; Chang, Christie S.; Oughtred, Rose; Rust, Jennifer; Wilbur, W. John; Comeau, Donald C.; Dolinski, Kara; Tyers, Mike

    2017-01-01

    A great deal of information on the molecular genetics and biochemistry of model organisms has been reported in the scientific literature. However, this data is typically described in free text form and is not readily amenable to computational analyses. To this end, the BioGRID database systematically curates the biomedical literature for genetic and protein interaction data. This data is provided in a standardized computationally tractable format and includes structured annotation of experimental evidence. BioGRID curation necessarily involves substantial human effort by expert curators who must read each publication to extract the relevant information. Computational text-mining methods offer the potential to augment and accelerate manual curation. To facilitate the development of practical text-mining strategies, a new challenge was organized in BioCreative V for the BioC task, the collaborative Biocurator Assistant Task. This was a non-competitive, cooperative task in which the participants worked together to build BioC-compatible modules into an integrated pipeline to assist BioGRID curators. As an integral part of this task, a test collection of full text articles was developed that contained both biological entity annotations (gene/protein and organism/species) and molecular interaction annotations (protein–protein and genetic interactions (PPIs and GIs)). This collection, which we call the BioC-BioGRID corpus, was annotated by four BioGRID curators over three rounds of annotation and contains 120 full text articles curated in a dataset representing two major model organisms, namely budding yeast and human. The BioC-BioGRID corpus contains annotations for 6409 mentions of genes and their Entrez Gene IDs, 186 mentions of organism names and their NCBI Taxonomy IDs, 1867 mentions of PPIs and 701 annotations of PPI experimental evidence statements, 856 mentions of GIs and 399 annotations of GI evidence statements. The purpose, characteristics and possible future

  7. After the Biomedical Technology Revolution: Where to Now for a Bio-Psycho-Social Approach to Social Work?

    Science.gov (United States)

    Healy, Karen

    2016-07-01

    In the late twentieth century, the bio-psycho-social framework emerged as a powerful influence on the conceptualisation and delivery of health and rehabilitation services including social work services in these fields. The bio-psycho-social framework is built on a systems view of health and well-being ( Garland and Howard, 2009). The systems perspective encourages medical and allied health professions, including social work, to recognise and to respond to the multiple systems impacting on individual health and well-being ( Engel, 2003). This paper analyses how advances in biomedical technology, particularly in the fields of neuroscience and human genomics, are challenging the bio-psycho-social approach to practice. The paper examines the pressures on the social work profession to embrace biomedical science and points to the problems in doing so. The conclusion points to some tentative ways forward for social workers to engage critically with biomedical advances and to strengthen the bio-psycho-social framework in the interests of holistic and ethical approaches to social work practice.

  8. Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    , there is not enough biomass for 'everyone', not physically and not in terms of money to promote its use. This leads to the conclusion that any use of biomass for energy purposes will have to compare to the lost opportunity of using it for something else. In this perspective, the choice to use biomass for bio......-ethanol production will not lead to reduction but to increase in CO2 emission and fossil fuel dependency. Both first and second generation bio-ethanol suffer from a biomass-to-ethanol energy conversion efficiency as low as 30-40 %, and moreover external fossil fuels are used to run the conversion. There is only......, but they do not improve the energy balance enough for bio-ethanol to compete with alternative uses of the biomass. When using biomass to substitute fossil fuels in heat & power production, a close to 100% substitution efficiency is achieved. The best alternative for CO2 reduction and oil saving is, therefore...

  9. Bio diesel, v. 15(58)

    International Nuclear Information System (INIS)

    Gicheva, Ljubitsa

    2007-01-01

    The history of bio-fuels/bio-diesel is more political and economical than it is technological. The technology of the production is the same as it was 200 years ago. The economy closed the usage of bio-fuels in the middies of the 20 Th century and put it back on the agenda of the world economy at the beginning of the 21 st century. With price of more then 70 US$ per barrel of grudge oil, production and usage of bio-fuels becomes more economical category rather than political and ecological. If we, additionally, add secondary, yet nowadays very important factors, as ecological protection, recycling the emission of poisonous gasses, exploitation of agro sector, then the reincarnation of bio-fuels is very interesting, and for Macedonia a potentially strategic category. The basics of the biography is to follow in the article paying special attention on the characteristics, standards, production, processing and usage of the bio-diesel fuel as well as the blended B20 and B5. (Author)

  10. Bio diesel, v. 15(59)

    International Nuclear Information System (INIS)

    Gicheva, Ljubitsa

    2007-01-01

    The history of bio-fuels/bio-diesel is more political and economical than it is technological. The technology of the production is the same as it was 200 years ago. The economy closed the usage of bio-fuels in the middies of the 20 Th century and put it back on the agenda of the world economy at the beginning of the 21 st century. With price of more then 70 US$ per barrel of grudge oil, production and usage of bio-fuels becomes more economical category rather than political and ecological. If we, additionally, add secondary, yet nowadays very important factors, as ecological protection, recycling the emission of poisonous gasses, exploitation of agro sector, then the reincarnation of bio-fuels is very interesting, and for Macedonia a potentially strategic category. The basics of the biography is to follow in the article paying special attention on the characteristics, standards, production, processing and usage of the bio-diesel fuel as well as the blended B20 and B5. (Author)

  11. The basis for a Platform Bio-Energy. Combining forces for the Dutch bio-energy business

    International Nuclear Information System (INIS)

    Van Halen, C.J.G.

    1998-02-01

    It appears that there is a need for a community of interests in the field of bio-energy to solve numerous problems and to answer many questions with respect to the development of businesses that are active in the field of bio-energy. The title study was carried out in the third and fourth quarter of 1997 by means of surveys and depth interviews among representatives of bio-energy businesses, interest groups and research institutes. The majority of the respondents supports the foundation of the Platform Bio-Energy and suggests many different activities

  12. "Beyond "BIO2010": Celebration and Opportunities" at the Intersection of Mathematics and Biology

    Science.gov (United States)

    Jungck, John R.; Gaff, Holly D.; Fagen, Adam P.; Labov, Jay B.

    2010-01-01

    In this article, the authors report on an important symposium, Beyond BIO2010: Celebration and Opportunities, which was held at the National Academy of Sciences (NAS) in Washington, D.C. on May 21-22, 2010. This symposium was organized to assess what progress has been made in addressing the challenges and recommendations in the National Research…

  13. Clinical application of bio ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com [Department of Chemistry, Govt. College of Engineering & Technology, Bikaner, Rajasthan (India)

    2016-05-06

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  14. Clinical application of bio ceramics

    International Nuclear Information System (INIS)

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  15. Bio-politics Reflexes” or something about what happens with Bio-politics today

    Directory of Open Access Journals (Sweden)

    Viorella Manolache

    2013-04-01

    Full Text Available Under the pressure dictated by Western modernity movements, life finally enters within strategic (long term relationships circuit. The present study establishes that, bio-politics and bio-power denounces the paradigm of politicization of the biological life. Foucault’s late writings confirm the subordination of bio-politics to the technologies of power, which integrate / reduce life to biological continuity of the species, to the objectification of individual body or investigation of self-techniques, that would allow (beyond the corset of the institutional, the (re affirmation of subjectivity as a force or a form of resistance. The present reactivation of the bio model establishes that we cannot evade Foucault’s view, in which, the biology- meeting – politics confirms that, none of the terms no longer retains its original meaning.

  16. Bio fertilizer Application in a Fertigation System

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Latiffah Noordin; Hoe, P.C.K.

    2011-01-01

    Bio fertilizers contain live beneficial microorganisms that provide nutrients and other benefits to crops. At present, bio fertilizers can be found in solid and liquid forms. Liquid bio fertilizer can be one of the alternatives to chemical fertilizers and pesticides. Liquid bio fertilizer is produced through culturing of microorganisms that are known to have specific capabilities in helping plant growth. However, application of bio fertilizers in the form of solution is more tedious than that of solid bio fertilizers, which can be applied directly to plants, whereas the liquid form requires several stages of preparation before it can be applied to crops. In Malaysian Nuclear Agency, a study on the distribution of liquid bio fertilizers to crops through the fertigation system has been conducted. In Malaysia, this study has not been conducted in depth, since the present fertigation system is associated to delivery of solubilised mineral fertilizers. This paper discusses the application of liquid bio fertilizers through a fertigation system. Discussions cover technical aspects of bio fertilizer preparation and its application via the said system. Tomato plant was used as test crop to determine the capability and efficiency of bio fertilizer application through the fertigation system. (author)

  17. Unraveling Dutch citizens' perceptions on the bio-based economy : The case of bioplastics, bio-jetfuels and small-scale bio-refineries

    NARCIS (Netherlands)

    Lynch, Durwin H J; Klaassen, Pim; Broerse, Jacqueline E W

    2017-01-01

    Little is known about how citizens perceive the transition towards a bio-based economy (BBE), despite the fact that they are one of the most important actors in this transition. Citizens' perceptions of bio-based innovations can support policy-makers to improve the quality of decision-making and the

  18. The BioC-BioGRID corpus: full text articles annotated for curation of protein-protein and genetic interactions.

    Science.gov (United States)

    Islamaj Dogan, Rezarta; Kim, Sun; Chatr-Aryamontri, Andrew; Chang, Christie S; Oughtred, Rose; Rust, Jennifer; Wilbur, W John; Comeau, Donald C; Dolinski, Kara; Tyers, Mike

    2017-01-01

    A great deal of information on the molecular genetics and biochemistry of model organisms has been reported in the scientific literature. However, this data is typically described in free text form and is not readily amenable to computational analyses. To this end, the BioGRID database systematically curates the biomedical literature for genetic and protein interaction data. This data is provided in a standardized computationally tractable format and includes structured annotation of experimental evidence. BioGRID curation necessarily involves substantial human effort by expert curators who must read each publication to extract the relevant information. Computational text-mining methods offer the potential to augment and accelerate manual curation. To facilitate the development of practical text-mining strategies, a new challenge was organized in BioCreative V for the BioC task, the collaborative Biocurator Assistant Task. This was a non-competitive, cooperative task in which the participants worked together to build BioC-compatible modules into an integrated pipeline to assist BioGRID curators. As an integral part of this task, a test collection of full text articles was developed that contained both biological entity annotations (gene/protein and organism/species) and molecular interaction annotations (protein-protein and genetic interactions (PPIs and GIs)). This collection, which we call the BioC-BioGRID corpus, was annotated by four BioGRID curators over three rounds of annotation and contains 120 full text articles curated in a dataset representing two major model organisms, namely budding yeast and human. The BioC-BioGRID corpus contains annotations for 6409 mentions of genes and their Entrez Gene IDs, 186 mentions of organism names and their NCBI Taxonomy IDs, 1867 mentions of PPIs and 701 annotations of PPI experimental evidence statements, 856 mentions of GIs and 399 annotations of GI evidence statements. The purpose, characteristics and possible future

  19. Three-dimensional bio-printing.

    Science.gov (United States)

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  20. Bio-Oil Analysis Laboratory Procedures | Bioenergy | NREL

    Science.gov (United States)

    Bio-Oil Analysis Laboratory Procedures Bio-Oil Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for the analysis of raw and upgraded pyrolysis bio-oils. These standard procedures have been validated and allow for reliable bio-oil analysis. Procedures Determination

  1. Bio-methane via fast pyrolysis of biomass

    International Nuclear Information System (INIS)

    Görling, Martin; Larsson, Mårten; Alvfors, Per

    2013-01-01

    Highlights: ► Pyrolysis gases can efficiently be upgraded to bio-methane. ► The integration can increase energy efficiency and provide a renewable vehicle fuel. ► The biomass to bio-methane conversion efficiency is 83% (HHV). ► The efficiency is higher compared to bio-methane produced via gasification. ► Competitive alternative to other alternatives of bio-oil upgrading. - Abstract: Bio-methane, a renewable vehicle fuel, is today produced by anaerobic digestion and a 2nd generation production route via gasification is under development. This paper proposes a poly-generation plant that produces bio-methane, bio-char and heat via fast pyrolysis of biomass. The energy and material flows for the fuel synthesis are calculated by process simulation in Aspen Plus®. The production of bio-methane and bio-char amounts to 15.5 MW and 3.7 MW, when the total inputs are 23 MW raw biomass and 1.39 MW electricity respectively (HHV basis). The results indicate an overall efficiency of 84% including high-temperature heat and the biomass to bio-methane yield amounts to 83% after allocation of the biomass input to the final products (HHV basis). The overall energy efficiency is higher for the suggested plant than for the gasification production route and is therefore a competitive route for bio-methane production

  2. Bio-threat microparticle simulants

    Science.gov (United States)

    Farquar, George Roy; Leif, Roald N

    2012-10-23

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  3. Bio-threat microparticle simulants

    Energy Technology Data Exchange (ETDEWEB)

    Farquar, George Roy; Leif, Roald

    2014-09-16

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  4. Bio-fuel production potential in Romania

    International Nuclear Information System (INIS)

    Laurentiu, F.; Silvian, F.; Dumitru, F.

    2006-01-01

    The paper is based on the ESTO Study: Techno- Economic Feasibility of Large-Scale Production of Bio-Fuels in EU-Candidate Countries. Bio-fuel production has not been taken into account significantly until now in Romania, being limited to small- scale productions of ethanol, used mostly for various industrial purposes. However the climatic conditions and the quality of the soil are very suitable in the country for development of the main crops (wheat, sugar-beet, sunflower and rape-seed) used in bio-ethanol and bio-diesel production. The paper intended to consider a pertinent discussion of the present situation in Romania's agriculture stressing on the following essential items in the estimation of bio-fuels production potential: availability of feed-stock for bio-fuel production; actual productions of bio-fuels; fuel consumption; cost assessment; SWOT approach; expected trends. Our analysis was based on specific agricultural data for the period 1996-2000. An important ethanol potential (due to wheat, sugar-beet and maize cultures), as well as bio-diesel one (due to sun-flower and rape-seed) were predicted for the period 2005-2010 which could be exploited with the support of an important financial and technological effort, mainly from EU countries

  5. Round table on bio-fuels

    International Nuclear Information System (INIS)

    2005-11-01

    The French ministers of agriculture and of industry have organized a meeting with the main French actors of agriculture, petroleum industry, car making and accessories industry and with professionals of agriculture machines to encourage the development of bio-fuels in France. This meeting took place in Paris in November 21, 2005. Its aim was to favor the partnerships between the different actors and the public authorities in order to reach the ambitious goals of the government of 5.75% of bio-fuels in fossil fuels by 2008, 7% by 2010 and 10% by 2015. The main points discussed by the participants were: the compatibility of automotive fuel standards with the objectives of bio-fuel incorporation, the development of direct incorporation of methanol in gasoline, the ethanol-ETBE partnership, the question of the lower calorific value of ETBE (ethyl tertio butyl ether), the development of new bio-fuels, the development of bio-diesel and the specific case of pure vegetal oils, and the fiscal framework of bio-fuels. This meeting has permitted to reach important improvements with 15 concrete agreements undertaken by the participants. (J.S.)

  6. Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications.

    Science.gov (United States)

    Baranwal, Anupriya; Kumar, Ashutosh; Priyadharshini, A; Oggu, Gopi Suresh; Bhatnagar, Ira; Srivastava, Ananya; Chandra, Pranjal

    2018-04-15

    Biopolymers have been serving the mankind in various ways since long. Over the last few years, these polymers have found great demand in various domains which includes bio medicine, tissue engineering, bio sensor fabrications etc. because of their excellent bio compatibility. In this context, chitosan has found global attention due to its environmentally benign nature, biocompatibility, biodegradability, and ease of availability. In last one decade or so, extensive research in active biomaterials, like chitosan has led to the development of novel delivery systems for drugs, genes, and biomolecules; and regenerative medicine. Additionally, chitosan has also witnessed its usage in functionalization of biocompatible materials, nanoparticle (NP) synthesis, and immobilization of various bio-recognition elements (BREs) to form active bio-surfaces with great ease. Keeping these aspects in mind, we have written a comprehensive review which aims to acquaint its readers with the exceptional properties of chitosan and its usage in the domain of biomedicine, tissue engineering, and biosensor fabrication. Herein, we have briefly explained various aspects of direct utilization of chitosan and then presented vivid strategies towards formulation of chitosan based nanocomposites for biomedicine, tissue engineering, and biosensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Alkaline phosphatase immobilization onto Bio-Gide(R) and Bio-Oss(R) for periodontal and bone regeneration.

    NARCIS (Netherlands)

    Oortgiesen, D.A.W.; Plachokova, A.S.; Geenen, C.; Meijer, G.J.; Walboomers, X.F.; Beucken, J.J.J.P van den; Jansen, J.B.M.J.

    2012-01-01

    AIM: To evaluate the effect of alkaline phosphatase (ALP) immobilization onto Bio-Gide((R)) in vitro, and to study the in vivo performance of ALP-enriched Bio-Gide((R)) and/or Bio-Oss((R)) with the purpose to enhance periodontal regeneration. MATERIALS AND METHODS: Alkaline phosphatase ALP was

  8. Rethinking Value in the Bio-economy: Finance, Assetization, and the Management of Value.

    Science.gov (United States)

    Birch, Kean

    2017-05-01

    Current debates in science and technology studies emphasize that the bio-economy-or, the articulation of capitalism and biotechnology-is built on notions of commodity production, commodification, and materiality, emphasizing that it is possible to derive value from body parts, molecular and cellular tissues, biological processes, and so on. What is missing from these perspectives, however, is consideration of the political-economic actors, knowledges, and practices involved in the creation and management of value. As part of a rethinking of value in the bio-economy, this article analyzes three key political-economic processes: financialization, capitalization, and assetization. In doing so, it argues that value is managed as part of a series of valuation practices, it is not inherent in biological materialities.

  9. Negated bio-events: analysis and identification

    Science.gov (United States)

    2013-01-01

    Background Negation occurs frequently in scientific literature, especially in biomedical literature. It has previously been reported that around 13% of sentences found in biomedical research articles contain negation. Historically, the main motivation for identifying negated events has been to ensure their exclusion from lists of extracted interactions. However, recently, there has been a growing interest in negative results, which has resulted in negation detection being identified as a key challenge in biomedical relation extraction. In this article, we focus on the problem of identifying negated bio-events, given gold standard event annotations. Results We have conducted a detailed analysis of three open access bio-event corpora containing negation information (i.e., GENIA Event, BioInfer and BioNLP’09 ST), and have identified the main types of negated bio-events. We have analysed the key aspects of a machine learning solution to the problem of detecting negated events, including selection of negation cues, feature engineering and the choice of learning algorithm. Combining the best solutions for each aspect of the problem, we propose a novel framework for the identification of negated bio-events. We have evaluated our system on each of the three open access corpora mentioned above. The performance of the system significantly surpasses the best results previously reported on the BioNLP’09 ST corpus, and achieves even better results on the GENIA Event and BioInfer corpora, both of which contain more varied and complex events. Conclusions Recently, in the field of biomedical text mining, the development and enhancement of event-based systems has received significant interest. The ability to identify negated events is a key performance element for these systems. We have conducted the first detailed study on the analysis and identification of negated bio-events. Our proposed framework can be integrated with state-of-the-art event extraction systems. The

  10. Bio-oils and other bio fuels used in heat- and power generation; Flytande biobraenslen foer el- och vaermeproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Sandgren, Annamaria; Ekdahl, Emma; Sernhed, Kerstin; Lindstroem, Erica

    2010-05-15

    The purpose of this study was to assemble and disseminate knowledge about bio-oils and other bio fuels which are used for heat- and power generation or liquid bio fuels/oils that may become interesting in the future. One aim of this study was to give an updated picture of the Swedish market for bio-oils and to provide an overview of practical experience on the usage of bio-oils in the Swedish heat and power industry. In order to show a green profile, bio-oils can be used in the heat and power generation. However, not all bio-oils can be viewed as climate friendly. Some production of bio-oils may actually - if a lifecycle perspective is considered - lead to increased emissions of greenhouse gases, and there are also ethical issues that need to be considered. The data collection was carried out in three different fields. The objective of the first part was to create an overview of the Swedish market for liquid bio fuels/oils for heat and power production. The second part of the study aimed to clarify the issues surrounding environmental and ethical issues associated with the use of different bio-oils. A selection of oil crops for a closer study was made based on production volume (soybean, palm oil and rapeseed) and expected future potential (jatropha). This part of the study was based on a literature review. In the third part of the study technical and practical experiences from using bio-oils in heat and power production were studied. The interviews made with purchasing managers in the second part gave valuable information on which utilities would be the most interesting to interview for the study of technical and practical experiences, where interviews were carried out with persons familiar with the daily operation of the plant. The use of liquid bio fuels was about 4.3 % of total fuel use in Swedish district heating production in 2007 (1.2 % pine oil and 3.0 % other bio-oil). In other words, it is mainly bio-oils that have been used and not other types of liquid

  11. Bio-oils and other bio fuels used in heat- and power generation; Flytande biobraenslen foer el- och vaermeproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Sandgren, Annamaria; Ekdahl, Emma; Sernhed, Kerstin; Lindstroem, Erica

    2010-05-15

    The purpose of this study was to assemble and disseminate knowledge about bio-oils and other bio fuels which are used for heat- and power generation or liquid bio fuels/oils that may become interesting in the future. One aim of this study was to give an updated picture of the Swedish market for bio-oils and to provide an overview of practical experience on the usage of bio-oils in the Swedish heat and power industry. In order to show a green profile, bio-oils can be used in the heat and power generation. However, not all bio-oils can be viewed as climate friendly. Some production of bio-oils may actually - if a lifecycle perspective is considered - lead to increased emissions of greenhouse gases, and there are also ethical issues that need to be considered. The data collection was carried out in three different fields. The objective of the first part was to create an overview of the Swedish market for liquid bio fuels/oils for heat and power production. The second part of the study aimed to clarify the issues surrounding environmental and ethical issues associated with the use of different bio-oils. A selection of oil crops for a closer study was made based on production volume (soybean, palm oil and rapeseed) and expected future potential (jatropha). This part of the study was based on a literature review. In the third part of the study technical and practical experiences from using bio-oils in heat and power production were studied. The interviews made with purchasing managers in the second part gave valuable information on which utilities would be the most interesting to interview for the study of technical and practical experiences, where interviews were carried out with persons familiar with the daily operation of the plant. The use of liquid bio fuels was about 4.3 % of total fuel use in Swedish district heating production in 2007 (1.2 % pine oil and 3.0 % other bio-oil). In other words, it is mainly bio-oils that have been used and not other types of liquid

  12. PBPK Modeling - A Predictive, Eco-Friendly, Bio-Waiver Tool for Drug Research.

    Science.gov (United States)

    De, Baishakhi; Bhandari, Koushik; Mukherjee, Ranjan; Katakam, Prakash; Adiki, Shanta K; Gundamaraju, Rohit; Mitra, Analava

    2017-01-01

    The world has witnessed growing complexities in disease scenario influenced by the drastic changes in host-pathogen- environment triadic relation. Pharmaceutical R&Ds are in constant search of novel therapeutic entities to hasten transition of drug molecules from lab bench to patient bedside. Extensive animal studies and human pharmacokinetics are still the "gold standard" in investigational new drug research and bio-equivalency studies. Apart from cost, time and ethical issues on animal experimentation, burning questions arise relating to ecological disturbances, environmental hazards and biodiversity issues. Grave concerns arises when the adverse outcomes of continued studies on one particular disease on environment gives rise to several other pathogenic agents finally complicating the total scenario. Thus Pharma R&Ds face a challenge to develop bio-waiver protocols. Lead optimization, drug candidate selection with favorable pharmacokinetics and pharmacodynamics, toxicity assessment are vital steps in drug development. Simulation tools like Gastro Plus™, PK Sim®, SimCyp find applications for the purpose. Advanced technologies like organ-on-a chip or human-on-a chip where a 3D representation of human organs and systems can mimic the related processes and activities, thereby linking them to major features of human biology can be successfully incorporated in the drug development tool box. PBPK provides the State of Art to serve as an optional of animal experimentation. PBPK models can successfully bypass bio-equivalency studies, predict bioavailability, drug interactions and on hyphenation with in vitro-in vivo correlation can be extrapolated to humans thus serving as bio-waiver. PBPK can serve as an eco-friendly bio-waiver predictive tool in drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Bio-Chemicals Derived from Waste: Building on the Concept of a Bio-Refinery

    International Nuclear Information System (INIS)

    Habib, M.; Habib, U.; Khan, A.U.; Rehman, Z.U.; Zeb, A.; Moeed, A.; Pasha, M.K.; Memon, A.R.

    2013-01-01

    The work presented here has looked into the thermal-conversion of wheat and barley spent grains (SG). Wheat fermentation was carried in the laboratory to get a mashed product while barley grain residues were sourced from a local brewing company. Pyrolysis carried at 460, 520 and 540 Degree C at ambient conditions of pressure in a bench scale fluidized bed reactor resulted in producing bio-oil, charcoal and non-condensable gases. These products were characterized by using the Gas Chromatography Mass Spectrometry (GC-MS), Differential Thermo-glavemetric Analysis (DTG), Elemental Analyzer (E.A) and a Bomb Calorimeter. The final pyrolysis product analysis revealed that the bio-oil production yields and Higher Heating Value (HHV) largely depended on the pyrolysis temperature and the sample type. In comparison with original raw grain samples, the analysis of thermally treated (pyrolysis) spent grains revealed the presence of high carbon and low oxygen contents. Results gathered in this work have shown that high bio-crude-oil production yields can be obtained at 520 Degree C (53 and 37wt percentage bio-oil from wheat and barley SG). Pyrolysis of wheat and barley SG resulted in giving a Higher Heating Value (HHV) of 21.80 and 21.86 MJ/kg at 540 and 460 Degree C, which is considerably more in comparison to their virgin counterparts. This suggested route thus has a potential for further up-gradation of waste bio-mass for use as an intermediate fuel or as a raw material source for producing other bio-chemicals. (author)

  14. Safety Aspects of Bio-Based Nanomaterials.

    Science.gov (United States)

    Catalán, Julia; Norppa, Hannu

    2017-12-01

    Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi-cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  15. BioCMOS Interfaces and Co-Design

    CERN Document Server

    Carrara, Sandro

    2013-01-01

    The application of CMOS circuits and ASIC VLSI systems to problems in medicine and system biology has led to the emergence of Bio/CMOS Interfaces and Co-Design as an exciting and rapidly growing area of research. The mutual inter-relationships between VLSI-CMOS design and the biophysics of molecules interfacing with silicon and/or onto metals has led to the emergence of the interdisciplinary engineering approach to Bio/CMOS interfaces. This new approach, facilitated by 3D circuit design and nanotechnology, has resulted in new concepts and applications for VLSI systems in the bio-world. This book offers an invaluable reference to the state-of-the-art in Bio/CMOS interfaces. It describes leading-edge research in the field of CMOS design and VLSI development for applications requiring integration of biological molecules onto the chip. It provides multidisciplinary content ranging from biochemistry to CMOS design in order to address Bio/CMOS interface co-design in bio-sensing applications.

  16. Which future for aviation bio-fuels?

    International Nuclear Information System (INIS)

    Botti, Jean; Combarnous, Michel; Jarry, Bruno; Monsan, Pierre; Burzynski, Jean-Pierre; Jeuland, Nicolas; Porot, Pierre; Demoment, Pascale; Gillmann, Marc; Marchand, Philippe; Kuentzmann, Paul; Kurtsoglou, Nicolas; Lombaert-Valot, Isabelle; Pelegrin, Marc; Renvier, Jacques; Rousseau, Julien; Stadler, Thierry; Tremeau, Benoit

    2014-01-01

    This collective report proposes a detailed overview of the evolution of aviation fuels and bio-fuels from technological, regulatory and economic points of view. It also proposes a road-map for possible future evolutions, and outlines the different assessments between American and European countries regarding the predictions for the beginning of industrial production and use of bio-jet-fuel. After having recalled international objectives, an overview of European and French commitments for technological and operational advances, and a discussion of the role of bio-fuels in the carbon cycle, the report presents various technical constraints met in aircraft industry and describes the role bio-fuels may have. The next part proposes an overview of bio-fuels which are industrially produced in the world in 2013. The authors then focus on aviation bio-fuels (main production processes, thermo-chemical processes), discuss the political context, and examine obstacles, partnerships and the role of public authorities

  17. Safety Aspects of Bio-Based Nanomaterials

    Directory of Open Access Journals (Sweden)

    Julia Catalán

    2017-12-01

    Full Text Available Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi­cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  18. [Current status of bio-based materials industry in China].

    Science.gov (United States)

    Diao, Xiaoqian; Weng, Yunxuan; Huang, Zhigang; Yang, Nan; Wang, Xiyuan; Zhang, Min; Jin, Yujuan

    2016-06-25

    In recent years, bio-based materials are becoming a new dominant industry leading the scientific and technological innovation, and economic development of the world. We reviewed the new development of bio-based materials industry in China, analyzed the entire market of bio-based materials products comprehensively, and also stated the industry status of bio-based chemicals, such as lactic acid, 1,3-propanediol, and succinic acid; biodegradable bio-based polymers, such as co-polyester of diacid and diol, polylactic acid, carbon dioxide based copolymer, polyhydroxyalknoates, polycaprolactone, and thermoplastic bio-based plastics; non-biodegradable bio-based polymers, such as bio-based polyamide, polytrimethylene terephthalate, bio-based polyurethane, and bio-based fibers.

  19. Report on the surveys in fiscal 1999. Surveys on foundations for establishing industrial technology strategies (Strategies by fields - Bio technology field); 1999 nendo sangyo gijutsu senryaku sakutei kiban chosa hokokusho. Bun'yabetsu gijutsu senryaku (Bio technology bun'ya)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In order to deal with strengthening of competitive power in the bio-technological field and social requirements thereon, it was intended to establish target setting, ways to achieve the objectives, and technological strategies including extraction of policy problems, by combining the wisdom possessed by industries, governmental organizations, and academic world. Section 1 describes the result of the surveys on establishing technological strategies by fields. America tackles importantly with matters related to life science. Japan is strong in fermentation technologies, bio-reactors, and enzyme engineering. Japan stands nearly equal, or is slightly inferior to America in clone livestocks and bio-sensors. Japan's competitiveness is very low in such advanced technology fields as gene therapies, gene combined agricultural products, bio-agricultural chemicals, gene exploration technologies, and gene diagnosis. Section 2 describes technological strategies in four fields. To explain, the improvement in foundations to raise efficiencies in research and development and industrialization processes, strategies to place importance on such industrial fields as realizing 'wishes of people for happiness of diversified nature', the improvement of the environment in which people and societies can enjoy benefits brought about by growth of the industries, and structuring of institutions to promote industrialization of bio-technologies for the nation as a whole. (NEDO)

  20. Atomic Layer Deposition in Bio-Nanotechnology: A Brief Overview.

    Science.gov (United States)

    Bishal, Arghya K; Butt, Arman; Selvaraj, Sathees K; Joshi, Bela; Patel, Sweetu B; Huang, Su; Yang, Bin; Shukohfar, Tolou; Sukotjo, Cortino; Takoudis, Christos G

    2015-01-01

    Atomic layer deposition (ALD) is a technique increasingly used in nanotechnology and ultrathin film deposition; it is ideal for films in the nanometer and Angstrom length scales. ALD can effectively be used to modify the surface chemistry and functionalization of engineering-related and biologically important surfaces. It can also be used to alter the mechanical, electrical, chemical, and other properties of materials that are increasingly used in biomedical engineering and biological sciences. ALD is a relatively new technique for optimizing materials for use in bio-nanotechnology. Here, after a brief review of the more widely used modes of ALD and a few of its applications in biotechnology, selected results that show the potential of ALD in bio-nanotechnology are presented. ALD seems to be a promising means for tuning the hydrophilicity/hydrophobicity characteristics of biomedical surfaces, forming conformal ultrathin coatings with desirable properties on biomedical substrates with a high aspect ratio, tuning the antibacterial properties of substrate surfaces of interest, and yielding multifunctional biomaterials for medical implants and other devices.

  1. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.

    Science.gov (United States)

    Aboulkas, A; Hammani, H; El Achaby, M; Bilal, E; Barakat, A; El Harfi, K

    2017-11-01

    The aim of the present work is to develop processes for the production of bio-oil and bio-char from algae waste using the pyrolysis at controlled conditions. The pyrolysis was carried out at different temperatures 400-600°C and different heating rates 5-50°C/min. The algal waste, bio-oil and bio-char were successfully characterized using Elemental analysis, Chemical composition, TGA, FTIR, 1 H NMR, GC-MS and SEM. At a temperature of 500°C and a heating rate of 10°C/min, the maximum yield of bio-oil and bio-char was found to be 24.10 and 44.01wt%, respectively, which was found to be strongly influenced by the temperature variation, and weakly affected by the heating rate variation. Results show that the bio-oil cannot be used as bio-fuel, but can be used as a source of value-added chemicals. On the other hand, the bio-char is a promising candidate for solid fuel applications and for the production of carbon materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Bio-inspired computation in telecommunications

    CERN Document Server

    Yang, Xin-She; Ting, TO

    2015-01-01

    Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

  3. AFOSR International Science Program Office

    Science.gov (United States)

    2013-03-04

    S&T community. What: Biotechnology I f ti S i 7 Power & Energy *Limited direct engagement China n orma on c ences Physical Sciences Singapore...desert, geothermal activity, and Antarctica) provide unique variety for bio studies. Abundant mineral resources. Why: 8th Largest GPD and growing

  4. Bio-Organic Reaction Animations (BioORA): Student Performance, Student Perceptions, and Instructor Feedback

    Science.gov (United States)

    Gunersel, Adalet Baris; Fleming, Steven

    2014-01-01

    Research shows that computer animations are especially helpful in fields such as chemistry and in this mixed-methods study, we investigate the educational effectiveness of Bio-Organic Reaction Animations (BioORA), a 3-D software, in four undergraduate biochemistry classes at different universities. Statistically significant findings indicate that…

  5. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char.

    Science.gov (United States)

    Leng, Lijian; Yuan, Xingzhong; Shao, Jianguang; Huang, Huajun; Wang, Hou; Li, Hui; Chen, Xiaohong; Zeng, Guangming

    2016-01-01

    Demetalization of sewage sludge (SS) by sequential extraction before liquefaction was implemented to produce cleaner bio-char and bio-oil. Demetalization steps 1 and 2 did not cause much organic matter loss on SS, and thus the bio-oil and bio-char yields and the compositions of bio-oils were also not affected significantly. However, the demetalization procedures resulted in the production of cleaner bio-chars and bio-oils. The total concentrations and the acid soluble/exchangeable fraction (F1 fraction, the most toxic heavy metal fraction) of heavy metals (Cu, Cr, Pb, Zn, and Cd) in these products were significantly reduced and the environmental risks of these products were also relived considerably compared with those produced from raw SS, respectively. Additionally, these bio-oils had less heavy fractions. Demetalization processes with removal of F1 and F2 fractions of heavy metals would benefit the production of cleaner bio-char and bio-oil by liquefaction of heavy metal abundant biomass like SS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. BioVLAB-MMIA: a cloud environment for microRNA and mRNA integrated analysis (MMIA) on Amazon EC2.

    Science.gov (United States)

    Lee, Hyungro; Yang, Youngik; Chae, Heejoon; Nam, Seungyoon; Choi, Donghoon; Tangchaisin, Patanachai; Herath, Chathura; Marru, Suresh; Nephew, Kenneth P; Kim, Sun

    2012-09-01

    MicroRNAs, by regulating the expression of hundreds of target genes, play critical roles in developmental biology and the etiology of numerous diseases, including cancer. As a vast amount of microRNA expression profile data are now publicly available, the integration of microRNA expression data sets with gene expression profiles is a key research problem in life science research. However, the ability to conduct genome-wide microRNA-mRNA (gene) integration currently requires sophisticated, high-end informatics tools, significant expertise in bioinformatics and computer science to carry out the complex integration analysis. In addition, increased computing infrastructure capabilities are essential in order to accommodate large data sets. In this study, we have extended the BioVLAB cloud workbench to develop an environment for the integrated analysis of microRNA and mRNA expression data, named BioVLAB-MMIA. The workbench facilitates computations on the Amazon EC2 and S3 resources orchestrated by the XBaya Workflow Suite. The advantages of BioVLAB-MMIA over the web-based MMIA system include: 1) readily expanded as new computational tools become available; 2) easily modifiable by re-configuring graphic icons in the workflow; 3) on-demand cloud computing resources can be used on an "as needed" basis; 4) distributed orchestration supports complex and long running workflows asynchronously. We believe that BioVLAB-MMIA will be an easy-to-use computing environment for researchers who plan to perform genome-wide microRNA-mRNA (gene) integrated analysis tasks.

  7. Bio gasification of industrial bio waste and sewage sludge-management of biogas quality

    Energy Technology Data Exchange (ETDEWEB)

    Kymalainen, M.; Lahde, K.; Kaarnakoski, M.; Pirttijarvi, T.; Arnold, M.; Kurola, J.; Kautola, H.

    2009-07-01

    Bio gasification, i. e. anaerobic digestion, is a well known sustainable option for the management of organic solid wastes and sludges. the produced biogas is a valuable bio fuel to replace fossil fuels in different technical applications (like heating, electricity, transport fuel generation) which in turn determine its quality requirements. (Author)

  8. Understanding bio-economics

    OpenAIRE

    Patel, M.K.

    2008-01-01

    New plants for production of bio-based fuels, chemicals or plastics are being set up at an accelerating pace. However, this transition towards bio-based fuels, feedstocks and chemicals has not come without consequences. Increased demand has pushed up prices of key agricultural products such as maize and corn with the result that consumers - especially those in low income areas - have reacted with concern and protest. At the same time, environmental research institutes and lobby groups - and n...

  9. BioFET-SIM

    DEFF Research Database (Denmark)

    Hediger, M. R.; Martinez, K. L.; Nygård, J.

