WorldWideScience

Sample records for binding site identification

  1. Identification, characterization, and developmental regulation of embryonic benzodiazepine binding sites

    International Nuclear Information System (INIS)

    We report the identification and characterization of 2 classes of benzodiazepine binding sites in the embryonic chick CNS. Binding was examined by competition and saturation binding experiments, using as radioligands 3H-flunitrazepam, a classical benzodiazepine anxiolytic, and 3H-Ro5-4864, a convulsant benzodiazepine. The results demonstrate that high-affinity (KD = 2.3 nM) 3H-flunitrazepam binding sites (site-A) are present by embryonic day 5 (Hamburger and Hamilton stage 27) and increase throughout development (Bmax = 0.3 and 1.3 pmol/mg protein in 7 and 20 d brain membranes, respectively). When 7 or 20 d brain membranes are photoaffinity-labeled with 3H-flunitrazepam and ultraviolet light, the radioactivity migrates as 2 bands on SDS-PAGE, consistent with Mrs of 48,000 and 51,000. GABA potentiates 3H-flunitrazepam binding at both 7 and 20 d of development, indicating that site-A is coupled to receptors for GABA early in development. Importantly, we have also identified a novel site (site-B) that binds classical benzodiazepine agonists with low affinity (micromolar) but displays high affinity for Ro5-4864 (KD = 41 nM). Site-B displays characteristics expected for a functional receptor, including stereospecificity and sensitivity to inactivation by heat and protease treatment. Saturation binding studies employing 3H-Ro5-4864 indicate that the levels of site-B are similar in 7 and 20 d brain (ca. 2.5 pmol/mg protein). The function of site-B is not known, but its preponderance in 7 d brain, relative to site-A, suggests that it might be important during early embryonic development

  2. Identification and characterization of anion binding sites in RNA

    Energy Technology Data Exchange (ETDEWEB)

    Kieft, Jeffrey S.; Chase, Elaine; Costantino, David A.; Golden, Barbara L. (Purdue); (Colorado)

    2010-05-24

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions.

  3. Identification and characterization of anion binding sites in RNA.

    Science.gov (United States)

    Kieft, Jeffrey S; Chase, Elaine; Costantino, David A; Golden, Barbara L

    2010-06-01

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions. PMID:20410239

  4. Identification of clustered YY1 binding sites in Imprinting Control Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J D; Hinz, A; Bergmann, A; Huang, J; Ovcharenko, I; Stubbs, L; Kim, J

    2006-04-19

    Mammalian genomic imprinting is regulated by Imprinting Control Regions (ICRs) that are usually associated with tandem arrays of transcription factor binding sites. In the current study, the sequence features derived from a tandem array of YY1 binding sites of Peg3-DMR (differentially methylated region) led us to identify three additional clustered YY1 binding sites, which are also localized within the DMRs of Xist, Tsix, and Nespas. These regions have been shown to play a critical role as ICRs for the regulation of surrounding genes. These ICRs have maintained a tandem array of YY1 binding sites during mammalian evolution. The in vivo binding of YY1 to these regions is allele-specific and only to the unmethylated active alleles. Promoter/enhancer assays suggest that a tandem array of YY1 binding sites function as a potential orientation-dependent enhancer. Insulator assays revealed that the enhancer-blocking activity is detected only in the YY1 binding sites of Peg3-DMR but not in the YY1 binding sites of other DMRs. Overall, our identification of three additional clustered YY1 binding sites in imprinted domains suggests a significant role for YY1 in mammalian genomic imprinting.

  5. Functional identification of catalytic metal ion binding sites within RNA.

    Directory of Open Access Journals (Sweden)

    James L Hougland

    2005-09-01

    Full Text Available The viability of living systems depends inextricably on enzymes that catalyze phosphoryl transfer reactions. For many enzymes in this class, including several ribozymes, divalent metal ions serve as obligate cofactors. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s. In the Tetrahymena group I intron, previous work using atomic mutagenesis and quantitative analysis of metal ion rescue behavior identified three metal ions (MA, MB, and MC that make five interactions with the ribozyme substrates in the reaction's transition state. Here, we combine substrate atomic mutagenesis with site-specific phosphorothioate substitutions in the ribozyme backbone to develop a powerful, general strategy for defining the ligands of catalytic metal ions within RNA. In applying this strategy to the Tetrahymena group I intron, we have identified the pro-SP phosphoryl oxygen at nucleotide C262 as a ribozyme ligand for MC. Our findings establish a direct connection between the ribozyme core and the functionally defined model of the chemical transition state, thereby extending the known set of transition-state interactions and providing information critical for the application of the recent group I intron crystallographic structures to the understanding of catalysis.

  6. Identification of Covalent Binding Sites Targeting Cysteines Based on Computational Approaches.

    Science.gov (United States)

    Zhang, Yanmin; Zhang, Danfeng; Tian, Haozhong; Jiao, Yu; Shi, Zhihao; Ran, Ting; Liu, Haichun; Lu, Shuai; Xu, Anyang; Qiao, Xin; Pan, Jing; Yin, Lingfeng; Zhou, Weineng; Lu, Tao; Chen, Yadong

    2016-09-01

    Covalent drugs have attracted increasing attention in recent years due to good inhibitory activity and selectivity. Targeting noncatalytic cysteines with irreversible inhibitors is a powerful approach for enhancing pharmacological potency and selectivity because cysteines can form covalent bonds with inhibitors through their nucleophilic thiol groups. However, most human kinases have multiple noncatalytic cysteines within the active site; to accurately predict which cysteine is most likely to form covalent bonds is of great importance but remains a challenge when designing irreversible inhibitors. In this work, FTMap was first applied to check its ability in predicting covalent binding site defined as the region where covalent bonds are formed between cysteines and irreversible inhibitors. Results show that it has excellent performance in detecting the hot spots within the binding pocket, and its hydrogen bond interaction frequency analysis could give us some interesting instructions for identification of covalent binding cysteines. Furthermore, we proposed a simple but useful covalent fragment probing approach and showed that it successfully predicted the covalent binding site of seven targets. By adopting a distance-based method, we observed that the closer the nucleophiles of covalent warheads are to the thiol group of a cysteine, the higher the possibility that a cysteine is prone to form a covalent bond. We believe that the combination of FTMap and our distance-based covalent fragment probing method can become a useful tool in detecting the covalent binding site of these targets. PMID:27483186

  7. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins.

    Directory of Open Access Journals (Sweden)

    Priyanka Prakash

    2015-10-01

    Full Text Available Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.

  8. PDNAsite: Identification of DNA-binding Site from Protein Sequence by Incorporating Spatial and Sequence Context.

    Science.gov (United States)

    Zhou, Jiyun; Xu, Ruifeng; He, Yulan; Lu, Qin; Wang, Hongpeng; Kong, Bing

    2016-01-01

    Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community. PMID:27282833

  9. Identification of the Escherichia coli ADP-glucose synthetase inhibitor binding site(s)

    International Nuclear Information System (INIS)

    The photoaffinity labeling agent 8-azido adenylate (AMP) is an inhibitor site specific probe of the E. coli ADPG synthetase. In the absence of light, 8-azido AMP exhibits the typical reversible allosteric kinetics of the physiological inhibitor AMP. In the presence of light (254 nm), [2-3H]8-azido AMP specifically and covalently incorporates into the enzyme. Photoincorporation is linearly related to loss of catalytic activity up to at least 65% inactivation. The substrate ADP-glucose (ADPG) provides nearly 100% protection from 8-azido AMP photoinactivation, while the substrate AMP provides approximately 50% protection and the inhibitor AMP provides approximately 30% protection. These three adenylate allosteric effects of E. coli ADPG synthetase also protect it from photoincorporation of 8-azido AMP. The reaction site(s) of [2-3H]-azido AMP with the enzyme was identified by reverse phase HPLC isolation and chemical characterization of CNBr and mouse submaxillary arginyl protease generated peptides containing the labeled analog. This site is the same as the major binding region of the substrate site specific probe, 8-azido ADP-[14C]glucose. Conformational analysis of this region predicts that it is a part of a Rossmann fold, the super-secondary structure found in many adenine nucleotide binding proteins. Two minor reaction regions of the enzyme with [2-3H]8-azido AMP were also identified. The three modified peptide regions may be juxtaposed in the enzyme's tertiary structure

  10. Characterization of nicotine binding to the rat brain P2 preparation: the identification of multiple binding sites which include specific up-regulatory site(s)

    International Nuclear Information System (INIS)

    These studies show that nicotine binds to the rat brain P2 preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) have been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-[3H]nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-[3H]nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine

  11. Identification of inhibitor binding site in human sirtuin 2 using molecular docking and dynamics simulations.

    Science.gov (United States)

    Sakkiah, Sugunadevi; Arooj, Mahreen; Kumar, Manian Rajesh; Eom, Soo Hyun; Lee, Keun Woo

    2013-01-01

    The ability to identify the site of a protein that can bind with high affinity to small, drug-like compounds has been an important goal in drug design. Sirtuin 2 (SIRT2), histone deacetylase protein family, plays a central role in the regulation of various pathways. Hence, identification of drug for SIRT2 has attracted great interest in the drug discovery community. To elucidate the molecular basis of the small molecules interactions to inhibit the SIRT2 function we employed the molecular docking, molecular dynamics simulations, and the molecular mechanism Poisson-Boltzmann/surface area (MM-PBSA) calculations. Five well know inhibitors such as suramin, mol-6, sirtinol, 67, and nf675 were selected to establish the nature of the binding mode of the inhibitors in the SIRT2 active site. The molecular docking and dynamics simulations results revealed that the hydrogen bonds between Arg97 and Gln167 are crucial to inhibit the function of SIRT2. In addition, the MM-PBSA calculations revealed that binding of inhibitors to SIRT2 is mainly driven by van der Waals/non-polar interactions. Although the five inhibitors are very different in structure, shape, and electrostatic potential, they are able to fit in the same binding pocket. These findings from this study provide insights to elucidate the binding pattern of SIRT2 inhibitors and help in the rational structure-based design of novel SIRT2 inhibitors with improved potency and better resistance profile. PMID:23382805

  12. Identification of inhibitor binding site in human sirtuin 2 using molecular docking and dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Sugunadevi Sakkiah

    Full Text Available The ability to identify the site of a protein that can bind with high affinity to small, drug-like compounds has been an important goal in drug design. Sirtuin 2 (SIRT2, histone deacetylase protein family, plays a central role in the regulation of various pathways. Hence, identification of drug for SIRT2 has attracted great interest in the drug discovery community. To elucidate the molecular basis of the small molecules interactions to inhibit the SIRT2 function we employed the molecular docking, molecular dynamics simulations, and the molecular mechanism Poisson-Boltzmann/surface area (MM-PBSA calculations. Five well know inhibitors such as suramin, mol-6, sirtinol, 67, and nf675 were selected to establish the nature of the binding mode of the inhibitors in the SIRT2 active site. The molecular docking and dynamics simulations results revealed that the hydrogen bonds between Arg97 and Gln167 are crucial to inhibit the function of SIRT2. In addition, the MM-PBSA calculations revealed that binding of inhibitors to SIRT2 is mainly driven by van der Waals/non-polar interactions. Although the five inhibitors are very different in structure, shape, and electrostatic potential, they are able to fit in the same binding pocket. These findings from this study provide insights to elucidate the binding pattern of SIRT2 inhibitors and help in the rational structure-based design of novel SIRT2 inhibitors with improved potency and better resistance profile.

  13. Optimizing the GATA-3 position weight matrix to improve the identification of novel binding sites

    Directory of Open Access Journals (Sweden)

    Nandi Soumyadeep

    2012-08-01

    Full Text Available Abstract Background The identifying of binding sites for transcription factors is a key component of gene regulatory network analysis. This is often done using position-weight matrices (PWMs. Because of the importance of in silico mapping of tentative binding sites, we previously developed an approach for PWM optimization that substantially improves the accuracy of such mapping. Results The present work implements the optimization algorithm applied to the existing PWM for GATA-3 transcription factor and builds a new di-nucleotide PWM. The existing available PWM is based on experimental data adopted from Jaspar. The optimized PWM substantially improves the sensitivity and specificity of the TF mapping compared to the conventional applications. The refined PWM also facilitates in silico identification of novel binding sites that are supported by experimental data. We also describe uncommon positioning of binding motifs for several T-cell lineage specific factors in human promoters. Conclusion Our proposed di-nucleotide PWM approach outperforms the conventional mono-nucleotide PWM approach with respect to GATA-3. Therefore our new di-nucleotide PWM provides new insight into plausible transcriptional regulatory interactions in human promoters.

