WorldWideScience

Sample records for bingham plastic model

  1. Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Science.gov (United States)

    Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo

    2014-03-01

    Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.

  2. Mathematical Modeling of Bingham Plastic Model of Blood Flow Through Stenotic Vessel

    OpenAIRE

    S.R. Verma

    2014-01-01

    The aim of the present paper is to study the axially symmetric, laminar, steady, one-dimensional flow of blood through narrow stenotic vessel. Blood is considered as Bingham plastic fluid. The analytical results such as pressure drop, resistance to flow and wall shear stress have been obtained. Effect of yield stress and shape of stenosis on resistance to flow and wall shear stress have been discussed through tables and graphically. It has been shown that resistance to flow and th...

  3. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Directory of Open Access Journals (Sweden)

    Song-Gui Chen

    2016-01-01

    Full Text Available This paper presents a three-dimensional (3D parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-LBM is then validated through a benchmark problem: a 3D steady Poiseuille flow. The results from the numerical simulations are consistent with those derived analytically which indicates that the MRT-LBM effectively simulates Bingham fluids but with better stability. A parallel MRT-LBM framework is introduced, and the parallel efficiency is tested through a simple case. The MRT-LBM is shown to be appropriate for parallel implementation and to have high efficiency. Finally, a Bingham fluid flowing past a square-based prism with a fixed sphere is simulated. It is found the drag coefficient is a function of both Reynolds number (Re and Bingham number (Bn. These results reveal the flow behavior of Bingham plastics.

  4. A Bingham-plastic model for fluid mud transport under waves and currents

    Science.gov (United States)

    Liu, Chun-rong; Wu, Bo; Huhe, Ao-de

    2014-04-01

    Simplified equations of fluid mud motion, which is described as Bingham-Plastic model under waves and currents, are presented by order analysis. The simplified equations are non-linear ordinary differential equations which are solved by hybrid numerical-analytical technique. As the computational cost is very low, the effects of wave current parameters and fluid mud properties on the transportation velocity of the fluid mud are studied systematically. It is found that the fluid mud can move toward one direction even if the shear stress acting on the fluid mud bed is much smaller than the fluid mud yield stress under the condition of wave and current coexistence. Experiments of the fluid mud motion under current with fluctuation water surface are carried out. The fluid mud transportation velocity predicted by the presented mathematical model can roughly match that measured in experiments.

  5. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    OpenAIRE

    Song-Gui Chen; Chuan-Hu Zhang; Yun-Tian Feng; Qi-Cheng Sun; Feng Jin

    2016-01-01

    This paper presents a three-dimensional (3D) parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK) model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-L...

  6. A perturbation model for the oscillatory flow of a Bingham plastic in rigid and periodically displaced tubes.

    Science.gov (United States)

    De Chant, L J

    1999-10-01

    An approximate analytical model for the pulsatile flow of an ideal Bingham plastic fluid in both a rigid and a periodically displaced tube has been developed using regular perturbation methods. Relationships are derived for the velocity field and dimensionless flow rate. The solution compares adequately with available experimentally measured oscillatory non-Newtonian fluid flow data. These solutions provide useful analytical models supporting experimental and computation studies of arterial blood flow.

  7. Yield strengths of flows on the earth, Mars, and moon. [application of Bingham plastic model to lava flows

    Science.gov (United States)

    Moore, H. J.; Arthur, D. W. G.; Schaber, G. G.

    1978-01-01

    Dimensions of flows on the earth, Mars, and moon and their topographic gradients obtained from remote measurements are used to calculate yield strengths with a view to explore the validity of the Bingham plastic model and determine whether there is a relation between yield strengths and silica contents. Other factors are considered such as the vagaries of natural phenomena that might contribute to erroneous interpretations and measurements. Comparison of yield strengths of Martian and lunar flows with terrestrial flows suggests that the Martian and lunar flows are more akin to terrestrial basalts than they are to terrestrial andesites, trachytes, and rhyolites.

  8. Bingham plastic fluid flow model in tape casting of ceramics using two doctor blades – analytical approach

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hattel, Jesper Henri

    2014-01-01

    and casting speed (belt velocity). In the present work, the flow in both doctor blade regions of a slurry is described with a steady state momentum equation in combination with a Bingham plastic constitutive equation, and this is integrated to a closed form analytical solution for both reservoirs based...

  9. Bingham plastic fluids more effectively clean horizontal holes

    Energy Technology Data Exchange (ETDEWEB)

    Estes, J.; Randall, B. [Environmental Drilling Technology Inc., Tulsa, OK (United States); Bridges, K. [Environmental Drilling Technology Inc., Lafayette, LA (United States)

    1996-11-11

    Low-solids, water-based muds with Bingham plastic rheological characteristics can clean horizontal well bores more effectively than many bentonite or oil-based fluids. Moreover, these Bingham plastic fluids are environmentally benign. Some drilling hydraulics computer programs calculate the efficiency and transition, but most do not calculate cuttings transport. For cleaning cuttings out of an annulus, turbulent flow generally gives more efficient transport. Unfortunately, turbulent flow also increases fluid loss into permeable formations and erodes shales, causing hole enlargement. Where there is hole enlargement there will usually be lower fluid velocities and, as a consequence, the fluid may revert to laminar flow. The paper discusses laminar flow, gel strength, poor cleaning, plug flow, and Bingham plastic muds.

  10. Non-dimensional characterization of the friction stir/spot welding process using a simple Couette flow model part I: Constant property Bingham plastic solution

    International Nuclear Information System (INIS)

    Buck, Gregory A.; Langerman, Michael

    2004-01-01

    A simplified model for the material flow created during a friction stir/spot welding process has been developed using a boundary driven cylindrical Couette flow model with a specified heat flux at the inner cylinder for a Bingham plastic material. Non-dimensionalization of the constant property governing equations identified three parameters that influence the velocity and temperature fields. Analytic solutions to these equations are presented and some representative results from a parametric study (parameters chosen and varied over ranges expected for the welding of a wide variety of metals) are discussed. The results also provide an expression for the critical radius (location of vanishing material velocity) as functions of the relevant non-dimensional parameters. A final study was conducted in which values for the non-dimensional heat flux parameter were chosen to produce peak dimensional temperatures on the order of 80% of the melting temperature for a typical 2000 series aluminum. Under these conditions it was discovered that the ratio of the maximum rate of shear work within the material (viscous dissipation) to the rate of energy input at the boundary due to frictional heating, ranged from about 0.0005% for the lowest pin tool rotation rate, to about 1.3% for the highest tool rotation rate studied. Curve fits to previous Gleeble data taken for a number of aluminum alloys provide reasonable justification for the Bingham plastic constitutive model, and although these fits indicate a strong temperature dependence for critical flow stress and viscosity, this work provides a simple tool for more sophisticated model validation. Part II of this study will present numerical solutions for velocity and temperature fields resulting from the non-linear coupling of the momentum and energy equations created by temperature dependent transport properties

  11. Peristaltic transport of Bingham plastic fluid considering magnetic field, Soret and Dufour effects

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available Current attempt addresses the peristaltic transport of Bingham plastic fluid under the influence of magnetic force. Space dependent viscosity is considered. Novel Soret and Dufour effects are retained in the mathematical model. Problem formulation is presented through the conventional lubrication approach. Series solutions of the arising non-linear problem are developed via regular perturbation approach. Special attention is given to the role of embedded parameters on the axial velocity, temperature, concentration and pressure distributions. Furthermore the numerical solution of pressure rise per wavelength is obtained through numerical integration because its analytical solution seems impossible. Keywords: Bingham fluid, Variable viscosity, MHD and Joule heating, Soret and Dufour effects

  12. Acoustic heating produced in the thermoviscous flow of a Bingham plastic

    Science.gov (United States)

    Perelomova, Anna

    2011-02-01

    This study is devoted to the instantaneous acoustic heating of a Bingham plastic. The model of the Bingham plastic's viscous stress tensor includes the yield stress along with the shear viscosity, which differentiates a Bingham plastic from a viscous Newtonian fluid. A special linear combination of the conservation equations in differential form makes it possible to reduce all acoustic terms in the linear part of of the final equation governing acoustic heating, and to retain those belonging to the thermal mode. The nonlinear terms of the final equation are a result of interaction between sounds and the thermal mode. In the field of intense sound, the resulting nonlinear acoustic terms form a driving force for the heating. The final governing dynamic equation of the thermal mode is valid in a weakly nonlinear flow. It is instantaneous, and does not imply that sounds be periodic. The equations governing the dynamics of both sounds and the thermal mode depend on sign of the shear rate. An example of the propagation of a bipolar initially acoustic pulse and the evolution of the heating induced by it is illustrated and discussed.

  13. Peristaltic transport of Bingham plastic fluid considering magnetic field, Soret and Dufour effects

    Science.gov (United States)

    Hayat, T.; Farooq, S.; Mustafa, M.; Ahmad, B.

    Current attempt addresses the peristaltic transport of Bingham plastic fluid under the influence of magnetic force. Space dependent viscosity is considered. Novel Soret and Dufour effects are retained in the mathematical model. Problem formulation is presented through the conventional lubrication approach. Series solutions of the arising non-linear problem are developed via regular perturbation approach. Special attention is given to the role of embedded parameters on the axial velocity, temperature, concentration and pressure distributions. Furthermore the numerical solution of pressure rise per wavelength is obtained through numerical integration because its analytical solution seems impossible.

  14. Squeeze flow of Bingham plastic with stick-slip at the wall

    Science.gov (United States)

    Muravleva, Larisa

    2018-03-01

    We solve numerically the axisymmetric squeeze flow of a viscoplastic Bingham medium with slip yield boundary condition at the wall. Using the original Bingham model we compute the shape of the yield surface, the velocity, and stress fields employing the augmented Lagrangian methods. We confirm numerically the recently obtained asymptotic solution.

  15. On a Solvability of Contact Problems with Visco-Plastic Friction in the Thermo-Visco-Plastic Bingham Rheology

    Czech Academy of Sciences Publication Activity Database

    Nedoma, Jiří

    2006-01-01

    Roč. 22, č. 4 (2006), s. 484-499 ISSN 0167-739X Institutional research plan: CEZ:AV0Z10300504 Keywords : unilateral contact problem * local visco- plastic friction * thermo-visco- plastic Bingham rheology * FEM Subject RIV: BA - General Mathematics Impact factor: 0.722, year: 2006

  16. Stopping times in cessation flows of Bingham plastics with slip at the wall

    Science.gov (United States)

    Philippou, Maria; Damianou, Yiolanda; Kaoullas, George; Georgiou, Georgios C.

    2012-09-01

    We solve numerically the cessation of axisymmetric Poiseuille flow of a Bingham plastic assuming that slip occurs along the wall. A power-law expression is used to relate the wall shear stress to the slip velocity. The numerical results show that the velocity becomes and remains uniform before complete cessation and that the stopping time is finite only when the exponent sBingham number and the volumetric flow rate decays exponentially. When s>1, the decay is much slower, i.e. polynomial. The asymptotic expressions for the volumetric flow rate in the case of full-slip are also derived.

  17. ALE finite volume method for free-surface Bingham plastic fluids with general curvilinear coordinates

    International Nuclear Information System (INIS)

    Nagai, Katsuaki; Ushijima, Satoru

    2010-01-01

    A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.

  18. ALE finite volume method for free-surface Bingham plastic fluids with general curvilinear coordinates

    Science.gov (United States)

    Nagai, Katsuaki; Ushijima, Satoru

    2010-06-01

    A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.

  19. Flow and Heat Transfer of Bingham Plastic Fluid over a Rotating Disk with Variable Thickness

    Science.gov (United States)

    Liu, Chunyan; Pan, Mingyang; Zheng, Liancun; Ming, Chunying; Zhang, Xinxin

    2016-11-01

    This paper studies the steady flow and heat transfer of Bingham plastic fluid over a rotating disk of finite radius with variable thickness radially in boundary layer. The boundary layer flow is caused by the rotating disk when the extra stress is greater than the yield stress of the Bingham fluid. The analyses of the velocity and temperature field related to the variable thickness disk have not been investigated in current literatures. The governing equations are first simplified into ordinary differential equations owing to the generalized von Kármán transformation for seeking solutions easily. Then semi-similarity approximate analytical solutions are obtained by using the homotopy analysis method for different physical parameters. It is found that the Bingham number clearly influences the velocity field distribution, and the skin friction coefficient Cfr is nonlinear growth with respect to the shape parameter m. Additionally, the effects of the involved parameters (i.e. shape parameter m, variable thickness parameter β, Reynolds number Rev, and Prandtl number Pr) on velocity and temperature distribution are investigated and analyzed in detail.

  20. On a solvability of hydro-mechanical problem based on contact problem with visco-plastic friction in Bingham rheology

    Czech Academy of Sciences Publication Activity Database

    Nedoma, Jiří; Tomášek, Luboš

    2008-01-01

    Roč. 218, č. 1 (2008), s. 116-124 ISSN 0377-0427 Institutional research plan: CEZ:AV0Z10300504 Keywords : visco-plasticity * Bingham rheology * contact problems with friction * variational inequalities * FEM * geomechanics * hydromechanics Subject RIV: BA - General Mathematics Impact factor: 1.048, year: 2008

  1. Generation of the vorticity mode by sound in a Bingham plastic

    Science.gov (United States)

    Perelomova, Anna; Wojda, Pawel

    2011-10-01

    This study investigates interaction between acoustic and non-acoustic modes, such as vorticity mode, in some class of a non-newtonian fluid called Bingham plastic. The instantaneous equations describing interaction between different modes are derived. The attention is paid to the nonlinear effects in the field of intense sound. The resulting equations which describe dynamics of both sound and the vorticity mode apply to both periodic and aperiodic sound of any waveform. They use only instantaneous quantities and do not imply averaging over the sound period. The theory is illustrated by an example of acoustic force of vorticity induced in the field of a Gaussian sound beam. Some unusual peculiarities in both sound and the vorticity induced in its field as compared to a newtonian fluid, are discovered.

  2. Effect of confinement on forced convection from a heated sphere in Bingham plastic fluids

    Science.gov (United States)

    Das, Pradipta K.; Gupta, Anoop K.; Nirmalkar, Neelkanth; Chhabra, Raj P.

    2015-05-01

    In this work, the momentum and heat transfer characteristics of a heated sphere in tubes filled with Bingham plastic fluids have been studied. The governing differential equations (continuity, momentum and thermal energy) have been solved numerically over wide ranges of conditions as: Reynolds number, 1 ≤ Re ≤ 100; Prandtl number, 1 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 100 and blockage ratio,0 ≤ λ ≤ 0.5 where λ is defined as the ratio of the sphere to tube diameter. Over this range of conditions, the flow is expected to be axisymmetric and steady. The detailed flow and temperature fields in the vicinity of the surface of the sphere are examined in terms of the streamline and isotherm contours respectively. Further insights are developed in terms of the distribution of the local Nusselt number along the surface of the sphere together with their average values in terms of mean Nusselt number. Finally, the wall effects on drag are present only when the fluid-like region intersects with the boundary wall. However, heat transfer is always influenced by the wall effects. Also, the flow domain is mapped in terms of the yielded- (fluid-like) and unyielded (solid-like) sub-regions. The fluid inertia tends to promote yielding whereas the yield stress counters it. Furthermore, the introduction of even a small degree of yield stress imparts stability to the flow and therefore, the flow remains attached to the surface of the sphere up to much higher values of the Reynolds number than that in Newtonian fluids. The paper is concluded by developing predictive correlations for drag and Nusselt number.

  3. Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method

    OpenAIRE

    Syrakos, Alexandros; Georgiou, Georgios C.; Alexandrou, Andreas N.

    2016-01-01

    We investigate the performance of the finite volume method in solving viscoplastic flows. The creeping square lid-driven cavity flow of a Bingham plastic is chosen as the test case and the constitutive equation is regularised as proposed by Papanastasiou [J. Rheol. 31 (1987) 385-404]. It is shown that the convergence rate of the standard SIMPLE pressure-correction algorithm, which is used to solve the algebraic equation system that is produced by the finite volume discretisation, severely det...

  4. A free-surface lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids.

    Science.gov (United States)

    Ginzburg, Irina; Steiner, Konrad

    2002-03-15

    The filling process of viscoplastic metal alloys and plastics in expanding cavities is modelled using the lattice Boltzmann method in two and three dimensions. These models combine the regularized Bingham model for viscoplastic fluids with a free-interface algorithm. The latter is based on a modified immiscible lattice Boltzmann model in which one species is the fluid and the other one is considered to be a vacuum. The boundary conditions at the curved liquid-vacuum interface are met without any geometrical front reconstruction from a first-order Chapman-Enskog expansion. The numerical results obtained with these models are found in good agreement with available theoretical and numerical analysis.

  5. Natural convection in Bingham plastic fluids from an isothermal spheroid: Effects of fluid yield stress, viscous dissipation and temperature-dependent viscosity

    Science.gov (United States)

    Gupta, Anoop Kumar; Gupta, Sanjay; Chhabra, Rajendra Prasad

    2017-08-01

    In this work, the buoyancy-induced convection from an isothermal spheroid is studied in a Bingham plastic fluid. Extensive results on the morphology of approximate yield surfaces, temperature profiles, and the local and average Nusselt numbers are reported to elucidate the effects of the pertinent dimensionless parameters: Rayleigh number, 102 ≤ Ra ≤ 106; Prandtl number, 20 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 103, and aspect ratio, 0.2 ≤ e ≤ 5. Due to the fluid yield stress, fluid-like (yielded) and solid-like (unyielded) regions coexist in the flow domain depending upon the prevailing stress levels vis-a-vis the value of the fluid yield stress. The yielded parts progressively grow in size with the rising Rayleigh number while this tendency is countered by the increasing Bingham and Prandtl numbers. Due to these two competing effects, a limiting value of the Bingham number ( Bn max) is observed beyond which heat transfer occurs solely by conduction due to the solid-like behaviour of the fluid everywhere in the domain. Such limiting values bear a positive dependence on the Rayleigh number ( Ra) and aspect ratio ( e). In addition to this, oblate shapes ( e 1) impede it. Finally, simple predictive expressions for the maximum Bingham number and the average Nusselt number are developed which can be used to predict a priori the overall heat transfer coefficient in a new application. Also, a criterion is developed in terms of the composite parameter Bn• Gr-1/2 which predicts the onset of convection in such fluids. Similarly, another criterion is developed which delineates the conditions for the onset of settling due to buoyancy effects. The paper is concluded by presenting limited results to delineate the effects of viscous dissipation and the temperature-dependent viscosity on the Nusselt number. Both these effects are seen to be rather small in Bingham plastic fluids.

  6. Use Case Modelling of Bingham University Library Management ...

    African Journals Online (AJOL)

    With the advent of object oriented design, Unified Modelling Language (UML) has become prominent in software industry. Software is better modelled with the use of UML diagrams like use cases which provide a better flow of logic and comprehensive summary of the whole software system in a single illustration.

  7. Bingham Sealing and Application in Vacuum Clamping

    Science.gov (United States)

    Yao, S. M.; Teo, Wee Kin; Geng, Zunmin; Turner, Sam; Ridgway, Keith

    2011-12-01

    Vacuum clamping is extensively used in shell machining. In this paper a Bingham Sealing (BS) is presented and formulized based on Bingham plastic performance. The sealing capability of BS is evaluated in various cases. A new Bingham plastic is developed and the yield stress is measured. The performances of "O"ring sealing and BS with the developed Bingham plastic are compared to the static experiment. In this experiment the same vacuum is achieved and the distortion of the blade with BS is better than that with "O" ring sealing.

  8. Bingham Sealing and Application in Vacuum Clamping

    International Nuclear Information System (INIS)

    Yao, S M; Teo, Wee Kin; Geng Zunmin; Turner, Sam; Ridgway, Keith

    2011-01-01

    Vacuum clamping is extensively used in shell machining. In this paper a Bingham Sealing (BS) is presented and formulized based on Bingham plastic performance. The sealing capability of BS is evaluated in various cases. A new Bingham plastic is developed and the yield stress is measured. The performances of Or ing sealing and BS with the developed Bingham plastic are compared to the static experiment. In this experiment the same vacuum is achieved and the distortion of the blade with BS is better than that with 'O' ring sealing.

  9. Helene: A Plastic Model

    Science.gov (United States)

    Umurhan, O. M.; Moore, J. M.; Howard, A. D.; Schenk, P.; White, O. L.

    2014-12-01

    Helene, the Saturnian L4 Trojan satellite co-orbiting Dionne and sitting within the E-ring, possesses an unusual morphology characteristic of broad km-scale basins and depressions and a generally smooth surface patterned with streaks and grooves which are indicative of non-typical mass transport. Elevation angles do not appear to exceed 10o at most. The nature and origin of the surface materials forming these grooved patterns is unknown. Given the low surface gravity (plastic-like flow like a Bingham fluid, we setup and test a number of likely scenarios to explain the observations. The numerical results qualitatively indicate that treating the mass-wasting materials as a Bingham material reproduces many of the qualitative features observed. We also find that in those simulations in which accretion is concomitant with Bingham mass-wasting, the long time-evolution of the surface flow shows intermittency in the total surface activity (defined as total surface integral of the absolute magnitude of the mass-flux). Detailed analyses identify the locations where this activity is most pronounced and we will discuss these and its implications in further detail.

  10. Approximate Solution of Dam-break Flow of Low Viscosity Bingham Fluid

    Science.gov (United States)

    Puay, How Tion; Hosoda, Takashi

    In this study, we investigate the characteristics of dam-break flow of low viscosity Bingham fluid by deriving an approximate solution for the time development of the front position and depth at the origin of the flow. The asymptotic solutions representing the characteristic of Bingham fluid in the limit of low plastic viscosity are verified with a depth-averaged numerical model. Numerical simulations showed that with the decrease of plastic viscosity, the time development of the front position and depth at the origin approach to the theoretical asymptotic solution.

  11. A new visco-elasto-plastic model via time-space fractional derivative

    Science.gov (United States)

    Hei, X.; Chen, W.; Pang, G.; Xiao, R.; Zhang, C.

    2018-02-01

    To characterize the visco-elasto-plastic behavior of metals and alloys we propose a new constitutive equation based on a time-space fractional derivative. The rheological representative of the model can be analogous to that of the Bingham-Maxwell model, while the dashpot element and sliding friction element are replaced by the corresponding fractional elements. The model is applied to describe the constant strain rate, stress relaxation and creep tests of different metals and alloys. The results suggest that the proposed simple model can describe the main characteristics of the experimental observations. More importantly, the model can also provide more accurate predictions than the classic Bingham-Maxwell model and the Bingham-Norton model.

  12. Bingham viscosity and yield stress of molten (TeO2)0.78(WO3)0.22 glass

    International Nuclear Information System (INIS)

    Churbanov, M.F.; Snopatin, G.E.; Shaposhnikov, R.M.; Shabarov, V.V.; Plotnichenko, V.G.

    2007-01-01

    The flow of molten (TeO 2 ) 0.78 (WO 3 ) 0.22 glass in a circular-cylindrical channel has been studied at temperatures from 390 to 430 deg C. The variation of the measured volumetric flow rate with the gas pressure over the melt attests to non-Newtonian flow behavior. The flow rates calculated in the pseudo plastic model were used to determine the yield stress and plastic (Bingham) viscosity of the melt [ru

  13. Plasticity: modeling & computation

    National Research Council Canada - National Science Library

    Borja, Ronaldo Israel

    2013-01-01

    .... "Plasticity Modeling & Computation" is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids...

  14. Fluid boundary of a viscoplastic Bingham flow for finite solid deformations

    OpenAIRE

    Thual , Olivier; Lacaze , Laurent

    2010-01-01

    International audience; The modelling of viscoplastic Bingham fluids often relies on a rheological constitutive law based on a "plastic rule function" often identical to the yield criterion of the solid state. It is also often assumed that this plastic rule function vanishes at the boundary between the solid and fluid states, based on the fact that it is true in the limit of small deformations of the solid state or for simple yield criteria. We show that this is not the case for finite deform...

  15. A bi-projection method for Bingham type flows

    OpenAIRE

    Chupin , Laurent; Dubois , Thierry

    2015-01-01

    We propose and study a new numerical scheme to compute the isothermal and unsteady flow of an incompressible viscoplastic Bingham medium.The main difficulty, for both theoretical and numerical approaches, is due to the non-differentiability of the plastic part of stress tensor in regionswhere the rate-of-strain tensor vanishes. This is handled by reformulating the definition of the plastic stress tensor in terms ofa projection.A new time scheme, based on the classical incremental projection m...

  16. Interview and talk by Tom Bingham

    OpenAIRE

    Bingham, Tom

    2009-01-01

    Talk by Tom Bingham at the Cambridge Rotarians, and interview by Alan Macfarlane on 31st March 2009. Edited by Sarah Harrison. Interview of Tom Bingham and talk at the Cambridge Rotarians. Bingham was Lord Chief Justice, Master of the Rolls and an important Law Lord. He talks about his life and work in the law.

  17. Appalachian Steward: Ed Bingham. Essay.

    Science.gov (United States)

    Stanley, Tal

    2002-01-01

    As a writer and faculty member at Emory & Henry College (Virginia), Ed Bingham focused on land reform and the sustenance that came from the land. His concern for the damages caused by colonialism influenced the early days of Appalachian Studies. His work was interdisciplinary, with commitments to social justice, democracy, and racial equality.…

  18. Plasticity modeling & computation

    CERN Document Server

    Borja, Ronaldo I

    2013-01-01

    There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.

  19. Bingham Pump Outage Pits: Environmental information document

    International Nuclear Information System (INIS)

    Pekkala, R.O.; Jewell, C.E.; Holmes, W.G.; Marine, I.W.

    1987-03-01

    Seven waste sites known as the Bingham Pump Outage Pits located in areas of the Savannah River Plant (SRP) received solid waste containing an estimated 4 Ci of low-level radioactivity in 1957-1958. These sites were subsequently backfilled and have been inactive since that time. Most of the radioactivity at the Bingham Pump Outage Pits has been eliminated by radioactive decay. A total of approximately 1 Ci of activity (primarily 137 Cs and 90 Sr) is estimated to remain at the seven sites. The closure options considered for the Bingham Pump Outage Pits are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated. Evaluation indicates that the relative human health risks for all closure options are small. The greatest public risk would occur after the waste site was released to unrestricted public use (assumed to occur in Year 2085) via the groundwater pathway to a well. The cost estimates show that the waste removal and closure option is the most expensive (89.6 million dollars). The cost of the no waste removal and the no action options is $800,000. 35 refs., 26 figs., 47 tabs

  20. Thermal convection of a viscoplastic liquid with high Rayleigh and Bingham numbers

    Science.gov (United States)

    Vikhansky, A.

    2009-10-01

    We consider the effect of yield stress on the Rayleigh-Bénard convection of a viscoplastic material. First we consider the model problem of convection in a differentially heated loop, which is described by the (modified) Lorenz equations. The presence of the yield stress significantly alters the dynamics of the system. In particular, the chaotic motion can stop suddenly (sometimes, after a period of chaotic oscillations). Guided by the model equations we performed direct numerical simulations of convection of the Bingham liquid in a square cavity heated from bellow. Our interest has been concentrated on the situation when both buoyancy and plastic forces are large. The obtained results are in a reasonable agreement with the predictions by the Lorenz equations.

  1. Behaviour of Viscoelastic - Viscoplastic Spheres and Cylinders - Partly Plastic Vessel Walls

    DEFF Research Database (Denmark)

    Ottosen, N. Saabye

    1985-01-01

    The material model consists of a viscoelastic Burgers element and an additional viscoplastic Bingham element when the effective stress exceeds the yield stress. For partly plastic vessel walls, expressions are derived for the stress and strain state in pressurised or relaxation loaded thick......-term behaviour of thick-walled partly plastic vessels....

  2. Behaviour of Viscoelastic - Viscoplastic Spheres and Cylinders - Fully Plastic Vessel Walls

    DEFF Research Database (Denmark)

    Ottosen, N. Saabye

    1985-01-01

    The material model consists of a viscoelastic Burgers element and an additional viscoplastic Bingham element when the effective stress exceeds the yield stress. For fully plastic vessel walls, exact closed-form expressions arc derived for the stress and strain state in pressurised or relaxation...... importance for the long-term behaviour of thick-walled fully plastic vessels....

  3. Rayleigh-Taylor instability in a visco-plastic fluid

    International Nuclear Information System (INIS)

    Demianov, A Yu; Doludenko, A N; Son, E E; Inogamov, N A

    2010-01-01

    The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.

  4. Rayleigh-Taylor instability in a visco-plastic fluid

    Science.gov (United States)

    Demianov, A. Yu; Doludenko, A. N.; Inogamov, N. A.; Son, E. E.

    2010-12-01

    The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.

  5. Bingham liquid flow between two cylinders induced by inner ring rotation

    Science.gov (United States)

    Jaroslav, Štigler; Simona, Fialová

    2017-09-01

    This paper deals with the fluid flow between two cylinders induced by inner ring rotation. The gap width between the cylinders, in case that they are both concentric, is 1mm, the gap and inner ring radius ratio 0.013 and the radius ratio 0.987. Attention is focused on rotation speed and eccentricity influence on the flow. Calculations were done for both Newtonian liquid and Bingham plastic liquid with the yield stress threshold 50 Pa.

  6. Models of Short-Term Synaptic Plasticity.

    Science.gov (United States)

    Barroso-Flores, Janet; Herrera-Valdez, Marco A; Galarraga, Elvira; Bargas, José

    2017-01-01

    We focus on dynamical descriptions of short-term synaptic plasticity. Instead of focusing on the molecular machinery that has been reviewed recently by several authors, we concentrate on the dynamics and functional significance of synaptic plasticity, and review some mathematical models that reproduce different properties of the dynamics of short term synaptic plasticity that have been observed experimentally. The complexity and shortcomings of these models point to the need of simple, yet physiologically meaningful models. We propose a simplified model to be tested in synapses displaying different types of short-term plasticity.

  7. Non-modal stability in Hagen-Poiseuille flow of a Bingham fluid

    Science.gov (United States)

    Liu, Rong; Liu, Qiu Sheng

    2014-01-01

    Linear stability in Hagen-Poiseuille flow of a Bingham fluid is considered. Bingham fluid exhibits a yield stress in addition to a plastic viscosity. A Bingham number B, which describes the ratio of yield and viscous stresses, is used to characterize the behavior of Bingham-Hagen-Poiseuille flow. The effects of B on the stability are investigated using the energy method and the non-modal stability theory. The energy analysis shows that the non-axisymmetric disturbance has the lowest critical energy Reynolds number for all B. The global critical energy Reynolds number Reg increases with B. At sufficient large B, Reg has the order of B1/2. For the non-modal stability, we focus on response to external excitations and initial conditions. The former is studied by examining the ɛ-pseudospectrum, and the latter is by examining the energy growth function G(t). For the problem of response to external excitations, the maximum response is achieved by non-axisymmetric and streamwise uniform disturbances at the frequency of ω = 0, with a possible choice of the azimuthal wavenumbers of n = 1, 2, or 3. For the problem of response to initial conditions, it is found that there can be a rather large transient growth even though the linear operator of the Bingham-Hagen-Poiseuille flow has no unstable eigenvalue. For small B, the optimal disturbance is in the form of streamwise uniform vortices and streaks. For large B, the optimal disturbance is in the form of oblique waves. The optimal energy growth decreases and the optimal azimuthal wavenumber increases with the increase of B.

  8. Flow of a Bingham fluid in a porous bed under the action of a magnetic field: Application to magneto-hemorheology

    Directory of Open Access Journals (Sweden)

    J.C. Misra

    2017-06-01

    Full Text Available The study deals with an investigation of the flow of a Bingham plastic fluid in a porous bed under the action of an external magnetic field. Porosity of the bed has been described by considering Brinkman model. Both steady and pulsatile motion of this non-Newtonian fluid have been analysed. The governing equations are solved numerically by developing a suitable finite difference scheme. As an application of the theory in the field of magneto-hemorheology, the said physical variables have been computed by considering the values of the involved parameters for blood flow in a pathological state, when the system is under the action of an external magnetic field. The pathological state corresponds to a situation, where the lumen of an arterial segment has turned into a porous structure due to formation of blood clots. Numerical estimates are obtained for the velocity profile and volumetric flow rate of blood, as well as for the shear stress, in the case of blood flow in a diseased artery, both the velocity and volumetric flow rate diminish, as the strength of the external magnetic field is enhanced. The study further shows that blood velocity is maximum in the plug (core region. It decreases monotonically as the particles of blood travel towards the wall. The study also bears the potential of providing numerical estimates for many industrial fluids that follow Bingham plastic model, when the values of different parameters are chosen appropriately.

  9. Phenomenological friction equation for turbulent flow of Bingham fluids.

    Science.gov (United States)

    Anbarlooei, H R; Cruz, D O A; Ramos, F; Santos, Cecilia M M; Silva Freire, A P

    2017-08-01

    Most discussions in the literature on the friction coefficient of turbulent flows of fluids with complex rheology are empirical. As a rule, theoretical frameworks are not available even for some relatively simple constitutive models. In the present work, a formula is proposed for the evaluation of the friction coefficient of turbulent flows of Bingham fluids. The developments combine a fresh analysis for the description of the microscales of Kolmogorov and the phenomenological turbulence model of Gioia and Chakraborty [G. Gioia and P. Chakraborty, Phys. Rev. Lett. 96, 044502 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.044502]. The resulting Blasius-type friction equation is tested against some experimental data and shows good agreement over a significant range of Hedstrom and Reynolds numbers. Comments on pressure measurements in yielding fluids are made. The limits of the proposed model are also discussed.

  10. Robust Return Algorithm for Anisotropic Plasticity Models

    DEFF Research Database (Denmark)

    Tidemann, L.; Krenk, Steen

    2017-01-01

    Plasticity models can be defined by an energy potential, a plastic flow potential and a yield surface. The energy potential defines the relation between the observable elastic strains ϒe and the energy conjugate stresses Τe and between the non-observable internal strains i and the energy conjugat...

  11. Phenomenological model of local plasticity

    Directory of Open Access Journals (Sweden)

    Dolgorukov Vadim Aleksandrovich

    2012-10-01

    Full Text Available Two points of an elastic and perfectly plastic material exposed to the plane stress are examined by the author. One point is located on the stress concentrator surface. The other one is located at a certain distance from the first one (it is considered as a secondary point within the framework of the kinetic theory of a plastic flow. As a result of the finite element analysis of the stress-strain state it has been discovered that the material in the point located in the front area of the kinetic plastic flow remains linearly elastic in terms of its physical condition, and the load is applied to it in accordance with a curved trajectory.

  12. Modeling plasticity by non-continuous deformation

    Science.gov (United States)

    Ben-Shmuel, Yaron; Altus, Eli

    2017-10-01

    Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.

  13. Mechanics of Bingham Flow in an Open Channel

    OpenAIRE

    荻原, 能男; 宮沢, 直季; 三浦, 美香

    1988-01-01

    In this paper, the velocity distribution on turbulent Bingham flow in an open channel is derived theoretically and the fitness of this distribution is examined by comparing with results of experiment using the fluid of water and bentonite mixture which shows the behavior of Bingham flow. The results show that the theoretical turbulent velocity distribution obtained here conforms to results of experiment in the region of lower bentonite concentration. By experiment, the empirical fomulae to es...

  14. Numerical Modelling and Measurement in a Test Secondary Settling Tank

    DEFF Research Database (Denmark)

    Dahl, C.; Larsen, Torben; Petersen, O.

    1994-01-01

    sludge. Phenomena as free and hindered settling and the Bingham plastic characteristic of activated sludge suspensions are included in the numerical model. Further characterisation and test tank experiments are described. The characterisation experiments were designed to measure calibration parameters...... and for comparing measured and calculated result. The numerical model could, fairly accuratly, predict the measured results and both the measured and the calculated results showed a flow field pattern identical to flow fields in full-scale secondary setling tanks. A specific calibration of the Bingham plastic...

  15. An elasto-visco-plastic model for immortal foams or emulsions.

    Science.gov (United States)

    Bénito, S; Bruneau, C-H; Colin, T; Gay, C; Molino, F

    2008-03-01

    A variety of complex fluids consists in soft, round objects (foams, emulsions, assemblies of copolymer micelles or of multilamellar vesicles--also known as onions). Their dense packing induces a slight deviation from their preferred circular or spherical shape. As a frustrated assembly of interacting bodies, such a material evolves from one conformation to another through a succession of discrete, topological events driven by finite external forces. As a result, the material exhibits a finite yield threshold. The individual objects usually evolve spontaneously (colloidal diffusion, object coalescence, molecular diffusion), and the material properties under low or vanishing stress may alter with time, a phenomenon known as aging. We neglect such effects to address the simpler behaviour of (uncommon) immortal fluids: we construct a minimal, fully tensorial, rheological model, equivalent to the (scalar) Bingham model. Importantly, the model consistently describes the ability of such soft materials to deform substantially in the elastic regime (be it compressible or not) before they undergo (incompressible) plastic creep--or viscous flow under even higher stresses.

  16. Plasticity Modelling in PM Steels

    Science.gov (United States)

    Andersson, M.; Angelopoulos, V.

    2017-12-01

    Simulations are continuously becoming more and more important to predict the behaviour of materials, components and structures. Porous materials, such as PM, put special demands on the material models used. This paper investigates the application of the Gurson material model to PM steels. It is shown how the model can be calibrated to material data. The results are also applied to an indentation test, where it's demonstrated that experimental results can be reproduced with some accuracy. Limitations of the model, and the potential to use more advanced material models are also discussed.

  17. Influence of Parameters of Core Bingham Material on Critical Behaviour of Three-Layered Annular Plate

    Science.gov (United States)

    Pawlus, Dorota

    2017-12-01

    The paper presents the dynamic response of annular three-layered plate subjected to loads variable in time. The plate is loaded in the plane of outer layers. The plate core has the electrorheological properties expressed by the Bingham body model. The dynamic stability loss of plate with elastic core is determined by the critical state parameters, particularly by the critical stresses. Numerous numerical observations show the influence of the values of viscosity constant and critical shear stresses, being the Bingham body parameters, on the supercritical viscous fluid plate behaviour. The problem has been solved analytically and numerically using the orthogonalization method and finite difference method. The solution includes both axisymmetric and asymmetric plate dynamic modes.

  18. Unified creep-plasticity model for halite

    International Nuclear Information System (INIS)

    Krieg, R.D.

    1980-11-01

    There are two national energy programs which are considering caverns in geological salt (NaCl) as a storage repository. One is the disposal of nuclear wastes and the other is the storage of oil. Both short-time and long-time structural deformations and stresses must be predictable for these applications. At 300K, the nominal initial temperature for both applications, the salt is at 0.28 of the melting temperature and exhibits a significant time dependent behavior. A constitutive model has been developed which describes the behavior observed in an extensive set of triaxial creep tests. Analysis of these tests showed that a single deformation mechanism seems to be operative over the stress and temperature range of interest so that the secondary creep data can be represented by a power of the stress over the entire test range. This simple behavior allowed a new unified creep-plasticity model to be applied with some confidence. The resulting model recognizes no inherent difference between plastic and creep strains yet models the total inelastic strain reasonably well including primary and secondary creep and reverse loadings. A multiaxial formulation is applied with a back stress. A Bauschinger effect is exhibited as a consequence and is present regardless of the time scale over which the loading is applied. The model would be interpreted as kinematic hardening in the sense of classical plasticity. Comparisons are made between test data and model behavior

  19. Plastic deformation modelling of tempered martensite steel block structure by a nonlocal crystal plasticity model

    Directory of Open Access Journals (Sweden)

    Martin Boeff

    2014-01-01

    Full Text Available The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investigated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pronounced strain gradients occur in the grain boundary region even under homogeneous loading. The isotropic hardening of strain gradients strongly influences the global stress–strain diagram while the kinematic hardening of strain gradients influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.

  20. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  1. Mechanics of granular-frictional-visco-plastic fluids in civil and mining engineering

    Science.gov (United States)

    Alehossein, H.; Qin, Z.

    2013-10-01

    The shear stress generated in mine backfill slurries and fresh concrete contains both velocity gradient dependent and frictional terms, categorised as frictional viscous plastic fluids. This paper discusses application of the developed analytical solution for flow rate as a function of pressure and pressure gradient in discs, pipes and cones for such frictional Bingham-Herschel-Bulkley fluids. This paper discusses application of this continuum fluid model to industrial materials like mine and mineral slurries, backfills and fresh concrete tests.

  2. Modeling the fate and transport of plastic debris in freshwaters

    OpenAIRE

    Kooi, Merel; Besseling, Ellen; Kroeze, Carolien; Wenzel, van, Annemarie P.; Koelmans, Albert A.

    2018-01-01

    Contamination with plastic debris has been recognized as one of today’s major environmental quality problems. Because most of the sources are land based, concerns are increasingly focused on the freshwater and terrestrial environment. Fate and transport models for plastic debris can complement information from measurements and will play an important role in the prospective risk assessment of plastic debris. We review the present knowledge with respect to fate and transport modeling of plastic...

  3. Potential Hydraulic Modelling Errors Associated with Rheological Data Extrapolation in Laminar Flow

    International Nuclear Information System (INIS)

    Shadday, Martin A. Jr.

    1997-01-01

    The potential errors associated with the modelling of flows of non-Newtonian slurries through pipes, due to inadequate rheological models and extrapolation outside of the ranges of data bases, are demonstrated. The behaviors of both dilatant and pseudoplastic fluids with yield stresses, and the errors associated with treating them as Bingham plastics, are investigated

  4. Toward Modeling Limited Plasticity in Ceramic Materials

    National Research Council Canada - National Science Library

    Grinfeld, Michael; Schoenfeld, Scott E; Wright, Tim W

    2008-01-01

    The characteristic features of many armor-related ceramic materials are the anisotropy on the micro-scale level and the very limited, though non-vanishing, plasticity due to limited number of the planes for plastic slip...

  5. Augmented Lagrangian Method and Compressible Visco-plastic Flows: Applications to Shallow Dense Avalanches

    Science.gov (United States)

    Bresch, D.; Fernández-Nieto, E. D.; Ionescu, I. R.; Vigneaux, P.

    In this paper we propose a well-balanced finite volume/augmented Lagrangian method for compressible visco-plastic models focusing on a compressible Bingham type system with applications to dense avalanches. For the sake of completeness we also present a method showing that such a system may be derived for a shallow flow of a rigid-viscoplastic incompressible fluid, namely for incompressible Bingham type fluid with free surface. When the fluid is relatively shallow and spreads slowly, lubrication-style asymptotic approximations can be used to build reduced models for the spreading dynamics, see for instance [N.J. Balmforth et al., J. Fluid Mech (2002)]. When the motion is a little bit quicker, shallow water theory for non-Newtonian flows may be applied, for instance assuming a Navier type boundary condition at the bottom. We start from the variational inequality for an incompressible Bingham fluid and derive a shallow water type system. In the case where Bingham number and viscosity are set to zero we obtain the classical Shallow Water or Saint-Venant equations obtained for instance in [J.F. Gerbeau, B. Perthame, DCDS (2001)]. For numerical purposes, we focus on the one-dimensional in space model: We study associated static solutions with sufficient conditions that relate the slope of the bottom with the Bingham number and domain dimensions. We also propose a well-balanced finite volume/augmented Lagrangian method. It combines well-balanced finite volume schemes for spatial discretization with the augmented Lagrangian method to treat the associated optimization problem. Finally, we present various numerical tests.

  6. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  7. Plastics

    OpenAIRE

    Cassou, Emilie

    2018-01-01

    Although the agricultural sector is not the largest user of plastics, their rapid appearance on farms the world over is quietly turning into a substantial pollution concern. Versatile and economical as they are, plastics are found all over farms. From machines to mulches, they are the stuff of bags and tubs, of tubes and tools, of tags and trays, and of pots and twine. Plastic films are us...

  8. Pattern formation in plastic liquid films on elastomers by ratcheting.

    Science.gov (United States)

    Huang, Jiangshui; Yang, Jiawei; Jin, Lihua; Clarke, David R; Suo, Zhigang

    2016-04-20

    Plastic liquids, also known as Bingham liquids, retain their shape when loads are small, but flow when loads exceed a threshold. We discovered that plastic liquid films coated on elastomers develop wavy patterns under cyclic loads. As the number of cycles increases, the wavelength of the patterns remains unchanged, but the amplitude of the patterns increases and then saturates. Because the patterns develop progressively under cyclic loads, we call this phenomenon as "patterning by ratcheting". We observe the phenomenon in plastic liquids of several kinds, and studied the effects of thickness, the cyclic frequency of the stretch, and the range of the stretch. Finite element simulations show that the ratcheting phenomenon can occur in materials described by a commonly used model of elastic-plastic deformation.

  9. New plastic plane stress model for concrete

    International Nuclear Information System (INIS)

    Winnicki, A.; Cichon, Cz.

    1993-01-01

    In the paper a description of concrete behaviour in the plane stress case is given on the basis of the modified bounding surface plasticity theory. Three independent plastic mechanisms have been introduced describing axiatoric and deviatoric plastic strains and their coupling. All the new analytical formulae for material functions being in agreement with experiments and loading/unloading criteria have been proposed. In addition, for the proper description of concrete behaviour in tension a new, separate function of bounding surface shrinkage has been introduced. (author)

  10. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    Science.gov (United States)

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A plastic damage model with stress triaxiality-dependent hardening

    International Nuclear Information System (INIS)

    Shen Xinpu; Shen Guoxiao; Zhou Lin

    2005-01-01

    Emphases of this study were placed on the modelling of plastic damage behaviour of prestressed structural concrete, with special attention being paid to the stress-triaxiality dependent plastic hardening law and the corresponding damage evolution law. A definition of stress triaxiality was proposed and introduced in the model presented here. Drucker-Prager -type plasticity was adopted in the formulation of the plastic damage constitutive equations. Numerical validations were performed for the proposed plasticity-based damage model with a driver subroutine developed in this study. The predicted stress-strain behaviour seems reasonably accurate for the uniaxial tension and uniaxial compression compared with the experimental data reported in references. Numerical calculations of compressions under various hydrostatic stress confinements were carried out in order to validate the stress triaxiality dependent properties of the model. (authors)

  12. Variational methods for problems from plasticity theory and for generalized Newtonian fluids

    CERN Document Server

    Fuchs, Martin

    2000-01-01

    Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids.

  13. Ralph Bingham Cloward (1908-2000): Spine Polymath.

    Science.gov (United States)

    Maiti, Tanmoy K; Konar, Subhas K; Bir, Shyamal C; Kalakoti, Piyush; Nanda, Anil

    2016-05-01

    Dr. Ralph Bingham Cloward, an American neurosurgeon, revolutionized the field of modern spine surgery with his lifelong innovative and pioneering contribution. He described the posterior lumbar interbody fusion and anterior cervical discectomy and fusion. He engineered more than 100 instruments, which shared his intellect and wisdom to the neurosurgery and orthopedic fraternity across the globe. He was also the first person to set up a bone bank in the United States. He rightfully deserves the title "Michelangelo of neurosurgery" for his exceptional work. Copyright © 2016. Published by Elsevier Inc.

  14. Modeling the fate and transport of plastic debris in freshwaters

    NARCIS (Netherlands)

    Kooi, Merel; Besseling, Ellen; Kroeze, Carolien; Wenzel, van Annemarie P.; Koelmans, Albert A.

    2018-01-01

    Contamination with plastic debris has been recognized as one of today’s major environmental quality problems. Because most of the sources are land based, concerns are increasingly focused on the freshwater and terrestrial environment. Fate and transport models for plastic debris can complement

  15. Calibration of a Plastic Classification System with the Ccw Model

    International Nuclear Information System (INIS)

    Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Navarrete Marin, J. J.; Oller Gonzalez, J. C.

    2003-01-01

    This document describes the calibration of a plastic Classification system with the Ccw model (Classification by Quantum's built with Wavelet Coefficients). The method is applied to spectra of plastics usually present in domestic wastes. Obtained results are showed. (Author) 16 refs

  16. Homeostatic role of heterosynaptic plasticity: Models and experiments

    Directory of Open Access Journals (Sweden)

    Marina eChistiakova

    2015-07-01

    Full Text Available Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and refinement of connectivity during development in a variety of biological systems. In this review we argue that a complimentary form of plasticity - heterosynaptic plasticity - represents a necessary cellular component for homeostatic regulation of synaptic weights and neuronal activity. The required properties of a homeostatic mechanism which acutely constrains the runaway dynamics imposed by Hebbian associative plasticity have been well-articulated by theoretical and modeling studies. Such mechanism(s should robustly support the stability of operation of neuronal networks and synaptic competition, include changes at non-active synapses, and operate on a similar time scale to Hebbian-type plasticity. The experimentally observed properties of heterosynaptic plasticity have introduced it as a strong candidate to fulfill this homeostatic role. Subsequent modeling studies which incorporate heterosynaptic plasticity into model neurons with Hebbian synapses (utilizing an STDP learning rule have confirmed its ability to robustly provide stability and competition. In contrast, properties of homeostatic synaptic scaling, which is triggered by extreme and long lasting (hours and days changes of neuronal activity, do not fit two crucial requirements for a hypothetical homeostatic mechanism needed to provide stability of operation in the face of on-going synaptic changes driven by Hebbian-type learning rules. Both the trigger and the time scale of homeostatic synaptic scaling are fundamentally different from those of the Hebbian-type plasticity. We conclude that heterosynaptic plasticity, which is triggered by the same episodes of strong postsynaptic activity and operates on the same time scale as Hebbian-type associative plasticity, is ideally suited to serve homeostatic role during on-going synaptic plasticity.

  17. A compact cyclic plasticity model with parameter evolution

    DEFF Research Database (Denmark)

    Krenk, Steen; Tidemann, L.

    2017-01-01

    by the Armstrong–Frederick model, contained as a special case of the present model for a particular choice of the shape parameter. In contrast to previous work, where shaping the stress-strain loops is derived from multiple internal stress states, this effect is here represented by a single parameter......The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...

  18. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2007-01-01

    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...

  19. Modeling of the Migration of Glycerol Monoester Plasticizers in Highly Plasticized Poly(vinyl chloride)

    DEFF Research Database (Denmark)

    Lundsgaard, Rasmus; Kontogeorgis, Georgios; Kristiansen, Jørgen K.

    2009-01-01

    Different migration models were evaluated on the basis of data from migration experiments carried out by Danisco in 2005. The migration experiments were set up to investigate the behavior of the three plasticizers GRINDSTED (R) SOFT-N-SAFE (SNS), GRINDSTED (R) ACETEM 95 CO (Acetem), and epoxidize...

  20. Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study

    Science.gov (United States)

    De Pittà, Maurizio; Brunel, Nicolas

    2016-01-01

    Glutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol. PMID:27195153

  1. John Bingham Roberts and the first American monograph on human brain surgery.

    Science.gov (United States)

    Stone, J L

    2001-10-01

    JOHN BINGHAM ROBERTS (1852-1924) of Philadelphia was an active general surgeon in the latter 19th and early 20th centuries. He made pioneering contributions to a number of areas of surgery. From 1880 until the end of his career, he was one of the few American surgeons to advocate an aggressive exploratory approach to cranial fractures in an effort to avoid consequences such as infection, delayed seizures, and insanity. In his 1885 article in the Transactions of the American Surgical Association titled "The Field and Limitation of the Operative Surgery of the Human Brain," he predicted that with antiseptic precautions and the growing knowledge of cerebral localization, operations on the brain would become commonplace. This work predated that of Horsley, Keen, and many others. Roberts had a continuing interest in head injuries, cranial fractures, and the development of trephines and burrs for reconstructive cranial work, but his active enthusiasm for brain surgery diminished in the 1890s. Nevertheless, Roberts was a very prolific teacher and leader in American surgery who is perhaps best remembered for his monographs and textbooks on general, orthopedic, plastic, and reconstructive surgery.

  2. Gradient Plasticity Model and its Implementation into MARMOT

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.; Sun, Xin

    2013-08-01

    The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.

  3. A multi-surface plasticity model for ductile fracture simulations

    Science.gov (United States)

    Keralavarma, Shyam M.

    2017-06-01

    The growth and coalescence of micro-voids in a material undergoing ductile fracture depends strongly on the loading path. Void growth occurs by diffuse plasticity in the material and is sensitive to the hydrostatic stress, while void coalescence occurs by the localization of plastic deformation in the inter-void ligaments under a combination of normal and shear stresses on the localization plane. In this paper, a micromechanics-based plasticity model is developed for an isotropic porous material, accounting for both diffuse and localized modes of plasticity at the micro-scale. A multi-surface approach is adopted, and two existing plasticity models that separately account for the two modes of yielding, above, are synthesized to propose an effective isotropic yield criterion and associated state evolution equations. The yield criterion is validated by comparison with quasi-exact numerical yield loci computed using a finite elements based limit analysis procedure. It is shown that the new criterion is in better agreement with the numerical loci than the Gurson model, particularly for large values of the porosity for which the loading path dependence of the yield stress is well predicted by the new model. Even at small porosities, it is shown that the new model predicts marginally lower yield stresses under low triaxiality shear dominated loadings compared to the Gurson model, in agreement with the numerical limit analysis data. Predictions for the strains to the onset of coalescence under proportional loading, obtained by numerically integrating the model, indicate that void coalescence tends to occur at relatively small plastic strain and porosity levels under shear dominated loadings. Implications on the prediction of ductility using the new model in fracture simulations are discussed.