    2013-01-01

    Biosensors based on nanowire field effect transistor (FET) have received much attention in recent years as a way to achieve ultra-sensitive and label-free sensing of molecules of biological interest. The BioFET-SIM computer model permits the analysis and interpretation of experimental sensor...... signals through its web-based interface www.biofetsim.org. The model also allows for predictions of the effects of changes in the experimental setup on the sensor signal. After an introduction to nanowire-based FET biosensors, this chapter reviews the theoretical basis of BioFET-SIM models describing both...... single and multiple charges on the analyte. Afterwards the usage of the interface and its relative command line version is briefly shown. Finally, possible applications of the BioFET-SIM model are presented. Among the possible uses of the interface, the effects on the predicted signal of pH, buffer ionic...

  10. Building a bio-based industry in the Middle East through harnessing the potential of the Red Sea biodiversity

    DEFF Research Database (Denmark)

    Nielsen, Jens; Archer, John; Essack, Magbubah

    2017-01-01

    , represents a remarkable source of biodiversity that can be geared towards economical and sustainable bioproduction processes in the local area and can be competitive in the international bio-based economy. Recent bioprospecting studies, conducted by the King Abdullah University of Science and Technology...

  11. Bio digester : anaerobic methanogenesis

    NARCIS (Netherlands)

    Bullema, Marten; Hulzen, Hans; Keizer, Melvin; Pruisscher, Gerlof; Smint, Martin; Vincent, Helene

    2014-01-01

    As part of the theme 13 and 14, our group have to realize a project in the field of the renewable energy. This project consist of the design of a bio-digester for the canteen of Zernikeplein. Gert Hofstede is our client. To produce energy, a bio-digester uses the anaerobic digestion, which is made

  12. Bio energy - Environment, technique and market

    International Nuclear Information System (INIS)

    Hohle, Erik Eid

    2001-01-01

    Leading abstract. In this book, a group of experts discusses everything about the use of bio fuels, from the briquettes of dry alder used in automobile gas generators during World War II to the most advanced present-day use. The chapters are: (1) Energy and society, (2) Production of biomass, (3) Bio fuel - properties and production, (4) Bio fuel - conversion and use, (5) Environment and environmental engineering, (6) Economy and planning and (7) Bio energy in the energy system of the future. There is a list of literature and a glossary at the end of the book

  13. Bio-slurry as fertilizer : is bio-slurry from household digesters a better fertilizer than manure? : a literature review

    NARCIS (Netherlands)

    Bonten, L.T.C.; Zwart, K.B.; Rietra, R.P.J.J.; Postma, R.; Haas, de M.J.G.; Nysingh, S.L.

    2014-01-01

    In many developing countries manure is anaerobically digested to produce biogas. The residue of manure digestion, bio-slurry, can be used as fertilizer for crop production and aquaculture. This study compared bio-slurry and manure as fertilizers. Nutrients in bio-slurry, especially nitrogen, are

  14. Limits to the potential of bio-fuels and bio-sequestration of carbon

    International Nuclear Information System (INIS)

    Pearman, Graeme I.

    2013-01-01

    This document examines bio-physical limits of bio-fuels and bio-sequestration of carbon by examining available solar radiation and observed efficiencies with which natural ecosystems and agricultural systems convert that energy to biomass. It compares these energy/carbon exchanges with national levels of energy use and carbon emissions for Australia, Brazil, China, Japan, Republic of Korea, New Zealand, Papua New Guinea, Singapore, Sweden, United Kingdom and United States. Globally primary energy consumption (related carbon emissions) is currently equivalent to ∼0.06% of the incident solar energy, and 43% of the energy (carbon) captured by photosynthesis. The nations fall into three categories. Those with primary energy consumption that is: 1–10% (Japan, Korea and Singapore); ∼0.1% (China, UK and the US) and; 0.1–0.01% (Australia, Brazil, Papua New Guinea, New Zealand and Sweden) of incident solar radiation. The percentage of energy captured in biomass follows this pattern, but generally lower by ∼3 orders of magnitude. The energy content of traded wheat, corn and rice represents conversion efficiencies of solar radiation of 0.08–0.17% and for sugar close to 1%, ignoring energy use in production and conversion of biomass to fuels. The study implies that bio-fuels or bio-sequestration can only be a small part of an inclusive portfolio of actions towards a low carbon future and minimised net emissions of carbon to the atmosphere. - Highlights: • Global energy consumption is ∼0.06% of solar; 43% of net primary production. • 11 nations studied fall into 3 groups: consumption/solar=1–10%; ∼0.1%; 0.1–0.01%. • % of energy captured in biomass is lower by ∼3 orders of magnitude. • Crops and natural ecosystems capture 0.1–0.3% and sugar 1% of solar energy. • Significant bio-energy/carbon sequestration via biomass is unrealistic

  15. Report on the surveys in fiscal 1999. Surveys on foundations for establishing industrial technology strategies (Strategies by fields - Bio technology field); 1999 nendo sangyo gijutsu senryaku sakutei kiban chosa hokokusho. Bun'yabetsu gijutsu senryaku (Bio technology bun'ya)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In order to deal with strengthening of competitive power in the bio-technological field and social requirements thereon, it was intended to establish target setting, ways to achieve the objectives, and technological strategies including extraction of policy problems, by combining the wisdom possessed by industries, governmental organizations, and academic world. Section 1 describes the result of the surveys on establishing technological strategies by fields. America tackles importantly with matters related to life science. Japan is strong in fermentation technologies, bio-reactors, and enzyme engineering. Japan stands nearly equal, or is slightly inferior to America in clone livestocks and bio-sensors. Japan's competitiveness is very low in such advanced technology fields as gene therapies, gene combined agricultural products, bio-agricultural chemicals, gene exploration technologies, and gene diagnosis. Section 2 describes technological strategies in four fields. To explain, the improvement in foundations to raise efficiencies in research and development and industrialization processes, strategies to place importance on such industrial fields as realizing 'wishes of people for happiness of diversified nature', the improvement of the environment in which people and societies can enjoy benefits brought about by growth of the industries, and structuring of institutions to promote industrialization of bio-technologies for the nation as a whole. (NEDO)

  16. Hyper bio assembler for 3D cellular systems

    CERN Document Server

    Arai, Fumihito; Yamato, Masayuki

    2015-01-01

    Hyper Bio Assembler for Cellular Systems is the first book to present a new methodology for measuring and separating target cells at high speed and constructing 3D cellular systems in vitro. This book represents a valuable resource for biologists, biophysicists and robotic engineers, as well as researchers interested in this new frontier area, offering a better understanding of the measurement, separation, assembly, analysis and synthesis of complex biological tissue, and of the medical applications of these technologies. This book is the outcome of the new academic fields of the Ministry of Education, Culture, Sports, Science and Technology’s Grant-in-Aid for Scientific Research in Japan.

  17. BioDynaMo: Biological simulation in the cloud

    CERN Multimedia

    CERN. Geneva; Hesam, Ahmad Siar

    2017-01-01

    Besides its traditional joint R&D activities between CERN and industry, CERN openlab runs an extensive programme of knowledge sharing projects. The goal is to understand what technologies and skills from the HEP community can be applied in other sciences and conversely if any ideas from other research communities can be used to support the HEP computing and data infrastructure. Today the main focus of this programme is to take part in defining the next generation of distributed data analysis and computing platforms, exploiting the flexibility of cloud infrastructures, common sets of tools and the recent trends in machine learning. This talk is the first part of a two-part series where we highlight the current collaborations in life science and medical research, following the recently approved CERN "Strategy for Knowledge Transfer for the Benefit of Medical Applications". We present BioDynaMo, a platform to simulate the growth and development of tissues starting from single cells. Addressing ambitious res...

  18. 8th International Conference on Bio-Inspired Computing : Theories and Applications

    CERN Document Server

    Pan, Linqiang; Fang, Xianwen

    2013-01-01

    International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA) is one of the flagship conferences on Bio-Computing, bringing together the world’s leading scientists from different areas of Natural Computing. Since 2006, the conferences have taken place at Wuhan (2006), Zhengzhou (2007), Adelaide (2008), Beijing (2009), Liverpool & Changsha (2010), Malaysia (2011) and India (2012). Following the successes of previous events, the 8th conference is organized and hosted by Anhui University of Science and Technology in China. This conference aims to provide a high-level international forum that researchers with different backgrounds and who are working in the related areas can use to present their latest results and exchange ideas. Additionally, the growing trend in Emergent Systems has resulted in the inclusion of two other closely related fields in the BIC-TA 2013 event, namely Complex Systems and Computational Neuroscience. These proceedings are intended for researchers in the fiel...

  19. [Preface for special issue on bio-based materials (2016)].

    Science.gov (United States)

    Weng, Yunxuan

    2016-06-25

    Bio-based materials are new materials or chemicals with renewable biomass as raw materials such as grain, legume, straw, bamboo and wood powder. This class of materials includes bio-based polymer, biobased fiber, glycotechnology products, biobased rubber and plastics produced by biomass thermoplastic processing and basic biobased chemicals, for instance, bio-alcohols, organic acids, alkanes, and alkenes, obtained by bio-synthesis, bio-processing and bio-refinery. Owing to its environmental friendly and resource conservation, bio-based materials are becoming a new dominant industry taking the lead in the world scientific and technological innovation and economic development. An overview of bio-based materials development is reported in this special issue, and the industrial status and research progress of the following aspects, including biobased fiber, polyhydroxyalkanoates, biodegradable mulching film, bio-based polyamide, protein based biomedical materials, bio-based polyurethane, and modification and processing of poly(lactic acid), are introduced.

  20. Bio-fuels for the gas turbine: A review

    International Nuclear Information System (INIS)

    Gupta, K.K.; Rehman, A.; Sarviya, R.M.

    2010-01-01

    Due to depletion of fossil fuel, bio-fuels have generated a significant interest as an alternative fuel for the future. The use of bio-fuels to fuel gas turbine seems a viable solution for the problems of decreasing fossil-fuel reserves and environmental concerns. Bio-fuels are alternative fuels, made from renewable sources and having environmental benefit. In recent years, the desire for energy independence, foreseen depletion of nonrenewable fuel resources, fluctuating petroleum fuel costs, the necessity of stimulating agriculture based economy, and the reality of climate change have created an interest in the development of bio-fuels. The application of bio-fuels in automobiles and heating applications is increasing day by day. Therefore the use of these fuels in gas turbines would extend this application to aviation field. The impact of costly petroleum-based aviation fuel on the environment is harmful. So the development of alternative fuels in aviation is important and useful. The use of liquid and gaseous fuels from biomass will help to fulfill the Kyoto targets concerning global warming emissions. In addition, to reduce exhaust emission waste gases and syngas, etc., could be used as a potential gas turbine fuel. The term bio-fuel is referred to alternative fuel which is produced from biomass. Such fuels include bio-diesel, bio-ethanol, bio-methanol, pyrolysis oil, biogas, synthetic gas (dimethyl ether), hydrogen, etc. The bio-ethanol and bio-methanol are petrol additive/substitute. Bio-diesel is an environment friendly alternative liquid fuel for the diesel/aviation fuel. The gas turbine develops steady flame during its combustion; this feature gives a flexibility to use alternative fuels. Therefore so the use of different bio-fuels in gas turbine has been investigated by a good number of researchers. The suitability and modifications in the existing systems are also recommended. (author)

  1. High-pressure studies of superconductivity in BiO0. 75F0. 25BiS2

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 6. High-pressure studies of superconductivity in BiO 0.75 F 0.25 BiS 2. ZEBA HAQUE GOHIL S THAKUR GANESAN KALAI SELVAN SONACHALAM ARUMUGAM L C GUPTA A K GANGULI. Volume 40 Issue 6 October 2017 pp 1121-1125 ...

  2. Tax exemption for bio fuels in Germany: is bio-ethanol really an option for climate policy?

    International Nuclear Information System (INIS)

    Henke, J.M.; Klepper, G.; Schmitz, N.

    2005-01-01

    In 2002 the German Parliament decided to exempt biofuels from the gasoline tax to increase their competitiveness compared to conventional gasoline. The policy to promote biofuels is being justified by their allegedly positive effects on climate, energy, and agricultural policy goals. An increased use of biofuels would contribute to sustainable development by reducing greenhouse-gas emissions and the use of non-renewable resources. The paper takes a closer look at bio-ethanol as a substitute for gasoline. It analyzes the underlying basic German, European, and worldwide conditions that provide the setting for the production and promotion of biofuels. It is shown that the production of bio-ethanol in Germany is not competitive and that imports are likely to increase. Using energy and greenhouse-gas balances we then demonstrate that the promotion and a possible increased use of bio-ethanol to reduce greenhouse-gas emissions are economically inefficient and that there are preferred alternative strategies. In addition, scenarios of the future development of the bio-ethanol market are derived from a model that allows for variations in all decisive variables and reflects the entire production and trade chain of bio-ethanol, from the agricultural production of wheat and sugar beet to the consumption of bio-ethanol in the fuel sector. (author)

  3. Tax exemption for bio fuels in Germany: is bio-ethanol really an option for climate policy?

    Energy Technology Data Exchange (ETDEWEB)

    Henke, J.M.; Klepper, G. [Kiel Institute for World Economics, Kiel (Germany); Schmitz, N. [Meo Consulting Team, Koeln (Germany)

    2005-11-01

    In 2002 the German Parliament decided to exempt biofuels from the gasoline tax to increase their competitiveness compared to conventional gasoline. The policy to promote biofuels is being justified by their allegedly positive effects on climate, energy, and agricultural policy goals. An increased use of biofuels would contribute to sustainable development by reducing greenhouse-gas emissions and the use of non-renewable resources. The paper takes a closer look at bio-ethanol as a substitute for gasoline. It analyzes the underlying basic German, European, and worldwide conditions that provide the setting for the production and promotion of biofuels. It is shown that the production of bio-ethanol in Germany is not competitive and that imports are likely to increase. Using energy and greenhouse-gas balances we then demonstrate that the promotion and a possible increased use of bio-ethanol to reduce greenhouse-gas emissions are economically inefficient and that there are preferred alternative strategies. In addition, scenarios of the future development of the bio-ethanol market are derived from a model that allows for variations in all decisive variables and reflects the entire production and trade chain of bio-ethanol, from the agricultural production of wheat and sugar beet to the consumption of bio-ethanol in the fuel sector. (author)

  4. Integrating systems approaches into pharmaceutical sciences.

    NARCIS (Netherlands)

    Westerhoff, H.V.; Mosekilde, E.; Noe, C.; Clemensen, A.M.

    2008-01-01

    During the first week of December 2007, the European Federation for Pharmaceutical Sciences (EUFEPS) and BioSim, the major European Network of Excellence on Systems Biology, held a challenging conference on the use of mathematical models in the drug development process. More precisely, the purpose

  5. Return on Investment in Public Relations: A critique of concepts used by practitioners from the perspectives of communication and management sciences

    OpenAIRE

    Watson, Tom; Zerfass, Ansgar

    2011-01-01

    Return on Investment (ROI) is a term commonly and non-specifically used by public relations practitioners when discussing the value to be created from communication activities. It mimics business language, particularly from business administration and financial management, but does not figure widely in academic discourse (Watson, 2005). \\ud The Institute for Public Relations [now CIPR] undertook a review of ROI practice in the United Kingdom (IPR/CDF 2004) and Likely, Rockland and Weiner (200...

  6. Hair flow sensors: from bio-inspiration to bio-mimicking—a review

    International Nuclear Information System (INIS)

    Tao, Junliang; Yu, Xiong

    2012-01-01

    A great many living beings, such as aquatics and arthropods, are equipped with highly sensitive flow sensors to help them survive in challenging environments. These sensors are excellent sources of inspiration for developing application-driven artificial flow sensors with high sensitivity and performance. This paper reviews the bio-inspirations on flow sensing in nature and the bio-mimicking efforts to emulate such sensing mechanisms in recent years. The natural flow sensing systems in aquatics and arthropods are reviewed to highlight inspirations at multiple levels such as morphology, sensing mechanism and information processing. Biomimetic hair flow sensors based on different sensing mechanisms and fabrication technologies are also reviewed to capture the recent accomplishments and to point out areas where further progress is necessary. Biomimetic flow sensors are still in their early stages. Further efforts are required to unveil the sensing mechanisms in the natural biological systems and to achieve multi-level bio-mimicking of the natural system to develop their artificial counterparts. (topical review)

  7. Green bio-oil extraction for oil crops

    Science.gov (United States)

    Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.

    2016-06-01

    The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.

  8. Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists.

    Science.gov (United States)

    Tauler, Roma; Parastar, Hadi

    2018-03-23

    This review aims to demonstrate abilities to analyze Big (Bio)Chemical Data (BBCD) with multivariate chemometric methods and to show some of the more important challenges of modern analytical researches. In this review, the capabilities and versatility of chemometric methods will be discussed in light of the BBCD challenges that are being encountered in chromatographic, spectroscopic and hyperspectral imaging measurements, with an emphasis on their application to omics sciences. In addition, insights and perspectives on how to address the analysis of BBCD are provided along with a discussion of the procedures necessary to obtain more reliable qualitative and quantitative results. In this review, the importance of Big Data and of their relevance to (bio)chemistry are first discussed. Then, analytical tools which can produce BBCD are presented as well as some basics needed to understand prospects and limitations of chemometric techniques when they are applied to BBCD are given. Finally, the significance of the combination of chemometric approaches with BBCD analysis in different chemical disciplines is highlighted with some examples. In this paper, we have tried to cover some of the applications of big data analysis in the (bio)chemistry field. However, this coverage is not extensive covering everything done in the field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Status and potential of bio-methane fuel

    International Nuclear Information System (INIS)

    2008-01-01

    This document first indicates and describes the various bio-methane production processes which can be implemented on a short term (use of organic wastes or effluents), on a medium term (from energetic crops) and on a longer term (gasification). It discusses and assesses the potential production of bio-methane fuel from different sources and processes. It describes the steps of the production of bio-methane fuel from biogas, with notably biogas refinement to produce bio-methane through three processes (de-carbonation, desulfurization, dehydration). Cost productions are assessed. Expected technology advances are evoked. Finally, the authors outline the contribution of bio-methane in the limitation of greenhouse gas emissions in the transport sector

  10. Bio-Conjugates for Nanoscale Applications

    DEFF Research Database (Denmark)

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...

  11. Using an Untapped Resource: Expanding the Role of the Student Worker at the Bio-Medical Library

    Science.gov (United States)

    Aho, Melissa K.; Beschnett, Anne M.; Reimer, Emily Y.

    2010-01-01

    Student workers have always been a traditional and valuable component to the smooth running of many academic health sciences libraries. However, in recent years many libraries have redefined student workers' roles to extend beyond their traditional scope due to a range of factors, such as loss of staff and budget cutbacks. The Bio-Medical Library…

  12. A new bio-active glass ceramic

    International Nuclear Information System (INIS)

    Shamim, A.; Arif, I.; Suleman, M.; Hussain, K.; Shah, W.A.

    1995-01-01

    Since 1960 fine ceramics such as alumina have been used side by side with metallic materials for bone and joint replacement. They have high mechanical strength and are free from corrosion problem faced by metals. However they don't bond to the natural living bone and hence are called bio-inactive. This was followed by the development of bio-active glasses and glass-ceramics which bond to the natural bone but have low mechanical strength. In the present work a new bio-active glass-ceramic, based on CaO-SiO/sub 2/-P/sub 2/O/sub 3/-MgO composition, has been developed which has mechanical strength compared to that of a bio-inactive glass ceramic and also bonds strongly to the natural bone. X-ray diffraction analysis reveals wollastanite and apatite phases in the glass ceramic. A new bio-active cement has also been developed which can be used to join broken pieces of bone or by itself at a filler. (author)

  13. Bio-MTBE. A new option to fulfil biofuel quota for gasoline; Bio-MTBE. Eine neue Option zur Erfuellung der Biokraftstoffquote in Ottokraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Oliver M.; Schade, Arnd; Locher, Annette [Evonik Industries AG, Essen (Germany)

    2013-05-15

    To meet the legally required bio-fuel quota in gasoline, an alternative to the ethanol blend E10 is nowavailable for nearly one year. Evonik Industries has introduced a bio-version of methyl tert-butyl ether (MTBE), an anti-knock agent, on the market. Chemically, both products are identical, because in production methanol is exchanged for bio-methanol. Bio-methanol is produced from raw glycerine, which arises as a byproduct from biodiesel production. This makes bio-MTBE an ideal bio-fuel component as defined by the EU's Renewable Energy Directive: Fuel components made from waste and residues are ''double counted'' regarding their bio-energy content. The product is widely used in the German and Dutch markets. In both countries, bio- MTBE is legally recognized as a bio-fuel component fulfilling double counting requirements. In the meantime, also other European countries have been introducing double counting for second-generation biofuel components. The EU Commission proposed to allow components based on residual materials to be calculated fourfold in the future. Should this be the case, bio-MTBE would become significantly more valuable. (orig.)

  14. The potential of activated carbon derived from bio-char waste of bio-oil pyrolysis as adsorbent

    Directory of Open Access Journals (Sweden)

    Zulkania Ariany

    2018-01-01

    Full Text Available Activated carbon from bio-char waste of bio oil pyrolysis of mixed sugarcane bagasse and Rambutan twigs was investigated. Bio-char as by-product of bio-oil pyrolysis has potential to be good adsorbed by activating process. Bio-chars waste was activated in fixed bed reactor inside furnace without presenting oxygen. Gas N2 and CO2 were employed to drive out oxygen from the reactor and as activator, respectively. One of the best activation treatments is achieved by performing activation in different temperature and time to produce standard activated carbon. The experiment was performed at different temperatures and activation time, i.e. 800, 850, and 900° C and 80 and 120 minutes, respectively, to determine the optimal operating condition. Activated carbon was characterized by analysis of moisture content, ash content pH, and methylene blue test. The results showed that optimum activation was at 850°C and 80 minute, where activated carbon produced indicated the best adsorption capacity. The ash content and pH had significant role in resulting good activated carbon.

  15. BioSentinel

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems' (AES) BioSentinel project will develop, prototype, integrate, test, and prepare for the first spaceflight mission of a broadly...

  16. Sustainable bio-based materials: opportunities and challenges

    NARCIS (Netherlands)

    van der Meer, Yvonne

    2017-01-01

    Research in the area of bio-based materials aims to achieve breakthroughs in bio-based materials development. A novel way is presented to organise bio-based materials research with a value chain approach in which sustainability research is integrated in the research program. This research approach

  17. 3D Bio-Printing Review

    Science.gov (United States)

    Du, Xianbin

    2018-01-01

    Ultimate goal of tissue engineering is to replace pathological or necrotic body tissue or organ by artificial tissue or organ and tissue engineering is a very promising research field. 3D bio-printing is a kind of emerging technologies and a branch of tissue engineering. It has made significant progress in the past decade. 3D bio-printing can realize tissue and organ construction in vitro and has wide application in basic research and pharmacy. This paper is to make an analysis and review on 3D bio-printing from the perspectives of bioink, printing technology and technology application.

  18. Applying Nano technology to Human Health: Revolution in Biomedical Sciences

    International Nuclear Information System (INIS)

    Shrivastava, S.; Dash, D.

    2009-01-01

    Recent research on bio systems at the nano scale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, necrophorum engineering, and developing a sustainable environment. Nano bio systems research is a priority in many countries and its relevance within nano technology is expected to increase in the future. The realisation that the nano scale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nano medical research. The present review explores the significance of nano science and latest nano technologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas

  19. Bio fuels. Environment and Energy Aspects and Future Prospects

    International Nuclear Information System (INIS)

    Chiaramonti, D.; Grassi, G.; Tondi, G.; Martelli, F.

    2000-01-01

    The present work aims at describing some of the most important bio fuels (bio diesel, bio methanol, bi oethanol, bio-crude-oil). Environmental effects are also presented, as well as some cost data. Europe and USA are compared, when appropriate. The motivations for a justified and beneficial market penetration of bio fuels in urban areas are reported [it

  20. Bio-SimVerb and Bio-SimLex: wide-coverage evaluation sets of word similarity in biomedicine.

    Science.gov (United States)

    Chiu, Billy; Pyysalo, Sampo; Vulić, Ivan; Korhonen, Anna

    2018-02-05

    Word representations support a variety of Natural Language Processing (NLP) tasks. The quality of these representations is typically assessed by comparing the distances in the induced vector spaces against human similarity judgements. Whereas comprehensive evaluation resources have recently been developed for the general domain, similar resources for biomedicine currently suffer from the lack of coverage, both in terms of word types included and with respect to the semantic distinctions. Notably, verbs have been excluded, although they are essential for the interpretation of biomedical language. Further, current resources do not discern between semantic similarity and semantic relatedness, although this has been proven as an important predictor of the usefulness of word representations and their performance in downstream applications. We present two novel comprehensive resources targeting the evaluation of word representations in biomedicine. These resources, Bio-SimVerb and Bio-SimLex, address the previously mentioned problems, and can be used for evaluations of verb and noun representations respectively. In our experiments, we have computed the Pearson's correlation between performances on intrinsic and extrinsic tasks using twelve popular state-of-the-art representation models (e.g. word2vec models). The intrinsic-extrinsic correlations using our datasets are notably higher than with previous intrinsic evaluation benchmarks such as UMNSRS and MayoSRS. In addition, when evaluating representation models for their abilities to capture verb and noun semantics individually, we show a considerable variation between performances across all models. Bio-SimVerb and Bio-SimLex enable intrinsic evaluation of word representations. This evaluation can serve as a predictor of performance on various downstream tasks in the biomedical domain. The results on Bio-SimVerb and Bio-SimLex using standard word representation models highlight the importance of developing dedicated

  1. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

    Science.gov (United States)

    Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2015-01-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage. PMID:25671207

  2. Development and characterization of a new bio-nanocomposite (bio-NCP) for diagnosis and treatment of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Murillo L., E-mail: murillolongo@gmail.com [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Instituto de Biociências – Universidade Estadual Paulista – CP 510, 18618-970 Botucatu, SP (Brazil); Saeki, Margarida Juri [Instituto de Biociências – Universidade Estadual Paulista – CP 510, 18618-970 Botucatu, SP (Brazil); Telling, Mark T.F. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 OQX (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford (United Kingdom); Parra, Joao P.R.L.L. [Instituto de Biociências – Universidade Estadual Paulista – CP 510, 18618-970 Botucatu, SP (Brazil); Landsgesell, Sven [Helmholtz–Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, D-14109 Berlin (Germany); Smith, Ron I. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 OQX (United Kingdom); Bordallo, Heloisa N. [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark)

    2014-01-25

    Highlights: • We synthesized a magnetic bio-NCP with potential to be used against breast cancer. • The magnetic nanoparticles have an inverted spinel structure. • The coating with chitosan does not cause changes to the particle microstructure. • The hydration level of bio-NCP is crucial to the surface modification with apatite. • Bio-NCP with narrow size distribution and high magnetic response was obtained. -- Abstract: Breast cancer is a public health problem throughout the world. Moreover, breast cancer cells have a great affinity for hydroxyapatite, leading to a high occurrence of bone metastasis. In this work we developed a bio-nanocomposite (bio-NCP) in order to use such affinity in the diagnosis and treatment of breast cancer. The bio-NCP consists of magnetic nanoparticles of Mn and Zn ferrite inside a polymeric coating (chitosan) modified with nanocrystals of apatite. The materials were characterized with synchrotron X-ray Powder Diffraction (XPD), Time-of-Flight Neutron Powder Diffraction (NPD), Fourier Transformed Infra-red Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and magnetic measurement with a Physical Property Measurement System (PPMS). We obtained ferrite nanoparticles with a high inversion degree of the spinel structure regarding the Fe and Mn, but with all the Zn in the A site. The coating of such nanoparticles with chitosan had no notable effects to the ferrite microstructure. In addition, the polymeric surface can be easily modified with apatite nanocrystals since the hydration of the bio-NCP during synthesis can be controlled. The resulting bio-NCP presents a spherical shape with a narrow size distribution and high magnetic response at room temperature and is a very promising material for early diagnosis of breast cancer and its treatment.

  3. BioSystems

    Data.gov (United States)

    U.S. Department of Health & Human Services — The NCBI BioSystems Database provides integrated access to biological systems and their component genes, proteins, and small molecules, as well as literature...

  4. A bio-energy plant in your neighborhood. Answers to your questions; Een bio-energiecentrale bij u in de buurt. Antwoorden op uw vragen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-06-15

    This brochure is intended for municipalities and initiators and discusses the following subjects: What is a bio-energy plant?; How large is a bio-energy plant?; What do you see?; Renewable energy: clean and always available; Bio-energy: what is it? [mk]. [Dutch] De brochure is bedoeld voor gemeenten en initiatiefnemers en behandelt de volgende onderwerpen: Wat is een bio-energiecentrale?; Hoe groot is een bio-energiecentrale?; Wat neem je waar?; Duurzame energie: schoon en altijd aanwezig; Bio-energie: wat is dat?.

  5. The enhancing of Au-Ag-Te content in tellurium-bearing ore mineral by bio-oxidation-leaching

    Science.gov (United States)

    Kim, PyeongMan; Kim, HyunSoo; Myung, EunJi; Kim, YoonJung; Lee, YongBum; Park*, CheonYoung

    2015-04-01

    The purpose of this study is to enhance the content of valuable metals such as Au-Ag-Te in tellurium-bearing minerals by bio-oxidation-leaching. It was confirmed that pyrite, chalcopyrite, sphalerite and galena were produced together with tellurium-bearing minerals including hessite, sylvanite and tellurobismuthite from ore minerals and concentrates through microscopic observation and SEM/EDS analysis. In a bio-oxidation-leaching experiment, with regard to Au, Ag, Te, Cu and Fe, the changes in the amount of leaching and the content of leaching residues were compared and analyzed with each other depending on the adaptation of an indigenous microbe identified as Acidithiobacillus ferrooxidans. As a result of the experiment, the Au-Ag-Te content in tellurium-bearing ore mineral was enhanced in the order of physical oxidation leaching, physical/non-adaptive bio-oxidation-leaching and physical/adaptive biological leaching. It suggests that the bio-oxidation-leaching using microbes adapted in tellurium-bearing ore mineral can be used as a pre-treatment and a main process in a recovery process of valuable metals. "This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A2004898)"

  6. Sustainability Benefits and Challenges of Inter-Organizational Collaboration in Bio-Based Business: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Gohar Nuhoff-Isakhanyan

    2016-03-01

    Full Text Available Bio-based businesses are often considered to be sustainable. However, they are also linked to sustainability challenges such as deforestation and soil erosion. Encouraged to exploit innovative solutions and enhance sustainability, organizations engaged in bio-based activities extensively explore collaboration possibilities with external partners. The objective of this paper is to integrate the available knowledge on sustainability of inter-organisational collaborations in bio-based businesses, while considering the three aspects of sustainability: environmental, economic, and social. We collected data from three academic sources—Web of Science, Scopus, and EconLit—and conducted a systematic literature review. The results show the importance of geographical proximity and complementarity in creating sustainability benefits such as reduced emissions, reduced waste, economic synergies, and socio-economic activities. Based on the findings, we have developed a framework that illustrates sustainability benefits and challenges. Interestingly, the studies emphasize sustainability benefits more in emerging than in industrialised economies, especially relating to the social aspects of sustainability. In conclusion, although the scholars have not discussed mitigation of several sustainability challenges in bio-based businesses, such as land use conflicts, they have found evidence of vital sustainability benefits, such as energy availability, lower emissions, improved socio-economic life, and poverty reduction, which are essential in emerging economies.

  7. Bio-fuels of the first generation

    International Nuclear Information System (INIS)

    2012-04-01

    After having briefly recalled the objective of use of renewable energies and the role bio-fuels may play, this publication briefly presents various bio-fuels: bio-diesel (from colza, soybean or sunflower oil), and ethanol (from beet, sugar cane, wheat or corn). Some key data regarding bio-fuel production and use in France are briefly commented. The publication outlines strengths (a positive energy assessment, a decreased dependency on imported fossil fuels and a higher supply safety, a diversification of agriculture revenues and prospects, a reduction of greenhouse gas emissions) and weaknesses (uncertainty regarding the evolution of soil use, an environmental impact related to farming methods) of this sector. Actions undertaken by the ADEME in collaboration with other agencies and institutions are briefly overviewed

  8. Bio-methane. Challenges and technical solutions

    International Nuclear Information System (INIS)

    Blaisonneau, Laurent; Carlu, Elieta; Feuillette, Vincent

    2012-06-01

    Among the new energy sectors in development, biogas has many benefits: several valorization possibilities (bio-methane, electricity and heat), continuous production, easy storage. In Europe, and particularly in France, the bio-methane market will be in the next years a driver for the improvement of the economic, environmental and social performance of the actors of the value chain of biogas. ENEA releases a report on the current state of the bio-methane market in Europe. This publication mainly describes: An outlook of the market evolution and the corresponding stakes for the actors of this sector, the technical and economic characteristics, maturity level and specificities of each biogas upgrading process, An analysis of the French regulatory framework for bio-methane injection into the grid

  9. Bio-fuels - biohazard

    International Nuclear Information System (INIS)

    Slovak, K.

    2008-01-01

    Politicians have a clear explanation for growing commodity prices. It is all the fault of speculators. It is easy to point the finger at an imaginary enemy. It is more difficult and from the point of view of a political career suicidal to admit one's mistakes. And there are reasons for remorse. According to studies prepared by the OECD and the World Bank bio-fuels are to be blame for high food prices. The bio-fuel boom that increases the demand for agro-commodities has been created by politicians offering generous subsidies. And so farming products do not end up on the table, but in the fuel tanks of cars in the form of additives. And their only efficiency is that they make food more expensive. The first relevant indication that environmentalist tendencies in global politics have resulted in shortages and food price increases can be found in a confidential report prepared by the World Bank. Parts of the report were leaked to the media last month. According to this information growing bio-fuel production has resulted in a food price increase by 75%. The theory that this development was caused by speculators and Chinese and Indian demand received a serious blow. And the OECD report definitely contradicted the excuse used by the politicians. According to the report one of the main reasons for growing food prices are generously subsidized bio-fuels. Their share of the increase of demand for agro-commodities in 2005 -2007 was 60% according to the study. (author)

  10. Bio-mimetic Flow Control

    Science.gov (United States)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  11. Development of production technology for bio diesel fuel and feasibility test of bio diesel engine (II)

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y J; Ju, U S; Park, Y C [National Kyung Sang University (Korea, Republic of)

    1996-02-01

    At the beginning of the 21 st century two urgent tasks which our global countries would face with could be the security of the alternative energy source as a preparation against the fossil energy exhaustion and the development of the clean energy source to protect the environment from pollution. The above two problems should be solved together. The bio diesel oil which is made by methylesterfication of bio oil has very low sulfur content than does the diesel oil. Therefore, there is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. So, bio oil has been attracted with attentions as an alternative and clean energy source. Advanced countries began early to develop the bio diesel oil suitable to their respective conditions. Recently their production stage have reached to the commercial level partially. The sudden increase of energy demand followed by a rapid growth of industry and the serious situation about the environmental pollution caused by the exhaust has from diesel engine vehicles occupying 42% of distribution among all vehicles have called attention of our government to consider the importance of alternative and clean energy sources for the future on the national scale. This study is consisted of three main parts; - The development of production technology for bio diesel oil. - The development of the atomization improvement method and nozzle for high viscous vegetable oils. - Feasibility test of bio diesel engine. (author) 119 refs., 52 tabs., 88 figs.

  12. Bio-oil production from cotton stalk

    International Nuclear Information System (INIS)

    Zheng Jilu; Yi Weiming; Wang Nana

    2008-01-01

    Cotton stalk was fast pyrolyzed at temperatures between 480 deg. C and 530 deg. C in a fluidized bed, and the main product of bio-oil is obtained. The experimental result shows that the highest bio-oil yield of 55 wt% was obtained at 510 deg. C for cotton stalk. The chemical composition of the bio-oil acquired was analyzed by GC-MS, and its heat value, stability, miscibility and corrosion characteristics were determined. These results showed that the bio-oil obtained can be directly used as a fuel oil for combustion in a boiler or a furnace without any upgrading. Alternatively, the fuel can be refined to be used by vehicles. Furthermore, the energy performance of the pyrolysis process was analyzed. In the pyrolysis system used in our experiment, some improvements to former pyrolysis systems are done. Two screw feeders were used to prevent jamming the feeding system, and the condenser is equipped with some nozzles and a heat exchanger to cool quickly the cleaned hot gas into bio-oil

  13. BioProject

    Data.gov (United States)

    U.S. Department of Health & Human Services — The BioProject database provides an organizational framework to access information about research projects with links to data that have been or will be deposited...

  14. Bio-Based Polymers with Potential for Biodegradability

    Directory of Open Access Journals (Sweden)

    Thomas F. Garrison

    2016-07-01

    Full Text Available A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid (PLA, widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.

  15. The environmentally friendly technology for bio fuel production

    International Nuclear Information System (INIS)

    Bekers, M.; Danilevics, A.; Guriniece, E.; Gulbis, V.