  14. Identification of Inhibitor Binding Site in Human Sirtuin 2 Using Molecular Docking and Dynamics Simulations

    OpenAIRE

    Sugunadevi Sakkiah; Mahreen Arooj; Manian Rajesh Kumar; Soo Hyun Eom; Keun Woo Lee

    2013-01-01

    The ability to identify the site of a protein that can bind with high affinity to small, drug-like compounds has been an important goal in drug design. Sirtuin 2 (SIRT2), histone deacetylase protein family, plays a central role in the regulation of various pathways. Hence, identification of drug for SIRT2 has attracted great interest in the drug discovery community. To elucidate the molecular basis of the small molecules interactions to inhibit the SIRT2 function we employed the molecular doc...

  15. Identification of small molecule binding sites within proteins using phage display technology.

    Energy Technology Data Exchange (ETDEWEB)

    Rodi, D. J.; Agoston, G. E.; Manon, R.; Lapcevich, R.; Green, S. J.; Makowski, L.; Biosciences Division; EntreMed Inc.; Florida State Univ.

    2001-11-01

    Affinity selection of peptides displayed on phage particles was used as the basis for mapping molecular contacts between small molecule ligands and their protein targets. Analysis of the crystal structures of complexes between proteins and small molecule ligands revealed that virtually all ligands of molecular weight 300 Da or greater have a continuous binding epitope of 5 residues or more. This observation led to the development of a technique for binding site identification which involves statistical analysis of an affinity-selected set of peptides obtained by screening of libraries of random, phage-displayed peptides against small molecules attached to solid surfaces. A random sample of the selected peptides is sequenced and used as input for a similarity scanning program which calculates cumulative similarity scores along the length of the putative receptor. Regions of the protein sequence exhibiting the highest similarity with the selected peptides proved to have a high probability of being involved in ligand binding. This technique has been employed successfully to map the contact residues in multiple known targets of the anticancer drugs paclitaxel (Taxol), docetaxel (Taxotere) and 2-methoxyestradiol and the glycosaminoglycan hyaluronan, and to identify a novel paclitaxel receptor [1]. These data corroborate the observation that the binding properties of peptides displayed on the surface of phage particles can mimic the binding properties of peptides in naturally occurring proteins. It follows directly that structural context is relatively unimportant for determining the binding properties of these disordered peptides. This technique represents a novel, rapid, high resolution method for identifying potential ligand binding sites in the absence of three-dimensional information and has the potential to greatly enhance the speed of development of novel small molecule pharmaceuticals.

  16. Identification of steroid-binding and phosphorylated sites within the glucocorticoid receptor

    International Nuclear Information System (INIS)

    The primary goal of these studies was to localize the steroid-binding and phosphorylated sites of the glucocorticoid receptor. The synthetic steroid, dexamethasone 21-mesylate (DM) forms a covalent thioether bond via the sulfhydryl group of a cysteine residue in the receptor. To determine the covalent site of attachment of this ligand, receptors in WEHI-7 mouse thymoma cells were labeled with [3H]DM and purified with a monoclonal antibody. The receptor was completely digested with trypsin and a single peptide covalently labeled with steroid identified by reversed-phase HPLC. This peptide was analyzed by automated Edman degradation to determine the location of the steroid-labeled residue. A similar analysis was performed on an overlapping peptide produced by Staphylococcus aureus protease digestion. Analysis of tryptic peptides from receptors labeled with both [3H]DM and L-[35S]methionine indicated that this peptide contained methionine. These analyses, coupled with the published amino acid sequence of the receptor, identified Cysteine-644 in the steroid-binding domain of the mouse glucocorticoid receptor as the residue involved in covalent steroid-binding. A synthetic peptide representing amino acids 640-650 of the mouse receptor was prepared and analyzed to confirm the identification. These biochemical studies represent a direct demonstration of an amino acid important in receptor function. It has been proposed that the receptor functions through a phosphorylation-dephosphorylation cycle to explain the dependence of hormone binding capacity upon cellular ATP. The glucocorticoid receptor has been shown to be a phosphoprotein. As an initial step to identifying a role of phosphorylation in receptor action, phosphorylated sites within the functional domains of the protein were identified

  17. oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes

    OpenAIRE

    Ho Sui, Shannan J; Mortimer, James R.; Arenillas, David J.; Brumm, Jochen; Walsh, Christopher J.; Kennedy, Brian P; Wasserman, Wyeth W.

    2005-01-01

    Targeted transcript profiling studies can identify sets of co-expressed genes; however, identification of the underlying functional mechanism(s) is a significant challenge. Established methods for the analysis of gene annotations, particularly those based on the Gene Ontology, can identify functional linkages between genes. Similar methods for the identification of over-represented transcription factor binding sites (TFBSs) have been successful in yeast, but extension to human genomics has la...

  18. Ligand binding studies in the mouse olfactory bulb: identification and characterisation of a L-[3H]carnosine binding site

    International Nuclear Information System (INIS)

    Binding sites for the dipeptide L-carnosine (β-alanyl-t-histidine) have been detected in membranes prepared from mouse olfactory bulbs. The binding of L-[3H]- carnosine was saturable, reversible and stereospecific and had a Ksub(d) of about 770 nM. The stereospecific binding of L-carnosine represented about 30% of the totoal binding at pH 6.8, and decreased markedly with increasing pH. Binding was stimulated by calcium, unaffected by zinc, magnesium or manganese and inhibted by sodium and potassium. Carnosine binding was sensitive to trypsin and phospholipases A and C, but not to neuraminidase. Nystatin and filipin, which interact with membrane lipids, also interfered with binding. Some peptide analogues of carnosine were potent inhibitors of binding, but a variety of drugs serving as potent inhibitors in other binding systems had no effect on carnosine binding. Carnosine binding to mouse olfactory bulb membranes was 15-fold higher than that seen in membranes prepared from cerebral hemispheres, 5-fold higher than in cerebellum membranes and 3-fold higher than in membranes from spinal medulla and the olfactory tubercle-lateral olfactory tract area. (Auth.)

  19. Identification of neomycin B-binding site in T box antiterminator model RNA.

    Science.gov (United States)

    Anupam, Rajaneesh; Denapoli, Leyna; Muchenditsi, Abigael; Hines, Jennifer V

    2008-04-15

    The T box transcription antitermination mechanism regulates the expression of unique genes in many Gram-positive bacteria by responding, in a magnesium-dependent manner, to uncharged cognate tRNA base pairing with an antiterminator RNA element and other regions of the 5'-untranslated region. Model T box antiterminator RNA is known to bind aminoglycosides, ligands that typically bind RNA in divalent metal ion-binding sites. In this study, enzymatic footprinting and spectroscopic assays were used to identify and characterize the binding site of neomycin B to an antiterminator model RNA. Neomycin B binds the antiterminator bulge nucleotides in an electrostatic-dependent manner and displaces 3-4 monovalent cations, indicating that the antiterminator likely contains a divalent metal ion-binding site. Neomycin B facilitates rather than inhibits tRNA binding indicating that bulge-targeted inhibitors that bind the antiterminator via non-electrostatic interactions may be the more optimal candidates for antiterminator-targeted ligand design. PMID:18329274

  20. Identification of pyrazosulfuron-ethyl binding affinity and binding site subdomain IIA in human serum albumin by spectroscopic methods

    Science.gov (United States)

    Ding, Fei; Liu, Wei; Zhang, Xi; Wu, Li-Jun; Zhang, Li; Sun, Ying

    2010-03-01

    Pyrazosulfuron-ethyl (PY) is a sulfonylurea herbicide developed by DuPont which has been widely used for weed control in cereals. The determination of PY binding affinity and binding site in human serum albumin (HSA) by spectroscopic methods is the subject of this work. From the fluorescence emission, circular dichroism and three-dimensional fluorescence results, the interaction of PY with HSA caused secondary structure changes in the protein. Fluorescence data demonstrated that the quenching of HSA fluorescence by PY was the result of the formation of HSA-PY complex at 1:1 molar ratio, a static mechanism was confirmed to lead to the fluorescence quenching. Hydrophobic probe 8-anilino-1-naphthalenesulfonic acid (ANS) displacement results show that hydrophobic patches are the major sites for PY binding on HSA. The thermodynamic parameters Δ H° and Δ S° were calculated to be -36.32 kJ mol -1 and -35.91 J mol -1 K -1, which illustrated van der Waals forces and hydrogen bonds interactions were the dominant intermolecular force in stabilizing the complex. Also, site marker competitive experiments showed that the binding of PY to HSA took place primarily in subdomain IIA (Sudlow's site I). What presented in this paper binding research enriches our knowledge of the interaction between sulfonylurea herbicides and the physiologically important protein HSA.

  1. Identification of candidate transcription factor binding sites in the cattle genome

    Science.gov (United States)

    A resource that provides candidate transcription factor binding sites does not currently exist for cattle. Such data is necessary, as predicted sites may serve as excellent starting locations for future 'omics studies to develop transcriptional regulation hypotheses. In order to generate this resour...

  2. Identification and discrimination of binding sites of an organoruthenium anticancer complex to single-stranded oligonucleotides by mass spectrometry.

    Science.gov (United States)

    Liu, Suyan; Wu, Kui; Zheng, Wei; Zhao, Yao; Luo, Qun; Xiong, Shaoxiang; Wang, Fuyi

    2014-09-21

    We here report the identification of the binding sites of an organometallic ruthenium anticancer complex [(η(6)-biphenyl)Ru(en)Cl](+) (1) to single-stranded oligodeoxynucleotides (ODNs) 5'-CCCA4G5C6CC-3' (I) and 5'-CCC3G4A5CCC-3' (II) by mass spectrometry. The MS analysis of exonuclease ladders demonstrated that the 5'-exonuclease bovine spleen phosphodiesterase digestion of I and II mono-ruthenated by complex 1 was arrested solely at A4 and partially at C3 and G4, respectively, and that the 3'-exonuclease snake venom phosphodiesterase digestion of the ruthenated ODNs was arrested solely at G5 and G4, respectively, due to the ruthenation. These results did not allow unambiguous identification of ruthenation sites on the metallated ODNs. In contrast, tandem mass spectrometry analysis with CID fragmentation of the mono-ruthenated ODNs provided sequential and complementary [a(i) - B]/wi fragments, leading to unambiguous identification of G5 in I and G4 in II as the ruthenation sites on the ODN adducts, which is in line with the high selectivity of the complex towards guanine base as reported previously. These findings suggest that caution should be raised with regard to the identification of the binding sites of metal complexes, in particular complexes with bulky ligands, like biphenyl in complex 1, to DNA by MS analysis of exonuclease ladders of the metallated adducts, because the bulky ligands may adopt such an orientation that they block the exonuclease cleavage of the 5'- or 3'-side phosphodiester bonds adjacent to the binding sites, leading to digestion stalling at the nucleotides before the binding sites. PMID:25028701

  3. A reexamination of information theory-based methods for DNA-binding site identification

    Directory of Open Access Journals (Sweden)

    O'Neill Michael C

    2009-02-01

    Full Text Available Abstract Background Searching for transcription factor binding sites in genome sequences is still an open problem in bioinformatics. Despite substantial progress, search methods based on information theory remain a standard in the field, even though the full validity of their underlying assumptions has only been tested in artificial settings. Here we use newly available data on transcription factors from different bacterial genomes to make a more thorough assessment of information theory-based search methods. Results Our results reveal that conventional benchmarking against artificial sequence data leads frequently to overestimation of search efficiency. In addition, we find that sequence information by itself is often inadequate and therefore must be complemented by other cues, such as curvature, in real genomes. Furthermore, results on skewed genomes show that methods integrating skew information, such as Relative Entropy, are not effective because their assumptions may not hold in real genomes. The evidence suggests that binding sites tend to evolve towards genomic skew, rather than against it, and to maintain their information content through increased conservation. Based on these results, we identify several misconceptions on information theory as applied to binding sites, such as negative entropy, and we propose a revised paradigm to explain the observed results. Conclusion We conclude that, among information theory-based methods, the most unassuming search methods perform, on average, better than any other alternatives, since heuristic corrections to these methods are prone to fail when working on real data. A reexamination of information content in binding sites reveals that information content is a compound measure of search and binding affinity requirements, a fact that has important repercussions for our understanding of binding site evolution.