  4. A mathematical model of cancer cells with phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    Da Zhou

    2015-12-01

    Full Text Available Purpose: The phenotypic plasticity of cancer cells is recently becoming a cutting-edge research area in cancer, which challenges the cellular hierarchy proposed by the conventional cancer stem cell theory. In this study, we establish a mathematical model for describing the phenotypic plasticity of cancer cells, based on which we try to find some salient features that can characterize the dynamic behavior of the phenotypic plasticity especially in comparison to the hierarchical model of cancer cells. Methods: We model cancer as population dynamics composed of different phenotypes of cancer cells. In this model, not only can cancer cells divide (symmetrically and asymmetrically and die, but they can also convert into other cellular phenotypes. According to the Law of Mass Action, the cellular processes can be captured by a system of ordinary differential equations (ODEs. On one hand, we can analyze the long-term stability of the model by applying qualitative method of ODEs. On the other hand, we are also concerned about the short-term behavior of the model by studying its transient dynamics. Meanwhile, we validate our model to the cell-state dynamics in published experimental data.Results: Our results show that the phenotypic plasticity plays important roles in both stabilizing the distribution of different phenotypic mixture and maintaining the cancer stem cells proportion. In particular, the phenotypic plasticity model shows decided advantages over the hierarchical model in predicting the phenotypic equilibrium and cancer stem cells’ overshoot reported in previous biological experiments in cancer cell lines.Conclusion: Since the validity of the phenotypic plasticity paradigm and the conventional cancer stem cell theory is still debated in experimental biology, it is worthy of theoretically searching for good indicators to distinguish the two models through quantitative methods. According to our study, the phenotypic equilibrium and overshoot

  5. Modeling the drift of plastics in the Adriatic Basin

    Science.gov (United States)

    Liubartseva, Svitlana; Coppini, Giovanni; Lecci, Rita; Creti, Sergio

    2016-04-01

    Recently, plastic pollution at sea has become widely recognized as an acute environmental problem. Distribution of plastics in the marine environment is controlled by (1) locations and time-varying intensity of inputs; (2) the dynamics of the upper mixed layer of the ocean, where the majority of plastics float; and (3) the sinks of plastics. In the present work, we calculate the plastic concentrations at the sea surface and fluxes onto the coastline (2009-2015) that originated from terrestrial and maritime inputs. We construct a Markov chain model based on coupling the MEDSLIK-II model (De Dominicis et al., 2013) with the daily Adriatic Forecasting System (AFS) ocean currents simulations (1/45° horizontal resolution) (Guarneri et al., 2010) and ECMWF surface wind analyses (0.25° horizontal and 6-h temporal resolutions). We assume that the coastline is the main sink of plastics in the Adriatic Sea (Liubartseva et al., 2015). Our calculations have shown that the mean particle half-life in the basin approximately equals 43.7 days, which allows us to define the Adriatic Sea as a highly dissipative system with respect to floating plastics. On long-term time-mean scales, the most polluted sea surface area (more than 10 g/km2 floating plastics) is represented by an elongated band shifted to the Italian coastline and narrowed from northwest to southeast. That corresponds to the spatial distributions of plastic inputs, and indicates a tight connection with patterns of the general Adriatic circulation, including the Western Adriatic Coastal Current and the South Adriatic gyre. On seasonal time-mean scales, we indicate the winter plastics' expansion into the basin's interior, spring trapping in the northern Adriatic, summer cleansing the middle and southern Adriatic and autumn spreading into the southeastern Adriatic. Distinctive coastal "hot spot" is found on the Po Delta coastline that receives a plastic flux of 70 kg/(kmṡday). Complex source-receptor relationships

  6. Synaptic plasticity model of therapeutic sleep deprivation in major depression.

    Science.gov (United States)

    Wolf, Elias; Kuhn, Marion; Normann, Claus; Mainberger, Florian; Maier, Jonathan G; Maywald, Sarah; Bredl, Aliza; Klöppel, Stefan; Biber, Knut; van Calker, Dietrich; Riemann, Dieter; Sterr, Annette; Nissen, Christoph

    2016-12-01

    Therapeutic sleep deprivation (SD) is a rapid acting treatment for major depressive disorder (MDD). Within hours, SD leads to a dramatic decrease in depressive symptoms in 50-60% of patients with MDD. Scientifically, therapeutic SD presents a unique paradigm to study the neurobiology of MDD. Yet, up to now, the neurobiological basis of the antidepressant effect, which is most likely different from today's first-line treatments, is not sufficiently understood. This article puts the idea forward that sleep/wake-dependent shifts in synaptic plasticity, i.e., the neural basis of adaptive network function and behavior, represent a critical mechanism of therapeutic SD in MDD. Particularly, this article centers on two major hypotheses of MDD and sleep, the synaptic plasticity hypothesis of MDD and the synaptic homeostasis hypothesis of sleep-wake regulation, and on how they can be integrated into a novel synaptic plasticity model of therapeutic SD in MDD. As a major component, the model proposes that therapeutic SD, by homeostatically enhancing cortical synaptic strength, shifts the initially deficient inducibility of associative synaptic long-term potentiation (LTP) in patients with MDD in a more favorable window of associative plasticity. Research on the molecular effects of SD in animals and humans, including observations in the neurotrophic, adenosinergic, monoaminergic, and glutamatergic system, provides some support for the hypothesis of associative synaptic plasticity facilitation after therapeutic SD in MDD. The model proposes a novel framework for a mechanism of action of therapeutic SD that can be further tested in humans based on non-invasive indices and in animals based on direct studies of synaptic plasticity. Further determining the mechanisms of action of SD might contribute to the development of novel fast acting treatments for MDD, one of the major health problems worldwide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Numerical rigid plastic modelling of shear capacity of keyed joints

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2015-01-01

    Keyed shear joints are currently designed using simple and conservative design formulas, yet these formulas do not take the local mechanisms in the concrete core of the joint into account. To investigate this phenomenon a rigid, perfectly plastic finite element model of keyed joints is used...

  8. Modelling piloted ignition of wood and plastics

    NARCIS (Netherlands)

    Blijderveen, M. van; Bramer, E.A.; Brem, G.

    2012-01-01

    To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The

  9. Constitutive model of discontinuous plastic flow at cryogenic temperatures

    CERN Document Server

    Skoczen, B; Bielski, J; Marcinek, D

    2010-01-01

    FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. Some of these materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha) and evolution of micro-damage. The constitutive model presented in the paper is focused on the discontinuous plastic flow (serrated yielding) and takes into account the relevant thermodynamic background. The discontinuous plastic flow reflecting the DSA effect is described by the mechanism of local catastrophic failure of Lomer-Cottrell (LC) locks under the stress fields related to the accumulating edge dislocations (below the transition temperature from the screw dislocations to the edge dislocations mode T-1). The failure of LC locks leads to mass...

  10. Modified Critical State Two-Surface Plasticity Model for Sands

    DEFF Research Database (Denmark)

    Sørensen, Kris Wessel; Nielsen, Søren Kjær; Shajarati, Amir

    This article describes the outline of a numerical integration scheme for a critical state two-surface plasticity model for sands. The model is slightly modified by LeBlanc (2008) compared to the original formulation presented by Manzari and Dafalias (1997) and has the ability to correctly model...... the stress-strain response of sands. The model is versatile and can be used to simulate drained and undrained conditions, due to the fact that the model can efficiently calculate change in void ratio as well as pore pressure. The objective of the constitutive model is to investigate if the numerical...

  11. Modelling piloted ignition of wood and plastics.

    Science.gov (United States)

    van Blijderveen, Maarten; Bramer, Eddy A; Brem, Gerrit

    2012-09-01

    To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Plasticine Model: An Useful Surgical Training in Plastic Surgery.

    Science.gov (United States)

    Ji, Chenyang; Li, Ruiting; Liang, Weiqiang; Chen, Yuhong; Zhang, Jinming

    2016-02-01

    To help surgical trainees reach a deep understanding of plastic operations, we developed and evaluated an economical and convenient model using plasticine for plastic surgical training. From Sep of 2012 to Dec of 2014, we invited 57 medical interns to participate in a program designed for the qualitative evaluation of this model. In this program, 57 interns were asked to simulate certain surgical operations under guidance of the experienced staff of our department using the plasticine model. The value of the plasticine model was evaluated through questionnaire surveys. Their acceptance of the plasticine model, as well as the benefits and the flaws, was evaluated by the questionnaire survey. All the participants completed the training session as well as the questionnaire, all of whom felt that the plasticine model had increased their familiarity with the surgical procedure they were assigned. By remodeling plasticine, the trainees understood either the brief surgical procedures or some confusing operative details in plastic surgery. In the questionnaire surveys, the trainees showed considerable consensus with the training program. The flaws of this method were also listed. The flaws generally reflected that "it is difficult to model into a vivid image" and "it is not suitable for all the operation". Overall, the plasticine model is accepted by the participants in this survey. This model is economical and versatile, and could be used as a complementary training tool for novices in simulated operation training of plastic surgery. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  13. A gradient enhanced plasticity-damage microplane model for concrete

    Science.gov (United States)

    Zreid, Imadeddin; Kaliske, Michael

    2018-03-01

    Computational modeling of concrete poses two main types of challenges. The first is the mathematical description of local response for such a heterogeneous material under all stress states, and the second is the stability and efficiency of the numerical implementation in finite element codes. The paper at hand presents a comprehensive approach addressing both issues. Adopting the microplane theory, a combined plasticity-damage model is formulated and regularized by an implicit gradient enhancement. The plasticity part introduces a new microplane smooth 3-surface cap yield function, which provides a stable numerical solution within an implicit finite element algorithm. The damage part utilizes a split, which can describe the transition of loading between tension and compression. Regularization of the model by the implicit gradient approach eliminates the mesh sensitivity and numerical instabilities. Identification methods for model parameters are proposed and several numerical examples of plain and reinforced concrete are carried out for illustration.

  14. Teaching VSEPR: The Plastic Egg Model.

    Science.gov (United States)

    Birk, James P.; Abbassain, Soraya

    1996-01-01

    Describes the construction of a versatile, accessible, and inexpensive model to demonstrate the Valence-Shell Electron-Pair Repulsion Theory (VSEPR). Depicts the different orientation of valence electrons in an atom and the geometry of bonds and lone pairs in molecules. Offers the advantage of easily distinguishing lone pairs from bonds and…

  15. Multi-scale Modeling of Plasticity in Tantalum.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carroll, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boyce, Brad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weinberger, Christopher [Drexel Univ., Philadelphia, PA (United States)

    2015-12-01

    In this report, we present a multi-scale computational model to simulate plastic deformation of tantalum and validating experiments. In atomistic/ dislocation level, dislocation kink- pair theory is used to formulate temperature and strain rate dependent constitutive equations. The kink-pair theory is calibrated to available data from single crystal experiments to produce accurate and convenient constitutive laws. The model is then implemented into a BCC crystal plasticity finite element method (CP-FEM) model to predict temperature and strain rate dependent yield stresses of single and polycrystalline tantalum and compared with existing experimental data from the literature. Furthermore, classical continuum constitutive models describing temperature and strain rate dependent flow behaviors are fit to the yield stresses obtained from the CP-FEM polycrystal predictions. The model is then used to conduct hydro- dynamic simulations of Taylor cylinder impact test and compared with experiments. In order to validate the proposed tantalum CP-FEM model with experiments, we introduce a method for quantitative comparison of CP-FEM models with various experimental techniques. To mitigate the effects of unknown subsurface microstructure, tantalum tensile specimens with a pseudo-two-dimensional grain structure and grain sizes on the order of millimeters are used. A technique combining an electron back scatter diffraction (EBSD) and high resolution digital image correlation (HR-DIC) is used to measure the texture and sub-grain strain fields upon uniaxial tensile loading at various applied strains. Deformed specimens are also analyzed with optical profilometry measurements to obtain out-of- plane strain fields. These high resolution measurements are directly compared with large-scale CP-FEM predictions. This computational method directly links fundamental dislocation physics to plastic deformations in the grain-scale and to the engineering-scale applications. Furthermore, direct

  16. Modelling personality, plasticity and predictability in shelter dogs

    Science.gov (United States)

    2017-01-01

    Behavioural assessments of shelter dogs (Canis lupus familiaris) typically comprise standardized test batteries conducted at one time point, but test batteries have shown inconsistent predictive validity. Longitudinal behavioural assessments offer an alternative. We modelled longitudinal observational data on shelter dog behaviour using the framework of behavioural reaction norms, partitioning variance into personality (i.e. inter-individual differences in behaviour), plasticity (i.e. inter-individual differences in average behaviour) and predictability (i.e. individual differences in residual intra-individual variation). We analysed data on interactions of 3263 dogs (n = 19 281) with unfamiliar people during their first month after arrival at the shelter. Accounting for personality, plasticity (linear and quadratic trends) and predictability improved the predictive accuracy of the analyses compared to models quantifying personality and/or plasticity only. While dogs were, on average, highly sociable with unfamiliar people and sociability increased over days since arrival, group averages were unrepresentative of all dogs and predictions made at the individual level entailed considerable uncertainty. Effects of demographic variables (e.g. age) on personality, plasticity and predictability were observed. Behavioural repeatability was higher one week after arrival compared to arrival day. Our results highlight the value of longitudinal assessments on shelter dogs and identify measures that could improve the predictive validity of behavioural assessments in shelters. PMID:28989764

  17. Toy nanoindentation model and incipient plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Plans, I. [G. Millan Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Laboratoire des Colloides, Verres et Nanomateriaux, UMR 5587, Universite Montpellier II and CNRS, 34095 Montpellier (France)], E-mail: plans@lcvn.univ-montp2.fr; Carpio, A. [Departamento de Matematica Aplicada, Universidad Complutense de Madrid, 28040 Madrid (Spain)], E-mail: carpio@mat.ucm.es; Bonilla, L.L. [G. Millan Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganes (Spain)], E-mail: bonilla@ing.uc3m.es

    2009-11-15

    A toy model of two dimensional nanoindentation in finite crystals is proposed. The crystal is described by periodized discrete elasticity whereas the indenter is a rigid strain field of triangular shape representing a hard knife-like indenter. Analysis of the model shows that there are a number of discontinuities in the load vs penetration depth plot which correspond to the creation of dislocation loops. The stress vs depth bifurcation diagram of the model reveals multistable stationary solutions that appear as the dislocation-free branch of solutions develops turning points for increasing stress. Dynamical simulations show that an increment of the applied load leads to nucleation of dislocation loops below the nanoindenter tip. Such dislocations travel inside the bulk of the crystal and accommodate at a certain depth in the sample. In agreement with experiments, hysteresis is observed if the stress is decreased after the first dislocation loop is created. Critical stress values for loop creation and their final location at equilibrium are calculated.

  18. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2007-01-01

    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides in...... information about crack opening and spacing, which makes it possible to assess the condition of a structure in the serviceability state. A simulation of a four point bending beam is performed to demonstrate the capability of the model....

  19. Plasticity models of material variability based on uncertainty quantification techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Reese E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Rizzi, Francesco [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Boyce, Brad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Templeton, Jeremy Alan [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-11-01

    The advent of fabrication techniques like additive manufacturing has focused attention on the considerable variability of material response due to defects and other micro-structural aspects. This variability motivates the development of an enhanced design methodology that incorporates inherent material variability to provide robust predictions of performance. In this work, we develop plasticity models capable of representing the distribution of mechanical responses observed in experiments using traditional plasticity models of the mean response and recently developed uncertainty quantification (UQ) techniques. Lastly, we demonstrate that the new method provides predictive realizations that are superior to more traditional ones, and how these UQ techniques can be used in model selection and assessing the quality of calibrated physical parameters.

  20. Modeling illumination performance of plastic optical fiber passive daylighting system

    International Nuclear Information System (INIS)

    Sulaiman, F.; Ahmad, A.; Ahmed, A.Z.

    2006-01-01

    One of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings

  1. Nonlinear plasticity model for structural alloys at elevated temperature. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D N

    1978-11-01

    A nonlinear, time-independent plasticity model is presented which incorporates some aspects of both isotropic and kinematic hardening. The model characterizes a material with limited memory, i.e., in the sense that part of the deformation history as recorded in the internal dislocation structure is erased at stress reversals. This feature ensures that the predicted response eventually reaches a limit cycle under cyclic stressing, even in the presence of creep and relaxation. The model is intended as a candidate for replacing the nonlinear model now residing in Sect. 4.3.6 of RDT Standard F9-5T.

  2. Uncertainty propagation in a multiscale model of nanocrystalline plasticity

    International Nuclear Information System (INIS)

    Koslowski, M.; Strachan, Alejandro

    2011-01-01

    We characterize how uncertainties propagate across spatial and temporal scales in a physics-based model of nanocrystalline plasticity of fcc metals. Our model combines molecular dynamics (MD) simulations to characterize atomic-level processes that govern dislocation-based-plastic deformation with a phase field approach to dislocation dynamics (PFDD) that describes how an ensemble of dislocations evolve and interact to determine the mechanical response of the material. We apply this approach to a nanocrystalline Ni specimen of interest in micro-electromechanical (MEMS) switches. Our approach enables us to quantify how internal stresses that result from the fabrication process affect the properties of dislocations (using MD) and how these properties, in turn, affect the yield stress of the metallic membrane (using the PFMM model). Our predictions show that, for a nanocrystalline sample with small grain size (4 nm), a variation in residual stress of 20 MPa (typical in today's microfabrication techniques) would result in a variation on the critical resolved shear yield stress of approximately 15 MPa, a very small fraction of the nominal value of approximately 9 GPa. - Highlights: → Quantify how fabrication uncertainties affect yield stress in a microswitch component. → Propagate uncertainties in a multiscale model of single crystal plasticity. → Molecular dynamics quantifies how fabrication variations affect dislocations. → Dislocation dynamics relate variations in dislocation properties to yield stress.

  3. Modeling cutinase enzyme regulation in polyethylene terepthalate plastic biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Apri, M., E-mail: m.apri@math.itb.ac.id; Silmi, M. [Department of Mathematics, Institut Teknologi Bandung, Jalan Ganeca 10 Bandung, 40132 (Indonesia); Heryanto, T. E.; Moeis, M. R. [School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganeca 10 Bandung, 40132 (Indonesia)

    2016-04-06

    PET (Polyethylene terephthalate) is a plastic material that is commonly used in our daily life. The high production of PET and others plastics that can be up to three hundred million tons per year, is not matched by its degradation rate and hence leads to environmental pollution. To overcome this problem, we develop a biodegradation system. This system utilizes LC Cutinase enzyme produced by engineered escherichia coli bacteria to degrade PET. To make the system works efficaciously, it is important to understand the mechanism underlying its enzyme regulation. Therefore, we construct a mathematical model to describe the regulation of LC Cutinase production. The stability of the model is analyzed. We show that the designated biodegradation system can give an oscillatory behavior that is very important to control the amount of inclusion body (the miss-folded proteins that reduce the efficiency of the biodegradation system).

  4. Modeling cutinase enzyme regulation in polyethylene terepthalate plastic biodegradation

    Science.gov (United States)

    Apri, M.; Silmi, M.; Heryanto, T. E.; Moeis, M. R.

    2016-04-01

    PET (Polyethylene terephthalate) is a plastic material that is commonly used in our daily life. The high production of PET and others plastics that can be up to three hundred million tons per year, is not matched by its degradation rate and hence leads to environmental pollution. To overcome this problem, we develop a biodegradation system. This system utilizes LC Cutinase enzyme produced by engineered escherichia coli bacteria to degrade PET. To make the system works efficaciously, it is important to understand the mechanism underlying its enzyme regulation. Therefore, we construct a mathematical model to describe the regulation of LC Cutinase production. The stability of the model is analyzed. We show that the designated biodegradation system can give an oscillatory behavior that is very important to control the amount of inclusion body (the miss-folded proteins that reduce the efficiency of the biodegradation system).

  5. Modeling cutinase enzyme regulation in polyethylene terepthalate plastic biodegradation

    International Nuclear Information System (INIS)

    Apri, M.; Silmi, M.; Heryanto, T. E.; Moeis, M. R.

    2016-01-01

    PET (Polyethylene terephthalate) is a plastic material that is commonly used in our daily life. The high production of PET and others plastics that can be up to three hundred million tons per year, is not matched by its degradation rate and hence leads to environmental pollution. To overcome this problem, we develop a biodegradation system. This system utilizes LC Cutinase enzyme produced by engineered escherichia coli bacteria to degrade PET. To make the system works efficaciously, it is important to understand the mechanism underlying its enzyme regulation. Therefore, we construct a mathematical model to describe the regulation of LC Cutinase production. The stability of the model is analyzed. We show that the designated biodegradation system can give an oscillatory behavior that is very important to control the amount of inclusion body (the miss-folded proteins that reduce the efficiency of the biodegradation system).

  6. A mathematical model for a pseudo-plastic welding joint

    OpenAIRE

    Iosifescu, Oana; Juntharee, Pongpol; Licht, Christian; Michaille, Gérard

    2009-01-01

    An elementary situation in welding involves the perfect assembly of two adherents and a strong adhesive occupying a thin layer. The bulk energy density of the hyperelastic adherents grows superlinearly while that of the pseudo-plastic adhesive grows linearly with a stiffness of the order of the inverse of its thickness epsilon. We propose a simplified but accurate model by studying the asymptotic behavior, when epsilon goes to zero, through variational convergence methods: at the limit, the i...

  7. Rheological characterization of plasticized corn proteins for fused deposition modeling

    Science.gov (United States)

    Chaunier, Laurent; Dalgalarrondo, Michèle; Della Valle, Guy; Lourdin, Denis; Marion, Didier; Leroy, Eric

    2017-10-01

    Additive Manufacturing (AM) of tailored natural biopolymer-based objects by Fused Deposition Modeling (FDM) opens new perspectives for applications such as biomedical temporary devices, or pharmaceutical tablets. This exploits the biocompatibility, resorbability and edibility properties of biopolymers. When adequately plasticized, zeins, storage proteins from endosperm of maize kernels, displayed thermomechanical properties possibly matching FDM processing requirements at a convenient temperature Tprinting=130°C. Indeed, with 20% glycerol added (Tg=42°C), plasticized zeins present a high modulus, E'>1GPa, at ambient conditions, which drops below 0.6 MPa at the processing temperature T=130°C, before flowing in the molten state. The rheological characterization shows that the processing window is limited by a progressive increase of viscosity linked to proteins aggregation and crosslinking by S-S bonding between cysteine amino acid residues, which can lead to gelation. However, for short residence time typical of FDM, the viscosity of plasticized zeins is comparable to the one of standard polymers, like ABS or PLA in their FDM processing conditions: indeed, in presence of glycerol, the molten zeins show a shear-thinning behavior with |η*|≈3kPa.s at 1s-1, decreasing to |η*|≈0.3kPa.s at 100s-1, at 130°C. Moreover, zeins presenting both hydrophilic and hydrophobic domains, amphiphilic plasticizers can be used supplementary to tune their rheological behavior. With 20% oleic acid added to the previous composition, the viscosity is divided down to a ratio about 1/2 at 100s-1 at 130°C, below the value of a standard polymer as PLA at its printing temperature. These results show the possible enhancement of the printability of zein-based materials in the molten state, by combining polar and amphiphilic plasticizers.

  8. Semantic modeling of plastic deformation of polycrystalline rock

    Science.gov (United States)

    Babaie, Hassan A.; Davarpanah, Armita

    2018-02-01

    We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.

  9. A Modeling Approach for Plastic-Metal Laser Direct Joining

    Science.gov (United States)

    Lutey, Adrian H. A.; Fortunato, Alessandro; Ascari, Alessandro; Romoli, Luca

    2017-09-01

    Laser processing has been identified as a feasible approach to direct joining of metal and plastic components without the need for adhesives or mechanical fasteners. The present work sees development of a modeling approach for conduction and transmission laser direct joining of these materials based on multi-layer optical propagation theory and numerical heat flow simulation. The scope of this methodology is to predict process outcomes based on the calculated joint interface and upper surface temperatures. Three representative cases are considered for model verification, including conduction joining of PBT and aluminum alloy, transmission joining of optically transparent PET and stainless steel, and transmission joining of semi-transparent PA 66 and stainless steel. Conduction direct laser joining experiments are performed on black PBT and 6082 anticorodal aluminum alloy, achieving shear loads of over 2000 N with specimens of 2 mm thickness and 25 mm width. Comparison with simulation results shows that consistently high strength is achieved where the peak interface temperature is above the plastic degradation temperature. Comparison of transmission joining simulations and published experimental results confirms these findings and highlights the influence of plastic layer optical absorption on process feasibility.

  10. Comparison of elastic-viscous-plastic and viscous-plastic dynamics models using a high resolution Arctic sea ice model

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, E.C. [Los Alamos National Lab., NM (United States); Zhang, Y. [Naval Postgraduate School, Monterey, CA (United States)

    1997-12-31

    A nonlinear viscous-plastic (VP) rheology proposed by Hibler (1979) has been demonstrated to be the most suitable of the rheologies commonly used for modeling sea ice dynamics. However, the presence of a huge range of effective viscosities hinders numerical implementations of this model, particularly on high resolution grids or when the ice model is coupled to an ocean or atmosphere model. Hunke and Dukowicz (1997) have modified the VP model by including elastic waves as a numerical regularization in the case of zero strain rate. This modification (EVP) allows an efficient, fully explicit discretization that adapts well to parallel architectures. The authors present a comparison of EVP and VP dynamics model results from two 5-year simulations of Arctic sea ice, obtained with a high resolution sea ice model. The purpose of the comparison is to determine how differently the two dynamics models behave, and to decide whether the elastic-viscous-plastic model is preferable for high resolution climate simulations, considering its high efficiency in parallel computation. Results from the first year of this experiment (1990) are discussed in detail in Hunke and Zhang (1997).

  11. Software for Mathematical Modeling of Plastic Deformation in FCC Metals

    Science.gov (United States)

    Petelin, A. E.; Eliseev, A. S.

    2017-08-01

    The question on the necessity of software implementation in the study of plastic deformation in FCC metals with the use of mathematical modeling methods is investigated. This article describes the implementation features and the possibility of using the software Dislocation Dynamics of Crystallographic Slip (DDCS). The software has an advanced user interface and is designed for users without an extensive experience in IT-technologies. Parameter values of the mathematical model, obtained from field experiments and accumulated in a special database, are used in DDCS to carry out computational experiments. Moreover, the software is capable of accumulating bibliographic information used in research.

  12. Equivalent Viscous Damping for the Elasto-Plastic Hysteretic Model

    Directory of Open Access Journals (Sweden)

    Raul Zaharia

    2005-01-01

    Full Text Available The paper proposes some formulae to determine the equivalent linear parameters for spectral earthquake response of SDOF non-linear systems. The proposed formulae for the equivalent viscous damping and equivalent period are valid for the elasto-plastic hysteretic model and for earthquakes compatible with Eurocode 8 response spectra. This study is part of a research aimed to determine the equivalent linear parameters in order to predict the maximum displacement response for earthquake compatible with given response spectra, for different hysteretic models.

  13. Nonlinear analysis of AS4/PEEK thermoplastic composite laminate using a one parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1990-01-01

    A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  14. River Export of Plastic from Land to Sea: A Global Modeling Approach

    Science.gov (United States)

    Siegfried, Max; Gabbert, Silke; Koelmans, Albert A.; Kroeze, Carolien; Löhr, Ansje; Verburg, Charlotte

    2016-04-01

    Plastic is increasingly considered a serious cause of water pollution. It is a threat to aquatic ecosystems, including rivers, coastal waters and oceans. Rivers transport considerable amounts of plastic from land to sea. The quantity and its main sources, however, are not well known. Assessing the amount of macro- and microplastic transport from river to sea is, therefore, important for understanding the dimension and the patterns of plastic pollution of aquatic ecosystems. In addition, it is crucial for assessing short- and long-term impacts caused by plastic pollution. Here we present a global modelling approach to quantify river export of plastic from land to sea. Our approach accounts for different types of plastic, including both macro- and micro-plastics. Moreover, we distinguish point sources and diffuse sources of plastic in rivers. Our modelling approach is inspired by global nutrient models, which include more than 6000 river basins. In this paper, we will present our modelling approach, as well as first model results for micro-plastic pollution in European rivers. Important sources of micro-plastics include personal care products, laundry, household dust and car tyre wear. We combine information on these sources with information on sewage management, and plastic retention during river transport for the largest European rivers. Our modelling approach may help to better understand and prevent water pollution by plastic , and at the same time serves as 'proof of concept' for future application on global scale.

  15. A thermomechanical crystal plasticity constitutive model for ultrasonic consolidation

    KAUST Repository

    Siddiq, Amir

    2012-01-01

    We present a micromechanics-based thermomechanical constitutive model to simulate the ultrasonic consolidation process. Model parameters are calibrated using an inverse modeling approach. A comparison of the simulated response and experimental results for uniaxial tests validate and verify the appropriateness of the proposed model. Moreover, simulation results of polycrystalline aluminum using the identified crystal plasticity based material parameters are compared qualitatively with the electron back scattering diffraction (EBSD) results reported in the literature. The validated constitutive model is then used to simulate the ultrasonic consolidation process at sub-micron scale where an effort is exerted to quantify the underlying micromechanisms involved during the ultrasonic consolidation process. © 2011 Elsevier B.V. All rights reserved.

  16. Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinnerichs, Terry D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lo, Chi S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

  17. Plasticity induced by phase transformation in steel: experiment vs modeling

    International Nuclear Information System (INIS)

    Tahimi, Abdeladhim

    2011-01-01

    The objectives of this work are: (i) understand the mechanisms and phenomena involved in the plasticity of steels in the presence of a diffusive or martensitic phase transformation. (ii) develop tools for predicting TRIP, which are able to correctly reproduce the macroscopic deformation for cases of complex loading and could also provide information about local elasto-visco-plastic interactions between product and parent phases. To this purpose, new experimental tests are conducted on 35NCD16 steel for austenite to martensite transformation and on 100C6 steel for austenite to pearlite transformation. The elasto viscoplastic properties of austenite and pearlite of the 100C6 steel are characterized through tension compression and relaxation tests. The parameters of macro-homogeneous and crystal-based constitutive laws could then be identified such as to analyse different models with respect to the experimental TRIP: the analytical models of Leblond (1989) and Taleb and Sidoroff (2003) but also, above all, different numerical models which can be distinguished by the prevailing assumptions concerning the local kinetics and the constitutive laws. An extension of the single-grain model dedicated to martensitic transformations developed during the thesis of S. Meftah (2007) is proposed. It consists in introducing the polycrystalline character of the austenite through a process of homogenization based on a self-consistent scheme by calculating the properties of an Equivalent Homogeneous Medium environment (EHM). (author)

  18. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Biner, Suleyman Bulent [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Spencer, Benjamin Whiting [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  19. Simulation of metal cutting using a physically based plasticity model

    International Nuclear Information System (INIS)

    Svoboda, Ales; Lindgren, Lars-Erik; Wedberg, Dan

    2010-01-01

    Metal cutting is one of the most common metal shaping processes. Specified geometrical and surface properties are obtained by break-up of the material removed by the cutting edge into a chip. The chip formation is associated with a large strain, high strain rate and a locally high temperature due to adiabatic heating which make the modelling of cutting processes difficult. This study compares a physically based plasticity model and the Johnson–Cook model. The latter is commonly used for high strain rate applications. Both material models are implemented into the finite element software MSC.Marc and compared with cutting experiments. The deformation behaviour of SANMAC 316L stainless steel during an orthogonal cutting process is studied

  20. Single crystal plasticity by modeling dislocation density rate behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Benjamin L [Los Alamos National Laboratory; Bronkhorst, Curt [Los Alamos National Laboratory; Beyerlein, Irene [Los Alamos National Laboratory; Cerreta, E. K. [Los Alamos National Laboratory; Dennis-Koller, Darcie [Los Alamos National Laboratory

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  1. Discrete shear-transformation-zone plasticity modeling of notched bars

    Science.gov (United States)

    Kondori, Babak; Amine Benzerga, A.; Needleman, Alan

    2018-02-01

    Plane strain tension analyses of un-notched and notched bars are carried out using discrete shear transformation zone plasticity. In this framework, the carriers of plastic deformation are shear transformation zones (STZs) which are modeled as Eshelby inclusions. Superposition is used to represent a boundary value problem solution in terms of discretely modeled Eshelby inclusions, given analytically for an infinite elastic medium, and an image solution that enforces the prescribed boundary conditions. The image problem is a standard linear elastic boundary value problem that is solved by the finite element method. Potential STZ activation sites are randomly distributed in the bars and constitutive relations are specified for their evolution. Results are presented for un-notched bars, for bars with blunt notches and for bars with sharp notches. The computed stress-strain curves are serrated with the magnitude of the associated stress-drops depending on bar size, notch acuity and STZ evolution. Cooperative deformation bands (shear bands) emerge upon straining and, in some cases, high stress levels occur within the bands. Effects of specimen geometry and size on the stress-strain curves are explored. Depending on STZ kinetics, notch strengthening, notch insensitivity or notch weakening are obtained. The analyses provide a rationale for some conflicting findings regarding notch effects on the mechanical response of metallic glasses.

  2. Parameter Identification of Piecewise Linear Plasticity Metal Models Used in Numerical Modeling of Structures Under Plastic Deformation and Failure

    Directory of Open Access Journals (Sweden)

    A. V. Shmeliov

    2016-01-01

    Full Text Available The article describes the models of metallic materials used in the calculation of deformation and destruction of engineering structures. The reliability of material models can adequately assess the strength characteristics of the designs of new technology in its designing and certification.The article deals with contingencies and true mechanical properties of materials and presents equations of their relationship. It notes that in the software systems mechanical characteristics of materials are given in the true sense.The paper considers the linear and exponential models of materials, their characteristics, and methods to implement them. It considers the models of Johnson-Cook Steinberg-Guinan, Zerilli-Armstrong, Cowper-Symonds, Gurson-Tvergaard that take into account the strain rate and temperature of the material. Describes their applications, advantages and disadvantages. Considers single- and multi-parameter criteria of materials fracture, the prospects for their use. Gives a rational justification for using a piecewise linear plasticity material model *MAT_PIECEWISE_LINEAR_PLASTICITY (024, LS-DYNA software package for the engineering industry, and presents its main parameters.A technique to identify parameters of piecewise linear plasticity metal material models has been developed. The technique consists of the stages, based on the equations of transition from the conventional stress and strain values to the true ones. Taking into consideration the stressstrain state in the neck of the sample is a distinctive feature of the technique.Tensile tests of the round material samples have been conducted. To test the developed technique in the software package ANSYS LS-DYNA PC have been made tensile sample modeling and results comparison to show high convergence.Further improvement of the technique can be achieved through the development of a statistical approach to the analysis of the results of a series of tests. This will allow a kind of

  3. Plasticized protein for 3D printing by fused deposition modeling

    Science.gov (United States)

    Chaunier, Laurent; Leroy, Eric; Della Valle, Guy; Lourdin, Denis

    2016-10-01

    The developments of Additive Manufacturing (AM) by Fused Deposition Modeling (FDM) now target new 3D printable materials, leading to novel properties like those given by biopolymers such as proteins: degradability, biocompatibility and edibility. Plasticized materials from zein, a storage protein issued from corn, present interesting thermomechanical and rheological properties, possibly matching with AM-FDM specifications. Thus commercial zein plasticized with 20% glycerol has a glass transition temperature (Tg) at about 42°C, after storage at intermediate relative humidity (RH=59%). Its principal mechanical relaxation at Tα ≈ 50°C leads to a drop of the elastic modulus from about 1.1 GPa, at ambient temperature, to 0.6 MPa at Tα+100°C. These values are in the same range as values obtained in the case of standard polymers for AM-FDM processing, as PLA and ABS, although relaxation mechanisms are likely different in these materials. Such results lead to the setting up of zein-based compositions printable by AM-FDM and allow processing bioresorbable printed parts, with designed 3D geometry and structure.

  4. The Plastic Potential, Double-slip, Double-spin and Viscoplasticity

    Science.gov (United States)

    Harris, David

    2010-05-01

    In this paper we describe two classical models for rate-independent behaviour of granular materials, namely the plastic potential and the double shearing model, emphasising their ill-posedness. We then describe a model, called the doubleslip and double-spin model which generalises the plastic potential model and is closely related to the double shearing model. This new model eliminates the causes of the ill-posedness in the classical models and provides a suitable basis for the analysis of the deformation and flow of granular materials in the rate-independent regime. There has been considerable recent interest in the intermediate regime between densely-packed, rate-independent, quasistatic flow and the rate-dependent dilute gaseous regime. In this intermediate regime the material also exhibits a degree of ratedependence. The natural extension of a rate-independent plasticity model to incorporate rate-dependent material behaviour is by way of viscoplasticity. The archetypal example here is the Bingham material which generalises a von Mises type plasticity model and introduces a viscosity parameter into the model. We propose an extension of the double-slip and double-spin model to incorporate viscosity, thereby extending the range of the model to incorporate rate-dependent behaviour. The new model is then applied to a simplified problem of pipe flow.

  5. Evolutive masing model, cyclic plasticity, ageing and memory effects

    International Nuclear Information System (INIS)

    Sidoroff, F.

    1987-01-01

    Many models are proposed for the mechanical description of the cyclic behaviour of metals and used for structure analysis under cyclic loading. Such a model must include two basic features: Dissipative behaviour on each cycle (hysteresis loop); evolution of this behaviour during the material's life (cyclic hardening or softening, aging,...). However, if both aspects are present in most existing models, the balance between them may be quite different. Many metallurgical investigations have been performed about the microstructure and its evolution during cyclic loading, and it is desirable to introduce these informations in phenomenological models. The evolutive Masing model has been proposed to combine: the accuracy of hereditary models for the description of hysteresis on each cycle, the versatility of internal variables for the state description and evolution, a sufficient microstructural basis to make the interaction easier with microstructural investigations. The purpose of the present work is to discuss this model and to compare different evolution assumptions with respect to some memory effects (cyclic hardening and softening, multilevel tests, aging). Attention is limited to uniaxial, rate independent elasto-plastic behaviour

  6. PRESENT STATUS OF RESEARCH IN DEBRIS FLOW MODELING.

    Science.gov (United States)

    Chen, Cheng-lung

    1985-01-01

    A viable rheological model should consist of both a time-independent part and a time-dependent part. A generalized viscoplastic fluid model that has both parts as well as two major rheological properties (i. e. , the normal stress effect and soil yield criteria) is shown to be sufficiently accurate, yet practical, for general use in debris flow modeling. Other rheological models, such as the Bingham plastic fluid model and the so-called Coulomb-viscous model, are compared in terms of the generalized viscoplastic fluid model.

  7. Model of Nanostructuring Burnishing by a Spherical Indenter Taking into Consideration Plastic Deformations

    Science.gov (United States)

    Lyashenko, Ya. A.; Popov, V. L.

    2018-01-01

    A dynamic model of the nanostructuring burnishing of a surface of metallic details taking into consideration plastic deformations has been suggested. To describe the plasticity, the ideology of dimension reduction method supplemented with the plasticity criterion is used. The model considers the action of the normal burnishing force and the tangential friction force. The effect of the coefficient of friction and the periodical oscillation of the burnishing force on the burnishing kinetics are investigated.

  8. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-31

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  9. Plastic Super Models: aesthetics, architecture and the model of emergence

    Directory of Open Access Journals (Sweden)

    Pia Ednie-Brown

    2008-01-01

    Full Text Available Modelling is at the core of what architects do, rendering the discipline especially fragile and sensitive to shifts in the nature of models and modelling. A digitally-based, explorative architectural milieu has been actively modelling in tune with a socio-cultural paradigm related to the concept of emergence, presenting numerous challenges to a range of assumptions about the activity of architectural design. This paper explores how this milieu has acted to unsettle the cool containments of architectural composure by bringing affective activity emphatically to the foreground.

  10. Distribution and Modeled Transport of Plastic Pollution in the Great Lakes, the World's Largest Freshwater Resource

    Directory of Open Access Journals (Sweden)

    Rachel N. Cable

    2017-07-01

    Full Text Available Most plastic pollution originates on land. As such, freshwater bodies serve as conduits for the transport of plastic litter to the ocean. Understanding the concentrations and fluxes of plastic litter in freshwater ecosystems is critical to our understanding of the global plastic litter budget and underpins the success of future management strategies. We conducted a replicated field survey of surface plastic concentrations in four lakes in the North American Great Lakes system, the largest contiguous freshwater system on the planet. We then modeled plastic transport to resolve spatial and temporal variability of plastic distribution in one of the Great Lakes, Lake Erie. Triplicate surface samples were collected at 38 stations in mid-summer of 2014. Plastic particles >106 μm in size were quantified. Concentrations were highest near populated urban areas and their water infrastructure. In the highest concentration trawl, nearly 2 million fragments km−2 were found in the Detroit River—dwarfing previous reports of Great Lakes plastic abundances by over 4-fold. Yet, the accuracy of single trawl counts was challenged: within-station plastic abundances varied 0- to 3-fold between replicate trawls. In the smallest size class (106–1,000 μm, false positive rates of 12–24% were determined analytically for plastic vs. non-plastic, while false negative rates averaged ~18%. Though predicted to form in summer by the existing Lake Erie circulation model, our transport model did not predict a permanent surface “Lake Erie Garbage Patch” in its central basin—a trend supported by field survey data. Rather, general eastward transport with recirculation in the major basins was predicted. Further, modeled plastic residence times were drastically influenced by plastic buoyancy. Neutrally buoyant plastics—those with the same density as the ambient water—were flushed several times slower than plastics floating at the water's surface and exceeded the

  11. The prediction of differential hardening behaviour of steels by multi-scale crystal plasticity modelling

    NARCIS (Netherlands)

    Eyckens, P.; Mulder, J.; Gawad, J.; Vegter, H.; Roose, D.; van den Boogaard, Antonius H.; Van Bael, A.; Van Houtte, P.

    2015-01-01

    An essential aspect of materials modelling in the field of metal plasticity is hardening. The classical assumption of isotropic hardening in metal plasticity models is often too simplified to describe actual material behaviour. This paper focuses on the non-isotropic hardening termed differential

  12. Simulated small-angle scattering patterns for a plastically deformed model composite material

    NARCIS (Netherlands)

    Shenoy, V.B.; Cleveringa, H.H.M.; Phillips, R.; Giessen, E. van der; Needleman, A.

    2000-01-01

    The small-angle scattering patterns predicted by discrete dislocation plasticity versus local and non-local continuum plasticity theory are compared in a model problem. The problem considered is a two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to

  13. Can plasticity make spatial structure irrelevant in individual-tree models?

    Directory of Open Access Journals (Sweden)

    Oscar García

    2014-08-01

    Full Text Available Background Distance-dependent individual-tree models have commonly been found to add little predictive power to that of distance-independent ones. One possible reason is plasticity, the ability of trees to lean and to alter crown and root development to better occupy available growing space. Being able to redeploy foliage (and roots into canopy gaps and less contested areas can diminish the importance of stem ground locations. Methods Plasticity was simulated for 3 intensively measured forest stands, to see to what extent and under what conditions the allocation of resources (e.g., light to the individual trees depended on their ground coordinates. The data came from 50 × 60 m stem-mapped plots in natural monospecific stands of jack pine, trembling aspen and black spruce from central Canada. Explicit perfect-plasticity equations were derived for tessellation-type models. Results Qualitatively similar simulation results were obtained under a variety of modelling assumptions. The effects of plasticity varied somewhat with stand uniformity and with assumed plasticity limits and other factors. Stand-level implications for canopy depth, distribution modelling and total productivity were examined. Conclusions Generally, under what seem like conservative maximum plasticity constraints, spatial structure accounted for less than 10% of the variance in resource allocation. The perfect-plasticity equations approximated well the simulation results from tessellation models, but not those from models with less extreme competition asymmetry. Whole-stand perfect plasticity approximations seem an attractive alternative to individual-tree models.

  14. Physics-Based Crystal Plasticity Modeling of Single Crystal Niobium

    Science.gov (United States)

    Maiti, Tias

    Crystal plasticity models based on thermally activated dislocation kinetics has been successful in predicting the deformation behavior of crystalline materials, particularly in face-centered cubic (fcc) metals. In body-centered cubic (bcc) metals success has been limited owing to ill-defined slip planes. The flow stress of a bcc metal is strongly dependent on temperature and orientation due to the non-planar splitting of a/2 screw dislocations. As a consequence of this, bcc metals show two unique deformation characteristics: (a) thermally-activated glide of screw dislocations--the motion of screw components with their non-planar core structure at the atomistic level occurs even at low stress through the nucleation (assisted by thermal activation) and lateral propagation of dislocation kink pairs; (b) break-down of the Schmid Law, where dislocation slip is driven only by the resolved shear stress. Since the split dislocation core has to constrict for a kink pair formation (and propagation), the non-planarity of bcc screw dislocation cores entails an influence of (shear) stress components acting on planes other than the primary glide plane on their mobility. Another consequence of the asymmetric core splitting on the glide plane is a direction-sensitive slip resistance, which is termed twinning/atwinning sense of shear and should be taken into account when developing constitutive models. Modeling thermally-activated flow including the above-mentioned non-Schmid effects in bcc metals has been the subject of much work, starting in the 1980s and gaining increased interest in recent times. The majority of these works focus on single crystal deformation of commonly used metals such as Iron (Fe), Molybdenum (Mo), and Tungsten (W), while very few published studies address deformation behavior in Niobium (Nb). Most of the work on Nb revolves around fitting parameters of phenomenological descriptions, which do not capture adequately the macroscopic multi-stage hardening

  15. Computational Modelling of Fracture Propagation in Rocks Using a Coupled Elastic-Plasticity-Damage Model

    Directory of Open Access Journals (Sweden)

    Isa Kolo

    2016-01-01

    Full Text Available A coupled elastic-plasticity-damage constitutive model, AK Model, is applied to predict fracture propagation in rocks. The quasi-brittle material model captures anisotropic effects and the distinct behavior of rocks in tension and compression. Calibration of the constitutive model is realized using experimental data for Carrara marble. Through the Weibull distribution function, heterogeneity effect is captured by spatially varying the elastic properties of the rock. Favorable comparison between model predictions and experiments for single-flawed specimens reveal that the AK Model is reliable and accurate for modelling fracture propagation in rocks.

  16. Application of a free parameter model to plastic scintillation samples

    Energy Technology Data Exchange (ETDEWEB)

    Tarancon Sanz, Alex, E-mail: alex.tarancon@ub.edu [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Kossert, Karsten, E-mail: Karsten.Kossert@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)

    2011-08-21

    In liquid scintillation (LS) counting, the CIEMAT/NIST efficiency tracing method and the triple-to-double coincidence ratio (TDCR) method have proved their worth for reliable activity measurements of a number of radionuclides. In this paper, an extended approach to apply a free-parameter model to samples containing a mixture of solid plastic scintillation microspheres and radioactive aqueous solutions is presented. Several beta-emitting radionuclides were measured in a TDCR system at PTB. For the application of the free parameter model, the energy loss in the aqueous phase must be taken into account, since this portion of the particle energy does not contribute to the creation of scintillation light. The energy deposit in the aqueous phase is determined by means of Monte Carlo calculations applying the PENELOPE software package. To this end, great efforts were made to model the geometry of the samples. Finally, a new geometry parameter was defined, which was determined by means of a tracer radionuclide with known activity. This makes the analysis of experimental TDCR data of other radionuclides possible. The deviations between the determined activity concentrations and reference values were found to be lower than 3%. The outcome of this research work is also important for a better understanding of liquid scintillation counting. In particular the influence of (inverse) micelles, i.e. the aqueous spaces embedded in the organic scintillation cocktail, can be investigated. The new approach makes clear that it is important to take the energy loss in the aqueous phase into account. In particular for radionuclides emitting low-energy electrons (e.g. M-Auger electrons from {sup 125}I), this effect can be very important.

  17. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    Science.gov (United States)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2011-01-01

    Methodologies for understanding the plastic deformation mechanisms related 10 crack propagation at the nano, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  18. A Modified Critical State Two-surface Plasticity Model for Sand

    DEFF Research Database (Denmark)

    Bakmar, Christian LeBlanc; Hededal, O.; Ibsen, Lars Bo

    This paper provides background information and documentation for the implementation of a robust plasticity model as a user-subroutine in the commercial finite difference code, FLAC3D by Itasca. The plasticity model presented is equal to the 3 dimensional critical state two-surface plasticity model...... for sands by Manzari et al., but uses a modified multi-axial surface formulation based on a versatile shape function prescribing a family of smooth and convex contours in the π-plane. The model is formulated within the framework of critical state soil mechanics and is capable of accurately simulating...

  19. Modeling of plastic localization in aluminum and Al–Cu alloys under shock loading

    International Nuclear Information System (INIS)

    Krasnikov, V.S.; Mayer, A.E.

    2014-01-01

    This paper focuses on the modeling of plastic deformation localization in pure aluminum and aluminum–copper alloys during the propagation of a plane shock wave. Modeling is carried out with the use of continual dislocation plasticity model in 2-D geometry. It is shown that the formation of localization bands occurs at an angle of 45° to the direction of propagation of the shock front. Effective initiators for plastic localization in pure aluminum are the perturbations of the initial dislocation density, in the alloys – perturbations of the dislocation density and the concentration of copper atoms. Perturbations of temperature field in a range of tens of kelvins are not so effective for plastic localization. In the alloy plastic localization intensity decreases with an increase of strain rate due to the thermally activated nature of the dislocation motion

  20. Magmatic controls on the genesis of porphyry Cu-Mo-Au deposits: The Bingham Canyon example

    Science.gov (United States)

    Grondahl, Carter; Zajacz, Zoltán

    2017-12-01

    Bingham Canyon is one of the world's largest porphyry Cu-Mo-Au deposits and was previously used as an example to emphasize the role of magma mixing and magmatic sulphide saturation in the enhancement of ore fertility of magmatic systems. We analyzed whole rocks, minerals, and silicate melt inclusions (SMI) from the co-genetic, ore-contemporaneous volcanic package (∼38 Ma). As opposed to previous propositions, whole-rock trace element signatures preclude shoshonite-latite genesis via mixing of melanephelinite and trachyte or rhyolite, whereas core to rim compositional profiles of large clinopyroxene phenocrysts suggests the amalgamation of the ore-related magma reservoir by episodic recharge of shoshonitic to latitic magmas with various degrees of differentiation. Major and trace element and Sr and Nd isotopic signatures indicate that the ore-related shoshonite-latite series were generated by low-degree partial melting of an ancient metasomatized mantle source yielding volatile and ore metal rich magmas. Latite and SMI compositions can be reproduced by MELTS modeling assuming 2-step lower and upper crustal fractionation of a primary shoshonite with minimal country rock assimilation. High oxygen fugacities (≈ NNO + 1) are prevalent as evidenced by olivine-spinel oxybarometry, high SO3 in apatite, and anhydrite saturation. The magma could therefore carry significantly more S than would have been possible at more reducing conditions, and the extent of ore metal sequestration by magmatic sulphide saturation was minimal. The SMI data show that the latites were Cu rich, with Cu concentrations in the silicate melt reaching up to 300-400 ppm at about 60 wt% SiO2. The Au and Ag concentrations are also high (1.5-4 and 50-200 ppb, respectively), but show less variation with SiO2. A sudden drop in Cu and S concentrations in the silicate melt at around 65 wt% SiO2 in the presence of high Cl, Mo, Ag, and Au shows that the onset of effective metal extraction by fluid

  1. Modeling the fate and transport of plastic debris in fresh waters. Review and guidance

    NARCIS (Netherlands)

    Kooi, M.; Besseling, E.; Kroeze, C.; Wenzel, van A.P.; Koelmans, A.A.

    2018-01-01

    Contamination with plastic debris has been recognized as one of today’s major environmental quality problems. Because most of the sources are land based, concerns are increasingly focused on the freshwater and terrestrial environment. Fate and transport models for plastic debris can complement

  2. Mathematical Modeling of the Consumption of Low Invasive Plastic Surgery Practices: The Case of Spain

    Directory of Open Access Journals (Sweden)

    E. De la Poza

    2013-01-01

    Full Text Available Plastic surgery practice grows continuously among the women in Western countries due to their body image dissatisfaction, aging anxiety, and an ideal body image propagated by the media. The consumption growth is so important that plastic surgery is becoming a normal practice among women, like any other cosmetic product, with the risk of suffering psychopathology disorders in the sense that plastic surgery could be employed as an instrument to recover personal self-esteem or even happiness. Plastic surgery practice depends on economic, demographic, and social contagion factors. In this paper, a mathematical epidemiological model to forecast female plastic surgery consumption in Spain is fully constructed. Overconsumer subpopulation is predicted and simulated. Robustness of the model versus uncertain parameters is studied throughout a sensitivity analysis.

  3. Finite Element Modelling of Elastic-Plastic Contact of Rough Surfaces

    OpenAIRE

    Abdo, Jamil; Haneef, Danish; Al-Shabibi, Abdullah

    2010-01-01

    The contact area and contact load of an elastic-plastic micro-contact was calculated. The ultimate stress asperity is embedded at a critical depth within the actual surface asperities. The finite element solution is used to define the limit at which failure is to occur. The present model is more accurate than the previous models since it accounts for the net elasticplastic by subtracting the plastic portion that reached the ultimate-stress asperity limit. Comparisons of the present model with...

  4. Recommendations for rheological testing and modelling of DWPF melter feed slurries

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1994-08-01

    The melter feed in the DWPF process is a non-Newtonian slurry. In the melter feed system and the sampling system, this slurry is pumped at a wide range of flow rates through pipes of various diameters. Both laminar and turbulent flows are encountered. Good rheology models of the melter feed slurries are necessary for useful hydraulic models of the melter feed and sampling systems. A concentric cylinder viscometer is presently used to characterize the stress/strain rate behavior of the melter feed slurries, and provide the data for developing rheology models of the fluids. The slurries exhibit yield stresses, and they are therefore modelled as Bingham plastics. The ranges of strain rates covered by the viscometer tests fall far short of the entire laminar flow range, and therefore hydraulic modelling applications of the present rheology models frequently require considerable extrapolation beyond the range of the data base. Since the rheology models are empirical, this cannot be done with confidence in the validity of the results. Axial pressure drop versus flow rate measurements in a straight pipe can easily fill in the rest of the laminar flow range with stress/strain rate data. The two types of viscometer tests would be complementary, with the concentric cylinder viscometer providing accurate data at low strain rates, near the yield point if one exists, and pipe flow tests providing data at high strain rates up to and including the transition to turbulence. With data that covers the laminar flow range, useful rheological models can be developed. In the Bingham plastic model, linear behavior of the shear stress as a function of the strain rate is assumed once the yield stress is exceeded. Both shear thinning and shear thickening behavior have been observed in viscometer tests. Bingham plastic models cannot handle this non-linear behavior, but a slightly more complicated yield/power law model can

  5. Proposed plan for the K-Area Bingham Pump Outage Pit (643-1G)

    International Nuclear Information System (INIS)

    Palmer, E.