    2003-01-01

    Full text: Bio fuel production and use have been discussed this time in EC and in Latvia as alternative energy sources. The national resources allow producing liquid fuels - bio diesel and bi oethanol from rape seeds and grain correspondingly. Liquid bio fuels can be recommended especially for auto transport in big towns to reduce the pollution of air. A system for environmentally friendly production of bio fuel from agricultural raw materials has been developed, which permit a complex utilization of byproducts an wastes for obtaining of valuable food-stuffs and industrial products, providing the agricultural production requirements and supporting with local mineral fertilizers. Such a bio fuel production includes the agricultural and industrial productions in a united biotechnological system. Production objects of system interact: the products, by-products and wastes from one object are used as raw materials, auxiliary materials or heat carriers in other system's objects. This integrated agro-industrial production system would allow the production of feeds and chemical products, along with bio fuels. In this work, a model of a system for a conventional administrative rural region is presented, exemplified with the case of Latvia. The model is developed for three forms of bio fuel production, i.e. ethanol, bio diesel and biogas as local energy source. Bio diesel is produced using ethanol as transesterifying agent of rape-seed oil fatty acids. This bio diesel is a blend of rape-seed oil fatty acid ethyl esters (REE) and consists solely from renewable raw materials. The capacity of distillery of system is 40 million litters per year and bio diesel 35000 ton. Important for agriculture is protein reach press cakes the byproduct from bio diesel production (66000 t/y). This byproduct can be exported as well. Biogas reactors of system can be used for utilization of wastes from town if necessary. Recommended bio system occupates up to 150.000 ha of agriculture lands

  16. Past, Present, and Future Production of Bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    2009-04-01

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen content (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech-nology. Researchers

  17. Bio-flex obtained from pyrolysis of biomass as fuel; Bio-flex obtido da pirolise de biomassa como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Mesa Perez, Juan Miguel; Viltre Rodriguez, Roberto Alfonso; Marin Mesa, Henry Ramon [Bioware Tecnologia, Campinas, SP (Brazil); Rocha, Jose Dilcio [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico; Samaniego, Manuel Raul Pelaez [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Planejamento de Sistemas Energeticos; Cortez, Luis Augusto Barbosa [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2006-07-01

    This paper describes the BIOWARE experience in the bio fuel production from biomass residues. Fast pyrolysis of a mixture of sugar cane trash and elephant grass carried out in a fluidized bed reactor with capacity of 200 kg/h dry feed (12% w/w). The co-products particulate charcoal, acid extract, and bio-oil were obtained. The fast pyrolysis pilot plant PPR-200 belonged to UNICAMP and is operated by BIOWARE personnel. This paper presents the chemical rote to bio-flex production (a kind of bio diesel from acid esterification) from pyrolytic carboxylic acids. Both ethanol and methanol were used as reactant but higher yields were found with methanol. (author)

  18. BioSig - An application of Octave

    OpenAIRE

    Schlögl, Alois

    2006-01-01

    BioSig is an open source software library for biomedical signal processing. Most users in the field are using Matlab; however, significant effort was undertaken to provide compatibility to Octave, too. This effort has been widely successful, only some non-critical components relying on a graphical user interface are missing. Now, installing BioSig on Octave is as easy as on Matlab. Moreover, a benchmark test based on BioSig has been developed and the benchmark results of several platforms are...

  19. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  20. Core ethical values: EuropaBio.

    Science.gov (United States)

    2002-01-01

    EuropaBio, the European Association for BioIndustries, represents 40 companies operating world wide and 14 national association (totaling around 600 small and medium-sized enterprises) involved in the research, development, testing, manufacturing, marketing, sales and distribution of biotechnology products and services in the fields of healthcare, agriculture, food and the environment.

  1. Bio-Research: About this journal

    African Journals Online (AJOL)

    Bio-Research: About this journal. Journal Home > Bio-Research: About this journal. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. People. » Contact. Policies. » Focus and ...

  2. Development of Science and Technology Parks in Poland: Opportunities for New Modes of Cooperation in the Biopharmaceutical Industry

    Directory of Open Access Journals (Sweden)

    Michal Staszkow

    2017-03-01

    Full Text Available The aim of the article is to verify the development of science and technology parks in Poland as well as the opportunities of development of new forms of cooperation with the use of science and technology parks in the bio pharmaceutical industry in Poland. The first section reviews the origins and definitions of science and technology parks in order to clarify and systematize the concepts used in existing research and practice. Subsequently, the ensuing sections discuss the evolution of science and technology parks and different organizational models of STPS. Further, the analysis centres on science and technology parks in Poland. Then the importance of science and technology parks for the development of new modes of cooperation in the bio pharmaceutical industry is elaborated upon. The paper ends with a set of implications and conclusions.

  3. Bio-based chemicals - green, but also sustainable?

    DEFF Research Database (Denmark)

    Ögmundarson, Ólafur; Herrgard, Markus; Förster, Jochen

    For almost two decades, the chemical industry has put great effort into developing bio-chemicals,among others to fight global warming caused by greenhouse gas emissions, one of the biggest threats that are faced by our society today. To facilitate a growing and versatile bio-based chemical...... production, the US Department of Energy proposed in 2004 a list of 12 building block chemicals which can either be converged through biological or chemical conversions. Moving toward more bio-based chemicals, the chemical industry does not only claim to reduce climate change impacts, but also...... that they are increasing overall sustainability in chemical production. Whether such claims are justifiable is unclear. When sustainability of bio-based polymer production is assessed, various environmental trade-offs occur that need to be considered. It is not enough to claim that a bio-chemical is sustainable...

  4. CONVERGENCE OF NANO-, BIO-, INFO-, COGNITIVE TECHNOLOGIES AND E-CULTURE

    Directory of Open Access Journals (Sweden)

    Sergey I. Rodzin

    2014-01-01

    Full Text Available The article analyzes the convergence of nano-, bio-, info- and cognitive technologies. We highlight the close relationship of such notions as “e-culture”, “consciousness”, “artificial intelligence”. Artificial intelligence technology is the meta-NBIC-complex itself. Electronic infrastructure of intellectual activity - the essence of artificial intelligence and artificial intelligence technologies play a meta-level role of NBIC- technologies, being significant for e-culture. Development of science, technology, and education suggests that in the future perhaps a radical transformation in human beings is not only the material world, but also a subjective reality. 

  5. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    Science.gov (United States)

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Electro-active bio-films: formation, characterization and mechanisms

    International Nuclear Information System (INIS)

    Parot, Sandrine

    2007-01-01

    Some bacteria, which are able to exchange electrons with a conductive material without mediator form on conductive surfaces electro-active bio-films. This bacterial property has been recently discovered (2001). Objectives of this work are to develop electro-active bio-films in various natural environments from indigenous flora, then through complementary electrochemical techniques (chrono-amperometry and cyclic voltammetry), to evaluate electro-activity of isolates coming from so-formed bio-films and to characterize mechanisms of electron transfer between bacteria and materials. First, electro-active bio-films have been developed under chrono-amperometry in garden compost and in water coming from Guyana mangrove. These bio-films were respectively able to use an electrode as electron acceptor (oxidation) or as electron donor (reduction). In compost, results obtained in chrono-amperometry and cyclic voltammetry suggest a two-step electron transfer: slow substrate consumption, then rapid electron transfer between bacteria and the electrode. Thereafter, the ability to reduce oxygen was demonstrated with cyclic voltammetry for facultative aerobic isolates from compost bio-films (Enterobacter spp. and Pseudomonas spp.) and for aerobic isolates obtained from marine electro-active bio-films (Roseobacter spp. in majority). Finally, bio-films inducing current increase in chrono-amperometry were developed in bioreactor with synthetic medium from a pure culture of isolates. Hence, for the first time, electro-activity of several anaerobic strains of Geobacter bremensis isolated from compost bio-films was highlighted. (author) [fr

  7. BioNet Digital Communications Framework

    Science.gov (United States)

    Gifford, Kevin; Kuzminsky, Sebastian; Williams, Shea

    2010-01-01

    BioNet v2 is a peer-to-peer middleware that enables digital communication devices to talk to each other. It provides a software development framework, standardized application, network-transparent device integration services, a flexible messaging model, and network communications for distributed applications. BioNet is an implementation of the Constellation Program Command, Control, Communications and Information (C3I) Interoperability specification, given in CxP 70022-01. The system architecture provides the necessary infrastructure for the integration of heterogeneous wired and wireless sensing and control devices into a unified data system with a standardized application interface, providing plug-and-play operation for hardware and software systems. BioNet v2 features a naming schema for mobility and coarse-grained localization information, data normalization within a network-transparent device driver framework, enabling of network communications to non-IP devices, and fine-grained application control of data subscription band width usage. BioNet directly integrates Disruption Tolerant Networking (DTN) as a communications technology, enabling networked communications with assets that are only intermittently connected including orbiting relay satellites and planetary rover vehicles.

  8. Bio energy: Environment and Environmental Engineering

    International Nuclear Information System (INIS)

    Soma, Morten; Noreng, Katrina; Soerensen, Heidi; Teslo, Einar; Daehlen, Knut; Liodden, Ole Joergen; Wilhelmsen, Gunnar; Hohle, Erik Eid

    2001-01-01

    This is Chapter 5 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Environmental issues in the use of energy, (2) Environmental issues in the production of biomass, (3) Forestry, (4) Agriculture, (5) Environmental issues in fuel production and storage, (6) Environmental issues in combustion, (7) Environmental issues in using bio fuel, (8) Life cycle analyses, (9) Laws, regulations and norms for the use of bio fuel. Unlike the other sections, the one on laws is mostly concerned with Norwegian conditions

  9. Bio-nanopatterning of Surfaces

    Directory of Open Access Journals (Sweden)

    Yeung Chun

    2007-01-01

    Full Text Available AbstractBio-nanopatterning of surfaces is a very active interdisciplinary field of research at the interface between biotechnology and nanotechnology. Precise patterning of biomolecules on surfaces with nanometre resolution has great potential in many medical and biological applications ranging from molecular diagnostics to advanced platforms for fundamental studies of molecular and cell biology. Bio-nanopatterning technology has advanced at a rapid pace in the last few years with a variety of patterning methodologies being developed for immobilising biomolecules such as DNA, peptides, proteins and viruses at the nanoscale on a broad range of substrates. In this review, the status of research and development are described, with particular focus on the recent advances on the use of nanolithographic techniques as tools for biomolecule immobilisation at the nanoscale. Present strengths and weaknesses, as well future challenges on the different nanolithographic bio-nanopatterning approaches are discussed.

  10. Upgrading biomass pyrolysis bio-oil to renewable fuels.

    Science.gov (United States)

    2015-01-01

    Fast pyrolysis is a process that can convert woody biomass to a crude bio-oil (pyrolysis oil). However, some of these compounds : contribute to bio-oil shelf life instability and difficulty in refining. Catalytic hydrodeoxygenation (HDO) of the bio-o...

  11. The evolution of formula-bio

    NARCIS (Netherlands)

    Maas, A.; Steinbuch, M.

    2013-01-01

    Formula-Bio started out as a dream of building a race car with only three students and thereby showing the world that everything is possible if you put your passion into it. In this internship report the story of Formula-Bio and the reasoning behind the FB01 can be found. A large part of the report

  12. Bio-technology drawing attention for solution of environmental problems. Kankyo mondai kaiketsu demo chumokusareru bio technology

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, A [Bank of Tokyo, Tokyo (Japan)

    1991-06-01

    Explanations are given on the recent movements in the bio-technology applications. In the United States, gene therapy has been applied to patients having damaged immune system, while in Japan the first outdoor experiment is about to begin this year on gene recombined tomatoes. In the area of the marine bio-technology, researches carried out by the industrial, governmental, and academic sectors combined, led by the Ministry of International Trade and Industry have begun, which include such an attractive subject as finding out new kinds of algae living on carbon dioxide as their special favorite diet to use them to prevent the earth warming-up. On the other hand, the difficulty of bio-business is represented by the fact that venture business groups are absorbed into larger chemical companies. In Japan, the bio-business established in individual regions related to soy bean paste and Shoyu sauce industry is a distinct feature. Deregulations and review on the patent system are in progress in the United States and Germany aiming at strengthening the business competitiveness. Expectation is placed on the bio-technology that it will contribute largely in the future to solving such a critical environmental problem as experienced in the Persian Gulf war. 1 tab.

  13. Bioenergy Status Document 2012; Statusdocument Bio-energie 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.; Van Grinsven, A.; Bergsma, G.; Croezen, H. [CE Delft, Delft (Netherlands)

    2013-05-15

    In addition to a review and characterisation of the current situation, the report contains an update on government policies on bio-energy and a review of the sources and sustainability of the biomass used in the Netherlands [Dutch] Het statusdocument bio-energie 2012 geeft de huidige status weer van bio-energie in Nederland, inclusief trends en verwachtingen voor de toekomst. Het doel van dit document is inzicht verstrekken in de ontwikkelingen van bio-energie, voor overheden en marktpartijen.

  14. 2nd generation biogas. BioSNG

    International Nuclear Information System (INIS)

    Zwart, R.W.R.

    2008-11-01

    The substitution of natural gas by a renewable equivalent is an interesting option to reduce the use of fossil fuels and the accompanying greenhouse gas emissions, as well as from the point of view of security of supply. The renewable alternative for natural gas is green natural gas, i.e. gaseous energy carriers produced from biomass comprising both biogas and Synthetic Natural Gas (SNG). Via this route can be benefited from all the advantages of natural gas, like the existing dense infrastructure, trade and supply network, and natural gas applications. In this presentation attention is paid to the differences between first generation biogas and second generation bioSNG; the market for bioSNG: grid injection vs. transportation fuel; latest update on the lab- and pilot-scale bioSNG development at ECN; and an overview is given of ongoing bioSNG activities worldwide

  15. Trials and tribulations of conducting bio-behavioral surveys in prisons: implementation science and lessons from Ukraine.

    Science.gov (United States)

    Azbel, Lyuba; Grishaev, Yevgeny; Wickersham, Jeffrey A; Chernova, Olena; Dvoryak, Sergey; Polonsky, Maxim; Altice, Frederick L

    2016-06-13

    Purpose - Ukraine is home to Europe's worst HIV epidemic, overwhelmingly fueled by people who inject drugs who face harsh prison sentences. In Ukraine, HIV and other infectious diseases are concentrated in prisons, yet the magnitude of this problem had not been quantified. The purpose of this paper is to evaluate the systematic health survey of prisoners in the former Soviet Union (FSU). Design/methodology/approach - Qualitative interviews were carried out with research and prison administrative staff to assess the barriers and facilitators to conducting a bio-behavioral survey in Ukrainian prisons. Findings - Crucial barriers at the institutional, staff, and participant level require addressing by: first, ensuring Prison Department involvement at every stage; second, tackling pre-conceived attitudes about drug addiction and treatment among staff; and third, guaranteeing confidentiality for participants. Originality/value - The burden of many diseases is higher than expected and much higher than in the community. Notwithstanding the challenges, scientifically rigorous bio-behavioral surveys are attainable in criminal justice systems in the FSU with collaboration and careful consideration of this specific context.

  16. Bio fuels. A comparative analysis; Biokraftstoffe. Eine vergleichende Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Norbert; Henke, Jan; Klepper, Gernot

    2009-07-01

    The market for bio fuels is subject to very high dynamics worldwide. Due to the extreme rise of the prices of raw materials as well as due to the retrogressive tax reductions for bio fuels in Germany one hardly invests in bio fuels. Substantial changes are experienced in the markets for fossil raw materials. The prices for agrarian raw material used in this contribution originate from the years 2006 and 2007. The effects of clearly higher oil prices on the bio fuel market are described. The investigation under consideration also deals with criteria of sustainability. The contribution of the individual bio fuels to the reduction of greenhouse gases is analyzed. The costs resulting from this are numerated. This enables a well-established comparison in which less representative bio fuels such as bio methane, BtL fuels and cellulose ethanol also are included.

  17. BioBlend.objects: metacomputing with Galaxy.

    Science.gov (United States)

    Leo, Simone; Pireddu, Luca; Cuccuru, Gianmauro; Lianas, Luca; Soranzo, Nicola; Afgan, Enis; Zanetti, Gianluigi

    2014-10-01

    BioBlend.objects is a new component of the BioBlend package, adding an object-oriented interface for the Galaxy REST-based application programming interface. It improves support for metacomputing on Galaxy entities by providing higher-level functionality and allowing users to more easily create programs to explore, query and create Galaxy datasets and workflows. BioBlend.objects is available online at https://github.com/afgane/bioblend. The new object-oriented API is implemented by the galaxy/objects subpackage. © The Author 2014. Published by Oxford University Press.

  18. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  19. French bio-diesel demand and promoting measures analysis by 2010

    International Nuclear Information System (INIS)

    Bernard, F.

    2008-02-01

    The researches presented aim at assessing bio-diesel promoting measures under consideration in France by 2010. This assessment is based on a deep study of French bio-diesel demand. The use of a linear model for optimizing the whole French refining industry costs allow us to take into account the physicochemical characteristics of bio-diesel useful for gas oil blending operation. This researches show that bio-diesel can be incorporated up to 27% blend in volume to diesel fuel without major technical problem. A decomposition of the value allotted to the bio-diesel by French refiners according to its physicochemical characteristics shows that energy content is the most disadvantageous characteristics for bio-diesel incorporation and, up to 17%, density become also constraining. However, the low bio-diesel sulphur content could become interesting from now to 2010. On the basis of this bio-diesel demand analysis, we proceed to an external coupling of an agro-industrial model of bio-diesel supply with the French refining model. Thus, we study the impact of the 2010 French bio-diesel consumption objective on agricultural surface need, the competitiveness of the bio-diesel, the reduction of greenhouse gases emissions and the trade balance of the petroleum products. On this basis, we propose a critical analysis of French bio-diesel promoting measures under consideration by 2010. (author)

  20. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization

    International Nuclear Information System (INIS)

    Hu, Zhiquan; Zheng, Yang; Yan, Feng; Xiao, Bo; Liu, Shiming

    2013-01-01

    Pyrolysis experiments of blue-green algae blooms (BGAB) were carried out in a fixed-bed reactor to determine the effects of pyrolysis temperature, particle size and sweep gas flow rate on pyrolysis product yields and bio-oil properties. The pyrolysis temperature, particle size and sweep gas flow rate were varied in the ranges of 300–700 °C, below 0.25–2.5 mm and 50–400 mL min −1 , respectively. The maximum oil yield of 54.97% was obtained at a pyrolysis temperature of 500 °C, particle size below 0.25 mm and sweep gas flow rate of 100 mL min −1 . The elemental analysis and calorific value of the oil were determined, and the chemical composition of the oil was investigated using gas chromatography–mass spectroscopy (GC–MS) technique. The analysis of bio-oil composition showed that bio-oil from BGAB could be a potential source of renewable fuel with a heating value of 31.9 MJ kg −1 . - Highlights: ► Bio-oil production from pyrolysis of blue-green algae blooms in fixed bed reactor. ► Effects of pyrolysis conditions on product distribution were investigated. ► The maximum bio-oil yield reached 54.97 wt %. ► The bio-oil has high heating value and may be suitable as renewable fuel. ► Pyrolysis of algal biomass beneficial for energy recovery, eutrophication control

  1. Optimum concrete compression strength using bio-enzyme

    Directory of Open Access Journals (Sweden)

    Bagio Tony Hartono

    2017-01-01

    Full Text Available To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the concrete. Concrete with bio-enzyme 200 ml/m3, 400 ml/m3, 600 ml/m3, 800 ml/m3, 1000 ml/m3 and normal concrete. Refer to the crushing test result, its tends to the mathematical model using 4th degree polynomial regression (least quartic, as represent on the attached data series, which is for the design mix fc′ = 25 MPa generate optimum value for 33,98 MPa, on the bio-additive dosage of 509 ml bio enzymes.

  2. Briquetting mechanism and waterproof performance of bio-briquette

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G.; Chen, L.; Cao, J. [Henen Polytechnic University, Jiaozuo (China)

    2008-07-15

    Maize stalk and bio-briquette binder made from it were studied comparatively by FTIR and the microstructure of bio-briquette was observed and analyzed by microscopy. It was found that a large amount of unreacted biomass fibers exist in the binder. These form a multi-level network structure inside the bio-briquette and could make fine coal particles connect together. The multi-level network structure would be still present after the bio-briquettes are immersed in water for 24 hours. On the other hand, stalk materials could be partly degraded after treatment and, with other liquid ingredients in the binder, the degradation products could form a viscous fluid which would work as a bonding ingredient inside the bio-briquette and could improve the waterproofing ability of the binder after solidification. Therefore, the multi-level network structure of the biomaterial and the presence of viscous fluid are very important to the shaping and the improvement of the waterproofing ability of bio-briquettes. 11 refs., 3 figs.

  3. Future bio-energy potential under various natural constraints

    International Nuclear Information System (INIS)

    Vuuren, Detlef P. van; Vliet, Jasper van; Stehfest, Elke

    2009-01-01

    Potentials for bio-energy have been estimated earlier on the basis of estimates of potentially available land, excluding certain types of land use or land cover (land required for food production and forests). In this paper, we explore how such estimates may be influenced by other factors such as land degradation, water scarcity and biodiversity concerns. Our analysis indicates that of the original bio-energy potential estimate of 150, 80 EJ occurs in areas classified as from mild to severe land degradation, water stress, or with high biodiversity value. Yield estimates were also found to have a significant impact on potential estimates. A further 12.5% increase in global yields would lead to an increase in bio-energy potential of about 50%. Changes in bio-energy potential are shown to have a direct impact on bio-energy use in the energy model TIMER, although the relevant factor is the bio-energy potential at different cost levels and not the overall potential.

  4. Bio-based liquid crystalline polyesters

    Science.gov (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration

    2013-03-01

    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  5. Microneedle, bio-microneedle and bio-inspired microneedle: A review.

    Science.gov (United States)

    Ma, Guojun; Wu, Chengwei

    2017-04-10

    Microneedles (MNs) are micro-scale needles used for drug delivery and other targets. Micro-scale size endows them with many advantages over hypodermic needles, including painlessness, minimal invasiveness and convenient operation, but it may also lead to risk of mechanical failures, which should be prevented in the clinical applications of MNs. The objective of this review is mainly to introduce studies on the mechanics problems with respect to MNs. Firstly, the basic knowledge of MNs is introduced in brief, so that readers can understand the basic characteristics of MNs. Secondly, researches on inserting behavior and mechanical performances of MNs are discussed. Thirdly, literatures on the drug delivery and the pain resulted from the insertion of MNs are overviewed. Finally, some bio-microneedles and bio-inspired MNs are introduced. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratoriesThe Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  7. Beclometasone oral--DOR BioPharma.

    Science.gov (United States)

    2007-01-01

    orBec is an oral enteric-coated tablet formulation of the corticosteroid beclometasone, which has been developed by Enteron Pharmaceuticals, a subsidiary of Corporate Technology Development (now DOR BioPharma). orBec is being developed for the treatment of gastrointestinal graft-versus-host disease (GVHD) and an NDA has been filed in the US. DOR BioPharma has also filed an MAA in Europe for the same indication.orBec is designed to reduce the need for systemic immunosuppressive drugs, thereby improving the outcome of bone marrow and stem cell transplantation.DOR BioPharma may seek a marketing partner in the US and elsewhere for orBec in GVHD and will seek a partner for other potential indications of the drug.In December 2001, Corporate Technology Development was acquired by Endorex Corporation (now DOR BioPharma). In October 1998, Enteron Pharmaceuticals (DOR BioPharma) entered into an exclusive, worldwide, royalty bearing license agreement with George B. McDonald, MD, including the right to grant sublicenses, for the rights to the intellectual property and know-how relating to orBec. In January 2007, DOR BioPharma received $US3 million under a non-binding letter of intent from Sigma-Tau Pharmaceuticals. The agreement grants Sigma-Tau an exclusive right to negotiate terms and conditions for a possible business transaction or strategic alliance regarding orBec and potentially other DOR pipeline compounds until 1 March 2007. Under the terms of the agreement, Sigma-Tau purchased $US1 million of DOR's common stock, with an additional $US2 million paid in cash. If no agreement is reached by 1 March 2007, DOR will return the $US2 million to Sigma-Tau within 60 days. DOR BioPharma received an unsolicited proposal from Cell Therapeutics, Inc. to acquire DOR BioPharma in January 2007. Because of the non-binding agreement already signed with Sigma-Tau, DOR BioPharma's board of directors cannot consider Cell Therapeutics' merger proposal at this time. orBec has been filed for

  8. Final Report: Conceptual Design of an Electron Accelerator for Bio-Solid Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Charles [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-09-20

    Several studies have identified electron beam (EB) irradiation of municipal wastewater and bio-solids as an effective and promising approach to the environmental remediation of the enormous quantities of human waste created by a growing world-wide population and increased urbanization. However, despite the technical success of experimental and pilot programs over the last several decades, the technique is still not in commercial use anywhere in the world. In addition, the report also identifies the need for “Financial and infrastructure participation from a utility for demonstration project” and “Education and awareness of safety of utilizing electron beam technology” as two additional roadblocks preventing technology adoption of EB treatment for bio-solids. In this concept design, we begin to address these barriers by working with Metropolitan Water Reclamation District of Greater Chicago (MWRD) and by the applying the latest accelerator technologies developed at Fermilab and within the DOE Office of Science laboratory complex.

  9. Hooked on Science: How an Ohio Teacher is Training Students to Be Linked in to Forensics

    Science.gov (United States)

    Technology & Learning, 2008

    2008-01-01

    This article features Ohio teacher Carol Fleck's use of videoconferencing in teaching Contemporary BioScience and Genetics. Fleck, who says her initial vision for the class was "science without classroom walls," covers such topics as emerging diseases, bioterrorism, and forensic science. Collaboration between schools is a key part of the…

  10. Dissolvable tattoo sensors: from science fiction to a viable technology

    Science.gov (United States)

    Cheng, Huanyu; Yi, Ning

    2017-01-01

    Early surrealistic painting and science fiction movies have envisioned dissolvable tattoo electronic devices. In this paper, we will review the recent advances that transform that vision into a viable technology, with extended capabilities even beyond the early vision. Specifically, we focus on the discussion of a stretchable design for tattoo sensors and degradable materials for dissolvable sensors, in the form of inorganic devices with a performance comparable to modern electronics. Integration of these two technologies as well as the future developments of bio-integrated devices is also discussed. Many of the appealing ideas behind developments of these devices are drawn from nature and especially biological systems. Thus, bio-inspiration is believed to continue playing a key role in future devices for bio-integration and beyond.

  11. Dissolvable tattoo sensors: from science fiction to a viable technology

    International Nuclear Information System (INIS)

    Cheng, Huanyu; Yi, Ning

    2017-01-01

    Early surrealistic painting and science fiction movies have envisioned dissolvable tattoo electronic devices. In this paper, we will review the recent advances that transform that vision into a viable technology, with extended capabilities even beyond the early vision. Specifically, we focus on the discussion of a stretchable design for tattoo sensors and degradable materials for dissolvable sensors, in the form of inorganic devices with a performance comparable to modern electronics. Integration of these two technologies as well as the future developments of bio-integrated devices is also discussed. Many of the appealing ideas behind developments of these devices are drawn from nature and especially biological systems. Thus, bio-inspiration is believed to continue playing a key role in future devices for bio-integration and beyond. (invited comment)

  12. Microbial biodiversity of Tang and Pirgal mud volcanoes and evaluation of bio-emulsifier and bio-demulsifier activities of Capnophile bacteria

    Directory of Open Access Journals (Sweden)

    Yasaman Parsia

    2017-12-01

    Full Text Available The data presented in this article is related to the Master thesis; entitled “Survey Aerobic Microbial Diversity Mud Volcanoes in Chabahar and Khash Ports in Southern Iran” by the first author of this article, year 2011, Islamic Azad University, Iran (reference number (Parsia, 2011 [1] of this article. This article shows microbial biodiversity and evaluates bio-emulsifier and bio-demulsifier abilities of capnophile isolates, in order to introduce a superior isolate for the Microbial Enhanced Oil Recovery (MEOR process in the petrochemical industry. Keywords: Mud volcanoes, Biodiversity, Bio-emulsification, Bio-demulsification, Petrochemistry

  13. Branding the bio/biomedical engineering degree.

    Science.gov (United States)

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  14. Bio-dosimetry for radiation-exposed individuals

    International Nuclear Information System (INIS)

    Sauvaigo, Sylvie; Chapuis, Violaine; Caillat, Sylvain; Sarrazy, Fanny; Breton, Jean

    2013-01-01

    Exposure of civil populations to genotoxic chemicals or radioactive hazard is an increased concern. It is not only an industrial risk (chemistry plant accident for example) but also a national security problem due to the threat of radiological and nuclear terrorism. It is important to anticipate the need of a bio-dosimetry tool aimed at identifying exposed population in the absence of acute syndrome, in order to assure the medical care that would prevent carcinogenic consequences. DNA repair is a bio-marker of exposure to geno-toxics in individuals. A DNA repair signature can be assessed from Peripheral Blood Mononuclear Cells (PBMCs) that reflects the exposure history of the individuals, using a functional enzymatic assay on bio-chip. A proof of concept was obtained using PBMCs from patients undergoing radiotherapy regimen. We identified two classes of responses among patients, if we except a very atypical signature in one patient that could reflect defects in DNA repair. Interestingly, repair of the major oxidative lesions increased during the course of the radiotherapy. We propose to implement this fast, quantitative, possibly automatized assay to identify bio-markers of exposure to geno-toxics and to validate the exposure bio-markers through ex vivo exposure of blood from volunteers. (authors)

  15. The BioSentinel Bioanalytical Microsystem: Characterizing DNA Radiation Damage in Living Organisms Beyond Earth Orbit

    Science.gov (United States)

    Ricco, A. J.; Hanel, R.; Bhattacharya, S.; Boone, T.; Tan, M.; Mousavi, A.; Rademacher, A.; Schooley, A.; Klamm, B.; Benton, J.; hide

    2016-01-01

    We will present details and initial lab test results from an integrated bioanalytical microsystem designed to conduct the first biology experiments beyond low Earth orbit (LEO) since Apollo 17 (1972). The 14-kg, 12x24x37-cm BioSentinel spacecraft (Figure 1) assays radiation-responsive yeast in its science payload by measuring DNA double-strand breaks (DSBs) repaired via homologous recombination, a mechanism common to all eukaryotes including humans. S. cerevisiae (brewer's yeast) in 288 microwells are provided with nutrient and optically assayed for growth and metabolism via 3-color absorptimetry monthly during the 18-month mission. BioSentinel is one of several secondary payloads to be deployed by NASA's Exploration Mission 1 (EM-1) launch vehicle into approximately 0.95 AU heliocentric orbit in July 2018; it will communicate with Earth from up to 100 million km.

  16. Bio-assessment of water pollution in coal belt

    International Nuclear Information System (INIS)

    Mishra, P.K.

    1998-01-01

    Water pollution in coal belt has attracted attention of scientists as well as general people. Implication of water pollution on bio-system is still a more important issue and a lot of information has been accumulated. Apart from conventional methods of pollution monitoring, bio-monitoring is comparatively a new approach and a proper methodology is still in pipeline. The present study reviews various methods of bio-monitoring and compare various methodologies suggested at population level with conventional methods. The results indicated that the bio-assessment methodology can be a tool and hence be developed. (author)

  17. How big is the bio-business? Notes on measuring the size of the Dutch bio-economy

    NARCIS (Netherlands)

    Heijman, Wim

    2016-01-01

    This paper focuses on the size of the Dutch bio-economy. With the help of consolidated input-output tables, the size of the bio-economy in terms of value added is estimated for the years 2008-2012. It appears that in the Netherlands, during the period indicated, its share in national production

  18. Quantum dots in bio-imaging: Revolution by the small

    International Nuclear Information System (INIS)

    Arya, Harinder; Kaul, Zeenia; Wadhwa, Renu; Taira, Kazunari; Hirano, Takashi; Kaul, Sunil C.

    2005-01-01

    Visual analysis of biomolecules is an integral avenue of basic and applied biological research. It has been widely carried out by tagging of nucleotides and proteins with traditional fluorophores that are limited in their application by features such as photobleaching, spectral overlaps, and operational difficulties. Quantum dots (QDs) are emerging as a superior alternative and are poised to change the world of bio-imaging and further its applications in basic and applied biology. The interdisciplinary field of nanobiotechnology is experiencing a revolution and QDs as an enabling technology have become a harbinger of this hybrid field. Within a decade, research on QDs has evolved from being a pure science subject to the one with high-end commercial applications

  19. 76 FR 72724 - Advisory Committee For Biological Sciences; Notice of Meeting

    Science.gov (United States)

    2011-11-25

    ... Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230. Type of Meeting: Open. Contact Person: Chuck... research that is the basis for the 21st century bio-economy and the undergraduate and graduate biology...

  20. Quercetin as natural stabilizing agent for bio-polymer

    Energy Technology Data Exchange (ETDEWEB)

    Morici, Elisabetta [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, 90128 Palermo (Italy); Arrigo, Rossella; Dintcheva, Nadka Tzankova [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, 90128 Palermo (Italy)

    2014-05-15

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  1. Quercetin as natural stabilizing agent for bio-polymer

    Science.gov (United States)

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-01

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  2. Quercetin as natural stabilizing agent for bio-polymer

    International Nuclear Information System (INIS)

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-01-01

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer

  3. Estimating Nitrogen Availability of Heat-Dried Bio solids

    International Nuclear Information System (INIS)

    Cogger, C.G.; Bary, A.I.; Myhre, E.A.

    2011-01-01

    As heat-dried bio solids become more widely produced and marketed, it is important to improve estimates of N availability from these materials. Objectives were to compare plant-available N among three different heat-dried bio solids and determine if current guidelines were adequate for estimating application rates. Heat-dried bio solids were surface applied to tall fescue (Festuca arundinacea Schreb.) in Washington State, USA, and forage yield and N uptake measured for two growing seasons following application. Three rates of urea and a zero-N control were used to calculate N fertilizer efficiency regressions. Application year plant-available N (estimated as urea N equivalent) for two bio solids exceeded 60% of total N applied, while urea N equivalent for the third bio solids was 45%. Residual (second-year) urea N equivalent ranged from 5 to 10%. Guidelines for the Pacific Northwest USA recommend mineralization estimates of 35 to 40% for heat-dried bio solids, but this research shows that some heat-dried materials fall well above that range.

  4. Bio-SNG. Prospective renewable energy carrier in the E.ON gas grid; Bio-SNG. Zukuenftiger regenerativer Energietraeger im E.ON Gasnetz

    Energy Technology Data Exchange (ETDEWEB)

    Adelt, Marius; Vogel, Alexander [E.ON Ruhrgas AG, Essen (Germany)

    2010-10-15

    Biogas processing and injection into the natural gas pipeline system on an industrial scale has been around in Germany for some time. E.ON operates a number of biogas plants with a production capacity of 200-1700 m{sup 3}/h. More plants are under construction or planned. The German government is looking to increase the share of biogas (upgraded to natural gas quality) in the pipeline system to 6 billion m{sup 3}/a by 2020, so significantly more production capacity is needed. Biogas is produced mainly from dedicated energy crops (maize) as well as several catch crops and, depending on the processing plant, various amounts of bio residues. The biogas is upgraded to natural gas quality and fed into the pipeline system as biomethane (E.ON: bio natural gas). To achieve the ambitious production targets it will be necessary to tap the unused potential of wood for gasification and subsequent methanisation into bio-SNG. E.ON AG actively promotes the development and introduction of this technology. This article provides an overview of different aspects of bio-SNG production and use including: Utilisation paths for biomethane/bio-SNG (heat, fuel, CHP), Potential of wood for bio-SNG production, Bio-SNG production technologies, Current E.ON activities and projects. (orig.)

  5. Recent Advances in Bio-inorganic Chemistry

    Indian Academy of Sciences (India)

    Unknown

    Bio-inorganic chemistry has developed rapidly in recent years. A number of laboratories in India have made significant contributions to this area. The motivation in bringing out this special issue on Bio-inorganic. Chemistry is to highlight the recent work emerging from India in this important and fascinating interdisci-.

  6. Development and characterization of a new bio-nanocomposite (bio-NCP) for diagnosis and treatment of breast cancer

    DEFF Research Database (Denmark)

    Martins, Murillo L; Saeki, Margarida J.; Telling, Mark T. F.

    2014-01-01

    Breast cancer is a public health problem throughout the world. Moreover, breast cancer cells have a great affinity for hydroxyapatite, leading to a high occurrence of bone metastasis. In this work we developed a bio-nanocomposite (bio-NCP) in order to use such affinity in the diagnosis...

  7. investigación en Bioética.

    Directory of Open Access Journals (Sweden)

    Daniel Meneses Carmona

    2012-01-01

    Full Text Available Este escrito esboza cuestiones acerca del lugar y el problema de la Bioética, tanto como preguntas que no tienen respuestas pre-establecidas y, como tal, exigen investigación. Como lugar, en Bioética se heredan las transformaciones de la racionalidad, la Epistemología y la Ética ocurridas en las interacciones sociales asumidas como contexto; la "Bioética" no tiene un lugar establecido y propio, se sitúa en un campo que se configura sólo al asumir la pregunta por la vida y por lo vivo. Propongo la tesis siguiente: La Bioética se constituye en la acción de introducir la vida como problema en lo cotidiano; esto conlleva la creación de nuevas sensibilidades a lo aún no sentido, lo aún no pensado, lo aún no valorado. De esta manera, el lugar de la Bioética se muestra como un juego de figuras diversas en y con las que se crean opciones de otras vidas aún no vividas y que remite a los aprendizajes como exposición al cambio y a las narrativas en las que éstos ocurren y son posibles. Esta tesis se perfila, en la perspectiva de la Bioética, como el conocimiento de cómo usar el conocimiento.

  8. Bio aerosol Generation at wastewater treatment plants: Identification of main bio aerosols sources

    International Nuclear Information System (INIS)

    Sanchez Monedero, M. A.; Aguilar, M. I.; Fenoll, R.; Roig, A.

    2009-01-01

    Typical operations taking place at wastewater treatment plants, especially those involving aeration and mechanical agitation of raw wastewater, represent one of the main sources of bio aerosols that, if inhaled, could pose a biologic hazard to site workers and local residents. Six different wastewater treatment plants from southeast Spain were monitories in order to identify the main bio aerosol sources and to evaluate the airborne microorganisms levels to which workers may be exposed to. Air samples were taken from selected locations by using a single stage impactor. (Author)

  9. Wireless Distribution and Use of Bio-sensor Data

    DEFF Research Database (Denmark)

    Kyng, Morten; Kristensen, Margit; Christensen, Erika Frischknecht

    2007-01-01

    consists of small bio-monitors - with sensors and a unique ID - which are placed on the victims. The bio-monitors communicate wirelessly with one or more base-stations, which distribute the signals locally at the incident site and to remote coordination centres and emergency departments. Ongoing...... data you are looking at? And, when an alarm goes off because the bio-sensor data of a patient reaches a critical threshold, how do you find the patient? In order to support medical responders on site and at coordination centres/ emergency departments, we are supplementing the bio-sensor data...

  10. Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing.