  4. Identification of the third binding site of arsenic in human arsenic (III methyltransferase.

    Directory of Open Access Journals (Sweden)

    Xiangli Li

    Full Text Available Arsenic (III methyltransferase (AS3MT catalyzes the process of arsenic methylation. Each arsenite (iAs(3+ binds to three cysteine residues, methylarsenite (MMA(3+ binds to two, and dimethylarsenite (DMA(3+ binds to one. However, only two As-binding sites (Cys156 and Cys206 have been confirmed on human AS3MT (hAS3MT. The third As-binding site is still undefined. Residue Cys72 in Cyanidioschyzon merolae arsenite S-adenosylmethyltransferase (CmArsM may be the third As-binding site. The corresponding residue in hAS3MT is Cys61. Functions of Cys32, Cys61, and Cys85 in hAS3MT are unclear though Cys32, Cys61, and Cys85 in rat AS3MT have no effect on the enzyme activity. This is why the functions of Cys32, Cys61, and Cys85 in hAS3MT merit investigation. Here, three mutants were designed, C32S, C61S, and C85S. Their catalytic activities and conformations were determined, and the catalytic capacities of C156S and C206S were studied. Unlike C85S, mutants C32S and C61S were completely inactive in the methylation of iAs(3+ and active in the methylation of MMA(3+. The catalytic activity of C85S was also less pronounced than that of WT-hAS3MT. All these findings suggest that Cys32 and Cys61 markedly influence the catalytic activity of hAS3MT. Cys32 and Cys61 are necessary to the first step of methylation but not to the second. Cys156 and Cys206 are required for both the first and second steps of methylation. The S(C32 is located far from arsenic in the WT-hAS3MT-SAM-As model. The distances between S(C61 and arsenic in WT-hAS3MT-As and WT-hAS3MT-SAM-As models are 7.5 Å and 4.1 Å, respectively. This indicates that SAM-binding to hAS3MT shortens the distance between S(C61 and arsenic and promotes As-binding to hAS3MT. This is consistent with the fact that SAM is the first substrate to bind to hAS3MT and iAs is the second. Model of WT-hAS3MT-SAM-As and the experimental results indicate that Cys61 is the third As-binding site.

  5. The Human p73 Promoter: Characterization and Identification of Functional E2F Binding Sites

    Directory of Open Access Journals (Sweden)

    Ratnam S. Seelan

    2002-01-01

    Full Text Available p73, a member of the p53 family, is overexpressed in many cancers. To understand the mechanism(s underlying this overexpression, we have undertaken a detailed characterization of the human p73 promoter. The promoter is strongly activated in cells expressing exogenous E2F1 and suppressed by exogenous Rb. At least three functional E2F binding sites, located immediately upstream of exon 1 (at-284,-155 and-132 mediate this induction. 5' serially deleted promoter constructs and constructs harboring mutated E2F sites were analyzed for their response to exogenously expressed E2F1 or Rb to establish functionality of these sites. Authenticity of E2F sites was further confirmed by electrophoretic mobility shift assay (EMSA using E2F1 /DP1 heterodimers synthesized in vitro, followed by competition assays with unlabeled wild-type or mutant oligonucleotides and supershift analysis using anti-E2F1 antibodies. In vivo binding of E2F1 to the p73 promoter was demonstrated using nuclear extracts prepared from E2F1-inducible Saos2 cells. The region conferring the highest promoter activity was found to reside between-113 to-217 of the p73 gene. Two of the three functional E2F sites (at-155 and-132 reside within this region. Our results suggest that regulation of p73 expression is primarily mediated through binding of E2 F1 to target sites at-155 and-132.

  6. De-novo identification of PPARgamma/RXR binding sites and direct targets during adipogenesis.

    Directory of Open Access Journals (Sweden)

    Mohamed Sabry Hamza

    Full Text Available BACKGROUND: The pathophysiology of obesity and type 2 diabetes mellitus is associated with abnormalities in endocrine signaling in adipose tissue and one of the key signaling affectors operative in these disorders is the nuclear hormone transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma. PPARgamma has pleiotropic functions affecting a wide range of fundamental biological processes including the regulation of genes that modulate insulin sensitivity, adipocyte differentiation, inflammation and atherosclerosis. To date, only a limited number of direct targets for PPARgamma have been identified through research using the well established pre-adipogenic cell line, 3T3-L1. In order to obtain a genome-wide view of PPARgamma binding sites, we applied the pair end-tagging technology (ChIP-PET to map PPARgamma binding sites in 3T3-L1 preadipocyte cells. METHODOLOGY/PRINCIPAL FINDINGS: Coupling gene expression profile analysis with ChIP-PET, we identified in a genome-wide manner over 7700 DNA binding sites of the transcription factor PPARgamma and its heterodimeric partner RXR during the course of adipocyte differentiation. Our validation studies prove that the identified sites are bona fide binding sites for both PPARgamma and RXR and that they are functionally capable of driving PPARgamma specific transcription. Our results strongly indicate that PPARgamma is the predominant heterodimerization partner for RXR during late stages of adipocyte differentiation. Additionally, we find that PPARgamma/RXR association is enriched within the proximity of the 5' region of the transcription start site and this association is significantly associated with transcriptional up-regulation of genes involved in fatty acid and lipid metabolism confirming the role of PPARgamma as the master transcriptional regulator of adipogenesis. Evolutionary conservation analysis of these binding sites is greater when adjacent to up-regulated genes than down

  7. Identification and Analysis of Papillomavirus E2 Protein Binding Sites in the Human Genome

    OpenAIRE

    Võsa, Liisi; Sudakov, Aleksander; Remm, Maido; Ustav, Mart; Kurg, Reet

    2012-01-01

    Papillomavirus E2 protein is required for the replication and maintenance of viral genomes and transcriptional regulation of viral genes. E2 functions through sequence-specific binding to 12-bp DNA motifs—E2 binding sites (E2BS)—in the virus genome. Papillomaviruses are able to establish persistent infection in their host and have developed a long-term relationship with the host cell in order to guarantee the propagation of the virus. In this study, we have analyzed the occurrence and functio...

  8. Identification of the rheumatoid arthritis shared epitope binding site on calreticulin.

    Directory of Open Access Journals (Sweden)

    Song Ling

    Full Text Available BACKGROUND: The rheumatoid arthritis (RA shared epitope (SE, a major risk factor for severe disease, is a five amino acid motif in the third allelic hypervariable region of the HLA-DRbeta chain. The molecular mechanisms by which the SE affects susceptibility to--and severity of--RA are unknown. We have recently demonstrated that the SE acts as a ligand that interacts with cell surface calreticulin (CRT and activates innate immune signaling. In order to better understand the molecular basis of SE-RA association, here we have undertaken to map the SE binding site on CRT. PRINCIPAL FINDINGS: Surface plasmon resonance (SPR experiments with domain deletion mutants suggested that the SE binding site is located in the P-domain of CRT. The role of this domain as a SE-binding region was further confirmed by a sulfosuccinimidyl-2-[6-(biotinamido-2-(p-azido-benzamido hexanoamido] ethyl-1,3-dithiopropionate (sulfo-SBED photoactive cross-linking method. In silico analysis of docking interactions between a conformationally intact SE ligand and the CRT P-domain predicted the region within amino acid residues 217-224 as a potential SE binding site. Site-directed mutagenesis demonstrated involvement of residues Glu(217 and Glu(223--and to a lesser extent residue Asp(220--in cell-free SPR-based binding and signal transduction assays. SIGNIFICANCE: We have characterized here the molecular basis of a novel ligand-receptor interaction between the SE and CRT. The interaction represents a structurally and functionally well-defined example of cross talk between the adaptive and innate immune systems that could advance our understanding of the pathogenesis of autoimmunity.

  9. Identification of a chloride ion binding site in Na+/Cl−-dependent transporters

    OpenAIRE

    Forrest, Lucy R.; Tavoulari, Sotiria; Zhang, Yuan-Wei; Rudnick, Gary; Honig, Barry

    2007-01-01

    The recent determination of the crystal structure of the leucine transporter from Aquifex aeolicus (aaLeuT) has provided significant insights into the function of neurotransmitter:sodium symporters. Transport by aaLeuT is Cl− independent, whereas many neurotransmitter:sodium symporters from higher organisms depend on Cl− ions. However, the only Cl− ion identified in the aaLeuT structure interacts with nonconserved residues in extracellular loops, and thus the relevance of this binding site is...

  10. Identification of critical residues in loop E in the 5-HT3ASR binding site

    Directory of Open Access Journals (Sweden)

    Muthalagi Mani

    2002-06-01

    Full Text Available Abstract Background The serotonin type 3 receptor (5-HT3R is a member of a superfamily of ligand gated ion channels. All members of this family share a large degree of sequence homology and presumably significant structural similarity. A large number of studies have explored the structure-function relationships of members of this family, particularly the nicotinic and GABA receptors. This information can be utilized to gain additional insights into specific structural and functional features of other receptors in this family. Results Thirteen amino acids in the mouse 5-HT3ASR that correspond to the putative E binding loop of the nicotinic α7 receptor were chosen for mutagenesis. Due to the presence of a highly conserved glycine in this region, it has been suggested that this binding loop is comprised of a hairpin turn and may form a portion of the ligand-binding site in this ion channel family. Mutation of the conserved glycine (G147 to alanine eliminated binding of the 5-HT3R antagonist [3H]granisetron. Three tyrosine residues (Y140, Y142 and Y152 also significantly altered the binding of 5-HT3R ligands. Mutations in neighboring residues had little or no effect on binding of these ligands to the 5-HT3ASR. Conclusion Our data supports a role for the putative E-loop region of the 5-HT3R in the binding of 5-HT, mCPBG, d-tc and lerisetron. 5-HT and mCPBG interact with Y142, d-tc with Y140 and lerisetron with both Y142 and Y152. Our data also provides support for the hypothesis that this region of the receptor is present in a loop structure.

  11. Elucidation of binding mechanism and identification of binding site for an anti HIV drug, stavudine on human blood proteins.

    Science.gov (United States)

    Sandhya, B; Hegde, Ashwini H; Seetharamappa, J

    2013-05-01

    The binding of stavudine (STV) to two human blood proteins [human hemoglobin (HHb) and human serum albumin (HSA)] was studied in vitro under simulated physiological conditions by spectroscopic methods viz., fluorescence, UV absorption, resonance light scattering, synchronous fluorescence, circular dichroism (CD) and three-dimensional fluorescence. The binding parameters of STV-blood protein were determined from fluorescence quenching studies. Stern-Volmer plots indicated the presence of static quenching mechanism in the interaction of STV with blood proteins. The values of n close to unity indicated that one molecule of STV bound to one molecule of blood protein. The binding process was found to be spontaneous. Analysis of thermodynamic parameters revealed the presence of hydrogen bond and van der Waals forces between protein and STV. Displacement experiments indicated the binding of STV to Sudlow's site I on HSA. Secondary structures of blood proteins have undergone changes upon interaction with STV as evident from the reduction of α-helices (from 46.11% in free HHb to 38.34% in STV-HHb, and from 66.44% in free HSA to 52.26% in STV-HSA). Further, the alterations in secondary structures of proteins in the presence of STV were confirmed by synchronous and 3D-fluorescence spectral data. The distance between the blood protein (donor) and acceptor (STV) was found to be 5.211 and 5.402 nm for STV-HHb and STV-HSA, respectively based on Föster's non-radiative energy transfer theory. Effect of some metal ions was also investigated. The fraction of STV bound to HSA was found to be 87.8%. PMID:23275205

  12. Identification of two potential receptor-binding sites for hGM-CSF

    Directory of Open Access Journals (Sweden)

    Eberhardt M.O.

    2003-01-01

    Full Text Available Two receptor-binding sites for hGM-CSF are described. Competitive binding ELISA using four monoclonal antibodies (MAbs showed different epitope recognitions. The antibody combining sites were mapped using sets of overlapping peptides and hexapeptide libraries prepared by the SPOT synthesis technique. We identified the conformationally dependent epitopes A18E21R23R24F119 and R23E21N17W13 bound by MAb CC5B5 and the nonlinear epitope P118F119W13E14 bound by MAb M1B8. The epitopes recognized by these two MAbs are very closely located on the native protein surface. The peptide L61YKQGKLRGSLTK72 was recognized by MAb M7E10 and the peptide A1PAR4, representing the N-terminal sequence of the protein, was bound by the nonneutralizing MAb CC1H7. Inhibition assays of the GM-CSF biological activity demonstrated that MAb M1B8, CC5B5 and M7E10 bind to domains which are responsible for the interaction of the cytokine with the GM-CSF receptor.

  13. An effective approach for identification of in vivo protein-DNA binding sites from paired-end ChIP-Seq data

    Directory of Open Access Journals (Sweden)

    Wilson Zoe A

    2010-02-01

    Full Text Available Abstract Background ChIP-Seq, which combines chromatin immunoprecipitation (ChIP with high-throughput massively parallel sequencing, is increasingly being used for identification of protein-DNA interactions in vivo in the genome. However, to maximize the effectiveness of data analysis of such sequences requires the development of new algorithms that are able to accurately predict DNA-protein binding sites. Results Here, we present SIPeS (Site Identification from Paired-end Sequencing, a novel algorithm for precise identification of binding sites from short reads generated by paired-end solexa ChIP-Seq technology. In this paper we used ChIP-Seq data from the Arabidopsis basic helix-loop-helix transcription factor ABORTED MICROSPORES (AMS, which is expressed within the anther during pollen development, the results show that SIPeS has better resolution for binding site identification compared to two existing ChIP-Seq peak detection algorithms, Cisgenome and MACS. Conclusions When compared to Cisgenome and MACS, SIPeS shows better resolution for binding site discovery. Moreover, SIPeS is designed to calculate the mappable genome length accurately with the fragment length based on the paired-end reads. Dynamic baselines are also employed to effectively discriminate closely adjacent binding sites, for effective binding sites discovery, which is of particular value when working with high-density genomes.