    1997-06-01

    This Proposed Plan is issued by the U.S. Department of Energy (DOE), which functions as the lead agency for SRS remedial activities, and with concurrence by the U.S. Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC). The purpose of this Proposed Plan is to describe the preferred remedial alternative for addressing the K-Area Bingham Pump Outage Pit (643-1G) (K BPOP) located at the Savannah River Site (SRS) in Aiken, South Carolina and to solicit public comments on the preferred alternative

  6. Different models of training and certification in plastic surgery

    NARCIS (Netherlands)

    Fodor, L.; Ciuce, C.; Fodor, M.; Shrank, C.; Lapid, O.; Kon, M.; Ramon, Y.; Ullmann, Y.

    2009-01-01

    A varying period of training followed by examinations is the usual way to become a specialist in one of the many fields of Medicine. Plastic Surgery is one of the surgical fields that require good technical and cognitive skills. The best way to train and evaluate a candidate is hard to judge. The

  7. Modern plastic solar cells : materials, mechanisms and modeling

    NARCIS (Netherlands)

    Chiechi, Ryan C.; Havenith, Remco W.A.; Hummelen, Jan C.; Koster, L. Jan Anton; Loi, Maria A.

    2013-01-01

    We provide a short review of modern 'plastic' solar cells, a broad topic that spans materials science, physics, and chemistry. The aim of this review is to provide a primer for non-experts or researchers in related fields who are curious about this rapidly growing field of interdisciplinary

  8. Low-Volatility Model Demonstrates Humidity Affects Environmental Toxin Deposition on Plastics at a Molecular Level.

    Science.gov (United States)

    Hankett, Jeanne M; Collin, William R; Yang, Pei; Chen, Zhan; Duhaime, Melissa

    2016-02-02

    Despite the ever-increasing prevalence of plastic debris and endocrine disrupting toxins in aquatic ecosystems, few studies describe their interactions in freshwater environments. We present a model system to investigate the deposition/desorption behaviors of low-volatility lake ecosystem toxins on microplastics in situ and in real time. Molecular interactions of gas-phase nonylphenols (NPs) with the surfaces of two common plastics, poly(styrene) and poly(ethylene terephthalate), were studied using quartz crystal microbalance and sum frequency generation vibrational spectroscopy. NP point sources were generated under two model environments: plastic on land and plastic on a freshwater surface. We found the headspace above calm water provides an excellent environment for NP deposition and demonstrate significant NP deposition on plastic within minutes at relevant concentrations. Further, NP deposits and orders differently on both plastics under humid versus dry environments. We attributed the unique deposition behaviors to surface energy changes from increased water content during the humid deposition. Lastly, nanograms of NP remained on microplastic surfaces hours after initial NP introduction and agitating conditions, illustrating feasibility for plastic-bound NPs to interact with biota and surrounding matter. Our model studies reveal important interactions between low-volatility environmental toxins and microplastics and hold potential to correlate the environmental fate of endocrine disrupting toxins in the Great Lakes with molecular behaviors.

  9. Theta-specific susceptibility in a model of adaptive synaptic plasticity.

    Science.gov (United States)

    Albers, Christian; Schmiedt, Joscha T; Pawelzik, Klaus R

    2013-01-01

    Learning and memory formation are processes which are still not fully understood. It is widely believed that synaptic plasticity is the most important neural substrate for both. However, it has been observed that large-scale theta band oscillations in the mammalian brain are beneficial for learning, and it is not clear if and how this is linked to synaptic plasticity. Also, the underlying dynamics of synaptic plasticity itself have not been completely uncovered yet, especially for non-linear interactions between multiple spikes. Here, we present a new and simple dynamical model of synaptic plasticity. It incorporates novel contributions to synaptic plasticity including adaptation processes. We test its ability to reproduce non-linear effects on four different data sets of complex spike patterns, and show that the model can be tuned to reproduce the observed synaptic changes in great detail. When subjected to periodically varying firing rates, already linear pair based spike timing dependent plasticity (STDP) predicts a specific susceptibility of synaptic plasticity to pre- and postsynaptic firing rate oscillations in the theta-band. Our model retains this band-pass property, while for high firing rates in the non-linear regime it modifies the specific phase relation required for depression and potentiation. For realistic parameters, maximal synaptic potentiation occurs when the postsynaptic is trailing the presynaptic activity slightly. Anti-phase oscillations tend to depress it. Our results are well in line with experimental findings, providing a straightforward and mechanistic explanation for the importance of theta oscillations for learning.

  10. Micromechanical modeling of damage in periodic composites using strain gradient plasticity

    DEFF Research Database (Denmark)

    Azizi, Reza

    2012-01-01

    model for the fiber–matrix interface. For the micro structure, free energy holds both elastic strains and plastic strain gradients. Due to the gradient theory, higher order boundary conditions must be considered. A unit cell with a circular elastic fiber is studied by the numerical finite element cell......Damage evolution at the fiber matrix interface in Metal Matrix Composites (MMCs) is studied using strain gradient theory of plasticity. The study includes the rate independent formulation of energetic strain gradient plasticity for the matrix, purely elastic model for the fiber and cohesive zone...... model under simple shear and transverse uniaxial tension using plane strain and periodic boundary conditions. The result of the overall response curve, effective plastic strain, effective stress and higher order stress distributions are shown. The effect of the material length scale, maximum stress...

  11. A 3D elasto-plastic soil model for lateral buckling analysis

    DEFF Research Database (Denmark)

    Hededal, Ole; Strandgaard, Torsten

    2008-01-01

    Modeling the lay-down of pipelines and subsequently the in- service conditions for a pipeline involves definition of a pipe-soil interaction model. A generalized true 3D elasto-plastic spring element based on an anisotropic hardening/degradation model for sliding is presented. The basis for the m......Modeling the lay-down of pipelines and subsequently the in- service conditions for a pipeline involves definition of a pipe-soil interaction model. A generalized true 3D elasto-plastic spring element based on an anisotropic hardening/degradation model for sliding is presented. The basis...

  12. Comparison of different plasticity criteria for trabecular bone failure modelling

    Czech Academy of Sciences Publication Activity Database

    Jiroušek, Ondřej

    2008-01-01

    Roč. 8, č. 1 (2008), s. 10177-10178 ISSN 1617-7061. [Annual Meeting of International Association of Applied Mathematics and Mechanics. Bremen, 31.03.2008-04.04.2008] R&D Projects: GA ČR(CZ) GA103/05/1020 Institutional research plan: CEZ:AV0Z20710524 Keywords : nanoindentation * plasticity criteria * trabecular bone Subject RIV: FI - Traumatology, Orthopedics

  13. 3D Discrete Dislocation Modelling of High Temperature Plasticity

    Czech Academy of Sciences Publication Activity Database

    Záležák, Tomáš; Dlouhý, Antonín

    2011-01-01

    Roč. 465, - (2011), s. 115-118 ISSN 1013-9826. [MSMF /6./ Materials Structure and Micromechanics of Fracture. Brno, 28.06.2010-30.06.2010] R&D Projects: GA MŠk OC 162 Institutional research plan: CEZ:AV0Z20410507 Keywords : discrete dislocation dynamics * high temperature deformation * meso-scale simulations of plasticity * diffusion Subject RIV: BE - Theoretical Physics

  14. Mathematical model of a current of two plastic environments in the forming channel extruders at coextrusion

    Directory of Open Access Journals (Sweden)

    V. N. Vasilenko

    2012-01-01

    Full Text Available On the basis of the classical equations of an isothermal pressure head current of two rheology the various not mixing up viscou- plastic environments in the cylindrical channel, Ostvald-de-Vil submitting to the law, the model of a current of two viscous-plastic environments in the moulding channel extruder is synthesised at co-extrusion on which basis the technique of a choice of diameter of a dosing out branch pipe on the demanded value of the ratio of volume expenditures of two viscous-plastic environments (extrudat and stuffings is offered.

  15. Crystal Plasticity Modeling of Microstructure Evolution and Mechanical Fields During Processing of Metals Using Spectral Databases

    Science.gov (United States)

    Knezevic, Marko; Kalidindi, Surya R.

    2017-05-01

    This article reviews the advances made in the development and implementation of a novel approach to speeding up crystal plasticity simulations of metal processing by one to three orders of magnitude when compared with the conventional approaches, depending on the specific details of implementation. This is mainly accomplished through the use of spectral crystal plasticity (SCP) databases grounded in the compact representation of the functions central to crystal plasticity computations. A key benefit of the databases is that they allow for a noniterative retrieval of constitutive solutions for any arbitrary plastic stretching tensor (i.e., deformation mode) imposed on a crystal of arbitrary orientation. The article emphasizes the latest developments in terms of embedding SCP databases within implicit finite elements. To illustrate the potential of these novel implementations, the results from several process modeling applications including equichannel angular extrusion and rolling are presented and compared with experimental measurements and predictions from other models.

  16. Study of Wood Plastic Composites elastic behaviour using full field measurements

    Directory of Open Access Journals (Sweden)

    Graciaa A.

    2010-06-01

    Full Text Available In this study, the mechanical properties and microstructure of HDPE/wood fibre composites are investigated. The four-point bending and tensile behaviour of Wood Plastic Composite (WPC with or without additive are studied by using full-field strain measurements by 3-D Digital Image Correlation (3-D DIC. A non-linear behaviour is shown. The modulus of elasticity (MOE is calculated as the tangent at zero strain of a Maxwell-Bingham model fitted onto experimental data. Four-point bending tests are analyzed thanks to the spatial standard deviation of the longitudinal strain field to determine the degree of heterogeneity. Cyclic tensile tests have been performed in order to analyze the damage of the material. Moreover, Scanning Electron Microscope (SEM is used to characterize the morphology of the wood fibre/HDPE matrix interface for specimens with maleic anhydride modified polyethylene additive (MAPE.

  17. Study of Wood Plastic Composites elastic behaviour using full field measurements

    Science.gov (United States)

    Ben Mbarek, T.; Robert, L.; Hugot, F.; Orteu, J. J.; Sammouda, H.; Graciaa, A.; Charrier, B.

    2010-06-01

    In this study, the mechanical properties and microstructure of HDPE/wood fibre composites are investigated. The four-point bending and tensile behaviour of Wood Plastic Composite (WPC) with or without additive are studied by using full-field strain measurements by 3-D Digital Image Correlation (3-D DIC). A non-linear behaviour is shown. The modulus of elasticity (MOE) is calculated as the tangent at zero strain of a Maxwell-Bingham model fitted onto experimental data. Four-point bending tests are analyzed thanks to the spatial standard deviation of the longitudinal strain field to determine the degree of heterogeneity. Cyclic tensile tests have been performed in order to analyze the damage of the material. Moreover, Scanning Electron Microscope (SEM) is used to characterize the morphology of the wood fibre/HDPE matrix interface for specimens with maleic anhydride modified polyethylene additive (MAPE).

  18. Modeling the process of compaction of plastic grains

    Directory of Open Access Journals (Sweden)

    A. Patejuk

    2008-03-01

    Full Text Available Thc aniclc prcscnts an experimental analysis of thc cffcct or plastic grain size on the deformation of the presscd moulding during thepmcess of punch thrust in a closcd containcr. Thc cffcct of configuration and grain diameter on !he flow of rorccs in rhc process ofmolding format ion in the scmi-liquid statc. Test werc performod by using specially prepared plasticine-based mdcl marcrial. Thc obtain4test resuIts arc technological guidelines Tor manufacturing products Tmm powdcrs of the requircd grain sizc

  19. Response of explosive HMX to low-velocity impact: modeling by the crystal plasticity finite element method

    Science.gov (United States)

    Ilnitsky, Denis; Inogamov, Nail; Zhakhovsky, Vasily

    2017-12-01

    Crystal plasticity finite element method (CPFEM) is a powerful tool for modeling the various deformation problems, which takes into account the different plasticity mechanisms at microscale of grain sizes and contribution of anisotropic behavior of each grain to macroscopic deformation pattern. Using this method we simulated deformation and plasticity of high explosive HMX produced by relatively low velocity impact. It was found that such plastic deformations of grains cause local heating which is sufficient to induce chemical reactions.

  20. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    Science.gov (United States)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  1. A discrimination model in waste plastics sorting using NIR hyperspectral imaging system.

    Science.gov (United States)

    Zheng, Yan; Bai, Jiarui; Xu, Jingna; Li, Xiayang; Zhang, Yimin

    2018-02-01

    Classification of plastics is important in the recycling industry. A plastic identification model in the near infrared spectroscopy wavelength range 1000-2500 nm is proposed for the characterization and sorting of waste plastics using acrylonitrile butadiene styrene (ABS), polystyrene (PS), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The model is built by the feature wavelengths of standard samples applying the principle component analysis (PCA), and the accuracy, property and cross-validation of the model were analyzed. The model just contains a simple equation, center of mass coordinates, and radial distance, with which it is easy to develop classification and sorting software. A hyperspectral imaging system (HIS) with the identification model verified its practical application by using the unknown plastics. Results showed that the identification accuracy of unknown samples is 100%. All results suggested that the discrimination model was potential to an on-line characterization and sorting platform of waste plastics based on HIS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A fast-simplified wheel-rail contact model consistent with perfect plastic materials

    Science.gov (United States)

    Sebès, Michel; Chevalier, Luc; Ayasse, Jean-Bernard; Chollet, Hugues

    2012-09-01

    A method is described which is an extension of rolling contact models with respect to plasticity. This new method, which is an extension of the STRIPES semi-Hertzian (SH) model, has been implemented in a multi-body-system (MBS) package and does not result in a longer execution time than the STRIPES SH model [J.B. Ayasse and H. Chollet, Determination of the wheel-rail contact patch in semi-Hertzian conditions, Veh. Syst. Dyn. 43(3) (2005), pp. 161-172]. High speed of computation is obtained by some hypotheses about the plastic law, the shape of stresses, the locus of the maximum stress and the slip. Plasticity does not change the vehicle behaviour but there is a need for an extension of rolling contact models with respect to plasticity as far as fatigue analysis of rail is concerned: rolling contact fatigue may be addressed via the finite element method (FEM) including material non-linearities, where loads are the contact stresses provided by the post-processing of MBS results [K. Dang Van, M.H. Maitournam, Z. Moumni, and F. Roger, A comprehensive approach for modeling fatigue and fracture of rails, Eng. Fract. Mech. 76 (2009), pp. 2626-2636]. In STRIPES, like in other MBS models, contact stresses may exceed the plastic yield criterion, leading to wrong results in the subsequent FEM analysis. With the proposed method, contact stresses are kept consistent with a perfect plastic law, avoiding these problems. The method is benchmarked versus non-linear FEM in Hertzian geometries. As a consequence of taking plasticity into account, contact patch area is bigger than the elastic one. In accordance with FEM results, a different ellipse aspect ratio than the one predicted by Hertz theory was also found and finally pressure does not exceed the threshold prescribed by the plastic law. The method also provides more exact results with non-Hertzian geometries. The new approach is finally compared with non-linear FEM in a tangent case with a unidirectional load and a complete

  3. Micro-thermomechanical constitutive model of transformation induced plasticity and its application on armour steel

    International Nuclear Information System (INIS)

    Sun, C.Y.; Fang, G.; Lei, L.P.; Zeng, P.

    2009-01-01

    Based on the crystallographic theory of martensitic transformation and internal variable constitutive theory, a micromechanical constitutive model of martensitic transformation induced plasticity was developed. Plastic strains of product and parent phases as well as the volume fraction of each martensitic variant were considered as internal variables describing the microstructure evolution. The plasticity flow both in austenite and martensitic variants domain is described by J 2 flow theory. The thermodynamic driving force acting on these internal variables was obtained through the determination of the intrinsic dissipation due to plastic flow and the growth of martensitic domains. The evolution laws of the internal variables are derived, furthermore macroscopic response due to the change of internal variables is obtained. Thermomechanical behavior of armour steel under uniaxial loading was tested which showed a good agreement with experimental results

  4. Modeling Approach for Determining Equivalent Optical Constants of Plastic Shading Nets under Solar Radiation Conditions

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2012-01-01

    Full Text Available The radiative properties of several plastic shading nets were measured under natural solar radiation conditions. We found that the plastic nets behave as homogeneous translucent materials (e.g., plastic film, plastic sheets, and glass. Based on this behavior, we suggest that it is possible to treat plastic nets as translucent materials and to characterize them with equivalent optical constants (i.e., equivalent refractive indexes, neq, and equivalent extinction coefficients, σeq. Here a physical model to determine neq and σeq of plastic nets was described in analogy to homogeneous translucent materials. We examined three groups of nets based on their color (black, black-green, and beige. Each group consisted of nets with four or five different porosities. Nets of each group had almost the same texture structure. For each group, we derived an equation for neq as a function of the net porosity and determined an average value for σeq. Once values of neq and σeq were determined, the solar radiative properties of a net could then be calculated from neq and σeq for any incident angle of solar beam radiation without the need of measurements. The present model was validated by comparing the calculated with the measured radiative properties of three nets at different incident angle of solar beam radiation. The calculated radiative properties reasonably agreed with measured values.

  5. Crystal Plasticity Modeling and Experimental Validation with an Orientation Distribution Function for Ti-7Al Alloy

    Directory of Open Access Journals (Sweden)

    Pınar Acar

    2017-10-01

    Full Text Available An orientation distribution function based model is used for micromechanical modeling of the titanium-aluminum alloys, Ti-0 wt % Al and Ti-7 wt % Al, which are in demand for many aerospace applications. This probability descriptor based modeling approach is different than crystal plasticity finite element techniques since it computes the averaged material properties using upper bound averaging. A rate-independent single-crystal plasticity model is implemented to compute the effect of macroscopic strain on the polycrystal. An optimization problem is defined for calibrating the basal, prismatic, pyramidal slip system and twin parameters using the available tension and compression experimental data. The crystal plasticity parameters of Ti-7 wt % Al are not studied extensively in literature, and therefore the optimization results for the crystal plasticity model realization produce unique data, which will be beneficial to future studies in the field. The sensitivities of the slip and twin parameters to the design objectives are also investigated to identify the most critical slip system parameters. Using the optimum design parameters, the microstructural textures, during the tension test, are predicted by the crystal plasticity finite element simulations, and compared to the available experimental texture and scanning electron microscope—digital image correlation data.

  6. Adapting to a Changing Environment: Modeling the Interaction of Directional Selection and Plasticity.

    Science.gov (United States)

    Nunney, Leonard

    2016-01-01

    Human-induced habitat loss and fragmentation constrains the range of many species, making them unable to respond to climate change by moving. For such species to avoid extinction, they must respond with some combination of phenotypic plasticity and genetic adaptation. Haldane's "cost of natural selection" limits the rate of adaptation, but, although modeling has shown that in very large populations long-term adaptation can be maintained at rates substantially faster than Haldane's suggested limit, maintaining large populations is often an impossibility, so phenotypic plasticity may be crucial in enhancing the long-term survival of small populations. The potential importance of plasticity is in "buying time" for populations subject to directional environmental change: if genotypes can encompass a greater environmental range, then populations can maintain high fitness for a longer period of time. Alternatively, plasticity could be detrimental by lessening the effectiveness of natural selection in promoting genetic adaptation. Here, I modeled a directionally changing environment in which a genotype's adaptive phenotypic plasticity is centered around the environment where its fitness is highest. Plasticity broadens environmental tolerance and, provided it is not too costly, is favored by natural selection. However, a paradoxical result of the individually advantageous spread of plasticity is that, unless the adaptive trait is determined by very few loci, the long-term extinction risk of a population increases. This effect reflects a conflict between the short-term individual benefit of plasticity and a long-term detriment to population persistence, adding to the multiple threats facing small populations under conditions of climate change. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Simulations of micro-bending of thin foils using a scale dependent crystal plasticity model

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo; Ohashi, T.

    2007-01-01

    In this paper, we perform crystal plasticity analyses of micro-bending of thin f.c.c. metal foils having thicknesses ranging from 10 to 50 mu m. The scale dependent crystal plasticity model used here is a viscoplastic finite strain version of the model proposed by Ohashi (2005 Int. J. Plast. 21...... a Bailey-Hirsch type relation. The computational results are compared with the experimental results for Ni foils, reported in Stolken and Evans (1998 Acta Mater. 46 5109-15). The validity of the current model and the direction of future development of the 'physically-based' scale dependent crystal...

  8. An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package

    Energy Technology Data Exchange (ETDEWEB)

    Kuhr, Bryan [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component Science and Mechanics; Lechman, Jeremy B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanoscale and Reactive Processes

    2015-03-01

    The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.

  9. A basic study on asymmetry of seismic response using the rigid-plastic model

    DEFF Research Database (Denmark)

    Costa, Joao Domingues

    2005-01-01

    There have been numerous proposals for predicting maximum deformations of SDOF systems without doing non-linear time history analyses. Among them is Capacity Spectrum Method, where the system is assumed to deflect symmetrically. But this is not reality. This paper describes the causes of asymmetr...... response using the rigid-plastic model. One of the causes is the asymmetry of ground acceleration. The other is the hysteretic property of the models. A comparison with the elasto-plastic and Takeda models is also presented....

  10. Mathematical modelling and optimization of biomass-plastic fixed-bed downdraft co-gasification process

    Science.gov (United States)

    Donskoy, Igor

    2017-10-01

    Co-gasification of woody biomass and polyethylene is studied using mathematical modeling. The gasification process is downdraft fixed-bed. Comparison of modeling results with some experimental data is made. Influence of biomass/plastic ratio and air equivalence ratio on gasification efficiency is investigated.

  11. Mathematical modelling and optimization of biomass-plastic fixed-bed downdraft co-gasification process

    Directory of Open Access Journals (Sweden)

    Donskoy Igor

    2017-01-01

    Full Text Available Co-gasification of woody biomass and polyethylene is studied using mathematical modeling. The gasification process is downdraft fixed-bed. Comparison of modeling results with some experimental data is made. Influence of biomass/plastic ratio and air equivalence ratio on gasification efficiency is investigated.

  12. CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL

    Science.gov (United States)

    A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...

  13. Verification of back stress in a constitutive model for cyclic plasticity

    International Nuclear Information System (INIS)

    Ishikawa, H.

    1991-01-01

    Aiming at a formulation of the unified constitutive model of cyclic plasticity and creep, the concept of the effective stress which is defined as stress measured from the current center of yield surface, is employed to explain the intermittent creep period after cyclic prestraining. Then the experimental results show a marvelous regularity which might make us easily to construct the unified constitutive model. (author)

  14. Predicting seizure by modeling synaptic plasticity based on EEG signals - a case study of inherited epilepsy

    Science.gov (United States)

    Zhang, Honghui; Su, Jianzhong; Wang, Qingyun; Liu, Yueming; Good, Levi; Pascual, Juan M.

    2018-03-01

    This paper explores the internal dynamical mechanisms of epileptic seizures through quantitative modeling based on full brain electroencephalogram (EEG) signals. Our goal is to provide seizure prediction and facilitate treatment for epileptic patients. Motivated by an earlier mathematical model with incorporated synaptic plasticity, we studied the nonlinear dynamics of inherited seizures through a differential equation model. First, driven by a set of clinical inherited electroencephalogram data recorded from a patient with diagnosed Glucose Transporter Deficiency, we developed a dynamic seizure model on a system of ordinary differential equations. The model was reduced in complexity after considering and removing redundancy of each EEG channel. Then we verified that the proposed model produces qualitatively relevant behavior which matches the basic experimental observations of inherited seizure, including synchronization index and frequency. Meanwhile, the rationality of the connectivity structure hypothesis in the modeling process was verified. Further, through varying the threshold condition and excitation strength of synaptic plasticity, we elucidated the effect of synaptic plasticity to our seizure model. Results suggest that synaptic plasticity has great effect on the duration of seizure activities, which support the plausibility of therapeutic interventions for seizure control.

  15. Predicting seizure by modeling synaptic plasticity based on EEG signals - a case study of inherited epilepsy.

    Science.gov (United States)

    Zhang, Honghui; Su, Jianzhong; Wang, Qingyun; Liu, Yueming; Good, Levi; Pascual, Juan

    2018-03-01

    This paper explores the internal dynamical mechanisms of epileptic seizures through quantitative modeling based on full brain electroencephalogram (EEG) signals. Our goal is to provide seizure prediction and facilitate treatment for epileptic patients. Motivated by an earlier mathematical model with incorporated synaptic plasticity, we studied the nonlinear dynamics of inherited seizures through a differential equation model. First, driven by a set of clinical inherited electroencephalogram data recorded from a patient with diagnosed Glucose Transporter Deficiency, we developed a dynamic seizure model on a system of ordinary differential equations. The model was reduced in complexity after considering and removing redundancy of each EEG channel. Then we verified that the proposed model produces qualitatively relevant behavior which matches the basic experimental observations of inherited seizure, including synchronization index and frequency. Meanwhile, the rationality of the connectivity structure hypothesis in the modeling process was verified. Further, through varying the threshold condition and excitation strength of synaptic plasticity, we elucidated the effect of synaptic plasticity to our seizure model. Results suggest that synaptic plasticity has great effect on the duration of seizure activities, which support the plausibility of therapeutic interventions for seizure control.

  16. Migration of plasticizers from PVC medical devices: Development of an infusion model.

    Science.gov (United States)

    Bernard, L; Cueff, R; Chagnon, Mc; Abdoulouhab, F; Décaudin, B; Breysse, C; Kauffmann, S; Cosserant, B; Souweine, B; Sautou, V

    2015-10-15

    Alternatives to DEHP plasticizers are used in various PVC medical devices (MD) for infusion. As they are able to migrate from these MDs into infused solutions, they may come into contact with patient. Different and specific clinical parameters influence their migration in at-risk situations such as infusion. In contrast to the regulations for Food Contact Materials (MCDA), there is currently no acceptable migration limits for the use of these plasticizers in clinical situations. In order to assess their migration, and thus control the risks linked to these MDs, we developed a migration model for the plasticizers in MDs. To this end, we applied a cross-disciplinary methodological process similar to that used in the food-processing industry, taking into account the MDs' conditions of use in clinical practice. The simulation model is simple and includes the following conditions: MD should be tested with a dynamic method that respects our established clinical assumption (2 L of infused solutions via 13 dm(2) of plasticized PVC), at a temperature of 25 °C and during 24 h of contact, using a 50/50 (v/v) ethanol/water simulant. This model could be proposed as a tool for the safety evaluation of the patients' exposure risk to plasticizers from PVC medical devices for infusions. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Elastic-plastic adhesive contact of rough surfaces using n-point asperity model

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Mitra, Anirban; Saha, Kashinath

    2009-01-01

    This study considers an analysis of the elastic-plastic contact of rough surfaces in the presence of adhesion using an n-point asperity model. The multiple-point asperity model, developed by Hariri et al (2006 Trans ASME: J. Tribol. 128 505-14) is integrated into the elastic-plastic adhesive contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19). This n-point asperity model differs from the conventional Greenwood and Williamson model (1966 Proc. R. Soc. Lond. A 295 300-19) in considering the asperities not as fixed entities but as those that change through the contact process, and hence it represents the asperities in a more realistic manner. The newly defined adhesion index and plasticity index defined for the n-point asperity model are used to consider the different conditions that arise because of varying load, surface and material parameters. A comparison between the load-separation behaviour of the new model and the conventional one shows a significant difference between the two depending on combinations of mean separation, adhesion index and plasticity index.

  18. Modeling of surface effects in crystalline materials within the framework of gradient crystal plasticity

    Science.gov (United States)

    Peng, Xiang-Long; Husser, Edgar; Huang, Gan-Yun; Bargmann, Swantje

    2018-03-01

    A finite-deformation gradient crystal plasticity theory is developed, which takes into account the interaction between dislocations and surfaces. The model captures both energetic and dissipative effects for surfaces penetrable by dislocations. By taking advantage of the principle of virtual power, the surface microscopic boundary equations are obtained naturally. Surface equations govern surface yielding and hardening. A thin film under shear deformation serves as a benchmark problem for validation of the proposed model. It is found that both energetic and dissipative surface effects significantly affect the plastic behavior.

  19. HANDOVER MANAGEABILITY AND PERFORMANCE MODELING IN

    African Journals Online (AJOL)

    SOFTLINKS DIGITAL

    situations. Library Management Design Using Use. Case. To model software using object oriented design, a case study of Bingham University. Library Management System is used. Software is developed to automate the Bingham. University manual Library. The system will be stand alone and will be designed with the.

  20. Numerical modelling of two HMX-based plastic-bonded explosives at the mesoscale

    OpenAIRE

    Handley, Caroline A.

    2011-01-01

    Mesoscale models are needed to predict the effect of changes to the microstructure of plastic-bonded explosives on their shock initiation and detonation behaviour. This thesis describes the considerable progress that has been made towards a mesoscale model for two HMX-based explosives PBX9501 and EDC37. In common with previous work in the literature, the model is implemented in hydrocodes that have been designed for shock physics and detonation modelling. Two relevant physics effects, heat co...

  1. A defect density-based constitutive crystal plasticity framework for modeling the plastic deformation of Fe-Cr-Al cladding alloys subsequent to irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Laboratory; Wen, Wei [Los Alamos National Laboratory; Martinez Saez, Enrique [Los Alamos National Laboratory; Tome, Carlos [Los Alamos National Laboratory

    2016-02-05

    It is essential to understand the deformation behavior of these Fe-Cr-Al alloys, in order to be able to develop models for predicting their mechanical response under varied loading conditions. Interaction of dislocations with the radiation-induced defects governs the crystallographic deformation mechanisms. A crystal plasticity framework is employed to model these mechanisms in Fe-Cr-Al alloys. This work builds on a previously developed defect density-based crystal plasticity model for bcc metals and alloys, with necessary modifications made to account for the defect substructure observed in Fe-Cr-Al alloys. The model is implemented in a Visco-Plastic Self Consistent (VPSC) framework, to predict the mechanical behavior under quasi-static loading.

  2. A Nonlocal Damage Model for Elastoplastic Materials based on Gradient Plasticity Theory

    International Nuclear Information System (INIS)

    Chen, J.; Yuan, H.; Kalkhof, D.

    2001-10-01

    Experimental and theoretical studies have shown that size effects in structure deformations and failure become significant as soon as strain gradients are high. For instance as soon as material failure dominates a deformation process, the specimen displays increasingly softening and the finite element computation is significantly affected by the element size. Without considering this effect in the constitutive model one cannot hope a reliable prediction to the ductile material failure process. To give an accurate prediction of the structure integrity and to quantify the material failure process, it is necessary to introduce the strain gradients into constitutive equations. Gradient plasticity models have been discussed extensively in recent years. The mesh-sensitivity in numerical analysis has been successfully eliminated and analytical explanations for size effects were given. In the present work, a general framework for a nonlocal micromechanical damage model based on the gradient-dependent plasticity theory is presented and its finite element algorithm for finite strains is developed and implemented. In the finite element algorithm, equivalent plastic strain and plastic multiplier have been taken as the unknown variables. Due to the implementation of the Lapacian term, the implicit C 1 shape function is applied for equivalent plastic strain and can be transformed to arbitrary quadrilateral elements. Computational analysis of material failure is consistent to the known size effects. By incorporating the Laplacian of plastic strain into the GTN constitutive relationship, the known mesh-dependence is overcome for the simulation of ductile damage processes and numerical results correlate uniquely with the given material parameters. In the chapters of applications, we discuss simulations of micro-indentation tests based on the gradient plasticity model. The role of intrinsic material length parameters in the gradient plasticity model is investigated. The

  3. Computational modeling of neural plasticity for self-organization of neural networks.

    Science.gov (United States)

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Reassessing the Plastic Hinge Model for Energy Dissipation of Axially Loaded Columns

    Directory of Open Access Journals (Sweden)

    R. M. Korol

    2014-01-01

    Full Text Available This paper investigates the energy dissipation potential of axially loaded columns and evaluates the use of a plastic hinge model for analysis of hi-rise building column collapse under extreme loading conditions. The experimental program considered seven axially loaded H-shaped extruded aluminum structural section columns having slenderness ratios that would be typical of floor-to-ceiling heights in buildings. All seven test specimens initially experienced minor-axis overall buckling followed by formation of a plastic hinge at the mid-height region, leading to local buckling of the flanges on the compression side of the plastic hinge, and eventual folding of the compression flanges. The experimental energy absorption, based on load-displacement relations, was compared to the energy estimates based on section plastic moment resistance based on measured yield stress and based on measured hinge rotations. It was found that the theoretical plastic hinge model underestimates a column’s actual ability to absorb energy by a factor in the range of 3 to 4 below that obtained from tests. It was also noted that the realizable hinge rotation is less than 180°. The above observations are based, of course, on actual columns being able to sustain high tensile strains at hinge locations without fracturing.

  5. Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model

    Science.gov (United States)

    Misra, Anil; Singh, Viraj

    2015-09-01

    Thermomechanics and granular micromechanics approaches are combined to derive constitutive equations for modeling rate-dependent granular materials with damage and plasticity. The derivation is motivated by the recognition that the effect of micro-scale mechanisms upon the macro-scale behavior is known to be significant for granular materials. A general thermomechanical framework applicable to rate-dependent granular materials with damage and plasticity is developed. Based upon this framework, an expression for macro-scale Cauchy stress tensor is obtained in terms of the micro-scale grain interaction forces and the relationship between micro- and macro-scale kinematics. In addition, a Clausius-Duhem type inequality applicable to inter-granular interaction is derived, which is used to establish micro-scale constitutive relations for particular type of inter-granular interactions. The expression for Cauchy stress tensor and the micro-scale constitutive relations is then combined under a mean field kinematic assumption to obtain evolution-type macro-scale constitutive equations. The advantage of the granular micromechanics approach is that the damage and plasticity are defined using simple 1d functions at micro-scale, and complicated plastic potentials, damage functions and rules for their evolution are not required. The resultant model is applied to investigate primary, secondary and tertiary creep, creep-recovery as well as rate-dependent response under uniaxial compressive loading. Model applicability is also demonstrated for asymmetric tensile-compressive response under creep-recovery loading. The model is used to evaluate the evolution of elastic energy, and viscous, plastic and damage dissipation at the macro- and micro-scale with respect to creep time and loading level. The results show the development of loading-induced anisotropy due to damage and plasticity in these materials.

  6. Nonlinear modeling of magnetorheological energy absorbers under impact conditions

    Science.gov (United States)

    Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M.; Browne, Alan L.; Ulicny, John; Johnson, Nancy

    2013-11-01

    Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s-1. Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R&D Center for nominal drop speeds of up to 6 m s-1.

  7. Nonlinear modeling of magnetorheological energy absorbers under impact conditions

    International Nuclear Information System (INIS)

    Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M; Browne, Alan L; Ulicny, John; Johnson, Nancy

    2013-01-01

    Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s −1 . Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R and D Center for nominal drop speeds of up to 6 m s −1 . (paper)

  8. On the formulation, parameter identification and numerical integration of the EMMI model :plasticity and isotropic damage.

    Energy Technology Data Exchange (ETDEWEB)

    Bammann, Douglas J.; Johnson, G. C. (University of California, Berkeley, CA); Marin, Esteban B.; Regueiro, Richard A. (University of Colorado, Boulder, CO)

    2006-01-01

    In this report we present the formulation of the physically-based Evolving Microstructural Model of Inelasticity (EMMI) . The specific version of the model treated here describes the plasticity and isotropic damage of metals as being currently applied to model the ductile failure process in structural components of the W80 program . The formulation of the EMMI constitutive equations is framed in the context of the large deformation kinematics of solids and the thermodynamics of internal state variables . This formulation is focused first on developing the plasticity equations in both the relaxed (unloaded) and current configurations. The equations in the current configuration, expressed in non-dimensional form, are used to devise the identification procedure for the plasticity parameters. The model is then extended to include a porosity-based isotropic damage state variable to describe the progressive deterioration of the strength and mechanical properties of metals induced by deformation . The numerical treatment of these coupled plasticity-damage constitutive equations is explained in detail. A number of examples are solved to validate the numerical implementation of the model.

  9. Research on quasi-dynamic calibration model of plastic sensitive element based on neural networks

    Science.gov (United States)

    Wang, Fang; Kong, Deren; Yang, Lixia; Zhang, Zouzou

    2017-08-01

    Quasi-dynamic calibration accuracy of the plastic sensitive element depends on the accuracy of the fitting model between pressure and deformation. By using the excellent nonlinear mapping ability of RBF (Radial Basis Function) neural network, a calibration model is established which use the peak pressure as the input and use the deformation of the plastic sensitive element as the output in this paper. The calibration experiments of a batch of copper cylinders are carried out on the quasi-dynamic pressure calibration device, which pressure range is within the range of 200MPa to 700MPa. The experiment data are acquired according to the standard pressure monitoring system. The network train and study are done to quasi dynamic calibration model based on neural network by using MATLAB neural network toolbox. Taking the testing samples as the research object, the prediction accuracy of neural network model is compared with the exponential fitting model and the second-order polynomial fitting model. The results show that prediction of the neural network model is most close to the testing samples, and the accuracy of prediction model based on neural network is better than 0.5%, respectively one order higher than the second-order polynomial fitting model and two orders higher than the exponential fitting model. The quasi-dynamic calibration model between pressure peak and deformation of plastic sensitive element, which is based on neural network, provides important basis for creating higher accuracy quasi-dynamic calibration table.

  10. Comment on 'A schematic model of crater modification by gravity' by H. J. Melosh

    International Nuclear Information System (INIS)

    Pike, R.J.

    1983-01-01

    Size-dependent variations in the morphology of impact craters on planets and satellites pose controversial problems. H. J. Melosh has continued to emphasize theoretical analysis in modeling the morphologic transition from simple to complex craters. His latest results [Melosh, 1982] outline a comprehensive hypothesis wherein deep-seated collapse of the transient cavity as a Bingham plastic material to produce central peaks and, seemingly, slump terraces is brought about by acoustic fluidization. However, Melosh's paper also contains inconsistent or ambiguously reported observations and some statements and interpretations that need to be clarified

  11. Modelling global distribution, risk and mitigation strategies of floating plastic pollution

    Science.gov (United States)

    van Sebille, Erik; Wilcox, Chris; Sherman, Peter; Hardesty, Britta Denise; Lavender Law, Kara

    2016-04-01

    Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Pacific and North Atlantic accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardise a global dataset of plastic marine debris measured using surface-trawling plankton nets and couple this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons. A large fraction of the uncertainty in these estimates comes from sparse sampling in coastal and Southern Hemisphere regions. We then use this global distribution of small floating plastic debris to map out where in the ocean the risk to marine life (in particular seabirds and plankton growth) is greatest, using a quantitative risk framework. We show that the largest risk occurs not necessarily in regions of high plastic concentration, but rather in regions of extensive foraging with medium-high plastic concentrations such as coastal upwelling regions and the Southern Ocean. Finally, we use the estimates of distribution to investigate where in the ocean plastic can most optimally be removed, assuming hypothetical clean-up booms following the ideas from The Ocean Cleanup project. We show that mitigation of the plastic problem can most aptly be done near coastlines, particularly in Asia, rather than in the centres of the gyres. Based on these results, we propose more focus on the coastal zones when

  12. Modelling Elasto-Plastic Behaviour of Human Single Trabecula-Comparison with Bending Test

    Czech Academy of Sciences Publication Activity Database

    Zlamal, P.; Jiroušek, Ondřej; Doktor, Tomáš; Kytýř, Daniel

    2012-01-01

    Roč. 45, S1 (2012), s. 479-479 ISSN 0021-9290 R&D Projects: GA ČR(CZ) GAP105/10/2305 Institutional support: RVO:68378297 Keywords : digital image correlation * elasto-plastic material model * FEM * three-point bending * trabecular bone Subject RIV: FI - Traumatology, Orthopedics Impact factor: 2.716, year: 2012

  13. Crystal plasticity based finite element modelling of large strain deformation in AM30 magnesium alloy

    Science.gov (United States)

    Izadbakhsh, Adel; Inal, Kaan; Mishra, Raja K.

    2012-04-01

    In this paper, the finite strain plastic deformation of AM30 magnesium alloy has been simulated using the crystal plasticity finite element method. The simulations have been carried out using a rate-dependent elastic-viscoplastic crystal plasticity constitutive model implemented in a user defined material subroutine (UMAT) in the commercial software LS-DYNA. The plastic deformation mechanisms accounted for in the model are the slip systems in the matrix (parent grain), extension twinning systems and the slip systems inside the extension twinned regions. The parameters of the constitutive model have been calibrated using the experimental data. The calibrated model has then been used to predict the deformation of AM30 magnesium alloy in bending and simple shear. For the bending strain path, the effects of texture on the strain accommodated by the deformation mechanisms and bending moment have been investigated. For simple shear, the effects of texture on the relative activity of deformation mechanisms, shear stress and texture evolution have been investigated. Also, the effect of twinning on shear stress and texture evolution has been studied. The numerical analyses predicted a more uniform strain distribution during bending and simple shear for rolled texture compared with extruded texture.

  14. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    NARCIS (Netherlands)

    Huang, M.; Rivera-Diaz-del-Castillo, P.E.J.; Bouaziz, O.; Van der Zwaag, S.

    2009-01-01

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that

  15. Advanced postbuckling and imperfection sensitivity of the elastic-plastic Shanley-Hutchinson model column

    DEFF Research Database (Denmark)

    Christensen, Claus Dencker; Byskov, Esben

    2008-01-01

    The postbuckling behavior and imperfection sensitivity of the Shanley-Hutchinson plastic model column introduced by Hutchinson in 1973 are examined. The study covers the initial, buckled state and the advanced postbuckling regime of the geometrically perfect realization as well as its sensitivity...

  16. A fully implicit plasticity model for the characterization of ceramics in ballistic protection

    NARCIS (Netherlands)

    Simons, E.C.; Weerheijm, J.; Sluijs, Bert

    2016-01-01

    The Johnson-Holmquist-2 ceramic model is used for quasi-static indentation simulation. A modification is proposed to an associated plasticity formulation. This allows for a fully implicit solution scheme, where dilatation is used instead of the traditional explicit bulking formulation. Dilatation is

  17. Fear extinction as a model for synaptic plasticity in major depressive disorder.

    Science.gov (United States)

    Kuhn, Marion; Höger, Nora; Feige, Bernd; Blechert, Jens; Normann, Claus; Nissen, Christoph

    2014-01-01

    The neuroplasticity hypothesis of major depressive disorder proposes that a dysfunction of synaptic plasticity represents a basic pathomechanism of the disorder. Animal models of depression indicate enhanced plasticity in a ventral emotional network, comprising the amygdala. Here, we investigated fear extinction learning as a non-invasive probe for amygdala-dependent synaptic plasticity in patients with major depressive disorder and healthy controls. Differential fear conditioning was measured in 37 inpatients with severe unipolar depression (International Classification of Diseases, 10th revision, criteria) and 40 healthy controls. The eye-blink startle response, a subcortical output signal that is modulated by local synaptic plasticity in the amygdala in fear acquisition and extinction learning, was recorded as the primary outcome parameter. After robust and similar fear acquisition in both groups, patients with major depressive disorder showed significantly enhanced fear extinction learning in comparison to healthy controls, as indicated by startle responses to conditioned stimuli. The strength of extinction learning was positively correlated with the total illness duration. The finding of enhanced fear extinction learning in major depressive disorder is consistent with the concept that the disorder is characterized by enhanced synaptic plasticity in the amygdala and the ventral emotional network. Clinically, the observation emphasizes the potential of successful extinction learning, the basis of exposure therapy, in anxiety-related disorders despite the frequent comorbidity of major depressive disorder.

  18. Fear extinction as a model for synaptic plasticity in major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Marion Kuhn

    Full Text Available BACKGROUND: The neuroplasticity hypothesis of major depressive disorder proposes that a dysfunction of synaptic plasticity represents a basic pathomechanism of the disorder. Animal models of depression indicate enhanced plasticity in a ventral emotional network, comprising the amygdala. Here, we investigated fear extinction learning as a non-invasive probe for amygdala-dependent synaptic plasticity in patients with major depressive disorder and healthy controls. METHODS: Differential fear conditioning was measured in 37 inpatients with severe unipolar depression (International Classification of Diseases, 10th revision, criteria and 40 healthy controls. The eye-blink startle response, a subcortical output signal that is modulated by local synaptic plasticity in the amygdala in fear acquisition and extinction learning, was recorded as the primary outcome parameter. RESULTS: After robust and similar fear acquisition in both groups, patients with major depressive disorder showed significantly enhanced fear extinction learning in comparison to healthy controls, as indicated by startle responses to conditioned stimuli. The strength of extinction learning was positively correlated with the total illness duration. CONCLUSIONS: The finding of enhanced fear extinction learning in major depressive disorder is consistent with the concept that the disorder is characterized by enhanced synaptic plasticity in the amygdala and the ventral emotional network. Clinically, the observation emphasizes the potential of successful extinction learning, the basis of exposure therapy, in anxiety-related disorders despite the frequent comorbidity of major depressive disorder.

  19. Models of plastic depinning of driven disordered systems

    Indian Academy of Sciences (India)

    class allows for proliferation of topological defects due to the interplay of strong disorder and drive. In mean field theory both models exhibit a tricritical point as a function of dis- .... driving force, fp is the pinning force, and σα represents the stress due to interactions ..... In this model the hysteresis may indeed be an artifact.

  20. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    Science.gov (United States)

    Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther

    2014-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

  1. Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization.

    Science.gov (United States)

    Miehe, C; Teichtmeister, S; Aldakheel, F

    2016-04-28

    This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).

  2. A model for rate-dependent but time-independent material behavior in cyclic plasticity

    International Nuclear Information System (INIS)

    Dafalias, Y.F.; Ramey, M.R.; Sheikh, I.

    1977-01-01

    It is the purpose of this paper to present a model for rate-dependent but time independent material behavior under cyclic loading in the plastic range. What is referred to as time independent behavior here, is the absence of creep and relaxation phenomena from the behavior of the model. The notion of plastic internal variables (piv) is introduced, as properly invariant scalars or second order tensors, whose constitutive relations are rate-type equations not necessarily homogeneous of oder one in the rates, as it would be required for independent plasticity. The concept of a yield surface in the strain space and a loading function in terms of the total strain rate is introduced, where the sign of the loading function defines zero or non-zero value of the rate of piv. Thus rate dependence is achieved without time dependent behavior (no creep or relaxation). In addition, discrete memory parameters associated with the most recent event of unloading-reloading in different directions enter the constitutive relations for the piv. A particular form of the constitutive relations is assumed, where the rate of piv is a linear combination of the strain rate components, with coefficients depending on the second invariant of the strain rate tensor, which can be viewed as a scalar measure of the rate of deformation in the multiaxial case and a direct generalization of the uniaxial strain rate. This leads to a particularly simple form of the constitutive relations resembling the ones for rate independent plasticity. The uniaxial counterpart would be a relation between the plastic strain rate (as one of the piv) and the total strain rate through a plastic modulus which depends on the strain rate, the piv, and the discrete memory parameters

  3. Modeling of ECC materials using numerical formulations based on plasticity

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2006-01-01

    This paper discusses the considerations for the establishment of a damage model for ECC. Three different length scales are used in the approach for deriving the damage model. On each length scale important phenomena are investigated by use of numerical and analytical calculations. On the micro...... is small, 20 ¹m and also small compared to typical deformations at peak bridging stress. On the meso scale II interaction between initial flaws and micro cracks was observed. A framework is presented for the formulation of a damage mechanics model comprising the damage mechanisms on the micro and meso...

  4. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  5. Fatigue analysis of steel catenary risers based on a plasticity model

    Science.gov (United States)

    Dong, Yongqiang; Sun, Liping

    2015-03-01

    The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625″ steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included.

  6. A cohesive plastic/damage-zone model for ductile crack analysis

    International Nuclear Information System (INIS)

    Zhang, C.; Gross, D.

    1995-01-01

    A cohesive plastic/damage-zone model of the Dugdale-Barenblatt type (G.I. Barenblatt, Adv. Appl. Mech. 7 (1962) 55-129; D.S. Dugdale, J. Mech. Phys. Solids 8 (1960) 100-104) is presented for analyzing crack growth in ductile materials with damage evolution. A semi-infinite Mode I crack in plane stress or plane stress is considered. The damage is assumed to be present in form of dispersed microvoids which are localized into a narrow strip ahead of the crack-tip. A simple damage model of the Gurson model type (A.L. Gurson, J. Eng. Mater. Technol. 99 (1977) 2-15; V. Tvergaard, Advances in Applied Mechanics, Vol. 27, Academic Press, 1990, pp. 83-151) is developed for uniaxial tension to describe the macroscopic properties of the cohesive plastic/damage-zone. Under small-scale yielding and small-scale damage conditions, a system of nonlinear integral equations for the plastic strain and the length of the cohesive plastic/damage-zone is derived. Numerical results are presented and discussed to reveal the effect of damage evolution on the ductile crack growth. (orig.)

  7. Continuum-Based FEM Modeling of Ceramic Powder Compaction Using a Cap-Plasticity Constitutive Model

    Energy Technology Data Exchange (ETDEWEB)

    ARGUELLO JR.,JOSE G.; FOSSUM,ARLO F.; ZEUCH,DAVID H.; EWSUK,KEVIN G.

    2000-05-01

    Software has been developed and extended to allow finite element (FE) modeling of ceramic powder compaction using a cap-plasticity constitutive model. The underlying, general-purpose FE software can be used to model even the most complex three-dimensional (3D) geometries envisioned. Additionally, specialized software has been developed within this framework to address a general subclass of axisymmetric compacts that are common in industry. The expertise required to build the input deck, run the FE code, and post-process the results for this subclass of compacts is embedded within the specialized software. The user simply responds to a series of prompts, evaluates the quality of the FE mesh that is generated, and analyzes the graphical results that are produced. The specialized software allows users with little or no FE expertise to benefit from the tremendous power and insight that FE analysis can bring to the design cycle. The more general underlying software provides complete flexibility to model more complicated geometries and processes of interest to ceramic component manufacturers but requires significantly more user interaction and expertise.

  8. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Owen, Steven J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abdeljawad, Fadi F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanks, Byron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  9. Experimental Validation of Plastic Mandible Models Produced by a ?Low-Cost? 3-Dimensional Fused Deposition Modeling Printer

    OpenAIRE

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition mo...

  10. Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes

    Science.gov (United States)

    Zhou, Dong

    In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user

  11. Yield Stress Model for Molten Composition B-3

    Science.gov (United States)

    Davis, Stephen; Zerkle, David

    2017-06-01

    Composition B-3 (Comp B-3) is a melt-castable explosive composed of 60/40 wt% RDX/TNT (hexahydro-1,3,5-trinitro-1,3,5-triazine/2,4,6-trinitrotoluene). During casting operations thermal conditions are controlled which along with the low melting point of TNT and the insensitivity of the mixture to external stimuli leading to safe use. Outside these standard operating conditions a more rigorous model of Comp B-3 rheological properties is necessary to model thermal transport as Comp B-3 evolves from quiescent solid through vaporization/decomposition upon heating. One particular rheological phenomena of interest is Bingham plasticity, where a material behaves as a quiescent solid unless a sufficient load is applied, resulting in fluid flow. In this study falling ball viscometer data is used to model the change in Bingham plastic yield stresses as a function of RDX particle volume fraction; a function of temperature. Results show the yield stress of Comp B-3 (τy) follows the expression τy = B ϕ -ϕc N , where Φ and Φc are the volume fraction of RDX and a critical volume fraction, respectively and B and N are experimentally evaluated constants.

  12. Calcium dependent plasticity applied to repetitive transcranial magnetic stimulation with a neural field model.

    Science.gov (United States)

    Wilson, M T; Fung, P K; Robinson, P A; Shemmell, J; Reynolds, J N J

    2016-08-01

    The calcium dependent plasticity (CaDP) approach to the modeling of synaptic weight change is applied using a neural field approach to realistic repetitive transcranial magnetic stimulation (rTMS) protocols. A spatially-symmetric nonlinear neural field model consisting of populations of excitatory and inhibitory neurons is used. The plasticity between excitatory cell populations is then evaluated using a CaDP approach that incorporates metaplasticity. The direction and size of the plasticity (potentiation or depression) depends on both the amplitude of stimulation and duration of the protocol. The breaks in the inhibitory theta-burst stimulation protocol are crucial to ensuring that the stimulation bursts are potentiating in nature. Tuning the parameters of a spike-timing dependent plasticity (STDP) window with a Monte Carlo approach to maximize agreement between STDP predictions and the CaDP results reproduces a realistically-shaped window with two regions of depression in agreement with the existing literature. Developing understanding of how TMS interacts with cells at a network level may be important for future investigation.

  13. Altered glial plasticity in animal models for mood disorders.

    Science.gov (United States)

    Czéh, Boldizsár; Fuchs, Eberhard; Flügge, Gabriele

    2013-10-01

    Numerous clinical evidences support the notion that glial changes in fronto-limbic brain areas could contribute to the pathophysiology of mood disorders. Glial alterations have been reported not only in patients, but also in various kinds of animal models for depression. Molecular and cellular data suggest that all the major classes of glial cells are affected in these conditions, including astrocytes, oligodendrocytes, NG2-positive cells and microglia. The aim of this review was to summarize the currently available experimental results demonstrating alterations in glial morphology and functioning in animal models for mood disorders. Better understanding of these glial changes affecting neuronal activity could help us to identify novel targets for the development of antidepressant drugs.

  14. Parameter Identification of Piecewise Linear Plasticity Metal Models Used in Numerical Modeling of Structures Under Plastic Deformation and Failure

    OpenAIRE

    A. V. Shmeliov; A. G. Kononov; A. V. Omelusik

    2016-01-01

    The article describes the models of metallic materials used in the calculation of deformation and destruction of engineering structures. The reliability of material models can adequately assess the strength characteristics of the designs of new technology in its designing and certification.The article deals with contingencies and true mechanical properties of materials and presents equations of their relationship. It notes that in the software systems mechanical characteristics of materials a...