    Science.gov (United States)

    Nemenman, Ilya; Faeder, James R; Hlavacek, William S; Jiang, Yi; Wall, Michael E; Zilman, Anton

    2011-10-01

    grateful to our previous partner, IET Systems Biology, for their help over the years in publicizing the work presented at the conference, we felt that the changing needs of our participants required that we find a new partner. We are thrilled that Physical Biology is publishing the q-bio proceedings this year. It has been a great collaboration, as evidenced by the high quality of this special issue. What's next for q-bio? We are happy to report that NIGMS has recently extended the q-bio conference grant for the next three years, ensuring strong support for junior researchers who need financial assistance to participate in the event. The conference will retain its emphasis on cellular information processing, but will also build connections to other areas of modern biology and biotechnology, focusing specifically on ecology and evolutionary biology next year. Indeed, to fully understand biological information processing systems, they must be studied in their ecological contexts. We will continue to honor distinguished contributors to the field in our opening banquets; the tradition started with Howard Berg, Bruce Alberts and Michael Savageau in previous years, and continues with Dennis Bray at the upcoming 2011 event. Starting in 2011, the conference will also venture into exploration of the social aspects of science. The future is bright for q-bio! We will see you at the Fifth Annual q-bio Conference on 10-13 August 2011, in Santa Fe, New Mexico, USA and at the Sixth Annual q-bio Conference in early August 2012.

  11. Bio-Culturalism

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh

    2007-01-01

    The article argues on the basis of analyses of successful films for children that not only cultural determinants but also innate determinats are important, and that film studies should combine cultural studies with cognitive theory, evolutionary theory and neuroscience, an approach that is called...... Bio-culturalism....

  12. Continuous production of bio-oil by catalytic liquefaction from wet distiller’s grain with solubles (WDGS) from bio-ethanol production

    International Nuclear Information System (INIS)

    Toor, Saqib Sohail; Rosendahl, Lasse; Nielsen, Mads Pagh; Glasius, Marianne; Rudolf, Andreas; Iversen, Steen Brummerstedt

    2012-01-01

    Bio-refinery concepts are currently receiving much attention due to the drive toward flexible, highly efficient systems for utilization of biomass for food, feed, fuel and bio-chemicals. One way of achieving this is through appropriate process integration, in this particular case combining enzymatic bio-ethanol production with catalytic liquefaction of the wet distillers grains with soluble, a byproduct from the bio-ethanol process. The catalytic liquefaction process is carried out at sub-critical conditions (280–370 °C and 25 MPa) in the presence of a homogeneous alkaline and a heterogeneous Zirconia catalyst, a process known as the Catliq ® process. In the current work, catalytic conversion of WDGS was performed in a continuous pilot plant with a maximum capacity of 30 dm 3 h −1 of wet biomass. In the process, WDGS was converted to bio-oil, gases and water-soluble organic compounds. The oil obtained was characterized using several analysis methods, among them elementary analysis and GC–MS. The study shows that WDGS can be converted to bio oil with high yields. The results also indicate that through the combination of bio-ethanol production and catalytic liquefaction, it is possible to significantly increase the liquid product yield and scope, opening up for a wider end use applicability. -- Highlights: ► Hydrothermal liquefaction of wet biomass. ► Product phase analysis: oil, acqeous, gas and mineral phase. ► Energy and mass balance evaluation.

  13. Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jui-Jen; Ho, Cheng-Yu.; Chen, Wei-En; Huang, Chieh-Chen [Department of Life Sciences, National Chung Hsing University, Taichung (China); Chou, Chia-Hung; Lay, Jiunn-Jyi [Department of Science and Technology, National Kaohsiung First University, Kaohsiung (China)

    2008-10-15

    By using brewery yeast waste and microflora from rice straw compost, an anaerobic semi-solid bio-hydrogen-producing system has been established. For the purpose of industrialization, the major players of both aerobic and anaerobic bacterial strains in the system were isolated and their combination for an effective production of bio-hydrogen and other bio-fuels was examined in this study. The phylogenetic analysis found that four anaerobic isolates (Clostridium beijerinckii L9, Clostridium diolis Z2, Clostridium roseum Z5-1, and C. roseum W8) were highly related with each other and belongs to the cluster I clostridia family, the family that many of solvent-producing strains included. On the other hand, one of the aerobic isolates, the Bacillus thermoamylovorans strain I, shown multiple extracellular enzyme activities including lipase, protease, {alpha}-amylase, pectinase and cellulase, was suggested as a good partner for creating an anaerobic environment and pre-saccharification of substrate for those co-cultured solventogenic clostridial strain. Among these clostridial strains, though C. beijerinckii L9 do not show as many extracellular enzyme activities as Bacillus, but it performs the highest hydrogen-producing ability. The original microflora can be updated to a syntrophic bacterial co-culture system contended only with B. thermoamylovorans I and C. beijerinckii L9. The combination of aerobic Bacillus and anaerobic Clostridium may play the key role for developing the industrialized bio-fuels and bio-hydrogen-producing system from biomass. (author)

  14. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications.

    Science.gov (United States)

    Repenko, Tatjana; Rix, Anne; Ludwanowski, Simon; Go, Dennis; Kiessling, Fabian; Lederle, Wiltrud; Kuehne, Alexander J C

    2017-09-07

    Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.

  15. Lateral ridge augmentation with Bio-Oss alone or Bio-Oss mixed with particulate autogenous bone graft: a systematic review.

    Science.gov (United States)

    Aludden, H C; Mordenfeld, A; Hallman, M; Dahlin, C; Jensen, T

    2017-08-01

    The objective of this systematic review was to test the hypothesis of no difference in implant treatment outcomes when using Bio-Oss alone or Bio-Oss mixed with particulate autogenous bone grafts for lateral ridge augmentation. A search of the MEDLINE, Cochrane Library, and Embase databases in combination with a hand-search of relevant journals was conducted. Human studies published in English from 1 January 1990 to 1 May 2016 were included. The search provided 337 titles and six studies fulfilled the inclusion criteria. Considerable variation prevented a meta-analysis from being performed. The two treatment modalities have never been compared within the same study. Non-comparative studies demonstrated a 3-year implant survival of 96% with 50% Bio-Oss mixed with 50% autogenous bone graft. Moreover, Bio-Oss alone or Bio-Oss mixed with autogenous bone graft seems to increase the amount of newly formed bone as well as the width of the alveolar process. Within the limitations of this systematic review, lateral ridge augmentation with Bio-Oss alone or in combination with autogenous bone graft seems to induce newly formed bone and increase the width of the alveolar process, with high short-term implant survival. However, long-term studies comparing the two treatment modalities are needed before final conclusions can be drawn. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Use of Bio-Amp, a commercial bio-additive for the treatment of grease trap wastewater containing fat, oil, and grease.

    Science.gov (United States)

    Tang, Hao L; Xie, Yuefeng F; Chen, Yen-Chih

    2012-11-01

    This research investigated the application of Bio-Amp, a commercial bio-additive for the treatment of fat, oil, and grease (FOG) in a grease trap, and evaluated potential impacts of treated effluent on downstream collection system and treatment processes. Results show that after Bio-Amp treatment, FOG deposit formation was reduced by 40%, implicating a potential reduction of sewer line blockages. Chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and total fatty acids were reduced by 39%, 33%, 56%, and 59%, respectively, which represents an overall loading reduction of 9% COD, 5% TN and 40% TP received by the treatment plant from all the dining halls. On the other hand, readily biodegradable COD fractions significantly increased, which implies a potential improvement on Bio-P removal. Overall, the results showed that application of Bio-Amp in grease trap provides potential reduction of sewer line blockages, and can also alleviate downstream treatment burden. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Israel Marine Bio-geographic Database (ISRAMAR-BIO)

    Science.gov (United States)

    Greengrass, Eyal; Krivenko, Yevgeniya; Ozer, Tal; Ben Yosef, Dafna; Tom, Moshe; Gertman, Isaac

    2015-04-01

    The knowledge of the space/time variations of species is the basis for any ecological investigations. While historical observations containing integral concentrations of biological parameters (chlorophyll, abundance, biomass…) are organized partly in ISRAMAR Cast Database, the taxon-specific data collected in Israel has not been sufficiently organized. This has been hindered by the lack of standards, variability of methods and complexity of biological data formalization. The ISRAMAR-BIO DB was developed to store various types of historical and future available information related to marine species observations and related metadata. Currently the DB allows to store biological data acquired by the following sampling devices such as: van veer grab, box corer, sampling bottles, nets (plankton, trawls and fish), quadrates, and cameras. The DB's logical unit is information regarding a specimen (taxa name, barcode, image), related attributes (abundance, size, age, contaminants…), habitat description, sampling device and method, time and space of sampling, responsible organization and scientist, source of information (cruise, project and publication). The following standardization of specimen and attributes naming were implemented: Taxonomy according to World Register of Marine Species (WoRMS: http://www.marinespecies.org). Habitat description according to Coastal and Marine Ecological Classification Standards (CMECS: http://www.cmecscatalog.org) Parameter name; Unit; Device name; Developmental stage; Institution name; Country name; Marine region according to SeaDataNet Vocabularies (http://www.seadatanet.org/Standards-Software/Common-Vocabularies). This system supports two types of data submission procedures, which support the above stated data structure. The first is a downloadable excel file with drop-down fields based on the ISRAMAR-BIO vocabularies. The file is filled and uploaded online by the data contributor. Alternatively, the same dataset can be assembled by

  18. Bio-fuels barometer - EurObserv'ER - July 2016

    International Nuclear Information System (INIS)

    2016-07-01

    The European bio-fuel market is now regulated by the directive, known as ILUC, whose wording focuses on the environmental impact of first generation bio-fuel development. This long-awaited clarification has arrived against the backdrop of falling oil prices and shrinking European Union bio-fuel consumption, which should drop by 1.7% between 2014 and 2015, according to EurObserv'ER

  19. 78 FR 39327 - Bio Diagnostic International; Denial of Application

    Science.gov (United States)

    2013-07-01

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration [Docket No. 11-63] Bio Diagnostic... Control, Drug Enforcement Administration, issued an Order to Show Cause to Bio Diagnostic International... application of Bio Diagnostic International, Inc., for a DEA Certificate of Registration as a distributor of...

  20. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  1. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    International Nuclear Information System (INIS)

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-01-01

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels

  2. Bio solids Effects in Chihuahuan Desert Rangelands: A Ten-Year Study

    International Nuclear Information System (INIS)

    Wester, D.B; Sosebee, R.E; Fish, E.B; Villalobos, J.C; Zartman, R.E; Gonzalez, R.M; Jurado, P.; Moffet, C.A

    2011-01-01

    Arid and semiarid rangelands are suitable for responsible bio solids application. Topical application is critical to avoid soil and vegetation disturbance. Surface-applied bio solids have long-lasting effects in these ecosystems. We conducted a 10-year research program investigating effects of bio solids applied at rates from 0 to 90 dry Mg ha -1 on soil water infiltration; runoff and leachate water quality; soil erosion; forage production and quality; seedling establishment; plant physiological responses; nitrogen dynamics; bio solids decomposition; and grazing animal behavior and management. Bio solids increased soil water infiltration and reduced erosion. Effects on soil water quality were observed only at the highest application rates. Bio solids increased soil nitrate-nitrogen. Bio solids increased forage production and improved forage quality. Bio solids increased leaf area of grasses; photosynthetic rates were not necessarily increased by bio solids. Bio solids effects on plant establishment are expected only under moderately favorable conditions. Over an 82-mo exposure period, total organic carbon, nitrogen, and total and available phosphorus decreased and inorganic matter increased. Grazing animals spent more time grazing, ruminating, and resting in bio solids-treated areas; positive effects on average daily gain were observed during periods of higher rainfall. Our results suggest that annual bio solids application rates of up to 18 Mg ha -1 are appropriate for desert rangelands.

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 2. Steroids: A Timeless Fascination - Cholesterol and its Bio-products. S Hari Prasad. General Article Volume 9 Issue 2 February 2004 pp 80-84. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Bio diesel- the Clean, Green Fuel for Diesel Engines

    International Nuclear Information System (INIS)

    Elkareish, S.M.M.

    2004-01-01

    Natural, renewable resources such as vegetable oils, animal fats and recycled restaurant greases can be chemically transformed into clean burning bio diesel fuels (1). Just like petroleum diesel, bio diesel operates in combustion-ignition engines. Blends of up to 20% bio diesel (mixed with petroleum diesel fuels) can be used in nearly all diesel equipment and are compatible with most storage and distribution equipment. Using bio diesel in a conventional diesel engine substantially reduces emissions of unburned hydrocarbons, carbon monoxide, sulphates, polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons, and particulate matter. The use of bio diesel has grown dramatically during the last few years. Egypt has a promising experiment in promoting forestation by cultivation of Jatropha plant especially in luxor and many other sites of the country. The first production of the Egyptian Jatropha seeds oil is now under evaluation to produce a cost-competitive bio diesel fuel

  5. BioRuby: bioinformatics software for the Ruby programming language.

    Science.gov (United States)

    Goto, Naohisa; Prins, Pjotr; Nakao, Mitsuteru; Bonnal, Raoul; Aerts, Jan; Katayama, Toshiaki

    2010-10-15

    The BioRuby software toolkit contains a comprehensive set of free development tools and libraries for bioinformatics and molecular biology, written in the Ruby programming language. BioRuby has components for sequence analysis, pathway analysis, protein modelling and phylogenetic analysis; it supports many widely used data formats and provides easy access to databases, external programs and public web services, including BLAST, KEGG, GenBank, MEDLINE and GO. BioRuby comes with a tutorial, documentation and an interactive environment, which can be used in the shell, and in the web browser. BioRuby is free and open source software, made available under the Ruby license. BioRuby runs on all platforms that support Ruby, including Linux, Mac OS X and Windows. And, with JRuby, BioRuby runs on the Java Virtual Machine. The source code is available from http://www.bioruby.org/. katayama@bioruby.org

  6. Security enhanced BioEncoding for protecting iris codes

    Science.gov (United States)

    Ouda, Osama; Tsumura, Norimichi; Nakaguchi, Toshiya

    2011-06-01

    Improving the security of biometric template protection techniques is a key prerequisite for the widespread deployment of biometric technologies. BioEncoding is a recently proposed template protection scheme, based on the concept of cancelable biometrics, for protecting biometric templates represented as binary strings such as iris codes. The main advantage of BioEncoding over other template protection schemes is that it does not require user-specific keys and/or tokens during verification. Besides, it satisfies all the requirements of the cancelable biometrics construct without deteriorating the matching accuracy. However, although it has been shown that BioEncoding is secure enough against simple brute-force search attacks, the security of BioEncoded templates against more smart attacks, such as record multiplicity attacks, has not been sufficiently investigated. In this paper, a rigorous security analysis of BioEncoding is presented. Firstly, resistance of BioEncoded templates against brute-force attacks is revisited thoroughly. Secondly, we show that although the cancelable transformation employed in BioEncoding might be non-invertible for a single protected template, the original iris code could be inverted by correlating several templates used in different applications but created from the same iris. Accordingly, we propose an important modification to the BioEncoding transformation process in order to hinder attackers from exploiting this type of attacks. The effectiveness of adopting the suggested modification is validated and its impact on the matching accuracy is investigated empirically using CASIA-IrisV3-Interval dataset. Experimental results confirm the efficacy of the proposed approach and show that it preserves the matching accuracy of the unprotected iris recognition system.

  7. S.H.A.S.T. and Tele-bio-sphere: Investigative Processes as Artistic Practices

    Directory of Open Access Journals (Sweden)

    Maria Luiza Fragoso

    2016-02-01

    Full Text Available The subjects herein addressed make part of a series of lectures and workshops developed by me along with the team of the New Organisms Art Nucleus (NANO during the last two years (2013-2015. So, examples of methodological processes applied in the various activities we have developed with undergraduate and graduate students will be presented. The importance I attach to these issues is directly related to the academic practice as well as to the artistic production derived from creation processes, aiming at systematizing and expanding knowledge in the realm of arts and technology, being all of it addressed from a cross-cultural approach. Thus I intend to bring some viewpoints that may feed the discussion between arts and sciences, from an experimental and trans-disciplinary approach, proposing the concepts of hybridity and bio-telematics, so as to illustrate the methodological procedures applied in the artistic projects S.H.A.S.T. and Tele-bio-sphere. http://nano.eba.ufrj.br

  8. The Role of Bio-productivity on Bio-energy Yields

    Directory of Open Access Journals (Sweden)

    Marc J. J. Janssens

    2009-04-01

    Full Text Available The principal photosynthetic pathways convert solar energy differently depending on the environmental conditions and the plant morphotype. Partitioning of energy storage within crops will vary according to environmental and seasonal conditions as well. Highest energy concentration is found in terpens like latex and, to a lesser extent, in lipids. Ideally, we want plant ingredients with high energy content easily amenable to ready-to-use bio-fuel. Generally, these crops are adapted to drier areas and tend to save on eco-volume space. Competition with food crops could be avoided by fetching energy from cheap agricultural by-products or waste products such as bagasse in the sugar cane. This would in fact mean that reducing power of agricultural residues should be extracted from the biomass through non-photosynthetic processes like animal ingestion or industrial bio-fermentation. Conversion and transformation efficiencies in the production chain are illustrated for some relevant crops in the light of the maximum power theorem.

  9. Bio-robots automatic navigation with electrical reward stimulation.

    Science.gov (United States)

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  10. [Reflection on developing bio-energy industry of large oil company].

    Science.gov (United States)

    Sun, Haiyang; Su, Haijia; Tan, Tianwei; Liu, Shumin; Wang, Hui

    2013-03-01

    China's energy supply becomes more serious nowadays and the development of bio-energy becomes a major trend. Large oil companies have superb technology, rich experience and outstanding talent, as well as better sales channels for energy products, which can make full use of their own advantages to achieve the efficient complementary of exist energy and bio-energy. Therefore, large oil companies have the advantages of developing bio-energy. Bio-energy development in China is in the initial stage. There exist some problems such as available land, raw material supply, conversion technologies and policy guarantee, which restrict bio-energy from industrialized development. According to the above key issues, this article proposes suggestions and methods, such as planting energy plant in the marginal barren land to guarantee the supply of bio-energy raw materials, cultivation of professional personnel, building market for bio-energy counting on large oil companies' rich experience and market resources about oil industry, etc, aimed to speed up the industrialized process of bio-energy development in China.

  11. Recent trends in global production and utilization of bio-ethanol fuel

    International Nuclear Information System (INIS)

    Balat, Mustafa; Balat, Havva

    2009-01-01

    Bio-fuels are important because they replace petroleum fuels. A number of environmental and economic benefits are claimed for bio-fuels. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide. Production of bio-ethanol from biomass is one way to reduce both consumption of crude oil and environmental pollution. Using bio-ethanol blended gasoline fuel for automobiles can significantly reduce petroleum use and exhaust greenhouse gas emission. Bio-ethanol can be produced from different kinds of raw materials. These raw materials are classified into three categories of agricultural raw materials: simple sugars, starch and lignocellulose. Bio-ethanol from sugar cane, produced under the proper conditions, is essentially a clean fuel and has several clear advantages over petroleum-derived gasoline in reducing greenhouse gas emissions and improving air quality in metropolitan areas. Conversion technologies for producing bio-ethanol from cellulosic biomass resources such as forest materials, agricultural residues and urban wastes are under development and have not yet been demonstrated commercially.

  12. Bio-fuels production and the environmental indicators

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos Sebastiao de Paula [Mechanical Engineering Department/Pontifical Catholic University of Rio de Janeiro - PUC-Rio, Rua Marques de Sao Vicente 225, Gavea, CEP 22453-900, Rio de Janeiro, RJ (Brazil); Muylaert de Araujo, Maria Silvia [Energy and Environment Planning Program/Federal University of Rio de Janeiro - COPPE/UFRJ, Cidade Universitaria, Centro de Tecnologia, Bloco C, sala 211, Ilha do Fundao, CEP: 21945-970, Caixa Postal: 68501, Rio de Janeiro, RJ (Brazil)

    2009-10-15

    The paper evaluates the role of the bio-fuels production in the transportation sector in the world, for programs of greenhouse gases emissions reductions and sustainable environmental performance. Depending on the methodology used to account for the local pollutant emissions and the global greenhouse gases emissions during the production and consumption of both the fossil and bio-fuels, the results can show huge differences. If it is taken into account a life cycle inventory approach to compare the different fuel sources, these results can present controversies. A comparison study involving the American oil diesel and soybean diesel developed by the National Renewable Energy Laboratory presents CO{sub 2} emissions for the bio-diesel which are almost 20% of the emissions for the oil diesel: 136 g CO{sub 2}/bhp-h for the bio-diesel from soybean and 633 g CO{sub 2}/bhp-h for the oil diesel [National Renewable Energy Laboratory - NREL/SR-580-24089]. Besides that, important local environmental impacts can also make a big difference. The water consumption in the soybean production is much larger in comparison with the water consumption for the diesel production [National Renewable Energy Laboratory - NREL/SR-580-24089]. Brazil has an important role to play in this scenario because of its large experience in bio-fuels production since the seventies, and the country has conditions to produce bio-fuels for attending great part of the world demand in a sustainable pathway. (author)

  13. Bio-Manufacturing to market pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Dressen, Tiffaney [Univ. of California, Berkeley, CA (United States)

    2017-09-25

    The Bio-Manufacturing to Market pilot project was a part of the AMJIAC, the Advanced Manufacturing Jobs and Innovation Accelerator Challenge grant. This internship program set out to further define and enhance the talent pipeline from the University and local Community Colleges to startup culture in East Bay Area, provide undergraduate STEM students with opportunities outside academia, and provide startup companies with much needed talent. Over the 4 year period of performance, the Bio-Manufacturing to Market internship program sponsored 75 undergraduate STEM students who were able to spend anywhere from one to six semesters working with local Bay Area startup companies and DOE sponsored facilities/programs in the biotech, bio-manufacturing, and biomedical device fields.

  14. Brucella BioR Regulator Defines a Complex Regulatory Mechanism for Bacterial Biotin Metabolism

    Science.gov (United States)

    Xu, Jie; Zhang, Huimin; Srinivas, Swaminath

    2013-01-01

    The enzyme cofactor biotin (vitamin H or B7) is an energetically expensive molecule whose de novo biosynthesis requires 20 ATP equivalents. It seems quite likely that diverse mechanisms have evolved to tightly regulate its biosynthesis. Unlike the model regulator BirA, a bifunctional biotin protein ligase with the capability of repressing the biotin biosynthetic pathway, BioR has been recently reported by us as an alternative machinery and a new type of GntR family transcriptional factor that can repress the expression of the bioBFDAZ operon in the plant pathogen Agrobacterium tumefaciens. However, quite unusually, a closely related human pathogen, Brucella melitensis, has four putative BioR-binding sites (both bioR and bioY possess one site in the promoter region, whereas the bioBFDAZ [bio] operon contains two tandem BioR boxes). This raised the question of whether BioR mediates the complex regulatory network of biotin metabolism. Here, we report that this is the case. The B. melitensis BioR ortholog was overexpressed and purified to homogeneity, and its solution structure was found to be dimeric. Functional complementation in a bioR isogenic mutant of A. tumefaciens elucidated that Brucella BioR is a functional repressor. Electrophoretic mobility shift assays demonstrated that the four predicted BioR sites of Brucella plus the BioR site of A. tumefaciens can all interact with the Brucella BioR protein. In a reporter strain that we developed on the basis of a double mutant of A. tumefaciens (the ΔbioR ΔbioBFDA mutant), the β-galactosidase (β-Gal) activity of three plasmid-borne transcriptional fusions (bioBbme-lacZ, bioYbme-lacZ, and bioRbme-lacZ) was dramatically decreased upon overexpression of Brucella bioR. Real-time quantitative PCR analyses showed that the expression of bioBFDA and bioY is significantly elevated upon removal of bioR from B. melitensis. Together, we conclude that Brucella BioR is not only a negative autoregulator but also a repressor of

  15. Prospects for a bio-based succinate industry.

    Science.gov (United States)

    McKinlay, James B; Vieille, C; Zeikus, J Gregory

    2007-09-01

    Bio-based succinate is receiving increasing attention as a potential intermediary feedstock for replacing a large petrochemical-based bulk chemical market. The prospective economical and environmental benefits of a bio-based succinate industry have motivated research and development of succinate-producing organisms. Bio-based succinate is still faced with the challenge of becoming cost competitive against petrochemical-based alternatives. High succinate concentrations must be produced at high rates, with little or no by-products to most efficiently use substrates and to simplify purification procedures. Herein are described the current prospects for a bio-based succinate industry, with emphasis on specific bacteria that show the greatest promise for industrial succinate production. The succinate-producing characteristics and the metabolic pathway used by each bacterial species are described, and the advantages and disadvantages of each bacterial system are discussed.

  16. Bio-inspired computation in unmanned aerial vehicles

    CERN Document Server

    Duan, Haibin

    2014-01-01

    Bio-inspired Computation in Unmanned Aerial Vehicles focuses on the aspects of path planning, formation control, heterogeneous cooperative control and vision-based surveillance and navigation in Unmanned Aerial Vehicles (UAVs) from the perspective of bio-inspired computation. It helps readers to gain a comprehensive understanding of control-related problems in UAVs, presenting the latest advances in bio-inspired computation. By combining bio-inspired computation and UAV control problems, key questions are explored in depth, and each piece is content-rich while remaining accessible. With abundant illustrations of simulation work, this book links theory, algorithms and implementation procedures, demonstrating the simulation results with graphics that are intuitive without sacrificing academic rigor. Further, it pays due attention to both the conceptual framework and the implementation procedures. The book offers a valuable resource for scientists, researchers and graduate students in the field of Control, Aeros...

  17. Nano-arrays of SAM by dip-pen nanowriting (DPN) technique for futuristic bio-electronic and bio-sensor applications

    International Nuclear Information System (INIS)

    Agarwal, Pankaj B.; Kumar, A.; Saravanan, R.; Sharma, A.K.; Shekhar, Chandra

    2010-01-01

    Nano-arrays of bio-molecules have potential applications in many areas namely, bio-sensors, bio/molecular electronics and virus detection. Spot array, micro-contact printing and photolithography are used for micron size array fabrications while Dip-Pen Nanowriting (DPN) is employed for submicron/nano size arrays. We have fabricated nano-dots of 16-MHA (16-mercaptohexadecanoic acid) self-assembled monolayer (SAM) on gold substrate by DPN technique with different dwell time under varying relative humidity. These patterns were imaged in the same system in LFM (Lateral Force Microscopy) mode with fast scanning speed (5 Hz). The effect of humidity on size variation of nano-dots has been studied. During experiments, relative humidity (RH) was varied from 20% to 60%, while the temperature was kept constant ∼ 25 o C. The minimum measured diameter of the dot is ∼ 294 nm at RH = 20% for a dwell time of 2 s. The thickness of the 16-MHA dots, estimated in NanoRule image analysis software is ∼ 2 nm, which agrees well with the length of single MHA molecule (2.2 nm). The line profile has been used to estimate the size and thickness of dots. The obtained results will be useful in further development of nano-array based bio-sensors and bio-electronic devices.

  18. Quantum Bio-Informatics II From Quantum Information to Bio-Informatics

    Science.gov (United States)

    Accardi, L.; Freudenberg, Wolfgang; Ohya, Masanori

    2009-02-01

    The problem of quantum-like representation in economy cognitive science, and genetics / L. Accardi, A. Khrennikov and M. Ohya -- Chaotic behavior observed in linea dynamics / M. Asano, T. Yamamoto and Y. Togawa -- Complete m-level quantum teleportation based on Kossakowski-Ohya scheme / M. Asano, M. Ohya and Y. Tanaka -- Towards quantum cybernetics: optimal feedback control in quantum bio informatics / V. P. Belavkin -- Quantum entanglement and circulant states / D. Chruściński -- The compound Fock space and its application in brain models / K. -H. Fichtner and W. Freudenberg -- Characterisation of beam splitters / L. Fichtner and M. Gäbler -- Application of entropic chaos degree to a combined quantum baker's map / K. Inoue, M. Ohya and I. V. Volovich -- On quantum algorithm for multiple alignment of amino acid sequences / S. Iriyama and M. Ohya --Quantum-like models for decision making in psychology and cognitive science / A. Khrennikov -- On completely positive non-Markovian evolution of a d-level system / A. Kossakowski and R. Rebolledo -- Measures of entanglement - a Hilbert space approach / W. A. Majewski -- Some characterizations of PPT states and their relation / T. Matsuoka -- On the dynamics of entanglement and characterization ofentangling properties of quantum evolutions / M. Michalski -- Perspective from micro-macro duality - towards non-perturbative renormalization scheme / I. Ojima -- A simple symmetric algorithm using a likeness with Introns behavior in RNA sequences / M. Regoli -- Some aspects of quadratic generalized white noise functionals / Si Si and T. Hida -- Analysis of several social mobility data using measure of departure from symmetry / K. Tahata ... [et al.] -- Time in physics and life science / I. V. Volovich -- Note on entropies in quantum processes / N. Watanabe -- Basics of molecular simulation and its application to biomolecules / T. Ando and I. Yamato -- Theory of proton-induced superionic conduction in hydrogen-bonded systems

  19. Bio-diesel: A candidate for a Nigeria energy mix

    International Nuclear Information System (INIS)

    Eze, T.; Dim, L. A.; Funtua, I. I.; Oladipo, M. O. A.

    2011-01-01

    This paper presents a review of bio-diesel development and economic potentials. The basics of biodiesel and its production technology are described. Attention is given to development potential, challenges and prospests of bio-diesel in Nigeria with ground facts on bio-diesel production feasibility in Nigeria highlighted.

  20. The NCBI BioSystems database.

    Science.gov (United States)

    Geer, Lewis Y; Marchler-Bauer, Aron; Geer, Renata C; Han, Lianyi; He, Jane; He, Siqian; Liu, Chunlei; Shi, Wenyao; Bryant, Stephen H

    2010-01-01

    The NCBI BioSystems database, found at http://www.ncbi.nlm.nih.gov/biosystems/, centralizes and cross-links existing biological systems databases, increasing their utility and target audience by integrating their pathways and systems into NCBI resources. This integration allows users of NCBI's Entrez databases to quickly categorize proteins, genes and small molecules by metabolic pathway, disease state or other BioSystem type, without requiring time-consuming inference of biological relationships from the literature or multiple experimental datasets.

  1. Inter-organizational collaboration in bio-based business

    NARCIS (Netherlands)

    Nuhoff-Isakhanyan, Gohar

    2016-01-01

    Globally, bio-based business is often perceived as sustainable, because its renewable production can potentially lower carbon and greenhouse emissions by substituting fossil-fuel-based production, reduce environmental sourcing problems, and create turnover and jobs. However, bio-based business

  2. R&D in micro-nano-bio systems and contribution to pHealth.

    Science.gov (United States)

    Lymberis, Andreas

    2012-01-01

    The capacity to research, develop and manufacture systems that employ components based on nano- and microstructures with biological functionality, and are capable to share, ubiquitously, information is at the forefront of worldwide competition. A new generation of advanced materials, processes and emerging technologies is building up enabling highly integrated, miniaturized and smart micro-nano-bio-systems to be engineered. These fast technology developments are also stimulating the explosive growth in life sciences, which is leading to an ever increasing understanding of life at the sub-cellular and molecular level. By bringing these parallel developments to biomedicine and health, ultrafast and sensitive systems can be developed to prevent illness, to support lifestyle, to make early diagnosis or treat diseases with high accuracy and less invasiveness, and to support body functions or to replace lost functionality. Such systems will enable the delivery of individualized health services with better access and outcomes at lower costs than previously deemed possible, making a substantial contribution to bringing healthcare expenditures under control and increase its productivity. The MNBS (Micro-Nano-Bio Systems) group of EU funded projects aims at speeding up the convergence of micro- and nanotechnology with the life sciences and accelerating the development of highly integrated diagnostic, monitoring and therapeutics devices. This paper presents R&D activities supported through the MNBS group that are relevant to pHealth and discusses directions to be taken in order to overcome the current problems. Finally, it addresses future challenges to build highly integrated and reliable systems including innovation and usability issues.

  3. Pakistan's Approach Towards Cem-Bio Issues

    International Nuclear Information System (INIS)

    Khan, M. A.; Iqbal, J.

    2007-01-01

    Pakistan ratified the BWC and CWC as a non-possessive state at that time when international environment were fraught with uncertainties about Chem-Bio threat. The geographical location of Pakistan faces a serious multidimensional WMD threat which includes threat from, non-state actors and her neighbours especially after declaration of chemical weapons during process of ratification of CWC. Pakistan never pursued such chem-bio program with the aim to use it as a mean of deterrence in overall context of security policy and always encouraged any move regarding strengthening of national/international institutional efforts to counter potential misuse of chem-bio technology. Pakistan's position has consistently been positive, pragmatic and supportive. For better implementation of BWC and CWC in Pakistan, comprehensive policies have been formulated and National Authority has been established to work as National point of contact on CWC affairs. Pakistan CWC Act 2000, Pakistan Bio Safety Rules 2005 and Pakistan Export Control Act 2004 are the evidences of Pakistan's sincerity to the implementation of CWC and BWC. Pakistan has declared 15 industries involved with chemicals, out of which 06 have already been inspected by OPCW Inspectors. Pakistan has declared its national protective program and pursuing all possible measures to enhance the national capacity and potential to guard against chem-bio threats. Pakistan has proved that it is committed to the principles of disarmament, which could serve as confidence building measures and may help reducing distrust and regional tension.(author)

  4. Nano-catalysts for upgrading bio-oil: Catalytic decarboxylation and hydrodeoxygenation

    Science.gov (United States)

    Uemura, Yoshimitsu; Tran, Nga T. T.; Naqvi, Salman Raza; Nishiyama, Norikazu

    2017-09-01

    Bio-oil is a mixture of oxygenated chemicals produced by fast pyrolysis of lignocellulose, and has attracted much attention recently because the raw material is renewable. Primarily, bio-oil can be used as a replacement of heavy oil. But it is not highly recommended due to bio-oil's inferior properties: high acidity and short shelf life. Upgrading of bio-oil is therefore one of the important technologies nowadays, and is categorized into the two: (A) decrarboxylation/decarbonylation by solid acid catalysts and (B) hydrodeoxygenation (HDO) by metallic catalysts. In our research group, decarboxylation of bio-oil by zeolites and HDO of guaiacol (a model compound of bio-oil) have been investigated. In this paper, recent developments of these upgrading reactions in our research group will be introduced.

  5. Challenges for bio-based products in sustainable value chains

    NARCIS (Netherlands)

    Cardon, L.; Lin, J.W.; De Groote, M.; Ragaert, K.; Kopecka, J.A.; Koster, R.P.

    2011-01-01

    This work concerns studies related to strategic development of products in which bio-based plastics are or will be applied, referred to as bio-based products. The studies cover (1) current and potential benefits of bio-based products in extended value chains including activities after end-of-life of

  6. Bio-functionalization of conductive textile materials with redox enzymes

    Science.gov (United States)

    Kahoush, M.; Behary, N.; Cayla, A.; Nierstrasz, V.

    2017-10-01

    In recent years, immobilization of oxidoreductase enzymes on electrically conductive materials has played an important role in the development of sustainable bio-technologies. Immobilization process allows the re-use of these bio-catalysts in their final applications. In this study, different methods of immobilizing redox enzymes on conductive textile materials were used to produce bio-functionalized electrodes. These electrodes can be used for bio-processes and bio-sensing in eco-designed applications in domains such as medicine and pollution control. However, the main challenge facing the stability and durability of these electrodes is the maintenance of the enzymatic activity after the immobilization. Hence, preventing the enzyme’s denaturation and leaching is a critical factor for the success of the immobilization processes.

  7. BioN∅T: A searchable database of biomedical negated sentences

    Directory of Open Access Journals (Sweden)

    Agarwal Shashank

    2011-10-01

    Full Text Available Abstract Background Negated biomedical events are often ignored by text-mining applications; however, such events carry scientific significance. We report on the development of BioN∅T, a database of negated sentences that can be used to extract such negated events. Description Currently BioN∅T incorporates ≈32 million negated sentences, extracted from over 336 million biomedical sentences from three resources: ≈2 million full-text biomedical articles in Elsevier and the PubMed Central, as well as ≈20 million abstracts in PubMed. We evaluated BioN∅T on three important genetic disorders: autism, Alzheimer's disease and Parkinson's disease, and found that BioN∅T is able to capture negated events that may be ignored by experts. Conclusions The BioN∅T database can be a useful resource for biomedical researchers. BioN∅T is freely available at http://bionot.askhermes.org/. In future work, we will develop semantic web related technologies to enrich BioN∅T.

  8. CLINICO-MORPHOLOGICAL RESEARCH OF BIO-OSS ® DURING BONE-PLASTIC OPERATIONS

    Directory of Open Access Journals (Sweden)

    Pavel SIDELNIKOV

    2016-03-01

    Full Text Available Aim: To study the clinical and morphological characteristics of Bio-Oss ® and Bio-Gate ® materials during bone-plastic operations, especially bone regeneration after surgical interventiond. Materials and method: The pathomorphological study was performed with the intravital biopsy material of bone tissue from augmentation areas, obtained during implants placement. Clinical studies included subjective and objective methods, in particular X-ray analysis and photo documenting. Bio-Oss ®, Bio-Gide ®, Bio-Gide ® Perio membranes, Resor-Pin pins, U-impl implant systems were investigated and 231 operations were performed with Bio-Oss ® and Bio-Gate ®, of which 38 cases of sinus lifting, 145 of bone plasty with simultaneous implantation and 48 cases of periodontal surgery. Results: Usage of bone-plastic Bio-OSS ® and Bio-Gate ® materials during various bone-plastic and periodontal operations assures a high clinical effect (from 93 to 99%. Morphologically, it has been observed that, after usage of bone Bio-OSS ® and Bio-Gate ® materials, a new osteoid tissue was formed, similar to the bone tissue of the alveolar process, with high mineralization levels, especially in the first 2 years, due to the simultaneous resorption of the material. The newly-formed tissue has a classical design and can fully perform the functions of jaw bones, especially for carrying loads transmitted with either teeth or implants.