  14. Identification of the estrogen receptor Cd-binding sites by chemical modification.

    Science.gov (United States)

    Nesatyy, Victor J; Rutishauser, Barbara V; Eggen, Rik I L; Suter, Marc J-F

    2005-07-01

    The widely reported interactions of the estrogen receptor (ER) with endocrine disrupting chemicals (EDCs) present in the environment gave raise to public concern and led to a number of screening and testing initiatives on the international level. Recent studies indicated that certain heavy metals, including cadmium, can mimic the effects of the endogenous estrogen receptor agonist 17beta-estradiol, and lead to estrogen receptor activation. Previous studies of the chimeric proteins, which incorporate the ligand-binding domain of the human ER, identified Cys 381, Cys 447, Glu 523, His 524 and Asp 538 as possible sites of interactions with cadmium. In the present study we utilized the rainbow trout ER ligand-binding domain fused to glutathione-S-transferase, and used Cd-shielding against various types of chemical modification of the fusion protein to study non-covalent interactions between the ER and Cd. The distribution of exposed and shielded residues allowed to identify amino acid residues involved in the interaction. Our data indicated preferential protection of Cys groups by cadmium, suggesting their involvement in the interaction. This supports data found in the literature on the strong binding affinity of the thiol group towards metals. However, not all Cys in the fusion protein sequence were protected against chemical modification, illustrating the importance of their chemical environment. In general, the location of rtER-LBD Cys residues implicated in Cd interactions did not confirm assignments made by alanine-scanning mutagenesis for the hER, probably due to differences in experimental setup and fusion proteins used. The involvement of other functional groups such as carboxylic acids in the Cd interactions, though not confirmed, can not be completely ruled out due to the general limitations of the chemical modification approach discussed in detail. Suggestions for an improved experimental setup were made. PMID:15965534

  15. Identification of Ubiquinol Binding Motifs at the Qo-Site of the Cytochrome bc1 Complex

    DEFF Research Database (Denmark)

    Barragan, Angela M.; Crofts, Antony R.; Schulten, Klaus;

    2015-01-01

    Enzymes of the bc1 complex family power the biosphere through their central role in respiration and photosynthesis. These enzymes couple the oxidation of quinol molecules by cytochrome c to the transfer of protons across the membrane, to generate a proton-motive force that drives ATP synthesis. Key...... for the function of the bc1 complex is the initial redox process that involves a bifurcated electron transfer in which the two electrons from a quinol substrate are passed to different electron acceptors in the bc1 complex. The electron transfer is coupled to proton transfer. The overall mechanism of...... quinol oxidation by the bc1 complex is well enough characterized to allow exploration at the atomistic level, but details are still highly controversial. The controversy stems from the uncertain binding motifs of quinol at the so-called Qo active site of the bc1 complex. Here we employ a combination of...

  16. Plant Hormone Binding Sites

    OpenAIRE

    Napier, Richard

    2004-01-01

    • Aims Receptors for plant hormones are becoming identified with increasing rapidity, although a frustrating number remain unknown. There have also been many more hormone‐binding proteins described than receptors. This Botanical Briefing summarizes what has been discovered about hormone binding sites, their discovery and descriptions, and will not dwell on receptor functions or activities except where these are relevant to understand binding.

  17. Identification of tissue-specific DNA-protein binding sites by means of two-dimensional electrophoretic mobility shift assay display.

    Science.gov (United States)

    Chernov, Igor P; Timchenko, Kira A; Akopov, Sergey B; Nikolaev, Lev G; Sverdlov, Eugene D

    2007-05-01

    We developed a technique of differential electrophoretic mobility shift assay (EMSA) display allowing identification of tissue-specific protein-binding sites within long genomic sequences. Using this approach, we identified 10 cell type-specific protein-binding sites (protein target sites [PTSs]) within a 137-kb human chromosome 19 region. In general, tissue-specific binding of proteins from different nuclear extracts by individual PTSs did not follow the all-or-nothing principle. Most often, PTS-protein complexes were formed in all cases, but they were different for different nuclear extracts used. PMID:17359930

  18. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1.

    Science.gov (United States)

    de Vera, Ian Mitchelle S; Giri, Pankaj K; Munoz-Tello, Paola; Brust, Richard; Fuhrmann, Jakob; Matta-Camacho, Edna; Shang, Jinsai; Campbell, Sean; Wilson, Henry D; Granados, Juan; Gardner, William J; Creamer, Trevor P; Solt, Laura A; Kojetin, Douglas J

    2016-07-15

    Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function. PMID:27128111

  19. Molecular modeling, structural analysis and identification of ligand binding sites of trypanothione reductase from Leishmania mexicana

    Directory of Open Access Journals (Sweden)

    Ozal Mutlu

    2013-01-01

    Full Text Available Background & objectives: Trypanothione reductase (TR is a member of FAD-dependent NADPH oxidoreductase protein family and it is a key enzyme which connects the NADPH and the thiol-based redox system. Inhibition studies indicate that TR is an essential enzyme for parasite survival. Therefore, it is an attractive target enzyme for novel drug candidates. There is no structural model for TR of Leishmania mexicana (LmTR in the protein databases. In this work, 3D structure of TR from L. mexicana was identified by template-based in silico homology modeling method, resultant model was validated, structurally analyzed and possible ligand binding pockets were identified. Methods: For computational molecular modeling study, firstly, template was identified by BLAST search against PDB database. Multiple alignments were achieved by ClustalW2. Molecular modeling of LmTR was done and possible drug targeting sites were identified. Refinement of the model was done by performing local energy minimization for backbone, hydrogen and side chains. Model was validated by web-based servers. Results: A reliable 3D model for TR from L. mexicana was modeled by using L. infantum trypanothione reductase (LiTR as a template. RMSD results according to C-alpha, visible atoms and backbone were 0.809 Å, 0.732 Å and 0.728 Å respectively. Ramachandran plot indicates that model shows an acceptable stereochemistry. Conclusion: Modeled structure of LmTR shows high similarity with LiTR based on overall structural features like domains and folding patterns. Predicted structure will provide a source for the further docking studies of various peptide-based inhibitors.

  20. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, Thomas F.; Chapman, Michael S. (Oregon HSU)

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  1. Identification of High Affinity Fatty Acid Binding Sites on Human Serum Albumin by MM-PBSA Method

    OpenAIRE

    Fujiwara, Shin-ichi; Amisaki, Takashi

    2007-01-01

    Human serum albumin (HSA) has seven common fatty acid (FA) binding sites. In this study, we used the molecular mechanics Poisson-Boltzmann surface area method to identify high affinity FA binding sites on HSA in terms of binding free energy. Using multiple HSA-FA (myristate, palmitate) complex models constructed by molecular dynamics simulations, two methods were performed in molecular mechanics Poisson-Boltzmann surface area, the “three-trajectory method” and the “single-trajectory method”. ...

  2. Identification of leukotriene D4 specific binding sites in the membrane preparation isolated from guinea pig lung

    International Nuclear Information System (INIS)

    A radioligand binding assay has been established to study leukotriene specific binding sites in the guinea pig and rabbit tissues. Using high specific activity [3H]-leukotriene D4 [( 3H]-LTD4), in the presence or absence of unlabeled LTD4, the diastereoisomer of LTD4 (5R,6S-LTD4), leukotriene E4 (LTE4) and the end-organ antagonist, FPL 55712, the authors have identified specific binding sites for [3H]-LTD4 in the crude membrane fraction isolated from guinea pig lung. The time required for [3H]-LTD4 binding to reach equilibrium was approximately 20 to 25 min at 37 degrees C in the presence of 10 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl. The binding of [3H]-LTD4 to the specific sites was saturable, reversible and stereospecific. The maximal number of binding sites (Bmax), derived from Scatchard analysis, was approximately 320 +/- 200 fmol per mg of crude membrane protein. The dissociation constants, derived from kinetic and saturation analyses, were 9.7 nM and 5 +/- 4 nM, respectively. The specific binding sites could not be detected in the crude membrane fraction prepared from guinea pig ileum, brain and liver, or rabbit lung, trachea, ileum and uterus. In radioligand competition experiments, LTD4, FPL 55712 and 5R,6S-LTD4 competed with [3H]-LTD4. The metabolic inhibitors of arachidonic acid and SKF 88046, an antagonist of the indirectly-mediated actions of LTD4, did not significantly compete with [3H]-LTD4 at the specific binding sites. These correlations indicated that these specific binding sites may be the putative leukotriene receptors in the guinea-pig lung

  3. SiteComp: a server for ligand binding site analysis in protein structures

    OpenAIRE

    Lin, Yingjie; Yoo, Seungyeul; Sanchez, Roberto

    2012-01-01

    Motivation: Computational characterization of ligand-binding sites in proteins provides preliminary information for functional annotation, protein design and ligand optimization. SiteComp implements binding site analysis for comparison of binding sites, evaluation of residue contribution to binding sites and identification of sub-sites with distinct molecular interaction properties.

  4. Radioautographic identification of lactogen binding sites in rat median eminence using 125I-human growth hormone

    International Nuclear Information System (INIS)

    The binding characteristics of human growth hormone were exploited to identify radioautographically lactogen binding sites in the rat median eminence following systemic injection 125I-human growth hormone bound preferentially to the lateral palisade zone, a region of median eminence rich in dopamine and LHRH. Coinjection of 125I-human growth hormone with an excess of unlabeled human growth hormone or ovine prolactin, but not bovine growth hormone, competitively blocked 125I-human growth hormone binding to the external median eminence. These observations provide direct evidence of recognition sites for lactogenic hormones in a discrete region of the median eminence associated with hypothalamic regulation of hypophyseal prolactin and luteinizing hormone secretion. Median eminence lactogen binding sites may mediate presumed direct effects of lactogenic hormones on the reproductive functions of the hypophysiotropic hypothalamus. (orig.)

  5. Identification of thyroid hormone receptor binding sites and target genes using ChIP-on-chip in developing mouse cerebellum.

    Directory of Open Access Journals (Sweden)

    Hongyan Dong

    Full Text Available Thyroid hormone (TH is critical to normal brain development, but the mechanisms operating in this process are poorly understood. We used chromatin immunoprecipitation to enrich regions of DNA bound to thyroid receptor beta (TRbeta of mouse cerebellum sampled on post natal day 15. Enriched target was hybridized to promoter microarrays (ChIP-on-chip spanning -8 kb to +2 kb of the transcription start site (TSS of 5000 genes. We identified 91 genes with TR binding sites. Roughly half of the sites were located in introns, while 30% were located within 1 kb upstream (5' of the TSS. Of these genes, 83 with known function included genes involved in apoptosis, neurodevelopment, metabolism and signal transduction. Two genes, MBP and CD44, are known to contain TREs, providing validation of the system. This is the first report of TR binding for 81 of these genes. ChIP-on-chip results were confirmed for 10 of the 13 binding fragments using ChIP-PCR. The expression of 4 novel TH target genes was found to be correlated with TH levels in hyper/hypothyroid animals providing further support for TR binding. A TRbeta binding site upstream of the coding region of myelin associated glycoprotein was demonstrated to be TH-responsive using a luciferase expression system. Motif searches did not identify any classic binding elements, indicating that not all TR binding sites conform to variations of the classic form. These findings provide mechanistic insight into impaired neurodevelopment resulting from TH deficiency and a rich bioinformatics resource for developing a better understanding of TR binding.

  6. Identification of Thyroid Hormone Receptor Binding Sites and Target Genes Using ChIP-on-Chip in Developing Mouse Cerebellum

    Science.gov (United States)

    Dong, Hongyan; Yauk, Carole L.; Rowan-Carroll, Andrea; You, Seo-Hee; Zoeller, R. Thomas; Lambert, Iain; Wade, Michael G.