  15. A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Takashi Nakano

    2010-02-01

    Full Text Available Corticostriatal synapse plasticity of medium spiny neurons is regulated by glutamate input from the cortex and dopamine input from the substantia nigra. While cortical stimulation alone results in long-term depression (LTD, the combination with dopamine switches LTD to long-term potentiation (LTP, which is known as dopamine-dependent plasticity. LTP is also induced by cortical stimulation in magnesium-free solution, which leads to massive calcium influx through NMDA-type receptors and is regarded as calcium-dependent plasticity. Signaling cascades in the corticostriatal spines are currently under investigation. However, because of the existence of multiple excitatory and inhibitory pathways with loops, the mechanisms regulating the two types of plasticity remain poorly understood. A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32, as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA, protein phosphatase 2A (PP2A, and the phosphorylation site at threonine 75 of DARPP-32 (Thr75 served as the major switch for inducing LTD and LTP. Calcium input modulated this loop through the PP2B (phosphatase 2B-CK1 (casein kinase 1-Cdk5 (cyclin-dependent kinase 5-Thr75 pathway and PP2A, whereas calcium and dopamine input activated the loop via PKA activation by cyclic AMP (cAMP. The positive feedback loop displayed robust bi-stable responses following changes in the reaction parameters. Increased basal dopamine levels disrupted this dopamine-dependent plasticity. The

  16. Hydrodynamics with strength: scaling-invariant solutions for elastic-plastic cavity expansion models

    Science.gov (United States)

    Albright, Jason; Ramsey, Scott; Baty, Roy

    2017-11-01

    Spherical cavity expansion (SCE) models are used to describe idealized detonation and high-velocity impact in a variety of materials. The common theme in SCE models is the presence of a pressure-driven cavity or void within a domain comprised of plastic and elastic response sub-regions. In past work, the yield criterion characterizing material strength in the plastic sub-region is usually taken for granted and assumed to take a known functional form restrictive to certain classes of materials, e.g. ductile metals or brittle geologic materials. Our objective is to systematically determine a general functional form for the yield criterion under the additional requirement that the SCE admits a similarity solution. Solutions determined under this additional requirement have immediate implications toward development of new compressible flow algorithm verification test problems. However, more importantly, these results also provide novel insight into modeling the yield criteria from the perspective of hydrodynamic scaling.

  17. Sources and sinks of plastic debris in estuaries: A conceptual model integrating biological, physical and chemical distribution mechanisms.

    Science.gov (United States)

    Vermeiren, Peter; Muñoz, Cynthia C; Ikejima, Kou

    2016-12-15

    Micro- and macroplastic accumulation threatens estuaries worldwide because of the often dense human populations, diverse plastic inputs and high potential for plastic degradation and storage in these ecosystems. Nonetheless, our understanding of plastic sources and sinks remains limited. We designed conceptual models of the local and estuary-wide transport of plastics. We identify processes affecting the position of plastics in the water column; processes related to the mixing of fresh and salt water; and processes resulting from the influences of wind, topography, and organism-plastic interactions. The models identify gaps in the spatial context of plastic-organisms interactions, the chemical behavior of plastics in estuaries, effects of wind on plastic suspension-deposition cycles, and the relative importance of processes affecting the position in the water column. When interpreted in the context of current understanding, sinks with high management potential can be identified. However, source-sink patterns vary among estuary types and with local scale processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Modelling the global distribution and risk of small floating plastic debris

    Science.gov (United States)

    van Sebille, E.; Wilcox, C.; Lebreton, L.; Maximenko, N. A.; Sherman, P.; Hardesty, B. D.; van Franeker, J. A.; Eriksen, M.; Siegel, D.; Galgani, F.; Lavender Law, K. L.

    2016-02-01

    Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Pacific and North Atlantic accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements collated to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which is only approximately 1% of global plastic waste available to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean. We then use this global distribution of small floating plastic debris to (i) map out where in the ocean the risk to marine life (seabirds, plankton growth) is greatest and to (ii) show that mitigation of the plastic problem can most aptly be done near coastlines, particularly in Asia, rather than in the centres of the gyres.

  19. Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes?

    Science.gov (United States)

    Critchell, Kay; Lambrechts, Jonathan

    2016-03-01

    Anthropogenic marine debris, mainly of plastic origin, is accumulating in estuarine and coastal environments around the world causing damage to fauna, flora and habitats. Plastics also have the potential to accumulate in the food web, as well as causing economic losses to tourism and sea-going industries. If we are to manage this increasing threat, we must first understand where debris is accumulating and why these locations are different to others that do not accumulate large amounts of marine debris. This paper demonstrates an advection-diffusion model that includes beaching, settling, resuspension/re-floating, degradation and topographic effects on the wind in nearshore waters to quantify the relative importance of these physical processes governing plastic debris accumulation. The aim of this paper is to prioritise research that will improve modelling outputs in the future. We have found that the physical characteristic of the source location has by far the largest effect on the fate of the debris. The diffusivity, used to parameterise the sub-grid scale movements, and the relationship between debris resuspension/re-floating from beaches and the wind shadow created by high islands also has a dramatic impact on the modelling results. The rate of degradation of macroplastics into microplastics also have a large influence in the result of the modelling. The other processes presented (settling, wind drift velocity) also help determine the fate of debris, but to a lesser degree. These findings may help prioritise research on physical processes that affect plastic accumulation, leading to more accurate modelling, and subsequently management in the future.

  20. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer

    Science.gov (United States)

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  1. Experimental Validation of Plastic Mandible Models Produced by a "Low-Cost" 3-Dimensional Fused Deposition Modeling Printer.

    Science.gov (United States)

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-03-22

    The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field.

  2. A Fully-Coupled Approach for Modelling Plastic Deformation and Liquid Lubrication in Metal Forming

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Christiansen, Peter; Nielsen, Chris Valentin

    2016-01-01

    flow formulation which stands on the border line between fluidand solid mechanics and allows treating the lubricants as viscous incompressible (or nearlyincompressible) fluid and the metallic materials as non-Newtonian, high viscous, incompressiblefluids. The presentation is focused on the theoretical......This paper presents a new approach for combined modelling of plastic deformation andliquid lubrication in the contact interfaces between material and tooling in metal forming includingsituations where the lubricant is functioning as a pressure carrier. The approach is an alternative toconventional...... elements with fictitious small stiffness to physical modelling based on a fullycoupled procedure in which the lubricant flow and the plastic deformation of the metallic materialare solved simultaneously. The approach takes advantage of the intrinsic velocity-pressurecharacteristics of the finite element...

  3. The Emergence of Synaesthesia in a Neuronal Network Model via Changes in Perceptual Sensitivity and Plasticity.

    Directory of Open Access Journals (Sweden)

    Oren Shriki

    2016-07-01

    Full Text Available Synaesthesia is an unusual perceptual experience in which an inducer stimulus triggers a percept in a different domain in addition to its own. To explore the conditions under which synaesthesia evolves, we studied a neuronal network model that represents two recurrently connected neural systems. The interactions in the network evolve according to learning rules that optimize sensory sensitivity. We demonstrate several scenarios, such as sensory deprivation or heightened plasticity, under which synaesthesia can evolve even though the inputs to the two systems are statistically independent and the initial cross-talk interactions are zero. Sensory deprivation is the known causal mechanism for acquired synaesthesia and increased plasticity is implicated in developmental synaesthesia. The model unifies different causes of synaesthesia within a single theoretical framework and repositions synaesthesia not as some quirk of aberrant connectivity, but rather as a functional brain state that can emerge as a consequence of optimising sensory information processing.

  4. Strain gradient crystal plasticity: A continuum mechanics approach to modeling micro-structural evolution

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2015-01-01

    In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurri....... A phenomenological back stress formulation is proposed, through which the effect of the GND gradient exponent can be studied. It is shown that this model can lead to more localized GND distributions.......In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurring...... between the cells. This behavior is not typical for strain gradient crystal plasticity models. The present study employs a higher order extension of conventional crystal plasticity theory in which the viscous slip rate is influenced by the gradients of GND densities through a back stress...

  5. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism.

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-11-24

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.

  6. Validation of a Crystal Plasticity Model Using High Energy Diffraction Microscopy

    Science.gov (United States)

    Beaudoin, A. J.; Obstalecki, M.; Storer, R.; Tayon, W.; Mach, J.; Kenesei, P.; Lienert, U.

    2012-01-01

    High energy diffraction microscopy is used to measure the crystallographic orientation and evolution of lattice strain in an Al Li alloy. The relative spatial arrangement of the several pancake-shaped grains in a tensile sample is determined through in situ and ex situ techniques. A model for crystal plasticity with continuity of lattice spin is posed, where grains are represented by layers in a finite element mesh following the arrangement indicated by experiment. Comparison is drawn between experiment and simulation.

  7. Denervation-induced homeostatic dendritic plasticity in morphological granule cell models

    Directory of Open Access Journals (Sweden)

    Hermann Cuntz

    2014-03-01

    Full Text Available Neuronal death and subsequent denervation of target areas are major consequences of several neurological conditions such asischemia or neurodegeneration (Alzheimer's disease. The denervation-induced axonal loss results in reorganization of the dendritic tree of denervated neurons. The dendritic reorganization has been previously studied using entorhinal cortex lesion (ECL. ECL leads to shortening and loss of dendritic segments in the denervated outer molecular layer of the dentate gyrus. However, the functional importance of these long-term dendritic alterations is not yet understood and their impact on neuronal electrical properties remains unclear. Here we analyzed what happens to the electrotonic structure and excitability of dentate granule cells after lesion-induced alterations of their dendritic morphology, assuming all other parameters remain equal. We performed comparative electrotonic analysis in anatomically and biophysically realistic compartmental models of 3D-reconstructed healthy and denervated granule cells. Using the method of morphological modeling based on optimization principles minimizing the amount of wiring and maximizing synaptic democracy, we built artificial granule cells which replicate morphological features of their real counterparts. Our results show that somatofugal and somatopetal voltage attenuation in the passive cable model are strongly reduced in denervated granule cells. In line with these predictions, the attenuation both of simulated backpropagating action potentials and forward propagating EPSPs was significantly reduced in dendrites of denervated neurons. Intriguingly, the enhancement of action potential backpropagation occurred specifically in the denervated dendritic layers. Furthermore, simulations of synaptic f-I curves revealed a homeostatic increase of excitability in denervated granule cells. In summary, our morphological and compartmental modeling indicates that unless modified by changes of

  8. Micro-Structural Evolution and Size-Effects in Plastically Deformed Single Crystals: Strain Gradient Continuum Modeling

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah

    An extensive amount of research has been devoted to the development of micro-mechanics based gradient plasticity continuum theories, which are necessary for modeling micron-scale plasticity when large spatial gradients of plastic strain appear. While many models have proven successful in capturing...... the macroscopic effects related to strain gradients, most predict smooth micro-structures. The evolution of dislocation micro-structures, during plastic straining of ductile crystalline materials, is highly complex and nonuniform. Published experimental measurements on deformed metal crystals show distinct......, to focus on their ability to capture realistic micro-structural evolution. This challenge is the main focus of the present thesis, which takes as starting point a non-work conjugate type back stress based higher order crystal plasticity theory. Within this framework, several possibilities for the back...

  9. Dynamic rupture models of subduction zone earthquakes with off-fault plasticity

    Science.gov (United States)

    Wollherr, S.; van Zelst, I.; Gabriel, A. A.; van Dinther, Y.; Madden, E. H.; Ulrich, T.

    2017-12-01

    Modeling tsunami-genesis based on purely elastic seafloor displacement typically underpredicts tsunami sizes. Dynamic rupture simulations allow to analyse whether plastic energy dissipation is a missing rheological component by capturing the complex interplay of the rupture front, emitted seismic waves and the free surface in the accretionary prism. Strike-slip models with off-fault plasticity suggest decreasing rupture speed and extensive plastic yielding mainly at shallow depths. For simplified subduction geometries inelastic deformation on the verge of Coulomb failure may enhance vertical displacement, which in turn favors the generation of large tsunamis (Ma, 2012). However, constraining appropriate initial conditions in terms of fault geometry, initial fault stress and strength remains challenging. Here, we present dynamic rupture models of subduction zones constrained by long-term seismo-thermo-mechanical modeling (STM) without any a priori assumption of regions of failure. The STM model provides self-consistent slab geometries, as well as stress and strength initial conditions which evolve in response to tectonic stresses, temperature, gravity, plasticity and pressure (van Dinther et al. 2013). Coseismic slip and coupled seismic wave propagation is modelled using the software package SeisSol (www.seissol.org), suited for complex fault zone structures and topography/bathymetry. SeisSol allows for local time-stepping, which drastically reduces the time-to-solution (Uphoff et al., 2017). This is particularly important in large-scale scenarios resolving small-scale features, such as the shallow angle between the megathrust fault and the free surface. Our dynamic rupture model uses a Drucker-Prager plastic yield criterion and accounts for thermal pressurization around the fault mimicking the effect of pore pressure changes due to frictional heating. We first analyze the influence of this rheology on rupture dynamics and tsunamigenic properties, i.e. seafloor

  10. Modeling Near-Crack-Tip Plasticity from Nano- to Micro-Scales

    Science.gov (United States)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jake D.; Yamakov, Vesselin I.

    2010-01-01

    Several efforts that are aimed at understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity are discussed. The paper focuses on discussion of newly developed methodologies and their application to understanding damage processes in aluminum and its alloys. Examination of plastic mechanisms as a function of increasing length scale illustrates increasingly complex phenomena governing plasticity

  11. Verification and Validation of a Three-Dimensional Orthotropic Plasticity Constitutive Model Using a Unidirectional Composite

    Directory of Open Access Journals (Sweden)

    Canio Hoffarth

    2017-03-01

    Full Text Available A three-dimensional constitutive model has been developed for modeling orthotropic composites subject to impact loads. It has three distinct components—a deformation model involving elastic and plastic deformations; a damage model; and a failure model. The model is driven by tabular data that is generated either using laboratory tests or via virtual testing. A unidirectional composite—T800/F3900, commonly used in the aerospace industry, is used in the verification and validation tests. While the failure model is under development, these tests indicate that the implementation of the deformation and damage models in a commercial finite element program, LS-DYNA, is efficient, robust and accurate.

  12. Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea.

    Science.gov (United States)

    Liubartseva, S; Coppini, G; Lecci, R; Creti, S

    2016-02-15

    Sea surface concentrations of plastics and their fluxes onto coastlines are simulated over 2009-2015. Calculations incorporate combinations of terrestrial and maritime litter inputs, the Lagrangian model MEDSLIK-II forced by AFS ocean current simulations, and ECMWF wind analyses. With a relatively short particle half-life of 43.7 days, the Adriatic Sea is defined as a highly dissipative basin where the shoreline is, by construction, the main sink of floating debris. Our model results show that the coastline of the Po Delta receives a plastic flux of approximately 70 kg(km day)(-1). The most polluted sea surface area (>10 g km(-2) floating debris) is represented by an elongated band shifted to the Italian coastline and narrowed from northwest to southeast. Evident seasonality is found in the calculated plastic concentration fields and the coastline fluxes. Complex source-receptor relationships among the basin's subregions are quantified in impact matrices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Determination of Johnson-Cook Plasticity Model Parameters for Inconel718

    Science.gov (United States)

    Farahani, H. K.; Ketabchi, M.; Zangeneh, Sh.

    2017-11-01

    In order to simulate foreign object damage (FOD) phenomenon in aircraft high-pressure compressor blades made of a nickel-based super-alloy, Johnson-Cook (J-C) plasticity model was used. For prediction of material's plastic behavior at temperature of 400 °C (working temperature of the blades) in the range of strain rates associated with the FOD phenomenon (in order of 106 s-1), material parameters of A, B, C, n and m for the J-C plasticity model had to be determined experimentally. Parameters of A, B and n with values of 1108, 699 MPa and 0.5189, respectively, were obtained from quasi-static tensile tests. Moreover, m was determined to be 1.2861, also through quasi-static tensile tests with a strain rate of 1 s-1 at three temperatures of 475, 550 and 625 °C. However, in order to determine C, firstly a steel ball was impacted on the surface of a flat specimen made of a precipitation-hardening alloy, and then, the impact site was 3D scanned to obtain the induced crater profile. Finally, the impact test (ballistic) was simulated using Abaqus, and a C value of 0.0085 was determined by comparing the actual crater profile with the one obtained from the simulation through a trial-and-error approach.

  14. Spectral database constitutive representation within a spectral micromechanical solver for computationally efficient polycrystal plasticity modelling

    Science.gov (United States)

    Eghtesad, Adnan; Zecevic, Miroslav; Lebensohn, Ricardo A.; McCabe, Rodney J.; Knezevic, Marko

    2018-02-01

    We present the first successful implementation of a spectral crystal plasticity (SCP) model into a spectral visco-plastic fast Fourier transform (VPFFT) full-field solver. The SCP database allows for non-iterative retrieval of constitutive solutions for a crystal of any orientation subjected to any state of deformation at every voxel representing an FFT point of the overall voxel-based polycrystalline microstructure. Details of this approach are described and validated through example case studies involving a rigid-visco-plastic response and microstructure evolution of polycrystalline copper. It is observed that the novel implementation is able to speed up the overall VPFFT calculations because the conventional Newton-Raphson iterative solution procedure for single crystals in VPFFT is replaced by the more efficient SCP constitutive representation of the solution. As a result, the implementation facilitates efficient simulations of large voxel-based microstructures. Additionally, it provides an incentive for conceiving a multi-level SCP-VPFFT computational scheme. Here, every FFT point of the model is a polycrystal whose response is calculated using a Taylor-type homogenization.

  15. Simulation of ratcheting in straight pipes using ANSYS with an improved cyclic plasticity model

    International Nuclear Information System (INIS)

    Hassan, T.; Zhu, Y.; Matzen, V.C.

    1996-01-01

    Ratcheting has been shown to be a contributing cause of failure in several seismic experiments on piping components and systems. Most commercial finite element codes have been unable to simulate the ratcheting in those tests accurately. The reason for this can be traced to inadequate plasticity constitutive models in the analysis codes. The authors have incorporated an improved cyclic plasticity model, based on an Armstrong-Frederick kinematic hardening rule in conjunction with the Drucker-Palgen plastic modulus equation, into an ANSYS user subroutine. This modified analysis code has been able to simulate quite accurately the ratcheting behavior of a tube subjected to a constant internal pressure and axially strain controlled cycling. This paper describes simulations obtained form this modified ANSYS code for two additional tests: (1) a tube subjected to constant axial stress and prescribed torsional cycling, and (2) a straight pipe subjected to constant internal pressure and quasi-static cyclic bending. The analysis results from the modified ANSYS code are compared to the experimental data, as well as results from ABAQUS and the original ANSYS code. The resulting correlation shows a significant improvement over the original ANSYS and the ABAQUS codes

  16. A Coupled Crystal Plasticity and Anisotropic Yield Function Model to Identify the Anisotropic Plastic Properties and Friction Behavior of an AA 3003 Alloy

    Science.gov (United States)

    Bong, Hyuk Jong; Leem, Dohyun; Lee, Jinwoo; Ha, Jinjin; Lee, Myoung-Gyu

    2018-01-01

    A multi-scale simulation of the tip test, developed to determine the tribological characteristics of the back-extrusion process, was conducted on an AA 3003 alloy. A microstructure-level simulation, coupled with crystal plasticity finite element (CPFE) analysis, was utilized to characterize the macro-mechanical properties of the AA 3003. Owing to the limited size of the material provided, we performed CPFE analyses rather than multiple mechanical tests to determine the plastic anisotropy characteristics of the AA 3003 alloy. A three-dimensional finite element (FE) model of the tip test was developed using two different yield functions, namely the generalized von Mises yield function and Hill's (1948) yield function, with material parameters identified from the CPFE analyses. The results revealed the following: 1. The directionality observed during the tip test is governed by the plastic anisotropy, rather than the frictional conditions. 2. The plastic anisotropy results in different Coulomb friction values. Therefore, the anisotropy should be carefully addressed in the tip test.

  17. Singular solutions for the rigid plastic double slip and rotation model under plane strain

    Science.gov (United States)

    Alexandrov, S.; Lyamina, E.

    2018-02-01

    In the mechanics of granular and other materials the system of equations comprising the rigid plastic double slip and rotation model together with the stress equilibrium equations under plane strain conditions forms a hyperbolic system. Boundary value problems for this system of equations can involve a frictional interface. An envelope of characteristics may coincide with this interface. In this case, the solution is singular. In particular, some components of the strain rate tensor approach infinity in the vicinity of the frictional interface. Such behavior of solutions is in qualitative agreement with experimental data that show that a narrow layer of localized plastic deformation is often generated near frictional interfaces. The present paper deals with asymptotic analysis of the aforementioned system of equations in the vicinity of an envelope of characteristics. It is shown that the shear strain rate and the spin component in a local coordinate system connected to the envelope follow an inverse square root rule in its vicinity.

  18. Regularized finite element modeling of progressive failure in soils within nonlocal softening plasticity

    Science.gov (United States)

    Huang, Maosong; Qu, Xie; Lü, Xilin

    2017-11-01

    By solving a nonlinear complementarity problem for the consistency condition, an improved implicit stress return iterative algorithm for a generalized over-nonlocal strain softening plasticity was proposed, and the consistent tangent matrix was obtained. The proposed algorithm was embodied into existing finite element codes, and it enables the nonlocal regularization of ill-posed boundary value problem caused by the pressure independent and dependent strain softening plasticity. The algorithm was verified by the numerical modeling of strain localization in a plane strain compression test. The results showed that a fast convergence can be achieved and the mesh-dependency caused by strain softening can be effectively eliminated. The influences of hardening modulus and material characteristic length on the simulation were obtained. The proposed algorithm was further used in the simulations of the bearing capacity of a strip footing; the results are mesh-independent, and the progressive failure process of the soil was well captured.

  19. Elasto-plasticity of frame structure elements modeling and simulation of rods and beams

    CERN Document Server

    Öchsner, Andreas

    2014-01-01

    The finite element method is a powerful tool even for non-linear materials’ modeling. But commercial solutions are limited and many novel materials do not follow standard constitutive equations on a macroscopic scale. Thus, is it required that new constitutive equations are implemented into the finite element code. However, it is not sufficient to simply implement only the equations but also an appropriate integration algorithm for the constitutive equation must be provided. This book is restricted to one-dimensional plasticity in order to reduce and facilitate the mathematical formalism and theory and to concentrate on the basic ideas of elasto-plastic finite element procedures. A comprehensive set of completely solved problems is designed for the thorough understand of the presented theory. After working with this new book and reviewing the provided solved and supplementary problems, it should be much easier to study and understand the advanced theory and the respective text books.

  20. Calibration of a Plastic Classification System with the CCW Model; Calibracion de un Sistema de Clasification de Plasticos segun el Modelo CCW

    Energy Technology Data Exchange (ETDEWEB)

    Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Navarrete Marin, J. J.; Oller Gonzalez, J. C.

    2003-07-01

    This document describes the calibration of a plastic Classification system with the CCW model (Classification by Quaternions built Wavelet Coefficients). The method is applied to spectra of plastics usually present in domestic wastes. Obtained results are showed. (Author) 16 refs.

  1. A Constitutive Model for Soft Clays Incorporating Elastic and Plastic Cross-Anisotropy.

    Science.gov (United States)

    Castro, Jorge; Sivasithamparam, Nallathamby

    2017-05-25

    Natural clays exhibit a significant degree of anisotropy in their fabric, which initially is derived from the shape of the clay platelets, deposition process and one-dimensional consolidation. Various authors have proposed anisotropic elastoplastic models involving an inclined yield surface to reproduce anisotropic behavior of plastic nature. This paper presents a novel constitutive model for soft structured clays that includes anisotropic behavior both of elastic and plastic nature. The new model incorporates stress-dependent cross-anisotropic elastic behavior within the yield surface using three independent elastic parameters because natural clays exhibit cross-anisotropic (or transversely isotropic) behavior after deposition and consolidation. Thus, the model only incorporates an additional variable with a clear physical meaning, namely the ratio between horizontal and vertical stiffnesses, which can be analytically obtained from conventional laboratory tests. The model does not consider evolution of elastic anisotropy, but laboratory results show that large strains are necessary to cause noticeable changes in elastic anisotropic behavior. The model is able to capture initial non-vertical effective stress paths for undrained triaxial tests and to predict deviatoric strains during isotropic loading or unloading.

  2. Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Marko, E-mail: knezevic@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lebensohn, Ricardo A. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cazacu, Oana; Revil-Baudard, Benoit [Department of Mechanical and Aerospace Engineering, University of Florida, REEF, 1350 N Poquito Road, Shalimar, FL 32539 (United States); Proust, Gwénaëlle [School of Civil Engineering, University of Sydney, NSW 2006 (Australia); Vogel, Sven C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States); Nixon, Michael E. [Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL 32542 (United States)

    2013-03-01

    An accurate description of the mechanical response of α-titanium requires consideration of mechanical anisotropy. In this work we adapt a polycrystal self-consistent model embedded in finite elements to simulate deformation of textured α-titanium under quasi-static conditions at room temperature. Monotonic tensile and compressive macroscopic stress–strain curves, electron backscattered diffraction and neutron diffraction data are used to calibrate and validate the model. We show that the model captures with great accuracy the anisotropic strain hardening and texture evolution in the material. Comparisons between predictions and experimental data allow us to elucidate the role that the different plastic deformation mechanisms play in determining microstructure and texture evolution. The polycrystal model, embedded in an implicit finite element code, is then used to simulate geometrical changes in bending experiments of α-titanium bars. These predictions, together with results of a macroscopic orthotropic elasto-plastic model that accounts for evolving anisotropy, are compared with the experiments. Both models accurately capture the experimentally observed upward shift of the neutral axis as well as the rigidity of the material response along hard-to-deform crystallographic direction.

  3. Efficacy of tray adhesives for the adhesion of elastomer rubber impression materials to impression modeling plastics for border molding.

    Science.gov (United States)

    Nishigawa, G; Sato, T; Suenaga, K; Minagi, S

    1998-02-01

    Tray adhesive, which is used for the adhesion of elastomer rubber impression materials to a custom resin tray, lowers the retention of the impression materials to the impression modeling plastics, as some ingredients of tray adhesive make the impression modeling plastic soft and tacky. The efficacy of tray adhesive, which is used for the adhesion of elastomer rubber impression materials to a custom resin tray, on the adhesion between elastomer rubber impression material and impression modeling plastic was investigated. Four silicone rubber impression materials (two addition reaction types and two condensation reaction types), two polysulfide rubber impression materials, and one impression modeling plastic were used in this study. Tensile strength between elastomer rubber impression material and impression modeling plastic with or without the application of tray adhesive was evaluated. Although tray adhesives for both addition reaction type and both condensation reaction type of silicone impression materials and one tray adhesive for polysulfide rubber impression material increased the tensile strength between the impression material and impression modeling plastic, one tray adhesive for polysulfide rubber impression material decreased the tensile strength when sufficient drying time was not applied.

  4. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems

    Science.gov (United States)

    Gerya, Taras V.; Yuen, David A.

    2007-08-01

    We have extended our previous 2D method [Gerya, T.V., Yuen, D.A., 2003. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Interiors 140, 295-320], which is a combination of conservative finite-differences with marker-in-cell techniques to include the effects of visco-elasto-plastic rheology, self-gravitation and a self-consistently derived evolving curvilinear planetary surface. This code is called I2ELVIS and can solve a new class of computationally challenging problems in geodynamics, such as shear localization with large strains, crustal intrusion emplacement of magmas, bending of realistic visco-elasto-plastic plates and core-formation by vigorous shell tectonics activities related to a global Rayleigh-Taylor instability of a metal layer formed around silicate-rich lower density (primordial) core during planetary accretion. We discuss in detail the computational strategy required the rheological constraints to be satisfied at each time step and spatial location. We show analytical benchmarks and examples drawn from comparing between numerical and analogue experiments in structural geology, subducting slab bending with a visco-elasto-plastic rheology and equilibrium spherical configurations from self-gravitation. We have also tested possibilities of future applications by addressing 3D geometries based on multigrid method and including inertial effects in the momentum equation with tracers in order to simulate meteoritic impact events and eventually earthquake instabilities.

  5. Structural plasticity in the dentate gyrus- revisiting a classic injury model.

    Directory of Open Access Journals (Sweden)

    Julia V. Perederiy

    2013-02-01

    Full Text Available The adult brain is in a continuous state of remodeling. This is nowhere more true than in the dentate gyrus, where competing forces such as neurodegeneration and neurogenesis dynamically modify neuronal connectivity, and can occur simultaneously. This plasticity of the adult nervous system is particularly important in the context of traumatic brain injury or deafferentation. In this review, we summarize a classic injury model, lesioning of the perforant path, which removes the main extrahippocampal input to the dentate gyrus. Early studies revealed that in response to deafferentation, axons of remaining fiber systems and dendrites of mature granule cells undergo lamina-specific changes, providing one of the first examples of structural plasticity in the adult brain. Given the increasing role of adult-generated new neurons in the function of the dentate gyrus, we also compare the response of newborn and mature granule cells following lesioning of the perforant path. These studies provide insights not only to plasticity in the dentate gyrus, but also to the response of neural circuits to brain injury.

  6. Formulation and computational aspects of plasticity and damage models with application to quasi-brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.; Schreyer, H.L. [New Mexico Engineering Research Institute, Albuquerque, NM (United States)

    1995-09-01

    The response of underground structures and transportation facilities under various external loadings and environments is critical for human safety as well as environmental protection. Since quasi-brittle materials such as concrete and rock are commonly used for underground construction, the constitutive modeling of these engineering materials, including post-limit behaviors, is one of the most important aspects in safety assessment. From experimental, theoretical, and computational points of view, this report considers the constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular. Based on the internal variable theory of thermodynamics, the general formulations of plasticity and damage models are given to simulate two distinct modes of microstructural changes, inelastic flow and degradation of material strength and stiffness, that identify the phenomenological nonlinear behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are explored with respect to their effects on structural analyses. Specific constitutive models are then developed in a systematic manner according to the degree of completeness. A comprehensive literature survey is made to provide the up-to-date information on prediction of structural failures, which can serve as a reference for future research.

  7. A study of gradient strengthening based on a finite-deformation gradient crystal-plasticity model

    Science.gov (United States)

    Pouriayevali, Habib; Xu, Bai-Xiang

    2017-11-01

    A comprehensive study on a finite-deformation gradient crystal-plasticity model which has been derived based on Gurtin's framework (Int J Plast 24:702-725, 2008) is carried out here. This systematic investigation on the different roles of governing components of the model represents the strength of this framework in the prediction of a wide range of hardening behaviors as well as rate-dependent and scale-variation responses in a single crystal. The model is represented in the reference configuration for the purpose of numerical implementation and then implemented in the FEM software ABAQUS via a user-defined subroutine (UEL). Furthermore, a function of accumulation rates of dislocations is employed and viewed as a measure of formation of short-range interactions. Our simulation results reveal that the dissipative gradient strengthening can be identified as a source of isotropic-hardening behavior, which may represent the effect of irrecoverable work introduced by Gurtin and Ohno (J Mech Phys Solids 59:320-343, 2011). Here, the variation of size dependency at different magnitude of a rate-sensitivity parameter is also discussed. Moreover, an observation of effect of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the reference configuration is reported in this study for the first time. In addition, plastic flows in predefined slip systems and expansion of accumulation of GNDs are distinctly observed in varying scales and under different loading conditions.

  8. Predictive model for the Dutch post-consumer plastic packaging recycling system and implications for the circular economy.

    Science.gov (United States)

    Brouwer, Marieke T; Thoden van Velzen, Eggo U; Augustinus, Antje; Soethoudt, Han; De Meester, Steven; Ragaert, Kim

    2018-01-01

    The Dutch post-consumer plastic packaging recycling network has been described in detail (both on the level of packaging types and of materials) from the household potential to the polymeric composition of the recycled milled goods. The compositional analyses of 173 different samples of post-consumer plastic packaging from different locations in the network were combined to indicatively describe the complete network with material flow analysis, data reconciliation techniques and process technological parameters. The derived potential of post-consumer plastic packages in the Netherlands in 2014 amounted to 341 Gg net (or 20.2 kg net.cap -1 .a -1 ). The complete recycling network produced 75.2 Gg milled goods, 28.1 Gg side products and 16.7 Gg process waste. Hence the net recycling chain yield for post-consumer plastic packages equalled 30%. The end-of-life fates for 35 different plastic packaging types were resolved. Additionally, the polymeric compositions of the milled goods and the recovered masses were derived with this model. These compositions were compared with experimentally determined polymeric compositions of recycled milled goods, which confirmed that the model predicts these compositions reasonably well. Also the modelled recovered masses corresponded reasonably well with those measured experimentally. The model clarified the origin of polymeric contaminants in recycled plastics, either sorting faults or packaging components, which gives directions for future improvement measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Basic Plastic Surgery Skills Training Program on Inanimate Bench Models during Medical Graduation

    Directory of Open Access Journals (Sweden)

    Rafael Denadai

    2012-01-01

    Full Text Available Due to ethical and medical-legal drawbacks, high costs, and difficulties of accessibility that are inherent to the practice of basic surgical skills on living patients, fresh human cadaver, and live animals, the search for alternative forms of training is needed. In this study, the teaching and learning process of basic surgical skills pertinent to plastic surgery during medical education on different inanimate bench models as a form of alternative and complementary training to the teaching programs already established is proposed.

  10. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra.

    Science.gov (United States)

    Kumar, Jagadish; Ananthakrishna, G

    2018-01-01

    Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum

  11. Elasto-plastic model to determine the maximum force for shaft straightening process

    Directory of Open Access Journals (Sweden)

    Juan Camilo Galvis Salazar

    2017-05-01

    Full Text Available This paper shows the development of a mathematical model based on elasto-plastic behavior of materials in order to determine the bending moment and the maximum straightening force required to repair a bent shaft. The importance of this work is because many machines use shafts to transmit power and movement, and these elements can suffer permanent deflections during operation cycles. An appropriate reparation process can increase the life of these elements significantly. Knowing the mechanics for a straightening process is essential for design, processes and maintenance engineers in charge of systems that use these elements (shafts.

  12. A decision-making model based on a spiking neural circuit and synaptic plasticity.

    Science.gov (United States)

    Wei, Hui; Bu, Yijie; Dai, Dawei

    2017-10-01

    To adapt to the environment and survive, most animals can control their behaviors by making decisions. The process of decision-making and responding according to cues in the environment is stable, sustainable, and learnable. Understanding how behaviors are regulated by neural circuits and the encoding and decoding mechanisms from stimuli to responses are important goals in neuroscience. From results observed in Drosophila experiments, the underlying decision-making process is discussed, and a neural circuit that implements a two-choice decision-making model is proposed to explain and reproduce the observations. Compared with previous two-choice decision making models, our model uses synaptic plasticity to explain changes in decision output given the same environment. Moreover, biological meanings of parameters of our decision-making model are discussed. In this paper, we explain at the micro-level (i.e., neurons and synapses) how observable decision-making behavior at the macro-level is acquired and achieved.

  13. Doppler ultrasound compatible plastic material for use in rigid flow models.

    Science.gov (United States)

    Wong, Emily Y; Thorne, Meghan L; Nikolov, Hristo N; Poepping, Tamie L; Holdsworth, David W

    2008-11-01

    A technique for the rapid but accurate fabrication of multiple flow phantoms with variations in vascular geometry would be desirable in the investigation of carotid atherosclerosis. This study demonstrates the feasibility and efficacy of implementing numerically controlled direct-machining of vascular geometries into Doppler ultrasound (DUS)-compatible plastic for the easy fabrication of DUS flow phantoms. Candidate plastics were tested for longitudinal speed of sound (SoS) and acoustic attenuation at the diagnostic frequency of 5 MHz. Teflon was found to have the most appropriate SoS (1376 +/- 40 m s(-1) compared with 1540 m s(-1) in soft tissue) and thus was selected to construct a carotid bifurcation flow model with moderate eccentric stenosis. The vessel geometry was machined directly into Teflon using a numerically controlled milling technique. Geometric accuracy of the phantom lumen was verified using nondestructive micro-computed tomography. Although Teflon displayed a higher attenuation coefficient than other tested materials, Doppler data acquired in the Teflon flow model indicated that sufficient signal power was delivered throughout the depth of the vessel and provided comparable velocity profiles to that obtained in the tissue-mimicking phantom. Our results indicate that Teflon provides the best combination of machinability and DUS compatibility, making it an appropriate choice for the fabrication of rigid DUS flow models using a direct-machining method.

  14. Nonlinear analysis of pre-stressed concrete containment vessel (PCCV) using the damage plasticity model

    Energy Technology Data Exchange (ETDEWEB)

    Shokoohfar, Ahmad; Rahai, Alireza, E-mail: rahai@aut.ac.ir

    2016-03-15

    Highlights: • This paper describes nonlinear analyses of a 1:4 scale model of a (PCCV). • Coupled temp-disp. analysis and concrete damage plasticity are considered. • Temperature has limited effects on correct failure mode estimation. • Higher pre-stressing forces have limited effects on ultimate radial displacements. • Anchorage details of liner plates leads to prediction of correct failure mode. - Abstract: This paper describes the nonlinear analyses of a 1:4 scale model of a pre-stressed concrete containment vessel (PCCV). The analyses are performed under pressure and high temperature effects with considering anchorage details of liner plate. The temperature-time history of the model test is considered as an input boundary condition in the coupled temp-displacement analysis. The constitutive model developed by Chang and Mander (1994) is adopted in the model as the basis for the concrete stress–strain relation. To trace the crack pattern of the PCCV concrete faces, the concrete damage plasticity model is applied. This study includes the results of the thermal and mechanical behaviors of the PCCV subject to temperature loading and internal pressure at the same time. The test results are compared with the analysis results. The analysis results show that the temperature has little impact on the ultimate pressure capacity of the PCCV. To simulate the exact failure mode of the PCCV, the anchorage details of the liner plates around openings should be maintained in the analytical models. Also the failure mode of the PCCV structure hasn’t influenced by hoop tendons pre-stressing force variations.

  15. Predictions of localized plastic flow conditions in irradiated zircaloy using a unified phenomenological model

    International Nuclear Information System (INIS)

    Miller, A.K.

    1977-01-01

    A general-purpose constitutive model for the non-elastic deformation of metals and alloys has recently been developed. This model is aimed at improved analysis of high-temperature structures in general and light-water reactor cladding in particular. Accordingly, detailed work has been undertaken to apply the model to the in-reactor behavior of zircaloy, and to verify that the model does, in fact, simulate the deformation of zircaloy in a realistic manner. It is the purpose of this paper to present some of these results, especially as regards strain softening and localized plastic flow. The model is phenomenological in that it is formulated at the macroscopic level and thus predicts the interrelationship of macroscopic variables such as stress, strain rate, temperature, and history but the overall format of the model is based on the microscopic dislocation mechanisms underlying non-elastic deformation. The equations simulate a wide variety of phenomena such as transient and steady-state creep; short-time plasticity; cyclic hardening, softening, and saturation; static and dynamic recovery; dynamic strain aging effects; complex stress, strain rate, and temperature histories; and interactions of all of these. The effects of fluence, cold work, and post-irradiation strain rate have been examined analytically. For annealed material, with increasing fluence (1) the simulated yield strength increases (up to saturation), (2) the magnitude of the stress drop during strain softening increases, and (3) the strain at which the stress goes through a minimum increases. Prior cold work tends to suppress the simulated strain softening in irradiated material. Unirradiated, cold-worked material having a yield strength level equal to that of annealed, irradiated material does not show strain softening in the simulations. With increasing strain rate, the strain-softening portion of the stress-strain curve takes a larger amount of strain

  16. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation

    Directory of Open Access Journals (Sweden)

    Leonardo Furlan

    2016-01-01

    Full Text Available Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well.

  17. Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-01-01

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414

  18. Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes. Part B. Modeling

    KAUST Repository

    Lee, Jong Suk

    2010-03-15

    A previous paper characterized effects of exposure of Matrimid® asymmetric fibers to either toluene or n-heptane or a combination of both contaminants during permeation. In all cases, reductions in the carbon dioxide permeance and the carbon dioxide/methane selectivity were observed for both annealed and non-annealed samples. In this paper, the respective potential impacts of competitive sorption, fiber compaction, and antiplasticization/plasticization on membrane performance during contaminant exposure are quantified and analyzed. The combined impact of competitive sorption and antiplasticization/plasticization are shown to account for the loss in membrane performance observed during exposure to highly sorbing feed stream contaminants. The dual mode transport model for penetrant mixtures was used to explain reduction in CO2 permeance due to competitive sorption effects, while free volume-based modeling explained decrease in CO2 permeance due to antiplasticization. Finally, the impact on CO2 permeance during exposure of the annealed Matrimid® fibers to contaminants is analyzed. The analysis is based on reduction in segmental mobility expected due to reduction of residual unrelaxed volume as compared to unanealed sample. © 2010.

  19. Mathematical modelling of phenotypic plasticity and conversion to a stem-cell state under hypoxia

    Science.gov (United States)

    Dhawan, Andrew; Madani Tonekaboni, Seyed Ali; Taube, Joseph H.; Hu, Stephen; Sphyris, Nathalie; Mani, Sendurai A.; Kohandel, Mohammad

    2016-02-01

    Hypoxia, or oxygen deficiency, is known to be associated with breast tumour progression, resistance to conventional therapies and poor clinical prognosis. The epithelial-mesenchymal transition (EMT) is a process that confers invasive and migratory capabilities as well as stem cell properties to carcinoma cells thus promoting metastatic progression. In this work, we examined the impact of hypoxia on EMT-associated cancer stem cell (CSC) properties, by culturing transformed human mammary epithelial cells under normoxic and hypoxic conditions, and applying in silico mathematical modelling to simulate the impact of hypoxia on the acquisition of CSC attributes and the transitions between differentiated and stem-like states. Our results indicate that both the heterogeneity and the plasticity of the transformed cell population are enhanced by exposure to hypoxia, resulting in a shift towards a more stem-like population with increased EMT features. Our findings are further reinforced by gene expression analyses demonstrating the upregulation of EMT-related genes, as well as genes associated with therapy resistance, in hypoxic cells compared to normoxic counterparts. In conclusion, we demonstrate that mathematical modelling can be used to simulate the role of hypoxia as a key contributor to the plasticity and heterogeneity of transformed human mammary epithelial cells.

  20. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation

    Science.gov (United States)

    Furlan, Leonardo; Conforto, Adriana Bastos; Cohen, Leonardo G.; Sterr, Annette

    2016-01-01

    Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well. PMID:26843992

  1. Experiment-based modelling of hardening and localized plasticity in metals irradiated under cascade damage conditions

    International Nuclear Information System (INIS)

    Singh, B.N.; Ghoniem, N.M.; Trinkaus, H.

    2002-01-01

    The analysis of the available experimental observations shows that the occurrence of a sudden yield drop and the associated plastic flow localization are the major concerns regarding the performance and lifetime of materials exposed to fission or fusion neutrons. In the light of the known mechanical properties and microstructures of the as-irradiated and irradiated and deformed materials, it has been argued that the increase in the upper yield stress, the sudden yield drop and the initiation of plastic flow localization, can be rationalized in terms of the cascade induced source hardening (CISH) model. Various aspects of the model (main assumptions and predictions) have been investigated using analytical calculations, 3-D dislocation dynamics and molecular dynamics simulations. The main results and conclusions are briefly summarized. Finally, it is pointed out that even though the formation of cleared channels may be rationalized in terms of climb-controlled glide of the source dislocation, a number of problems regarding the initiation and the evolution of these channels remain unsolved

  2. Experiment-based modelling of hardening and localized plasticity in metals irradiated under cascade damage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N. E-mail: bachu.singh@risoe.dk; Ghoniem, N.M.; Trinkaus, H

    2002-12-01

    The analysis of the available experimental observations shows that the occurrence of a sudden yield drop and the associated plastic flow localization are the major concerns regarding the performance and lifetime of materials exposed to fission or fusion neutrons. In the light of the known mechanical properties and microstructures of the as-irradiated and irradiated and deformed materials, it has been argued that the increase in the upper yield stress, the sudden yield drop and the initiation of plastic flow localization, can be rationalized in terms of the cascade induced source hardening (CISH) model. Various aspects of the model (main assumptions and predictions) have been investigated using analytical calculations, 3-D dislocation dynamics and molecular dynamics simulations. The main results and conclusions are briefly summarized. Finally, it is pointed out that even though the formation of cleared channels may be rationalized in terms of climb-controlled glide of the source dislocation, a number of problems regarding the initiation and the evolution of these channels remain unsolved.

  3. Enhanced long term microcircuit plasticity in the valproic acid animal model of autism

    Directory of Open Access Journals (Sweden)

    Guilherme T Silva

    2009-06-01

    Full Text Available A single intra-peritoneal injection of valproic acid (VPA on embryonic day (ED 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a mini-column (<50μm. In the present study, we explored whether Long Term Microcircuit Plasticity (LTMP was altered in this animal model. We performed multi-neuron patch-clamp recordings on clusters of layer V pyramidal cells in somatosensory cortex brain slices (PN 12-15, mapped the connectivity and characterized the synaptic properties for connected neurons. Pipettes were then withdrawn and the slice was perfused with 100μM sodium glutamate in artificial cerebrospinal fluid in the recording chamber for 12 h. When we re-patched the same cluster of neurons, we found enhanced LTMP only at inter-somatic distances beyond minicolumnar dimensions. These data suggest that hyperconnectivity is already near its peak within the dimensions of the minicolumn in the treated animals and that LTMP, which is normally restricted to within a minicolumn, spills over to drive hyperconnectivity across the dimensions of a minicolumn. This study provides further evidence to support the notion that the neocortex is highly plastic in response to new experiences in this animal model of autism.

  4. Reelin supplementation recovers synaptic plasticity and cognitive deficits in a mouse model for Angelman syndrome.

    Science.gov (United States)

    Hethorn, Whitney R; Ciarlone, Stephanie L; Filonova, Irina; Rogers, Justin T; Aguirre, Daniela; Ramirez, Raquel A; Grieco, Joseph C; Peters, Melinda M; Gulick, Danielle; Anderson, Anne E; L Banko, Jessica; Lussier, April L; Weeber, Edwin J

    2015-05-01

    The Reelin signaling pathway is implicated in processes controlling synaptic plasticity and hippocampus-dependent learning and memory. A single direct in vivo application of Reelin enhances long-term potentiation, increases dendritic spine density and improves associative and spatial learning and memory. Angelman syndrome (AS) is a neurological disorder that presents with an overall defect in synaptic function, including decreased long-term potentiation, reduced dendritic spine density, and deficits in learning and memory, making it an attractive model in which to examine the ability of Reelin to recover synaptic function and cognitive deficits. In this study, we investigated the effects of Reelin administration on synaptic plasticity and cognitive function in a mouse model of AS and demonstrated that bilateral, intraventricular injections of Reelin recover synaptic function and corresponding hippocampus-dependent associative and spatial learning and memory. Additionally, we describe alteration of the Reelin profile in tissue from both the AS mouse and post-mortem human brain. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Measuring and modeling maize evapotranspiration under plastic film-mulching condition

    Science.gov (United States)

    Li, Sien; Kang, Shaozhong; Zhang, Lu; Ortega-Farias, Samuel; Li, Fusheng; Du, Taisheng; Tong, Ling; Wang, Sufen; Ingman, Mark; Guo, Weihua

    2013-10-01

    Plastic film-mulching techniques have been widely used over a variety of agricultural crops for saving water and improving yield. Accurate estimation of crop evapotranspiration (ET) under the film-mulching condition is critical for optimizing crop water management. After taking the mulching effect on soil evaporation (Es) into account, our study adjusted the original Shuttleworth-Wallace model (MSW) in estimating maize ET and Es under the film-mulching condition. Maize ET and Es respectively measured by eddy covariance and micro-lysimeter methods during 2007 and 2008 were used to validate the performance of the Penman-Monteith (PM), the original Shuttleworth-Wallace (SW) and the MSW models in arid northwest China. Results indicate that all three models significantly overestimated ET during the initial crop stage in the both years, which may be due to the underestimation of canopy resistance induced by the Jarvis model for the drought stress in the stage. For the entire experimental period, the SW model overestimated half-hourly maize ET by 17% compared with the eddy covariance method (ETEC) and overestimated daily Es by 241% compared with the micro-lysimeter measurements (EL), while the PM model only underestimated daily maize ET by 6%, and the MSW model only underestimated half-hourly maize ET by 2% and Es by 7% during the whole period. Thus the PM and MSW models significantly improved the accuracy against the original SW model and can be used to estimate ET and Es under the film-mulching condition.

  6. The Finite Strain Johnson Cook Plasticity and Damage Constitutive Model in ALEGRA.

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Jason James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    A finite strain formulation of the Johnson Cook plasticity and damage model and it's numerical implementation into the ALEGRA code is presented. The goal of this work is to improve the predictive material failure capability of the Johnson Cook model. The new implementation consists of a coupling of damage and the stored elastic energy as well as the minimum failure strain criteria for spall included in the original model development. This effort establishes the necessary foundation for a thermodynamically consistent and complete continuum solid material model, for which all intensive properties derive from a common energy. The motivation for developing such a model is to improve upon ALEGRA's present combined model framework. Several applications of the new Johnson Cook implementation are presented. Deformation driven loading paths demonstrate the basic features of the new model formulation. Use of the model produces good comparisons with experimental Taylor impact data. Localized deformation leading to fragmentation is produced for expanding ring and exploding cylinder applications.

  7. Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity

    Science.gov (United States)

    Quinn, K. J.; Didier, A. J.; Baker, J. F.; Peterson, B. W.

    1998-01-01

    A simple model of vestibuloocular reflex (VOR) function was used to analyze several hypotheses currently held concerning the characteristics of VOR plasticity. The network included a direct vestibular pathway and an indirect path via the cerebellum. An optimization analysis of this model suggests that regulation of brain stem sites is critical for the proper modification of VOR gain. A more physiologically plausible learning rule was also applied to this network. Analysis of these simulation results suggests that the preferred error correction signal controlling gain modification of the VOR is the direct output of the accessory optic system (AOS) to the vestibular nuclei vs. a signal relayed through the cerebellum via floccular Purkinje cells. The potential anatomical and physiological basis for this conclusion is discussed, in relation to our current understanding of the latency of the adapted VOR response.

  8. Strain gradient plasticity-based modeling of hydrogen environment assisted cracking

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof; P. Gangloff, Richard

    2016-01-01

    to predict hydrogen environment assisted crack growth properties. SGP elevates crack tip geometrically necessary dislocation density and flow stress, with enhancement declining with increasing alloy strength. Elevated hydrostatic stress promotes high-trapped H concentration for crack tip damage......Finite element analysis of stress about a blunt crack tip, emphasizing finite strain and phenomenologicaland mechanism-based strain gradient plasticity (SGP) formulations, is integrated with electrochemical assessment of occluded-crack tip hydrogen (H) solubility and two H-decohesion models......; it is imperative to account for SGP in H cracking models. Predictions of the threshold stress intensity factor and H-diffusion limited Stage II crack growth rate agree with experimental data for a high strength austenitic Ni-Cusuperalloy (Monel®K-500) and two modern ultra-high strength martensitic steels (Aer...

  9. A Computational Model of the Temporal Dynamics of Plasticity in Procedural Learning: Sensitivity to Feedback Timing

    Directory of Open Access Journals (Sweden)

    Vivian V. Valentin

    2014-07-01

    Full Text Available The evidence is now good that different memory systems mediate the learning of different types of category structures. In particular, declarative memory dominates rule-based (RB category learning and procedural memory dominates information-integration (II category learning. For example, several studies have reported that feedback timing is critical for II category learning, but not for RB category learning – results that have broad support within the memory systems literature. Specifically, II category learning has been shown to be best with feedback delays of 500ms compared to delays of 0 and 1000ms, and highly impaired with delays of 2.5 seconds or longer. In contrast, RB learning is unaffected by any feedback delay up to 10 seconds. We propose a neurobiologically detailed theory of procedural learning that is sensitive to different feedback delays. The theory assumes that procedural learning is mediated by plasticity at cortical-striatal synapses that are modified by dopamine-mediated reinforcement learning. The model captures the time-course of the biochemical events in the striatum that cause synaptic plasticity, and thereby accounts for the empirical effects of various feedback delays on II category learning.

  10. Musicians and music making as a model for the study of brain plasticity.

    Science.gov (United States)

    Schlaug, Gottfried

    2015-01-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of sensory and motor skills over the course of a musician's lifetime. Thus, musicians offer an excellent human model for studying behavioral-cognitive as well as brain effects of acquiring, practicing, and maintaining these specialized skills. Research has shown that repeatedly practicing the association of motor actions with specific sound and visual patterns (musical notation), while receiving continuous multisensory feedback will strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) as well as multimodal integration regions. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. Furthermore, the plasticity of this system as a result of long term and intense interventions suggest the potential for music making activities (e.g., forms of singing) as an intervention for neurological and developmental disorders to learn and relearn associations between auditory and motor functions such as vocal motor functions. © 2015 Elsevier B.V. All rights reserved.

  11. Miglustat Reverts the Impairment of Synaptic Plasticity in a Mouse Model of NPC Disease

    Directory of Open Access Journals (Sweden)

    G. D’Arcangelo

    2016-01-01

    Full Text Available Niemann-Pick type C disease is an autosomal recessive storage disorder, characterized by abnormal sequestration of unesterified cholesterol within the late endolysosomal compartment of cells and accumulation of gangliosides and other sphingolipids. Progressive neurological deterioration and insurgence of symptoms like ataxia, seizure, and cognitive decline until severe dementia are pathognomonic features of the disease. Here, we studied synaptic plasticity phenomena and evaluated ERKs activation in the hippocampus of BALB/c NPC1−/− mice, a well described animal model of the disease. Our results demonstrated an impairment of both induction and maintenance of long term synaptic potentiation in NPC1−/− mouse slices, associated with the lack of ERKs phosphorylation. We then investigated the effects of Miglustat, a recent approved drug for the treatment of NPCD. We found that in vivo Miglustat administration in NPC1−/− mice was able to rescue synaptic plasticity deficits, to restore ERKs activation and to counteract hyperexcitability. Overall, these data indicate that Miglustat may be effective for treating the neurological deficits associated with NPCD, such as seizures and dementia.