  9. BioNSi: A Discrete Biological Network Simulator Tool.

    Science.gov (United States)

    Rubinstein, Amir; Bracha, Noga; Rudner, Liat; Zucker, Noga; Sloin, Hadas E; Chor, Benny

    2016-08-05

    Modeling and simulation of biological networks is an effective and widely used research methodology. The Biological Network Simulator (BioNSi) is a tool for modeling biological networks and simulating their discrete-time dynamics, implemented as a Cytoscape App. BioNSi includes a visual representation of the network that enables researchers to construct, set the parameters, and observe network behavior under various conditions. To construct a network instance in BioNSi, only partial, qualitative biological data suffices. The tool is aimed for use by experimental biologists and requires no prior computational or mathematical expertise. BioNSi is freely available at http://bionsi.wix.com/bionsi , where a complete user guide and a step-by-step manual can also be found.

  10. Households And Bio-Resources In Plateau State Nigeria

    International Nuclear Information System (INIS)

    Dasogot, A.D.

    2002-01-01

    The paper examines household dynamics as variables for bio-resource or biomass resource potentials and utilisation. Information was collected from 250 randomly selected households in five villages of the State, mainly using questionnaire administered on household heads, and a direct measurement/observation about what households have, do or say concerning the study problem. It was shown that insignificant quantity were utilised for various purposes like cooking and heating, but the bio-resources generated met both domestic and income needs of the households. It was concluded that beneficial use (compost, biogas or generation of electricity) should be found for the largely unused bio-resources and household dynamics should be integrated into bio-resource energy planning

  11. Public Perception of Bio fuels; Percepcion Publica de los Biocombustibles

    Energy Technology Data Exchange (ETDEWEB)

    Oltra, C.; Priolo, V.

    2011-11-10

    The deployment of bio fuels has generated a significant controversy in the energy, agricultural and environmental fields. Governments and promoters around the world have advocated for developing bio fuels based on their potential contribution to emissions reduction and energy security. But opposition to bio fuels has growth in the last years. Environmental NGO's and other stake holders have called for a review of the environmental and social sustainability of energy crops. This controversy has characterized the public debate around bio fuels. In this context, and given the need to improve public involvement in energy technologies, this article reports an investigation of Spanish citizens' perceptions about bio fuels. The study investigated the perceptions of informed citizens and the reasoning basis underlying beliefs and attitudes. The study finds an initial positive association of bio fuels to a clean and natural fuel that is mitigated by participants' concerns on the practical usage of bio fuels and the social and environmental impacts. Study participants' reactions show the need to differentiate among the diverse groups of publics holding differing views and a different reaction to information on the benefits and costs of bio fuels. (Author) 9 refs.

  12. Public Perception of Bio fuels; Percepcion Publica de los Biocombustibles

    Energy Technology Data Exchange (ETDEWEB)

    Oltra, C; Priolo, V

    2011-11-10

    The deployment of bio fuels has generated a significant controversy in the energy, agricultural and environmental fields. Governments and promoters around the world have advocated for developing bio fuels based on their potential contribution to emissions reduction and energy security. But opposition to bio fuels has growth in the last years. Environmental NGO's and other stake holders have called for a review of the environmental and social sustainability of energy crops. This controversy has characterized the public debate around bio fuels. In this context, and given the need to improve public involvement in energy technologies, this article reports an investigation of Spanish citizens' perceptions about bio fuels. The study investigated the perceptions of informed citizens and the reasoning basis underlying beliefs and attitudes. The study finds an initial positive association of bio fuels to a clean and natural fuel that is mitigated by participants' concerns on the practical usage of bio fuels and the social and environmental impacts. Study participants' reactions show the need to differentiate among the diverse groups of publics holding differing views and a different reaction to information on the benefits and costs of bio fuels. (Author) 9 refs.

  13. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Catia Algieri

    2014-07-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  14. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Science.gov (United States)

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  15. Bio-tribocorrosion in biomaterials and medical implants

    CERN Document Server

    Yan, Yu

    2013-01-01

    During their service life, most biomaterials and medical implants are vulnerable to tribological damage. In addition, the environments in which they are placed are often corrosive. The combination of triobology, corrosion and the biological environment has been named 'bio-tribocorrosion'. Understanding this complex phenomenon is critical to improving the design and service life of medical implants. This important book reviews recent key research in this area. After an introduction to the topography of bio-tribocorrosion, Part one discusses different types of tribocorrosion including fatigue-corrosion, fretting-corrosion, wear-corrosion and abrasion-corrosion. The book also discusses the prediction of wear in medical devices. Part two looks at biological effects on tribocorrosion processes, including how proteins interact with material surfaces and the evolution of surface changes due to bio-tribocorrosion resulting from biofilms and passive films. Part three reviews the issue of bio-tribocorrosion in clinical...

  16. Assessing the Inventiveness of Bio-Pharmaceuticals under European and US Patent Law

    DEFF Research Database (Denmark)

    Minssen, Timo

    , is utterly wrong, since any DNA and the information it contains is the embodiment of the code of life and should be regarded part of the common heritage of mankind. Some patent opponents go even further and argue for a prohibition of patents on proteins. Others, and in particular the life science industry...... specifically, it investigates how the European and US patent systems interpret and apply the so called "inventive step" (Europe) or "non-obviousness" requirement (U.S.) vis-à-vis bio-pharmaceutical technology with a special emphasis on DNA-and protein related inventions. In addition to evaluating the de lata...

  17. Bio-remediation of a sludge containing hydrocarbons

    International Nuclear Information System (INIS)

    Ayotamuno, M.J.; Okparanma, R.N.; Nweneka, E.K.; Ogaji, S.O.T.; Probert, S.D.

    2007-01-01

    Bio-augmentation has been used as a bio-remediation option for hydrocarbon-contaminated, oily-sludge restoration. This sludge was obtained from the Bonny-Terminal Improvement Project (BTIP) for Bonny Island, near Port Harcourt, Nigeria. Its total hydrocarbon-content (THC) was 69,372 mg/kg of sludge. Three treatment reactors (X, Y and Z) and one control reactor (A) were charged with 1500 g of oily sludge and 250 g of agricultural soil (i.e. an oily sludge to soil ratio of 6:1), the mixture homogenized and allowed to settle for seven days before various CFUs were added to reactors X, Y and Z. Reactor A did not receive any bio-preparation. The agricultural soil served both as a nutrient and a microbe carrier. With regularly scheduled mixing and watering, the THC reduction in the oily sludge varied between 40.7% and 53.2% within two weeks as well as between 63.7% and 84.5% within six weeks of applying the bio-remediation. The CFU counts of the added bio-preparation varied between 1.2 x 12 12 and 3.0 x 10 12 CFU/g of sludge and decreased to 7.0 x 10 11 CFU/g of sludge by the end of the sixth week. The pH of the degrading sludge fluctuated between 6.5 and 7.8 during the same period. When compared with the performance of the indigenous microbes in the control sample, the added bio-preparation evidently increased the THC reduction rate in the oily sludge

  18. Reviews Equipment: BioLite Camp Stove Game: Burnout Paradise Equipment: 850 Universal interface and Capstone software Equipment: xllogger Book: Science Magic Tricks and Puzzles Equipment: Spinthariscope Equipment: DC Power Supply HY5002 Web Watch

    Science.gov (United States)

    2013-05-01

    WE RECOMMEND BioLite CampStove Robust and multifaceted stove illuminates physics concepts 850 Universal interface and Capstone software Powerful data-acquisition system offers many options for student experiments and demonstrations xllogger Obtaining results is far from an uphill struggle with this easy-to-use datalogger Science Magic Tricks and Puzzles Small but perfectly formed and inexpensive book packed with 'magic-of-science' demonstrations Spinthariscope Kit for older students to have the memorable experience of 'seeing' radioactivity WORTH A LOOK DC Power Supply HY5002 Solid and effective, but noisy and lacks portability HANDLE WITH CARE Burnout Paradise Car computer game may be quick off the mark, but goes nowhere fast when it comes to lab use WEB WATCH 'Live' tube map and free apps would be a useful addition to school physics, but maths-questions website of no more use than a textbook

  19. TÜV - Zertifizierungen in der Life Science Branche

    Science.gov (United States)

    Schaff, Peter; Gerbl-Rieger, Susanne; Kloth, Sabine; Schübel, Christian; Daxenberger, Andreas; Engler, Claus

    Life Sciences [1] (Lebenswissenschaften) sind ein globales Innovationsfeld mit Anwendungen der Bio- und Medizinwissenschaften, der Pharma-, Chemie-, Kosmetik- und Lebensmittelindustrie. Diese Branche zeichnet sich durch eine stark interdisziplinäre Ausrichtung aus, mit Anwendung wissenschaftlicher Erkenntnisse und Einsatz von Ausgangsstoffen aus der modernen Biologie, Chemie und Humanmedizin sowie gezielter marktwirtschaftlich orientierter Arbeit.

  20. Evaluation of Emissions Bio diesel

    International Nuclear Information System (INIS)

    Rodriguez Maroto, J. J.; Dorronsoro Arenal, J. L.; Rojas Garcia, E.; Perez Pastor, R.; Garcia Alonso, S.

    2007-01-01

    The generation of energy from vegetal products is one of the possibilities to our reach in order to reduce the atmospheric pollution. Particularly, the use of bio diesel in internal combustion engines can be one of the best options. The finest particles emitted by the combustion engines are easily breathable and on them different substances can be absorbed presumably toxic, between which it is possible to emphasize the polycyclic aromatic hydrocarbons (PAHs), by its demonstrated carcinogen character. In this work, it is studied on the one hand, the characteristics that can present the aerosol of emission in a diesel engine with a maximum power of 97 kW, working without load to 600 rpm, using as combustible mixtures of bio diesel and diesel in different proportions. On the other hand, the evolution that takes place in the concentration of PAHs in emission particles, according to the percentage of bio diesel used in the combustible mixture. (Author) 9 refs

  1. Evaluation of Emissions Bio diesel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Maroto, J J; Dorronsoro Arenal, J L; Rojas Garcia, E; Perez Pastor, R; Garcia Alonso, S

    2007-09-27

    The generation of energy from vegetal products is one of the possibilities to our reach in order to reduce the atmospheric pollution. Particularly, the use of bio diesel in internal combustion engines can be one of the best options. The finest particles emitted by the combustion engines are easily breathable and on them different substances can be absorbed presumably toxic, between which it is possible to emphasize the polycyclic aromatic hydrocarbons (PAHs), by its demonstrated carcinogen character. In this work, it is studied on the one hand, the characteristics that can present the aerosol of emission in a diesel engine with a maximum power of 97 kW, working without load to 600 rpm, using as combustible mixtures of bio diesel and diesel in different proportions. On the other hand, the evolution that takes place in the concentration of PAHs in emission particles, according to the percentage of bio diesel used in the combustible mixture. (Author) 9 refs.

  2. Governance of the emerging bio-energy markets

    International Nuclear Information System (INIS)

    Verdonk, M.; Dieperink, C.; Faaij, A.P.C.

    2007-01-01

    Despite its promising prospects, a growing global bio-energy market may have sustainability risks as well. Governing this market with respect to installing safeguards to ensure sustainable biomass production might reduce these risks. Therefore, proposals for governance systems for bio-energy are discussed in this article. The proposals are based on comparative case study research on the governance of comparable commodities. By assessing the governance system of global coffee trade, fair trade coffee, the global and the EU sugar market and Forest Stewardship Council (FSC) wood, strong and weak points of governance systems for commodities are discerned. FSC is selected as the best performing case study and serves as the proposal's basis. FSC's weaknesses are minimized by, among others, using the lessons learned from the other case studies. This results in a system consisting of two pillars, a bio-energy labelling organization (BLO) and a United Nations Agreement on Bio-energy (UNAB). Although consulted experts in the research process are critical about this system they do suggest several conditions a governance system for bio-energy should meet in order to be effective, such as a facilitative government, professional monitoring and using progressive certification combined with price premiums. These conditions have been taken into account in the final proposal. (author)

  3. Governance of the emerging bio-energy markets

    Energy Technology Data Exchange (ETDEWEB)

    Verdonk, M. [Department of Water and Energy, Grontmij Nederland BV, P.O. Box 203, 3730 AE, De Bilt (Netherlands); Dieperink, C. [Department of Innovation and Environmental Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80.115, 3508 TC, Utrecht (Netherlands); Faaij, A.P.C. [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80.115, 3508 TC, Utrecht (Netherlands)

    2007-07-15

    Despite its promising prospects, a growing global bio-energy market may have sustainability risks as well. Governing this market with respect to installing safeguards to ensure sustainable biomass production might reduce these risks. Therefore, proposals for governance systems for bio-energy are discussed in this article. The proposals are based on comparative case study research on the governance of comparable commodities. By assessing the governance system of global coffee trade, fair trade coffee, the global and the EU sugar market and Forest Stewardship Council (FSC) wood, strong and weak points of governance systems for commodities are discerned. FSC is selected as the best performing case study and serves as the proposal's basis. FSC's weaknesses are minimized by, among others, using the lessons learned from the other case studies. This results in a system consisting of two pillars, a bio-energy labelling organization (BLO) and a United Nations Agreement on Bio-energy (UNAB). Although consulted experts in the research process are critical about this system they do suggest several conditions a governance system for bio-energy should meet in order to be effective, such as a facilitative government, professional monitoring and using progressive certification combined with price premiums. These conditions have been taken into account in the final proposal. (author)

  4. Submerged process of bio films; Procesos sumergidos de biopelicula

    Energy Technology Data Exchange (ETDEWEB)

    Hontoria, E.; Zamorano, M.; Gomez, M.A.; Gonzalez, J. [Departamento de Ingeneria Civil, Universidad de Granada (Spain)

    1995-07-01

    The bio film process is the most frequently used one for the water treatment. This article presents the advantages of the bio film process, and its conclusion is: the increase of bio film takes place in 9 days, the appearance of nitrites and the small importance of feeding coefficients for the temperature of water.

  5. Preparation of Bio-beads and Their Atrazine Degradation Characteristics

    Institute of Scientific and Technical Information of China (English)

    BI Hai-tao; ZHANG Lan-ying; LIU Na; ZHU Bo-lin

    2011-01-01

    Screened atrazine-mineralizing bacterium-Pseudomonas W4 was embedded inside an improved PVAH3BO3 embedment matrix to make bio-beads to degrade atrazine. The atrazine degradation characteristics were studied. The preparation procedure of bio-beads was as follows: (1) preparing a mixture of 100, 12.5, 10, 1.5 and 1 g/L PVA, bentonite(Ca), activated carbon powder, sodium alginate and centrifuged Pseudomonas W4 bacterium, respectively; (2) the mixture was dropped into a gently stirred cross linker solution(pH=6.7) and cured at 10 ℃ for 24 h.The optimal atrazine degradation conditions by bio-beads were as follows: pH=7, the auxiliary carbon source was glucose, and the concentration of glucose was greater than 325 mg/L. The bio-beads demonstrated stronger tolerance ability than the free microorganism to the increase of PCBs, hydrogen ion and hydroxide ion. SEM images show the uniform distribution of the microorganism inside bio-beads and the porous cross-linked structure of bio-beads which provides excellent mass transfer capacity.

  6. Potency of bio-charcoal briquette from leather cassava tubers and industrial sludge

    Science.gov (United States)

    Citrasari, Nita; Pinatih, Tety A.; Kuncoro, Eko P.; Soegianto, Agoes; Salamun, Irawan, Bambang

    2017-06-01

    The purpose of this study was to determine the quality of the bio-charcoal briquette with materials from leather cassava tubers and sludge of wastewater treatment plant. The first, bio-charcoal briquette analized stability test and compressive strength. Then, bio-charcoal briquette with best value analyzed for parameter including moisture content, ash content, calorific content, and burned test. The result briquette quality based on compressive strength for bio-charcoal briquettes carbonated water content between 3.8%-4.5% and non-carbonated bio-charcoal briquettes between 5.2%-7.6%. Bio-charcoal carbonation briquette ash content was between 5.30%-7.40% and non-carbonated bio-charcoal briquettes was between 6.86%-7.46%. Bio-charcoal carbonation levels briquettes heated between 578.2 calories/g-1837.7 calories/g and non carbonatedbio-charcoal briquettes between 858.1 calories/g-891.1 calories/g. Carbonated bio-charcoal burned test was between 48-63 minutes and non-carbonated bio-charcoal was between 22-42 minutes. Emissions resulted from the bio-charcoal briquettes for carbonated and non carbonated composition according to the government regulations ESDM No. 047 of 2006 which, at 128 mg/Nm3 and 139 mg/Nm3.

  7. Changing Lives: The Baltimore City Community College Life Sciences Partnership with the University of Maryland, Baltimore

    Science.gov (United States)

    Carroll, Vanessa G.; Harris-Bondima, Michelle; Norris, Kathleen Kennedy; Williams, Carolane

    2010-01-01

    Baltimore City Community College (BCCC) leveraged heightened student interest and enrollment in the sciences and allied health with Maryland's world-leading biotechnology industry to build a community college life sciences learning and research center right on the University of Maryland, Baltimore's downtown BioPark campus. The BCCC Life Sciences…

  8. Bioelectronic platforms for optimal bio-anode of bio-electrochemical systems: From nano- to macro scopes.

    Science.gov (United States)

    Kim, Bongkyu; An, Junyeong; Fapyane, Deby; Chang, In Seop

    2015-11-01

    The current trend of bio-electrochemical systems is to improve strategies related to their applicability and potential for scaling-up. To date, literature has suggested strategies, but the proposal of correlations between each research field remains insufficient. This review paper provides a correlation based on platform techniques, referred to as bio-electronics platforms (BEPs). These BEPs consist of three platforms divided by scope scale: nano-, micro-, and macro-BEPs. In the nano-BEP, several types of electron transfer mechanisms used by electrochemically active bacteria are discussed. In the micro-BEP, factors affecting the formation of conductive biofilms and transport of electrons in the conductive biofilm are investigated. In the macro-BEP, electrodes and separators in bio-anode are debated in terms of real applications, and a scale-up strategy is discussed. Overall, the challenges of each BEP are highlighted, and potential solutions are suggested. In addition, future research directions are provided and research ideas proposed to develop research interest. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Increase of Bio-Gas Power Potential

    OpenAIRE

    V. A. Sednin; О. F. Kraetskaya; I. N. Prokoрenia

    2012-01-01

    The paper presents a review of industrial technologies for obtaining gas-synthesis which is applicable for bio-gas enrichment process. Comparative characteristics are given in the paper. The paper thoroughly considers a technology of dry methane conversion as the most expedient variant recommended for the application in this case. The bio-gas enrichment carried out during its production expands possibilities and efficiency of its application.

  10. Actionable Knowledge and Strategic Decision Making for Bio- and Agroterrorism Threats: Building a Collaborative Early Warning Culture

    DEFF Research Database (Denmark)

    Mårtensson, Per-Åke; Hedström, Lars; Sundelius, Bengt

    2013-01-01

    who must work together with public and animal health organizations as well as environmental and social science organizations. This requires coordinated decision making among these organizations, based on actionable knowledge and information sharing. The risk of not sharing information among...... and the formation of a legal adviser network for decision making. In addition, a seminar on actionable knowledge was held in Stockholm, Sweden, in 2012, which identified the need to bring various agency cultures together to work on developing a resilient capability to identify early signs of bio- and agroterrorism...... organizations compared to the benefit of sharing information can be considered in an “information sharing risk-benefit analysis” to prevent a terrorism incident from occurring and to build a rapid response capability. In the EU project AniBioThreat, early warning is the main topic in work package 3 (WP 3...

  11. Application of bio-marker to study on tumor radiosensitivity

    International Nuclear Information System (INIS)

    Guo Wanfeng; Ding Guirong; Han Liangfu

    2001-01-01

    To definite tumor radiosensitivity is important for applying the schedules of individualization of patient radiotherapy. Many laboratories were carrying on the research which predict the tumor radiosensitivity with one bio-marker or/and multi-bio-marker in various levels. At present has not witnessed the specific bio-marker, but it provides an excellent model for predicting tumor radiosensitivity

  12. Concilier cantine bio et agriculture locale, les voies possibles

    OpenAIRE

    Aubry, Christine

    2012-01-01

    revue en ligne; Les cantines bio peinent souvent à concilier produits bio et circuits courts. Face au risque de « dilution de l’esprit pionnier », des expériences récentes montrent que le recours à des intermédiaires dans la chaîne agroalimentaire peut constituer une voie de diffusion du bio dans les cantines.

  13. Co-processing potential of HTL bio-crude at petroleum refineries

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Jensen, Claus Uhrenholt; Rosendahl, Lasse Aistrup

    2016-01-01

    assays, adapted from conventional crude oil assays, have been obtained, including fractionation of the bio-crude through 15:5 vacuum distillation. The bio-crude and its fractions have been analyzed with respect to heating value, elemental composition, density and oxygen-containing functional groups....... Results show a highly promising bio-crude quality, with a higher heating value of 40.4 MJ/kg, elemental oxygen content of 5.3 wt.%, a specific gravity of 0.97 and a distillation recovery of ∼53.4 wt.% at an atmospheric equivalent temperature (AET) of 375 °C, . Results show that only minor upgrading......This study presents detailed chemical and thermophysical analysis of bio-crude from a continuous hydrothermal liquefaction research plant. Current research on bio-crude focuses mainly on specific biomass feedstocks and conversion process conditions and resulting yields rather than on bio-crude...

  14. Advances in Bio-Imaging From Physics to Signal Understanding Issues State-of-the-Art and Challenges

    CERN Document Server

    Racoceanu, Daniel; Gouaillard, Alexandre

    2012-01-01

    Advances in Imaging Devices and Image processing stem from cross-fertilization between many fields of research such as Chemistry, Physics, Mathematics and Computer Sciences. This BioImaging Community feel the urge to integrate more intensively its various results, discoveries and innovation into ready to use tools that can address all the new exciting challenges that Life Scientists (Biologists, Medical doctors, ...) keep providing, almost on a daily basis. Devising innovative chemical probes, for example, is an archetypal goal in which image quality improvement must be driven by the physics of acquisition, the image processing and analysis algorithms and the chemical skills in order to design an optimal bioprobe. This book offers an overview of the current advances in many research fields related to bioimaging and highlights the current limitations that would need to be addressed in the next decade to design fully integrated BioImaging Device.

  15. Production of gaseous and liquid bio-fuels from the upgrading of lignocellulosic bio-oil in sub- and supercritical water: Effect of operating conditions on the process

    International Nuclear Information System (INIS)

    Remón, J.; Arcelus-Arrillaga, P.; García, L.; Arauzo, J.

    2016-01-01

    Highlights: • Bio-oil valorisation in sub-/supercritical water: a promising route for bio-fuels. • Effect of P, T, t, catalyst and water regime on bio-oil upgrading studied in depth. • Tailor-made route for H_2, CH_4 and liquid bio-fuel production in a single process. • Upgraded liquid with high proportions of C and H, higher HHV and less O content. - Abstract: This work analyses the influence of the temperature (310–450 °C), pressure (200–260 bar), catalyst/bio-oil mass ratio (0–0.25 g catalyst/g bio-oil), and reaction time (0–60 min) on the reforming in sub- and supercritical water of bio-oil obtained from the fast pyrolysis of pinewood. The upgrading experiments were carried out in a batch micro-bomb reactor employing a co-precipitated Ni–Co/Al–Mg catalyst. This reforming process turned out to be highly customisable for the valorisation of bio-oil for the production of either gaseous or liquid bio-fuels. Depending on the operating conditions and water regime (sub/supercritical), the yields to upgraded bio-oil (liquid), gas and solid varied as follows: 5–90%, 7–91% and 3–31%, respectively. The gas phase, having a LHV ranging from 2 to 17 MJ/m"3 STP, was made up of a mixture of H_2 (9–31 vol.%), CO_2 (41–84 vol.%), CO (1–22 vol.%) and CH_4 (1–45 vol.%). The greatest H_2 production from bio-oil (76% gas yield with a relative amount of H_2 of 30 vol.%) was achieved under supercritical conditions at a temperature of 339 °C, 200 bar of pressure and using a catalyst/bio-oil ratio of 0.2 g/g for 60 min. The amount of C, H and O (wt.%) in the upgraded bio-oil varied from 48 to 74, 4 to 9 and 13 to 48, respectively. This represents an increase of up to 37% and 171% in the proportions of C and H, respectively, as well as a decrease of up to 69% in the proportion of O. The HHV of the treated bio-oil shifted from 20 to 35 MJ/kg, which corresponds to an increase of up to 89% with respect to the HHV of the original bio-oil. With a

  16. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  17. Technical and technological solution for vegetal bio-stimulants obtaining

    Science.gov (United States)

    Anghelache, D. G.; Diaconescu, I.; Pătraşcu, R.

    2017-08-01

    The paper presents a modern technology for bio fertilizers resulted from waste plant mass after harvesting crops Experimental products were obtained rich in nutrients, but unstable in terms of existing microorganisms. Therefore, they conducted further studies to obtaining bio fungicide herb, so in all investigations undertaken so far in the laboratory, were able to conclude that the introduction of medicinal plant extracts with fungicidal effect into the bio fertilizers obtained by degradation of plant material post-harvest can get various bio-stimulants with nourishing effect upon the plants. Following this technology the paper’s objective is to identify a flux scheme for experimental equipment which can produce as final outcome this type of bio-stimulant. Also, in this work, this equipment will be chosen and will be designed following and obeying to the request of every step of the above technology.

  18. From Soft Sculpture to Soft Robotics: Retracing a Physical Aesthetics of Bio-Morphic Softness

    DEFF Research Database (Denmark)

    Jørgensen, Jonas

    2017-01-01

    Soft robotics has in the past decade emerged as a growing subfield of technical robotics research, distinguishable by its bio-inspired design strategies, interest in morphological computation, and interdisciplinary combination of insights from engineering, computer science, biology and material...... science. Recently, soft robotics technology has also started to make its way into art, design, and architecture. This paper attempts to think an aesthetics of softness and the life-like through an artistic tradition deeply imbricated with an interrogation of softness and its physical substrates, namely...... the soft sculpture that started proliferating in the late 1960s. Critical descriptions of these works, interestingly, frequently emphasize their similarities with living organisms and bodies as a central tenet of their aesthetics. The paper seeks to articulate aspects of a contiguity between softness...

  19. BioBoost. Biomass based energy intermediates boosting bio-fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Niebel, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Institut fuer Katalyseforschung und -technologie (IKFT)

    2013-10-01

    To increase the share of biomass for renewable energy in Europe conversion pathways which are economic, flexible in feedstock and energy efficient are needed. The BioBoost project concentrates on dry and wet residual biomass and wastes as feedstock for de-central conversion by fast pyrolysis, catalytic pyrolysis and hydrothermal carbonization to the intermediate energy carriers oil, coal or slurry. Based on straw the energy density increases from 2 to 20-30 GJ/m{sup 3}, enabling central GW scale gasification plants for bio-fuel production. A logistic model for feedstock supply and connection of de-central with central conversion is set up and validated allowing the determination of costs, the number and location of de-central and central sites. Techno/economic and environmental assessment of the value chain supports the optimization of products and processes. The utilization of energy carriers is investigated in existing and coming applications of heat and power production and synthetic fuels and chemicals. (orig.)

  20. Temperature dependence on the synthesis of Jatropha bio lubricant

    International Nuclear Information System (INIS)

    Gunam Resul, M.F.M.; Tinia Idaty Mohd Ghazi; Idris, A.

    2009-01-01

    Full text: Jatropha oil has good potential as the renewable energy as well as lubricant feedstock. The synthesis of jatropha bio lubricant was performed by transesterification of jatropha methyl ester (JME) with trimethyl-ol-propane (TMP) with sodium methoxide (NaOCH 3 ) catalyst. The effects of temperature on the synthesis were studied at a range between 120 degree Celsius and 200 degree Celsius with pressure kept at 10 mbar. The conversion of JME to jatropha bio lubricant was found to be the highest (47 %) at 200 degree Celsius. However, it was suggested that the optimum temperature of the reaction is at 150 degree Celsius due to insignificant improvement in bio lubricant production. To maintain forward reaction, the excess amount of JME was maintained at 3.9:1 ratios to TMP. Kinetic study was done and compared. The synthesis was found to follow a second order reaction with overall rate constant of 1.49 x 10 -1 (% wt/ wt.min.degree Celsius) -1 . The estimated activation energy was 3.94 kJ/mol. Pour point for jatropha bio lubricant was at -3 degree Celsius and Viscosity Index (VI) ranged from 178 to 183. The basic properties of jatropha bio lubricant, pour point and viscosities are found comparable to other plant based bio lubricant, namely palm oil and soybean based bio lubricant. (author)

  1. BioWarehouse: a bioinformatics database warehouse toolkit.

    Science.gov (United States)

    Lee, Thomas J; Pouliot, Yannick; Wagner, Valerie; Gupta, Priyanka; Stringer-Calvert, David W J; Tenenbaum, Jessica D; Karp, Peter D

    2006-03-23

    This article addresses the problem of interoperation of heterogeneous bioinformatics databases. We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. BioWarehouse embodies significant progress on the database integration problem for bioinformatics.

  2. Bio-energy in Europe: changing technology choices

    International Nuclear Information System (INIS)

    Faaij, Andre P.C.

    2006-01-01

    Bio-energy is seen as one of the key options to mitigate greenhouse gas emissions and substitute fossil fuels. This is certainly evident in Europe, where a kaleidoscope of activities and programs was and is executed for developing and stimulating bio-energy. Over the past 10-15 years in the European Union, heat and electricity production from biomass increased with some 2% and 9% per year, respectively, between 1990 and 2000 and biofuel production increased about eight-fold in the same period. Biomass contributed some two-thirds of the total renewable energy production in the European Union (EU) (2000 PJ) or 4% of the total energy supply in 1999. Given the targets for heat, power and biofuels, this contribution may rise to some 10% (6000 PJ) in 2010. Over time, the scale at which bio-energy is being used has increased considerably. This is true for electricity and combined heat and power plants, and how biomass markets are developing from purely regional to international markets, with increasing cross-border trade-flows. So far, national policy programs proved to be of vital importance for the success of the development of bio-energy, which led to very specific technological choices in various countries. For the future, a supra-national approach is desired: comprehensive research development, demonstration and deployment trajectories for key options as biomass integrated gasification/combined cycle and advanced biofuel concepts, develop an international biomass market allowing for international trade and an integral policy approach for bio-energy incorporating energy, agricultural, forestry, waste and industrial policies. The Common Agricultural Policy of the (extended) EU should fully incorporate bio-energy and perennial crops in particular

  3. Characterization of bio char derived from tapioca skin

    Science.gov (United States)

    Hasnan, F. I.; Iamail, K. N.; Musa, M.; Jaapar, J.; Alwi, H.; Hamid, K. K. K.

    2018-03-01

    Pyrolysis of tapioca skin was conducted to produce bio chars in the range between 500°C–800°C. Surface modification treatment were performed on bio chars by using chemicals within 24 hours at 30°C and hot water within 1 hour to enhance the bio char’s adsorption properties according to surface area, pore volume, pore size, crystallinity structure and functional groups. The samples were characterized by using BET, XRD, FTIR and Methylene Blue adsorption. Based on BET result, it showed the surface area increased as the pyrolysis temperature increased followed by pore volume and pore size for S0. The optimum temperature for SNaOH, SHW and SMeOH was at 600°C, 700°C and 800°C with the surface area of 75.9874, 274.5066 and 351.5531 m2/g respectively compared to S0 while SP3HO4 has the worst result since it felt on macroporous structure. The percentage of MB adsorption was followed the size of bio chars surface area. Based on FTIR result, at temperature 500°C to 700°C, the bio chars still have functional groups while at 800°C, many functional groups were diminished due to high temperature struck on them. XRD result showed all the bio chars were amorphous. In conclusion, the best surface modification treatment was by Methanol followed by hot water and Sodium Hydroxide at temperature of 700°C and 800°C while Ortho-Phosphoric acid was the worst one and was not suitable for bio char’s surface modification for adsorption purpose.

  4. Immediate catalytic upgrading of soybean shell bio-oil

    International Nuclear Information System (INIS)

    Bertero, Melisa; Sedran, Ulises

    2016-01-01

    The pyrolysis of soybean shell and the immediate catalytic upgrading of the bio-oil over an equilibrium FCC catalyst was studied in order to define its potential as a source for fuels and chemicals. The experiments of pyrolysis and immediate catalytic upgrading were performed at 550 °C during 7 min with different catalysts to oil relationships in an integrated fixed bed pyrolysis-conversion reactor. The results were compared under the same conditions against those from pine sawdust, which is a biomass source commonly used for the production of bio-oil. In the pyrolysis the pine sawdust produced more liquids (61.4%wt.) than the soybean shell (54.7%wt.). When the catalyst was presented, the yield of hydrocarbons increased, particularly in the case of soybean shell, which was four time higher than in the pyrolysis. The bio-oil from soybean shell produced less coke (between 3.1 and 4.3%wt.) in its immediate catalytic upgrading than that from pine sawdust (between 5 and 5.8%wt.), due to its lower content of phenolic and other high molecular weight compounds (three and five times less, respectively). Moreover, soybean shell showed a higher selectivity to hydrocarbons in the gasoline range, with more olefins and less aromatic than pine sawdust. - Highlights: • Soybean shell is a possible source of fuels with benefits as compared to pine sawdust. • Bio-oils upgraded over FCC catalyst in an integrated pyrolysis-conversion reactor. • Pine sawdust bio-oil had more phenols than soybean shell bio-oil. • Soybean shell bio-oil produced more hydrocarbons in gasoline range and less coke.

  5. Bio-oil based biorefinery strategy for the production of succinic acid

    Science.gov (United States)

    2013-01-01

    Background Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. Results The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. Conclusions The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production. PMID:23657107

  6. Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils.

    Science.gov (United States)

    Ren, Xueyong; Meng, Jiajia; Moore, Andrew M; Chang, Jianmin; Gou, Jinsheng; Park, Sunkyu

    2014-01-01

    The degradation properties and combustion performance of raw bio-oil, aged bio-oil, and bio-oil from torrefied wood were investigated through thermogravimetric analysis. A three-stage process was observed for the degradation of bio-oils, including devolatilization of the aqueous fraction and light compounds, transition of the heavy faction to solid, and combustion of carbonaceous residues. Pyrolysis kinetics parameters were calculated via the reaction order model and 3D-diffusion model, and combustion indexes were used to qualitatively evaluate the thermal profiles of tested bio-oils for comparison with commercial oils such as fuel oils. It was found that aged bio-oil was more thermally instable and produced more combustion-detrimental carbonaceous solid. Raw bio-oil and bio-oil from torrefied wood had comparable combustion performance to fuel oils. It was considered that bio-oil has a potential to be mixed with or totally replace the fuel oils in boilers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Bio based cogeneration plants in Sweden; Biobaserte kraftvarmeverk i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Cogeneration plants using bio fuel need a certificate in the Swedish electricity certificate system. Since the initiation of the system in 2003 the plants have taken advantage of the possibility of switching from fossil, to bio fuel. However, there is a potential for additional bio power production, provided that there is a market for the produced heating. The certificate system may contribute to an acceleration of investments in new capacities, and the facilitation of increased bio power production.

  8. Liquid Bio fuels: Vegetable Oils and Bi oethanol

    International Nuclear Information System (INIS)

    Ballesteros, M.; Ballesteros, I.; Oliva, J. M.; Navarro, A. A.

    1998-01-01

    The European energy policy has defined clear objectives to reduce the high dependency on fossil petroleum imports, and to increase the security of sustainable energy supply for the transport sector. Moreover, the European environmental policy is requesting clean fuels that reduce environmental risks. Liquid Bio fuels (vegetable oils and bio ethanol) appear to be in a good position to contribute to achieve these goals expressed by the established objective of European Union to reach for bio fuels a market share of 5% of motor vehicle consumption. This work presents the current state and perspectives of the production and utilisation of liquid fuels from agricultural sources by reviewing agricultural feedstocks for energy sector, conversion technologies and different ways to use bio fuels. Environmental and economical aspects are also briefly analysed. (Author) 10 refs

  9. Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.; Zacher, Alan H.

    2016-08-30

    Biomass fast pyrolysis integrated with bio-oil upgrading represents a very attractive approach for converting biomass to hydrocarbon transportation fuels. However, the thermal and chemical instability of bio-oils presents significant problems when they are being upgraded, and development of effective approaches for stabilizing bio-oils is critical to the success of the technology. Catalytic hydrogenation to remove reactive species in bio-oil has been considered as one of the most efficient ways to stabilize bio-oil. This paper provides a fundamental understanding of hydrogenation of actual bio-oils over a Ru/TiO2 catalyst under conditions relevant to practical bio-oil hydrotreating processes. Bio-oil feed stocks, bio-oils hydrogenated to different extents, and catalysts have been characterized to provide insights into the chemical and physical properties of these samples and to understand the correlation of the properties with the composition of the bio-oil and catalysts. The results indicated hydrogenation of various components of the bio-oil, including sugars, aldehydes, ketones, alkenes, aromatics, and carboxylic acids, over the Ru/TiO2 catalyst and 120 to 160oC. Hydrogenation of these species significantly changed the chemical and physical properties of the bio-oil and overall improved its thermal stability, especially by reducing the carbonyl content, which represented the content of the most reactive species (i.e., sugar, aldehydes, and ketones). The change of content of each component in response to increasing hydrogen additions suggests the following bio-oil hydrogenation reaction sequence: sugar conversion to sugar alcohols, followed by ketone and aldehyde conversion to alcohols, followed by alkene and aromatic hydrogenation, and then followed by carboxylic acid hydrogenation to alcohols. Hydrogenation of bio-oil samples with different sulfur contents or inorganic material contents suggested that sulfur poisoning of the reduced Ru metal catalysts was

  10. Exploring Artificial Intelligence Utilizing BioArt

    OpenAIRE

    Simou , Panagiota; Tiligadis , Konstantinos; Alexiou , Athanasios

    2013-01-01

    Part 15: First Workshop on Ethics and Philosophy in Artificial Intelligence (EPAI 2013); International audience; While artificial intelligence combined with Bioinformatics and Nanotechnology offers a variety of improvements and a technological and healthcare revolution, Bioartists attempt to replace the traditional artistic medium with biological materials, bio-imaging techniques, bioreactors and several times to treat their own body as an alive canvas. BioArt seems to play the role of a new ...