    2009-01-01

    Thyroid hormone (TH) is critical to normal brain development, but the mechanisms operating in this process are poorly understood. We used chromatin immunoprecipitation to enrich regions of DNA bound to thyroid receptor beta (TRβ) of mouse cerebellum sampled on post natal day 15. Enriched target was hybridized to promoter microarrays (ChIP-on-chip) spanning −8 kb to +2 kb of the transcription start site (TSS) of 5000 genes. We identified 91 genes with TR binding sites. Roughly half of the sites were located in introns, while 30% were located within 1 kb upstream (5′) of the TSS. Of these genes, 83 with known function included genes involved in apoptosis, neurodevelopment, metabolism and signal transduction. Two genes, MBP and CD44, are known to contain TREs, providing validation of the system. This is the first report of TR binding for 81 of these genes. ChIP-on-chip results were confirmed for 10 of the 13 binding fragments using ChIP-PCR. The expression of 4 novel TH target genes was found to be correlated with TH levels in hyper/hypothyroid animals providing further support for TR binding. A TRβ binding site upstream of the coding region of myelin associated glycoprotein was demonstrated to be TH-responsive using a luciferase expression system. Motif searches did not identify any classic binding elements, indicating that not all TR binding sites conform to variations of the classic form. These findings provide mechanistic insight into impaired neurodevelopment resulting from TH deficiency and a rich bioinformatics resource for developing a better understanding of TR binding. PMID:19240802

  7. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    International Nuclear Information System (INIS)

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of 125I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity

  8. Spectroscopic study of interaction between osthole and human serum albumin: Identification of possible binding site of the compound

    Energy Technology Data Exchange (ETDEWEB)

    Bijari, Nooshin [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Shokoohinia, Yalda [Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ashrafi-Kooshk, Mohammad Reza; Ranjbar, Samira; Parvaneh, Shahram [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Moieni-Arya, Maryam [Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Khodarahmi, Reza, E-mail: rkhodarahmi@mbrc.ac.ir [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2013-11-15

    The studies on the interaction between human serum albumin (HSA) and drugs have been an interesting research field in life science, chemistry and clinical medicine. Osthole possesses a variety of pharmacological activities including anti-tumor, anti-inflammation, anti-seizure, anti-hyperlipidemic and anti-osteoporosis effects. The interaction of osthole with HSA and its binding site in HSA by spectroscopic methods is the subject of this work. By monitoring the intrinsic fluorescence of the single Trp{sub 214} residue and performing site markers displacement measurements, the specific binding of osthole in the vicinity of Sudlow's site I of HSA has been clarified. The changes in the secondary structure of HSA after its complexation with ligand were studied with CD spectroscopy, which indicate that osthole induced only a slight decrease in the helix structural content of the protein. In addition, the mean distance between osthole and HSA fluorophores is estimated to be 4.96 nm using Föster's equation on the basis of the fluorescence energy transfer. Furthermore, the synchronous fluorescence spectra show that the microenvironment of the tryptophan residues does not have obvious changes. Osthole can quench the intrinsic fluorescence of HSA by dynamic quenching, and analysis of the thermodynamic parameters of binding showed that hydrophobic interactions play an important role in the stabilizing of the complex. Increase of protein surface hydrophobicity (PSH) was also observed upon the osthole binding. -- Highlights: • Hydrophobic interactions play an important role in osthole–HSA interaction. • Sudlow's I site is possible binding site of osthole. • Osthole inhibits esterase activity of HSA. • Osthole binding induces no gross protein structural changes.

  9. Spectroscopic study of interaction between osthole and human serum albumin: Identification of possible binding site of the compound

    International Nuclear Information System (INIS)

    The studies on the interaction between human serum albumin (HSA) and drugs have been an interesting research field in life science, chemistry and clinical medicine. Osthole possesses a variety of pharmacological activities including anti-tumor, anti-inflammation, anti-seizure, anti-hyperlipidemic and anti-osteoporosis effects. The interaction of osthole with HSA and its binding site in HSA by spectroscopic methods is the subject of this work. By monitoring the intrinsic fluorescence of the single Trp214 residue and performing site markers displacement measurements, the specific binding of osthole in the vicinity of Sudlow's site I of HSA has been clarified. The changes in the secondary structure of HSA after its complexation with ligand were studied with CD spectroscopy, which indicate that osthole induced only a slight decrease in the helix structural content of the protein. In addition, the mean distance between osthole and HSA fluorophores is estimated to be 4.96 nm using Föster's equation on the basis of the fluorescence energy transfer. Furthermore, the synchronous fluorescence spectra show that the microenvironment of the tryptophan residues does not have obvious changes. Osthole can quench the intrinsic fluorescence of HSA by dynamic quenching, and analysis of the thermodynamic parameters of binding showed that hydrophobic interactions play an important role in the stabilizing of the complex. Increase of protein surface hydrophobicity (PSH) was also observed upon the osthole binding. -- Highlights: • Hydrophobic interactions play an important role in osthole–HSA interaction. • Sudlow's I site is possible binding site of osthole. • Osthole inhibits esterase activity of HSA. • Osthole binding induces no gross protein structural changes

  10. Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors.

    Science.gov (United States)

    Treisman, R

    1986-08-15

    Transient transcriptional activation of the c-fos gene following serum stimulation of susceptible cells requires a conserved DNA element located 300 bp 5' to the mRNA cap site. A DNA-binding gel electrophoresis assay was used to detect a protein(s) in HeLa cell nuclear extracts that specifically binds to the 5' activating element. The protein recognizes a region of dyad symmetry within the 5' activating element, defined by binding competition, dimethylsulphate (DMS) interference and DNAase I and DMS protection studies. A single 22 bp synthetic copy of the dyad symmetry element will both compete efficiently for protein binding and restore serum regulation to c-fosH genes that lack the 5' activating element. PMID:3524858

  11. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.; Salzberg, Steven L.; Rubin, Gerald M.; Eisen, Michael B.; Celniker, SusanE.

    2004-08-06

    The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Measuring conservation of sequence features closely linked to function--such as binding-site clustering--makes better use of comparative sequence data than commonly used methods that examine only sequence identity.

  12. Identification of new binding sites of human transferrin incubated with organophosphorus agents via Q Exactive LC-MS/MS.

    Science.gov (United States)

    Sun, Fengjuan; Ding, Junjie; Yu, Huilan; Gao, Runli; Wang, Hongmei; Pei, Chengxin

    2016-06-01

    Organophosphorus agents (OPs) like sarin, VX, or soman could inhibit acetylcholinesterase activity and cause poisoning. OPs could bind many proteins, such as butyrylcholinesterase and albumin, and the adducts formed could identify the exposure. In this paper, we studied human transferrin, which was one of the proteins that could be labeled by OPs. Pure human transferrin was incubated with an overdose of organophosphorus agents, including sarin, soman, VX, tabun, cyclosarin, ethyl tabun, and propyl tabun, and then additional OPs was removed through dialysis. Trypsin was used to cleave the OP-treated proteins and Q Exactive liquid chromatography tandem mass spectrometry (Q Exactive LC-MS/MS) was used to identify them. The present study set out to accomplish two goals. The first goal was to find a good method for identifying multiple binding sites on a given protein through Q Exactive LC-MS/MS. The second goal was to investigate the labeled peptides when transferrin was incubated with a numerous molar excess of OPs. Results showed that tyrosine, lysine, and serine formed covalent bonds with OPs. Twenty OP-labeled sites were found: ten tyrosine sites (including two reported sites), seven lysine sites, and three serine sites. Characteristic fragments for labeled-tyrosine and labeled-lysine adducts were summarized in detail. In conclusion, the method by Q Exactive LC-MS/MS using in this present work is a good way to diagnose exposure to OPs accurately when the binding sites of OPs are uncertain. Novel modified peptides and the characteristic ions found in this work could help investigators assess exposure to OPs. PMID:27128859

  13. Identification of two regulatory binding sites which confer myotube specific expression of the mono-ADP-ribosyltransferase ART1 gene

    Directory of Open Access Journals (Sweden)

    Kirschner Ralf D

    2008-10-01

    Full Text Available Abstract Background Mono-ADP-ribosyltransferase (ART 1 belongs to a family of mammalian ectoenzymes that catalyze the transfer of ADP-ribose from NAD+ to a target protein. ART1 is predominantly expressed in skeletal and cardiac muscle. It ADP-ribosylates α7-integrin which together with β1-integrin forms a dimer and binds to laminin, a protein of the extracellular matrix involved in cell adhesion. This posttranslational modification leads to an increased laminin binding affinity. Results Using C2C12 and C3H-10T 1/2 cells as models of myogenesis, we found that ART1 expression was restricted to myotube formation. We identified a fragment spanning the gene 1.3 kb upstream of the transcriptional start site as the functional promoter of the ART1 gene. This region contains an E box and an A/T-rich element, two conserved binding sites for transcription factors found in the promoters of most skeletal muscle specific genes. Mutating the DNA consensus sequence of either the E box or the A/T-rich element resulted in a nearly complete loss of ART1 promoter inducibility, indicating a cooperative role of the transcription factors binding to those sites. Gel mobility shift analyses carried out with nuclear extracts from C2C12 and C3H-10T 1/2 cells revealed binding of myogenin to the E box and MEF-2 to the A/T-rich element, the binding being restricted to C2C12 and C3H-10T 1/2 myotubes. Conclusion Here we describe the molecular mechanism underlying the regulation of the ART1 gene expression in skeletal muscle cells. The differentiation-dependent upregulation of ART1 mRNA is induced by the binding of myogenin to an E box and of MEF-2 to an A/T-rich element in the proximal promoter region of the ART1 gene. Thus the transcriptional regulation involves molecular mechanisms similar to those used to activate muscle-specific genes.

  14. Prediction of DtxR regulon: Identification of binding sites and operons controlled by Diphtheria toxin repressor in Corynebacterium diphtheriae

    Directory of Open Access Journals (Sweden)

    Hasnain Seyed

    2004-09-01

    Full Text Available Abstract Background The diphtheria toxin repressor, DtxR, of Corynebacterium diphtheriae has been shown to be an iron-activated transcription regulator that controls not only the expression of diphtheria toxin but also of iron uptake genes. This study aims to identify putative binding sites and operons controlled by DtxR to understand the role of DtxR in patho-physiology of Corynebacterium diphtheriae. Result Positional Shannon relative entropy method was used to build the DtxR-binding site recognition profile and the later was used to identify putative regulatory sites of DtxR within C. diphtheriae genome. In addition, DtxR-regulated operons were also identified taking into account the predicted DtxR regulatory sites and genome annotation. Few of the predicted motifs were experimentally validated by electrophoretic mobility shift assay. The analysis identifies motifs upstream to the novel iron-regulated genes that code for Formamidopyrimidine-DNA glycosylase (FpG, an enzyme involved in DNA-repair and starvation inducible DNA-binding protein (Dps which is involved in iron storage and oxidative stress defense. In addition, we have found the DtxR motifs upstream to the genes that code for sortase which catalyzes anchoring of host-interacting proteins to the cell wall of pathogenic bacteria and the proteins of secretory system which could be involved in translocation of various iron-regulated virulence factors including diphtheria toxin. Conclusions We have used an in silico approach to identify the putative binding sites and genes controlled by DtxR in Corynebacterium diphtheriae. Our analysis shows that DtxR could provide a molecular link between Fe+2-induced Fenton's reaction and protection of DNA from oxidative damage. DtxR-regulated Dps prevents lethal combination of Fe+2 and H2O2 and also protects DNA by nonspecific DNA-binding. In addition DtxR could play an important role in host interaction and virulence by regulating the levels of sortase

  15. Identification of UreR binding sites in the Enterobacteriaceae plasmid-encoded and Proteus mirabilis urease gene operons.

    Science.gov (United States)

    Thomas, V J; Collins, C M

    1999-03-01

    The closely related Proteus mirabilis and Enterobacterlaceae plasmid-encoded urease genes are positively regulated by the AraC-like transcriptional activator UreR. In the presence of the effector molecule urea, UreR promotes transcription of ureD, the initial gene in the urease operon, and increases transcription of the divergently transcribed ureR. Here, we identify UreR-specific binding sites in the ureRp-ureDp intergenic regions. Recombinant UreR (rUreR) was expressed and purified, and gel shift and DNase I protection assays were performed with this protein. These analyses indicated that there are two distinct rUreR binding sites in both the plasmid-encoded and P. mirabilis ureRp-ureDp intergenic regions. A consensus binding site of TA/GT/CA/TT/GC/TTA/TT/AATTG was predicted from the DNase I protection assays. Although rUreR bound to the specific DNA binding site in both the presence and the absence of urea, the dissociation rate constant k-1 of the rUreR-DNA complex interaction was measurably different when urea was present. In the absence of urea, the dissociation of the protein-DNA complexes, for both ureRp and ureDp, was complete at the earliest time point, and it was not possible to determine a rate. In the presence of urea, dissociation was measurable with a k-1 for the rUreR-ureRp interaction of 1.2 +/- 0.2 x 10(-2) s-1 and a k-1 for the rUreR-ureDp interaction of 2.6 +/- 0.1 x 10(-3) s-1. This corresponds to a half-life of the ureRp-rUreR interaction of 58 s, and a half-life of the ureDp-rUreR interaction of 4 min 26 s. A model describing a potential role for urea in the activation of these promoters is proposed. PMID:10200962

  16. Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip.