  12. Cognitive endophenotypes, gene-environment interactions and experience-dependent plasticity in animal models of schizophrenia.

    Science.gov (United States)

    Burrows, Emma L; Hannan, Anthony J

    2016-04-01

    Schizophrenia is a devastating brain disorder caused by a complex and heterogeneous combination of genetic and environmental factors. In order to develop effective new strategies to prevent and treat schizophrenia, valid animal models are required which accurately model the disorder, and ideally provide construct, face and predictive validity. The cognitive deficits in schizophrenia represent some of the most debilitating symptoms and are also currently the most poorly treated. Therefore it is crucial that animal models are able to capture the cognitive dysfunction that characterizes schizophrenia, as well as the negative and psychotic symptoms. The genomes of mice have, prior to the recent gene-editing revolution, proven the most easily manipulable of mammalian laboratory species, and hence most genetic targeting has been performed using mouse models. Importantly, when key environmental factors of relevance to schizophrenia are experimentally manipulated, dramatic changes in the phenotypes of these animal models are often observed. We will review recent studies in rodent models which provide insight into gene-environment interactions in schizophrenia. We will focus specifically on environmental factors which modulate levels of experience-dependent plasticity, including environmental enrichment, cognitive stimulation, physical activity and stress. The insights provided by this research will not only help refine the establishment of optimally valid animal models which facilitate development of novel therapeutics, but will also provide insight into the pathogenesis of schizophrenia, thus identifying molecular and cellular targets for future preclinical and clinical investigations. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity.

    Directory of Open Access Journals (Sweden)

    Quan Wang

    2017-08-01

    Full Text Available The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating motor sequence learning in adult human subjects have produced a number of puzzling and seemingly contradictory results. In particular, when subjects have to learn multiple action sequences, learning is sometimes impaired by proactive and retroactive interference effects. In other situations, however, learning is accelerated as reflected in facilitation and transfer effects. At present it is unclear what the underlying neural mechanism are that give rise to these diverse findings. Here we show that a recently developed recurrent neural network model readily reproduces this diverse set of findings. The self-organizing recurrent neural network (SORN model is a network of recurrently connected threshold units that combines a simplified form of spike-timing dependent plasticity (STDP with homeostatic plasticity mechanisms ensuring network stability, namely intrinsic plasticity (IP and synaptic normalization (SN. When trained on sequence learning tasks modeled after recent experiments we find that it reproduces the full range of interference, facilitation, and transfer effects. We show how these effects are rooted in the network's changing internal representation of the different sequences across learning and how they depend on an interaction of training schedule and task similarity. Furthermore, since learning in the model is based on fundamental neuronal plasticity mechanisms, the model reveals how these plasticity mechanisms are ultimately responsible for the network's sequence learning abilities. In particular, we find that all three plasticity mechanisms are essential for the network to learn effective internal models of the different training sequences. This ability to form effective internal models is also the basis for the observed interference and facilitation effects. This suggests that

  14. A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity.

    Science.gov (United States)

    Wang, Quan; Rothkopf, Constantin A; Triesch, Jochen

    2017-08-01

    The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating motor sequence learning in adult human subjects have produced a number of puzzling and seemingly contradictory results. In particular, when subjects have to learn multiple action sequences, learning is sometimes impaired by proactive and retroactive interference effects. In other situations, however, learning is accelerated as reflected in facilitation and transfer effects. At present it is unclear what the underlying neural mechanism are that give rise to these diverse findings. Here we show that a recently developed recurrent neural network model readily reproduces this diverse set of findings. The self-organizing recurrent neural network (SORN) model is a network of recurrently connected threshold units that combines a simplified form of spike-timing dependent plasticity (STDP) with homeostatic plasticity mechanisms ensuring network stability, namely intrinsic plasticity (IP) and synaptic normalization (SN). When trained on sequence learning tasks modeled after recent experiments we find that it reproduces the full range of interference, facilitation, and transfer effects. We show how these effects are rooted in the network's changing internal representation of the different sequences across learning and how they depend on an interaction of training schedule and task similarity. Furthermore, since learning in the model is based on fundamental neuronal plasticity mechanisms, the model reveals how these plasticity mechanisms are ultimately responsible for the network's sequence learning abilities. In particular, we find that all three plasticity mechanisms are essential for the network to learn effective internal models of the different training sequences. This ability to form effective internal models is also the basis for the observed interference and facilitation effects. This suggests that STDP, IP, and SN

  15. Modeling the Dynamic Failure of Railroad Tank Cars Using a Physically Motivated Internal State Variable Plasticity/Damage Nonlocal Model

    Directory of Open Access Journals (Sweden)

    Fazle R. Ahad

    2013-01-01

    Full Text Available We used a physically motivated internal state variable plasticity/damage model containing a mathematical length scale to idealize the material response in finite element simulations of a large-scale boundary value problem. The problem consists of a moving striker colliding against a stationary hazmat tank car. The motivations are (1 to reproduce with high fidelity finite deformation and temperature histories, damage, and high rate phenomena that may arise during the impact accident and (2 to address the material postbifurcation regime pathological mesh size issues. We introduce the mathematical length scale in the model by adopting a nonlocal evolution equation for the damage, as suggested by Pijaudier-Cabot and Bazant in the context of concrete. We implement this evolution equation into existing finite element subroutines of the plasticity/failure model. The results of the simulations, carried out with the aid of Abaqus/Explicit finite element code, show that the material model, accounting for temperature histories and nonlocal damage effects, satisfactorily predicts the damage progression during the tank car impact accident and significantly reduces the pathological mesh size effects.

  16. A contribution to the modeling of metal plasticity and fracture: From continuum to discrete descriptions

    Science.gov (United States)

    Keralavarma, Shyam Mohan

    The objective of this dissertation is to further the understanding of inelastic behavior in metallic materials. Despite the increasing use of polymeric composites in aircraft structures, high specific strength metals continue to be used in key components such as airframe, fuselage, wings, landing gear and hot engine parts. Design of metallic structures subjected to thermomechanical extremes in aerospace, automotive and nuclear applications requires consideration of the plasticity, creep and fracture behavior of these materials. Consideration of inelasticity and damage processes is also important in the design of metallic components used in functional applications such as thin films, flexible electronics and micro electro mechanical systems. Fracture mechanics has been largely successful in modeling damage and failure phenomena in a host of engineering materials. In the context of ductile metals, the Gurson void growth model remains one of the most successful and widely used models. However, some well documented limitations of the model in quantitative prediction of the fracture strains and failure modes at low triaxialities may be traceable to the limited representation of the damage microstructure in the model. In the first part of this dissertation, we develop an extended continuum model of void growth that takes into account details of the material microstructure such as the texture of the plastically deforming matrix and the evolution of the void shape. The need for such an extension is motivated by a detailed investigation of the effects of the two types of anisotropy on the materials' effective response using finite element analysis. The model is derived using the Hill--Mandel homogenization theory and an approximate limit analysis of a porous representative volume element. Comparisons with several numerical studies are presented towards a partial validation of the analytical model. Inelastic phenomena such as plasticity and creep result from the collective

  17. Modeling and Analysis of Size-Dependent Structural Problems by Using Low- Order Finite Elements with Strain Gradient Plasticity

    International Nuclear Information System (INIS)

    Park, Moon Shik; Suh, Yeong Sung; Song, Seung

    2011-01-01

    An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers

  18. Using numerical model simulations to improve the understanding of micro-plastic distribution and pathways in the marine environment

    NARCIS (Netherlands)

    Hardesty, Britta D.; Harari, Joseph; Isobe, Atsuhiko; Lebreton, Laurent; Maximenko, Nikolai; Potemra, Jim; van Sebille, Erik; Vethaak, A.Dick; Wilcox, Chris

    2017-01-01

    Numerical modeling is one of the key tools with which we can gain insight into the distribution of marine litter, especially micro-plastics. Over the past decade, a series of numerical simulations have been constructed that specifically target floating marine litter, based on ocean models of various

  19. Theory of a new elastic-plastic-viscous model and its application to the nuclear fuel mechanical analysis

    International Nuclear Information System (INIS)

    Moreno, A.

    1977-01-01

    In this work a new elastic-plastic-viscous model is described. The model is one of the multiple integral type, and has been included in a numerical code to predict the behaviour of a nuclear fuel of cylindrical form. Some features of this code are also described. (Author) 91 refs

  20. The creep low application for numerical modeling of elastic-plastic flows

    Science.gov (United States)

    Tyapin, Anatoly; Rudenko, Vladimir; Chekhunov, Evgeny; Shaburov, Michail

    1999-06-01

    The present paper demonstrates the applicability of Lomnitz logarithm creep law [1] in some approximated version for calculating the elastic-plastic flows. The model has been developed resulting from the intention to have appropriate calculation approximation for particle-velocity -vs-time histories observed in plate 6061-T6 Al samples of various thickness under shock loading and subsequent release and additional compression. The approximation is unique in the whole loading range, from very low to such that elastic precursor is swallowed up by plastic wave . The model is based on Lipkin and Asay [2] remark on scale similarity of the above mentioned particle velocity -vs-time histories for equal shock loading and on approximate equality of velocities that initial portions of release and recompression waves travel at. A Lomnitz creep law presents an ideal phenomenological tool providing both of the requirements be fulfilled at the same time. Its application to high rate processes of loading and release has required some law modification and a nontrivial review of the dislocation mechanism for stress relaxation. The agreement achieved with the experiment is illustrated in figures. The model is worked out and realized in the 1D user software MAG. 1. Lomnitz C. Joun. of Geology, 1956, vol. 64, p. 473-479. 2. Lipkin J., Asay J.R. J. Appl. Phys. ,1977, vol. 48, 1, p.182-189. 3. Johnson J., Barker L. J. Appl. Phys., 1969, vol. 40, 11, p. 4321-4334. 4. Asay J.R., Chhabildas L. M.: Metallurgia., 1984, p. 110-120.

  1. A Plastic Cortico-Striatal Circuit Model of Adaptation in Perceptual Decision

    Directory of Open Access Journals (Sweden)

    Pao-Yueh eHsiao

    2013-12-01

    Full Text Available The ability to optimize decisions and adapt them to changing environments is a crucial brain function that increase survivability. Although much has been learned about the neuronal activity in various brain regions that are associated with decision making, and about how the nervous systems may learn to achieve optimization, the underlying neuronal mechanisms of how the nervous systems optimize decision strategies with preference given to speed or accuracy, and how the systems adapt to changes in the environment, remain unclear. Based on extensive empirical observations, we addressed the question by extending a previously described cortico-basal ganglia circuit model of perceptual decisions with the inclusion of a dynamic dopamine (DA system that modulates spike-timing dependent plasticity. We found that, once an optimal model setting that maximized the reward rate was selected, the same setting automatically optimized decisions across different task environments through dynamic balancing between the facilitating and depressing components of the DA dynamics. Interestingly, other model parameters were also optimal if we considered the reward rate that was weighted by the subject’s preferences for speed or accuracy. Specifically, the circuit model favored speed if we increased the phasic DA response to the reward prediction error, whereas the model favored accuracy if we reduced the tonic DA activity or the phasic DA responses to the estimated reward probability. The proposed model provides insight into the roles of different components of DA responses in decision adaptation and optimization in a changing environment.

  2. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  3. Systems biology of synaptic plasticity: a review on N-methyl-D-aspartate receptor mediated biochemical pathways and related mathematical models.

    Science.gov (United States)

    He, Y; Kulasiri, D; Samarasinghe, S

    2014-08-01

    Synaptic plasticity, an emergent property of synaptic networks, has shown strong correlation to one of the essential functions of the brain, memory formation. Through understanding synaptic plasticity, we hope to discover the modulators and mechanisms that trigger memory formation. In this paper, we first review the well understood modulators and mechanisms underlying N-methyl-D-aspartate receptor dependent synaptic plasticity, a major form of synaptic plasticity in hippocampus, and then comment on the key mathematical modelling approaches available in the literature to understand synaptic plasticity as the integration of the established functionalities of synaptic components. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. An over-nonlocal implicit gradient-enhanced damage-plastic model for trabecular bone under large compressive strains.

    Science.gov (United States)

    Hosseini, Hadi S; Horák, Martin; Zysset, Philippe K; Jirásek, Milan

    2015-11-01

    Investigation of trabecular bone strength and compaction is important for fracture risk prediction. At 1-2% compressive strain, trabecular bone undergoes strain softening, which may lead to numerical instabilities and mesh dependency in classical local damage-plastic models. The aim of this work is to improve our continuum damage-plastic model of bone by reducing the influence of finite element mesh size under large compression. This spurious numerical phenomenon may be circumvented by incorporating the nonlocal effect of cumulated plastic strain into the constitutive law. To this end, an over-nonlocal implicit gradient model of bone is developed and implemented into the finite element software ABAQUS using a user element subroutine. The ability of the model to detect the regions of bone failure is tested against experimental stepwise loading data of 16 human trabecular bone biopsies. The numerical outcomes of the nonlocal model revealed reduction of finite element mesh dependency compared with the local damage-plastic model. Furthermore, it helped reduce the computational costs of large-strain compression simulations. To the best of our knowledge, the proposed model is the first to predict the failure and densification of trabecular bone up to large compression independently of finite element mesh size. The current development enables the analysis of trabecular bone compaction as in osteoporotic fractures and implant migration, where large deformation of bone plays a key role. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Model of discontinuous plastic flow at temperature close to absolute zero

    CERN Document Server

    Marcinek, Dawid Jarosław; Sgobba, Stefano

    In the present study cryogenic tensile tests performed on different materials (316LN, JK2LB) were used. The discontinuous plastic flow phenomenon was analysed, in order to develop a constitutive model of serrated yielding as a support for analysis of structural materials at low temperatures. Devices and structures, cooled be means of liquid helium, operate at the temperatures equal or lower than 4.2 K, which for the examined materials is below the transition threshold between screw and edge dislocations. It is considered a threshold for the appearance of DPF consisting in cyclic drop of load followed by deformation jumps and generation of heat. Temperature oscillations resulting from the thermodynamic instability in stainless steel can be of the order of dT = 40 K, which is exceptionally dangerous for superconducting cables. Suitably calibrated numerical algorithm allows prediction of the behaviour of the material subjected to deformation at low temperatures. The issues presented in the present study are curr...

  6. Determination of plastic viscosity for brown coal pastes using an instrumented mixer

    Energy Technology Data Exchange (ETDEWEB)

    T. Kealy; C. Tiu [Rheology Solutions Pty Ltd, Bacchus Marsh, Vic. (Australia). Technical Department

    2005-03-01

    Flow curves are generated for lignite pastes using an instrumented measuring kneader, converting the torque and rpm to shear stress and shear rate data, respectively. Contrary to previous findings obtained when instrumentation of this kind was unavailable for these applications, the pastes are yield pseudoplastic in nature, with significant differences between actual and Bingham yield stresses. Flow curves were generated over for 14, 17 and 22{sup o}C for as-mined lignite paste, 54% moisture, wet basis (w.b.), and increased moisture concentrations, through moisture addition, of 56 and 58%, w.b. Flow curves for the latter were generated at 14 and 22{sup o}C. The flow properties presented are the plastic viscosities and, using Hershel Bulkley and Bingham fits, yield stresses. In general, the pastes exhibited high yield stresses (2-5.3 kPa, depending on the moisture content and process temperature), high Bingham yield stresses (2-8 kPa), and low plastic viscosities (0.5-29.4 Pa s). Increasing temperature and/or moisture content resulted in reductions in the magnitudes of these properties. 16 refs., 9 figs., 2 tabs.

  7. A distance constrained synaptic plasticity model of C. elegans neuronal network

    Science.gov (United States)

    Badhwar, Rahul; Bagler, Ganesh

    2017-03-01

    Brain research has been driven by enquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans is known to possess complex functions. The nervous system forms an important underlying framework which specifies phenotypic features associated to sensation, movement, conditioning and memory. In this study, with the help of graph theoretical models, we investigated the C. elegans neuronal network to identify network features that are critical for its control. The 'driver neurons' are associated with important biological functions such as reproduction, signalling processes and anatomical structural development. We created 1D and 2D network models of C. elegans neuronal system to probe the role of features that confer controllability and small world nature. The simple 1D ring model is critically poised for the number of feed forward motifs, neuronal clustering and characteristic path-length in response to synaptic rewiring, indicating optimal rewiring. Using empirically observed distance constraint in the neuronal network as a guiding principle, we created a distance constrained synaptic plasticity model that simultaneously explains small world nature, saturation of feed forward motifs as well as observed number of driver neurons. The distance constrained model suggests optimum long distance synaptic connections as a key feature specifying control of the network.

  8. Modeling activity-dependent plasticity in BCM spiking neural networks with application to human behavior recognition.

    Science.gov (United States)

    Meng, Yan; Jin, Yaochu; Yin, Jun

    2011-12-01

    Spiking neural networks (SNNs) are considered to be computationally more powerful than conventional NNs. However, the capability of SNNs in solving complex real-world problems remains to be demonstrated. In this paper, we propose a substantial extension of the Bienenstock, Cooper, and Munro (BCM) SNN model, in which the plasticity parameters are regulated by a gene regulatory network (GRN). Meanwhile, the dynamics of the GRN is dependent on the activation levels of the BCM neurons. We term the whole model "GRN-BCM." To demonstrate its computational power, we first compare the GRN-BCM with a standard BCM, a hidden Markov model, and a reservoir computing model on a complex time series classification problem. Simulation results indicate that the GRN-BCM significantly outperforms the compared models. The GRN-BCM is then applied to two widely used datasets for human behavior recognition. Comparative results on the two datasets suggest that the GRN-BCM is very promising for human behavior recognition, although the current experiments are still limited to the scenarios in which only one object is moving in the considered video sequences.

  9. Comparison of learning anatomy with cadaveric dissection and plastic models by medical students

    International Nuclear Information System (INIS)

    Qamar, K.; Ashar, A.

    2014-01-01

    The purpose of this study at Army Medical College was to assess differences in learning of students from cadaveric dissection or plastic models; and explore their perceptions about efficacy of various Instructional tools used during the gross anatomy practical time. Study Design: Two phase mixed methods sequential study. Place and Duration of Study: This study was conducted at anatomy department Arm y Medical College, Rawalpindi, Pakistan over a period of three weeks In July 2013 after approval from the ethical review board. Participants and Methods: Quantiative phase 1 involved 50 second year MBBS students, selected through non probability convenience sampling. They were divided into two groups of 25 students. Group A covered head and neck gross anatomy dissection course through cadaveric dissection and group B using plastic models. At the end of course MCQ based assessment were conducted and statistically analyzed for both groups. In qualitative phase 2, two focus group discussions (FGD) with 10 second year MBBS students were conducted to explore students perspectives about and their preferences of various instructional tools used during the gross anatomy practical time. The FGDs were audio taped, transcribed, and analyzed through thematic analysis. Results: The results of a post test of group A was 24.1 +-.26 and group B 30.96 +- 6.23 (p = 0.024). Focus group discussions generated three themes (Learning techniques used by students during gross anatomy practical time; Preferred learning techniques and Non-preferred learning techniques). Students prefered small-group learning method over completely self-directed studies as the study materials were carefully chosen and objectives were clearly demonstrated with directions. Cadaveric dissection and didactic teachings were not preferred. (author)

  10. A model for plasticity kinetics and its role in simulating the dynamic behavior of Fe at high strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, J D; Minich, R W; Kalantar, D H

    2007-03-29

    The recent diagnostic capability of the Omega laser to study solid-solid phase transitions at pressures greater than 10 GPa and at strain rates exceeding 10{sup 7} s{sup -1} has also provided valuable information on the dynamic elastic-plastic behavior of materials. We have found, for example, that plasticity kinetics modifies the effective loading and thermodynamic paths of the material. In this paper we derive a kinetics equation for the time-dependent plastic response of the material to dynamic loading, and describe the model's implementation in a radiation-hydrodynamics computer code. This model for plasticity kinetics incorporates the Gilman model for dislocation multiplication and saturation. We discuss the application of this model to the simulation of experimental velocity interferometry data for experiments on Omega in which Fe was shock compressed to pressures beyond the {alpha}-to-{var_epsilon} phase transition pressure. The kinetics model is shown to fit the data reasonably well in this high strain rate regime and further allows quantification of the relative contributions of dislocation multiplication and drag. The sensitivity of the observed signatures to the kinetics model parameters is presented.

  11. A Drosophila systems model of pentylenetetrazole induced locomotor plasticity responsive to antiepileptic drugs

    Directory of Open Access Journals (Sweden)

    Singh Priyanka

    2009-01-01

    Full Text Available Abstract Background Rodent kindling induced by PTZ is a widely used model of epileptogenesis and AED testing. Overlapping pathophysiological mechanisms may underlie epileptogenesis and other neuropsychiatric conditions. Besides epilepsy, AEDs are widely used in treating various neuropsychiatric disorders. Mechanisms of AEDs' long term action in these disorders are poorly understood. We describe here a Drosophila systems model of PTZ induced locomotor plasticity that is responsive to AEDs. Results We empirically determined a regime in which seven days of PTZ treatment and seven days of subsequent PTZ discontinuation respectively cause a decrease and an increase in climbing speed of Drosophila adults. Concomitant treatment with NaVP and LEV, not ETH, GBP and VGB, suppressed the development of locomotor deficit at the end of chronic PTZ phase. Concomitant LEV also ameliorated locomotor alteration that develops after PTZ withdrawal. Time series of microarray expression profiles of heads of flies treated with PTZ for 12 hrs (beginning phase, two days (latent phase and seven days (behaviorally expressive phase showed only down-, not up-, regulation of genes; expression of 23, 2439 and 265 genes were downregulated, in that order. GO biological process enrichment analysis showed downregulation of transcription, neuron morphogenesis during differentiation, synaptic transmission, regulation of neurotransmitter levels, neurogenesis, axonogenesis, protein modification, axon guidance, actin filament organization etc. in the latent phase and of glutamate metabolism, cell communication etc. in the expressive phase. Proteomic interactome based analysis provided further directionality to these events. Pathway overrepresentation analysis showed enrichment of Wnt signaling and other associated pathways in genes downregulated by PTZ. Mining of available transcriptomic and proteomic data pertaining to established rodent models of epilepsy and human epileptic

  12. Sorting Plastic Waste in Hydrocyclone

    Directory of Open Access Journals (Sweden)

    Ernestas Šutinys

    2011-02-01

    Full Text Available The article presents material about sorting plastic waste in hydrocyclone. The tests on sorting plastic waste were carried out. Also, the findings received from the performed experiment on the technology of sorting plastic waste are interpreted applying an experimental model of the equipment used for sorting plastics of different density.Article in Lithuanian

  13. Sensitivity study of the Storegga Slide tsunami using retrogressive and visco-plastic rheology models

    Science.gov (United States)

    Kim, Jihwan; Løvholt, Finn

    2016-04-01

    Enormous submarine landslides having volumes up to thousands of km3 and long run-out may cause tsunamis with widespread effects. Clay-rich landslides, such as Trænadjupet and Storegga offshore Norway commonly involve retrogressive mass and momentum release mechanisms that affect the tsunami generation. As a consequence, the failure mechanisms, soil parameters, and release rate of the retrogression are of importance for the tsunami generation. Previous attempts to model the tsunami generation due to retrogressive landslides are few, and limited to idealized conditions. Here, a visco-plastic model including additional effects such as remolding, time dependent mass release, and hydrodynamic resistance, is employed for simulating the Storegga Slide. As landslide strength parameters and their evolution in time are uncertain, it is necessary to conduct a sensitivity study to shed light on the tsunamigenic processes. The induced tsunami is simulated using Geoclaw. We also compare our tsunami simulations with recent analysis conducted using a pure retrogressive model for the landslide, as well as previously published results using a block model. The availability of paleotsunami run-up data and detailed slide deposits provides a suitable background for improved understanding of the slide mechanics and tsunami generation. The research leading to these results has received funding from the Research Council of Norway under grant number 231252 (Project TsunamiLand) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE).

  14. A coupled damage-plasticity model for the cyclic behavior of shear-loaded interfaces

    Science.gov (United States)

    Carrara, P.; De Lorenzis, L.

    2015-12-01

    The present work proposes a novel thermodynamically consistent model for the behavior of interfaces under shear (i.e. mode-II) cyclic loading conditions. The interface behavior is defined coupling damage and plasticity. The admissible states' domain is formulated restricting the tangential interface stress to non-negative values, which makes the model suitable e.g. for interfaces with thin adherends. Linear softening is assumed so as to reproduce, under monotonic conditions, a bilinear mode-II interface law. Two damage variables govern respectively the loss of strength and of stiffness of the interface. The proposed model needs the evaluation of only four independent parameters, i.e. three defining the monotonic mode-II interface law, and one ruling the fatigue behavior. This limited number of parameters and their clear physical meaning facilitate experimental calibration. Model predictions are compared with experimental results on fiber reinforced polymer sheets externally bonded to concrete involving different load histories, and an excellent agreement is obtained.

  15. Polycarbonate as an Elasto-Plastic Material Model for Simulation of the Microstructure Hot Imprint Process

    Directory of Open Access Journals (Sweden)

    Rokas Šakalys

    2013-08-01

    Full Text Available The thermal imprint process of polymer micro-patterning is widely applied in areas such as manufacturing of optical parts, solar energy, bio-mechanical devices and chemical chips. Polycarbonate (PC, as an amorphous polymer, is often used in thermoforming processes because of its good replication characteristics. In order to obtain replicas of the best quality, the imprint parameters (e.g., pressure, temperature, time, etc. must be determined. Therefore finite element model of the hot imprint process of lamellar periodical microstructure into PC has been created using COMSOL Multiphysics. The mathematical model of the hot imprint process includes three steps: heating, imprinting and demolding. The material properties of amorphous PC strongly depend on the imprint temperature and loading pressure. Polycarbonate was modelled as an elasto-plastic material, since it was analyzed below the glass transition temperature. The hot imprint model was solved using the heat transfer and the solid stress-strain application modes with thermal contact problem between the mold and polycarbonate. It was used for the evaluation of temperature and stress distributions in the polycarbonate during the hot imprint process. The quality of the replica, by means of lands filling ratio, was determined as well.

  16. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-19

    Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.

  17. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-19

    A new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. As a result through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.

  18. Data-derived modeling characterizes plasticity of MAPK signaling in melanoma.

    Directory of Open Access Journals (Sweden)

    Marti Bernardo-Faura

    2014-09-01

    Full Text Available The majority of melanomas have been shown to harbor somatic mutations in the RAS-RAF-MEK-MAPK and PI3K-AKT pathways, which play a major role in regulation of proliferation and survival. The prevalence of these mutations makes these kinase signal transduction pathways an attractive target for cancer therapy. However, tumors have generally shown adaptive resistance to treatment. This adaptation is achieved in melanoma through its ability to undergo neovascularization, migration and rearrangement of signaling pathways. To understand the dynamic, nonlinear behavior of signaling pathways in cancer, several computational modeling approaches have been suggested. Most of those models require that the pathway topology remains constant over the entire observation period. However, changes in topology might underlie adaptive behavior to drug treatment. To study signaling rearrangements, here we present a new approach based on Fuzzy Logic (FL that predicts changes in network architecture over time. This adaptive modeling approach was used to investigate pathway dynamics in a newly acquired experimental dataset describing total and phosphorylated protein signaling over four days in A375 melanoma cell line exposed to different kinase inhibitors. First, a generalized strategy was established to implement a parameter-reduced FL model encoding non-linear activity of a signaling network in response to perturbation. Next, a literature-based topology was generated and parameters of the FL model were derived from the full experimental dataset. Subsequently, the temporal evolution of model performance was evaluated by leaving time-defined data points out of training. Emerging discrepancies between model predictions and experimental data at specific time points allowed the characterization of potential network rearrangement. We demonstrate that this adaptive FL modeling approach helps to enhance our mechanistic understanding of the molecular plasticity of melanoma.

  19. Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity

    Directory of Open Access Journals (Sweden)

    Pierre Berthet

    2016-07-01

    Full Text Available The brain enables animals to behaviourally adapt in order to survive in a complex and dynamic environment, but how reward-oriented behaviours are achieved and computed by its underlying neural circuitry is an open question. To address this concern, we have developed a spiking model of the basal ganglia (BG that learns to dis-inhibit the action leading to a reward despite ongoing changes in the reward schedule. The architecture of the network features the two pathways commonly described in BG, the direct (denoted D1 and the indirect (denoted D2 pathway, as well as a loop involving striatum and the dopaminergic system. The activity of these dopaminergic neurons conveys the reward prediction error (RPE, which determines the magnitude of synaptic plasticity within the different pathways. All plastic connections implement a versatile four-factor learning rule derived from Bayesian inference that depends upon pre- and postsynaptic activity, receptor type and dopamine level. Synaptic weight updates occur in the D1 or D2 pathways depending on the sign of the RPE, and an efference copy informs upstream nuclei about the action selected. We demonstrate successful performance of the system in a multiple-choice learning task with a transiently changing reward schedule. We simulate lesioning of the various pathways and show that a condition without the D2 pathway fares worse than one without D1. Additionally, we simulate the degeneration observed in Parkinson’s disease (PD by decreasing the number of dopaminergic neurons during learning. The results suggest that the D1 pathway impairment in PD might have been overlooked. Furthermore, an analysis of the alterations in the synaptic weights shows that using the absolute reward value instead of the RPE leads to a larger change in D1.

  20. Impairment of adolescent hippocampal plasticity in a mouse model for Alzheimer's disease precedes disease phenotype.

    Directory of Open Access Journals (Sweden)

    Daniela Hartl

    Full Text Available The amyloid precursor protein (APP was assumed to be an important neuron-morphoregulatory protein and plays a central role in Alzheimer's disease (AD pathology. In the study presented here, we analyzed the APP-transgenic mouse model APP23 using 2-dimensional gel electrophoresis technology in combination with DIGE and mass spectrometry. We investigated cortex and hippocampus of transgenic and wildtype mice at 1, 2, 7 and 15 months of age. Furthermore, cortices of 16 days old embryos were analyzed. When comparing the protein patterns of APP23 with wildtype mice, we detected a relatively large number of altered protein spots at all age stages and brain regions examined which largely preceded the occurrence of amyloid plaques. Interestingly, in hippocampus of adolescent, two-month old mice, a considerable peak in the number of protein changes was observed. Moreover, when protein patterns were compared longitudinally between age stages, we found that a large number of proteins were altered in wildtype mice. Those alterations were largely absent in hippocampus of APP23 mice at two months of age although not in other stages compared. Apparently, the large difference in the hippocampal protein patterns between two-month old APP23 and wildtype mice was caused by the absence of distinct developmental changes in the hippocampal proteome of APP23 mice. In summary, the absence of developmental proteome alterations as well as a down-regulation of proteins related to plasticity suggest the disturption of a normally occurring peak of hippocampal plasticity during adolescence in APP23 mice. Our findings are in line with the observation that AD is preceded by a clinically silent period of several years to decades. We also demonstrate that it is of utmost importance to analyze different brain regions and different age stages to obtain information about disease-causing mechanisms.

  1. A PVC-foam material model based on a thermodynamically elasto-plastic-damage framework exhibiting failure and crushing

    NARCIS (Netherlands)

    Gielen, A.W.J.

    2008-01-01

    A well known foam for naval sandwiches is PVC (polyvinyl chloride) foam. This foam exhibits elasto-damage behavior under tension and elasto-plastic behavior under compression. A proper material model is required for the prediction of the failure and post-failure behavior of these sandwiches during

  2. Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials

    Directory of Open Access Journals (Sweden)

    S. Psakhie

    2013-04-01

    Full Text Available A general approach to realization of models of elasticity, plasticity and fracture of heterogeneous materials within the framework of particle-based numerical methods is proposed in the paper. It is based on building many-body forces of particle interaction, which provide response of particle ensemble correctly conforming to the response (including elastic-plastic behavior and fracture of simulated solids. Implementation of proposed approach within particle-based methods is demonstrated by the example of the movable cellular automaton (MCA method, which integrates the possibilities of particle-based discrete element method (DEM and cellular automaton methods. Emergent advantages of the developed approach to formulation of many-body interaction are discussed. Main of them are its applicability to various realizations of the concept of discrete elements and a possibility to realize various rheological models (including elastic-plastic or visco-elastic-plastic and models of fracture to study deformation and fracture of solid-phase materials and media. Capabilities of particle-based modeling of heterogeneous solids are demonstrated by the problem of simulation of deformation and fracture of particle-reinforced metal-ceramic composites.

  3. Simulations of a stretching bar using a plasticity model from the shear transformation zone theory

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris H.; Gibou, Frederic

    2010-06-05

    An Eulerian simulation is developed to study an elastoplastic model of amorphous materials that is based upon the shear transformation zone theory developed by Langer and coworkers. In this theory, plastic deformation is controlled by an effective temperature that measures the amount of configurational disorder in the material. The simulation is used to model ductile fracture in a stretching bar that initially contains a small notch, and the effects of many of the model parameters are examined. The simulation tracks the shape of the bar using the level set method. Within the bar, a finite difference discretization is employed that makes use of the essentially non-oscillatory (ENO) scheme. The system of equations is moderately stiff due to the presence of large elastic constants, and one of the key numerical challenges is to accurately track the level set and construct extrapolated field values for use in boundary conditions. A new approach to field extrapolation is discussed that is second order accurate and requires a constant amount of work per gridpoint.

  4. A viscoplastic model with plasticity for dry clay. Application to underground structures

    International Nuclear Information System (INIS)

    Tchiyep Piepi, G.

    1995-10-01

    Stiff clays are generally encountered at a great depth (more than 300 m). These materials have a relatively low water content. A lot of industrial studies justify the recent interest borne by these materials. This work deals in particular with stiff clays able to answer to stresses by elastic, plastic and viscoplastic deformations. In the first part are given the experimental study and the modelling of the stiff clays mechanical behavior. In this part, considered materials are described as well as the tests carried out. The obtained results are discussed and a viscoplastic model with rupture is elaborated. The second part deals with the elaboration of an original semi analytical solution and of an algorithm implemented in GEOMEC91. The third part shows the influence of the model on the tunnel convergence at the moment of the support laying and by consequently on the stresses of this last one. The calculations results show a strong influence of the short-term cohesion on the tunnel convergence. (O.M.)

  5. Task decomposition: a framework for comparing diverse training models in human brain plasticity studies

    Directory of Open Access Journals (Sweden)

    Emily B. J. Coffey

    2013-10-01

    Full Text Available Training studies, in which the structural or functional neurophysiology is compared before and after expertise is acquired, are increasingly being used as models for understanding the human brain’s potential for reorganization. It is proving difficult to use these results to answer basic and important questions like how task training leads to both specific and general changes in behaviour and how these changes correspond with modifications in the brain. The main culprit is the diversity of paradigms used as complex task models. An assortment of activities ranging from juggling to deciphering Morse code has been reported. Even when working in the same general domain, few researchers use similar training models. New ways to meaningfully compare complex tasks are needed. We propose a method for characterizing and deconstructing the task requirements of complex training paradigms, which is suitable for application to both structural and functional neuroimaging studies. We believe this approach will aid brain plasticity research by making it easier to compare training paradigms, identify ‘missing puzzle pieces’, and encourage researchers to design training protocols to bridge these gaps.

  6. A comprehensive waste collection cost model applied to post-consumer plastic packaging waste

    NARCIS (Netherlands)

    Groot, J.J.; Bing, X.; Bos-Brouwers, H.E.J.; Bloemhof, J.M.

    2014-01-01

    Post-consumer plastic packaging waste (PPW) can be collected for recycling via source separation or post-separation. In source separation, households separate plastics from other waste before collection, whereas in post-separation waste is separated at a treatment centre after collection. There are

  7. Exploring the Gas Chemistry of Old Submarine Technologies Using Plastic Bottles as Reaction Vessels and Models

    Science.gov (United States)

    Horikoshi, Ryo; Takeiri, Fumitaka; Kobayashi, Yoji; Kageyama, Hiroshi

    2016-01-01

    We describe an activity that is suitable for high school students and makes use of plastic bottles. This activity allows students to familiarize themselves with gas chemistry by introducing technologies that were applied in old submarine systems. Plastic bottles, which are representative of submarines, are used as reaction vessels. Three simple…

  8. Molecular simulation and mathematical modelling of glass transition temperature depression induced by CO2 plasticization in Polysulfone membranes

    Science.gov (United States)

    Lock, S. S. M.; Lau, K. K.; Lock Sow Mei, Irene; Shariff, A. M.; Yeong, Y. F.; Bustam, A. M.

    2017-08-01

    A sequence of molecular modelling procedure has been proposed to simulate experimentally validated membrane structure characterizing the effect of CO2 plasticization, whereby it can be subsequently employed to elucidate the depression in glass transition temperature (Tg ). Based on the above motivation, unswollen and swollen Polysulfone membrane structures with different CO2 loadings have been constructed, whereby the accuracy has been validated through good compliance with experimentally measured physical properties. It is found that the presence of CO2 constitutes to enhancement in polymeric chain relaxation, which consequently promotes the enlargement of molecular spacing and causes dilation in the membrane matrix. A series of glass transition temperature treatment has been conducted on the verified molecular structure to elucidate the effect of CO2 loadings to the depression in Tg induced by plasticization. Subsequently, a modified Michealis-Menten (M-M) function has been implemented to quantify the effect of CO2 loading attributed to plasticization towards Tg .

  9. Glassy metallic plastics

    Science.gov (United States)

    Li, Jianfu; Wang, Junqiang; Liu, Xiaofeng; Zhao, Kun; Zhang, Bo; Bai, Haiyang; Pan, Mingxiang; Wang, Weihua

    2010-03-01

    This paper reports a class of bulk metallic glass including Ce-, LaCe-, CaLi-, Yb-, and Sr-based metallic glasses, which are regarded as glassy metallic plastics because they combine some unique properties of both plastics and metallic alloys. These glassy metallic plastics have very low glass transition temperature ( T g ˜25°C to 150°C) and low Young’s modulus (˜20 GPa to 35 GPa). Similar to glassy plastics, these metallic plastics show excellent plastic-like deformability on macro-, micro- and even nano-scale in their supercooled liquid range and can be processed, such as elongated, compressed, bent, and imprinted at low temperatures, in hot water for instance. Under ambient conditions, they display such metallic properties as high thermal and electric conductivities and excellent mechanical properties and other unique properties. The metallic plastics have potential applications and are also a model system for studying issues in glass physics.

  10. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Science.gov (United States)

    Scheler, Gabriele

    2013-01-01

    We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species) with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of individual transfer

  11. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    Full Text Available We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of

  12. An improved Armstrong-Frederick-Type Plasticity Model for Stable Cyclic Stress-Strain Responses Considering Nonproportional Hardening

    Science.gov (United States)

    Li, Jing; Zhang, Zhong-ping; Li, Chun-wang

    2018-03-01

    This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.

  13. Reproducing Sea-Ice Deformation Distributions With Viscous-Plastic Sea-Ice Models

    Science.gov (United States)

    Bouchat, A.; Tremblay, B.

    2016-02-01

    High resolution sea-ice dynamic models offer the potential to discriminate between sea-ice rheologies based on their ability to reproduce the satellite-derived deformation fields. Recent studies have shown that sea-ice viscous-plastic (VP) models do not reproduce the observed statistical properties of the strain rate distributions of the RADARSAT Geophysical Processor System (RGPS) deformation fields [1][2]. We use the elliptical VP rheology and we compute the probability density functions (PDFs) for simulated strain rate invariants (divergence and maximum shear stress) and compare against the deformations obtained with the 3-day gridded products from RGPS. We find that the large shear deformations are well reproduced by the elliptical VP model and the deformations do not follow a Gaussian distribution as reported in Girard et al. [1][2]. On the other hand, we do find an overestimation of the shear in the range of mid-magnitude deformations in all of our VP simulations tested with different spatial resolutions and numerical parameters. Runs with no internal stress (free-drift) or with constant viscosity coefficients (Newtonian fluid) also show this overestimation. We trace back this discrepancy to the elliptical yield curve aspect ratio (e = 2) having too little shear strength, hence not resisting enough the inherent shear in the wind forcing associated with synoptic weather systems. Experiments where we simply increase the shear resistance of the ice by modifying the ellipse ratio confirm the need for a rheology with an increased shear strength. [1] Girard et al. (2009), Evaluation of high-resolution sea ice models [...], Journal of Geophysical Research, 114[2] Girard et al. (2011), A new modeling framework for sea-ice mechanics [...], Annals of Glaciology, 57, 123-132

  14. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  15. Edible Cricothyrotomy Model: A Low-Cost Alternative to Pig Tracheas and Plastic Models for Teaching Cricothyrotomy

    Directory of Open Access Journals (Sweden)

    Robert J Bryant

    2017-01-01

    Full Text Available Audience: This Edible Cricothyrotomy trainer is designed to teach residents and faculty the procedure of cricothyrotomy. Introduction: Cricothyrotomy is an essential procedure for any provider in the emergency department where the estimated incidence of a failed airway leading to surgical airway is 0.5%.1,2,3 It is challenging to obtain cost effective and realistic models to train clinicians and provide further opportunities for practice and skills maintenance. We (RB created a novel edible cricothyrotomy (EC model that is made entirely of edible materials, other than the trachea, which is represented by a piece of ventilator tubing. There is a tortilla base layer, with great vessels represented by colored licorice, thyroid cartilage made from Hersheys chocolate, cricoid from gummy worm, and fruit leather platysma topped with an additional tortilla to complete the skin layer. Objectives: Produce a cost effective surgical airway trainer, and compare it to existing trainers. Train learners to identify laryngeal landmarks, and then perform a cricothyrotomy. Method: An edible cricothyrotomy model was built for each participant from the ingredients listed above. An educational session was developed to test the EC in comparison to the more traditional pig trachea (PT and plastic model (PM. A pre- and post-survey was administered to participants to assess the usability and realism of the models as well as the learners’ comfort with the procedure. During the session, a lecture was given, and then participants rotated to all three models and were videotaped and timed performing a scalpel-finger-bougie cricothyrotomy. Times to successful completion, participant satisfaction with the models, and cost of the models were compared. Results: 43 participants completed the educational session. All completed the pre-survey and 40 of 43 completed the post-surveys (93% response rate. Times to complete a cricothyrotomy were faster for PT (median 32 sec

  16. A schematic model of crater modification by gravity

    Science.gov (United States)

    Melosh, H. J.

    1982-01-01

    The morphology of craters found on planets and moons of the solar system is examined and a development model which can account for the observed crater characteristics is discussed. The prompt collapse of craters to form flat floors, terraced walls, and central peak structures is considered to be the result of an approximate Bingham plastic rheology of the material surrounding the crater. This rheology is induced dynamically by the strong incoherent acoustic 'noise' accompanying excavation of the crater. Central pits, peak rings, and other multiple symmetric-profile rings originate by oscillation of this fluid. Large craters with transient depths comparable to the lithosphere thickness are subject to collapse by fragmentation of the lithosphere as well as fluidization. The considered concepts are developed mathematically. A model emerges which appears capable of explaining most of the qualitative features of large impact structures.

  17. Modelling plastic deformation in BCC metals: Dynamic recovery and cell formation effects

    International Nuclear Information System (INIS)

    Galindo-Nava, E.I.; Rivera-Díaz-del-Castillo, P.E.J.

    2012-01-01

    A recently developed model for describing plasticity in FCC metals (E.I., Galindo-Nava, P.E.J., Rivera-Díaz-del-Castillo, Mater. Sci. Eng. A 543 (2012) 110–116; E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 60 (2012) 4370–4378) has now been applied to BCC. The core of the theory is the thermostatistical description of dislocation annihilation paths, which determines the dynamic recovery rate of the material. Input to this is the energy for the formation, migration and ordering of dislocation paths; the latter term corresponds to the statistical entropy which features strongly on the solution. The distinctions between FCC and BCC stem primarily from the possible directions and planes for dislocation slip and cross-slip, as well as from the presence of the kink-pair mechanism for dislocation migration in BCC, which are incorporated to the mathematical formulation of the model. The theory is unique in describing the stress–strain response for pure iron, molybdenum, tantalum, vanadium and tungsten employing physical parameters as input; the description is made for wide ranges of temperature and strain rate. Additionally, succinct equations to predict dislocation cell size variation with strain, strain rate and temperature are provided and validated for pure iron.

  18. Comparison between different models for rheological characterization of sludge from settling tank

    Directory of Open Access Journals (Sweden)

    Malczewska Beata

    2017-09-01

    Full Text Available The municipal sludge characterized non-Newtonian behaviour, therefore the viscosity of the sewage sludge is not a constant value. The laboratory investigation was made using coaxial cylinder with rotating torque and gravimetric concentration of the investigated sludge ranged from 4.40% to 2.09%. This paper presents the investigation on the effect of concentration of rheological sludge behaviour. The three different rheological models: Bingham (plastic model, Ostwald-de Waele (power-law, Hershel-Bulkley’s were calculated by fitting the experimental data of shear stress as a function of shear rate to these models. In this study, the 3-parameter Herschel- Bulkley’s model fits the experimental data best.

  19. Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models

    Science.gov (United States)

    Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.

    2018-03-01

    Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.

  20. Dynamical system with plastic self-organized velocity field as an alternative conceptual model of a cognitive system.

    Science.gov (United States)

    Janson, Natalia B; Marsden, Christopher J

    2017-12-05

    It is well known that architecturally the brain is a neural network, i.e. a collection of many relatively simple units coupled flexibly. However, it has been unclear how the possession of this architecture enables higher-level cognitive functions, which are unique to the brain. Here, we consider the brain from the viewpoint of dynamical systems theory and hypothesize that the unique feature of the brain, the self-organized plasticity of its architecture, could represent the means of enabling the self-organized plasticity of its velocity vector field. We propose that, conceptually, the principle of cognition could amount to the existence of appropriate rules governing self-organization of the velocity field of a dynamical system with an appropriate account of stimuli. To support this hypothesis, we propose a simple non-neuromorphic mathematical model with a plastic self-organized velocity field, which has no prototype in physical world. This system is shown to be capable of basic cognition, which is illustrated numerically and with musical data. Our conceptual model could provide an additional insight into the working principles of the brain. Moreover, hardware implementations of plastic velocity fields self-organizing according to various rules could pave the way to creating artificial intelligence of a novel type.

  1. Differential hardening in IF steel - Experimental results and a crystal plasticity based model

    NARCIS (Netherlands)

    Mulder, J.; Eyckens, P.; van den Boogaard, Antonius H.; Hora, P.

    2015-01-01

    Work hardening in metals is commonly described by isotropic hardening, especially for monotonically increasing proportional loading. The relation between different stress states in this case is determined by equivalent stress and strain definitions, based on equal plastic dissipation. However,

  2. Cross-modal plasticity in sensory deprived animal models: From the thalamocortical development point of view.

    Science.gov (United States)

    Mezzera, Cecilia; López-Bendito, Guillermina

    2016-09-01

    Over recent decades, our understanding of the plasticity of the central nervous system has expanded enormously. Accordingly, it is now widely accepted that the brain can adapt to changes by reorganizing its circuitry, both in response to external stimuli and experience, as well as through intrinsic mechanisms. A clear example of this is the activation of a deprived sensory area and the expansion of spared sensory cortical regions in individuals who suffered peripheral sensory loss. Despite the efforts to understand these neuroplastic changes, the mechanisms underlying such adaptive remodeling remains poorly understood. Progress in understanding these events may be hindered by the highly varied data obtained from the distinct experimental paradigms analyzed, which include different animal models and neuronal systems, as well as studies into the onset of sensory loss. Here, we will establish the current state-of-the-art describing the principal observations made according to the time of sensory deprivation with respect to the development of the thalamocortical connectivity. We will review the experimental data obtained from animal models where sensory deprivation has been induced either before or after thalamocortical axons reach and invade their target cortical areas. The anatomical and functional effects of sensory loss on the primary sensory areas of the cortex will be presented. Indeed, we consider that the comparative approach of this review is a necessary step in order to help deciphering the processes that underlie sensory neuroplasticity, for which studies in animal models have been indispensable. Understanding these mechanisms will then help to develop restorative strategies and prostheses that will overcome the functional loss. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Three-dimensional elasto-plastic soil modelling and analysis of sauropod tracks

    Directory of Open Access Journals (Sweden)

    Eugenio Sanz

    2016-06-01

    Full Text Available This paper reports the use of FEA (Finite Element Analysis to model dinosaur tracks. Satisfactory reproductions of sauropod ichnites were simulated using 3D numerical models of the elasto-plastic behaviour of soils. Though the modelling was done of ichnites in situ at the Miraflores I tracksite (Soria, Spain, the methodology could be applied to other tracksites to improve their ichnological interpretation and better understand how the type and state of the trodden sediment at the moment the track is created is a fundamental determinant of the morphology of the ichnite. The results obtained explain why the initial and commonly adopted hypothesis—that soft sediments become progressively more rigid and resistant at depth—is not appropriate at this tracksite. We explain why it is essential to consider a more rigid superficial layer (caused by desiccation overlying a softer layer that is extruded to form a displacement rim. Adult sauropods left trackways behind them. These tracks could be filled up with water due to phreatic level was close to the ground surface. The simulation provides us with a means to explain the differences between similar tracks (of different depths; with or without displacement rims in the various stratigraphic layers of the tracksite and to explain why temporary and variable conditions of humidity lead to these differences in the tracks. The simulations also demonstrate that track depth alone is insufficient to differentiate true tracks from undertracks and that other discrimination criteria need to be taken into account. The scarcity of baby sauropod tracks is explained because they are shallow and easily eroded.

  4. Neural Plasticity: Single Neuron Models for Discrimination and Generalization and AN Experimental Ensemble Approach.

    Science.gov (United States)

    Munro, Paul Wesley

    A special form for modification of neuronal response properties is described in which the change in the synaptic state vector is parallel to the vector of afferent activity. This process is termed "parallel modification" and its theoretical and experimental implications are examined. A theoretical framework has been devised to describe the complementary functions of generalization and discrimination by single neurons. This constitutes a basis for three models each describing processes for the development of maximum selectivity (discrimination) and minimum selectivity (generalization) by neurons. Strengthening and weakening of synapses is expressed as a product of the presynaptic activity and a nonlinear modulatory function of two postsynaptic variables--namely a measure of the spatially integrated activity of the cell and a temporal integration (time-average) of that activity. Some theorems are given for low-dimensional systems and computer simulation results from more complex systems are discussed. Model neurons that achieve high selectivity mimic the development of cat visual cortex neurons in a wide variety of rearing conditions. A role for low-selectivity neurons is proposed in which they provide inhibitory input to neurons of the opposite type, thereby suppressing the common component of a pattern class and enhancing their selective properties. Such contrast-enhancing circuits are analyzed and supported by computer simulation. To enable maximum selectivity, the net inhibition to a cell must become strong enough to offset whatever excitation is produced by the non-preferred patterns. Ramifications of parallel models for certain experimental paradigms are analyzed. A methodology is outlined for testing synaptic modification hypotheses in the laboratory. A plastic projection from one neuronal population to another will attain stable equilibrium under periodic electrical stimulation of constant intensity. The perturbative effect of shifting this intensity level

  5. A model for evaluating the flow rate of an extruder for plastic recycling

    International Nuclear Information System (INIS)

    Oke, S.A.; Popoola, I.O.

    2007-01-01

    For several years, Municipal Solid Wastes (MSW) from packaging, newspapers, batteries, furniture, metals, clothing's, bottles, and food scraps have contributed negatively to the increased deterioration of our environments particularly in developing countries. It has resulted in activities that threaten lives (such as disease outbreaks and severe health hazards). As a result, governments and other stakeholders in environment have considered both theoretical and practical approaches to waste control. Recycling, which has enormous benefits of reducing manufacturing cost of new products and providing employment for the populace has been chosen as a viable option. Despite the multi-disciplinary efforts involved recycling models, guidelines applicable in the design of flow rates of extruders for plastic recycling processes are missing. This gap is addressed in the current paper. This paper conceptualizes the flow rates as an input-output system in a continuous dynamic state. With a focus on the melting activity (operation section), the analysis of flow in the metering zone involves an estimation of the quantity of recycled materials that could be produced per time. The work hopefully stimulates research in an area where quantitative methodologies are sparse. (author)

  6. Collective Cellular Decision-Making Gives Developmental Plasticity: A Model of Signaling in Branching Roots

    Science.gov (United States)

    McCleery, W. Tyler; Mohd-Radzman, Nadiatul A.; Grieneisen, Veronica A.

    Cells within tissues can be regarded as autonomous entities that respond to their local environment and signaling from neighbors. Cell coordination is particularly important in plants, where root architecture must strategically invest resources for growth to optimize nutrient acquisition. Thus, root cells are constantly adapting to environmental cues and neighbor communication in a non-linear manner. To explain such plasticity, we view the root as a swarm of coupled multi-cellular structures, ''metamers'', rather than as a continuum of identical cells. These metamers are individually programmed to achieve a local objective - developing a lateral root primordia, which aids in local foraging of nutrients. Collectively, such individual attempts may be halted, structuring root architecture as an emergent behavior. Each metamer's decision to branch is coordinated locally and globally through hormone signaling, including processes of controlled diffusion, active polar transport, and dynamic feedback. We present a physical model of the signaling mechanism that coordinates branching decisions in response to the environment. This work was funded by the European Commission 7th Framework Program, Project No. 601062, SWARM-ORGAN.

  7. Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism.