  11. Increase of Bio-Gas Power Potential

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2012-01-01

    Full Text Available The paper presents a review of industrial technologies for obtaining gas-synthesis which is applicable for bio-gas enrichment process. Comparative characteristics are given in the paper. The paper thoroughly considers a technology of dry methane conversion as the most expedient variant recommended for the application in this case. The bio-gas enrichment carried out during its production expands possibilities and efficiency of its application.

  12. Thermal cracking of Enteromorpha prolifera with solvents to bio-oil

    International Nuclear Information System (INIS)

    Song, Linhua; Hu, Mingming; Liu, Dong; Zhang, Daoxiang; Jiang, Cuiyu

    2014-01-01

    Highlights: • Thermal cracking of EP gave rise to a maximum bio-oil yield of 27.4 wt.% at 340 °C and 40 min. • The maximum liquid yield of EP/ethonal is 36.7 wt.% at 300 °C and 30 min. • The maximum liquid yield of EP/VGO is 90.5 wt.% at 300 °C and 30 min. • The HHV of bio-oil from thermal cracking of EP/VGO is 44.51 MJ/kg. • This process has the potential for industrial production of bio-oil from EP. - Abstract: Enteromorpha prolifera (EP) is a renewable energy source that was evaluated as a feedstock to produce bio-oil by thermal cracking. Harvesting EP for bio-oil production will also reduce the damage of green tide on ocean ecology. Effects of reaction temperature between 220 and 380 °C and reaction time between 20 and 80 min on the bio-oil yield and gas and solid thermal cracking products were investigated. Effects of solvents (i.e., ethanol and vacuum gas oil (VGO)) on the yields of bio-oil, gas and solid were also studied. EP, VGO and products from thermal cracking were analyzed by elemental analysis, gas chromatography–mass spectra and gas chromatography. Results indicate that thermal cracking of EP with VGO (EP/VGO) gave rise to the maximum bio-oil yield of 90.5% at 300 °C with a reaction time of 30 min. Higher heating values and elemental analysis demonstrate that this process has the potential for industrial production of bio-oil from EP

  13. Bio-oils from biomass slow pyrolysis: a chemical and toxicological screening.

    Science.gov (United States)

    Cordella, Mauro; Torri, Cristian; Adamiano, Alessio; Fabbri, Daniele; Barontini, Federica; Cozzani, Valerio

    2012-09-15

    Bio-oils were produced from bench-scale slow-pyrolysis of three different biomass samples (corn stalks, poplar and switchgrass). Experimental protocols were developed and applied in order to screen their chemical composition. Several hazardous compounds were detected in the bio-oil samples analysed, including phenols, furans and polycyclic aromatic hydrocarbons. A procedure was outlined and applied to the assessment of toxicological and carcinogenic hazards of the bio-oils. The following hazardous properties were considered: acute toxicity; ecotoxicity; chronic toxicity; carcinogenicity. Parameters related to these properties were quantified for each component identified in the bio-oils and overall values were estimated for the bio-oils. The hazard screening carried out for the three bio-oils considered suggested that: (i) hazards to human health could be associated with chronic exposures to the bio-oils; (ii) acute toxic effects on humans and eco-toxic effects on aquatic ecosystems could also be possible in the case of loss of containment; and (iii) bio-oils may present a marginal potential carcinogenicity. The approach outlined allows the collection of screening information on the potential hazards posed by the bio-oils. This can be particularly useful when limited time and analytical resources reduce the possibility to obtain detailed specific experimental data. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    Science.gov (United States)

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  15. Stabilization of Bio-Oil Fractions for Insertion into Petroleum Refineries

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C. [Iowa State Univ., Ames, IA (United States); Smith, Ryan [Iowa State Univ., Ames, IA (United States); Wright, Mark [Iowa State Univ., Ames, IA (United States); Elliott, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Resasco, Daniel [Univ. of Oklahoma, Norman, OK (United States); Crossley, Steven [Univ. of Oklahoma, Norman, OK (United States)

    2014-09-28

    This project is part of a collaboration effort between Iowa State University (ISU), University of Oklahoma (OK) and Pacific Northwest National Laboratory (PNNL). The purpose of this project is to stabilize bio-oil fractions and improve their suitability for insertion into petroleum refineries. Bio-oil from fast pyrolysis of biomass is a complex mixture of unstable organic compounds. These organic compounds react under standard room conditions resulting in increases in bio-oil viscosity and water content – both detrimental for bio-oil storage and transportation. This study employed fractionation and upgrading systems to improve the stability of bio-oil. The fractionation system consists of a series of condensers, and electrostatic precipitators designed to separate bio-oil into five fractions: soluble carbohydrates (SF1&2), clean phenolic oligomers (CPO) and middle fraction (SF3&4), light oxygenates (SF5). A two-stage upgrading process was designed to process bio-oil stage fractions into stable products that can be inserted into a refinery. In the upgrading system, heavy and middle bio-oil fractions were upgraded into stable oil via cracking and subsequent hydrodeoxygenation. The light oxygenate fraction was steam reformed to provide a portion of requisite hydrogen for hydroprocessing. Hydrotreating and hydrocracking employed hydrogen from natural gas, fuel gas and light oxygenates reforming. The finished products from this study consist of gasoline- and diesel-blend stock fuels.

  16. An ex situ evaluation of TBA- and MTBE-baited bio-traps.

    Science.gov (United States)

    North, Katharine P; Mackay, Douglas M; Annable, Michael D; Sublette, Kerry L; Davis, Greg; Holland, Reef B; Petersen, Daniel; Scow, Kate M

    2012-08-01

    Aquifer microbial communities can be investigated using Bio-traps(®) ("bio-traps"), passive samplers containing Bio-Sep(®) beads ("bio-beads") that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are "baited" with organic contaminants enriched in (13)C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically "sample" about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4-5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that TBA- or MTBE

  17. An ex situ evaluation of TBA- and MTBE-baited bio-traps

    Science.gov (United States)

    North, Katharine P.; Mackay, Douglas M.; Annable, Michael D.; Sublette, Kerry L.; Davis, Greg; Holland, Reef B.; Petersen, Daniel; Scow, Kate M.

    2013-01-01

    Aquifer microbial communities can be investigated using Bio-traps® (“bio-traps”), passive samplers containing Bio-Sep® beads (“bio-beads”) that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are “baited” with organic contaminants enriched in 13C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically “sample” about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4–5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that

  18. Recent Advances in the Sound Insulation Properties of Bio-based Materials

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhu

    2013-12-01

    Full Text Available Many bio-based materials, which have lower environmental impact than traditional synthetic materials, show good sound absorbing and sound insulation performances. This review highlights progress in sound transmission properties of bio-based materials and provides a comprehensive account of various multiporous bio-based materials and multilayered structures used in sound absorption and insulation products. Furthermore, principal models of sound transmission are discussed in order to aid in an understanding of sound transmission properties of bio-based materials. In addition, the review presents discussions on the composite structure optimization and future research in using co-extruded wood plastic composite for sound insulation control. This review contributes to the body of knowledge on the sound transmission properties of bio-based materials, provides a better understanding of the models of some multiporous bio-based materials and multilayered structures, and contributes to the wider adoption of bio-based materials as sound absorbers.

  19. Bio ethanol production from oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Loh Soh Kheang; Muhammad Asyraf Kasim; Nasrin Abu Bakar

    2010-01-01

    Full text: The oil palm industry has an abundance of oil palm biomass. The type of biomass generated includes empty fruit bunches (EFB), oil palm trunk (OPT), kernel, shell and fronds. Generally, ligno celluloses biomass derived from oil palm has great potential to be converted into various forms of renewable energy. In this study, EFB in pulverized form was used as a feedstock for bio ethanol production. EFB contains lignin, hemicelluloses and cellulose which can be converted into fermentable sugar and bio ethanol. The EFB was initially pre-treated with 1% NaOH followed by acid hydrolysis with 0.7% sulfuric acid and enzyme prior to fermentation process with Saccharomyces cerevisea. The various process parameters for bio ethanol production was optimized i.e. pH, temperature, rate of agitation and initial feedstock concentration. The fermentation of EFB hydrolysate was at pH 4, 30 degree Celsius and 100 rpm within 72 hours of incubation yielded 10.48 g/L of bio ethanol from 50 g/L of EFB. The bio ethanol production in a 6-L bioreactor showed 36% conversion of fermentable sugar from EFB into bio ethanol. (author)

  20. Electrospun alginate nanofibres as potential bio-sorption agent of heavy metals in water treatment

    CSIR Research Space (South Africa)

    Mokhena, Teboho C

    2017-03-01

    Full Text Available nanofibres as potential bio-sorption agent of heavy metals in water treatment T.C. Mokhena1,2, N.V Jacobs1,3, A.S. Luyt4* 1 CSIR Materials Science and Manufacturing, Polymers and Composites, Port Elizabeth, South Africa 2 Department of Chemistry...-303 (2011). http://dx.doi.org/10.1016/j.jare.2011.01.008 [2] Taha A.A., Wu Y.-N., Wang H., Li F.: Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr (VI) ion removal from...

  1. Cyanobacteria: A precious bio-resource in agriculture, ecosystem and environmental sustainability

    Directory of Open Access Journals (Sweden)

    Jay Shankar eSingh

    2016-04-01

    Full Text Available Keeping in view the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters, generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, syngas and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  2. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability

    Science.gov (United States)

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N.; Singh, Devendra P.

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet. PMID:27148218

  3. The Bio Bay Game: Three-Dimensional Learning of Biomagnification.

    Science.gov (United States)

    Jasti, Chandana; Lauren, Hillary; Wallon, Robert C; Hug, Barbara

    2016-01-01

    Pressing concerns about sustainability and the state of the environment amplify the need to teach students about the connections between ecosystem health, toxicology, and human health. Additionally, the Next Generation Science Standards call for three-dimensional science learning, which integrates disciplinary core ideas, scientific practices, and crosscutting concepts. The Bio Bay Game is a way to teach students about the biomagnification of toxicants across trophic levels while engaging them in three-dimensional learning. In the game, the class models the biomagnification of mercury in a simple aquatic food chain as they play the roles of anchovies, tuna, and humans. While playing, the class generates data, which they analyze after the game to graphically visualize the buildup of toxicants. Students also read and discuss two articles that draw connections to a real-world case. The activity ends with students applying their understanding to evaluate the game as a model of biomagnification. Throughout the activity, students practice modeling and data analysis and engage with the crosscutting concepts of patterns and cause and effect to develop an understanding of core ideas about the connections between humans and the environment.

  4. The Colorado Learning Attitudes about Science Survey (CLASS) for Use in Biology

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K.; Birol, Gülnur; Smith, Michelle K.

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology. PMID:21885823

  5. The Colorado Learning Attitudes about Science Survey (CLASS) for use in Biology.

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K; Birol, Gülnur; Smith, Michelle K

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology.

  6. Bio-Signal Complexity Analysis in Epileptic Seizure Monitoring: A Topic Review

    Directory of Open Access Journals (Sweden)

    Zhenning Mei

    2018-05-01

    Full Text Available Complexity science has provided new perspectives and opportunities for understanding a variety of complex natural or social phenomena, including brain dysfunctions like epilepsy. By delving into the complexity in electrophysiological signals and neuroimaging, new insights have emerged. These discoveries have revealed that complexity is a fundamental aspect of physiological processes. The inherent nonlinearity and non-stationarity of physiological processes limits the methods based on simpler underlying assumptions to point out the pathway to a more comprehensive understanding of their behavior and relation with certain diseases. The perspective of complexity may benefit both the research and clinical practice through providing novel data analytics tools devoted for the understanding of and the intervention about epilepsies. This review aims to provide a sketchy overview of the methods derived from different disciplines lucubrating to the complexity of bio-signals in the field of epilepsy monitoring. Although the complexity of bio-signals is still not fully understood, bundles of new insights have been already obtained. Despite the promising results about epileptic seizure detection and prediction through offline analysis, we are still lacking robust, tried-and-true real-time applications. Multidisciplinary collaborations and more high-quality data accessible to the whole community are needed for reproducible research and the development of such applications.

  7. Transformative Pulsed Power Science and Technology

    Science.gov (United States)

    2014-12-16

    al. eds. Plasma for Bio - Martin Gundersen 4 Decontamination, Medicine and Food Security, NATO Science for Peace and Security Series A: Chemistry...Pulsed Energy Field Treatments on White Wine Grapes," in Annual Meeting Poster Session, American Society for Enology and Viticulture , Napa...group at U.C. Davis Dept. of Enology and Viticulture . Martin Gundersen 10 Graduated  PhD  Students  2009-­‐2014     Electrical

  8. Outlaw, hackers, victorian amateurs: diagnosing public participation in the life sciences today

    Directory of Open Access Journals (Sweden)

    Christopher M. Kelty

    2010-03-01

    Full Text Available This essay reflects on three figures that can be used to make sense of the changing nature of public participation in the life sciences today: outlaws, hackers and Victorian gentlemen. Occasioned by a symposium held at UCLA (Outlaw Biology: Public Participation in the Age of Big Bio, the essay introduces several different modes of participation (DIY Bio, Bio Art, At home clinical genetics, patient advocacy and others and makes three points: 1 that public participation is first a problem of legitimacy, not legality or safety; 2 that public participation is itself enabled by and thrives on the infrastructure of mainstream biology; and 3 that we need a new set of concepts (other than inside/outside for describing the nature of public participation in biological research and innovation today.

  9. VISCOSITY ANALYSIS OF EMPTY FRUIT BUNCH (EFB BIO-OIL

    Directory of Open Access Journals (Sweden)

    Z.S. Nazirah

    2013-12-01

    Full Text Available Empty fruit bunches (EFB are one of the solid wastes produced by the palm oil industry, which is increasing rapidly. The aim of this paper is to analyse the viscosity of empty fruit bunch (EFB bio-oil that can be extracted from all solid waste EFB as a sample, and a few processes were executed. The samples underwent two processes, which were pre-treatment and pyrolysis. The pre-treatment involved three processes, namely, cutting, shredding and sieving, which were necessary in order to prepare EFB into a particle size suitable for the reactor. After that, the samples were fed into the feedback reactor as feedstock for the pyrolysis process to produce bio-oil. Once the bio-oil was produced, its viscosity was tested using the Brookfield Viscometer in two conditions: before and after the chemical reaction. The bio-oil was treated by adding 10 ml and 20 ml of acetone respectively through the chemical reaction. The viscosity test was carried out at different temperatures, which were 25°C, 30°C, 35°C, 40°C, 45°C and 50°C respectively. The observed viscosity of the EFB bio-oil varied and was higher as the temperature decreased. In addition, the viscosity of the EFB bio-oil was higher when it reacted chemically with the acetone added. Therefore, the results showed that the chemical reaction with acetone has the potential to increase the viscosity of EFB bio-oil.

  10. Amphiphilic Bio-molecules/ZnO Interface: Enhancement of Bio-affinity and Dispersibility

    International Nuclear Information System (INIS)

    Meng Xiu-Qing; Fang Yun-Zhang; Wu Feng-Min

    2012-01-01

    The dispersibility of bio-molecules such as lecithins on the surface of ZnO nanowires are investigated for biosensor applications. Lecithins can be absorbed on an as-synthesized ZnO nanowire surface in the form of sub-micro sized clusters, while scattering well on those annealed under oxygen atmosphere. Wettability analysis reveals that the as-synthesized ZnO nanowires bear a super-hydrophobic surface, which convents to superhydrophilic after oxygen annealing. First-principles calculations indicate that the adsorption energy of ZnO with water is about 0.2 eV at a distance of 2 Å when it is superhydrophilic, suggesting that lecithin can be absorbed on the hydrophilic surface stably at this distance and the bio-affinity can be enhanced under this condition. (condensed matter: structure, mechanical and thermal properties)

  11. A Next Generation BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Tauro, Sandeep

    2011-01-01

    We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials.......We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials....

  12. BioWarehouse: a bioinformatics database warehouse toolkit

    Directory of Open Access Journals (Sweden)

    Stringer-Calvert David WJ

    2006-03-01

    Full Text Available Abstract Background This article addresses the problem of interoperation of heterogeneous bioinformatics databases. Results We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. Conclusion BioWarehouse embodies significant progress on the

  13. Annual report of national institute of radiological sciences, April 1990 - March 1991

    International Nuclear Information System (INIS)

    1991-07-01

    This annual report is a compilation of the research activities and achievement in the National Institute of Radiological Sciences (NIRS) in Japan during the fiscal year 1990 (from April 1990 through March 1991). The research covers a wide range of radiological sciences from molecular to environmental studies and medicine including engineering. Topics consists of physics, chemistry, bio-medical science, clinical research, and environmental sciences, covering a total of 86 titles. A list of publications by staff members, activities of research divisions, and organization chart of the NIRS are given in Appendix. (J.P.N.) 102 refs

  14. Meta-Statistics for Variable Selection: The R Package BioMark

    Directory of Open Access Journals (Sweden)

    Ron Wehrens

    2012-11-01

    Full Text Available Biomarker identification is an ever more important topic in the life sciences. With the advent of measurement methodologies based on microarrays and mass spectrometry, thousands of variables are routinely being measured on complex biological samples. Often, the question is what makes two groups of samples different. Classical hypothesis testing suffers from the multiple testing problem; however, correcting for this often leads to a lack of power. In addition, choosing α cutoff levels remains somewhat arbitrary. Also in a regression context, a model depending on few but relevant variables will be more accurate and precise, and easier to interpret biologically.We propose an R package, BioMark, implementing two meta-statistics for variable selection. The first, higher criticism, presents a data-dependent selection threshold for significance, instead of a cookbook value of α = 0.05. It is applicable in all cases where two groups are compared. The second, stability selection, is more general, and can also be applied in a regression context. This approach uses repeated subsampling of the data in order to assess the variability of the model coefficients and selects those that remain consistently important. It is shown using experimental spike-in data from the field of metabolomics that both approaches work well with real data. BioMark also contains functionality for simulating data with specific characteristics for algorithm development and testing.

  15. Identifying bio-physical, social and political challenges to catchment governance for sustainable freshwater fisheries in West Africa: Systems overview through scenario development in the SUSFISH project.

    Science.gov (United States)

    Sendzimir, Jan; Slezak, Gabriele; Melcher, Andreas

    2015-04-01

    Chronic and episodic water scarcity prompted construction of 1400 reservoirs in Burkina Faso since 1950, greatly expanding fisheries production. These fisheries provided an increasingly important protein source for a population that has risen 600% since 1920, but production has plateaued, and dramatic declines in adult fish size suggest these fisheries are not sustainable. The SUSFISH project joined Austrian and Burkinabe scientists to increase local capacities to manage fisheries sustainably. SUSFISH has successfully increased capacity to monitor fish populations, identify endangered species, and use specific fish and macroinvertebrate species as bio-indicators of water and habitat quality as well as anthropogenic pressures. But projects to support sustainable development in Africa have a long history of failure if only based on transfer of technology and theory based on bio-physical sciences. This paper describes the processes and products of knowledge elicitation, scenario development and systems analysis to identify barriers and bridges to long-term sustainable fisheries development that arise from bio-physical, social, political and cultural causes, and, especially, interactions between them. Lessons learned and important on-going research questions are identified for both the natural and social sciences as they apply to managing catchments at multiple scales of governance, from local to national.

  16. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    Science.gov (United States)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  17. Fuel and food: the competition of bio fuels

    International Nuclear Information System (INIS)

    Tonelli, C.; Soave, C.

    2008-01-01

    In order to achieve the target of 5.75% of bio fuels by 2010 (as indicated bu EU), we must produce in Italy 1 million tons of bio ethanol/year. Using cereals as a feedstock will severely complete with their use as food. We need new crops (lignocellulose crops) specifically selected and bred to fit specific energy needs. Main properties of these crops are indicated as well as the breeding strategies to be used to improve the existing species towards the target of producing higher amount of bio ethanol [it

  18. Hydrothermal liquefaction of microalgae's for bio oil production

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, Harvind; Deng, Shuguang

    process water for algae cultivation. GC-MS, elemental analyzer, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-oil yield of 46% was obtained on Nannochloropsis salina at 310 °C...... and 107 bar. For Spirulina platensis algae sample, the highest bio-oil yield is 38% at 350 °C and 195 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins...

  19. NIH NeuroBioBank

    Data.gov (United States)

    Federal Laboratory Consortium — The NIH NeuroBioBank (NBB), supported by the National Institute of Mental Health, the National Institute of Neurological Disorders and Stroke, and the Eunice Kennedy...

  20. Solidary Dimension of Bio-Ethical Challenges in Croatian Society

    OpenAIRE

    MATULIĆ, Tonči

    2006-01-01

    This contribution investigates the solidary dimensions of bio-ethical challenges with special reflection on their situation and demands in Croatian society. The research unfolds in several stages. The introduction questions the state of today's cultural situation within which bio-ethical challenges emerge. In continuation, the paper investigates relations between social issues as a world notion and bio-ethical challenges that undoubtedly constitute a vital component of that issue. This is par...

  1. Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading

    International Nuclear Information System (INIS)

    Shemfe, Mobolaji B.; Whittaker, Carly; Gu, Sai; Fidalgo, Beatriz

    2016-01-01

    Highlights: • GHG emissions from the upgrading of pyrolysis-derived bio-oil is quantified.. • Soil organic carbon sequestration rate had a significant effect on GHG emission. • Increasing plant scale could improve the environmental performance of the system. • Nitrogen to the pyrolysis reactor had significant impact on GHG emissions. - Abstract: This study examines the GHG emissions associated with producing bio-hydrocarbons via fast pyrolysis of Miscanthus. The feedstock is then upgraded to bio-oil products via hydroprocessing and zeolite cracking. Inventory data for this study were obtained from current commercial cultivation practices of Miscanthus in the UK and state-of-the-art process models developed in Aspen Plus®. The system boundary considered spans from the cultivation of Miscanthus to conversion of the pyrolysis-derived bio-oil into bio-hydrocarbons up to the refinery gate. The Miscanthus cultivation subsystem considers three scenarios for soil organic carbon (SOC) sequestration rates. These were assumed as follows: (i) excluding (SOC), (ii) low SOC and (iii) high (SOC) for best and worst cases. Overall, Miscanthus cultivation contributed moderate to negative values to GHG emissions, from analysis of excluding SOC to high SOC scenarios. Furthermore, the rate of SOC in the Miscanthus cultivation subsystem has significant effects on total GHG emissions. Where SOC is excluded, the fast pyrolysis subsystem shows the highest positive contribution to GHG emissions, while the credit for exported electricity was the main ‘negative’ GHG emission contributor for both upgrading pathways. Comparison between the bio-hydrocarbons produced from the two upgrading routes and fossil fuels indicates GHG emission savings between 68% and 87%. Sensitivity analysis reveals that bio-hydrocarbon yield and nitrogen gas feed to the fast pyrolysis reactor are the main parameters that influence the total GHG emissions for both pathways.

  2. Multifunctional liquid bio fertilizer as an innovative agronomic input for modern agriculture

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Khairuddin Abdul Rahim

    2010-01-01

    Liquid bio fertilizer is increasingly available in the market as one of the alternatives to chemical and organic fertilizers as well as solid substrate-based bio fertilizers. One of the benefits from bio fertilizer is the contribution from population of microorganisms available. These microorganisms may enhance the plant growth and create healthy rhizosphere. The advantage of a liquid bio fertilizer is that no solid carrier is needed. These products are also developed for potential application in modern agriculture such as soil less farming systems, viz. fertigation and hydroponics. Traditionally, liquid bio fertilizer is produced from fermentation of effective microorganisms which was recommended to be used within three months. Therefore, the development of low-cost and long shelf-life liquid bio fertilizers was conducted at Malaysian Nuclear Agency (Nuclear Malaysia). Three bio fertilizer inoculum (phosphate solubilising bacteria and plant growth promoting bacteria) were developed into four formulations of liquid bio fertilizers. The liquid bio fertilizers were kept at low temperatures (9 ± 2 degree Celsius) and room temperatures (28 ± 2 degree Celsius) for shelf-life study. Nutrient broth liquid bio fertilizer kept at low temperatures showed significantly high survival rates after storage for six months as compared to other formulations and treatments. (author)

  3. Bio-Security Proficiencies Project for Beginning Producers in 4-H

    Science.gov (United States)

    Smith, Martin H.; Meehan, Cheryl L.; Borba, John A.

    2014-01-01

    Improving bio-security practices among 4-H members who raise and show project animals is important. Bio-security measures can reduce the risk of disease spread and mitigate potential health and economic risks of disease outbreaks involving animal and zoonotic pathogens. Survey data provided statistical evidence that the Bio-Security Proficiencies…

  4. Sustainable development and bioeconomic prosperity in Africa: Bio ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... High–cost fossil fuel prices and national security concerns have sparked interest in bio-fuels .... Energy security (bio or fossil origin) like food security in. Africa is a crucial ..... wherein Mauritius, Malaysia and. China provide the ...

  5. Bio-optofluidics and biophotonics at the cellular level

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Tauro, Sandeep

    2012-01-01

    We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micro-manipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optical...

  6. Design and manufacturing of bio-based sandwich structures

    CSIR Research Space (South Africa)

    John, Maya J

    2017-03-01

    Full Text Available The aim of this chapter is to discuss the design and manufacturing of bio-based sandwich structures. As the economic advantages of weight reduction have become mandatory for many advanced industries, bio-based sandwich panels have emerged...

  7. Steam Reforming of Bio-oil Model Compounds

    DEFF Research Database (Denmark)

    Trane, Rasmus; Jensen, Anker Degn; Dahl, Søren

    The steam reforming of bio-oil is a sustainable and renewable route to synthesis gas and hydrogen, where one of the main hurdles is carbon formation on the catalyst.......The steam reforming of bio-oil is a sustainable and renewable route to synthesis gas and hydrogen, where one of the main hurdles is carbon formation on the catalyst....

  8. Upgrading of bio-oil via acid-catalyzed reactions in alcohols : a mini review

    NARCIS (Netherlands)

    Hu, X.; Gunawan, R.; Mourant, D.; Mahmudul Hasan, M.D.; Wu, L.; Song, Y.; Lievens, C.; Li, C.Z.

    2017-01-01

    Bio-oil is a condensable liquid produced from the pyrolysis of biomass, which can be upgraded to biofuels. Bio-oil is corrosive as it contains significant amounts of carboxylic acids, creating difficulties in handling of bio-oil and applications of bio-oil. Acid-treatment of bio-oil in alcohols is

  9. Environmental sustainability assessment of bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2009-01-01

    Bio-ethanol is playing an important role in renewable energy for transport according to Thai government policy. This study aims to evaluate the energy efficiency and renewability of bio-ethanol system and identify the current significant environmental risks and availability of feedstocks in Thailand. Four of the seven existing ethanol plants contributing 53% of the total ethanol fuel production in Thailand have been assessed by the net energy balance method and Life Cycle Assessment (LCA). A renewability and net energy ratio portfolio has been used to indicate whether existing bio-ethanol production systems have net energy gain and could help reduce dependency on fossil energy. In addition, LCA has been conducted to identify and evaluate the environmental hotspots of 'cradle to gate' bio-ethanol production. The results show that there are significant differences of energy and environmental performance among the four existing production systems even for the same feedstock. The differences are dependent on many factors such as farming practices, feedstock transportion, fuel used in ethanol plants, operation practices and technology of ethanol conversion and waste management practices. Recommendations for improving the overall energy and environmental performance of the bio-ethanol system are suggested in order to direct the bio-ethanol industry in Thailand towards environmental sustainability.

  10. CHARACTERIZATION OF BIO-OIL FROM PALM KERNEL SHELL PYROLYSIS

    Directory of Open Access Journals (Sweden)

    R. Ahmad

    2014-12-01

    Full Text Available Pyrolysis of palm kernel shell in a fixed-bed reactor was studied in this paper. The objectives were to investigate the effect of pyrolysis temperature and particle size on the products yield and to characterize the bio-oil product. In order to get the optimum pyrolysis parameters on bio-oil yield, temperatures of 350, 400, 450, 500 and 550 °C and particle sizes of 212–300 µm, 300–600 µm, 600µm–1.18 mm and 1.18–2.36 mm under a heating rate of 50 °C min-1 were investigated. The maximum bio-oil yield was 38.40% at 450 °C with a heating rate of 50 °C min-1 and a nitrogen sweep gas flow rate of 50 ml min-1. The bio-oil products were analysed by Fourier transform infra-red spectroscopy (FTIR and gas chromatography–mass spectroscopy (GCMS. The FTIR analysis showed that the bio-oil was dominated by oxygenated species. The phenol, phenol, 2-methoxy- and furfural that were identified by GCMS analysis are highly suitable for extraction from the bio-oil as value-added chemicals. The highly oxygenated oils need to be upgraded in order to be used in other applications such as transportation fuels.

  11. Comparing centralized and decentralized bio-energy systems in rural China

    International Nuclear Information System (INIS)

    He, Guizhen; Bluemling, Bettina; Mol, Arthur P.J.; Zhang, Lei; Lu, Yonglong

    2013-01-01

    Under the dual pressures of an energy crisis and rising greenhouse gas emissions, biomass energy development and utilisation has become part of the national energy strategy in China. The last decade has witnessed a strong promotion of both centralised and decentralised bio-energy systems in rural China. The government seems to have a strong preference for centralised (village-based) bio-energy systems in recent years. However, these government-driven systems have not worked without difficulties, particularly regarding economic and technological viability and maintenance. Studies on the advantages and disadvantages of decentralised and centralised bio-energy systems are rare. This study aims to shed light on the performances of these two systems in terms of social, economic and environmental effects. Through interviewing local officials and village leaders and surveying farmers in 12 villages in Shandong Province, it was found that bio-energy systems should be selected based on the local circumstances. The diversity of the local natural, economic and social situations determines the size, place, technology and organisational model of the bio-energy system. - Highlights: • Biomass energy development has become part of the national energy strategy in China. • The dis-/advantages of decentralized and centralized bio-energy systems are evaluated. • Bio-energy systems should be selected based on the local circumstances

  12. Civic education and political participation among youth at Universidad del Bio- Bio, Chile

    Directory of Open Access Journals (Sweden)

    Cristian Orellana Fonseca

    2015-06-01

    Full Text Available The results of this paper are the product of a broader research on political participation. The expressions of young university students are there analyzed about civic education received at school related to political participation. Three focus groups were held with freshmen at Universidad del Bio-Bio, Chile. The results show that the vision of young people about the formation received is rather critical. On the one hand, the need for civic education is identified as that which allows to address the complexity of political activity. Secondly, it is found that school education does not respond to this need, since it is qualified as poor and biased. For students, education must play a politicizing role, providing inputs to influence social change.

  13. [Research progress on the technique and materials for three-dimensional bio-printing].

    Science.gov (United States)

    Yang, Runhuai; Chen, Yueming; Ma, Changwang; Wang, Huiqin; Wang, Shuyue

    2017-04-01

    Three-dimensional (3D) bio-printing is a novel engineering technique by which the cells and support materials can be manufactured to a complex 3D structure. Compared with other 3D printing methods, 3D bio-printing should pay more attention to the biocompatible environment of the printing methods and the materials. Aimed at studying the feature of the 3D bio-printing, this paper mainly focuses on the current research state of 3D bio-printing, with the techniques and materials of the bio-printing especially emphasized. To introduce current printing methods, the inkjet method, extrusion method, stereolithography skill and laser-assisted technique are described. The printing precision, process, requirements and influence of all the techniques on cell status are compared. For introduction of the printing materials, the cross-link, biocompatibility and applications of common bio-printing materials are reviewed and compared. Most of the 3D bio-printing studies are being remained at the experimental stage up to now, so the review of 3D bio-printing could improve this technique for practical use, and it could also contribute to the further development of 3D bio-printing.

  14. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  15. EcAMSat and BioSentinel: Autonomous Bio Nanosatellites Addressing Strategic Knowledge Gaps for Manned Spaceflight Beyond LEO

    Science.gov (United States)

    Padgen, Mike

    2017-01-01

    Manned missions beyond low Earth orbit (LEO) require that several strategic knowledge gaps about the effects of space travel on the human body be addressed. NASA Ames Research Center has been the leader in developing autonomous bio nanosatellites, including past successful missions for GeneSat, PharmaSat, and OOREOS, that tackled some of these issues. These nanosatellites provide in situ measurements, which deliver insight into the dynamic changes in cell behavior in microgravity. In this talk, two upcoming bio nanosatellites developed at Ames, the E. coli Antimicrobial Satellite (EcAMSat) and BioSentinel, will be discussed. Both satellites contain microfluidic systems that precisely deliver nutrients to the microorganisms stored within wells of fluidic cards. Each well, in turn, has its own 3-color LED and detector system which is used to monitor changes in metabolic activity with alamarBlue, a redox indicator, and the optical density of the cells. EcAMSat investigates the effects of microgravity on bacterial resistance to antimicrobial drugs, vital knowledge for understanding how to maintain the health of astronauts in long-term and beyond LEO spaceflight. The behavior of wild type and mutant uropathic E. coli will be compared in microgravity and with ground data to help understand the molecular mechanisms behind antibiotic resistance and how these phenotypes might change in space. BioSentinel seeks to directly measure the effects of space radiation on budding yeast S. cerevisiae, particularly double strand breaks (DSB). While hitching a ride on the SLS EM-1 mission (Orions first unmanned mission to the moon) in 2018, BioSentinel will be kicked off and enter into a heliocentric orbit, becoming the first study of the effects of radiation on living organisms outside LEO since the Apollo program. The yeast are stored in eighteen independent 16-well microfluidic cards, which will be individually activated over the 12 month mission duration. In addition to the wild

  16. Optical bio-sniffer for methyl mercaptan in halitosis.

    Science.gov (United States)

    Mitsubayashi, Kohji; Minamide, Takeshi; Otsuka, Kimio; Kudo, Hiroyuki; Saito, Hirokazu

    2006-07-28

    An optical bio-sniffer for methyl mercaptan (MM) one of major odorous chemicals in halitosis (bad breath) was constructed by immobilizing monoamine oxidase type A (MAO-A) onto a tip of a fiber optic oxygen sensor (od: 1.59 mm) with an oxygen sensitive ruthenium organic complex (excitation: 470 nm, fluorescent: 600 nm). A flow cell for circulating buffer solution was applied to rinse and clean the tip of the device like nasal mucosa. In order to amplify the bio-sniffer output, a substrate regeneration cycle caused by coupling MAO-A with l-ascorbic acid (AsA) as reducing reaction with reagent system was applied to the sensor system. After evaluating the sensor characteristics using a gas flow measurement system with a gas generator, the optical bio-sniffer was applied to expired gases from healthy male volunteers for halitosis analysis as a physiological application. The optical bio-sniffer was applied to detect the oxygen consumption induced by MAO-A enzymatic reaction (and AsA chemical reduction) with gaseous MM application. The bio-sniffer was calibrated against MM vapor from 8.7 to 11500 ppb with correlation coefficient of 0.977, including a MM threshold (200 ppb) of pathologic halitosis and the human sense of smell level 3.5 (10.0 ppb), with good gas-selectivity based on the MAO-A substrate specificity. As the result of the physiological application, the optical bio-sniffer could successfully monitor the MM level change in breath samples during daytime, which is consistent with the previously reported results.

  17. The electromagnetic bio-field: clinical experiments and interferences.

    Science.gov (United States)

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-06-12

    One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.

  18. Chinese academic experts' assessment for forest bio-energy development in China

    International Nuclear Information System (INIS)

    Qu Mei; Ahponen, Pirkkoliisa; Tahvanainen, Liisa; Pelkonen, Paavo

    2010-01-01

    The aim of this study was to assess the current situation of the forest bio-energy development in China. This assessment is based on opinions of Chinese academic experts. Key drivers and uncertainties regarding the implementation, and the strategies for the future practices in the development of forest bio-energy were investigated. In addition, the purpose of this study was also to determine whether there is a consensus among the experts concerning forest bio-energy and if this consensus agrees with policy-makers in China. A thorough assessment was conducted using a two-round Delphi survey of sixty-one bio-energy experts in China. The results revealed the advantages, potential problems, and the experts' recommendations for the future development. Furthermore, the experts agreed that the Chinese government plays a dominant role in the development process of forest bio-energy in the country. The experts recognized that the process of developing forest bio-energy is a challenging task both domestically and globally. At the same time they also highlighted the potential benefits of developing forest bio-energy in China during the next ten years. The outcomes of this study could be used to give advice to policy-makers and to support the implementation of the future forest bio-energy policies in China.

  19. Linearity between temperature peak and bio-energy CO2 emission rates

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bright, Ryan M.; Stromman, Anders H.; Gasser, Thomas; Ciais, Philippe

    2014-01-01

    Many future energy and emission scenarios envisage an increase of bio-energy in the global primary energy mix. In most climate impact assessment models and policies, bio-energy systems are assumed to be carbon neutral, thus ignoring the time lag between CO 2 emissions from biomass combustion and CO 2 uptake by vegetation. Here, we show that the temperature peak caused by CO 2 emissions from bio-energy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR) to fossil fuel emissions is approximately constant, the CCR to bio-energy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bio-energy CO 2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO 2 emissions from bio-energy matters. Under the international agreement to limit global warming to 2 C by 2100, early emissions from bio-energy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bio-energy is sourced from biomass with medium (50-60 years) or long turnover times (100 years). (authors)

  20. Characteristics of the products of hydrothermal liquefaction combined with cellulosic bio-ethanol process

    International Nuclear Information System (INIS)

    Li, Rundong; Xie, Yinghui; Yang, Tianhua; Li, Bingshuo; Zhang, Yang; Kai, Xingping

    2016-01-01

    The integration utilization of fermentation residues from cellulosic bio-ethanol has attracted a great deal of attention to balance the total cost of bio-ethanol production while simultaneously dealing with bio-ethanol wastewater. A process of hydrothermal liquefaction (HTL) of intact materials from cellulosic bio-ethanol in a batch reactor was proposed. The effects of the reaction temperature and time on the liquefaction characteristics were examined. The optimum condition for liquefaction fermentation residues was 370 °C (21.25 MPa) and 30 min with a bio-oil yield of 40.79 wt%. GC-MS results indicated that the major chemical species in the bio-oil were phenols, ketones, long-chain hydrocarbons and fatty acids. Supercritical conditions (375 °C, 23.50 MPa) was favored for the low-molecular-weight species formation compared to subcritical conditions (370 °C, 21.25 MPa), as some long-chain species decreased. This work thus can provide a novel idea for bio-oil production from HTL of cellulosic bio-ethanol fermentation residues. - Highlights: • Bio-oil production via HTL combined with cellulosic bio-ethanol process was proposed. • Optimum condition for HTL of materials from cellulosic bio-ethanol was 370 °C and 30 min. • Bio-oil contained higher content of hydrocarbons and lower contents of organic acids.