    Science.gov (United States)

    McCartney, Daniel L; Walker, Rosie M; Morris, Stewart W; McIntosh, Andrew M; Porteous, David J; Evans, Kathryn L

    2016-09-01

    Genome-wide analysis of DNA methylation has now become a relatively inexpensive technique thanks to array-based methylation profiling technologies. The recently developed Illumina Infinium MethylationEPIC BeadChip interrogates methylation at over 850,000 sites across the human genome, covering 99% of RefSeq genes. This array supersedes the widely used Infinium HumanMethylation450 BeadChip, which has permitted insights into the relationship between DNA methylation and a wide range of conditions and traits. Previous research has identified issues with certain probes on both the HumanMethylation450 BeadChip and its predecessor, the Infinium HumanMethylation27 BeadChip, which were predicted to affect array performance. These issues concerned probe-binding specificity and the presence of polymorphisms at target sites. Using in silico methods, we have identified probes on the Infinium MethylationEPIC BeadChip that are predicted to (i) measure methylation at polymorphic sites and (ii) hybridise to multiple genomic regions. We intend these resources to be used for quality control procedures when analysing data derived from this platform. PMID:27330998

  17. Biochemistry of terminal deoxynucleotidyltransferase. Identification and unity of ribo- and deoxyribonucleoside triphosphate binding site in terminal deoxynucleotidyltransferase

    International Nuclear Information System (INIS)

    Terminal deoxynucleotidyltransferase is the only DNA polymerase that is strongly inhibited in the presence of ATP. We have labeled calf terminal deoxynucleotidyltransferase with [32P]ATP in order to identify its binding site in terminal deoxynucleotidyltransferase. The specificity of ATP cross-linking to terminal deoxynucleotidyltransferase is shown by the competitive inhibition of the overall cross-linking reaction by deoxynucleoside triphosphates, as well as the ATP analogs Ap4A and Ap5A. Tryptic peptide mapping of [32P]ATP-labeled enzyme revealed a peptide fraction that contained the majority of cross-linked ATP. The properties, chromatographic characteristics, amino acid composition, and sequence analysis of this peptide fraction were identical with those found associated with dTTP cross-linked terminal deoxynucleotidyl-transferase peptide. The involvement of the same 2 cysteine residues in the crosslinking of both nucleotides further confirmed the unity of the ATP and dTTP binding domain that contains residues 224-237 in the primary amino acid sequence of calf terminal deoxynucleotidyltransferase

  18. Computational identification of conserved transcription factor binding sites upstream of genes induced in rat brain by transient focal ischemic stroke.

    Science.gov (United States)

    Pulliam, John V K; Xu, Zhenfeng; Ford, Gregory D; Liu, Cuimei; Li, Yonggang; Stovall, Kyndra C; Cannon, Virginetta S; Tewolde, Teclemichael; Moreno, Carlos S; Ford, Byron D

    2013-02-01

    Microarray analysis has been used to understand how gene regulation plays a critical role in neuronal injury, survival and repair following ischemic stroke. To identify the transcriptional regulatory elements responsible for ischemia-induced gene expression, we examined gene expression profiles of rat brains following focal ischemia and performed computational analysis of consensus transcription factor binding sites (TFBS) in the genes of the dataset. In this study, rats were sacrificed 24 h after middle cerebral artery occlusion (MCAO) stroke and gene transcription in brain tissues following ischemia/reperfusion was examined using Affymetrix GeneChip technology. The CONserved transcription FACtor binding site (CONFAC) software package was used to identify over-represented TFBS in the upstream promoter regions of ischemia-induced genes compared to control datasets. CONFAC identified 12 TFBS that were statistically over-represented from our dataset of ischemia-induced genes, including three members of the Ets-1 family of transcription factors (TFs). Microarray results showed that mRNA for Ets-1 was increased following tMCAO but not pMCAO. Immunohistochemical analysis of Ets-1 protein in rat brains following MCAO showed that Ets-1 was highly expressed in neurons in the brain of sham control animals. Ets-1 protein expression was virtually abolished in injured neurons of the ischemic brain but was unchanged in peri-infarct brain areas. These data indicate that TFs, including Ets-1, may influence neuronal injury following ischemia. These findings could provide important insights into the mechanisms that lead to brain injury and could provide avenues for the development of novel therapies. PMID:23246490

  19. Genome-wide identification and evolutionary analysis of nucleotide-binding site-encoding resistance genes in Lotus japonicus (Fabaceae).

    Science.gov (United States)

    Song, H; Wang, P F; Li, T T; Xia, H; Zhao, S Z; Hou, L; Zhao, C Z

    2015-01-01

    Nucleotide-binding site (NBS) disease resistance genes play a crucial role in plant defense responses against pathogens and insect pests. Many NBS-encoding genes have been detected in Lotus japonicus, an important forage crop in many parts of the world. However, most NBS genes identified so far in L. japonicus were only partial sequences. We identified 45 full-length NBS-encoding genes in the L. japonicus genome, and analyzed gene duplications, motifs, and the molecular phylogeny to further understand the NBS gene family. We found that gene duplication events rarely occur in L. japonicus NBS-encoding (LjNBS) genes. In addition, LjNBS genes were subjected to selection pressure, and codon usage bias was evident. We tested for purifying selection (specifically in the CC-NBS-LRR and TIR-NBS-LRR groups), and found strong purifying selection in the TIR-domain-containing sequences, indicating that the CC-NBS-LRR group is more likely to undergo expansion than the TIR-NBS-LRR group. Moreover, our results showed that both selection and mutation contributed to LjNBS codon usage bias, but mutational bias was the major influence on codon usage. PMID:26662396

  20. Complete amino acid sequence of branched-chain amino acid aminotransferase (transaminase B) of Salmonella typhimurium, identification of the coenzyme-binding site and sequence comparison analysis

    International Nuclear Information System (INIS)

    The complete amino acid sequence of the subunit of branched-chain amino acid aminotransferase of Salmonella typhimurium was determined by automated Edman degradation of peptide fragments generated by chemical and enzymatic digestion of S-carboxymethylated and S-pyridylethylated transaminase B. Peptide fragments of transaminase B were generated by treatment of the enzyme with trypsin, Staphylococcus aureus V8 protease, endoproteinase Lys-C, and cyanogen bromide. Protocols were developed for separation of the peptide fragments by reverse-phase high performance liquid chromatography (HPLC), ion-exchange HPLC, and SDS-urea gel electrophoresis. The enzyme subunit contains 308 amino acid residues and has a molecular weight of 33,920 daltons. The coenzyme-binding site was determined by treatment of the enzyme, containing bound pyridoxal 5-phosphate, with tritiated sodium borohydride prior to trypsin digestion. Monitoring radioactivity incorporation and peptide map comparisons with an apoenzyme tryptic digest, allowed identification of the pyridoxylated-peptide which was isolated by reverse-phase HPLC and sequenced. The coenzyme-binding site is a lysyl residue at position 159. Some peptides were further characterized by fast atom bombardment mass spectrometry

  1. Negative Example Aided Transcription Factor Binding Site Search

    OpenAIRE

    Lee, Chih; Huang, Chun-Hsi

    2011-01-01

    Computational approaches to transcription factor binding site identification have been actively researched for the past decade. Negative examples have long been utilized in de novo motif discovery and have been shown useful in transcription factor binding site search as well. However, understanding of the roles of negative examples in binding site search is still very limited. We propose the 2-centroid and optimal discriminating vector methods, taking into account negative examples. Cross-val...

  2. Searching for transcription factor binding sites in vector spaces

    OpenAIRE

    Lee Chih; Huang Chun-Hsi

    2012-01-01

    Abstract Background Computational approaches to transcription factor binding site identification have been actively researched in the past decade. Learning from known binding sites, new binding sites of a transcription factor in unannotated sequences can be identified. A number of search methods have been introduced over the years. However, one can rarely find one single method that performs the best on all the transcription factors. Instead, to identify the best method for a particular trans...

  3. Identification of the bile salt binding site on ipad from Shigella flexneri and the influence of ligand binding on IpaD structure

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Guragain, Manita; Adam, Philip; Dickenson, Nicholas E.; Patil, Mrinalini; Geisbrecht, Brian V.; Picking, Wendy L.; Picking, William D. (UMKC); (OKLU)

    2012-10-25

    Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nano-machine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices {alpha}3 and {alpha}7, with concomitant movement in the orientation of helix {alpha}7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC-bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.

  4. Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana.

    Science.gov (United States)

    Machens, Fabian; Becker, Marlies; Umrath, Felix; Hehl, Reinhard

    2014-03-01

    Using a combination of bioinformatics and synthetic promoters, novel elicitor-responsive cis-sequences were discovered in promoters of pathogen-upregulated genes from Arabidopsis thaliana. One group of functional sequences contains the conserved core sequence GACTTTT. This core sequence and adjacent nucleotides are essential for elicitor-responsive gene expression in a parsley protoplast system. By yeast one-hybrid screening, WRKY70 was selected with a cis-sequence harbouring the core sequence GACTTTT but no known WRKY binding site (W-box). Transactivation experiments, mutation analyses, and electrophoretic mobility shift assays demonstrate that the sequence CGACTTTT is the binding site for WRKY70 in the investigated cis-sequence and is required for WRKY70-activated gene expression. Using several cis-sequences in transactivation experiments and binding studies, the CGACTTTT sequence can be extended to propose YGACTTTT as WRKY70 binding site. This binding site, designated WT-box, is enriched in promoters of genes upregulated in a WRKY70 overexpressing line. Interestingly, functional WRKY70 binding sites are present in the promoter of WRKY30, supporting recent evidence that both factors play a role in the same regulatory network. PMID:24104863

  5. Identification of a Substrate-binding Site in a Peroxisomal β-Oxidation Enzyme by Photoaffinity Labeling with a Novel Palmitoyl Derivative*

    OpenAIRE

    Kashiwayama, Yoshinori; Tomohiro, Takenori; Narita, Kotomi; Suzumura, Miyuki; Glumoff, Tuomo; Hiltunen, J. Kalervo; Van Veldhoven, Paul P.; Hatanaka, Yasumaru; Imanaka, Tsuneo

    2010-01-01

    Peroxisomes play an essential role in a number of important metabolic pathways including β-oxidation of fatty acids and their derivatives. Therefore, peroxisomes possess various β-oxidation enzymes and specialized fatty acid transport systems. However, the molecular mechanisms of these proteins, especially in terms of substrate binding, are still unknown. In this study, to identify the substrate-binding sites of these proteins, we synthesized a photoreactive palmitic acid analogue bearing a d...

  6. Studies of the Interaction between Isoimperatorin and Human Serum Albumin by Multispectroscopic Method: Identification of Possible Binding Site of the Compound Using Esterase Activity of the Protein

    Science.gov (United States)

    Ranjbar, Samira; Shokoohinia, Yalda; Ghobadi, Sirous; Gholamzadeh, Saeed; Moradi, Nastaran; Ashrafi-Kooshk, Mohammad Reza; Aghaei, Abbas

    2013-01-01

    Isoimperatorin is one of the main components of Prangos ferulacea as a linear furanocoumarin and used as anti-inflammatory, analgesic, antispasmodic, and anticancer drug. Human serum albumin (HSA) is a principal extracellular protein with a high concentration in blood plasma and carrier for many drugs to different molecular targets. Since the carrying of drug by HSA may affect on its structure and action, we decided to investigate the interaction between HSA and isoimperatorin using fluorescence and UV spectroscopy. Fluorescence data indicated that isoimperatorin quenches the intrinsic fluorescence of the HSA via a static mechanism and hydrophobic interaction play the major role in the drug binding. The binding average distance between isoimperatorin and Trp 214 of HSA was estimated on the basis of the theory of Förster energy transfer. Decrease of protein surface hydrophobicity (PSH) was also documented upon isoimperatorin binding. Furthermore, the synchronous fluorescence spectra show that the microenvironment of the tryptophan residues does not have obvious changes. Site marker compettive and fluorescence experiments revealed that the binding of isoimperatorin to HSA occurred at or near site I. Finally, the binding details between isoimperatorin and HSA were further confirmed by molecular docking and esterase activity inhibition studies which revealed that drug was bound at subdomain IIA. PMID:24319355

  7. Identification of the complement iC3b binding site in the beta 2 integrin CR3 (CD11b/CD18).

    OpenAIRE

    Ueda, T.; Rieu, P.; Brayer, J.; Arnaout, M. A.

    1994-01-01

    The divalent cation-dependent interaction of the beta 2 integrin CR3 (CD11b/CD18) with the major complement opsonic C3 fragment iC3b is an important component of the central role of CR3 in inflammation and immune clearance. In this investigation we have identified the iC3b binding site in CR3. A recombinant fragment representing the CR3 A-domain, a 200-amino acid region in the ectodomain of the CD11b subunit, bound to iC3b directly and in a divalent cation-dependent manner. The iC3b binding s...

  8. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site

    International Nuclear Information System (INIS)

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  9. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays

    Directory of Open Access Journals (Sweden)

    Regina Augustin

    2011-01-01

    Full Text Available The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases.