    Science.gov (United States)

    Silva, Guilherme Testa; Le Bé, Jean-Vincent; Riachi, Imad; Rinaldi, Tania; Markram, Kamila; Markram, Henry

    2009-01-01

    A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a minicolumn (brain slices (PN 12-15), mapped the connectivity and characterized the synaptic properties for connected neurons. Pipettes were then withdrawn and the slice was perfused with 100 μM sodium glutamate in artificial cerebrospinal fluid in the recording chamber for 12 h. When we re-patched the same cluster of neurons, we found enhanced LTMP only at inter-somatic distances beyond minicolumnar dimensions. These data suggest that hyperconnectivity is already near its peak within the dimensions of the minicolumn in the treated animals and that LTMP, which is normally restricted to within a minicolumn, spills over to drive hyperconnectivity across the dimensions of a minicolumn. This study provides further evidence to support the notion that the neocortex is highly plastic in response to new experiences in this animal model of autism.

  8. In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling

    Directory of Open Access Journals (Sweden)

    Virginia W. Manner

    2017-06-01

    Full Text Available The microstructure of plastic bonded explosives (PBXs is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB or glycidyl azide polymer (GAP cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowing for excellent contrast using in situ X-ray computed tomography (CT imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.

  9. A crystal plasticity model of a formation of a deformation band structure

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, J.; Kružík, Martin

    2015-01-01

    Roč. 95, č. 32 (2015), s. 3621-3639 ISSN 1478-6435 Grant - others:GA ČR(CZ) GAP107/12/0121 Institutional support: RVO:67985556 Keywords : deformation substructure * rigid-plastic crystal plasticity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.632, year: 2015 http://library.utia.cas.cz/separaty/2015/MTR/kruzik- 0456300.pdf

  10. Comparison between Duncan and Chang’s EB Model and the Generalized Plasticity Model in the Analysis of a High Earth-Rockfill Dam

    Directory of Open Access Journals (Sweden)

    Weixin Dong

    2013-01-01

    Full Text Available Nonlinear elastic model and elastoplastic model are two main kinds of constitutive models of soil, which are widely used in the numerical analyses of soil structure. In this study, Duncan and Chang's EB model and the generalized plasticity model proposed by Pastor, Zienkiewicz, and Chan was discussed and applied to describe the stress-strain relationship of rockfill materials. The two models were validated using the results of triaxial shear tests under different confining pressures. The comparisons between the fittings of models and test data showed that the modified generalized plasticity model is capable of simulating the mechanical behaviours of rockfill materials. The modified generalized plasticity model was implemented into a finite element code to carry out static analyses of a high earth-rockfill dam in China. Nonlinear elastic analyses were also performed with Duncan and Chang's EB model in the same program framework. The comparisons of FEM results and in situ monitoring data showed that the modified PZ-III model can give a better description of deformation of the earth-rockfill dam than Duncan and Chang’s EB model.

  11. Experimental and computational analysis of micromotions of an uncemented femoral knee implant using elastic and plastic bone material models.

    Science.gov (United States)

    Berahmani, Sanaz; Janssen, Dennis; Verdonschot, Nico

    2017-08-16

    It is essential to calculate micromotions at the bone-implant interface of an uncemented femoral total knee replacement (TKR) using a reliable computational model. In the current study, experimental measurements of micromotions were compared with predicted micromotions by Finite Element Analysis (FEA) using two bone material models: linear elastic and post-yield material behavior, while an actual range of interference fit was simulated. The primary aim was to investigate whether a plasticity model is essential in order to calculate realistic micromotions. Additionally, experimental bone damage at the interface was compared with the FEA simulated range. TKR surgical cuts were applied to five cadaveric femora and micro- and clinical CT- scans of these un-implanted specimens were made to extract geometrical and material properties, respectively. Micromotions at the interface were measured using digital image correlation. Cadaver-specific FEA models were created based on the experimental set-up. The average experimental micromotion of all specimens was 53.1±42.3µm (mean±standard deviation (SD)), which was significantly higher than the micromotions predicted by both models, using either the plastic or elastic material model (26.5±23.9µm and 10.1±10.1µm, respectively; p-valuematerial models). The difference between the two material models was also significant (p-value<0.001). The predicted damage had a magnitude and distribution which was comparable to the experimental bone damage. We conclude that, although the plastic model could not fully predict the micro motions, it is more suitable for pre-clinical assessment of a press-fit TKR implant than using an elastic bone model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mixed-waste pyrolysis of biomass and plastics waste – A modelling approach to reduce energy usage

    International Nuclear Information System (INIS)

    Oyedun, Adetoyese Olajire; Gebreegziabher, Tesfaldet; Ng, Denny K.S.; Hui, Chi Wai

    2014-01-01

    Thermal co-processing of waste mixtures had gained a lot of attention in the last decade. This is largely due to certain synergistic effects such as higher quantity and better quality of oil, limited supply of certain feedstock and improving the overall pyrolysis process. Many experiments have been conducted via TGA analysis and different reactors to achieve the stated synergistic effects in co-pyrolysis of biomass and plastic wastes. The thermal behaviour of plastics during pyrolysis is different from that of biomass because its decomposition happens at a high temperature range with sudden release of volatile compared to biomass which have a wide range of thermal decomposition. A properly designed recipe and operational strategy of mixing feedstock can ease the operational difficulties and at the same time decrease energy consumption and/or improve the product yield. Therefore it is worthwhile to study the possible synergistic effects on the overall energy used during co-pyrolysis process. In this work, two different modelling approaches were used to study the energy related synergistic effect between polystyrene (PS) and bamboo waste. The mass loss and volatile generation profiles show that significant interactions between the two feedstocks exist. The results also show that both modelling approaches give an appreciable synergy effect of reduction in overall energy when PS and bamboo are co-pyrolysed together. However, the second approach which allows interaction between the two feedstocks gives a more reduction in overall energy usage up to 6.2% depending on the ratio of PS in the mixed blend. - Highlights: • Proposed the mixed-waste pyrolysis modelling via two modelling approaches. • Study the energy related synergistic effects when plastics and biomass are pyrolysed together. • Mass loss and volatile generation profiles show the existence of significant interactions. • Energy usage can be reduced by up to 6.2% depending on the percentage of the plastic

  13. DESTRUCTION CRITERION IN MODEL OF NON-LINEAR ELASTIC PLASTIC MEDIUM

    Directory of Open Access Journals (Sweden)

    O. L. Shved

    2014-01-01

    Full Text Available The paper considers a destruction criterion in a specific phenomenological model of elastic plastic medium which significantly differs from the known criteria. In case of vector interpretation of rank-2 symmetric tensors yield surface in the Cauchy stress space is formed by closed piecewise concave surfaces of its deviator sections with due account of experimental data. Section surface is determined by normal vector which is selected from two private vectors of criterial “deviator” operator. Such selection is not always possible in the case of anisotropy growth. It is expected that destruction can only start when a process point in the stress space is located in the current deviator section of the yield surface. It occurs when a critical point appears in the section, and a private value of an operator becomes N-fold in the point that determines the private vector corresponding to the normal vector. Unique and reasonable selection of the normal vector becomes impossible in the critical point and an yield criteria loses its significance in the point.When the destruction initiation is determined there is a possibility of a special case due to the proposed conic form of the yield surface. The deviator section degenerates into the point at the yield surface peak. Criterion formulation at the surface peak lies in the fact that there is no physically correct solution while using a state equation in regard to elastic distortion measures with a fixed tensor of elastic turn. Such usage of the equation is always possible for the rest points of the yield surface and it is considered as an obligatory condition for determination of the deviator section. A critical point is generally absent at any deviator section of the yield surface for isotropic material. A limiting value of the mean stress has been calculated at uniform tension.

  14. Self-organized criticality, plasticity and sensorimotor coupling. Explorations with a neurorobotic model in a behavioural preference task.

    Directory of Open Access Journals (Sweden)

    Miguel Aguilera

    Full Text Available During the last two decades, analysis of 1/ƒ noise in cognitive science has led to a considerable progress in the way we understand the organization of our mental life. However, there is still a lack of specific models providing explanations of how 1/ƒ noise is generated in coupled brain-body-environment systems, since existing models and experiments typically target either externally observable behaviour or isolated neuronal systems but do not address the interplay between neuronal mechanisms and sensorimotor dynamics. We present a conceptual model of a minimal neurorobotic agent solving a behavioural task that makes it possible to relate mechanistic (neurodynamic and behavioural levels of description. The model consists of a simulated robot controlled by a network of Kuramoto oscillators with homeostatic plasticity and the ability to develop behavioural preferences mediated by sensorimotor patterns. With only three oscillators, this simple model displays self-organized criticality in the form of robust 1/ƒ noise and a wide multifractal spectrum. We show that the emergence of self-organized criticality and 1/ƒ noise in our model is the result of three simultaneous conditions: a non-linear interaction dynamics capable of generating stable collective patterns, b internal plastic mechanisms modulating the sensorimotor flows, and c strong sensorimotor coupling with the environment that induces transient metastable neurodynamic regimes. We carry out a number of experiments to show that both synaptic plasticity and strong sensorimotor coupling play a necessary role, as constituents of self-organized criticality, in the generation of 1/ƒ noise. The experiments also shown to be useful to test the robustness of 1/ƒ scaling comparing the results of different techniques. We finally discuss the role of conceptual models as mediators between nomothetic and mechanistic models and how they can inform future experimental research where self

  15. Self-organized criticality, plasticity and sensorimotor coupling. Explorations with a neurorobotic model in a behavioural preference task.

    Science.gov (United States)

    Aguilera, Miguel; Barandiaran, Xabier E; Bedia, Manuel G; Seron, Francisco

    2015-01-01

    During the last two decades, analysis of 1/ƒ noise in cognitive science has led to a considerable progress in the way we understand the organization of our mental life. However, there is still a lack of specific models providing explanations of how 1/ƒ noise is generated in coupled brain-body-environment systems, since existing models and experiments typically target either externally observable behaviour or isolated neuronal systems but do not address the interplay between neuronal mechanisms and sensorimotor dynamics. We present a conceptual model of a minimal neurorobotic agent solving a behavioural task that makes it possible to relate mechanistic (neurodynamic) and behavioural levels of description. The model consists of a simulated robot controlled by a network of Kuramoto oscillators with homeostatic plasticity and the ability to develop behavioural preferences mediated by sensorimotor patterns. With only three oscillators, this simple model displays self-organized criticality in the form of robust 1/ƒ noise and a wide multifractal spectrum. We show that the emergence of self-organized criticality and 1/ƒ noise in our model is the result of three simultaneous conditions: a) non-linear interaction dynamics capable of generating stable collective patterns, b) internal plastic mechanisms modulating the sensorimotor flows, and c) strong sensorimotor coupling with the environment that induces transient metastable neurodynamic regimes. We carry out a number of experiments to show that both synaptic plasticity and strong sensorimotor coupling play a necessary role, as constituents of self-organized criticality, in the generation of 1/ƒ noise. The experiments also shown to be useful to test the robustness of 1/ƒ scaling comparing the results of different techniques. We finally discuss the role of conceptual models as mediators between nomothetic and mechanistic models and how they can inform future experimental research where self-organized critically includes

  16. The role of additive neurogenesis and synaptic plasticity in a hippocampal memory model with grid-cell like input.

    Directory of Open Access Journals (Sweden)

    Peter A Appleby

    Full Text Available Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex. We compare network performance across a sequence of spatial environments using three distinct adaptation strategies: conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to maximise performance of the network when operating as either a short- or long-term memory store. We also examine the time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions. These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally. Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the sparsification performed by the dentate gyrus

  17. Modelling bidirectional modulations in synaptic plasticity: A biochemical pathway model to understand the emergence of long term potentiation (LTP) and long term depression (LTD).

    Science.gov (United States)

    He, Yao; Kulasiri, Don; Samarasinghe, Sandhya

    2016-08-21

    Synaptic plasticity induces bidirectional modulations of the postsynaptic response following a synaptic transmission. The long term forms of synaptic plasticity, named long term potentiation (LTP) and long term depression (LTD), are critical for the antithetic functions of the memory system, memory formation and removal, respectively. A common Ca(2+) signalling upstream triggers both LTP and LTD, and the critical proteins and factors coordinating the LTP/LTD inductions are not well understood. We develop an integrated model based on the sub-models of the indispensable synaptic proteins in the emergence of synaptic plasticity to validate and understand their potential roles in the expression of synaptic plasticity. The model explains Ca(2+)/calmodulin (CaM) complex dependent coordination of LTP/LTD expressions by the interactions among the indispensable proteins using the experimentally estimated kinetic parameters. Analysis of the integrated model provides us with insights into the effective timescales of the key proteins and we conclude that the CaM pool size is critical for the coordination between LTP/LTD expressions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Kinetic Modeling of the Release of Ethylene Oxide from Sterilized Plastic Containers and its Interaction with Monoclonal Antibodies.

    Science.gov (United States)

    Yu, Bryan Lei; Han, Jun; Hammond, Matthew; Wang, Xuemei; Zhang, Qingchun; Clausen, Andrew; Forster, Ronald; Eu, Mingda

    Ethylene oxide (ETO) is commonly used to sterilize plastic containers, but the effects of residual amounts left after sterilization on protein therapeutics are still not well understood. Here we focus primarily on the factors that influence concentrations of ETO migrating from ETO-treated plastic containers into aqueous solution. A study was designed to investigate the kinetics of this process at various temperatures, and the kinetic data could be fit with a model based on a combination of Fickean diffusion and first-order chemical reaction (to account for observed hydrolysis of ETO). The diffusion and reaction rate constants thus obtained obey Arrhenius-like temperature dependence. These results indicate that for analytical methods involving extraction into water, measurements of residual ETO in a container must account for the effects of ETO hydrolysis. Further, the effects of salt concentration and pH of the fluid in the container on accumulated ETO levels were explored. Finally, interactions of ETO with anti-streptavidin (AntiSA) Immunoglobulin G1 (IgG1) and IgG2 antibodies were studied, with ETO adducts found on all methionine residues when incubated in solutions spiked with ETO at concentrations that could be reached (based on the kinetic studies) in ETO-treated plastic vials. Overall, the likelihood of observable ETO-protein modifications upon storage in ETO-sterilized containers will depend on a complex interplay of protein properties, formulation details, storage conditions, and amount of residual ETO initially in the container. Ethylene oxide (ETO) is commonly used to sterilize plastic containers, but the effects of residual amounts left after sterilization on protein therapeutics are still not well understood. Here we describe experiments exploring the factors that influence concentrations of ETO migrating from ETO-treated plastic containers into aqueous solution over time. Additionally, interactions of ETO with model antibodies were studied, with ETO

  19. A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling

    Science.gov (United States)

    Aldakheel, Fadi; Wriggers, Peter; Miehe, Christian

    2017-12-01

    The modeling of failure in ductile materials must account for complex phenomena at the micro-scale, such as nucleation, growth and coalescence of micro-voids, as well as the final rupture at the macro-scale, as rooted in the work of Gurson (J Eng Mater Technol 99:2-15, 1977). Within a top-down viewpoint, this can be achieved by the combination of a micro-structure-informed elastic-plastic model for a porous medium with a concept for the modeling of macroscopic crack discontinuities. The modeling of macroscopic cracks can be achieved in a convenient way by recently developed continuum phase field approaches to fracture, which are based on the regularization of sharp crack discontinuities, see Miehe et al. (Comput Methods Appl Mech Eng 294:486-522, 2015). This avoids the use of complex discretization methods for crack discontinuities, and can account for complex crack patterns. In this work, we develop a new theoretical and computational framework for the phase field modeling of ductile fracture in conventional elastic-plastic solids under finite strain deformation. It combines modified structures of Gurson-Tvergaard-Needelman GTN-type plasticity model outlined in Tvergaard and Needleman (Acta Metall 32:157-169, 1984) and Nahshon and Hutchinson (Eur J Mech A Solids 27:1-17, 2008) with a new evolution equation for the crack phase field. An important aspect of this work is the development of a robust Explicit-Implicit numerical integration scheme for the highly nonlinear rate equations of the enhanced GTN model, resulting with a low computational cost strategy. The performance of the formulation is underlined by means of some representative examples, including the development of the experimentally observed cup-cone failure mechanism.

  20. Use of endochronic plasticity theory in modeling the dynamic inelastic response of shipping containers: a preliminary assessment

    International Nuclear Information System (INIS)

    Lin, H.C.; Hsieh, B.J.; Valentin, R.A.

    1978-01-01

    Comprehensive structural design and risk assessment of shipping containers used in energy material transportation systems, particularly in the shipment of radioactive materials, requires accurate computer modeling of dynamic inelastic material response. In particular, predicting total plastic deformation of a complex shipping container subjected to the rapid transient loads associated with a variety of severe accident conditions requires extensive computer time and places extreme demands on both software and the basic physical models underlying the analyses. The representation of dynamic inelastic materials response behavior in a form that is compatible with state-of-the-art computational methods and also accurately incorporates all of the features revealed in materials tests is thus of vital importance to the development of rational risk assessment. In an attempt to make maximum use of recent developments in continuum mechanics describing dynamic plastic material behavior, a program has been initiated at Argonne National Laboratory by the Transportation Branch of the DOE Division of Environmental Control Technology to assess the merits of endochronic plasticity in predicting the inelastic response of shipping containers designed for the transportation of hazardous materials. This paper reviews relevant details of the theory and discusses a recently developed finite-element program which has been modified to use an endochronic constitutive formulation.A series of sample problems for a variety of dynamic loadings are the basis for a preliminary evaluation of the theory in terms of its potential for saving computer time and its ability to accurately predict observed experimental behavior

  1. Self-consistent modelling of lattice strains during the in-situ tensile loading of twinning induced plasticity steel

    International Nuclear Information System (INIS)

    Saleh, Ahmed A.; Pereloma, Elena V.; Clausen, Bjørn; Brown, Donald W.; Tomé, Carlos N.; Gazder, Azdiar A.

    2014-01-01

    The evolution of lattice strains in a fully recrystallised Fe–24Mn–3Al–2Si–1Ni–0.06C TWinning Induced Plasticity (TWIP) steel subjected to uniaxial tensile loading up to a true strain of ∼35% was investigated via in-situ neutron diffraction. Typical of fcc elastic and plastic anisotropy, the {111} and {200} grain families record the lowest and highest lattice strains, respectively. Using modelling cases with and without latent hardening, the recently extended Elasto-Plastic Self-Consistent model successfully predicted the macroscopic stress–strain response, the evolution of lattice strains and the development of crystallographic texture. Compared to the isotropic hardening case, latent hardening did not have a significant effect on lattice strains and returned a relatively faster development of a stronger 〈111〉 and a weaker 〈100〉 double fibre parallel to the tensile axis. Close correspondence between the experimental lattice strains and those predicted using particular orientations embedded within a random aggregate was obtained. The result suggests that the exact orientations of the surrounding aggregate have a weak influence on the lattice strain evolution

  2. Finite element modelling of plastic collapse of metallic single mitred pipe bends subject to in-plane bending moments

    International Nuclear Information System (INIS)

    Kochekseraii, Sadegh Babaii

    2004-01-01

    Theoretical analysis based on the finite element (FE) method for plastic collapse of metallic single mitred pipe bends of various geometries, subject to in-plane bending moment, were carried out using both ABAQUS and ANSYS structural FE programs covering both linear small displacement and non-linear large displacement analysis. Parametric surveys presented interesting features including an increase in plastic collapse in-plane bending moments after mitre angles of around 40 deg. . Results obtained using either ANSYS or ABAQUS could not be compared against any available experimental data as they differ significantly in areas like strain hardening and other features of a real material that did not exist in the FE modelling. However, single case comparison with the only reported experimental work, known to the author, showed that large displacement FE analysis led to more realistic predictions. It is, therefore, concluded that despite complex behaviour of a real material as compared to material models available in FE analysis, effective plastic collapse moments can be predicted using the small displacement FE analysis

  3. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic Acid animal model of autism

    DEFF Research Database (Denmark)

    Rinaldi, Tania; Perrodin, Catherine; Markram, Henry

    2008-01-01

    The prefrontal cortex has been extensively implicated in autism to explain deficits in executive and other higher-order functions related to cognition, language, sociability and emotion. The possible changes at the level of the neuronal microcircuit are however not known. We studied microcircuit...... alterations in the prefrontal cortex in the valproic acid rat model of autism and found that the layer 5 pyramidal neurons are connected to significantly more neighbouring neurons than in controls. These excitatory connections are more plastic displaying enhanced long-term potentiation of the strength...... of synapses. The microcircuit alterations found in the prefrontal cortex are therefore similar to the alterations previously found in the somatosensory cortex. Hyper-connectivity and hyper-plasticity in the prefrontal cortex implies hyper-functionality of one of the highest order processing regions...

  4. Equations of Magnetodynamics of Incompressible Thermo-Bingham's Fluid Under the Gravity Effect

    Czech Academy of Sciences Publication Activity Database

    Nedoma, Jiří

    1995-01-01

    Roč. 59, - (1995), s. 109-128 ISSN 0377-0427 Grant - others:COPERNICUS(XE) 94-00820 Keywords : generalized magnetodynamics * partial differential equations * variational inequalities * viscoplasticity * geodynamics * global gravity * geomagnetics models of the earth * astrophysics Impact factor: 0.373, year: 1995

  5. On modeling of geometrically necessary dislocation densities in plastically deformed single crystals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2013-01-01

    A computational method for strain gradient single crystal plasticity is presented. The method accounts for both recoverable and dissipative gradient effects. The mathematical solution procedure is predicated on two minimum principles along the lines of those devised by Fleck and Willis (2009) for...

  6. Strain gradient plasticity modeling of hydrogen diffusion to the crack tip

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; del Busto, S.; Niordson, Christian Frithiof

    2016-01-01

    In this work hydrogen diffusion towards the fracture process zone is examined accounting for local hardening due to geometrically necessary dislocations (GNDs) by means of strain gradient plasticity (SGP). Finite element computations are performed within the finite deformation theory....... Published by Elsevier Ltd. All rights reserved....

  7. On the formulations of higher-order strain gradient crystal plasticity models

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2008-01-01

    . A common feature of the former is that existence of higher-order stresses work-conjugate to gradients of plastic strain is presumed and an extended principle of virtual work involving such an additional virtual work contribution is formulated. Meanwhile, in the latter type, the higher-order stress...

  8. Crystal plasticity modeling of through-thickness texture heterogeneity in heavily rolled aluminum

    DEFF Research Database (Denmark)

    Delannay, Laurent; Mishin, Oleg V.

    2013-01-01

    The textures measured at different depths inside a cold rolled aluminium sheet are compared to results obtained by crystal plasticity predictions. Different assumptions about the micro-to-macro scale transitions are considered. The input texture reveals a through-thickness gradient that originate...

  9. Modelling of the stiffness evolution of truss core structures damaged by plastic buckling

    Czech Academy of Sciences Publication Activity Database

    Šiška, Filip; Stratil, Luděk; Dlouhý, Ivo; Barnett, M.R.

    2015-01-01

    Roč. 100, AUG (2015), s. 1-11 ISSN 0168-874X R&D Projects: GA MŠk EE2.3.20.0197 Institutional support: RVO:68081723 Keywords : beam theory * plastic buckling * finite element * beam-columns * truss-coredlaminates Subject RIV: JI - Composite Materials Impact factor: 2.175, year: 2015

  10. A Model of Bidirectional Synaptic Plasticity: From Signaling Network to Channel Conductance

    Science.gov (United States)

    Castellani, Gastone C.; Quinlan, Elizabeth M.; Bersani, Ferdinando; Cooper, Leon N.; Shouval, Harel Z.

    2005-01-01

    In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission can be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of…

  11. Evaluation Model for Restraint Effect of Pressure Induced Bending on the Plastic Crack Opening of Circumferential Through-Wall-Crack

    International Nuclear Information System (INIS)

    Kim, Jin-Weon

    2006-01-01

    Most of the pipe crack evaluation procedures, including leak-before-break (LBB) analysis, assume that the cracked pipe subjected to remote bending or internal pressure is free to rotate. In this case, the pressure induced bending (PIB) enhances crack opening of a through-wall-crack (TWC) in a pipe. In a real piping system, however, the PIB will be restrained because the ends of the pipe are constrained by the rest of the piping system. Hence, the amount of restraint affects the crack opening of a TWC in a pipe, and the restraint effect on crack opening directly affects the results of LBB evaluation. Therefore, it is necessary to investigate the restraint effect of PIB on crack opening displacement (COD) to quantify the uncertainties in current analysis procedures and to ensure the application of LBB concepts to nuclear piping systems. Recently, several researches were conducted to investigate the restraint effect of PIB on COD, and they proposed a simplified model to evaluate COD under restrained conditions. However, these results are quite limited because the restraint effect was evaluated only in terms of linear-elastic crack opening. In practice, the TWC in a pipe behaves plastically under normal operating loads, and the current LBB analysis methodologies require elastic-plastic crack opening evaluation. Therefore, this study evaluates the restraint effect of PIB on the plastic crack opening of a TWC in a pipe using finite element analysis under various influencing parameters. Based on these results, a closed-from model to be able to estimate the restraint effect of PIB on plastic crack opening is proposed

  12. Modeling Plasticity of Ni3Al-Based L12 Intermetallic Single Crystals-I. Anomalous Temperature Dependence of the Flow Behavior (Preprint)

    National Research Council Canada - National Science Library

    Choi, Yoon-Suk; Dimiduk, Dennis M; Uchic, Michael D; Parthasarathy, Triplicane A

    2006-01-01

    .... The model framework was based on two major contributions to plastic flow, namely the repeated cross-slip exhaustion and athermal defeat of screw-character dislocations, and the motion of the macro-kinks (MKs...

  13. Dual-phase steel sheets under cyclic tension-compression to large strains: Experiments and crystal plasticity modeling

    Science.gov (United States)

    Zecevic, Milovan; Korkolis, Yannis P.; Kuwabara, Toshihiko; Knezevic, Marko

    2016-11-01

    In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension-compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto-plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension-compression-tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.

  14. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies.

    Science.gov (United States)

    Geminiani, Alice; Casellato, Claudia; Antonietti, Alberto; D'Angelo, Egidio; Pedrocchi, Alessandra

    2018-06-01

    The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.

  15. Constitutive modelling and identification of parameters of the plastic strain-induced martensitic transformation in 316L stainless steel at cryogenic temperatures

    CERN Document Server

    Garion, C; Sgobba, Stefano

    2006-01-01

    The present paper is focused on constitutive modelling and identification of parameters of the relevant model of plastic strain- induced martensitic transformation in austenitic stainless steels at low temperatures. The model used to describe the FCCrightward arrow BCC phase transformation in austenitic stainless steels is based on the assumption of linearization of the most intensive part of the transformation curve. The kinetics of phase transformation is described by three parameters: transformation threshold (p/sub xi/), slope (A) and saturation level (xi/sub L/). It is assumed that the phase transformation is driven by the accumulated plastic strain p. In addition, the intensity of plastic deformation is strongly coupled to the phase transformation via the description of mixed kinematic /isotropic linear plastic hardening based on the Mori-Tanaka homogenization. The theory of small strains is applied. Small strain fields, corresponding to phase transformation, are decomposed into the volumic and the shea...

  16. Finite element modelling of plastic instability during ECAP processing of flow-softening materials

    Energy Technology Data Exchange (ETDEWEB)

    Braga Figueiredo, Roberto [Department of Metallurgical and Materials Engineering, School of Engineering, Federal University of Minas Gerais, Rua Espirito Santo no. 35, Centro, 30160-030 Belo Horizonte, MG (Brazil)]. E-mail: figueire@gmail.com; Paulino Aguilar, Maria Teresa [Department of Materials and Civil Construction, School of Engineering, Federal University of Minas Gerais, Rua Espirito Santo no. 35, Centro, 30160-030 Belo Horizonte, MG (Brazil)]. E-mail: teresa@demc.ufmg.br; Cetlin, Paulo Roberto [Department of Metallurgical and Materials Engineering, School of Engineering, Federal University of Minas Gerais, Rua Espirito Santo no. 35, Centro, 30160-030 Belo Horizonte, MG (Brazil)]. E-mail: pcetlin@demet.ufmg.br

    2006-08-25

    A finite element analysis of the equal channel angular pressing (ECAP) of flow-softening materials is presented in this paper. A very fine mesh was used in the simulations, allowing a detailed analysis of the development of localized shear phenomena. Two different flow curves were used in the simulations; one displayed an initial flow-softening followed by perfect plastic behavior, whereas the other followed a constant flow-softening behavior. The flow-softening rate affects the intensity of shear localization. The deformation zone, that is usually concentrated around a fixed shear plane during processing of perfect plastic or strain hardening materials, splits into two parts and its position varies cyclically during the process, leading to oscillations in the punch load during processing. A comparison of the finite element predictions with those from the slip line field theory is also presented.

  17. Mitochondrial plasticity of the hippocampus in a generic rat model of depression after antidepressant treatment

    DEFF Research Database (Denmark)

    Chen, Fenghua; Wegener, Gregers; Madsen, Torsten Meldgaard

    2012-01-01

    Depressive disorders and the treatment thereof have been associated with a number of neuroplastic events, such as neurogenesis and synaptic remodeling in discrete areas of the brain. The associations of these events in changes regarding the energy supply have not been investigated. Here, we...... investigated the changes in mitochondrial plasticity and its correlation to morphological alterations of neuroplasticity in the hippocampus, both associated with a depressive phenotype, and after treatment, with antidepressant imipramine. Design-based stereological methods were used to estimate the number...... of mitochondrial plasticity in the hippocampus and antidepressant treatment may counteract with the structural impairments. Moreover, the changes in mitochondrial morphology and number are a consistent feature of neuroplasticity. Synapse, 2013. © 2012 Wiley Periodicals, Inc....

  18. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation

    OpenAIRE

    Furlan, Leonardo; Conforto, Adriana Bastos; Cohen, Leonardo G.; Sterr, Annette

    2016-01-01

    Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivor...

  19. Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Valdman, Jan

    2016-01-01

    Roč. 76, č. 1 (2016), s. 314-340 ISSN 0036-1399 R&D Projects: GA ČR GA13-18652S; GA ČR GA14-15264S Institutional support: RVO:67985556 ; RVO:61388998 Keywords : Prandtl-Reuss perfect plasticity * bounded-deformation space * incomplete damage Subject RIV: BA - General Mathematics Impact factor: 1.670, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/valdman-0458557.pdf

  20. Mirror Neurons Modeled Through Spike-Timing-Dependent Plasticity are Affected by Channelopathies Associated with Autism Spectrum Disorder.

    Science.gov (United States)

    Antunes, Gabriela; da Silva, Samuel F Faria; de Souza, Fabio M Simoes

    2017-11-28

    Mirror neurons fire action potentials both when the agent performs a certain behavior and watches someone performing a similar action. Here, we present an original mirror neuron model based on the spike-timing-dependent plasticity (STDP) between two morpho-electrical models of neocortical pyramidal neurons. Both neurons fired spontaneously with basal firing rate that follows a Poisson distribution, and the STDP between them was modeled by the triplet algorithm. Our simulation results demonstrated that STDP is sufficient for the rise of mirror neuron function between the pairs of neocortical neurons. This is a proof of concept that pairs of neocortical neurons associating sensory inputs to motor outputs could operate like mirror neurons. In addition, we used the mirror neuron model to investigate whether channelopathies associated with autism spectrum disorder could impair the modeled mirror function. Our simulation results showed that impaired hyperpolarization-activated cationic currents (Ih) affected the mirror function between the pairs of neocortical neurons coupled by STDP.

  1. Analytical modeling of elastic-plastic wave behavior near grain boundaries in crystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, Eric [Los Alamos National Laboratory; Greenfield, Scott [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Swift, Damian [LLNL; Peralta, Pedro [ASU

    2009-01-01

    It is well known that changes in material properties across an interface will produce differences in the behavior of reflected and transmitted waves. This is seen frequently in planar impact experiments, and to a lesser extent, oblique impacts. In anisotropic elastic materials, wave behavior as a function of direction is usually accomplished with the aid of velocity surfaces, a graphical method for predicting wave scattering configurations. They have expanded this method to account for inelastic deformation due to crystal plasticity. The set of derived equations could not be put into a characteristic form, but instead led to an implicit problem. to overcome this difficulty an algorithm was developed to search the parameters space defined by a wave normal vector, particle velocity vector, and a wave speed. A solution was said to exist when a set from this parameter space satisfied the governing vector equation. Using this technique they can predict the anisotropic elastic-plastic velocity surfaces and grain boundary scattering configuration for crystalline materials undergoing deformation by slip. Specifically, they have calculated the configuration of scattered elastic-plastic waves in anisotropic NiAl for an incident compressional wave propagating along a <111> direction and contacting a 45 degree inclined grain boundary and found that large amplitude transmitted waves exist owing to the fact that the wave surface geometry forces it to propagate near the zero Schmid factor direction <100>.

  2. Hydrogeology and water quality of areas with persistent ground- water contamination near Blackfoot, Bingham County, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1987-01-01

    The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications

  3. Beyond phthalates: Gas phase concentrations and modeled gas/particle distribution of modern plasticizers

    Energy Technology Data Exchange (ETDEWEB)

    Schossler, Patricia [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Institute of Environmental and Sustainable Chemistry, Technische Universitaet Braunschweig, Hagenring 30, D-38106 Braunschweig (Germany); Schripp, Tobias, E-mail: tobias.schripp@wki.fraunhofer.de [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Salthammer, Tunga [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Bahadir, Muefit [Institute of Environmental and Sustainable Chemistry, Technische Universitaet Braunschweig, Hagenring 30, D-38106 Braunschweig (Germany)

    2011-09-01

    The ongoing health debate about polymer plasticizers based on the esters of phthalic acid, especially di(2-ethylhexyl) phthalate (DEHP), has caused a trend towards using phthalates of lower volatility such as diisononyl phthalate (DINP) and towards other acid esters, such as adipates, terephthalates, citrates, etc. Probably the most important of these so-called 'alternative' plasticizers is diisononyl cyclohexane-1,2-dicarboxylate (DINCH). In the indoor environment, the continuously growing market share of this compound since its launch in 2002 is inter alia apparent from the increasing concentration of DINCH in settled house dust. From the epidemiological point of view there is considerable interest in identifying how semi-volatile organic compounds (SVOCs) distribute in the indoor environment, especially in air, airborne particles and sedimented house dust. This, however, requires reliable experimental concentration data for the different media and good measurements or estimates of their physical and chemical properties. This paper reports on air concentrations for DINP, DINCH, diisobutyl phthalate (DIBP), diisobutyl adipate (DIBA), diisobutyl succinate (DIBS) and diisobutyl glutarate (DIBG) from emission studies in the Field and Laboratory Emission Cell (FLEC). For DINP and DINCH it took about 50 days to reach the steady-state value: for four months no decay in the concentration could be observed. Moreover, vapor pressures p{sub 0} and octanol-air partitioning coefficients K{sub OA} were obtained for 37 phthalate and non-phthalate plasticizers from two different algorithms: EPI Suite and SPARC. It is shown that calculated gas/particle partition coefficients K{sub p} and fractions can widely differ due to the uncertainty in the predicted p{sub 0} and K{sub OA} values. For most of the investigated compounds reliable experimental vapor pressures are not available. Rough estimates can be obtained from the measured emission rate of the pure compound in a

  4. A new spectral framework for crystal plasticity modeling of cubic and hexagonal polycrystalline metals

    Science.gov (United States)

    Knezevic, Marko

    Crystal plasticity physics-based constitutive theories are used in understanding and predicting the evolution of the underlying microstructure and the concomitant anisotropic stress-strain response in polycrystalline metals subjected to finite plastic strains. A new scheme for efficient crystal plasticity computations for both cubic and hexagonal polycrystalline metals subjected to arbitrary deformation modes has been developed in this thesis. This new computational scheme involves building material databases comprised of spectral coefficients. These spectral coefficients are computed using discrete Fourier transforms (DFTs) and allow for compact representation and fast retrieval of crystal plasticity solutions for a crystal of any orientation subjected to any deformation mode. The novel approach is able to speed up the conventional crystal plasticity computations by two orders of magnitude. Furthermore, mathematical procedures for delineation of property closures that identify the complete set of theoretically feasible combinations of macroscale effective properties has been developed for a broad set of mechanical properties. Subsequently, these constructs were used in microstructure design for identifying an optimal microstructure for selected performance criteria. And finally, hybrid processing recipes that transform a given initial microstructure into a member of the set of optimal microstructures that exhibit superior properties or performance characteristics have been described. Insights and tremendous potential of these novel materials knowledge systems are discussed and demonstrated through specific case-studies. The anisotropic stress-strain response measured in simple compression and simple tension tests in different sample directions on an annealed, strongly textured, AZ31 sheet has been studied. New insights into the mechanical response of this material were obtained by correlating the changes in the measured strain-hardening rates in the different

  5. Incorporation of Plasticity and Damage Into an Orthotropic Three-Dimensional Model with Tabulated Input Suitable for Use in Composite Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Rajan,Subramaniam; Blackenhorn, Gunther

    2015-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within commercial transient dynamic finite element codes, several features have been identified as being lacking in the currently available material models that could substantially enhance the predictive capability of the impact simulations. A specific desired feature pertains to the incorporation of both plasticity and damage within the material model. Another desired feature relates to using experimentally based tabulated stress-strain input to define the evolution of plasticity and damage as opposed to specifying discrete input properties (such as modulus and strength) and employing analytical functions to track the response of the material. To begin to address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed for implementation within the commercial code LS-DYNA. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. The effective plastic strain is computed by using the non-associative flow rule in combination with appropriate numerical methods. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used, in which a load in one direction results in a stiffness reduction in multiple coordinate directions. A specific laminated composite is examined to demonstrate the process of characterizing and analyzing the response of a composite using the developed

  6. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Boulland

    Full Text Available Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compression (SCC injury model in the neonatal mouse to gain insight into the potential for reorganization during early life. The model provides a platform for high-throughput assessment of functional synaptic connectivity that is also suitable for testing the functional integration of human stem and progenitor cell-derived neurons being considered for clinical cell replacement strategies. SCC was generated at T9-T11 and functional recovery was assessed using an integrated approach including video kinematics, histology, tract tracing, electrophysiology, and high-throughput optical recording of descending inputs to identified spinal neurons. Dramatic degeneration of axons and synaptic contacts was evident within 24 hours of SCC, and loss of neurons in the injured segment was evident for at least a month thereafter. Initial hindlimb paralysis was paralleled by a loss of descending inputs to lumbar motoneurons. Within 4 days of SCC and progressively thereafter, hindlimb motility began to be restored and descending inputs reappeared, but with examples of atypical synaptic connections indicating a reorganization of circuitry. One to two weeks after SCC, hindlimb motility approached sham control levels, and weight-bearing locomotion was virtually indistinguishable in SCC and sham control mice. Genetically labeled human fetal neural progenitor cells injected into the injured spinal cord survived for at least a month, integrated into the host tissue and began to differentiate morphologically. This integrative neonatal mouse model provides opportunities to explore early

  7. Elevated Temperature Effects on the Plastic Anisotropy of an Extruded Mg-4 Wt Pct Li Alloy: Experiments and Polycrystal Modeling

    Science.gov (United States)

    Risse, Marcel; Lentz, Martin; Fahrenson, Christoph; Reimers, Walter; Knezevic, Marko; Beyerlein, Irene J.

    2017-01-01

    In this work, we study the deformation behavior of Mg-4 wt pct Li in uniaxial tension as a function of temperature and loading direction. Standard tensile tests were performed at temperatures in the range of 293 K (20 °C) ≤ T ≤ 473 K (200 °C) and in two in-plane directions: the extrusion and the transverse. We find that while the in-plane plastic anisotropy (PA) decreases with temperature, the anisotropy in failure strain and texture development increases. To uncover the temperature dependence in the critical stresses for slip and in the amounts of slip and twinning systems mediating deformation, we employ the elastic-plastic self-consistent polycrystal plasticity model with a thermally activated dislocation density based hardening law for activating slip with individual crystals. We demonstrate that the model, with a single set of intrinsic material parameters, achieves good agreement with the stress-strain curves, deformation textures, and intragranular misorientation axis analysis for all test directions and temperatures. With the model, we show that at all temperatures the in-plane tensile behavior is driven primarily by < a rangle slip and both < {c + a} rangle slip and twinning play a minor role. The analysis explains that the in-plane PA decreases and failure strains increase with temperature as a result of a significant reduction in the activation stress for pyramidal < {c + a} rangle slip, which effectively promotes strain accommodation from multiple types of < a rangle and < {c + a} rangle slip. The results also show that because of the strong initial texture, in-plane texture development is anisotropic since prismatic slip dominates the deformation in one test, although it is not the easiest slip mode, and basal slip in the other. These findings reveal the relationship between the temperature-sensitive thresholds needed to activate crystallographic slip and the development of texture and macroscopic PA.

  8. Generalization of Darcy's law for Bingham fluids in porous media: from flow-field statistics to the flow-rate regimes.

    Science.gov (United States)

    Chevalier, Thibaud; Talon, Laurent

    2015-02-01

    In this paper, we numerically investigate the statistical properties of the nonflowing areas of Bingham fluid in two-dimensional porous media. First, we demonstrate that the size probability distribution of the unyielded clusters follows a power-law decay with a large size cutoff. This cutoff is shown to diverge following a power law as the imposed pressure drop tends to a critical value. In addition, we observe that the exponents are almost identical for two different types of porous media. Finally, those scaling properties allow us to account for the quadratic relationship between the pressure gradient and velocity.

  9. Individual differences in behavioural plasticities.

    Science.gov (United States)

    Stamps, Judy A

    2016-05-01

    plasticities observed at a given age. Several authors have predicted correlations across individuals between different types of behavioural plasticities, i.e. that some individuals will be generally more plastic than others. However, empirical support for most of these predictions, including indirect evidence from studies of relationships between personality traits and plasticities, is currently sparse and equivocal. The final section of this review suggests how an appreciation of the similarities and differences between different types of behavioural plasticities may help theoreticians formulate testable models to explain the evolution of individual differences in behavioural plasticities and the evolutionary and ecological consequences of individual differences in behavioural plasticities. © 2015 Cambridge Philosophical Society.

  10. Plastic Surgery

    Science.gov (United States)

    ... idea for teens? As with everything, there are right and wrong reasons to have surgery. Cosmetic surgery is unlikely to change your life. Most board-certified plastic surgeons spend a lot of time ... the right reasons. Many plastic surgery procedures are just that — ...

  11. Experiment and Modeling of Simultaneous Creep, Plasticity and Transformation of High Temperature Shape Memory Alloys During Cyclic Actuation

    Science.gov (United States)

    Kumar, Parikshith K.; Desai, Uri; Chatzigeorgiou, George; Lagoudas, Dimitris C.; Monroe, James; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glen

    2010-01-01

    The present work is focused on studying the cycling actuation behavior of HTSMAs undergoing simultaneous creep and transformation. For the thermomechanical testing, a high temperature test setup was assembled on a MTS frame with the capability to test up to temperatures of 600 C. Constant stress thermal cycling tests were conducted to establish the actuation characteristics and the phase diagram for the chosen HTSMA. Additionally, creep tests were conducted at constant stress levels at different test temperatures to characterize the creep behavior of the alloy over the operational range. A thermodynamic constitutive model is developed and extended to take into account a) the effect of multiple thermal cycling on the generation of plastic strains due to transformation (TRIP strains) and b) both primary and secondary creep effects. The model calibration is based on the test results. The creep tests and the uniaxial tests are used to identify the viscoplastic behavior of the material. The parameters for the SMA properties, regarding the transformation and transformation induced plastic strain evolutions, are obtained from the material phase diagram and the thermomechanical tests. The model is validated by predicting the material behavior at different thermomechanical test conditions.

  12. Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting

    Science.gov (United States)

    Wu, Christine J.; Söderlind, Per; Glosli, James N.; Klepeis, John E.

    2009-03-01

    There are many structural and optical similarities between a liquid and a plastic flow. Thus, it is non-trivial to distinguish between them at high pressures and temperatures, and a detailed description of the transformation between these phenomena is crucial to our understanding of the melting of metals at high pressures. Here we report a shear-induced, partially disordered viscous plastic flow from body-centred-cubic tantalum under heating before it melts into a liquid. This thermally activated structural transformation produces a unique, one-dimensional structure analogous to a liquid crystal with the rheological characteristics of Bingham plastics. This mechanism is not specific to Ta and is expected to hold more generally for other metals. Remarkably, this transition is fully consistent with the previously reported anomalously low-temperature melting curve and thus offers a plausible resolution to a long-standing controversy about melting of metals under high pressures.

  13. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response

    Directory of Open Access Journals (Sweden)

    Li Hu

    2017-10-01

    Full Text Available Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM. Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

  14. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response.

    Science.gov (United States)

    Hu, Li; Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-10-13

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

  15. An Optimized Elasto-Plastic Subgrade Reaction For Modeling The Response Of A Nonlinear Foundation For A Structural Analysis

    Directory of Open Access Journals (Sweden)

    Ray Richard Paul

    2015-09-01

    Full Text Available Geotechnical and structural engineers are faced with a difficult task when their designs interact with each other. For complex projects, this is more the norm than the exception. In order to help bridge that gap, a method for modeling the behavior of a foundation using a simple elasto-plastic subgrade reaction was developed. The method uses an optimization technique to position 4-6 springs along a pile foundation to produce similar load deflection characteristics that were modeled by more sophisticated geotechnical finite element software. The methodology uses an Excel spreadsheet for accepting user input and delivering an optimized subgrade spring stiffness, yield, and position along the pile. In this way, the behavior developed from the geotechnical software can be transferred to the structural analysis software. The optimization is achieved through the solver add-in within Excel. Additionally, a beam on a nonlinear elastic foundation model is used to compute deflections of the optimized subgrade reaction configuration.

  16. Are all hands-on activities equally effective? Effect of using plastic models, organ dissections, and virtual dissections on student learning and perceptions.

    Science.gov (United States)

    Lombardi, Sara A; Hicks, Reimi E; Thompson, Katerina V; Marbach-Ad, Gili

    2014-03-01

    This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or plastic models). Each group received a 15-min lecture followed by a 45-min activity with one of the treatments. Immediately after the lesson and then 2 mo later, students were tested on anatomy and physiology knowledge and completed an attitude survey. Students who used plastic models achieved significantly higher overall scores on both the initial and followup exams than students who performed organ or virtual dissections. On the initial exam, students in the plastic model and organ dissection treatments scored higher on anatomy questions than students who performed virtual dissections. Students in the plastic model group scored higher than students who performed organ dissections on physiology questions. On the followup exam, when asked anatomy questions, students in the plastic model group scored higher than dissection students and virtual dissection students. On attitude surveys, organ dissections had higher perceived value and were requested for inclusion in curricula twice as often as any other activity. Students who performed organ dissections were more likely than the other treatment groups to agree with the statement that "science is fun," suggesting that organ dissections may promote positive attitudes toward science. The findings of this study provide evidence for the importance of multiple types of hands-on activities in anatomy laboratory courses.

  17. Modeling a Complex Biological Network with Temporal Heterogeneity: Cardiac Myocyte Plasticity as a Case Study

    Science.gov (United States)

    Mazloom, Amin R.; Basu, Kalyan; Mandal, Subhrangsu S.; Das, Sajal K.

    Complex biological systems often characterize nonlinear dynamics. Employing traditional deterministic or stochastic approaches to quantify these dynamics either fail to capture their existing deviant effects or lead to combinatorial explosion. In this work we devised a novel approach that projects the biological functions within a pathway to a network of stochastic events that are random in time and space. By applying this approach recursively to the object system we build the event network of the entire system. The dynamics of the system evolves through the execution of the event network by a simulation engine which comprised of a time prioritized event queue. As a case study we utilized the current method and conducted an in-silico experiment on the metabolic plasticity of a cardiac myocyete. We aimed to quantify the down stream effects of insulin signaling that predominantly controls the plasticity in myocardium. Intriguingly, our in-silico results on transcription regulatory effect of insulin showed a good agreement with experimental data. Meanwhile we were able to characterize the flux change across major metabolic pathways over 48 hours of the in-silico experiment. Our simulation performed a remarkable efficiency by conducting 48 hours of simulation-time in less that 2 hours of processor time.

  18. Npas4 Expression in Two Experimental Models of the Barrel Cortex Plasticity

    Directory of Open Access Journals (Sweden)

    Aleksandra Kaliszewska

    2015-01-01

    Full Text Available Npas4 has recently been identified as an important factor in brain plasticity, particularly in mechanisms of inhibitory control. Little is known about Npas4 expression in terms of cortical plasticity. In the present study expressions of Npas4 and the archetypal immediate early gene (IEG c-Fos were investigated in the barrel cortex of mice after sensory deprivation (sparing one row of whiskers for 7 days or sensory conditioning (pairing stimulation of one row of whiskers with aversive stimulus. Laser microdissection of individual barrel rows allowed for analysis of IEGs expression precisely in deprived and nondeprived barrels (in deprivation study or stimulated and nonstimulated barrels (in conditioning study. Cortex activation by sensory conditioning was found to upregulate the expression of both Npas4 and c-Fos. Reorganization of cortical circuits triggered by removal of selected rows of whiskers strongly affected c-Fos but not Npas4 expression. We hypothesize that increased inhibitory synaptogenesis observed previously after conditioning may be mediated by Npas4 expression.

  19. Comparison of the Effectiveness of a Virtual Simulator With a Plastic Arm Model in Teaching Intravenous Catheter Insertion Skills.

    Science.gov (United States)

    Günay İsmailoğlu, Elif; Zaybak, Ayten

    2018-02-01

    The objective of this study was to compare the effectiveness of a virtual intravenous simulator with a plastic arm model in teaching intravenous catheter insertion skills to nursing students. We used a randomized controlled quasi-experimental trial design and recruited 65 students who were assigned to the experimental (n = 33) and control (n = 32) groups using the simple random sampling method. The experimental group received intravenous catheterization skills training on the virtual intravenous simulator, and the control group received the same training on a plastic model of a human arm. Data were collected using the personal information form, intravenous catheterization knowledge assessment form, Intravenous Catheterization Skill Test, Self-Confidence and Satisfaction Scale, and Fear Symptoms Scale. In the study, the mean scores in the control group were 20.44 for psychomotor skills, 15.62 for clinical psychomotor skills, 31.78 for self-confidence, and 21.77 for satisfaction. The mean scores in the experimental group were 45.18 for psychomotor skills, 16.28 for clinical psychomotor skills, 34.18 for self-confidence, and 43.89 for satisfaction. The results indicated that psychomotor skills and satisfaction scores were higher in the experimental group, while the clinical psychomotor skills and self-confidence scores were similar in both groups. More students in the control group reported experiencing symptoms such as cold and sweaty hands, significant restlessness, and tense muscles than those in the experimental group.

  20. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface.

    Directory of Open Access Journals (Sweden)

    Guillaume Lajoie

    2017-02-01

    Full Text Available Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI can artificially strengthen connections between separate neural sites in motor cortex (MC. When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.

  1. Ketone ester supplementation attenuates seizure activity, and improves behavior and hippocampal synaptic plasticity in an Angelman syndrome mouse model.

    Science.gov (United States)

    Ciarlone, Stephanie L; Grieco, Joseph C; D'Agostino, Dominic P; Weeber, Edwin J

    2016-12-01

    Angelman syndrome (AS) is a rare genetic and neurological disorder presenting with seizures, developmental delay, ataxia, and lack of speech. Previous studies have indicated that oxidative stress-dependent metabolic dysfunction may underlie the phenotypic deficits reported in the AS mouse model. While the ketogenic diet (KD) has been used to protect against oxidative stress and has successfully treated refractory epilepsy in AS case studies, issues arise due to its strict adherence requirements, in addition to selective eating habits and weight issues reported in patients with AS. We hypothesized that ketone ester supplementation would mimic the KD as an anticonvulsant and improve the behavioral and synaptic plasticity deficits in vivo. AS mice were supplemented R,S-1,3-butanediol acetoacetate diester (KE) ad libitum for eight weeks. KE administration improved motor coordination, learning and memory, and synaptic plasticity in AS mice. The KE was also anticonvulsant and altered brain amino acid metabolism in AS treated animals. Our findings suggest that KE supplementation produces sustained ketosis and ameliorates many phenotypes in the AS mouse model, and should be investigated further for future clinical use. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  3. The role of APP and APLP for synaptic transmission, plasticity, and network function: lessons from genetic mouse models.

    Science.gov (United States)

    Korte, Martin; Herrmann, Ulrike; Zhang, Xiaomin; Draguhn, Andreas

    2012-04-01

    APP, APLP1, and APLP2 form a family of mammalian membrane proteins with unknown function. APP, however, plays a key role in the molecular pathology of Alzheimer's disease (AD), indicating that it is somehow involved in synaptic transmission, synaptic plasticity, memory formation, and maintenance of neurons. At present, most of our knowledge about the function of APP comes from consequences of AD-related mutations. The native role of APP, and even more of APLP1/2, remains largely unknown. New genetic knockout and knockin models involving several members of the APP/APLP family may yield better insight into the synaptic and systemic functions of these proteins. Here, we summarize recent results from such transgenic animals with special emphasis on synaptic plasticity and coherent patterns of memory-related network activity in the hippocampus. Data from APP knockout mice suggest that this protein is needed for the expression of long-term potentiation (LTP) in aged, but not in juvenile mice. The missing function can be rescued by expressing part of the protein, as well as by blocking inhibition. Double knockout mice lacking APP and APLP2 die shortly after birth indicating that different members of the APP/APLP family can mutually compensate for genetic ablation of single proteins. Recent techniques allow for analysis of tissue with combined defects, e.g., by expressing only part of APP in APLP2 knockout mice or by growing stem cells with multiple deletions on normal slice cultures. Data from these experiments confirm that APP and APLP2 do indeed play an important role in synaptic plasticity. Much less is known about the role of APP/APLP at the network level. Coherent patterns of activity like hippocampal network oscillations are believed to support formation and consolidation of memory. Analysis of such activity patterns in tissue from mice with altered expression of APP/APLP has just started and may shed further light on the importance of these proteins for cognitive

  4. MODELING OF KINEMATICS OF A PLASTIC SHAPING AT CALIBRATION OF A THIN-WALLED PRECISION PIPE SINKING

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2014-01-01

    Full Text Available Summary. The mathematical model of kinematics of a plastic shaping at the sinking of a thin-walled precision pipe applied to calibration of the ends of the unified elements of the pipeline of aircraft from titanic alloys and corrosion-resistant steel before assembly to the route by means of automatic argon-arc welding of ring joints is developed. For modeling, the power criterion of stability with use of kinematic possible fields of speeds is applied to receiving the top assessment of effort of deformation. The developed model of kinematics of a plastic current allows to receive power parameters of the main condition of process of calibration by sinking and can be used for the solution of a task on stability of process of deformation by results of comparison of power (power parameters for the main (steady and indignant states. Modeling is made in cylindrical system of coordinates by comparison of options of kinematic possible fields of the speeds of a current meeting a condition of incompressibility and kinematic regional conditions. The result of the modeling was selected discontinuous field of high-speed, in which the decrease outer radius (R occurs only by increasing the thickness of the pipe wall (t. For this option the size of pressure of sinking had the smallest value, therefore the chosen field of speeds closely to the valid. It is established that with increase in a step of giving 1 at calibration by the multisector tool the demanded pressure of sinking of q decreases. At an identical step of giving 1 pipe with the smaller relative thickness of (t/r needs to be calibrated the smaller pressure of sinking. With increase of a limit of fluidity at shift of material of pipe preparation pressure of sinking of (q increases.