  1. A Systems Approach to Bio-Oil Stabilization - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C; Meyer, Terrence; Fox, Rodney; Submramaniam, Shankar; Shanks, Brent; Smith, Ryan G

    2011-12-23

    The objective of this project is to develop practical, cost effective methods for stabilizing biomass-derived fast pyrolysis oil for at least six months of storage under ambient conditions. The U.S. Department of Energy has targeted three strategies for stabilizing bio-oils: (1) reducing the oxygen content of the organic compounds comprising pyrolysis oil; (2) removal of carboxylic acid groups such that the total acid number (TAN) of the pyrolysis oil is dramatically reduced; and (3) reducing the charcoal content, which contains alkali metals known to catalyze reactions that increase the viscosity of bio-oil. Alkali and alkaline earth metals (AAEM), are known to catalyze decomposition reactions of biomass carbohydrates to produce light oxygenates that destabilize the resulting bio-oil. Methods envisioned to prevent the AAEM from reaction with the biomass carbohydrates include washing the AAEM out of the biomass with water or dilute acid or infusing an acid catalyst to passivate the AAEM. Infusion of acids into the feedstock to convert all of the AAEM to salts which are stable at pyrolysis temperatures proved to be a much more economically feasible process. Our results from pyrolyzing acid infused biomass showed increases in the yield of anhydrosugars by greater than 300% while greatly reducing the yield of light oxygenates that are known to destabilize bio-oil. Particulate matter can interfere with combustion or catalytic processing of either syngas or bio-oil. It also is thought to catalyze the polymerization of bio-oil, which increases the viscosity of bio-oil over time. High temperature bag houses, ceramic candle filters, and moving bed granular filters have been variously suggested for syngas cleaning at elevated temperatures. High temperature filtration of bio-oil vapors has also been suggested by the National Renewable Energy Laboratory although there remain technical challenges to this approach. The fast pyrolysis of biomass yields three main organic

  2. Opportunity and development of bio-based composites

    Science.gov (United States)

    Zhiyong Cai; Jerrold E. Winandy

    2005-01-01

    Our forests are a naturally renewable resource that has been used as a principal source of bio-energy and building materials for centuries. The rapid growth of world population has now resulted in substantial increases in demand and in consumption of all raw materials. This now provides a unique opportunity of developing new bio-based composites. The 100-year history...

  3. Study on Evaporation Characteristics of Bio-oil and its Compound Models

    OpenAIRE

    Tan Long; Ming Li; Yixin Chen; Xifeng Zhu

    2014-01-01

    In this study, bio-oil was analyzed by gas chromatography mass spectrometry (GC-MS), and the evaporation characteristics of bio-oil were studied at different heating rates (10, 20, and 30 °C/min) from 35 °C to 250 °C by a thermal analyzer (TG-DSC). The TG-DSC results of bio-oil showed that the heat requirement of bio-oil during the evaporation process ranged from 2.072103 to 2.299103 J/g, and the bio-oil activation energy ranged from 1.22×104 to 3.34×104 J/mol. Moreover, four models with fi...

  4. What can law do for the development of bio-economy?

    Science.gov (United States)

    Chang-Qiu, Liu

    2012-03-01

    Bio-technology has become a new impeller to the development of the world economy since the 1970's. The development of bio-economy has two sides for mankind which calls for intervention by law. During the legislation of bioeconomy, some special principles should be esteemed and observed by legislators. It is necessary for the healthy development of bio-economy.

  5. Bio-methane from an-aerobic digestion using activated carbon adsorption.

    Science.gov (United States)

    Farooq, Muhammad; Bell, Alexandra H; Almustapha, M N; Andresen, John M

    2017-08-01

    There is an increasing global demand for carbon-neutral bio-methane from an-aerobic digestion (AD) to be injected into national gas grids. Bio-gas, a methane -rich energy gas, is produced by microbial decomposition of organic matter through an-aerobic conditions where the presence of carbon dioxide and hydrogen sulphide affects its performance. Although the microbiological process in the AD can be tailored to enhance the bio-gas composition, physical treatment is needed to convert the bio-gas into bio-methane. Water washing is the most common method for upgrading bio-gas for bio-methane production, but its large use of water is challenging towards industrial scale-up. Hence, the present study focuses on scale-up comparison of water washing with activated-carbon adsorption using HYSYS and Aspen Process Economic Analyzer. The models show that for plants processing less than 500 m 3 /h water scrubbing was cost effective compared with activated carbon. However, against current fossil natural-gas cost of about 1 p/kWh in the UK both relied heavily on governmental subsidies to become economically feasible. For plants operating at 1000 m 3 /hr, the treatment costs were reduced to below 1.5 p/kWh for water scrubbing and 0.9 p/kWh for activated carbon where the main benefits of activated carbon were lower capital and operating costs and virtually no water losses. It is envisioned that this method can significantly aid the production of sustainable bio-methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Ontology-Based Querying with Bio2RDF's Linked Open Data.

    Science.gov (United States)

    Callahan, Alison; Cruz-Toledo, José; Dumontier, Michel

    2013-04-15

    A key activity for life scientists in this post "-omics" age involves searching for and integrating biological data from a multitude of independent databases. However, our ability to find relevant data is hampered by non-standard web and database interfaces backed by an enormous variety of data formats. This heterogeneity presents an overwhelming barrier to the discovery and reuse of resources which have been developed at great public expense.To address this issue, the open-source Bio2RDF project promotes a simple convention to integrate diverse biological data using Semantic Web technologies. However, querying Bio2RDF remains difficult due to the lack of uniformity in the representation of Bio2RDF datasets. We describe an update to Bio2RDF that includes tighter integration across 19 new and updated RDF datasets. All available open-source scripts were first consolidated to a single GitHub repository and then redeveloped using a common API that generates normalized IRIs using a centralized dataset registry. We then mapped dataset specific types and relations to the Semanticscience Integrated Ontology (SIO) and demonstrate simplified federated queries across multiple Bio2RDF endpoints. This coordinated release marks an important milestone for the Bio2RDF open source linked data framework. Principally, it improves the quality of linked data in the Bio2RDF network and makes it easier to access or recreate the linked data locally. We hope to continue improving the Bio2RDF network of linked data by identifying priority databases and increasing the vocabulary coverage to additional dataset vocabularies beyond SIO.

  7. Bio-composites : opportunities for value-added biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Drzal, L.T. [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemical Engineering and Materials Science]|[Michigan State Univ., East Lansing, MI (United States). Composite Materials and Structures Center

    2003-07-01

    In order to reduce dependency on foreign oil, there is a growing need to develop and commercialize new bio-based green materials and technologies that can produce bio-based structural materials that are competitive with current synthetic products. The use of bio-based products would also improve the environment and create new opportunities for the agricultural economy. This paper described ongoing research into bio-based materials and products that replace petroleum-based products. In particular, it examined the use of biocomposites made by embedding natural/biofibers such as kenaf, hemp, flax, jute, henequen, pineapple leaf fiber, corn stalk fibers and native Michigan grasses into petroleum-derived traditional plastics such as polypropylene, unsaturated polyesters and epoxies. It also examines the use of green biocomposites developed by embedding these bio-fibers into renewable resource-based bioplastics such as cellulosic plastics and soy-based plastics. New processing methods that combine biofibers with plastics were needed to produce the biocomposites with desirable mechanical properties. The study showed that biofiber reinforced petroleum-based plastic biocomposites can produce a structural material that offers a balance between ecology, economy and technology. The potential for using these materials for automotive and building materials was also presented. 1 tab., 28 figs.

  8. Paracoccus denitrificans possesses two BioR homologs having a role in regulation of biotin metabolism.

    Science.gov (United States)

    Feng, Youjun; Kumar, Ritesh; Ravcheev, Dmitry A; Zhang, Huimin

    2015-08-01

    Recently, we determined that BioR, the GntR family of transcription factor, acts as a repressor for biotin metabolism exclusively distributed in certain species of α-proteobacteria, including the zoonotic agent Brucella melitensis and the plant pathogen Agrobacterium tumefaciens. However, the scenario is unusual in Paracoccus denitrificans, another closely related member of the same phylum α-proteobacteria featuring with denitrification. Not only does it encode two BioR homologs Pden_1431 and Pden_2922 (designated as BioR1 and BioR2, respectively), but also has six predictive BioR-recognizable sites (the two bioR homolog each has one site, whereas the two bio operons (bioBFDAGC and bioYB) each contains two tandem BioR boxes). It raised the possibility that unexpected complexity is present in BioR-mediated biotin regulation. Here we report that this is the case. The identity of the purified BioR proteins (BioR1 and BioR2) was confirmed with LC-QToF-MS. Phylogenetic analyses combined with GC percentage raised a possibility that the bioR2 gene might be acquired by horizontal gene transfer. Gel shift assays revealed that the predicted BioR-binding sites are functional for the two BioR homologs, in much similarity to the scenario seen with the BioR site of A. tumefaciens bioBFDAZ. Using the A. tumefaciens reporter system carrying a plasmid-borne LacZ fusion, we revealed that the two homologs of P. denitrificans BioR are functional repressors for biotin metabolism. As anticipated, not only does the addition of exogenous biotin stimulate efficiently the expression of bioYB operon encoding biotin transport/uptake system BioY, but also inhibits the transcription of the bioBFDAGC operon resembling the de novo biotin synthetic pathway. EMSA-based screening failed to demonstrate that the biotin-related metabolite is involved in BioR-DNA interplay, which is consistent with our former observation with Brucella BioR. Our finding defined a complex regulatory network for biotin

  9. Envirobiosens. New trends in bio-sensing for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, S. [Cranfield Biothechnology Centre, Cranfield University (United Kingdom); Cosnier, S. [Universite Joseph-Fourier, Grenoble I, Lab. d' Electrochimie Organique et de Photochimie Redox, UMR CNRS 5630, 38 (France); Magner, E. [Limerick University, Dept. of Chemical and Environmental Sciences (Ireland)] [and others

    2000-07-01

    The development of useful sensor systems to monitor multiple pollutants is needed for many environmental applications like the pollution monitoring and processing. The advantages of chemical sensors, bio-sensors and bio-mimetic systems should be exploited to fill specific niche applications in environmental engineering. Sensors offer particular advantages as they can be used for rapid field assessment of pollution risks, including the effects of pollutant mixtures. This conference reviews the current state of the art for bio-sensors operating in the environment and in environmental processes to develop bio-sensors practical applications in the environmental technology. The papers are presented in three parts: enzymatic sensors for environmental monitoring; affinity sensors for environmental application; cell and tissue sensors for environmental analysis, future prospects. (A.L.B.)

  10. Bio-fuel - millions to be invested despite great uncertainty

    International Nuclear Information System (INIS)

    Beer, G.

    2005-01-01

    A directive passed by Brussels which directs Europe Union (EU) members to replace traditional fuels has created problems for many countries as they are not yet ready for bio-fuels. The directive counts with most euro-citizens no longer using pure petrol or diesel as of next year. Most refineries and petrol stations will have to sell a mixture of petrol and alcohol, or diesel and MERO. From 2007, bio-elements should comprise up to 5.75% of the energy content of diesel and petrol. The content of the bio-elements should be gradually increased to reach this figure - by the end of this year the required level will be 2%. For EU members, bio-fuels will create major problems and few advantages. Their share of car fuels will still be too low to have a major environmental effect or decrease dependency on oil imports. Reaching the prescribed percentage of bio-components in fuels will be expensive for the state. Exact figures are not yet available, but according to the National Program of Bio-Fuel Development this process will cost Slovakia over 500 mil Slovak crowns (Sk) (13.158 mil. Eur) in 2007 and by 2010 total state budget contributions will double. EC Directive 2003/30/EC creates business opportunities for certain business groups. But to benefit from this development they will have to act fast. In 2010, 29,000 ha. of maize and a greater acreage of grain will be needed for the production of the required volumes of bio-ethanol and so farmers have a chance to benefit from this situation. But farmers still do not have a clear view of what their cooperation with refineries will be like. In Slovakia, bio-alcohol will be produced from maize or grain. Its price is currently around 100 euro (4 000 Sk) per ton. To produce 1 ton of alcohol, 3 tons of grain are needed. A faster solution for Slovakia could be mixing diesel with MERO as in this area sufficient production capacity already exists, currently a part of production is exported to Germany, according to the head of Palma

  11. About possible mechanisms of current transfer in the bio-polymer - semiconductor heterostructure

    International Nuclear Information System (INIS)

    Pavlov, A.A.; Dosmailov, M.A.; Karibaeva, M.K.; Kenshinbaev, N.K.; Kokanbaev, M.; Uristembekov, B.B.; Tynyshtykbaev, K.B.

    2003-01-01

    Earlier by the bio-polymer films deposition on silicon the bio-polymer - semiconductor heterostructures were created. The influence of silicon surface atoms on self-organization processes in these bio-molecules were studied. Particularly the silicon - bio-cholesterol aqueous solution and the silicon - bio-chlorophyll aqueous solution spectral photo-sensitivity were considered. In this case the of photo-response broadening in the spectral photo-sensitivity short-wave part of these systems have been observed. The similar broadening is explained by both the passivation of surface recombination centers by OH-groups and the anti-reflecting properties of aqueous solutions. Besides it is possible the additional charge carriers generation caused by quasi-inter-zone transfers in the bio-polymers depending on electron-conformation properties of macromolecules. In the paper the possible mechanisms of current transfer in the bio-polymer - semiconductor heterostructure are discussed

  12. Life cycle impact assessment of bio-based plastics from sugarcane ethanol

    NARCIS (Netherlands)

    Tsiropoulos, I.; Faaij, A. P C; Lundquist, L.; Schenker, U.; Briois, J. F.; Patel, M. K.

    2015-01-01

    The increasing production of bio-based plastics calls for thorough environmental assessments. Using life cycle assessment, this study compares European supply of fully bio-based high-density polyethylene and partially bio-based polyethylene terephthalate from Brazilian and Indian sugarcane ethanol

  13. Bio-electrosprayed multicellular zebrafish embryos are viable and develop normally

    International Nuclear Information System (INIS)

    Clarke, Jonathan D W; Jayasinghe, Suwan N

    2008-01-01

    Bio-electrosprays are rapidly emerging as a viable protocol for directly engineering living cells. This communication reports the bio-electrospraying of multicellular organisms, namely zebrafish embryos. The results demonstrate that the bio-electrospray protocol fails to induce any embryological perturbations. In addition to analysing overall embryo morphology, we use transgenic embryos that express green fluorescent protein in specific brain neurons to determine that neuronal numbers and organization are completely normal. These results demonstrate that the bio-electrospraying protocol does not interfere with the complex gene regulation and cell movements required for the development of a multicellular organism. (communication)

  14. The way to bio heat. A manual on production of heat from bio fuel; Veien til biovarme. Manual for produksjon av ferdigvarme fra biobrensel

    Energy Technology Data Exchange (ETDEWEB)

    Breen, Tor; Liodden, Ole Joergen; Farsund Oeystein; Martinsen, Arnold Kyrre

    2008-09-26

    The manual is a tool in the process of planning and establishing a bio heat company. It focuses on both technical, administrative, and economic aspects. Part 1 of the manual briefly reviews the production of bio fuel and bio heat, part 2 considers the organizational aspects of the project, and part 3 is a tool box containing laws and regulations, templates for contracts/agreements etc

  15. Bio-fuels: results in progress, necessary adaptations

    International Nuclear Information System (INIS)

    2016-02-01

    In this report, the French Court of Auditors examines whether its assessments and recommendations published some years before about the development and use of bio-fuels in France had been taken into account. It shows that the support to bio-fuels has multiple objectives, produced some interesting results, but at high cost. Production processes are described. The authors outline that instruments had not been always coherently implemented, and that the tax system had negative effects. They notice that the objective in terms of bio-diesel share has been reached, whereas that of bio-ethanol has not. They also outline that these results have also been obtained with the help of some palliative measures, and that cost remains high for the consumer. In a second part, the report outlines that the present context calls for adaptations, notably due to its uncertainty (instability of European rules, lack of European ambition, a less promising market, a lower priority for automotive manufacturers), and proposes some perspectives and approaches of adaptation, notably to reach quantitative objectives with a greater transparency for the consumer. The report also contains answers made by the different concerned ministers

  16. Microbial conversion of biomass into bio-based polymers.

    Science.gov (United States)

    Kawaguchi, Hideo; Ogino, Chiaki; Kondo, Akihiko

    2017-12-01

    The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bio-Carbon Accounting for Bio-Oil Co-Processing: 14C and 13C/12C

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Claudia I. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Zhenghua [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vance, Zachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-21

    This is a powerpoint presentation on bio-carbon accounting for bio-oil co-processing. Because of the overlapping range in the stable C isotope compositions of fossil oils and biooils from C3-type feedstocks, it is widely thought that stable isotopes are not useful to track renewable carbon during co-production. In contrast, our study demonstrates the utility of stable isotopes to: • capture a record of renewable carbon allocation between FCC products of co-processing • record changes in carbon apportionments due to changes in reactor or feed temperature Stable isotope trends as a function of percent bio-oil in the feed are more pronounced when the δ13C of the bio-oil endmember differs greatly from the VGO (i.e., it has a C4 biomass source–corn stover, switch grass, Miscanthus, sugarcane– versus a C3 biomass source– pine, wheat, rice, potato), but trends on the latter case are significant for endmember differences of just a few permil. The correlation between measured 14C and δ13C may be useful as an alternative to carbon accounting, but the relationship must first be established for different bio-oil sources.

  18. Applications of Nanomaterials in Dental Science: A Review.

    Science.gov (United States)

    Sharan, Jitendra; Singh, Shivani; Lale, Shantanu V; Mishra, Monu; Koul, Veena; Kharbanda, P

    2017-04-01

    Nanotechnology has revolutionized health care industry in a large scale and its applications are a boon to modern medicine and dental science. It is expected to pervade and further revolutionize the art and science of dentistry and may well have important applications spanning all the aspects of oral diseases, diagnosis, prevention and treatment. Materials science in dentistry has embraced the technology to produce nanomaterials that are being used in caries inhibitors, antimicrobial resins, hard tissue remineralizing agents, targeted drug delivery, scaffolds, bio-membranes, nanocrystalline hydroxyl apatite, restorative cements, adhesion promoters and boosters, bioactive glass, tissue conditioners, reinforced methacrylate resins, root canal disinfectants, friction free orthodontic arch wires and nano composites life. These upcoming technologies have potential to bring about significant benefits in the form of improvement in dental science and to society. The present review presents the latest recent developments in this interdisciplinary field bridging nanotechnology and dental science.

  19. Mastering multi-depth bio-chip patterns with DVD LBRs

    Science.gov (United States)

    Carson, Doug

    2017-08-01

    Bio chip and bio disc are rapidly growing technologies used in medical, health and other industries. While there are numerous unique designs and features, these products all rely on precise three-dimensional micro-fluidic channels or arrays to move, separate and combine samples under test. These bio chip and bio disc consumables are typically manufactured by molding these parts to a precise three-dimensional pattern on a negative metal stamper, or they can be made in smaller quantities using an appropriate curable resin and a negative mold/stamper. Stampers required for bio chips have been traditionally made using either micro machining or XY stepping lithography. Both of these technologies have their advantages as well as limitations when it comes to creating micro-fluidic patterns. Significant breakthroughs in continuous maskless lithography have enabled accurate and efficient manufacturing of micro-fluidic masters using LBRs (Laser Beam Recorders) and DRIE (Deep Reactive Ion Etching). The important advantages of LBR continuous lithography vs. XY stepping lithography and micro machining are speed and cost. LBR based continuous lithography is >100x faster than XY stepping lithography and more accurate than micro machining. Several innovations were required in order to create multi-depth patterns with sub micron accuracy. By combining proven industrial LBRs with DCA's G3-VIA pattern generator and DRIE, three-dimensional bio chip masters and stampers are being manufactured efficiently and accurately.

  20. The BioHub Knowledge Base: Ontology and Repository for Sustainable Biosourcing.

    Science.gov (United States)

    Read, Warren J; Demetriou, George; Nenadic, Goran; Ruddock, Noel; Stevens, Robert; Winter, Jerry

    2016-06-01

    The motivation for the BioHub project is to create an Integrated Knowledge Management System (IKMS) that will enable chemists to source ingredients from bio-renewables, rather than from non-sustainable sources such as fossil oil and its derivatives. The BioHubKB is the data repository of the IKMS; it employs Semantic Web technologies, especially OWL, to host data about chemical transformations, bio-renewable feedstocks, co-product streams and their chemical components. Access to this knowledge base is provided to other modules within the IKMS through a set of RESTful web services, driven by SPARQL queries to a Sesame back-end. The BioHubKB re-uses several bio-ontologies and bespoke extensions, primarily for chemical feedstocks and products, to form its knowledge organisation schema. Parts of plants form feedstocks, while various processes generate co-product streams that contain certain chemicals. Both chemicals and transformations are associated with certain qualities, which the BioHubKB also attempts to capture. Of immediate commercial and industrial importance is to estimate the cost of particular sets of chemical transformations (leading to candidate surfactants) performed in sequence, and these costs too are captured. Data are sourced from companies' internal knowledge and document stores, and from the publicly available literature. Both text analytics and manual curation play their part in populating the ontology. We describe the prototype IKMS, the BioHubKB and the services that it supports for the IKMS. The BioHubKB can be found via http://biohub.cs.manchester.ac.uk/ontology/biohub-kb.owl .

  1. Bio-reduction of plutonyl and neptunyl by Shewanella alga

    International Nuclear Information System (INIS)

    Reed, D.T.; Lucchini, J.F; Rittmann, B.E.; Songkasiri, W.

    2005-01-01

    Full text of publication follows: The results of a concurrent experimental and modeling study to investigate the bio-reduction of higher-valent plutonium and neptunium by Shewanella alga strain BrY are presented. S. Alga, as a facultative metal reducer, is representative of bacteria that will be important in defining the mobility of plutonium and neptunium species as they migrate from oxic to anoxic zones. This is also an important consideration in defining the long-term stability of bio-precipitated 'immobilized' plutonium phases under changing redox conditions in biologically active systems and subsequently the effectiveness of remediation/containment approaches used for bio-remediation. Neptunium (VI) is readily reduced in groundwaters by many organics. In biologically active systems, it is unlikely, for this reason, that this oxidation state of neptunium will be important. Under all conditions investigated, neptunium (V) was reduced to neptunium (IV) when anaerobic conditions were established for a wide variety of electron donors. This was evidences by 3-4 orders of magnitude reduction in solution concentration and confirmed by XANES analysis. This led to high bio-association and/or precipitation of the neptunium. Plutonium (VI), as was the case with neptunium (VI) was reduced by the organics typically present in biologically active systems. Analogous bio-reduction experiments with plutonium (V) and plutonium (VI) are in progress and are expected to show that bio-reduction will predominate under anaerobic conditions, as was the case with neptunium. These results for neptunium and plutonium show S. Alga to be an effective microbe for the bio-reduction, and consequently the immobilization, of these important actinide contaminants. (authors)

  2. PREFACE: Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing

    Science.gov (United States)

    Nemenman, Ilya; Faeder, James R.; Hlavacek, William S.; Jiang, Yi; Wall, Michael E.; Zilman, Anton

    2011-10-01

    grateful to our previous partner, IET Systems Biology, for their help over the years in publicizing the work presented at the conference, we felt that the changing needs of our participants required that we find a new partner. We are thrilled that Physical Biology is publishing the q-bio proceedings this year. It has been a great collaboration, as evidenced by the high quality of this special issue. What's next for q-bio? We are happy to report that NIGMS has recently extended the q-bio conference grant for the next three years, ensuring strong support for junior researchers who need financial assistance to participate in the event. The conference will retain its emphasis on cellular information processing, but will also build connections to other areas of modern biology and biotechnology, focusing specifically on ecology and evolutionary biology next year. Indeed, to fully understand biological information processing systems, they must be studied in their ecological contexts. We will continue to honor distinguished contributors to the field in our opening banquets; the tradition started with Howard Berg, Bruce Alberts and Michael Savageau in previous years, and continues with Dennis Bray at the upcoming 2011 event. Starting in 2011, the conference will also venture into exploration of the social aspects of science. The future is bright for q-bio! We will see you at the Fifth Annual q-bio Conference on 10-13 August 2011, in Santa Fe, New Mexico, USA and at the Sixth Annual q-bio Conference in early August 2012. The special issue at a glance The special issue is a snapshot of presentations at the q-bio conference. As in previous years, it remains a challenge to recruit experimental contributions to the issue. Thus only one of the papers reports new experimental results, and the collection is tilted towards the computational end of the spectrum compared to the total q-bio presentations contributed. The 11 individual papers in this special issue are each briefly introduced

  3. Hydraulic Systems with Tap Water versus Bio-oils

    DEFF Research Database (Denmark)

    Conrad, Finn

    1997-01-01

    Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry.......Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry....

  4. Sustainable development and bioeconomic prosperity in Africa: Bio ...

    African Journals Online (AJOL)

    ... and bio-security that impinge on daily human existence and welfare. High–cost fossil fuel prices and national security concerns have sparked interest in bio-fuels in continental Africa. In brief, Africa is taking the lead in creating its own biotechnology agenda and roadmap to socioeconomic and sustainable development.

  5. Development of bio-hybrid material based on Salmonella ...

    African Journals Online (AJOL)

    The immobilization of a whole microbial cell is an important process used in nanotechnology of biosensors and other related fields, especially the development of bio-hybrid materials based on live organisms and inorganic compounds. Here, we described an essay to develop a bio-hybrid material based on Salmonella ...

  6. A Cognitively Oriented Psychologist Looks at Bio-feedback

    Science.gov (United States)

    Lazarus, Richard S.

    1975-01-01

    It is advocated that bio-feedback research be approached within the larger context of emotion and adaption and oriented to the wide variety of mediators that affect the reaction pattern, rather than be treated as a special or unique kind of process limited to the bio-feedback laboratory. (EH)

  7. Biocomposites from polyhydroxybutyrate and bio-fillers by solvent ...

    Indian Academy of Sciences (India)

    Biocomposites from polyhydroxybutyrate (PHB) and some bio-fillers such as lignin (L), alpha cellulose (AC) and cellulose nanofibrils (CNFs) were prepared to investigate the effect of the bio-fillers on the properties of PHB by a solvent casting method. The thermal properties by thermogravimetry analysis (TGA–DTG and ...

  8. 6th International Conference on Computer Science and its Applications

    CERN Document Server

    Stojmenovic, Ivan; Jeong, Hwa; Yi, Gangman

    2015-01-01

    The 6th FTRA International Conference on Computer Science and its Applications (CSA-14) will be held in Guam, USA, Dec. 17 - 19, 2014. CSA-14 presents a comprehensive conference focused on the various aspects of advances in engineering systems in computer science, and applications, including ubiquitous computing, U-Health care system, Big Data, UI/UX for human-centric computing, Computing Service, Bioinformatics and Bio-Inspired Computing and will show recent advances on various aspects of computing technology, Ubiquitous Computing Services and its application.

  9. Bio-based Industries Joint Undertaking: The catalyst for sustainable bio-based economic growth in Europe.

    Science.gov (United States)

    Mengal, Philippe; Wubbolts, Marcel; Zika, Eleni; Ruiz, Ana; Brigitta, Dieter; Pieniadz, Agata; Black, Sarah

    2018-01-25

    This article discusses the preparation, structure and objectives of the Bio-based Industries Joint Undertaking (BBI JU). BBI JU is a public-private partnership (PPP) between the European Commission (EC) and the Bio-based Industries Consortium (BIC), the industry-led private not-for-profit organisation representing the private sectors across the bio-based industries. The model of the public-private partnership has been successful as a new approach to supporting research and innovation and de-risking investment in Europe. The BBI JU became a reality in 2014 and represents the largest industrial and economic cooperation endeavour financially ever undertaken in Europe in the area of industrial biotechnologies. It is considered to be one of the most forward-looking initiatives under Horizon 2020 and demonstrates the circular economy in action. The BBI JU will be the catalyst for this strategy to mobilise actors across Europe including large industry, small and medium-sized enterprises (SMEs), all types of research organisations, networks and universities. It will support regions and in doing so, the European Union Member States and associated countries in the implementation of their bioeconomy strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Context Dependent Analysis of BioAmbients

    DEFF Research Database (Denmark)

    Pilegaard, Henrik; Nielson, Flemming; Nielson, Hanne Riis

    2006-01-01

    BioAmbients is a derivative of mobile ambients that has shown promise of describing interesting features of the behaviour of biological systems. The technical contribution of this paper is to extend the Flow Logic approach to static analysis with a couple of new techniques in order to give precise...... information about the behaviour of systems written in BioAmbients. Applying the development to a simple model of a cell releasing nutrients from food compunds we illustrate how the proposed analysis does indeed improve on previous efforts....

  11. BioSPICE: access to the most current computational tools for biologists.

    Science.gov (United States)

    Garvey, Thomas D; Lincoln, Patrick; Pedersen, Charles John; Martin, David; Johnson, Mark

    2003-01-01

    The goal of the BioSPICE program is to create a framework that provides biologists access to the most current computational tools. At the program midpoint, the BioSPICE member community has produced a software system that comprises contributions from approximately 20 participating laboratories integrated under the BioSPICE Dashboard and a methodology for continued software integration. These contributed software modules are the BioSPICE Dashboard, a graphical environment that combines Open Agent Architecture and NetBeans software technologies in a coherent, biologist-friendly user interface. The current Dashboard permits data sources, models, simulation engines, and output displays provided by different investigators and running on different machines to work together across a distributed, heterogeneous network. Among several other features, the Dashboard enables users to create graphical workflows by configuring and connecting available BioSPICE components. Anticipated future enhancements to BioSPICE include a notebook capability that will permit researchers to browse and compile data to support model building, a biological model repository, and tools to support the development, control, and data reduction of wet-lab experiments. In addition to the BioSPICE software products, a project website supports information exchange and community building.

  12. Round table on bio-fuels; Table ronde sur les biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    The French ministers of agriculture and of industry have organized a meeting with the main French actors of agriculture, petroleum industry, car making and accessories industry and with professionals of agriculture machines to encourage the development of bio-fuels in France. This meeting took place in Paris in November 21, 2005. Its aim was to favor the partnerships between the different actors and the public authorities in order to reach the ambitious goals of the government of 5.75% of bio-fuels in fossil fuels by 2008, 7% by 2010 and 10% by 2015. The main points discussed by the participants were: the compatibility of automotive fuel standards with the objectives of bio-fuel incorporation, the development of direct incorporation of methanol in gasoline, the ethanol-ETBE partnership, the question of the lower calorific value of ETBE (ethyl tertio butyl ether), the development of new bio-fuels, the development of bio-diesel and the specific case of pure vegetal oils, and the fiscal framework of bio-fuels. This meeting has permitted to reach important improvements with 15 concrete agreements undertaken by the participants. (J.S.)

  13. Design and Implementation of a Bio-printer for Cardiac Structures

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, L.; Velasco, D.; Atienza, F.; Fernandez-Aviles, F.; Climent, A.M.; Liberos, A.

    2016-07-01

    Bio-printing has proven to be an excellent tool for the recently established field of Tissue Engineering and Regenerative Medicine (TERM) as it blends both principles of engineering and the life sciences to develop biological substitutes that restore or improve tissue function. The purpose of this work was to implement this new state of the art technology in the Laboratory of Organs and Bioartificial Matrices of the Gregorio Marañón Hospital, so as to aid in current research lines as well as open new fields of study. To do so, a commercial 3D Printer has been adapted following extrusion principles through a pressure driven mechanism. Cellular viability and geometrical fidelity have been assessed as the main parameters with which to determine the functional validity of the implemented technology. (Author)

  14. Next generation platforms for high-throughput bio-dosimetry

    International Nuclear Information System (INIS)

    Repin, Mikhail; Turner, Helen C.; Garty, Guy; Brenner, David J.

    2014-01-01

    Here the general concept of the combined use of plates and tubes in racks compatible with the American National Standards Institute/the Society for Laboratory Automation and Screening microplate formats as the next generation platforms for increasing the throughput of bio-dosimetry assays was described. These platforms can be used at different stages of bio-dosimetry assays starting from blood collection into micro-tubes organised in standardised racks and ending with the cytogenetic analysis of samples in standardised multi-well and multichannel plates. Robotically friendly platforms can be used for different bio-dosimetry assays in minimally equipped laboratories and on cost-effective automated universal biotech systems. (authors)

  15. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.

    Science.gov (United States)

    Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Hassan, El Barbary; Dempster, Thomas A

    2018-03-01

    Upgrading of bio-oil obtained from hydrothermal liquefaction (HTL) of algae is necessary for it to be used as a fuel. In this study, bio-oil obtained from HTL of Nannochloropsis sp. was upgraded using five different catalysts (Ni/C, ZSM-5, Ni/ZSM-5, Ru/C and Pt/C) at 300 °C and 350 °C. The upgraded bio-oil yields were higher at 300 °C; however, higher quality upgraded bio-oils were obtained at 350 °C. Ni/C gave the maximum upgraded bio-oil yield (61 wt%) at 350 °C. However, noble metal catalysts (Ru/C and Pt/C) gave the better upgraded bio-oils in terms of acidity, heating values, and nitrogen values. The higher heating value of the upgraded bio-oils ranged from 40 to 44 MJ/kg, and the nitrogen content decreased from 5.37 to 1.29 wt%. Most of the upgraded bio-oils (35-40 wt%) were in the diesel range. The major components present in the gaseous products were CH 4 , CO, CO 2 and lower alkanes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Advances in bio-inspired computing for combinatorial optimization problems

    CERN Document Server

    Pintea, Camelia-Mihaela

    2013-01-01

    Advances in Bio-inspired Combinatorial Optimization Problems' illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems.Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed.Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive a

  17. G-InforBIO: integrated system for microbial genomics

    Directory of Open Access Journals (Sweden)

    Abe Takashi

    2006-08-01

    Full Text Available Abstract Background Genome databases contain diverse kinds of information, including gene annotations and nucleotide and amino acid sequences. It is not easy to integrate such information for genomic study. There are few tools for integrated analyses of genomic data, therefore, we developed software that enables users to handle, manipulate, and analyze genome data with a variety of sequence analysis programs. Results The G-InforBIO system is a novel tool for genome data management and sequence analysis. The system can import genome data encoded as eXtensible Markup Language documents as formatted text documents, including annotations and sequences, from DNA Data Bank of Japan and GenBank encoded as flat files. The genome database is constructed automatically after importing, and the database can be exported as documents formatted with eXtensible Markup Language or tab-deliminated text. Users can retrieve data from the database by keyword searches, edit annotation data of genes, and process data with G-InforBIO. In addition, information in the G-InforBIO database can be analyzed seamlessly with nine different software programs, including programs for clustering and homology analyses. Conclusion The G-InforBIO system simplifies genome analyses by integrating several available software programs to allow efficient handling and manipulation of genome data. G-InforBIO is freely available from the download site.

  18. Catalytic cracking of crude bio-oil from glycerol-assisted liquefaction of swine manure

    International Nuclear Information System (INIS)

    Cheng, Dan; Wang, Lijun; Shahbazi, Abolghasem; Xiu, Shuangning; Zhang, Bo

    2014-01-01

    Highlights: • Bio-oil from glycerol-assisted liquefaction of swine manure was cracked over zeolite. • 30-Min cracking on 5% catalyst at 400 °C yielded 46.1% bio-oil with 62.5% recovered energy. • 30-Min cracking on 5% catalyst at 400 °C removed 55.74% oxygen in the crude bio-oil. • The heating value and viscosity of the upgraded bio-oil were 41.4 MJ/kg and 3.6 cP. • Long chain acid methyl esters were cracked into alkanes, alkenes and short chain esters. - Abstract: The crude bio-oil produced from the glycerol-assisted liquefaction of swine manure which had large amount of long chain esters, was upgraded by thermal cracking over a modified zeolite catalyst. The effects of thermal cracking temperature (350–425 °C), reaction time (15–60 min) and catalyst loading (0–10 wt%) on the yield and quality of the upgraded oil were analyzed. The yield of upgraded bio-oil decreased with the increase of reaction temperature, reaction time and catalyst loading, but the viscosity, heating value and composition of the upgraded bio-oil became more desirable. Taking into the consideration both the yield and quality of the upgraded bio-oil, the optimal thermal cracking could be achieved over 5 wt% catalyst at 400 °C for 30 min. Under this condition, the yield of upgraded bio-oil was 46.14 wt% of the crude bio-oil, and 62.5% of the energy stored in the crude bio-oil was recovered. The oxygen content of the upgraded bio-oil was 15.04%, which was less than half of the original value of 33.98%. The viscosity of the upgraded bio-oil was 3.6 cP, compared with 188.9 cP for the crude bio-oil. The heating value of the upgraded bio-oil was 41.4 MJ/kg, compared with 30.54 MJ/kg for the crude bio-oil. Both the viscosity and heating value of the upgraded bio-oil were comparable to those of commercial diesel. The GC–MS analysis showed that the catalytic upgrading resulted in the increased cracking of long-chain acid methyl esters (such as hexadecanoic acid methyl ester

  19. Types for BioAmbients

    Directory of Open Access Journals (Sweden)

    Sara Capecchi

    2010-02-01

    Full Text Available The BioAmbients calculus is a process algebra suitable for representing compartmentalization, molecular localization and movements between compartments. In this paper we enrich this calculus with a static type system classifying each ambient with group types specifying the kind of compartments in which the ambient can stay. The type system ensures that, in a well-typed process, ambients cannot be nested in a way that violates the type hierarchy. Exploiting the information given by the group types, we also extend the operational semantics of BioAmbients with rules signalling errors that may derive from undesired ambients' moves (i.e. merging incompatible tissues. Thus, the signal of errors can help the modeller to detect and locate unwanted situations that may arise in a biological system, and give practical hints on how to avoid the undesired behaviour.