  10. Photoaffinity labeling of the thymidine triphosphate binding domain in Escherichia coli DNA polymerase I: identification of histidine-881 as the site of cross-linking

    International Nuclear Information System (INIS)

    Using the technique of ultraviolet-mediated cross-linking of substrate deoxynucleoside triphosphates (dNTPs) to their acceptor site, the authors have labeled the Klenow fragment of Escherichia coli DNA polymerase I (Pol I) with [α-32P]dTTP. Covalent cross-linking of [α-32P]dTTP to the Klenow fragment is shown to be at the substrate binding site by the following criteria; (a) the cross-linking reaction requires dTTP in its metal chelate form; (b) dTTP is readily competed out by other dNTPs as well as by substrate binding site directed reagents; (c) labeling with dTTP occurs at a single site as judged by peptide mapping. Under optimal conditions, a modification of approximately 20% of the enzyme was achieved. Following tryptic digestion of the [α-32P]dTTP-labeled Klenow fragment, reverse-phase high-performance liquid chromatography demonstrated that 80% of the radioactivity was contained within a single peptide. The amino acid composition and sequence of this peptide identified it as the peptide spanning amino acid residues 876-890 in the primary sequence of E. coli Pol I. Chymotrypsin and Staphylococcus aureus V8 protease digestion of the labeled tryptic peptide in each case yielded a single smaller fragment that was radioactive. Amino acid analysis and sequencing of these small peptides further narrowed the dTTP cross-linking site to within the region spanning residues 876-883. They concluded that histidine-881 is the primary attachment site for dTTP in E. coli DNA Pol I, since during amino acid sequencing analysis of all three radioactive peptides loss of the histidine residue at the expected cycle is observed

  11. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    High (17 nM) and low (603 nM) affinity binding sites for [3]tetrahydrotrazodone ([3] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [3]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [3] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [3]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  12. Erythropoietin binding sites in human foetal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pekonen, F.; Rosenloef, K.; Rutanen, E.-M.

    1987-01-01

    Using /sup 125/I labelled recombinant DNA human erythropoietin (EP), we have explored the presence and properties of EP binding sites in foetal human tissues. The EP binding site is present in the foetal liver already during the first trimester of pregnancy. The binding site has a equilibrium association constant of 4.1-6.2 x 10/sup 9/l/mol and is specific for EP. The cross-reactivities of FSH, TSH, hCG, insulin and renin substrate were less than 0.01%. The EP binding capacity of foetal liver was 5.4-16 fmol/mg membrane protein. In foetal lung tissue, a slight EP binding activity was observed, whereas foetal spleen, muscle, brain, thyroid and placental tissues were virtually devoid of EP binding capacity. The same level of binding was reached at 37 deg. C in 1 h and at 4 deg. C in 24 h. The binding was pH-dependent with maximal specific binding at pH 7.7. SDS-PAGE gel electrophoresis analysis of covalently cross-linked /sup 125/I-EP to foetal liver membranes suggested that the EP binding site was composed of two subunits with an apparent mol wt of 41000 and 86000 dalton, respectively.

  13. Erythropoietin binding sites in human foetal tissues

    International Nuclear Information System (INIS)

    Using 125I labelled recombinant DNA human erythropoietin (EP), we have explored the presence and properties of EP binding sites in foetal human tissues. The EP binding site is present in the foetal liver already during the first trimester of pregnancy. The binding site has a equilibrium association constant of 4.1-6.2 x 109l/mol and is specific for EP. The cross-reactivities of FSH, TSH, hCG, insulin and renin substrate were less than 0.01%. The EP binding capacity of foetal liver was 5.4-16 fmol/mg membrane protein. In foetal lung tissue, a slight EP binding activity was observed, whereas foetal spleen, muscle, brain, thyroid and placental tissues were virtually devoid of EP binding capacity. The same level of binding was reached at 37 deg. C in 1 h and at 4 deg. C in 24 h. The binding was pH-dependent with maximal specific binding at pH 7.7. SDS-PAGE gel electrophoresis analysis of covalently cross-linked 125I-EP to foetal liver membranes suggested that the EP binding site was composed of two subunits with an apparent mol wt of 41000 and 86000 dalton, respectively. (author)

  14. Identification of a Novel Nonstructural Protein, VP9, from White Spot Syndrome Virus: Its Structure Reveals a Ferredoxin Fold with Specific Metal Binding Sites

    Energy Technology Data Exchange (ETDEWEB)

    Liu,Y.; Wu, J.; Song, J.; Sivaraman, J.; Hew, C.

    2006-01-01

    White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP9, a full-length protein of WSSV, encoded by open reading frame wsv230, was identified for the first time in the infected Penaeus monodon shrimp tissues, gill, and stomach as a novel, nonstructural protein by Western blotting, mass spectrometry, and immunoelectron microscopy. Real-time reverse transcription-PCR demonstrated that the transcription of VP9 started from the early to the late stage of WSSV infection as a major mRNA species. The structure of full-length VP9 was determined by both X-ray and nuclear magnetic resonance (NMR) techniques. It is the first structure to be reported for WSSV proteins. The crystal structure of VP9 revealed a ferredoxin fold with divalent metal ion binding sites. Cadmium sulfate was found to be essential for crystallization. The Cd2+ ions were bound between the monomer interfaces of the homodimer. Various divalent metal ions have been titrated against VP9, and their interactions were analyzed using NMR spectroscopy. The titration data indicated that VP9 binds with both Zn2+ and Cd2+. VP9 adopts a similar fold as the DNA binding domain of the papillomavirus E2 protein. Based on our present investigations, we hypothesize that VP9 might be involved in the transcriptional regulation of WSSV, a function similar to that of the E2 protein during papillomavirus infection of the host cells.

  15. Distinct oxidative cleavage and modification of bovine [Cu- Zn]-SOD by an ascorbic acid/Cu(II) system: Identification of novel copper binding site on SOD molecule.

    Science.gov (United States)

    Uehara, Hiroshi; Luo, Shen; Aryal, Baikuntha; Levine, Rodney L; Rao, V Ashutosh

    2016-05-01

    We investigated the combined effect of ascorbate and copper [Asc/Cu(II)] on the integrity of bovine [Cu-Zn]-superoxide dismutase (bSOD1) as a model system to study the metal catalyzed oxidation (MCO) and fragmentation of proteins. We found Asc/Cu(II) mediates specific cleavage of bSOD1 and generates 12.5 and 3.2kDa fragments in addition to oxidation/carbonylation of the protein. The effect of other tested transition metals, a metal chelator, and hydrogen peroxide on the cleavage and oxidation indicated that binding of copper to a previously unknown site on SOD1 is responsible for the Asc/Cu(II) specific cleavage and oxidation. We utilized tandem mass spectrometry to identify the specific cleavage sites of Asc/Cu(II)-treated bSOD1. Analyses of tryptic- and AspN-peptides have demonstrated the cleavage to occur at Gly31 with peptide bond breakage with Thr30 and Ser32 through diamide and α-amidation pathways, respectively. The three-dimensional structure of bSOD1 reveals the imidazole ring of His19 localized within 5Å from the α-carbon of Gly31 providing a structural basis that copper ion, most likely coordinated by His19, catalyzes the specific cleavage reaction. PMID:26872685

  16. Site identification presentation: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    The final step in the site identification process for the Basalt Waste Isolation Project is described. The candidate sites are identified. The site identification methodology is presented. The general objectives which must be met in selecting the final site are listed. Considerations used in the screening process are also listed. Summary tables of the guidelines used are included

  17. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition.

    Science.gov (United States)

    Jia, Jianhua; Liu, Zi; Xiao, Xuan; Liu, Bingxiang; Chou, Kuo-Chen

    2016-09-01

    With the explosive growth of protein sequences entering into protein data banks in the post-genomic era, it is highly demanded to develop automated methods for rapidly and effectively identifying the protein-protein binding sites (PPBSs) based on the sequence information alone. To address this problem, we proposed a predictor called iPPBS-PseAAC, in which each amino acid residue site of the proteins concerned was treated as a 15-tuple peptide segment generated by sliding a window along the protein chains with its center aligned with the target residue. The working peptide segment is further formulated by a general form of pseudo amino acid composition via the following procedures: (1) it is converted into a numerical series via the physicochemical properties of amino acids; (2) the numerical series is subsequently converted into a 20-D feature vector by means of the stationary wavelet transform technique. Formed by many individual "Random Forest" classifiers, the operation engine to run prediction is a two-layer ensemble classifier, with the 1st-layer voting out the best training data-set from many bootstrap systems and the 2nd-layer voting out the most relevant one from seven physicochemical properties. Cross-validation tests indicate that the new predictor is very promising, meaning that many important key features, which are deeply hidden in complicated protein sequences, can be extracted via the wavelets transform approach, quite consistent with the facts that many important biological functions of proteins can be elucidated with their low-frequency internal motions. The web server of iPPBS-PseAAC is accessible at http://www.jci-bioinfo.cn/iPPBS-PseAAC , by which users can easily acquire their desired results without the need to follow the complicated mathematical equations involved. PMID:26375780

  18. Identification of the site on calcineurin phosphorylated by Ca+/CaM-dependent kinase II: Modification of the CaM-binding domain

    International Nuclear Information System (INIS)

    The catalytic subunit of the Ca2+/calmodulin- (CaM) dependent phosphoprotein phosphatase calcineurin (CN) was phosphorylated by an activated form of Ca2+/CaM-dependent protein kinase II (CaM-kinase II) incorporating approximately 1 mol of phosphoryl group/mol of catalytic subunit, in agreement with a value previously reported. Cyanogen bromide cleavage of radiolabeled CN followed by peptide fractionation using reverse-phase high-performance liquid chromatography yielded a single labeled peptide that contained a phosphoserine residue. Microsequencing of the peptide allowed both the determination of the cleavage cycle that released [32P]phosphoserine and the identity of amino acids adjacent to it. Comparison of this sequence with the sequences of methionyl peptides deduced from the cDNA structure of CN allowed the phosphorylated serine to be uniquely identified. Interestingly, the phosphoserine exists in the sequence Met-Ala-Arg-Val-Phe-Ser(P)-Val-Leu-Arg-Glu, part of which lies within the putative CaM-binding sites. The phosphorylated serine residue was resistant to autocatalytic dephosphorylation, yet the slow rate of hydrolysis could be powerfully stimulated by effectors of CN phosphatase activity. The mechanism of dephosphorylation may be intramolecular since the initial rate was the same at phosphoCN concentrations of 2.5-250 nM

  19. Identification of the site on calcineurin phosphorylated by Ca sup + /CaM-dependent kinase II: Modification of the CaM-binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Martensen, T.M.; Kincaid, R.L. (National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (USA)); Martin, B.M. (National Institute of Mental Health, Bethesda, MD (USA))

    1989-11-28

    The catalytic subunit of the Ca{sup 2+}/calmodulin- (CaM) dependent phosphoprotein phosphatase calcineurin (CN) was phosphorylated by an activated form of Ca{sup 2+}/CaM-dependent protein kinase II (CaM-kinase II) incorporating approximately 1 mol of phosphoryl group/mol of catalytic subunit, in agreement with a value previously reported. Cyanogen bromide cleavage of radiolabeled CN followed by peptide fractionation using reverse-phase high-performance liquid chromatography yielded a single labeled peptide that contained a phosphoserine residue. Microsequencing of the peptide allowed both the determination of the cleavage cycle that released ({sup 32}P)phosphoserine and the identity of amino acids adjacent to it. Comparison of this sequence with the sequences of methionyl peptides deduced from the cDNA structure of CN allowed the phosphorylated serine to be uniquely identified. Interestingly, the phosphoserine exists in the sequence Met-Ala-Arg-Val-Phe-Ser(P)-Val-Leu-Arg-Glu, part of which lies within the putative CaM-binding sites. The phosphorylated serine residue was resistant to autocatalytic dephosphorylation, yet the slow rate of hydrolysis could be powerfully stimulated by effectors of CN phosphatase activity. The mechanism of dephosphorylation may be intramolecular since the initial rate was the same at phosphoCN concentrations of 2.5-250 nM.