  5. A comparison of elastic-plastic and variable modulus-cracking constitutive models for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Anderson, C.A.; Smith, P.D.

    1979-01-01

    Numerical prediction of the behavior of prestressed concrete reactor vessels (PCRVs) under static, dynamic and long term loadings is complicated by the currently ill-defined behavior of concrete under stress and the three-dimensional nature of PCRVs. Which constitutive model most closely approximates the behavior of concrete in PCRVs under load has not yet been decided. Many equations for accurately modeling the three-dimensional behavior of PCRVs tax the capability of a most up-to-date computing system. The main purpose of this paper is to compare the characteristics of two constitutive models which have been proposed for concrete, variable modulus cracking model and elastic-plastic model. Moreover, the behavior of typical concrete structures was compared, the materials of which obey these constitutive laws. The response to internal pressure of PCRV structure, the constitutive models for concrete, the test problems using a thick-walled concrete ring and a rectangular concrete plate, and the analysis of an axisymmetric concrete pressure vessel PV-26 using the variable modulus cracking model of the ADINA code are explained. The variable modulus cracking model can predict the behavior of reinforced concrete structures well into the range of nonlinear behavior. (Kako, I.)

  6. Elevated Temperature Primary Load Design Method Using Pseudo Elastic-Perfectly Plastic Model

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Peter [Stress Engineering Services Inc.; Sham, Sam [ORNL; Jetter, Robert I [Consultant

    2012-01-01

    A new primary load design method for elevated temperature service has been developed. Codification of the procedure in an ASME Boiler and Pressure Vessel Code, Section III Code Case is being pursued. The proposed primary load design method is intended to provide the same margins on creep rupture, yielding and creep deformation for a component or structure that are implicit in the allowable stress data. It provides a methodology that does not require stress classification and is also applicable to a full range of temperature above and below the creep regime. Use of elastic-perfectly plastic analysis based on allowable stress with corrections for constraint, steady state stress and creep ductility is described. This approach is intended to ensure that traditional primary stresses are the basis for design, taking into account ductility limits to stress re-distribution and multiaxial rupture criteria.

  7. Bridging animal and human models of exercise-induced brain plasticity

    Science.gov (United States)

    Voss, Michelle W.; Vivar, Carmen; Kramer, Arthur F.; van Praag, Henriette

    2015-01-01

    Significant progress has been made in understanding the neurobiological mechanisms through which exercise protects and restores the brain. In this feature review, we integrate animal and human research, examining physical activity effects across multiple levels of description (neurons up to inter-regional pathways). We evaluate the influence of exercise on hippocampal structure and function, addressing common themes such as spatial memory and pattern separation, brain structure and plasticity, neurotrophic factors, and vasculature. Areas of research focused more within species, such as hippocampal neurogenesis in rodents, also provide crucial insight into the protective role of physical activity. Overall, converging evidence suggests exercise benefits brain function and cognition across the mammalian lifespan, which may translate into reduced risk for Alzheimer’s disease (AD) in humans. PMID:24029446

  8. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  9. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism

    Directory of Open Access Journals (Sweden)

    Tania Rinaldi

    2008-10-01

    Full Text Available The prefrontal cortex has been extensively implicated in autism to explain deficits in executive and other higher-order functions related to cognition, language, sociability and emotion. The possible changes at the level of the neuronal microcircuit are however not known. We studied microcircuit alterations in the prefrontal cortex in the valproic acid rat model of autism and found that the layer 5 pyramidal neurons are connected to significantly more neighbouring neurons than in controls. These excitatory connections are more plastic displaying enhanced long-term potentiation of the strength of synapses. The microcircuit alterations found in the prefrontal cortex are therefore similar to the alterations previously found in the somatosensory cortex. Hyper-connectivity and hyper-plasticity in the prefrontal cortex implies hyper-functionality of one of the highest order processing regions in the brain, and stands in contrast to the hypo-functionality that is normally proposed in this region to explain some of the autistic symptoms. We propose that a number of deficits in autism such as sociability, attention, multi-tasking and repetitive behaviours, should be re-interpreted in the light of a hyper-functional prefrontal cortex.

  10. Persistent deficits in hippocampal synaptic plasticity accompany losses of hippocampus-dependent memory in a rodent model of psychosis

    Directory of Open Access Journals (Sweden)

    Valentina eWiescholleck

    2013-03-01

    Full Text Available Irreversible N-methyl-D-aspartate receptor (NMDAR antagonism is known to provoke symptoms of psychosis and schizophrenia in healthy humans. NMDAR hypofunction is believed to play a central role in the pathophysiology of both disorders and in an animal model of psychosis, that is based on irreversible antagonism of NMDARs, pronounced deficits in hippocampal synaptic plasticity have been reported shortly after antagonist treatment. Here, we examined the long-term consequences for long-term potentiation (LTP of a single acute treatment with an irreversible antagonist and investigated whether deficits are associated with memory impairments.The ability to express long-term potentiation (LTP at the perforant pathway – dentate gyrus synapse, as well as object recognition memory was assessed 1, 2, 3 and 4 weeks after a single -treatment of the antagonist, MK801. Here, LTP in freely behaving rats was significantly impaired at all time-points compared to control LTP before treatment. Object recognition memory was also significantly poorer in MK801-treated compared to vehicle-treated animals for several weeks after treatment. Histological analysis revealed no changes in brain tissue.Taken together, these data support that acute treatment with an irreversible NMDAR antagonist persistently impairs hippocampal functioning on behavioral, as well as synaptic levels. The long-term deficits in synaptic plasticity may underlie the cognitive impairments that are associated with schizophrenia-spectrum disorders.

  11. Stimulation of the Hippocampal POMC/MC4R Circuit Alleviates Synaptic Plasticity Impairment in an Alzheimer's Disease Model.

    Science.gov (United States)

    Shen, Yang; Tian, Min; Zheng, Yuqiong; Gong, Fei; Fu, Amy K Y; Ip, Nancy Y

    2016-11-08

    Hippocampal synaptic plasticity is modulated by neuropeptides, the disruption of which might contribute to cognitive deficits observed in Alzheimer's disease (AD). Although pro-opiomelanocortin (POMC)-derived neuropeptides and melanocortin 4 receptor (MC4R) are implicated in hippocampus-dependent synaptic plasticity, how the POMC/MC4R system functions in the hippocampus and its role in synaptic dysfunction in AD are largely unknown. Here, we mapped a functional POMC circuit in the mouse hippocampus, wherein POMC neurons in the cornu ammonis 3 (CA3) activate MC4R in the CA1. Suppression of hippocampal MC4R activity in the APP/PS1 transgenic mouse model of AD exacerbates long-term potentiation impairment, which is alleviated by the replenishment of hippocampal POMC/MC4R activity or activation of hippocampal MC4R-coupled Gs signaling. Importantly, MC4R activation rescues amyloid-β-induced synaptic dysfunction via a Gs/cyclic AMP (cAMP)/PKA/cAMP-response element binding protein (CREB)-dependent mechanism. Hence, disruption of this hippocampal POMC/MC4R circuit might contribute to synaptic dysfunction observed in AD, revealing a potential therapeutic target for the disease. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Developmental plasticity

    Science.gov (United States)

    Lea, Amanda J; Tung, Jenny; Archie, Elizabeth A; Alberts, Susan C

    2017-01-01

    Abstract Early life experiences can have profound and persistent effects on traits expressed throughout the life course, with consequences for later life behavior, disease risk, and mortality rates. The shaping of later life traits by early life environments, known as ‘developmental plasticity’, has been well-documented in humans and non-human animals, and has consequently captured the attention of both evolutionary biologists and researchers studying human health. Importantly, the parallel significance of developmental plasticity across multiple fields presents a timely opportunity to build a comprehensive understanding of this phenomenon. We aim to facilitate this goal by highlighting key outstanding questions shared by both evolutionary and health researchers, and by identifying theory and empirical work from both research traditions that is designed to address these questions. Specifically, we focus on: (i) evolutionary explanations for developmental plasticity, (ii) the genetics of developmental plasticity and (iii) the molecular mechanisms that mediate developmental plasticity. In each section, we emphasize the conceptual gains in human health and evolutionary biology that would follow from filling current knowledge gaps using interdisciplinary approaches. We encourage researchers interested in developmental plasticity to evaluate their own work in light of research from diverse fields, with the ultimate goal of establishing a cross-disciplinary understanding of developmental plasticity. PMID:29424834

  13. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  14. Evidence for phenotypic plasticity in aggressive triple-negative breast cancer: human biology is recapitulated by a novel model system.

    Directory of Open Access Journals (Sweden)

    Nicholas C D'Amato

    Full Text Available Breast cancers with a basal-like gene signature are primarily triple-negative, frequently metastatic, and carry a poor prognosis. Basal-like breast cancers are enriched for markers of breast cancer stem cells as well as markers of epithelial-mesenchymal transition (EMT. While EMT is generally thought to be important in the process of metastasis, in vivo evidence of EMT in human disease remains rare. Here we report a novel model of human triple-negative breast cancer, the DKAT cell line, which was isolated from an aggressive, treatment-resistant triple-negative breast cancer that demonstrated morphological and biochemical evidence suggestive of phenotypic plasticity in the patient. The DKAT cell line displays a basal-like phenotype in vitro when cultured in serum-free media, and undergoes phenotypic changes consistent with EMT/MET in response to serum-containing media, a unique property among the breast cancer cell lines we tested. This EMT is marked by increased expression of the transcription factor Zeb1, and Zeb1 is required for the enhanced migratory ability of DKAT cells in the mesenchymal state. DKAT cells also express progenitor-cell markers, and single DKAT cells are able to generate tumorspheres containing both epithelial and mesenchymal cell types. In vivo, as few as ten DKAT cells are capable of forming xenograft tumors which display a range of epithelial and mesenchymal phenotypes. The DKAT model provides a novel model to study the molecular mechanisms regulating phenotypic plasticity and the aggressive biology of triple-negative breast cancers.

  15. A numerical multi-scale model to predict macroscopic material anisotropy of multi-phase steels from crystal plasticity material definitions

    Science.gov (United States)

    Ravi, Sathish Kumar; Gawad, Jerzy; Seefeldt, Marc; Van Bael, Albert; Roose, Dirk

    2017-10-01

    A numerical multi-scale model is being developed to predict the anisotropic macroscopic material response of multi-phase steel. The embedded microstructure is given by a meso-scale Representative Volume Element (RVE), which holds the most relevant features like phase distribution, grain orientation, morphology etc., in sufficient detail to describe the multi-phase behavior of the material. A Finite Element (FE) mesh of the RVE is constructed using statistical information from individual phases such as grain size distribution and ODF. The material response of the RVE is obtained for selected loading/deformation modes through numerical FE simulations in Abaqus. For the elasto-plastic response of the individual grains, single crystal plasticity based plastic potential functions are proposed as Abaqus material definitions. The plastic potential functions are derived using the Facet method for individual phases in the microstructure at the level of single grains. The proposed method is a new modeling framework and the results presented in terms of macroscopic flow curves are based on the building blocks of the approach, while the model would eventually facilitate the construction of an anisotropic yield locus of the underlying multi-phase microstructure derived from a crystal plasticity based framework.

  16. Parameters identification in strain-rate and thermal sensitive visco-plastic material model for an alumina dispersion strengthened copper

    CERN Document Server

    Scapin, M; Peroni, M

    2011-01-01

    The main objective of this paper is getting strain-hardening, thermal and strain-rate parameters for a material model in order to correctly reproduce the deformation process that occurs in high strain-rate scenario, in which the material reaches also high levels of plastic deformation and temperature. In particular, in this work the numerical inverse method is applied to extract material strength parameters from experimental data obtained via mechanical tests at different strain-rates (from quasi-static loading to high strain-rate) and temperatures (between 20 C and 1000 C) for an alumina dispersion strengthened copper material, which commercial name is GLIDCOP. Thanks to its properties GLIDCOP finds several applications in particle accelerator technologies, where problems of thermal management, combined with structural requirements, play a key role. Currently, it is used for the construction of structural and functional parts of the particle beam collimation system. Since the extreme condition in which the m...

  17. Inverse modelling approach in 3-point bending for elasto- plastic material parameter identification of thin spring steel

    Science.gov (United States)

    Mertin, C.; Huse, K.; Hirt, G.

    2016-08-01

    Under process conditions such as bending of flat wire made from high strength spring steel, the occurring strains are many times higher than the maximum strains determined from uniaxial tensile tests. To determine the elasto-plastic material behaviour of high strength spring steel (X10CrNi18-8), an inverse modelling approach using a simple testing method is presented. A 3-point bending test with the resulting force-displacement measurements is used for the inverse analysis. The inverse approach is used for determining the Young's modulus and hardening parameters of the Ludwik-Hollomon's law for bending of high strength spring steel. FE simulations with the optimised material data meet the experimentally measured punch forces during bending. The optimised material data considerably enhances the springback prediction.

  18. Modelling Cyclic Walking in Femurs With Metastatic Lesions : Femur-Specific Accumulation of Plasticity

    NARCIS (Netherlands)

    Derikx, L.; Janssen, D.; Schepers, J.; Wesseling, M.; Verdonschot, N.; Jonkers, I.; Tanck, E.

    2015-01-01

    Introduction Clinical fracture risk assessment in metastatic bone disease is extremely difficult, but subject-specific finite element (FE) modelling may improve these assessments in the future [Derikx, 2015]. By coupling to musculoskeletal modelling, realistic loading conditions can be implemented

  19. Convection mixte lors de l'écoulement d'un fluide de Bingham au sein d'une conduite cylindrique horizontale

    Directory of Open Access Journals (Sweden)

    N. LABSI

    2015-03-01

    Full Text Available La présente étude traite du transfert thermique en mode de convection mixte lors de l'écoulement d'un fluide viscoplastique de Bingham au sein d'une conduite cylindrique horizontale à section droite circulaire, maintenue à température constante et uniforme. Le travail numérique, basé sur la méthode des volumes finis, se focalise sur l'impact de l'intensité des forces de poussée sur le comportement hydrodynamique et thermique de l'écoulement. Les résultats montrent que la structure de l'écoulement se modifie avec l'augmentation du nombre de Grashof. Cette augmentation entraine l'amélioration du transfert thermique et l'augmentation de a perte de charge et ce, dans la zone intermédiaire de la conduite.

  20. Model tests and elasto-plastic finite element analysis on multicavity type PCRV

    International Nuclear Information System (INIS)

    Nojiri, Y.; Yamazaki, M.; Kotani, K.; Matsuzaki, Y.

    1978-01-01

    Multicavity type PCRV models were tested to investigate elastic stress distributions, cracking and failure mode of the models, and to determine the adequacy and relative accuracy of finite element structural analyses. The behavior of the models under pressure was investigated, and it was found that the predictions of the analyses showed a good agreement with the test results

  1. A practical application of an evaluation model for the restraint effect of pressure-induced bending on a plastic crack opening

    International Nuclear Information System (INIS)

    Kim, Jin-Weon

    2008-01-01

    This paper presents an evaluation model for the restraint effect of pressure-induced bending (PIB) on the opening of a circumferential through-wall crack (TWC) and a result of its application to the calculation of crack-opening displacement (COD) of postulated cracks for a practical leak-before-break (LBB) analysis. Three-dimensional finite element analyses with different crack lengths, restraint conditions, pipe geometries, magnitudes of internal pressure, and material tensile properties were used to investigate the influence of each parameter on the PIB restraint for the plastic COD. From these investigations, we proposed an evaluation model based on elastic-perfectly plastic behavior. Comparison with finite element analysis results demonstrated that the proposed model reliably estimated the PIB restraint effect on the plastic crack opening of a circumferential TWC and properly reflected the effect of each parameter within the range over which the analytical expression was derived. The model was then used to calculate restrained CODs of postulated cracks for a practical LBB analysis. When plastic crack behavior was considered, the PIB restraint effect was considerable for some LBB analysis cases of the primary piping systems in a typical nuclear power plant. This effect was estimated to be negligible by existing linear elastic-based models

  2. Magical Engineering Plastic

    International Nuclear Information System (INIS)

    Kim, Gwang Ung

    1988-01-01

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  3. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  4. Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence.

    Science.gov (United States)

    Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis

    2011-08-01

    Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.

  5. Recombination between Poliovirus and Coxsackie A Viruses of Species C: A Model of Viral Genetic Plasticity and Emergence

    Directory of Open Access Journals (Sweden)

    Francis Delpeyroux

    2011-08-01

    Full Text Available Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV, an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs, which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C, in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.

  6. Recombination between Poliovirus and Coxsackie A Viruses of Species C: A Model of Viral Genetic Plasticity and Emergence

    Science.gov (United States)

    Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis

    2011-01-01

    Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs. PMID:21994791

  7. Simulation of hot forming processes of refractory metals using porous metal plasticity models

    International Nuclear Information System (INIS)

    Parteder, E.; Riedel, H.; Sun, D.-Z.

    2001-01-01

    In this work two models for predicting the densification behavior of sintered refractory metals during hot working operations are presented. It is known from experiments and cell model calculations that the pore shape change has a significant influence on the densification behavior. Therefore this effect should be included in a continuum constitutive description. The first model presented is a phenomenological extension of the Gurson model, the second one is the model of Gologanu, Leblond and Devaux, which was implemented as a user material model into the finite-element-code ABAQUS. The numerical results are compared with the density distribution of a tapered disk made of pure molybdenum after the hot forming operation. (author)

  8. A COMPARISON OF THE TENSILE STRENGTH OF PLASTIC PARTS PRODUCED BY A FUSED DEPOSITION MODELING DEVICE

    OpenAIRE

    Juraj Beniak; Peter Križan; Miloš Matúš

    2015-01-01

    Rapid Prototyping systems are nowadays increasingly used in many areas of industry, not only for producing design models but also for producing parts for final use. We need to know the properties of these parts. When we talk about the Fused Deposition Modeling (FDM) technique and FDM devices, there are many possible settings for devices and models which could influence the properties of a final part. In addition, devices based on the same principle may use different operational software for c...

  9. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  10. Plastic zonnecellen

    NARCIS (Netherlands)

    Roggen, Marjolein

    1998-01-01

    De zonnecel van de toekomst is in de maak. Onderzoekers van uiteenlopend pluimage werken eendrachtig aan een plastic zonnecel. De basis is technisch gelegd met een optimale, door invallend licht veroorzaakte, vorming van ladingdragers binnen een composiet van polymeren en buckyballs. Nu is het zaak

  11. An analytical model which combines roughness- and plasticity- induced fatigue crack closure

    Science.gov (United States)

    Chen, Nong

    In this study an analytical PICC-RICC Model was developed to describe better the near-threshold fatigue behavior. The PICC-RICC Model was built upon a strip-yield type PICC model originally proposed by Newman and later modified by Hou and Lawrence. A zigzag crack growth path was introduced to simulate surface roughness. The two opposing crack surfaces were considered to be translated and thus mismatched by the mixed-mode displacements occurring near the deflected crack tip. The model is powerful and unique in that it combines the effects of RICC and PICC. Thus, the gradual transition from RICC to PICC dominated crack closure is handled naturally by this model. The influences of the geometrical features of the surface roughness, R-ratio and the cyclic load range on RICC were examined using the PICC-RICC Model. Near-threshold fatigue behavior of various materials was predicted. The effect of microstructure on the RICC level was studied. The predicted results compared favorably with experimental data. The fatigue notch size effect was investigated using the PICC-RICC model. The initial crack length (asb{i}) for propagation was estimated. The predicted notch fatigue strength compared favorably with the Initiation-Propagation (I-P) Model prediction and test data. The existence of a "worst case notch" previously postulated using the I-P Model was confirmed.

  12. Plastic Models Designed to Produce Large Height-to-Length Ratio Steady-State Planar and Axisymmetric (Radial) Viscous Liquid Laminar Flow Gravity Currents

    Science.gov (United States)

    Blanck, Harvey F.

    2012-01-01

    Naturally occurring gravity currents include events such as air flowing through an open front door, a volcanic eruption's pyroclastic flow down a mountainside, and the spread of the Bhopal disaster's methyl isocyanate gas. Gravity currents typically have a small height-to-distance ratio. Plastic models were designed and constructed with a…

  13. Implementation of strength and burn models for plastic-bonded explosives and propellants

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2009-05-07

    We have implemented the burn model in LS-DYNA. At present, the damage (porosity and specific surface area) is specified as initial conditions. However, history variables that are used by the strength model are reserved as placeholders for the next major revision, which will be a completely interactive model. We have implemented an improved strength model for explosives based on a model for concrete. The model exhibits peak strength and subsequent strain softening in uniaxial compression. The peak strength increases with increasing strain rate and/or reduced ambient temperature. Under triaxial compression compression, the strength continues to increase (or at least not decrease) with increasing strain. This behaviour is common to both concrete and polymer-bonded explosives (PBX) because the microstructure of these composites is similar. Both have aggregate material with a broad particle size distribution, although the length scale for concrete aggregate is two orders of magnitude larger than for PBX. The (cement or polymer) binder adheres to the aggregate, and is both pressure and rate sensitive. There is a larger bind binder content in concrete, compared to the explosive, and the aggregates have different hardness. As a result we expect the parameter values to differ, but the functional forms to be applicable to both. The models have been fit to data from tests on an AWE explosive that is HMX based. The decision to implement the models in LS-DYNA was based on three factors: LS-DYNA is used routinely by the AWE engineering analysis group and has a broad base of experienced users; models implemented in LS-DYNA can be transferred easily to LLNL's ALE 3D using a material model wrapper developed by Rich Becker; and LS-DYNA could accommodate the model requirements for a significant number of additional history variables without the significant time delay associated with code modification.

  14. A Model Approach for Finding Cleaning Solutions for Plasticized Poly(Vinyl Chloride) Surfaces of Collections Objects

    DEFF Research Database (Denmark)

    Sanz Landaluze, Jon; Egsgaard, Helge; Morales Munoz, Clara

    2014-01-01

    This study focused on developing a surface cleaning treatment for one type of commercially available plasticized poly(vinyl chloride). The effects of cleaning solutions on samples of plasticized poly(vinyl chloride) were examined by several methods. The sample surface, prior to and after artifici...

  15. A Mathematical Model of the Evolution of Individual Differences in Developmental Plasticity Arising through Parental Bet-Hedging

    Science.gov (United States)

    Frankenhuis, Willem E.; Panchanathan, Karthik; Belsky, Jay

    2016-01-01

    Children vary in the extent to which their development is shaped by particular experiences (e.g. maltreatment, social support). This variation raises a question: Is there no single level of plasticity that maximizes biological fitness? One influential hypothesis states that when different levels of plasticity are optimal in different environmental…

  16. Modelling of Acoustic Signatures of New Modern Multitask Submarine Concept with Reinforced Plastic Parts

    NARCIS (Netherlands)

    Schippers, P.

    2009-01-01

    Since the late eighties the sonar performance model ALMOST for active and passive sonar has been under development at TNO. Modelling of active detection performance was first started for a point target, with a single Target Strength value dependent on parameters like aspect angle and frequency,

  17. Lego Bricks and the Octet Rule: Molecular Models for Biochemical Pathways with Plastic, Interlocking Toy Bricks

    Science.gov (United States)

    Lin, Henry J.; Lehoang, Jennifer; Kwan, Isabel; Baghaee, Anita; Prasad, Priya; Ha-Chen, Stephanie J.; Moss, Tanesha; Woods, Jeremy D.

    2018-01-01

    The 8 studs on a 2 × 4 Lego brick conveniently represent the outer shell of electrons for carbon, nitrogen, and oxygen atoms. We used Lego bricks to model these atoms, which are then joined together to form molecules by following the Lewis octet rule. A variety of small biological molecules can be modeled in this way, such as most amino acids,…

  18. A visco-elasto-plastic model for granular materials under simple shear conditions

    NARCIS (Netherlands)

    Redaelli, I.; di Prisco, C.; Vescovi, Dalila

    2016-01-01

    The numerical simulation of rapid landslides is quite complex mainly because constitutive models capable of simulating the mechanical behaviour of granular materials in the pre-collapse and post-collapse regimes are still missing. The goal of this paper is to introduce a constitutive model capable

  19. Evaluation of the crack plane equilibrium model for predicting plastic fracture

    International Nuclear Information System (INIS)

    Butler, T.A.; Smith, F.W.

    1985-01-01

    The Crack Plane Equilibium (CPE) model is a simple model for predicting the initiation of crack growth in ductile materials. The CPE model is evaluated for center-crack tension specimens and for pipe specimens containing part-through circumferential cracks emanating from the inside surface of the pipe. The model is based upon requiring equilibrium between the applied loads and an assumed stress distribution in the uncracked ligament near the crack tip. Required fracture parameters are the ultimate tensile strength and a process zone size at the crack tip that is determined from simple fracture tests. Crack growth initiation for the crack and specimen geometries studied is predicted with sufficient accuracy to warrant extending the CPE model for investigating other geometries and for predicting stable crack growth and the onset of unstable crack growth

  20. Modified internal state variable models of plasticity using nonlocal integrals in damage and gradients in dislocation density

    Science.gov (United States)

    Ahad, Fazle Rabbi

    To enhance material performance at different length scales, this study strives to develop a reliable analytical and computational tool with the help of internal state variables spanning micro and macro-level behaviors. First, the practical relevance of a nonlocal damage integral added to an internal state variable (BCJ) model is studied to alleviate numerical instabilities associated within the post-bifurcation regime. The characteristic length scale in the nonlocal damage, which is mathematical in nature, can be calibrated using a series of notch tensile tests. Then the same length scale from the notch tests is used in solving the problem of a high-velocity (between 89 and 107 m/s) rigid projectile colliding against a 6061-T6 aluminum-disk. The investigation indicates that incorporating a characteristic length scale to the constitutive model eliminates the pathological mesh-dependency associated with material instabilities. In addition, the numerical calculations agree well with experimental data. Next, an effort is made rather to introduce a physically motivated length scale than to apply a mathematical-one in the deformation analysis. Along this line, a dislocation based plasticity model is developed where an intrinsic length scale is introduced in the forms of spatial gradients of mobile and immobile dislocation densities. The spatial gradients are naturally invoked from balance laws within a consistent kinematic and thermodynamic framework. An analytical solution of the model variables is derived at homogenous steady state using the linear stability and bifurcation analysis. The model qualitatively captures the formation of dislocation cell-structures through material instabilities at the microscopic level. Finally, the model satisfactorily predicts macroscopic mechanical behaviors - e.g., multi-strain rate uniaxial compression, simple shear, and stress relaxation - and validates experimental results.

  1. A realistic neural mass model of the cortex with laminar-specific connections and synaptic plasticity - evaluation with auditory habituation.

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available In this work we propose a biologically realistic local cortical circuit model (LCCM, based on neural masses, that incorporates important aspects of the functional organization of the brain that have not been covered by previous models: (1 activity dependent plasticity of excitatory synaptic couplings via depleting and recycling of neurotransmitters and (2 realistic inter-laminar dynamics via laminar-specific distribution of and connections between neural populations. The potential of the LCCM was demonstrated by accounting for the process of auditory habituation. The model parameters were specified using Bayesian inference. It was found that: (1 besides the major serial excitatory information pathway (layer 4 to layer 2/3 to layer 5/6, there exists a parallel "short-cut" pathway (layer 4 to layer 5/6, (2 the excitatory signal flow from the pyramidal cells to the inhibitory interneurons seems to be more intra-laminar while, in contrast, the inhibitory signal flow from inhibitory interneurons to the pyramidal cells seems to be both intra- and inter-laminar, and (3 the habituation rates of the connections are unsymmetrical: forward connections (from layer 4 to layer 2/3 are more strongly habituated than backward connections (from Layer 5/6 to layer 4. Our evaluation demonstrates that the novel features of the LCCM are of crucial importance for mechanistic explanations of brain function. The incorporation of these features into a mass model makes them applicable to modeling based on macroscopic data (like EEG or MEG, which are usually available in human experiments. Our LCCM is therefore a valuable building block for future realistic models of human cognitive function.

  2. Development and Characterization of a Rate-Dependent Three-Dimensional Macroscopic Plasticity Model Suitable for Use in Composite Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2015-01-01

    Several key capabilities have been identified by the aerospace community as lacking in the material/models for composite materials currently available within commercial transient dynamic finite element codes such as LS-DYNA. Some of the specific desired features that have been identified include the incorporation of both plasticity and damage within the material model, the capability of using the material model to analyze the response of both three-dimensional solid elements and two dimensional shell elements, and the ability to simulate the response of composites composed with a variety of composite architectures, including laminates, weaves and braids. In addition, a need has been expressed to have a material model that utilizes tabulated experimentally based input to define the evolution of plasticity and damage as opposed to utilizing discrete input parameters (such as modulus and strength) and analytical functions based on curve fitting. To begin to address these needs, an orthotropic macroscopic plasticity based model suitable for implementation within LS-DYNA has been developed. Specifically, the Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The coefficients in the yield function are determined based on tabulated stress-strain curves in the various normal and shear directions, along with selected off-axis curves. Incorporating rate dependence into the yield function is achieved by using a series of tabluated input curves, each at a different constant strain rate. The non-associative flow-rule is used to compute the evolution of the effective plastic strain. Systematic procedures have been developed to determine the values of the various coefficients in the yield function and the flow rule based on the tabulated input data. An algorithm based on the radial return method has been developed to facilitate the numerical implementation of the material

  3. Literature study report of plasticity induced anisotropic damage modeling for forming processes

    NARCIS (Netherlands)

    Niazi, Muhammad Sohail

    2009-01-01

    A literature study report covering the topics; micromechanics of damage, continuum damage mechanics (gurson model and effective variable concept) and the dependence of damage on strain rate and temperature.

  4. Numerical Parameter Optimization of the Ignition and Growth Model for HMX Based Plastic Bonded Explosives

    Science.gov (United States)

    Gambino, James; Tarver, Craig; Springer, H. Keo; White, Bradley; Fried, Laurence

    2017-06-01

    We present a novel method for optimizing parameters of the Ignition and Growth reactive flow (I&G) model for high explosives. The I&G model can yield accurate predictions of experimental observations. However, calibrating the model is a time-consuming task especially with multiple experiments. In this study, we couple the differential evolution global optimization algorithm to simulations of shock initiation experiments in the multi-physics code ALE3D. We develop parameter sets for HMX based explosives LX-07 and LX-10. The optimization finds the I&G model parameters that globally minimize the difference between calculated and experimental shock time of arrival at embedded pressure gauges. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC LLNL-ABS- 724898.

  5. A COMPARISON OF THE TENSILE STRENGTH OF PLASTIC PARTS PRODUCED BY A FUSED DEPOSITION MODELING DEVICE

    Directory of Open Access Journals (Sweden)

    Juraj Beniak

    2015-12-01

    Full Text Available Rapid Prototyping systems are nowadays increasingly used in many areas of industry, not only for producing design models but also for producing parts for final use. We need to know the properties of these parts. When we talk about the Fused Deposition Modeling (FDM technique and FDM devices, there are many possible settings for devices and models which could influence the properties of a final part. In addition, devices based on the same principle may use different operational software for calculating the tool path, and this may have a major impact. The aim of this paper is to show the tensile strength value for parts produced from different materials on the Fused Deposition Modeling device when the horizontal orientation of the specimens is changed.

  6. Elasto-plastic hardening models adjustment to ferritic, austenitic and austenoferritic Rebar

    International Nuclear Information System (INIS)

    Hortigóna, B.; Gallardo, J.M.; Nieto-García, E.J.; López, J.A.

    2017-01-01

    The elastoplastic behaviour of steel used for structural member fabrication has received attention to facilitate a mechanical-resistant design. New Zealand and South African standards have adopted various theoretical approaches to describe such behaviour in stainless steels. With respect to the building industry, describing the tensile behaviour of steel rebar used to produce reinforced concrete structures is of interest. Differences compared with the homogenous material described in the above mentioned standards and related literatures are discussed in this paper. Specifically, the presence of ribs and the TEMPCORE® technology used to produce carbon steel rebar may alter the elastoplastic model. Carbon steel rebar is shown to fit a Hollomon model giving hardening exponent values on the order of 0.17. Austenitic stainless steel rebar behaviour is better described using a modified Rasmussen model with a free fitted exponent of 6. Duplex stainless steel shows a poor fit to any previous model. [es

  7. Development of constitutive models for cyclic plasticity and creep behavior of super alloys at high temperature

    Science.gov (United States)

    Haisler, W. E.

    1983-01-01

    An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.

  8. Saltstone SDU6 Modeling Study

    International Nuclear Information System (INIS)

    Lee, Si Y.; Hyun, Sinjae

    2013-01-01

    A new disposal unit, designated as Saltstone Disposal Unit 6 (SDU6), is being designed for support of site accelerated closure goals and salt waste projections identified in the new Liquid Waste System Plan. The unit is a cylindrical disposal cell of 375 ft in diameter and 43 ft in height, and it has a minimum 30 million gallons of capacity. SRNL was requested to evaluate the impact of an increased grout placement height on the flow patterns radially spread on the floor and to determine whether grout quality is impacted by the height. The primary goals of the work are to develop the baseline Computational Fluid Dynamics (CFD) model and to perform the evaluations for the flow patterns of grout material in SDU6 as a function of elevation of grout discharge port and grout rheology. Two transient grout models have been developed by taking a three-dimensional multiphase CFD approach to estimate the domain size of the grout materials radially spread on the facility floor and to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation height of the discharge port and fresh grout properties. For the CFD modeling calculations, air-grout Volume of Fluid (VOF) method combined with Bingham plastic and time-dependent grout models were used for examining the impact of fluid spread performance for the initial baseline configurations and to evaluate the impact of grout pouring height on grout quality. The grout quality was estimated in terms of the air volume fraction for the grout layer formed on the SDU6 floor, resulting in the change of grout density. The study results should be considered as preliminary scoping analyses since benchmarking analysis is not included in this task scope. Transient analyses with the Bingham plastic model were performed with the FLUENTTM code on the high performance parallel computing platform in SRNL. The analysis coupled with a transient grout aging model was performed by using ANSYS-CFX code

  9. Evaluation of four instruments with different working motion using artificial plastic model with C-shaped single canal.

    Science.gov (United States)

    Sekiya, Miki; Maeda, Munehiro; Katsuumi, Ichiroh; Igarashi, Masaru

    2018-02-10

    The purpose of this study was to evaluate four instruments with different working motion for preparation of a C-shaped single canal wall using the same artificial plastic models reproduced from a human tooth. One tooth with root canal morphology C1 (the shape is an uninterrupted "C" with no separation or division) was selected among three-dimensional micro-computed tomography (micro-CT) imaging data of extracted human teeth. Imaging data were then converted into STL form data, and twenty-four C-shaped root canal model blocks were manufactured using this STL form data. These blocks were randomly divided into four groups of six blocks each and instrumented as follows: stainless steel K-files (SSK), Self-Adjusting File (SAF), ProTaper NEXT (PTN) and RECIPROC (REC). Micro-CT images taken before and after canal preparation were superimposed, and instrumented canal area, percentage of instrumented canal area, part of instrumented canal area, volume of instrumented canal and time taken for instrumentation were evaluated for each group. The greatest instrumented canal area, percentage of instrumented canal area and volume of instrumented canal were as follows (in decreasing order): SSK > SAF > PTN > REC (P instrumentation was as follows (in decreasing order): SAF > SSK > PTN > REC (P instrumented all root canal walls equally. PTN and REC required less time taken for instrumentation, but showed unequal instrumentation.

  10. Contribution of environmental pollutants to male infertily: A working model of germ cell apoptosis induced by plasticizers

    Directory of Open Access Journals (Sweden)

    Raúl Lagos-Cabré

    2012-01-01

    Full Text Available Bisphenol A [2,2-bis(4-hydroxyphenylpropane] (BPA, 4-nonylphenol (NP and di(2-ethylhexylphthalate (DEHP, and its metabolite mono-2-ethylhexyl phthalate (MEHP are chemicals found in plastics, which act as endocrine disruptors (EDs in animals, including human. EDs act like hormones in the endocrine system, and disrupt the physiologic function of endogenous hormones. Most people are exposed to different endocrine disruptors and concern has been raised about their true effect on reproductive organs. In the testis, they seem to preferentially attack developing testis during puberty rather than adult organs. However, the lack of information about the molecular mechanism, and the apparently controversial effect observed in different models has hampered the understanding of their effects on mammalian spermatogenesis. In this review, we critically discuss the available information regarding the effect of BPA, NP and DEHP/ MEHP upon mammalian spermatogenesis, a major target of EDs. Germ cell sloughing, disruption of the blood-testis-barrier and germ cell apoptosis are the most common effects reported in the available literature. We propose a model at the molecular level to explain the effects at the cellular level, mainly focused on germ cell apoptosis.

  11. Numerical Modeling and Experimental Study of Elastic-Plastic Behavior of Carbon Nanotubes Reinforced Nanocompsites of PA6/NBR Using a Microfinite Element Model

    Directory of Open Access Journals (Sweden)

    Mir Hamid Reza Ghoreishy

    2014-12-01

    Full Text Available A theoretical and experimental study was conducted on the mechanical behavior of nanocomposites based on PA6/NBR thermoplastic elastomer reinforced by single wall carbon nanotubes (SWNTs. The selected samples include 60 and 40% NBR with 0.5, 1.0 and 1.5% SWNT. The modeling methodology was based on the use of two-dimensional "representative volume elements" (RVE. The Abaqus/standard code was employed to carry out the non-linear finite element calculations. Plane stress elements were selected for discretization of the domain. Linear elastic and isotropic hardening elastic-plastic models were utilized to describe the mechanical behaviors of the carbon nanotubes and polymer matrix, respectively. The samples were simultaneously prepared using melt mixing method in a laboratory internal mixer. Different orientations including regular in both longitudinal and transverse directions and random were selected for the nanotubes in the matrix. Also, two structural forms including hollow and solid for the carbon nanotubes were chosen. The highest and lowest predicted moduli were obtained from models with regular orientation in longitudinal and transverse directions, respectively. On the other hand, comparison between the predicted elastic modulus and elastic-plastic behaviors of the samples with their corresponding experimental data revealed that the random orientation in conjunction with hollow structural form gives the best results. Moreover, the selected material model for the thermoplastic elastomer i.e., isotropic hardening can precisely describe the mechanical behavior in both tension and compression modes. It is also concluded that the main source of error in this modeling methodology can be attributed to the effects of interface between polymer and nanotubes and orientation in perpendicular directions.

  12. Blood response to plasticized poly(vinyl chloride): dependence of fibrinogen adsorption on plasticizer selection and surface plasticizer level.

    Science.gov (United States)

    Zhao, X B; Courtney, J M

    2003-10-01

    The high level of plasticizer in plasticized poly(vinyl chloride) (PVC) ensures that plasticizer selection has an important influence on the suitability of PVC to function in blood-contacting applications. In this study, three types of plasticized PVC in sheet form, with di-(2-ethylhexyl)phthalate (DEHP), tri-(2-ethylhexyl)trimellitate (TEHTM) and n-butyryltri-n-hexyl citrate (BTHC) as plasticizer, were selected for assessment and single solute fibrinogen adsorption was utilized as an initial index of interactions with blood components. Fibrinogen adsorption behavior shows a strong dependence on the plasticizer selection, plasticizer level at the surface and the adsorption conditions, such as adsorption time and fibrinogen solution concentration. Results indicate that BTHC plasticized PVC possesses the lowest adsorption capacity in the three types of plasticized PVC, while TEHTM plasticized PVC seems to have the strongest reactivity in certain fibrinogen solution concentrations. The alteration of surface plasticizer level was achieved by a methanol-cleaning treatment with a variety of cleaning times and the fibrinogen adsorption on plasticized PVC decreases with the reduction of surface plasticizer level. The migration behavior of two phthalate esters (DEHP and TEHTM) was evaluated using UV-Spectrophotometer to determine the plasticizer level at the surfaces. In addition, the fibrinogen adsorption mechanism was examined with Freundlich adsorption modeling.

  13. Modeling interactions of intermediate-energy neutrons in a plastic scintillator array with GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Kohley, Z., E-mail: zkohley@gmail.com [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Lunderberg, E.; DeYoung, P.A. [Department of Physics, Hope College, Holland, MI 49423 (United States); Roeder, B.T. [LPC-Caen, ENSICAEN, IN2P3/CNRS et Universite de Caen, 14050 Caen cedex (France); Baumann, T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Christian, G.; Mosby, S.; Smith, J.K.; Snyder, J.; Spyrou, A.; Thoennessen, M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2012-08-01

    A Monte Carlo simulation of a large-area neutron time-of-flight detector, built on the GEANT4 framework, has been compared with an experimental measurement of the {sup 16}B{yields}{sup 15}B+n decay produced from a 55 MeV/u{sup 17}C beam. The ability of the Monte Carlo simulation to reproduce the intermediate-energy neutron interactions within the detector has been explored using both the stock GEANT4 physics processes and a custom neutron interaction model, MENATE{sub R}. The stock GEANT4 physics processes were unable to reproduce the experimental observables, while excellent agreement was obtained through the inclusion of the MENATE{sub R} model within GEANT4. The differences between the two approaches are shown to be related to the modeling of the neutron-carbon inelastic reactions. Additionally, the use of MENATE{sub R} provided accurate reproduction of experimental signals associated with neutron scattering within the detector. These results provide validation of the Monte Carlo simulation for modeling measurements of multiple neutrons where the identification and removal of false neutron signals, due to multiple neutron scattering, are required.

  14. Generalization of non-iterative numerical methods for damage-plastic behaviour modeling

    NARCIS (Netherlands)

    Graca-e-Costa, R.; Alfaiate, J.; Dias-da-Costa, D.; Sluys, L.J.

    2013-01-01

    Modelling fracture in concrete or masonry is known to be problematic regarding the robustness of iterative solution procedures and, the use of non-iterative methods (or that minimize the use of iterations) in quasi-brittle materials is now under strong development, due to the necessity to obtain

  15. Plastic bronchitis

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singhi

    2015-01-01

    Full Text Available Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics. They are ominous with poor prognosis. Sometimes, infection or airway reactivity may provoke cast bronchitis as a two-step insult on a vulnerable vascular bed. In such instances, aggressive management leads to longer survival. This report of cast bronchitis discusses its current understanding.

  16. The Surface Layer Mechanical Condition and Residual Stress Forming Model in Surface Plastic Deformation Process with the Hardened Body Effect Consideration

    Science.gov (United States)

    Mahalov, M. S.; Blumenstein, V. Yu

    2017-10-01

    The mechanical condition and residual stresses (RS) research and computational algorithms creation in complex types of loading on the product lifecycle stages relevance is shown. The mechanical state and RS forming finite element model at surface plastic deformation strengthening machining, including technological inheritance effect, is presented. A model feature is the production previous stages obtained transformation properties consideration, as well as these properties evolution during metal particles displacement through the deformation space in the present loading step.

  17. Emergent spatial patterns of excitatory and inhibitory synaptic strengths drive somatotopic representational discontinuities and their plasticity in a computational model of primary sensory cortical area 3b

    Directory of Open Access Journals (Sweden)

    Kamil A. Grajski

    2016-07-01

    Full Text Available Mechanisms underlying the emergence and plasticity of representational discontinuities in the mammalian primary somatosensory cortical representation of the hand are investigated in a computational model. The model consists of an input lattice organized as a three-digit hand forward-connected to a lattice of cortical columns each of which contains a paired excitatory and inhibitory cell. Excitatory and inhibitory synaptic plasticity of feedforward and lateral connection weights is implemented as a simple covariance rule and competitive normalization. Receptive field properties are computed independently for excitatory and inhibitory cells and compared within and across columns. Within digit representational zones intracolumnar excitatory and inhibitory receptive field extents are concentric, single-digit, small, and unimodal. Exclusively in representational boundary-adjacent zones, intracolumnar excitatory and inhibitory receptive field properties diverge: excitatory cell receptive fields are single-digit, small, and unimodal; and the paired inhibitory cell receptive fields are bimodal, double-digit, and large. In simulated syndactyly (webbed fingers, boundary-adjacent intracolumnar receptive field properties reorganize to within-representation type; divergent properties are reacquired following syndactyly release. This study generates testable hypotheses for assessment of cortical laminar-dependent receptive field properties and plasticity within and between cortical representational zones. For computational studies, present results suggest that concurrent excitatory and inhibitory plasticity may underlie novel emergent properties.

  18. Dynamic Strength and Accumulated Plastic Strain Development Laws and Models of the Remolded Red Clay under Long-Term Cyclic Loads: Laboratory Test Results

    Directory of Open Access Journals (Sweden)

    Li Jian

    2015-09-01

    Full Text Available The dynamic strength and accumulated plastic strain are two important parameters for evaluating the dynamic response of soil. As a special clay, the remolded red clay is often used as the high speed railway subgrade filling, but studies on its dynamic characteristics are few. For a thorough analysis of the suitability of the remolded red clay as the subgrade filling, a series of long-term cyclic load triaxial test under different load histories are carried out. Considering the influence of compactness, confining pressure, consolidation ratio, vibration frequency and dynamic load to the remolded red clay dynamic property, the tests obtain the development curves of the dynamic strength and accumulated plastic strain under different test conditions. Then, through curve fitting method, two different hyperbolic models respectively for the dynamic strength and accumulated plastic strain are built, which can match the test datum well. By applying the dynamic strength model, the critical dynamic strength of the remolded red clay are gained. Meanwhile, for providing basic datum and reference for relevant projects, all key parameters for the dynamic strength and accumulated plastic strain of the remolded red clay are given in the paper.

  19. BEM solution of delamination problems using an interface damage and plasticity model

    Czech Academy of Sciences Publication Activity Database

    Panagiotopoulos, C.G.; Mantič, V.; Roubíček, Tomáš

    2013-01-01

    Roč. 51, č. 4 (2013), s. 505-521 ISSN 0178-7675 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : Interface fracture * rate-independent quasistatic model * adhesive contact Subject RIV: BA - General Mathematics Impact factor: 2.044, year: 2013 http://link.springer.com/article/10.1007%2Fs00466-012-0826-3

  20. Application of a global plasticity model to determine the ultimate strength of a reinforced concrete slab

    International Nuclear Information System (INIS)

    Hoffmann, A.; Millard, A.; Nahas, G.

    1983-08-01

    In order to predict the behaviour of composite beams and shells loaded up to failure, a global method has been developped. This method is based on a generalized stress approach, formulated in terms of moment-curvature relations. The case of a reinforced concrete slab subjected to uniform pressure has been considered. It is shown that numerical results compare fairly well with experimental data. Some improvements to the model are also suggested

  1. Embedded Fibre Bragg Grating Sensor Response Model: Crack Growing Detection in Fibre Reinforced Plastic Materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This article presents a novel method to simulate the sensor output response of a Fibre Bragg Grating (FBG) sensor when embedded in a host material (Composite material or adhesive), during a crack growing/damage event. A finite element model of the crack growth mechanisms was developed...... the applicability of this technique to more complicated structures, and to be used as a structural health monitoring design tool....

  2. The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity

    OpenAIRE

    Sundaram, Meera V.; Buechner, Matthew

    2016-01-01

    The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular...

  3. Modeling Dynamic Plasticity and Spall Fracture in High Density Polycrystalline Alloys

    Science.gov (United States)

    2006-09-01

    mechanisms in tungsten single crystals in ballistic impact experiments. In: Asfahnai, R. et al. (Eds.), High Strain Rate Behavior of Refractory Metals and...4613–4640, 2005. 14. ABSTRACT The dynamic thermomechanical response of a tungsten heavy alloy is investigated via modeling and numerical simulation...and orientations upon spall behavior are weighed, with interfacial properties exerting a somewhat larger influence on the average pressure supported by

  4. CFD Modelling of Adsorption Behaviour in AGN Tank with Polyethylene Terephthalate Plastic Waste Based Activated Carbon

    Science.gov (United States)

    Yuliusman; Afdhol, M. K.; Sanal, Alristo; Nasruddin

    2018-03-01

    Indonesia imports fuel (fuel oil) in large quantities. Indonesia has reserves of methane gas in the form of natural gas in large numbers but has obstacles in the process of storage. To produce a storage tank to a safe condition then proclaimed to use ANG (Adsorbed Natural Gas) technology. Manufacture of activated PET based activated carbon for storage of natural gas where technology has been widely studied, but still has some shortcomings. Therefore to predict the performance of ANG technology, modeling of ANG tank with Fluent CFD program is done so the condition inside the ANG tank can be known and can be used to increased the performance of ANG technology. Therefore, in this experiment natural gas storage test is done at the ANG tank model using Fluent CFD program. This experiment is begin with preparation tools and material by characterize the natural gas and activated carbon followed by create the mesh and model of ANG tank. The next process is state the characteristic of activated carbon and fluid in this experiment. The last process is run the simulation using the condition that already been stated which is at 27°C and 35 bar during 15 minutes. The result is at adsorption contour we can see that adsorption is higher at the top of the tank because the input of the adsorbent is at the top of the ANG tank so the adsorbate distribution is uneven that cause the adsorbate concentration at the top of the ANG tank is higher than the bottom tank.

  5. Diversity and plasticity of Th cell types predicted from regulatory network modelling.

    Directory of Open Access Journals (Sweden)

    Aurélien Naldi

    Full Text Available Alternative cell differentiation pathways are believed to arise from the concerted action of signalling pathways and transcriptional regulatory networks. However, the prediction of mammalian cell differentiation from the knowledge of the presence of specific signals and transcriptional factors is still a daunting challenge. In this respect, the vertebrate hematopoietic system, with its many branching differentiation pathways and cell types, is a compelling case study. In this paper, we propose an integrated, comprehensive model of the regulatory network and signalling pathways controlling Th cell differentiation. As most available data are qualitative, we rely on a logical formalism to perform extensive dynamical analyses. To cope with the size and complexity of the resulting network, we use an original model reduction approach together with a stable state identification algorithm. To assess the effects of heterogeneous environments on Th cell differentiation, we have performed a systematic series of simulations considering various prototypic environments. Consequently, we have identified stable states corresponding to canonical Th1, Th2, Th17 and Treg subtypes, but these were found to coexist with other transient hybrid cell types that co-express combinations of Th1, Th2, Treg and Th17 markers in an environment-dependent fashion. In the process, our logical analysis highlights the nature of these cell types and their relationships with canonical Th subtypes. Finally, our logical model can be used to explore novel differentiation pathways in silico.

  6. A Generic Friction Model for Radial Slider Bearing Simulation Considering Elastic and Plastic Deformation

    Directory of Open Access Journals (Sweden)

    Günter Offner

    2015-06-01

    Full Text Available The investigation of component dynamics is one of the main tasks of internal combustion engine (ICE simulation. This prediction is important in order to understand complex loading conditions, which happen in a running ICE. Due to the need for fuel saving, mechanical friction, in particular in radial slider bearings, is one important investigation target. A generic friction modeling approach for radial slider bearings, which can be applied to lubricated contact regimes, will be presented in this paper. Besides viscous friction, the approach considers in particular boundary friction. The parameterization of the friction model is done using surface material and surface roughness measurement data. Furthermore, fluid properties depending on the applied oil additives are being considered. The application of the model will be demonstrated for a typical engineering task of a connecting rod big end study to outline the effects of contact surface texture. AlSn-based and polymer coated bearing shells will be analyzed and compared with respect to friction reduction effects, running-in behavior and thermal load capabilities.

  7. Embedded Fibre Bragg Grating Sensor Response Model: Crack Growing Detection in Fibre Reinforced Plastic Materials

    Science.gov (United States)

    Pereira, G.; Mikkelsen, L. P.; McGugan, M.

    2015-07-01

    This article presents a novel method to simulate the sensor output response of a Fibre Bragg Grating (FBG) sensor when embedded in a host material (Composite material or adhesive), during a crack growing/damage event. A finite element model of the crack growth mechanisms was developed, and different fracture modes were addressed. Then an output algorithm was developed to predict the sensor spectrum change during the different stages of the crack growing. Thus, it is possible to identify specific phenomenon that will only happen within the proximity of a crack, as compression field ahead the crack or non-uniform strain, and then identify the presence of such damage in the structure. Experimental tests were conducted in order to validate this concept and support the model. The FBG sensor response model was applied in a delamination of a Wind Turbine trailing edge, to demonstrate the applicability of this technique to more complicated structures, and to be used as a structural health monitoring design tool.