  20. Bio energy in Norway

    International Nuclear Information System (INIS)

    Hamnaberg, Haavard; Sidelnikova, Maria

    2011-01-01

    The main conclusion in this report is that it is possible to make available about 14 TWh bio energy in Norway than what is used today to a charge that is located less than ca. 30 oere / kWh. Almost all this potential come from the forest and requires an increase in output up to the net sustained yield. Further 5 TWh may be available in the form of biogas at a cost that is both higher and have greater uncertainty than the fixed bio energy. It is set up a cost curve based on this work, which is quoted here. This reflects only the technical costs, and does not regard wages, commissions, taxes or fees. The value of alternative uses of biomass are not considered. The cost curve must therefore not be mixed with a supply curve. (eb)

  1. Can bio-based attributes upgrade a brand? How partial and full use of bio-based materials affects the purchase intention of brands

    NARCIS (Netherlands)

    Reinders, Machiel J.; Onwezen, Marleen C.; Meeusen, Marieke J.G.

    2017-01-01

    To reduce human dependency on fossil fuels, increasing attempts are being made to substitute synthetic materials in products with bio-based materials. Global brands attempt to differentiate themselves by adding bio-based materials to their products. However, little is known about consumers'

  2. Bio energy: Bio energy in the Energy System of the Future

    International Nuclear Information System (INIS)

    Finden, Per; Soerensen, Heidi; Wilhelmsen, Gunnar

    2001-01-01

    This is Chapter 7, the final chapter, of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Factors leading to changes in the energy systems, (2) The energy systems of the future, globally, (3) The future energy system in Norway and (4) Norwegian energy policy at the crossroads

  3. Molecular dynamics investigations of BioH protein substrate specificity for biotin synthesis.

    Science.gov (United States)

    Xue, Qiao; Cui, Ying-Lu; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-05-01

    BioH, an enzyme of biotin synthesis, plays an important role in fatty acid synthesis which assembles the pimelate moiety. Pimeloyl-acyl carrier protein (ACP) methyl ester, which is long known to be a biotin precursor, is the physiological substrate of BioH. Azelayl methyl ester, which has a longer chain than pimeloyl methyl ester, conjugated to ACP is also indeed accepted by BioH with very low rate of hydrolysis. To date, the substrate specificity for BioH and the molecular origin for the experimentally observed rate changes of hydrolysis by the chain elongation have remained elusive. To this end, we have investigated chain elongation effects on the structures by using the fully atomistic molecular dynamics simulations combined with binding free energy calculations. The results indicate that the substrate specificity is determined by BioH together with ACP. The added two methylenes would increase the structural flexibility by protein motions at the interface of ACP and BioH, instead of making steric clashes with the side chains of the BioH hydrophobic cavity. On the other hand, the slower hydrolysis of azelayl substrate is suggested to be associated with the loose of contacts between BioH and ACP, and with the lost electrostatic interactions of two ionic/hydrogen bonding networks at the interface of the two proteins. The present study provides important insights into the structure-function relationships of the complex of BioH with pimeloyl-ACP methyl ester, which could contribute to further understanding about the mechanism of the biotin synthetic pathway, including the catalytic role of BioH.

  4. Evaluation of bio-fertilizer application to ameliorate the environment and crop production

    International Nuclear Information System (INIS)

    Nasir, A.; Khalid, M.U.; Anwar, S.; Arslan, C.

    2012-01-01

    An experiment was conducted during 2011-2012 to evaluate the effect of mechanically dried bio-slurry on cabbage growth, productivity, and soil health in terms of nutrients availability at field conditions. To achieve these objectives, a Golden Acre cabbage field was selected at University of Agriculture Faisalabad. The soil type was sandy loam and canal water was used for irrigation. Randomized complete block design was used in experiment with four treatments replicated four times. The bio-slurry was taken from Al-Hamd Exports at Sutyana road, Faisalabad. During the growing period of cabbage, data regarding bio metric features of cabbage crop was taken. The results showed 20-30% increase in plants density, plants height and root depth, and 10% reduction in unfold leaves per plant in bio-slurry treated plots. It was followed by the treatment in which bio-slurry was applied in combination with chemical fertilizers. The treatment with 100% chemical fertilizers showed least significant effect in improving these characteristics of the crop. The fertilization effect of bio-slurry was evaluated by measuring residual amount of NPK and organic matter (OM) in soil after harvesting of the crop. The bio-slurry treated plots showed better results as it reside 15% more amount of OM and NPK in the soil in relation with chemical fertilizer treated plots. A reduction of about 15% in EC of soil was also recorded in the plots where bio-slurry was applied. This showed that bio-slurry application on saline soil can reduce the salinity of soil. The cabbage yield was measured from each plot. It showed minimum yield 45 t/ha and maximum 79.25 t/ha from control and bio-slurry treated plots respectively. It was followed by chemical fertilizer treated plots as 68 t/ha. The results revealed that bio-slurry mobilize the nutrients in soil better than chemical fertilizers. Bio-slurry can be affectively used in contrast with chemical fertilizers and can be proved as an efficient soil conditioner

  5. Bio-inspired Edible Superhydrophobic Interface for Reducing Residual Liquid Food.

    Science.gov (United States)

    Li, Yao; Bi, Jingran; Wang, Siqi; Zhang, Tan; Xu, Xiaomeng; Wang, Haitao; Cheng, Shasha; Zhu, Bei-Wei; Tan, Mingqian

    2018-03-07

    Significant wastage of residual liquid food, such as milk, yogurt, and honey, in food containers has attracted great attention. In this work, a bio-inspired edible superhydrophobic interface was fabricated using U.S. Food and Drug Administration-approved and edible honeycomb wax, arabic gum, and gelatin by a simple and low-cost method. The bio-inspired edible superhydrophobic interface showed multiscale structures, which were similar to that of a lotus leaf surface. This bio-inspired edible superhydrophobic interface displayed high contact angles for a variety of liquid foods, and the residue of liquid foods could be effectively reduced using the bio-inspired interface. To improve the adhesive force of the superhydrophobic interface, a flexible edible elastic film was fabricated between the interface and substrate material. After repeated folding and flushing for a long time, the interface still maintained excellent superhydrophobic property. The bio-inspired edible superhydrophobic interface showed good biocompatibility, which may have potential applications as a functional packaging interface material.

  6. Vapor-fed bio-hybrid fuel cell.

    Science.gov (United States)

    Benyamin, Marcus S; Jahnke, Justin P; Mackie, David M

    2017-01-01

    Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N 2 ) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm 2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small

  7. Advanced Biochemistry Course teach students how to make and criticize science

    Directory of Open Access Journals (Sweden)

    A.B Sé

    2006-07-01

    Full Text Available In this work we are reporting a course of University of Brasilia called “Topics in Biochemistry”. It is offered to second semester medicine and nutrition students (around 12 who have just finished the Basic Biochemistry Course (BioBio, plus one or two third semester students, who are taking the course for the second time, as “coordinators”. This course is composed of two parallel activities: weekly meetings for scientific discussions and the peer-tutor activity.In  each  meeting,  one  student  presents  an  article.  The  topics  are  mostly  on  metabolic  biochemistry,  but  can  range from  animal  adaptability  to  Alzheimer  Disease.  The  requisite  is  that  the  article  was  published  in  a  recognized international journal (as Nature, American Journal of Physiology, New England Journal of Medicine and is adequate for group discussion. The emphasis of the discussion is greater on the methodology of science, instead of on specific details  about  particular  subjects.  What  did  the  authors  want  to  prove?  How  did  they  do  it?  Were  the  conclusions valid?  What  were  the  experimental  errors  and  omissions?  How  could  it  be  a  better  article?  Also,  it’s  a  good opportunity  to discuss statistics, methodology, and to exercise  the sense of criticism. Overall, the objective  of these discussions is to teach students how to make science and criticize science. The second attribution of the course is the peer-tutor activity. Each student is responsible for tutoring a BioBio group on a seminar/poster presentation (Hermes-Lima et al., Biochem.  Mol.Biol.Educ. 30: 30-34,2002  and is responsible for evaluating their group, always supervised by the coordinating professor. Moreover, they must elaborate a “true or false” exam (Sé et al. Are tutor-students capable of writing good biochemistry exams? SBBq 2004, abstract K-18

  8. Bio-magnetic signatures of fetal breathing movement

    International Nuclear Information System (INIS)

    Ulusar, U D; Wilson, J D; Murphy, P; Govindan, R B; Preissl, H; Lowery, C L; Eswaran, H

    2011-01-01

    The purpose of fetal magnetoencephalography (fMEG) is to record and analyze fetal brain activity. Unavoidably, these recordings consist of a complex mixture of bio-magnetic signals from both mother and fetus. The acquired data include biological signals that are related to maternal and fetal heart function as well as fetal gross body and breathing movements. Since fetal breathing generates a significant source of bio-magnetic interference during these recordings, the goal of this study was to identify and quantify the signatures pertaining to fetal breathing movements (FBM). The fMEG signals were captured using superconducting quantum interference devices (SQUIDs) The existence of FBM was verified and recorded concurrently by an ultrasound-based video technique. This simultaneous recording is challenging since SQUIDs are extremely sensitive to magnetic signals and highly susceptible to interference from electronic equipment. For each recording, an ultrasound-FBM (UFBM) signal was extracted by tracing the displacement of the boundary defined by the fetal thorax frame by frame. The start of each FBM was identified by using the peak points of the UFBM signal. The bio-magnetic signals associated with FBM were obtained by averaging the bio-magnetic signals time locked to the FBMs. The results showed the existence of a distinctive sinusoidal signal pattern of FBM in fMEG data

  9. Long-term sustainability of bio-components production

    Directory of Open Access Journals (Sweden)

    Souček Ivan

    2012-01-01

    Full Text Available Biofuels play an increasingly important role in motor fuel market. The list of biofuels (bio-components in accordance with EU legislations contains a number of substances not widely used in the market. Traditionally these include: fatty acid methyl esters (FAME, in the Czech Republic methyl ether of rape seed oil and bioethanol (also ethyl terc. buthyl ether ETBE, based on bioethanol. The availability and possible utilizations of bio-component fuels in Czech Republic and Serbia are discussed. Additional attention is paid on the identification of the possibilities to improve effectiveness of rape seeds cultivation and utilization of by-products from FAME production (utilization of sew, rape-meal and glycerol which will allow fulfilment of the sustainability criteria for the first generation biofuels. The new approaches on renewable co-processing are commented. The concept of 3E (emissions, energy demand, and economics is introduced specifying three main attributes for effective production of FAME production in accordance with legal compliances. Bio-components price change is analyzed in comparison to the price of motor fuels, identifying possible (speculative crude price break-even point at the level of 149-176 USD/bbl at which point bio-fuels would become economically cost effective for the use by refiners.

  10. Permeable bio-reactive barriers for hydrocarbon remediation in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Mumford, K.A.; Stevens, G.W.; Gore, D.B. [Melbourne Univ., Victoria (Australia). Dept. of Chemical and Biomoleculuar Engineering, Particulate Fluids Processing Centre; Snape, I.; Rayner, J.L. [Australian Antarctic Div., Kingston, Tasmania (Australia); Gore, D.B. [Macquarie Univ., Sydney, NSW (Australia). Dept. of Environmental Science

    2010-07-01

    This study assessed the performance of a permeable bio-reactive barrier designed to treat contaminated water. The bio-reactive barrier was installed at a fuel spill site located in the Windmill Islands, Antarctica. A funnel and gate design was used to prevent contaminant migration beyond the barrier location as well as to ensure controlled nutrient delivery. The study also investigated the performance of the bio-reactive barrier in regions with freeze-thaw conditions. The 4-year project was also conducted to assess optimal conditions for enhancing the barrier's ability to degrade hydrocarbons.

  11. Perry's bio-gas experience 1995 ASME/EPRI radwaste workshop

    International Nuclear Information System (INIS)

    Schwenk, A.K.

    1995-01-01

    The Perry Power Plant has been in commercial operation for about ten years. Although we didn't know it at the time, we now believe our bio-gas problem may have started about seven years ago. Barnwell discovered we had a bio-gas problem about a year and a half ago. We found out we had a bio-gas problem a few hours later. The history associated with this process at Perry is outlined, and past as well as present efforts to monitor this process are also discussed

  12. Nano-Bio Quantum Technology for Device-Specific Materials

    Science.gov (United States)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  13. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment

    Science.gov (United States)

    Dong, Yang; Fan, Shu-Qian; Shen, Yu; Yang, Ji-Xiang; Yan, Peng; Chen, You-Peng; Li, Jing; Guo, Jin-Song; Duan, Xuan-Ming; Fang, Fang; Liu, Shao-Yang

    2015-01-01

    The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth. PMID:26202477

  14. A histologic, histomorphometric, and radiographic comparison between two complexes of CenoBoen/CenoMembrane and Bio-Oss/Bio-Gide in lateral ridge augmentation: A clinical trial.

    Science.gov (United States)

    Amoian, Babak; Moudi, Ehsan; Majidi, Maryam Seyed; Ali Tabatabaei, S M

    2016-09-01

    Several grafting materials have been used for alveolar ridge augmentation. The literature lacks researches to compare CenoBone to other grafting materials. The aim of this study was to compare CenoBone/CenoMembrane complex to Bio-Oss/Bio-Gide complex in lateral alveolar bone augmentation in terms of radiographic, histologic, and histomorphometric parameters. In this randomized controlled trial, ten patients who needed lateral ridge augmentation were selected and augmentations were done using either of CenoBone/CenoMembrane or Bio-Oss/Bio-Gide complexes. In the re-entry surgery in 6 months following augmentation, core biopsies were taken and clinical, radiographic, histologic, and histomorphometric evaluations were performed. No statistically significant difference was seen between groups except for the number of blood vessels and percentage of residual graft materials. CenoBone seems to present a comparable lateral ridge augmentation to Bio-Oss in.

  15. Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies.

    Science.gov (United States)

    Arun, Jayaseelan; Varshini, Padmanabhan; Prithvinath, P Kamath; Priyadarshini, Venkataramani; Gopinath, Kannappan Panchamoorthy

    2018-08-01

    In this study, bio-oil was produced through hydrothermal liquefaction (HTL) of C. vulgaris biomass cultivated in wastewater and was enriched into transportation fuels. Bio-oil yield was 29.37% wt at 300 °C, 60 min, at 15 g/200 mL biomass loading rate with 3% wt nano ZnO catalyst loading. Applying catalyst reduced oxygen and nitrogen content in bio-oil and increased its calorific value (19.6 ± 0.8 MJ/Kg). Bio-oil was enriched through liquid-liquid extraction (LLE) and higher yield was obtained at 30 °C for dichloromethane solvent (18.2% wt). Compounds of enriched oil were within the petro-diesel range (C 8 -C 21 ). Bio-char after HTL process was activated and used as adsorbent in wastewater treatment process to remove organic pollutants (COD, NO 3 , NH 3 and PO 4 ). Treated wastewater can be supplied as growth medium for microalgae cultivation in further experiments. Nearly 3-4 times the nanocatalyst can be reused in the HTL process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Meier, Dietrich; Oasmaa, Anja; van de Beld, Bert; Bridgwater, Anthony V.; Marklund, Magnus

    2017-04-06

    An international round robin study of the production of fast pyrolysis bio-oil was undertaken. Fifteen institutions in six countries contributed. Three biomass samples were distributed to the laboratories for processing in fast pyrolysis reactors. Samples of the bio-oil produced were transported to a central analytical laboratory for analysis. The round robin was focused on validating the pyrolysis community understanding of production of fast pyrolysis bio-oil by providing a common feedstock for bio-oil preparation. The round robin included: •distribution of 3 feedstock samples from a common source to each participating laboratory; •preparation of fast pyrolysis bio-oil in each laboratory with the 3 feedstocks provided; •return of the 3 bio-oil products (minimum 500 ml) with operational description to a central analytical laboratory for bio-oil property determination. The analyses of interest were: density, viscosity, dissolved water, filterable solids, CHN, S, trace element analysis, ash, total acid number, pyrolytic lignin, and accelerated aging of bio-oil. In addition, an effort was made to compare the bio-oil components to the products of analytical pyrolysis through GC/MS analysis. The results showed that clear differences can occur in fast pyrolysis bio-oil properties by applying different reactor technologies or configurations. The comparison to analytical pyrolysis method suggested that Py-GC/MS could serve as a rapid screening method for bio-oil composition when produced in fluid-bed reactors. Furthermore, hot vapor filtration generally resulted in the most favorable bio-oil product, with respect to water, solids, viscosity, and total acid number. These results can be helpful in understanding the variation in bio-oil production methods and their effects on bio-oil product composition.

  17. Brief overview of BioMicroNano Technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, Paul Lee

    2005-01-01

    This paper provides a brief overview of the fields of biological micro-electromechanical systems (bioMEMs) and associated nanobiotechnologies, collectively denoted as BioMicroNano. Although they are developing at a very rapid pace and still redefining themselves, several stabilized areas of research and development can be identified. Six major areas are delineated, and specific examples are discussed and illustrated. Various applications of the technologies are noted, and potential market sizes are compared.

  18. Bio-Photonic Detection of Various Cellular Cultures

    Science.gov (United States)

    Hann, Patrick; Garzon, Maria; Pfeiffer, Erik; Lofland, Samuel; Knoesel, Ernst

    2008-03-01

    Since it is non-invasive, there has been increased research in the field of bio-optics. Many biological systems display an unusual phenomenon, delayed luminescence, produced by what is known as bio-photons. We present an apparatus and procedure for the detection of these ultra-weak photonic emissions using a single photon detection device. The results of bread yeast, saccramyces, and algae will be presented and compared to other reports in the literature

  19. Stabilization of Empty Fruit Bunch derived Bio-oil using Solvents

    Directory of Open Access Journals (Sweden)

    Chung Loong Yiin

    2016-03-01

    Full Text Available The intention of this research was to select the ideal condition for accelerated aging of bio-oil and the consequences of additive in stabilizing the bio-oil. The bio-oil was produced from the catalytic pyrolysis of empty fruit bunch. The optimum reaction conditions applied to obtain the utmost bio-oil yield were 5 wt% of H-Y catalyst at reaction temperature of 500 °C and nitrogen flow rate of 100 ml/min. A 10 wt% of solvents including acetone, ethanol, and ethyl acetate were used to study the bio-oil’s stability. All the test samples were subjected to accelerated aging at temperature of 80 oC for 7 days. The properties of samples used as the indicator of aging were viscosity and water content. The effectiveness of solvents increased in the following order: acetone, ethyl acetate, and 95 vol% ethanol. Based on the result of Gas chromatography-mass spectrometry (GC-MS, it could impede the chain of polymerization by converting the active units in the oligomer chain to inactive units. The solvent reacted to form low molecular weight products which resulted in lower viscosity and lessen the water content in bio-oil. Addition of 95 vol% ethanol also inhibited phase separation.

  20. Preparation of alternate fuels by means of bio-methanization, pyrolysis and gasification; Preparation thermique de combustibles alternatifs par bio-methanisation, thermolyse et gazeification

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, A.; Jung, C.G. [Universite Libre de Bruxelles (Belgium)

    2003-06-01

    The paper gives a general description of wastes and their various components each of them depending on their behaviour during the beneficiation treatment: water, organic matters (bio-degradable and non bio-degradable), mineral matters and metals some examples are given. Various processes are available: compost production, bio-methanization and thermal processes. These thermal processes are incineration, gasification and pyrolysis, depending on the quantity (or absence) of air during the process. The paper gives a description of these processes as well as the type of equipment that are utilised. (authors)

  1. A comparison of pipeline versus truck transport of bio-oil.

    Science.gov (United States)

    Pootakham, Thanyakarn; Kumar, Amit

    2010-01-01

    Biomass-based energy and fuels are receiving attention because they are considered carbon neutral; i.e. the amount of CO(2) released during combustion of this biomass is nearly the same as that taken up by the plants during their growth. Bio-oil is a dark viscous liquid consisting of hydrocarbons. These are produced by fast pyrolysis of biomass. "As-is" biomass material has a low energy density (MJ m(-3)), hence, the cost of transporting this energy is high. Bio-oil has a high energy density as compared to "as-is" biomass material, consequently it helps in reducing the cost of energy transport. This study compares the life cycle assessment of transportation of bio-oil by pipeline with that by truck. The scope of the work includes the transportation of bio-oil by truck or pipeline from a centralized plant (supplied with forest biomass) to an end-user. Two cases are studied for pipeline transport of bio-oil: the first case considers a coal-based electricity supply for pumping the bio-oil through a pipeline; the second case considers an electricity supply from a renewable resource. The two cases of pipeline transport are compared to two cases of truck transport (truck trailer and super B-train truck). The life cycle greenhouse gas (GHG) emissions from the pipeline transport of bio-oil for the two cases of electricity supply are 345 and 17 g of CO(2) m(-3) km(-1), respectively. Similar values for transport by trailer (capacity - 30 m(3)) and super B-train truck (capacity - 60 m(3)) are 89 and 60 g of CO(2) m(-3) km(-1), respectively. Energy input for bio-oil transport is 3.95 MJ m(-3) km(-1) by pipeline, 2.59 MJ m(-3) km(-1) by truck and 1.66 MJ m(-3) km(-1) by super B-train truck. The results show that GHG emissions in pipeline transport are largely dependent on the source of electricity (higher for coal-based electricity). Substituting 250 m(3) day(-1) of pipeline-transported bio-oil for coal-based electricity can mitigate about 5.1 million tonnes of CO(2) per year

  2. BioPig: a Hadoop-based analytic toolkit for large-scale sequence data.

    Science.gov (United States)

    Nordberg, Henrik; Bhatia, Karan; Wang, Kai; Wang, Zhong

    2013-12-01

    The recent revolution in sequencing technologies has led to an exponential growth of sequence data. As a result, most of the current bioinformatics tools become obsolete as they fail to scale with data. To tackle this 'data deluge', here we introduce the BioPig sequence analysis toolkit as one of the solutions that scale to data and computation. We built BioPig on the Apache's Hadoop MapReduce system and the Pig data flow language. Compared with traditional serial and MPI-based algorithms, BioPig has three major advantages: first, BioPig's programmability greatly reduces development time for parallel bioinformatics applications; second, testing BioPig with up to 500 Gb sequences demonstrates that it scales automatically with size of data; and finally, BioPig can be ported without modification on many Hadoop infrastructures, as tested with Magellan system at National Energy Research Scientific Computing Center and the Amazon Elastic Compute Cloud. In summary, BioPig represents a novel program framework with the potential to greatly accelerate data-intensive bioinformatics analysis.

  3. Research on determination of bio-burden for radiation sterilization of health care products

    International Nuclear Information System (INIS)

    Liu Qinfang

    2008-01-01

    In order to provide data of bio-burden for dose setting in radiation sterilization, determination of bio-burden on 148 kinds of health care products from 52 manufacturers were carried out. The culture of microorganisms, different elution technology, and correction coefficient of the microbiological methods have been used for determination of bio-burden. Frequent distribution of bio-burden was established. 5 kinds of elution processes were checked. Actual data of bio-burden for dose setting in radiation sterilization was gotten. (authors)

  4. Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell

    International Nuclear Information System (INIS)

    Asadullah, Mohammad; Ab Rasid, Nurul Suhada; Kadir, Sharifah Aishah Syed A.; Azdarpour, Amin

    2013-01-01

    Bio-oil has been produced from palm kernel shell in a fluidized bed reactor. The process conditions were optimized and the detailed characteristics of bio-oil were carried out. The higher feeding rate and higher gas flow rate attributed to higher bio-oil yield. The maximum mass fraction of biomass (57%) converted to bio-oil at 550 °C when 2 L min −1 of gas and 10 g min −1 of biomass were fed. The bio-oil produced up to 500 °C existed in two distinct phases, while it formed one homogeneous phase when it was produced above 500 °C. The higher heating value of bio-oil produced at 550 °C was found to be 23.48 MJ kg −1 . As GC–MS data shows, the area ratio of phenol is the maximum among the area ratio of identified compounds in 550 °C bio-oil. The UV–Fluorescence absorption, which is the indication of aromatic content, is also the highest in 550 °C bio-oil. -- Highlights: • Maximum 56 wt% yield of bio-oil was obtained at 550 °C from palm kernel shell. • Two layer of bio-oil was observed up to 500 °C, while it was one layer above 500 °C. • Bio-oil from palm kernel shell provides more than 40% area ratio of phenol in GC–MS analysis. • The calorific value of palm kernel shell bio-oil is higher than other bio-oil

  5. Life cycle analyses applied to first generation bio-fuels consumed in France

    International Nuclear Information System (INIS)

    2010-01-01

    This rather voluminous publication reports detailed life cycle analyses for the different present bio-fuels channels also named first-generation bio-fuels: bio-ethanol, bio-diesel, pure vegetal oils, and oil. After a recall of the general principles adopted for this life-cycle analysis, it reports the modelling of the different channels (agricultural steps, bio-fuel production steps, Ethyl tert-butyl ether or ETBE steps, vehicles, animal fats and used vegetal oils, soil assignment change). It gives synthetic descriptions of the different production ways (methyl ester from different plants, ethanol from different plants). It reports and compares the results obtained in terms of performance

  6. De la enseñanza de la bioética a la educación bioética. Reflexiones sobre los desafíos en los posgrados en Bioética

    Directory of Open Access Journals (Sweden)

    José Carlos Abellán Salort

    2014-01-01

    Full Text Available La importancia creciente de la reflexión Bioética ha fomentado la proliferación de programas de estudios específicos en esta materia, habitualmente centrados en modelos de enseñanza de carácter teórico, descriptivo, o bien en programas enfocados en análisis de casos prácticos, enseñanzas que, en última instancia, se corresponden con los modelos de argumentación y visiones dominantes de la Bioética. Desde un estudio comparado de los programas de posgrado (másteres universitarios en Bioética que se ofrecen actualmente en España, los autores hacen un análisis sobre los principales desafíos para la enseñanza de la Bioética y defienden la necesidad de superar las limitaciones de los modelos de enseñanza (teóricos y casuísticos, a favor de programas de formación o educación integral que incluyan, en el perfil del formador, conocimientos suficientes de antropología y ética y que integren una visión amplia de lo que significa la vida y la dignidad de todo ser humano.

  7. Nanostructure characteristics of ferroics and bio-ferroics in relation to the design consideration of nano-sensing elements

    Science.gov (United States)

    Pal, Madhuparna

    The shift of the epicenter in the field of science and technology to the nano-world has become evident over the past couple of decades with the emergence of areas likes nanoscience, nanotechnology, nano-biotechnology, etc. Though the size of the devices has decreased, the capability of devices has increased rendering it as 'multifunctional/smart' devices. However the design of smart devices using a single phase material has reached to its limit, hence to make further progress "smart materials" are required. Sensors/actuators are mostly fabricated with popular ferroic materials (ferroelectric/ ferromagnetic/ ferroelastic) or multiferroics (having more than one ferroic property). Multifunctionality can be the outcome of heterogeneous systems with cross-coupled properties, intrinsic as well as extrinsic, and hence modeling of smart materials with high figure of merit is also needed. Most ideas in smart sensing and actuation have been borrowed from the biological systems thus a step further is indeed to combine the engineering with the fundamental biological activities. Not only can we use multiferroic materials in artificial transplants, but we should also investigate ferroic activities in the biological samples. These fundamental issues, their possible solutions and their wide impact underlie the motivation of the current work in this thesis report. To achieve the ultimate goal, the steps outlined were followed: i. understanding the properties of sensing elements of inorganic and biomaterials at nanoscale level, ii. investigation of the multiferroicity, iii. modeling engineered material with better sensing capabilities iv. Finally exploiting the new concepts for device and biomedical applications. The findings of this thesis reports multiferroic behavior in a selected class of single crystals, thin films and bulk materials. Human nails and hair samples have been investigated for ferroelectricity and a comprehensive study concludes the presence of bio

  8. Pengembangan Sistem Pertanian Siklus-Bio Terpadu untuk Peningkatan Produktivitas Ternak Sapi pada Kelompok Ternak Desa Margoagung, Sayegan, Sleman, Yogyakarta

    Directory of Open Access Journals (Sweden)

    Cahyono Agus Dwikoranto

    2015-09-01

    Full Text Available Integrated Bio-Cycle Farming System was developed by KP4 University Farm UGM Yogyakarta should be implemented to the communities. The community service for implementation of science and technology starting with an MOU between KP4 and the government of Margoagung village, especially Farmer Group RUKUN, Margoagung, Seyegan, Sleman that requiring transferred technology. Community service programs and assistance through the transfer of integrated bio-cycle farming system were done through development of burgers feed technology for cows, solid fertilizer, liquid fertilizer, and waste treatment technology for biogas. This activity also involves 22 students from various faculties at UGM for 2 months in the field. The technology is transferred directly by experts from GMU and directly accompanied intensively by student. Enthusiastic, productivity, quantity, quality and continuity of integrated farming were very important for a better life and environment.

  9. BioWord: A sequence manipulation suite for Microsoft Word

    Directory of Open Access Journals (Sweden)

    Anzaldi Laura J

    2012-06-01

    Full Text Available Abstract Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.

  10. BioWord: A sequence manipulation suite for Microsoft Word

    Science.gov (United States)

    2012-01-01

    Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms. PMID:22676326

  11. BioWord: a sequence manipulation suite for Microsoft Word.

    Science.gov (United States)

    Anzaldi, Laura J; Muñoz-Fernández, Daniel; Erill, Ivan

    2012-06-07

    The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.

  12. Bio-Oss® modified by calcitonin gene-related peptide promotes osteogenesis in vitro.

    Science.gov (United States)

    Li, Yuanjing; Yang, Lan; Zheng, Zhichao; Li, Zhengmao; Deng, Tian; Ren, Wen; Wu, Caijuan; Guo, Lvhua

    2017-11-01

    Bio-Oss ® and α-calcitonin gene-related peptide (CGRP) are involved in osteogenesis. However, it has remained to be assessed how α-CGRP affects the effect of Bio-Oss. In the present study, primary osteoblasts were incubated with α-CGRP, Bio-Oss, α-GGRP-Bio-Oss or mimic-α-CGRP. The proliferation rate, mineralization nodules, alkaline phosphatase (ALP) activity and the expression of osteogenic genes were measured by a Cell Counting Kit-8 assay, Alizarin Red-S staining, ALP activity detection and reverse-transcription quantitative PCR as well as western blot analysis, respectively. The proliferation rate, ALP activity and the number of mineralization nodules were significantly increased in the α-CGRP-modified Bio-Oss group compared to that in the Bio-Oss group. The mRNA and protein levels of osteocalcin, Runt-related transcription factor-2 and ALP were significantly upregulated in the α-CGRP-Bio-Oss group compared with those in the Bio-Oss group. Furthermore, the effect of mimic-α-CGRP on osteogenesis was reduced as it carried a mutation. In conclusion, the present study was the first to demonstrate that Bio-Oss modified with CGRP contributed to osteogenesis and may provide a novel formulation applied in the clinic for restoration of large bone defects.

  13. Resource recovery from bio-based production processes: a future necessity?

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; S.B.A. Udugama, Isuru; Cignitti, Stefano

    2017-01-01

    The promise of transforming waste streams with small economic value into valuable products makes resource recovery technologies in bio-based production processes an attractive proposition. However, the use of resource recovery technologies in industrial applications is still minimal, despite its...... technologies to industrial bio-based production processes. The role and importance of economics, technology readiness and socio-environmental impacts of resource recovery in successfully implementing resource recovery technologies in industrial bio-based production processes is also discussed. Finally, based...... wide use in closely related processes such as dairy production. In this paper, a perspective on the role of resource recovery in bio-based production processes is provided through reviewing the past practice and identifying the benefits, opportunities and challenges of introducing resource recovery...

  14. Hydrodeoxygenation of Pyrolysis Bio-Oil Over Ni Impregnated Mesoporous Materials.

    Science.gov (United States)

    Lee, In-Gu; Lee, Heejin; Kang, Bo Sung; Kim, Young-Min; Kim, Sang Chai; Jung, Sang-Chul; Ko, Chang Hyun; Park, Young-Kwon

    2018-02-01

    The catalytic hydrodeoxygenation (HDO) of bio-oil over Ni-supported mesoporous materials was performed using a high pressure autoclave reactor. The actual pyrolysis oil of cork oak wood was used as a sample, and Ni/Al-SBA-15 and Ni/Al-MSU-F were used as catalysts. In addition, supercritical ethanol was added as solvent. Both Ni-supported mesoporous catalysts showed efficient HDO reaction ability. A higher heating value and pH of bio-oil were achieved by the HDO reaction over both catalysts and upgraded bio-oil had a lower viscosity. Compared to Ni/Al-MSU-F, Ni/Al- SBA-15 produced more upgraded bio-oil with a lower oxygen content and higher heating value via a catalytic HDO process.

  15. BioSmalltalk: a pure object system and library for bioinformatics.

    Science.gov (United States)

    Morales, Hernán F; Giovambattista, Guillermo

    2013-09-15

    We have developed BioSmalltalk, a new environment system for pure object-oriented bioinformatics programming. Adaptive end-user programming systems tend to become more important for discovering biological knowledge, as is demonstrated by the emergence of open-source programming toolkits for bioinformatics in the past years. Our software is intended to bridge the gap between bioscientists and rapid software prototyping while preserving the possibility of scaling to whole-system biology applications. BioSmalltalk performs better in terms of execution time and memory usage than Biopython and BioPerl for some classical situations. BioSmalltalk is cross-platform and freely available (MIT license) through the Google Project Hosting at http://code.google.com/p/biosmalltalk hernan.morales@gmail.com Supplementary data are available at Bioinformatics online.

  16. Improvement in grade of minerals using simultaneous Bio-oxidation of invisible gold concentrate and deep-sea manganese crust

    Science.gov (United States)

    Myung, EunJi; Cho, Kang Hee; Kim, Hyun Soo; Park, Cheon Young

    2016-04-01

    Many sulfides of metal such as galena, sphalerite, chalcopyrite, and pyrite, are semiconductors. When two kinds of such minerals contact each other in an electrolyte, a galvanic couple, where the mineral of lower rest potential as anode, and that of higher rest potential as cathode forms. Manganese dioxide is also a semiconductor with much higher rest potential than all sulfides mentioned above, so that a galvanic couple in which both the minerals would dissolve simultaneously can form, when it contacts with any of the sulfides. The aim of this study was to investigate the improvement in grade of minerals using the simultaneous bio-oxidation of deep-sea manganese crust and invisible gold concentrate. The samples(deep-sea manganese crust and invisible gold concentrate) were characterized by chemical and XRD analysis. The primary components of the invisible gold concentrate was pyrite and quartz and the deep-sea manganese crust was amorphous material, as detected using XRD. The result of chemical analysis showed that Au, Ag, Te contents in the invisible gold concentrate 130.2, 954.1 and 1,043.6 mg/kg, respectively. and that Mn, Ni, Co contents in the deep-sea manganese crust 19,501.5, 151.9, 400.4 mg/kg, respectively. In order to increase the bacteria's tolerance of heavy metals, the bacteria using bio-oxidation experiments were repeatedly subcultured in an Cu adaptation-medium containing of 382.98 mg/l for 20 periods of 21 days. The improvement in grade of samples of in present adapted bacteria condition was greater than another conditions(control and in present non-adapted bacteria). The Au-Ag-Te contents in the invisible gold concentrate was enhanced in the order of physical oxidation, simultaneous/non-adaptive bio-oxidation, adaptive/bio-oxidation, simultaneous/adaptive bio-oxidation. If the bacteria is adapted to heavy metal ions and an optimization of conditions is found in future bio-oxidation-leaching processes. Acknowledgment : "This research was supported

  17. Bio-technologies; Biotechnologies

    Energy Technology Data Exchange (ETDEWEB)

    Grawitz, X. [Systems Bio Industries, 92 - Boulogne Billancourt (France)

    1997-12-31

    This paper is a series of transparencies which describes the measures taken by Systems Bio-Industries company to adapt its central heating plants, turbines, engines and dryers to the new French 2910 by-law about thermal efficiency and environmental impact of heating plants. The project of development of a cogeneration system in the Angouleme site is briefly described. (J.S.)

  18. BioInt: an integrative biological object-oriented application framework and interpreter.

    Science.gov (United States)

    Desai, Sanket; Burra, Prasad

    2015-01-01

    BioInt, a biological programming application framework and interpreter, is an attempt to equip the researchers with seamless integration, efficient extraction and effortless analysis of the data from various biological databases and algorithms. Based on the type of biological data, algorithms and related functionalities, a biology-specific framework was developed which has nine modules. The modules are a compilation of numerous reusable BioADTs. This software ecosystem containing more than 450 biological objects underneath the interpreter makes it flexible, integrative and comprehensive. Similar to Python, BioInt eliminates the compilation and linking steps cutting the time significantly. The researcher can write the scripts using available BioADTs (following C++ syntax) and execute them interactively or use as a command line application. It has features that enable automation, extension of the framework with new/external BioADTs/libraries and deployment of complex work flows.

  19. LIMITATIONS OF LEGAL ENFORCEMENT IN BIO – MEDICAL WASTE MANAGEMENT IN INDIA

    OpenAIRE

    Pavithra Kumari

    2017-01-01

    Bio medical is generated by the hospital during the diagnosis, treatment of human beings or animals. The form of biomedical waste is solid as well as liquid form. The basic components of bio medical waste consist of human anatomical waste, micro biology and bio technology waste, waste sharps, discarded medicines and cytotoxic drugs, soiled waste, solid waste, liquid waste generated from any of the infected areas, animal waste, incineration ash, chemical waste etc. The bio medical waste gener...

  20. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Zia [Battelle Memorial Inst., Columbus, OH (United States); Chadwell, Brad [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Hindin, Barry [Battelle Memorial Inst., Columbus, OH (United States); Ralston, Kevin [Battelle Memorial Inst., Columbus, OH (United States)

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.