  8. Multiphysics modeling of magnetorheological dampers

    Directory of Open Access Journals (Sweden)

    D Case

    2016-09-01

    Full Text Available The dynamics of a small scale magnetorheological damper were modeled and analyzed using multiphysics commercial finite element software to couple the electromagnetic field distribution with the non-Newtonian fluid flow. The magnetic flux lines and field intensity generated within the damper and cyclic fluid flow in the damper under harmonic motion were simulated with the AC/DC and CFD physics modules of COMSOL Multiphysics, respectively. Coupling of the physics is achieved through a modified Bingham plastic definition, relating the fluid's dynamic viscosity to the intensity of the induced magnetic field. Good agreement is confirmed between simulation results and experimentally observed resistance forces in the damper. This study was conducted to determine the feasibility of utilizing magnetorheological dampers in a medical orthosis for pathological tremor attenuation. The implemented models are thus dimensioned on a relatively small scale. The method used, however, is not specific to the damper's size or geometry and can be extended to larger-scale devices with little or no complication.

  9. Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    2003-01-01

    to estimate the probability of exceeding a critical event, defined by a so-called limit state function. The limit state function is obtained implicitly by non-linear FEM analysis from a realization of random material properties. As the latter can be modeled as random fields varying continuously over...... the structure, a discretisation into random elements/variables is introduced. To this purpose, both the Midpoint (MP) and the Spatial Average (SA) approach are considered. The failure probability is obtained iteratively based on a first order Taylor series expansion of the limit state function. Thus...

  10. Striatal synaptic dysfunction and hippocampal plasticity deficits in the Hu97/18 mouse model of Huntington disease.

    Directory of Open Access Journals (Sweden)

    Karolina Kolodziejczyk

    Full Text Available Huntington disease (HD is a fatal neurodegenerative disorder caused by a CAG repeat expansion in the gene (HTT encoding the huntingtin protein (HTT. This mutation leads to multiple cellular and synaptic alterations that are mimicked in many current HD animal models. However, the most commonly used, well-characterized HD models do not accurately reproduce the genetics of human disease. Recently, a new 'humanized' mouse model, termed Hu97/18, has been developed that genetically recapitulates human HD, including two human HTT alleles, no mouse Hdh alleles and heterozygosity of the HD mutation. Previously, behavioral and neuropathological testing in Hu97/18 mice revealed many features of HD, yet no electrophysiological measures were employed to investigate possible synaptic alterations. Here, we describe electrophysiological changes in the striatum and hippocampus of the Hu97/18 mice. At 9 months of age, a stage when cognitive deficits are fully developed and motor dysfunction is also evident, Hu97/18 striatal spiny projection neurons (SPNs exhibited small changes in membrane properties and lower amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs; however, release probability from presynaptic terminals was unaltered. Strikingly, these mice also exhibited a profound deficiency in long-term potentiation (LTP at CA3-to-CA1 synapses. In contrast, at 6 months of age we found only subtle alterations in SPN synaptic transmission, while 3-month old animals did not display any electrophysiologically detectable changes in the striatum and CA1 LTP was intact. Together, these data reveal robust, progressive deficits in synaptic function and plasticity in Hu97/18 mice, consistent with previously reported behavioral abnormalities, and suggest an optimal age (9 months for future electrophysiological assessment in preclinical studies of HD.

  11. Plasticity and beyond microstructures, crystal-plasticity and phase transitions

    CERN Document Server

    Hackl, Klaus

    2014-01-01

    The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

  12. The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity

    Science.gov (United States)

    Sundaram, Meera V.; Buechner, Matthew

    2016-01-01

    The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular topology of excretory tubes, their varied and sometimes complex shapes, and the dynamic reprogramming of cell identity and remodeling of tube connectivity that occur during larval development are particularly fascinating features of this organ. The physiological roles of the excretory system in osmoregulation and other aspects of the animal’s life cycle are only beginning to be explored. The cellular mechanisms and molecular pathways used to build and shape excretory tubes appear similar to those used in both unicellular and multicellular tubes in more complex organs, such as the vertebrate vascular system and kidney, making this simple organ system a useful model for understanding disease processes. PMID:27183565

  13. Seasonal plasticity in the brain: the use of large animal models for neuroanatomical research.

    Science.gov (United States)

    Lehman, M N; Coolen, L M; Goodman, R L; Viguié, C; Billings, H J; Karsch, F J

    2002-01-01

    Seasonally breeding mammals display an annual cycle of fertility that is associated with both structural neuroplasticity and functional changes in the activity of the GnRH neurones in the brain. Sheep are valuable models for understanding the hormonal and environmental cues that regulate seasonal reproduction, as well as the brain circuitry that underlies this response. As a result of the large size of sheep, we can tightly correlate the anatomy of GnRH cells and their patterns of gene expression with direct measurements of their neurosecretory output. Tract tracing studies have begun to reveal the pathways by which seasonal changes in response to oestradiol negative feedback affect the function of the reproductive system. Electron microscopic studies have shown that synaptic inputs on to ovine GnRH cells undergo marked seasonal rearrangements that are independent of hormonal changes and may reflect the intrinsic seasonality of the brain. Recent work indicates that the polysialylated form of neural cell adhesion molecule (PSA-NCAM), a marker of neuroplasticity, is well positioned anatomically to contribute to seasonal structural and functional alterations. Applying state-of-the-art neuroanatomical techniques to this model has allowed us to delineate the neural pathways responsible for the seasonal shut down of reproduction in sheep, as well as to begin to uncover the cellular mechanisms underlying seasonal neuroplasticity in the adult mammalian brain.

  14. Effects of build parameters on linear wear loss in plastic part produced by fused deposition modeling

    Science.gov (United States)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2017-07-01

    Fused Deposition Modeling (FDM) is one of the prominent additive manufacturing technologies for producing polymer products. FDM is a complex additive manufacturing process that can be influenced by many process conditions. The industrial demands required from the FDM process are increasing with higher level product functionality and properties. The functionality and performance of FDM manufactured parts are greatly influenced by the combination of many various FDM process parameters. Designers and researchers always pay attention to study the effects of FDM process parameters on different product functionalities and properties such as mechanical strength, surface quality, dimensional accuracy, build time and material consumption. However, very limited studies have been carried out to investigate and optimize the effect of FDM build parameters on wear performance. This study focuses on the effect of different build parameters on micro-structural and wear performance of FDM specimens using definitive screening design based quadratic model. This would reduce the cost and effort of additive manufacturing engineer to have a systematic approachto make decision among the manufacturing parameters to achieve the desired product quality.

  15. The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity.

    Science.gov (United States)

    Sundaram, Meera V; Buechner, Matthew

    2016-05-01

    The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular topology of excretory tubes, their varied and sometimes complex shapes, and the dynamic reprogramming of cell identity and remodeling of tube connectivity that occur during larval development are particularly fascinating features of this organ. The physiological roles of the excretory system in osmoregulation and other aspects of the animal's life cycle are only beginning to be explored. The cellular mechanisms and molecular pathways used to build and shape excretory tubes appear similar to those used in both unicellular and multicellular tubes in more complex organs, such as the vertebrate vascular system and kidney, making this simple organ system a useful model for understanding disease processes. Copyright © 2016 by the Genetics Society of America.

  16. Motor learning in animal models of Parkinson's disease: Aberrant synaptic plasticity in the motor cortex.

    Science.gov (United States)

    Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R; Ding, Jun B

    2017-04-01

    In Parkinson's disease (PD), dopamine depletion causes major changes in the brain, resulting in the typical cardinal motor features of the disease. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time of PD progression. Models of PD in which dopamine tone in the brain is chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this article, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo time-lapse imaging and motor skill behavior assays. In combination with previous studies, a role of the motor cortex in skill learning and the impairment of this ability with the loss of dopamine are becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in PD, with the possibility of targeting the motor cortex for future PD therapeutics. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  17. Computational experiences with variable modulus, elastic-plastic, and viscoelastic concrete models

    International Nuclear Information System (INIS)

    Anderson, C.A.

    1981-01-01

    Six years ago the Reactor Safety Research Division of the Nuclear Regulatory Commission (NRC) approached the Los Alamos National Laboratory to develop a comprehensive concrete structural analysis code to predict the static and dynamic behavior of Prestressed Concrete Reactor Vessels (PCRVs) that serve as the containment structure of a High-Temperature Gas-Cooled Reactor. The PCRV is a complex concrete structure that must be modeled in three dimensions and posseses other complicating features such as a steel liner for the reactor cavity and woven cables embedded vertically in the PCRV and wound circumferentially on the outside of the PCRV. The cables, or tendons, are used for prestressing the reactor vessel. In addition to developing the computational capability to predict inelastic three dimensional concrete structural behavior, the code response was verified against documented experiments on concrete structural behavior. This code development/verification effort is described

  18. Prefrontal cortex, hippocampus, and basolateral amygdala plasticity in a rat model of autism spectrum.

    Science.gov (United States)

    Sosa-Díaz, Nuvia; Bringas, Maria Elena; Atzori, Marco; Flores, Gonzalo

    2014-10-01

    We aimed to investigate the effect of prenatal administration of valproic acid (VPA) (500 mg/kg) at embryonic day 12.5 on the anatomical properties of the prefrontal cortex, hippocampus, and basolateral amygdala, at three different ages: immediately after weaning (postnatal day 21 [PD21]), prepubertal (PD35), and postpubertal (PD70) ages in a rat model of autistic spectrum disorder. Quantitative analysis of the thickness of the prefrontal cortex revealed a reduced size at all study ages in the cingulate 1 area of the prefrontal cortex and CA1 of the dorsal hippocampus in prenatally exposed animals compared to controls. At the level of the basolateral amygdala, a reduction in the size was observed at PD35 and PD70 in the VPA group. In addition, a reduced thickness was observed in the prelimbic region of the prefrontal cortex in VPA animals at PD35. Interestingly, no differences in cortical thickness were observed between control and VPA animals in the infralimbic region of the prefrontal at any age. Our results suggest that prenatal exposure to VPA differentially alters cortical limbic regions anatomical parameters, with implication in the autistic spectrum disorder. © 2014 Wiley Periodicals, Inc.

  19. Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection.

    Science.gov (United States)

    Almeida, F F; Belz, G T

    2016-09-01

    Innate lymphoid cells (ILCs) have stormed onto the immune landscape as "newly discovered" cell types. These tissue-resident sentinels are enriched at mucosal surfaces and engage in complex cross talk with elements of the adaptive immune system and microenvironment to orchestrate immune homeostasis. Many parallels exist between innate cells and T cells leading to the initial partitioning of ILCs into rather rigid subsets that reflect their "adaptive-like" effector cytokines profiles. ILCs themselves, however, have unique attributes that are only just beginning to be elucidated. These features result in complementarity with, rather than complete duplication of, functions of the adaptive immune system. Key transcription factors determine the pathway of differentiation of progenitors towards an ILC1, ILC2, or ILC3 subset. Once formed, flexibility in the responses of these subsets to stimuli unexpectedly allows transdifferentation between the different subsets and the acquisition of altered phenotypes and function. This provides a mechanism for rapid innate immune responsiveness. Here, we discuss the models of differentiation for maintenance and activation of tissue-resident ILCs in maintaining immune homeostasis and protection.

  20. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism

    Directory of Open Access Journals (Sweden)

    Henry Giles Stratten Martin

    2014-01-01

    Full Text Available Valproic acid (VPA is a frequently used drug in the treatment of epilepsy, bipolar disorders and migraines; however it is also a potent teratogen. Prenatal exposure increases the risk of childhood malformations and can result in cognitive deficits. In rodents in utero exposure to VPA also causes neurodevelopmental abnormalities and is an important model of autism. In early postnatal life VPA exposed rat pups show changes in medial prefrontal cortex (mPFC physiology and synaptic connectivity. Specifically, principal neurons show decreased excitability but increased local connectivity, coupled with an increase in long-term potentiation (LTP due to an up-regulation of NMDA receptor (NMDAR expression. However recent evidence suggests compensatory homeostatic mechanisms lead to normalization of synaptic NMDA receptors during later postnatal development. Here we have extended study of mPFC synaptic physiology into adulthood to better understand the longitudinal consequences of early developmental abnormalities in VPA exposed rats. Surprisingly in contrast to early postnatal life and adolescence, we find that adult VPA exposed rats show reduced synaptic function. Both NMDAR mediated currents and LTP are lower in adult VPA rats, although spontaneous activity and endocannabinoid dependent long-term depression are normal. We conclude that rather than correcting, synaptic abnormalities persist into adulthood in VPA exposed rats, although a quite different synaptic phenotype is present. This switch from hyper to hypo function in mPFC may be linked to some of the neurodevelopmental defects found in prenatal VPA exposure and autism spectrum disorders in general.

  1. Model for Environmental Assessment of Industrial Production Systems: A Case Study in a Plastic Manufacturing Firm

    Directory of Open Access Journals (Sweden)

    Francine Comunello

    2017-05-01

    Full Text Available The environmental issue has been discussed sharply in the organizational environment, as consumers, and society in general, have been increasingly concerned about the environment. In this sense, the companies, especially the factories, seek to minimize the environmental impact caused by its production processes through actions that combine the organization's economic interests with environmental concerns. Thus, this article aims to analyze how environmental management of the productive sector is being carried out at Industria Beta Chapecó/SC. Therefore, we developed a qualitative and descriptive research in order to apply the Model for Environmental Assessment of Industrial Production Systems (MAASPI in the production of Industria Beta sector. The results showed the main environmental interventions caused by the production process of the organization, particularly the interventions for the consumption of electricity, plant location and chip storage. As main proposals to minimize negative environmental impacts, we have the installation of translucent tiles in the production environment, a study on energy efficiency, construction of water and soil testing, construction of waste storage terminals and implementation of the pre-selection of the raw material. The realization of the suggested adjustments enables Industria Beta to foresee the legal environmental requirements, to aim for enviromental certifications and seals and to strengthen its image as environment-friendly with collaborators and society in general.

  2. Age-dependent modulation of synaptic plasticity and insulin mimetic effect of lipoic acid on a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Harsh Sancheti

    Full Text Available Alzheimer's disease is a progressive neurodegenerative disease that entails impairments of memory, thinking and behavior and culminates into brain atrophy. Impaired glucose uptake (accumulating into energy deficits and synaptic plasticity have been shown to be affected in the early stages of Alzheimer's disease. This study examines the ability of lipoic acid to increase brain glucose uptake and lead to improvements in synaptic plasticity on a triple transgenic mouse model of Alzheimer's disease (3xTg-AD that shows progression of pathology as a function of age; two age groups: 6 months (young and 12 months (old were used in this study. 3xTg-AD mice fed 0.23% w/v lipoic acid in drinking water for 4 weeks showed an insulin mimetic effect that consisted of increased brain glucose uptake, activation of the insulin receptor substrate and of the PI3K/Akt signaling pathway. Lipoic acid supplementation led to important changes in synaptic function as shown by increased input/output (I/O and long term potentiation (LTP (measured by electrophysiology. Lipoic acid was more effective in stimulating an insulin-like effect and reversing the impaired synaptic plasticity in the old mice, wherein the impairment of insulin signaling and synaptic plasticity was more pronounced than those in young mice.

  3. A magnetorheological actuation system: test and model

    International Nuclear Information System (INIS)

    John, Shaju; Chaudhuri, Anirban; Wereley, Norman M

    2008-01-01

    Self-contained actuation systems, based on frequency rectification of the high frequency motion of an active material, can produce high force and stroke output. Magnetorheological (MR) fluids are active fluids whose rheological properties can be altered by the application of a magnetic field. By using MR fluids as the energy transmission medium in such hybrid devices, a valving system with no moving parts can be implemented and used to control the motion of an output cylinder shaft. The MR fluid based valves are configured in the form of an H-bridge to produce bi-directional motion in an output cylinder by alternately applying magnetic fields in the two opposite arms of the bridge. The rheological properties of the MR fluid are modeled using both Bingham plastic and bi-viscous models. In this study, the primary actuation is performed using a compact terfenol-D rod driven pump and frequency rectification of the rod motion is done using passive reed valves. The pump and reed valve configuration along with MR fluidic valves form a compact hydraulic actuation system. Actuator design, analysis and experimental results are presented in this paper. A time domain model of the actuator is developed and validated using experimental data

  4. Procedural Portfolio Planning in Plastic Surgery, Part 2: Collaboration Between Surgeons and Hospital Administrators to Develop a Funds Flow Model for Procedures Performed at an Academic Medical Center.

    Science.gov (United States)

    Hultman, Charles Scott

    2016-06-01

    from $-115,103 to $+1,277,040, of which $350,000 (25%) was returned to the practice plan as enterprise funds to support program development. Through focused strategic initiatives, plastic surgeons and hospital administrators can work together to unlock the latent value of a plastic surgery service to an AMC. Specific financial benefits to the hospital include increased contribution margin and operating income, the latter of which can be reinvested in the plastic surgery service through a gain-sharing model.

  5. Influence of slip system combination models on crystal plasticity finite element simulation of NiTi shape memory alloy undergoing uniaxial compression

    Directory of Open Access Journals (Sweden)

    Li Hu

    2017-10-01

    Full Text Available The influence of various slip system combination models on crystal plasticity finite element simulation of NiTi shape memory alloy subjected to uniaxial compression deformation is investigated according to three combinations of slip systems, including combination of {010}〈100〉 and {110}〈111〉 slip modes, combination of {110}〈100〉 and {110}〈111〉 slip modes and combination of {110}〈100〉, {010}〈100〉 and {110}〈111〉 slip modes, which consist of 18, 18 and 24 slip systems, respectively. By means of simulating mechanical response, strain distribution, stress distribution and Schmid factor, it can be found that in terms of simulation accuracy, combination of {110}〈100〉 and {110}〈111〉 slip modes is in good agreement with combination of {110}〈100〉, {010}〈100〉 and {110}〈111〉 slip modes. The contribution of {110}〈100〉 slip mode to plastic strain is primary in plastic deformation of NiTi shape memory alloy, whereas {010}〈100〉 slip mode, which makes small contribution to plastic deformation, can be regarded as the unfavorable slip mode. In the case of large plastic strain, the {010}〈100〉 slip mode contributes to the formation of (001 [01¯0] texture component, while {110}〈100〉 and {110}〈111〉 slip modes facilitate the formation of γ-fibre (〈111〉 texture. Keywords: Shape memory alloy, Plastic deformation, Crystal plasticity, Finite element method, Texture

  6. Propofol prevents electroconvulsive-shock-induced memory impairment through regulation of hippocampal synaptic plasticity in a rat model of depression

    Directory of Open Access Journals (Sweden)

    Luo J

    2014-09-01

    Full Text Available Jie Luo, Su Min, Ke Wei, Jun Cao, Bin Wang, Ping Li, Jun Dong, Yuanyuan Liu Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China Background: Although a rapid and efficient psychiatric treatment, electroconvulsive therapy (ECT induces memory impairment. Modified ECT requires anesthesia for safety purposes. Although traditionally found to exert amnesic effects in general anesthesia, which is an inherent part of modified ECT, some anesthetics have been found to protect against ECT-induced cognitive impairment. However, the mechanisms remain unclear. We investigated the effects of propofol (2,6-diisopropylphenol on memory in depressed rats undergoing electroconvulsive shock (ECS, the analog of ECT in animals, under anesthesia as well as its mechanisms.Methods: Chronic unpredictable mild stresses were adopted to reproduce depression in a rodent model. Rats underwent ECS (or sham ECS with anesthesia with propofol or normal saline. Behavior was assessed in sucrose preference, open field and Morris water maze tests. Hippocampal long-term potentiation (LTP was measured using electrophysiological techniques. PSD-95, CREB, and p-CREB protein expression was assayed with western blotting.Results: Depression induced memory damage, and downregulated LTP, PSD-95, CREB, and p-CREB; these effects were exacerbated in depressed rats by ECS; propofol did not reverse the depression-induced changes, but when administered in modified ECS, propofol improved memory and reversed the downregulation of LTP and the proteins. Conclusion: These findings suggest that propofol prevents ECS-induced memory impairment, and modified ECS under anesthesia with propofol improves memory in depressed rats, possibly by reversing the excessive changes in hippocampal synaptic plasticity. These observations provide a novel insight into potential targets for optimizing the clinical use of ECT for psychiatric

  7. Nonhomologous recombination between defective poliovirus and coxsackievirus genomes suggests a new model of genetic plasticity for picornaviruses.

    Science.gov (United States)

    Holmblat, Barbara; Jégouic, Sophie; Muslin, Claire; Blondel, Bruno; Joffret, Marie-Line; Delpeyroux, Francis

    2014-08-05

    between PV and CA17, we have developed a model of recombination, making it possible to rescue defective PV RNA genomes with a short deletion by cotransfecting cells with the defective PV genome and CA17 genomic RNA. Numerous recombinants were found, including homologous PV/CA17 recombinants, but mostly nonhomologous recombinants presenting duplications of parental sequences preferentially located in particular regions. Long duplications were excised by passages in cultured cells or in mice, generating diverse homologous recombinants. Recombination leading to nonhomologous recombinants, which evolve into homologous recombinants, may therefore be seen as a model of genetic plasticity in enteroviruses and, possibly, in other RNA viruses. Copyright © 2014 Holmblat et al.

  8. Modeling of Shape Memory Alloys: Phase Transformation/Plasticity Interaction at the Nano Scale and the Statistics of Variation in Pseudoelastic Performance

    Science.gov (United States)

    Paranjape, Harshad Madhukar

    Shape memory alloys (SMA) show two remarkable properties- pseudoelasticity and shape memory effect. These properties make them an attractive material for a variety of commercial applications. However, the mechanism of austenite to martensite phase transformation, responsible for these properties also induces plastic deformation leading to structural and functional fatigue. Micron scale experiments suggest that the plastic deformation is induced in part due to the local stress field of the fine martensite microstructure. However, the results are qualitative and the nature of transformation-plasticity interaction is dependent on factors like the width of the interfaces. This thesis presents a new modeling approach to study the interaction between martensite correspondence variant scale microstructure and plastic deformation in austenite. A phase field method based evolution law is developed for phase transformation and reorientation of martensite CVs. This is coupled with a crystal plasticity law for austenite plastic deformation. The model is formulated with finite deformation and rotations. The effect of local crystal orientation is incorporated. An explicit time integration scheme is developed and implemented in a finite element method (FEM) based framework, allowing the modeling of complex boundary conditions and arbitrary loading conditions. Two systematic studies are carried out with the model. First, the interaction between plasticity and phase transformation is studied for load-free and load-biased thermal cycling of single crystals. Key outcomes of this study are that, the residual martensite formed during thermal cycling provides nucleation sites for the phase transformation in the subsequent cycles. Further, the distribution of slip on different slip systems is determined by the martensite texture. This is a strong evidence for transformation induced plasticity. In the second study, experimentally informed simulations of NiTi micropillar compression are

  9. Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model

    Directory of Open Access Journals (Sweden)

    Jianhua Shen

    2017-07-01

    Full Text Available In offshore area, newly deposited Quaternary loose seabed soils are widely distributed. There are a great number of offshore structures has been built on them in the past, or will be built on them in the future due to the fact that there would be no very dense seabed soil foundation could be chosen at planed sites sometimes. However, loosely deposited seabed foundation would bring great risk to the service ability of offshore structures after construction. Currently, the understanding on wave-induced liquefaction mechanism in loose seabed foundation has been greatly improved; however, the recognition on the consolidation characteristics and settlement estimation of loose seabed foundation under offshore structures is still limited. In this study, taking a semi-coupled numerical model FSSI-CAS 2D as the tool, the consolidation and settlement of loosely deposited sandy seabed foundation under an offshore breakwater is investigated. The advanced soil constitutive model Pastor-Zienkiewics Mark III (PZIII is used to describe the quasi-static behavior of loose sandy seabed soil. The computational results show that PZIII model is capable of being used for settlement estimation problem of loosely deposited sandy seabed foundation. For loose sandy seabed foundation, elastic deformation is the dominant component in consolidation process. It is suggested that general elastic model is acceptable for subsidence estimation of offshore structures on loose seabed foundation; however, Young's modulus E must be dependent on the confining effective stress, rather than a constant in computation.

  10. Overcoming maladaptive plasticity through plastic compensation

    Directory of Open Access Journals (Sweden)

    Matthew R.J. MORRIS, Sean M. ROGERS

    2013-08-01

    Full Text Available Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single genotype to produce multiple environmentally-induced phenotypes. Yet, not all plasticity is adaptive. Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution, much less is known about maladaptive plasticity. However, maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments. This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity, two of which involve genetic changes (standing genetic variation, genetic compensation and two of which do not (standing epigenetic variation, plastic compensation. Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity. In particular, plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence. We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change [Current Zoology 59 (4: 526–536, 2013].

  11. Analysis of grain size effects on transformation-induced plasticity based on a discrete dislocation-transformation model

    NARCIS (Netherlands)

    Shi, J.; Turteltaub, S.; Van der Giessen, E.

    2010-01-01

    There is much interest recently in the possibility of combining two strengthening effects, namely the reduction of grain size (Hall-Fetch effect) and the transformation-induced plasticity effect (strengthening due to a martensitic transformation). The present work is concerned with the analysis of

  12. Predictive model for the Dutch post-consumer plastic packaging recycling system and implications for the circular economy

    NARCIS (Netherlands)

    Brouwer, Marieke T.; Thoden van Velzen, Eggo U.; Augustinus, Antje; Soethoudt, Han; Meester, De Steven; Ragaert, Kim

    2018-01-01

    The Dutch post-consumer plastic packaging recycling network has been described in detail (both on the level of packaging types and of materials) from the household potential to the polymeric composition of the recycled milled goods. The compositional analyses of 173 different samples of

  13. Learning Discloses Abnormal Structural and Functional Plasticity at Hippocampal Synapses in the APP23 Mouse Model of Alzheimer's Disease

    Science.gov (United States)

    Middei, Silvia; Roberto, Anna; Berretta, Nicola; Panico, Maria Beatrice; Lista, Simone; Bernardi, Giorgio; Mercuri, Nicola B.; Ammassari-Teule, Martine; Nistico, Robert

    2010-01-01

    B6-Tg/Thy1APP23Sdz (APP23) mutant mice exhibit neurohistological hallmarks of Alzheimer's disease but show intact basal hippocampal neurotransmission and synaptic plasticity. Here, we examine whether spatial learning differently modifies the structural and electrophysiological properties of hippocampal synapses in APP23 and wild-type mice. While…

  14. PLASTIC WASTE CONVERSION TO LIQUID FUELS OVER MODIFIED-RESIDUAL CATALYTIC CRACKING CATALYSTS: MODELING AND OPTIMIZATION USING HYBRID ARTIFICIAL NEURAL NETWORK – GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2012-04-01

    Full Text Available The plastic waste utilization can be addressed toward different valuable products. A promising technology for the utilization is by converting it to fuels. Simultaneous modeling and optimization representing effect of reactor temperature, catalyst calcinations temperature, and plastic/catalyst weight ratio toward performance of liquid fuel production was studied over modified catalyst waste. The optimization was performed to find optimal operating conditions (reactor temperature, catalyst calcination temperature, and plastic/catalyst weight ratio that maximize the liquid fuel product. A Hybrid Artificial Neural Network-Genetic Algorithm (ANN-GA method was used for the modeling and optimization, respectively. The variable interaction between the reactor temperature, catalyst calcination temperature, as well as plastic/catalyst ratio is presented in surface plots. From the GC-MS characterization, the liquid fuels product was mainly composed of C4 to C13 hydrocarbons.KONVERSI LIMBAH PLASTIK MENJADI BAHAN BAKAR CAIR DENGAN METODE PERENGKAHAN KATALITIK MENGGUNAKAN KATALIS BEKAS YANG TERMODIFIKASI: PEMODELAN DAN OPTIMASI MENGGUNAKAN GABUNGAN METODE ARTIFICIAL NEURAL NETWORK DAN GENETIC ALGORITHM. Pemanfaatan limbah plastik dapat dilakukan untuk menghasilkan produk yang lebih bernilai tinggi. Salah satu teknologi yang menjanjikan adalah dengan mengkonversikannya menjadi bahan bakar. Permodelan, simulasi dan optimisasi simultan yang menggambarkan efek dari suhu reaktor, suhu kalsinasi katalis, dan rasio berat plastik/katalis terhadap kinerja produksi bahan bakar cair telah dipelajari menggunakan katalis bekas termodifikasi Optimisasi ini ditujukan untuk mencari kondisi operasi optimum (suhu reaktor, suhu kalsinasi katalis, dan rasio berat plastik/katalis yang memaksimalkan produk bahan bakar cair. Metode Hybrid Artificial Neural Network-Genetic Algorithm (ANN-GA telah digunakan untuk permodelan dan optimisasi simultan tersebut. Inetraksi antar variabel

  15. Evaluation of inelastic constitutive models under plasticity-creep interaction for 2 1/4 Cr-1Mo steel: Results of joint work (A)

    International Nuclear Information System (INIS)

    Inoue, T.; Ohno, N.; Suzuki, A.; Igari, T.

    1987-01-01

    In order to evaluate the validity of existing inelastic constitutive models under the condition of plasticity-creep interaction, ten kinds of constitutive models were applied to sixteen bench mark problems of four categories, and the calculated results were compared with the experiments of 2 1/4Cr-1Mo steel at 600 0 C. The present bench mark project provides the following remarks: (1) The strain rate effect on the stress-strain relation can be represented, in some degree, even by a simple superposition model of classical type, and some of unified models describe the saturation of increase in flow stress with higher strain rate. (2) The characteristics of the plasticity-creep interaction were predicted by the modified superposition model as well as by unified ones in the actual calculations for the propounded problems. (3) Although the sophisticated unified constitutive models tend to give qualitatively better results, the complicated procedures in determining material parameters from the data of conventional tests need some improvements. The subcommittee has been reorganized to focus her attention in applying thus developed results under uniaxial stress state to multiaxial one, and the out-put will be expected to report in a couple of years

  16. Microelectronics plastic molded packaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R. [Ktech Corp., Albuquerque, NM (United States); Palmer, D.W.; Peterson, D.W. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  17. A review of design and modeling of magnetorheological valve

    Science.gov (United States)

    Abd Fatah, Abdul Yasser; Mazlan, Saiful Amri; Koga, Tsuyoshi; Zamzuri, Hairi; Zeinali, Mohammadjavad; Imaduddin, Fitrian

    2015-01-01

    Following recent rapid development of researches in utilizing Magnetorheological (MR) fluid, a smart material that can be magnetically controlled to change its apparent viscosity instantaneously, a lot of applications have been established to exploit the benefits and advantages of using the MR fluid. One of the most important applications for MR fluid in devices is the MR valve, where it uses the popular flow or valve mode among the available working modes for MR fluid. As such, MR valve is widely applied in a lot of hydraulic actuation and vibration reduction devices, among them are dampers, actuators and shock absorbers. This paper presents a review on MR valve, discusses on several design configurations and the mathematical modeling for the MR valve. Therefore, this review paper classifies the MR valve based on the coil configuration and geometrical arrangement of the valve, and focusing on four different mathematical models for MR valve: Bingham plastic, Herschel-Bulkley, bi-viscous and Herschel-Bulkley with pre-yield viscosity (HBPV) models for calculating yield stress and pressure drop in the MR valve. Design challenges and opportunities for application of MR fluid and MR valve are also highlighted in this review. Hopefully, this review paper can provide basic knowledge on design and modeling of MR valve, complementing other reviews on MR fluid, its applications and technologies.

  18. Phenotypic plasticity, costs of phenotypes, and costs of plasticity

    DEFF Research Database (Denmark)

    Callahan, Hilary S; Maughan, Heather; Steiner, Uli

    2008-01-01

    Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns...... of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both...... types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic...

  19. Role of standardized grape polyphenol preparation as a novel treatment to improve synaptic plasticity through attenuation of features of metabolic syndrome in a mouse model.

    Science.gov (United States)

    Wang, Jun; Tang, Cheuk; Ferruzzi, Mario G; Gong, Bing; Song, Brian J; Janle, Elsa M; Chen, Tzu-Ying; Cooper, Bruce; Varghese, Merina; Cheng, Alice; Freire, Daniel; Bilski, Amanda; Roman, Jessica; Nguyen, Tuyen; Ho, Lap; Talcott, Stephen T; Simon, James E; Wu, Qingli; Pasinetti, Giulio M

    2013-12-01

    Metabolic syndrome has become an epidemic and poses tremendous burden on the health system. People with metabolic syndrome are more likely to experience cognitive decline. As obesity and sedentary lifestyles become more common, the development of early prevention strategies is critical. In this study, we explore the potential beneficial effects of a combinatory polyphenol preparation composed of grape seed extract, Concord purple grape juice extract, and resveratrol, referred to as standardized grape polyphenol preparation (SGP), on peripheral as well as brain dysfunction induced by metabolic syndrome. We found dietary fat content had minimal effect on absorption of metabolites of major polyphenols derived from SGP. Using a diet-induced animal model of metabolic syndrome (DIM), we found that brain functional connectivity and synaptic plasticity are compromised in the DIM mice. Treatment with SGP not only prevented peripheral metabolic abnormality but also improved brain synaptic plasticity. Our study demonstrated that SGP, comprised of multiple bioavailable and bioactive components targeting a wide range of metabolic syndrome related pathological features, provides greater global protection against peripheral and central nervous system dysfunctions and can be potentially developed as a novel prevention/treatment for improving brain connectivity and synaptic plasticity important for learning and memory. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Introduction to Computational Plasticity

    International Nuclear Information System (INIS)

    Hartley, P

    2006-01-01

    -element expressions, i.e. Voigt notation. The chapter concludes with a brief overview of implicit integration methods, i.e. tangent stiffness, initial tangent stiffness and Newton-Raphson. Chapter five deals with the more specialized topic of implicit and explicit integration of von Mises plasticity. One of the techniques described is the radial-return method which ensures that the stresses at the end of an increment of deformation always lie on the expanded yield surface. Although this method guarantees a solution it may not always be the most accurate for large deformation, this is one area where reference to alternative methods would have been a helpful addition. Chapter six continues with further detail of how the plasticity models may be incorporated into finite-element codes, with particular reference to the Abaqus package and the use of user-defined subroutines, introduced via a 'UMAT' subroutine. This completes part I of the book. Part II focuses on plasticity models, each chapter dealing with a particular process or material model. For example, chapter seven deals with superplasticity, chapter eight with porous plasticity, chapter nine with creep and chapter ten with cyclic plasticity, creep and TMF. Examples of deep drawing, forming of titanium metal-matrix composites and creep damage are provided, together with further guidelines on the use of Abaqus to model these processes. Overall, the book is organised in a very logical and readable form. The use of simple one-dimensional examples, with full descriptions of tensors and vectors throughout the book, is particularly useful. It provides a good introduction to the topic, covering much of the theory and with applications to give a good grounding that can be taken further with more comprehensive advanced texts. An excellent starting point for anyone involved in research in computational plasticity. (book review)

  1. Modeling Spike-Train Processing in the Cerebellum Granular Layer and Changes in Plasticity Reveal Single Neuron Effects in Neural Ensembles

    Directory of Open Access Journals (Sweden)

    Chaitanya Medini

    2012-01-01

    Full Text Available The cerebellum input stage has been known to perform combinatorial operations on input signals. In this paper, two types of mathematical models were used to reproduce the role of feed-forward inhibition and computation in the granular layer microcircuitry to investigate spike train processing. A simple spiking model and a biophysically-detailed model of the network were used to study signal recoding in the granular layer and to test observations like center-surround organization and time-window hypothesis in addition to effects of induced plasticity. Simulations suggest that simple neuron models may be used to abstract timing phenomenon in large networks, however detailed models were needed to reconstruct population coding via evoked local field potentials (LFP and for simulating changes in synaptic plasticity. Our results also indicated that spatio-temporal code of the granular network is mainly controlled by the feed-forward inhibition from the Golgi cell synapses. Spike amplitude and total number of spikes were modulated by LTP and LTD. Reconstructing granular layer evoked-LFP suggests that granular layer propagates the nonlinearities of individual neurons. Simulations indicate that granular layer network operates a robust population code for a wide range of intervals, controlled by the Golgi cell inhibition and is regulated by the post-synaptic excitability.

  2. Finite strain anisotropic elasto-plastic model for the simulation of the forming and testing of metal/short fiber reinforced polymer clinch joints at room temperature

    Science.gov (United States)

    Dean, A.; Rolfes, R.; Behrens, A.; Bouguecha, A.; Hübner, S.; Bonk, C.; Grbic, N.

    2017-10-01

    There is a strong trend in the automotive industry to reduce car body-, chassis- and power-train mass in order to lower carbon emissions. More wide spread use of lightweight short fiber reinforced polymer (SFRP) is a promising approach to attain this goal. This poses the challenge of how to integrate new SFRP components by joining them to traditional sheet metal structures. Recently (1), the clinching technique has been successfully applied as a suitable joining method for dissimilar material such as SFRP and Aluminum. The material pairing PA6GF30 and EN AW 5754 is chosen for this purpose due to their common application in industry. The current contribution presents a verification and validation of a finite strain anisotropic material model for SFRP developed in (2) for the FE simulation of the hybrid clinching process. The finite fiber rotation during forming and separation, and thus the change of the preferential material direction, is represented in this model. Plastic deformations in SFRP are considered in this model via an invariant based non-associated plasticity formulation following the multiplicative decomposition approach of the deformation gradient where the stress-free intermediate configuration is introduced. The model allows for six independent characterization curves. The aforementioned material model allows for a detailed simulation of the forming process as well as a simulative prediction of the shear test strength of the produced joint at room temperature.

  3. The diagnosis and conservative treatment of a complex type 3 dens invaginatus using cone beam computed tomography (CBCT) and 3D plastic models.

    Science.gov (United States)

    Kfir, A; Telishevsky-Strauss, Y; Leitner, A; Metzger, Z

    2013-03-01

    To investigate the use of 3D plastic models, printed from cone beam computed tomography (CBCT) data, for accurate diagnosis and conservative treatment of a complex case of dens invaginatus. A chronic apical abscess with a draining sinus tract was diagnosed during the treatment planning stage of orthodontic therapy. Radiographic examination revealed a large radiolucent area associated with an invaginated right maxillary central incisor, which was found to contain a vital pulp. The affected tooth was strategic in the dental arch. Conventional periapical radiographs provided only partial information about the invagination and its relationship with the main root canal and with the periapical tissues. A limited-volume CBCT scan of the maxilla did not show evidence of communication between the infected invagination and the pulp in the main root canal, which could explain the pulp vitality. A novel method was adopted to allow for instrumentation, disinfection and filling of the invagination, without compromising the vitality of the pulp in the complex root canal system. The CBCT data were used to produce precise 3D plastic models of the tooth. These models facilitated the treatment planning process and the trial of treatment approaches. This approach allowed the vitality of the pulp to be maintained in the complex root canal space of the main root canal whilst enabling the healing of the periapical tissues. Even when extensive periapical pathosis is associated with a tooth with type III dens invaginatus, pulp sensibility tests should be performed. CBCT is a diagnostic tool that may allow for the management of such teeth with complex anatomy. 3D printed plastic models may be a valuable aid in the process of assessing and planning effective treatment modalities and practicing them ex vivo before actually performing the clinical procedure. Unconventional technological approaches may be required for detailed treatment planning of complex cases of dens invaginatus. © 2012

  4. Non Newtonian Behavior of Blood in Presence of Arterial Occlusion

    OpenAIRE

    Dr.Arun Kumar Maiti

    2016-01-01

    The objective of the present numerical model is to investigate the effect of shape of stenosis on blood flow through an artery using Bingham plastic fluid model. Blood is modeled as Bingham plastic fluid in a uniform circular tube with an axially symmetric but radially non symmetric stenosis. The expressions for flux, dimensionless resistance to flow with stenosis shape parameter, stenosis length and stenosis size have been shown graphically

  5. Respiratory Muscle Plasticity

    Science.gov (United States)

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  6. THE ROLE OF DIFFERENT RHEOLOGICAL MODELS IN ACCURACY OF PRESSURE LOSS PREDICTION

    Directory of Open Access Journals (Sweden)

    Katarina Simon

    2004-12-01

    Full Text Available Hydraulics play an important function in many oil field operations including drilling, completion, fracturing, acidizing, workover and production. The standard API methods for drilling fluid hydraulics assume either power law or Bingham plastic rheological model. These models and corresponding hydraulic calculations do provide a simple way for fair estimates of hydraulics for conventional vertical wells using simple drilling fluids, such as bentonite fluids. However, nowdays with many wells drilled deep, slim or horizontal using complex muds with unusual behaviour (such as tested MMH mud, it is necessary to use appropriate rheological model for mathematical modelling of fluid behaviour. Oil and gas reservoirs in Croatia have been under production for quite a while and the probability to discover new deposits of hydrocarbons is rather small. Therefore attempts have been made to maintain the gas and oil exploitation at the present level. One of possible ways to meet this target is re-entry wells drilling. The diameter of such wells in reservoir is smaller than 0,1524 m (6 in. Accurate modelling of annular pressure losses becomes therefore an important issue, particularly in cases where a small safety margin exists between optimal drilling parameters and wellbore stability, what is the case in re-entry wells. The objective of the paper is to show the influence of well geometry and accuracy of fluid rheological properties modelling to the distribution of pressure losses in a slimhole well.

  7. Providing plastic zone extrusion

    Science.gov (United States)

    Manchiraju, Venkata Kiran; Feng, Zhili; David, Stan A.; Yu, Zhenzhen

    2017-04-11

    Plastic zone extrusion may be provided. First, a compressor may generate frictional heat in stock to place the stock in a plastic zone of the stock. Then, a conveyer may receive the stock in its plastic zone from the compressor and transport the stock in its plastic zone from the compressor. Next, a die may receive the stock in its plastic zone from the conveyer and extrude the stock to form a wire.

  8. River plastic emissions to the world's oceans

    Science.gov (United States)

    Lebreton, Laurent C. M.; van der Zwet, Joost; Damsteeg, Jan-Willem; Slat, Boyan; Andrady, Anthony; Reisser, Julia

    2017-06-01

    Plastics in the marine environment have become a major concern because of their persistence at sea, and adverse consequences to marine life and potentially human health. Implementing mitigation strategies requires an understanding and quantification of marine plastic sources, taking spatial and temporal variability into account. Here we present a global model of plastic inputs from rivers into oceans based on waste management, population density and hydrological information. Our model is calibrated against measurements available in the literature. We estimate that between 1.15 and 2.41 million tonnes of plastic waste currently enters the ocean every year from rivers, with over 74% of emissions occurring between May and October. The top 20 polluting rivers, mostly located in Asia, account for 67% of the global total. The findings of this study provide baseline data for ocean plastic mass balance exercises, and assist in prioritizing future plastic debris monitoring and mitigation strategies.

  9. Plastic Debris Occurrence, Convergence Areas and Fin Whales Feeding Ground in the Mediterranean Marine Protected Area Pelagos Sanctuary: A Modeling Approach

    Directory of Open Access Journals (Sweden)

    Maria Cristina Fossi

    2017-05-01

    Full Text Available The Mediterranean Sea is greatly affected by marine litter. In this area, research on the impact of plastic debris (including microplastics on biota, particularly large filter-feeding species such as the fin whale (Balaenoptera physalus, is still in its infancy. We investigated the possible overlap between microplastic, mesoplastic and macrolitter accumulation areas and the fin whale feeding grounds in in a pelagic Specially Protected Area of Mediterranean Importance (SPAMI: the Pelagos Sanctuary. Models of ocean circulation and fin whale potential habitat were merged to compare marine litter accumulation with the presence of whales. Additionally, field data on microplastics, mesoplastics, and macrolitter abundance and cetacean presence were simultaneously collected. The resulting data were compared, as a multi-layer, with the simulated distribution of plastic concentration and the whale habitat model. These data showed a high occurrence of microplastics (mean: 0.082 items/m2, STD ± 0.079 items/m2 spatial distribution agreed with our modeling results. Areas with high microplastic density significantly overlapped with areas of high macroplastic density. The most abundant polymer detected in all the sampling sites was polyethylene (PE, suggesting fragmentation of larger packaging items as the primary source. To our knowledge, this is the first study in the Pelagos Sanctuary in which the simulated microplastic distribution has been confirmed by field observations. The overlap between the fin whale feeding habitat and the microplastic hot spots is an important contribution for risk assessment of fin whale exposure to microplastics.

  10. The Particle-Matrix model: limitations and further improvements needed

    DEFF Research Database (Denmark)

    Cepuritis, Rolands; Jacobsen, Stefan; Spangenberg, Jon

    workability for different types of concrete, but has also indicated that somepotential cases exist when its application is limited. The paper presents recent studies onimproving the method by analysing how the PMM one-point flow parameter λQ can beexpressed by rheological models (Bingham and Herschel-Bulkley)....

  11. Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model.

    Science.gov (United States)

    Manchanda, Shaffi; Kaur, Gurcharan

    2017-03-03

    Sedentary lifestyle, psychological stress and labor saving devices in this current society often disrupts the energy gain and expenditure balance leading to obesity. High caloric diet is associated with the high prevalence of cognitive dysfunction and neuropsychiatric disorders in addition to cardiovascular and metabolic abnormalities. The present study was aimed to elucidate the potential beneficial effect of dry leaf powder of Withania somnifera (Ashwagandha) in preventing the cognitive decline associated with diet induced obesity. Experiments were performed on four groups of young adult female rats: [Low fat diet (LFD) rats fed on regular low fat chow, High fat diet (HFD) rats on feed containing 30% fat by weight, Low fat diet extract (LFDE) rats given regular chow and dry leaf powder of Ashwagandha 1 mg/g of body weight (ASH) and high fat diet extract (HFDE) rats fed on diet containing high fat and dry leaf powder of ASH. All the rats were kept on their respective diet regimen for 12 weeks. ASH treated rats showed significant improvement in their working memory and locomotor coordination during behavioral studies as compared to HFD rats. At the molecular level, ASH treatment was observed to restore the levels of BDNF and its receptor TRKB as well as the expression of other synaptic regulators, which are highly implicated in synaptic plasticity. Further, ASH triggered the activation of PI3/AKT pathway of cell survival and plasticity by enhancing the levels of phosphorylated Akt-1 and immediate early genes viz. c-Jun and c-fos. ASH could be a key regulator in maintaining the synaptic plasticity in HFD induced obesity and can serve as a nootropic candidate against obesity induced cognitive impairments.

  12. Time between plastic displacements of elasto-plastic oscillators subject to Gaussian white noise

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Ditlevsen, Ove Dalager

    2001-01-01

    A one degree of freedom elasto-plastic oscillator subject to stationary Gaussian white noise has a plastic displacement response process of intermittent character. During shorter or longer time intervals the oscillator vibrates within the elastic domain without undergoing any plastic displacements...... between the clumps of plastic displacements. This is needed for a complete description of the plastic displacement process. A quite accurate fast simulation procedure is presented based on an amplitude model to determine the short waiting times in the transient regime of the elastic vibrations existing...

  13. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  14. COMPARISON BETWEEN DIFFERENT MODELS FOR RHEOLOGICAL CHARACTERIZATION OF ACTIVATED SLUDGE

    Directory of Open Access Journals (Sweden)

    A. H. Khalili Garakani

    2011-09-01

    Full Text Available Activated sludge flow rheology is a very complicated phenomenon. Studies related to activated sludge tend to classify sludge as non-Newtonian fluid. Until now, several theories have been built to describe the complex behavior of activated sludge with varying degrees of success. In this article, seven different models for viscosity of non-Newtonian fluids (i.e., Power law, Bingham plastic, Herschel-Bulkley, Casson, Sisko, Carreau and Cross were considered to evaluate their predictive capability of apparent viscosity of activated sludge. Results showed that although evaluating the constants in the four-parameter models is difficult, they provide the best prediction of viscosity in the whole range of shear rates for activated sludge. For easier prediction of viscosity at different mixed liquor suspended solids (2.74-31g/L, temperature (15-25°C and shear rate (1-1000/s, simple correlations were proposed. Comparing the results with the experimental data revealed that the proposed correlations are in good agreement with real apparent viscosities.

  15. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...

  16. Development of a multi-cycle shear-compression testing for the modeling of severe plastic deformation

    Science.gov (United States)

    Pesin, A.; Pustovoytov, D.; Lokotunina, N.

    2017-12-01

    The mechanism of severe plastic deformation comes from very significant shear strain. Shear-compression testing of materials is complicated by the fact that a state of large equivalent strain with dominant shear strain is not easily achievable. This paper presents the novel technique of laboratory simulation of severe plastic deformation by multi-cycle shear-compression testing at room temperature with equivalent strain e=1…5. The specimen consisted of a parallelepiped having an inclined gauge section created by two diametrically opposed semi-circular slots which were machined at 45°. Height of the specimen was 50 mm, section dimensions were 25×25 mm, gauge thickness was 5.0 mm and gauge width was 6.0 mm. The specimen provided dominant shear strain in an inclined gauge-section. The level of shear strain and equivalent strain was controlled through adjustment of the height reduction of the specimen, load application direction and number of cycles of shear-compression. Aluminium alloy Al-6.2Mg-0.7Mn was used as a material for specimen. FE simulation and analysis of the stress-strain state were performed. The microstructure of the specimen after multi-cycle shear-compression testing with equivalent strain e=1…5 was examined by optical and scanning electron microscope.

  17. Activity-Dependent Arc Expression and Homeostatic Synaptic Plasticity Are Altered in Neurons from a Mouse Model of Angelman Syndrome

    Science.gov (United States)

    Pastuzyn, Elissa D.; Shepherd, Jason D.

    2017-01-01

    Angelman syndrome (AS) is a neurodevelopmental disorder that results from deletions or mutations in chromosome 15, which usually includes the UBE3A gene. Ube3A protein is an E3 ubiquitin ligase that ubiquitinates proteins and targets them for degradation. The immediate-early gene Arc, a master regulator of synaptic plasticity, was identified as a putative substrate of Ube3A, but there have been conflicting reports on whether Arc is a bona fide E3 ligase substrate. Using multiple approaches, we found no evidence for a physical interaction between Arc and Ube3A in vivo. Nonetheless, activity-induced subcellular distribution of Arc is altered in brains from Ube3am−/p+ mice, with abnormal concentration of Arc at synapses. Furthermore, although activation of Arc transcription is normal, the stability of Arc protein is enhanced in dendrites of hippocampal neurons cultured from Ube3am−/p+ mice. Finally, homeostatic synaptic scaling of surface AMPA receptors does not occur in Ube3am−/p+ hippocampal neurons, reminiscent of neurons that lack Arc protein. Although Ube3A does not seem to bind Arc in a canonical E3 ligase-substrate interaction, Arc-dependent synaptic plasticity is still altered in Ube3am−/p+ mice, which may underlie the cognitive deficits observed in AS. PMID:28804447

  18. Activity-Dependent Arc Expression and Homeostatic Synaptic Plasticity Are Altered in Neurons from a Mouse Model of Angelman Syndrome

    Directory of Open Access Journals (Sweden)

    Elissa D. Pastuzyn

    2017-07-01

    Full Text Available Angelman syndrome (AS is a neurodevelopmental disorder that results from deletions or mutations in chromosome 15, which usually includes the UBE3A gene. Ube3A protein is an E3 ubiquitin ligase that ubiquitinates proteins and targets them for degradation. The immediate-early gene Arc, a master regulator of synaptic plasticity, was identified as a putative substrate of Ube3A, but there have been conflicting reports on whether Arc is a bona fide E3 ligase substrate. Using multiple approaches, we found no evidence for a physical interaction between Arc and Ube3A in vivo. Nonetheless, activity-induced subcellular distribution of Arc is altered in brains from Ube3am−/p+ mice, with abnormal concentration of Arc at synapses. Furthermore, although activation of Arc transcription is normal, the stability of Arc protein is enhanced in dendrites of hippocampal neurons cultured from Ube3am−/p+ mice. Finally, homeostatic synaptic scaling of surface AMPA receptors does not occur in Ube3am−/p+ hippocampal neurons, reminiscent of neurons that lack Arc protein. Although Ube3A does not seem to bind Arc in a canonical E3 ligase-substrate interaction, Arc-dependent synaptic plasticity is still altered in Ube3am−/p+ mice, which may underlie the cognitive deficits observed in AS.

  19. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology. Appendix C -- Finite Element Models Solution Database File, Appendix D -- Benchmark Finite Element Models Solution Database File

    Science.gov (United States)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  20. Deterioration of plasticity and metabolic homeostasis in the brain of the UCD-T2DM rat model of naturally occurring type-2 diabetes.

    Science.gov (United States)

    Agrawal, Rahul; Zhuang, Yumei; Cummings, Bethany P; Stanhope, Kimber L; Graham, James L; Havel, Peter J; Gomez-Pinilla, Fernando

    2014-09-01

    The rising prevalence of type-2 diabetes is becoming a pressing issue based on emerging reports that T2DM can also adversely impact mental health. We have utilized the UCD-T2DM rat model in which the onset of T2DM develops spontaneously across time and can serve to understand the pathophysiology of diabetes in humans. An increased insulin resistance index and plasma glucose levels manifested the onset of T2DM. There was a decrease in hippocampal insulin receptor signaling in the hippocampus, which correlated with peripheral insulin resistance index along the course of diabetes onset (r=-0.56, pT2DM increased the hippocampal levels of 4-hydroxynonenal (4-HNE; a marker of lipid peroxidation) in inverse proportion to the changes in the mitochondrial regulator PGC-1α. Disrupted energy homeostasis was further manifested by a concurrent reduction in energy metabolic markers, including TFAM, SIRT1, and AMPK phosphorylation. In addition, T2DM influenced brain plasticity as evidenced by a significant reduction of BDNF-TrkB signaling. These results suggest that the pathology of T2DM in the brain involves a progressive and coordinated disruption of insulin signaling, and energy homeostasis, with profound consequences for brain function and plasticity. All the described consequences of T2DM were attenuated by treatment with the glucagon-like peptide-1 receptor agonist, liraglutide. Similar results to those of liraglutide were obtained by exposing T2DM rats to a food energy restricted diet, which suggest that normalization of brain energy metabolism is a crucial factor to counteract central insulin sensitivity and synaptic plasticity associated with T2DM. Copyright © 2014 Elsevier B.V. All rights reserved.