  20. Photoaffinity labeling of human serum vitamin D binding protein and chemical cleavage of the labeled protein: Identification of an 11.5-kDa peptide containing the putative 25-hydroxyvitamin D3 binding site

    International Nuclear Information System (INIS)

    In this paper, the authors describe photoaffinity labeling and related studies of human serum vitamin D binding protein (hDBP) with 25-hydroxyvitamin D3 3β-3'-[N-(4-azido-2-nitrophenyl)amino]propyl ether (25-ANE) and its radiolabeled counterpart, i.e., 25-hydroxyvitamin D3 3β-3'-[N-(4-azido-2-nitro-[3,5-3H]phenyl)amino]propyl ether (3H-25-ANE). They have carried out studies to demonstrate that (1) 25-ANE competes with 25-OH-D3 for the binding site of the latter in hDBP and (2) 3H-25-ANE is capable of covalently labeling the hDBP molecule when exposed ot UV light. Treatment of a sample of purified hDBP, labeled with 3H-25-ANE, with BNPS-skatole produced two Coomassie Blue stained peptide fragments, and the majority of the radioactivity was assoicated with the smaller of the two peptide fragments (16.5 kDa). On the other hand, cleavage of the labeled protein with cyanogen bromide produced a peptide (11.5 kDa) containing most of the covalently attached radioactivity. Considering the primary amino acid structure of hDBP, this peptide fragment (11.5 kDa) represents the N-terminus through residue 108 of the intact protein. Thus, the results tentatively identify this segment of the protein containing the binding pocket for 25-OH-D3

  1. Computational Prediction of RNA-Binding Proteins and Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-11-01

    Full Text Available Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs. Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  2. Photoaffinity labeling of human serum vitamin D binding protein and chemical cleavage of the labeled protein: Identification of an 11. 5-kDa peptide containing the putative 25-hydroxyvitamin D sub 3 binding site

    Energy Technology Data Exchange (ETDEWEB)

    Ray, R.; Holick, M.F. (Boston Univ., MA (United States)); Bouillon, R.; Baelen, H.V. (Laboratorium voor Experimentele Geneeskunde en Endocrinologie, Leuven (Belgium))

    1991-07-30

    In this paper, the authors describe photoaffinity labeling and related studies of human serum vitamin D binding protein (hDBP) with 25-hydroxyvitamin D{sub 3} 3{beta}-3{prime}-(N-(4-azido-2-nitrophenyl)amino)propyl ether (25-ANE) and its radiolabeled counterpart, i.e., 25-hydroxyvitamin D{sub 3} 3{beta}-3{prime}-(N-(4-azido-2-nitro-(3,5-{sup 3}H)phenyl)amino)propyl ether ({sup 3}H-25-ANE). They have carried out studies to demonstrate that (1) 25-ANE competes with 25-OH-D{sub 3} for the binding site of the latter in hDBP and (2) {sup 3}H-25-ANE is capable of covalently labeling the hDBP molecule when exposed ot UV light. Treatment of a sample of purified hDBP, labeled with {sup 3}H-25-ANE, with BNPS-skatole produced two Coomassie Blue stained peptide fragments, and the majority of the radioactivity was assoicated with the smaller of the two peptide fragments (16.5 kDa). On the other hand, cleavage of the labeled protein with cyanogen bromide produced a peptide (11.5 kDa) containing most of the covalently attached radioactivity. Considering the primary amino acid structure of hDBP, this peptide fragment (11.5 kDa) represents the N-terminus through residue 108 of the intact protein. Thus, the results tentatively identify this segment of the protein containing the binding pocket for 25-OH-D{sub 3}.

  3. PREDICTION OF ANTIGENIC AND BINDING SITES OF NEUROTOXIN 23 OF SCORPION (LYCHASMUCRONACTUS SP.)

    OpenAIRE

    Bharati K Thosare; Ingale, Arun G

    2015-01-01

    Identification of antigenic and binding site of protein is highly desirable for the design of vaccines and immunodiagnostics. The present exercise deals with a prediction of antigenic as well as binding sites of neurotoxin 23 of Lychasmucronactus. This species of scorpion having diverse molecules of toxic peptide, the peptide neurotoxin 23 is 96 amino acids long of which 23 to 96 specifically code for neurotoxin. The total of 27 such different ligand binding residue were identifie...

  4. Identification of essential residues for binding and activation in the human 5-HT7(a receptor by molecular modeling and site-directed mutagenesis

    Directory of Open Access Journals (Sweden)

    Agata Antonina Rita Impellizzeri

    2015-05-01

    We examined molecular determinants of ligand binding and G protein activation by the human 5-HT7(a receptor. The role of several key residues in the 7th transmembrane domain and helix 8 were elucidated combining in silico and experimental mutagenesis. Several single and two double point mutations of the 5-HT7(a wild type receptor were made (W7.33V, E7.35T, E7.35R, E7.35D, E7.35A, R7.36V, Y7.43A, Y7.43F, Y7.43T, R8.52D, D8.53K; E7.35T-R7.36V, R8.52D-D8.53K, and their effects upon ligand binding were assessed by radioligand binding using a potent agonist (5-CT and a potent antagonist (SB269970. In addition, the ability of the mutated 5-HT7(a receptors to activate G protein after 5-HT-stimulation was determined through activation of adenylyl cyclase. In silico investigation on mutated receptors substantiated the predicted importance of TM7 and showed critical roles of residues E7.35, W7.33, R7.36 and Y7.43 in agonist and antagonist binding and conformational changes of receptor structure affecting adenylyl cyclase activation. Experimental data showed that mutants E7.35T and E7.35R were incapable of ligand binding and adenylyl cyclase activation, consistent with a requirement for a negatively charged residue at this position. The mutant R8.52D was unable to activate adenylyl cyclase, despite unaffected ligand binding, consistent with the R8.52 residue playing an important role in the receptor-G protein interface. The mutants Y7.43A and Y7.43T displayed reduced agonist binding and AC agonist potency, not seen in Y7.43F, consistent with a requirement for an aromatic residue at this position. Knowledge of the molecular interactions important in h5-HT7 receptor ligand binding and G protein activation will aid the design of selective h5-HT7 receptor ligands for potential pharmacological use.

  5. Nickel binding sites in histone proteins

    OpenAIRE

    Zoroddu, Maria Antonietta; Peana, Massimiliano Francesco; Solinas, Costantino; Medici, Serenella

    2012-01-01

    Nickel compounds are well known as human carcinogens, though the molecular events that are responsible for this are not well understood. It has been proposed that a crucial element in the mechanism of carcinogenesis is the binding of Ni(II) ions within the cell nucleus. It is known that DNA polymer binds Ni(II) only weakly, leaving the proteins of the cell nucleus as the likely Ni(II) targets. Being histone proteins the most abundant among them, they can be considered the primary sites fo...

  6. Defining proximity relationships in the tertiary structure of the dopamine transporter. Identification of a conserved glutamic acid as a third coordinate in the endogenous Zn(2+)-binding site

    DEFF Research Database (Denmark)

    Løland, Claus Juul; Norregaard, L; Gether, U

    1999-01-01

    Recently, we have described a distance constraint in the unknown tertiary structure of the human dopamine transporter (hDAT) by identification of two histidines, His(193) in the second extracellular loop and His(375) at the top of transmembrane (TM) 7, that form two coordinates in an endogenous...

  7. Identification of a novel site specific endonuclease produced by Mycoplasma fermentans: discovery while characterizing DNA binding proteins in T lymphocyte cell lines.

    OpenAIRE

    Halden, N F; Wolf, J B; Leonard, W J

    1989-01-01

    We have discovered a new restriction endonuclease, MfeI, in nuclear extracts from T cells contaminated with Mycoplasma fermentans. This endonuclease was identified while studying proteins binding to the interleukin-2 receptor alpha chain gene promoter. MfeI cuts at the recognition sequence C'AATTG generating EcoRI compatible cohesive ends. Potential applications are discussed.

  8. Incorporating evolution of transcription factor binding sites into annotated alignments

    Indian Academy of Sciences (India)

    Abha S Bais; Steffen Grossmann; Martin Vingron

    2007-08-01

    Identifying transcription factor binding sites (TFBSs) is essential to elucidate putative regulatory mechanisms. A common strategy is to combine cross-species conservation with single sequence TFBS annotation to yield ``conserved TFBSs”. Most current methods in this field adopt a multi-step approach that segregates the two aspects. Again, it is widely accepted that the evolutionary dynamics of binding sites differ from those of the surrounding sequence. Hence, it is desirable to have an approach that explicitly takes this factor into account. Although a plethora of approaches have been proposed for the prediction of conserved TFBSs, very few explicitly model TFBS evolutionary properties, while additionally being multi-step. Recently, we introduced a novel approach to simultaneously align and annotate conserved TFBSs in a pair of sequences. Building upon the standard Smith-Waterman algorithm for local alignments, SimAnn introduces additional states for profiles to output extended alignments or annotated alignments. That is, alignments with parts annotated as gaplessly aligned TFBSs (pair-profile hits) are generated. Moreover, the pair-profile related parameters are derived in a sound statistical framework. In this article, we extend this approach to explicitly incorporate evolution of binding sites in the SimAnn framework. We demonstrate the extension in the theoretical derivations through two position-specific evolutionary models, previously used for modelling TFBS evolution. In a simulated setting, we provide a proof of concept that the approach works given the underlying assumptions, as compared to the original work. Finally, using a real dataset of experimentally verified binding sites in human-mouse sequence pairs, we compare the new approach (eSimAnn) to an existing multi-step tool that also considers TFBS evolution. Although it is widely accepted that binding sites evolve differently from the surrounding sequences, most comparative TFBS identification

  9. Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1.

    NARCIS (Netherlands)

    Geijtenbeek, T.B.; Duijnhoven, G.C.F. van; Vliet, S. van; Krieger, E.; Vriend, G.; Figdor, C.G.; Kooyk, Y. van

    2002-01-01

    The novel dendritic cell (DC)-specific human immunodeficiency virus type 1 (HIV-1) receptor DC-SIGN plays a key role in the dissemination of HIV-1 by DC. DC-SIGN is thought to capture HIV-1 at mucosal sites of entry, facilitating transport to lymphoid tissues, where DC-SIGN efficiently transmits HIV

  10. Oxytocin binding sites in bovine mammary tissue

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  11. PeptiSite: a structural database of peptide binding sites in 4D.

    Science.gov (United States)

    Acharya, Chayan; Kufareva, Irina; Ilatovskiy, Andrey V; Abagyan, Ruben

    2014-03-21

    We developed PeptiSite, a comprehensive and reliable database of biologically and structurally characterized peptide-binding sites, in which each site is represented by an ensemble of its complexes with protein, peptide and small molecule partners. The unique features of the database include: (1) the ensemble site representation that provides a fourth dimension to the otherwise three dimensional data, (2) comprehensive characterization of the binding site architecture that may consist of a multimeric protein assembly with cofactors and metal ions and (3) analysis of consensus interaction motifs within the ensembles and identification of conserved determinants of these interactions. Currently the database contains 585 proteins with 650 peptide-binding sites. http://peptisite.ucsd.edu/ link allows searching for the sites of interest and interactive visualization of the ensembles using the ActiveICM web-browser plugin. This structural database for protein-peptide interactions enables understanding of structural principles of these interactions and may assist the development of an efficient peptide docking benchmark. PMID:24406170

  12. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  13. STUDY OF ESTROGEN BINDING SITE ON HUMAN EJACULATED SPERMATOZOA

    Institute of Scientific and Technical Information of China (English)

    CHUJin-Shong; WANGYi-Fei

    1989-01-01

    The specific estrogen binding site for 17β-estradiol has been investigated on human spermatozoa by electron microscopec autoradiography. The results show that the binding sites were distributed over the surface of human spermatozoa: acrosomal cap, equatorial

  14. Site locality identification study: Hanford Site. Volume II. Data cataloging

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Data compilation and cataloging for the candidate site locality identification study were conducted in order to provide a retrievable data cataloging system for the present siting study and future site evaluation and licensng processes. This task occurred concurrently with and also independently of other tasks of the candidate site locality identification study. Work in this task provided the data utilized primarily in the development and application of screening and ranking processes to identify candidate site localities on the Hanford Site. The overall approach included two steps: (1) data acquisition and screening; and (2) data compilation and cataloging. Data acquisition and screening formed the basis for preliminary review of data sources with respect to their probable utilization in the candidate site locality identification study and review with respect to the level of completeness and detail of the data. The important working assumption was that the data to be used in the study be based on existing and available published and unpublished literature. The data compilation and cataloging provided the basic product of the Task; a retrievable data cataloging system in the form of an annotated reference list and key word index and an index of compiled data. The annotated reference list and key word index are cross referenced and can be used to trace and retrieve the data sources utilized in the candidate site locality identification study.

  15. Site locality identification study: Hanford Site. Volume II. Data cataloging

    International Nuclear Information System (INIS)

    Data compilation and cataloging for the candidate site locality identification study were conducted in order to provide a retrievable data cataloging system for the present siting study and future site evaluation and licensng processes. This task occurred concurrently with and also independently of other tasks of the candidate site locality identification study. Work in this task provided the data utilized primarily in the development and application of screening and ranking processes to identify candidate site localities on the Hanford Site. The overall approach included two steps: (1) data acquisition and screening; and (2) data compilation and cataloging. Data acquisition and screening formed the basis for preliminary review of data sources with respect to their probable utilization in the candidate site locality identification study and review with respect to the level of completeness and detail of the data. The important working assumption was that the data to be used in the study be based on existing and available published and unpublished literature. The data compilation and cataloging provided the basic product of the Task; a retrievable data cataloging system in the form of an annotated reference list and key word index and an index of compiled data. The annotated reference list and key word index are cross referenced and can be used to trace and retrieve the data sources utilized in the candidate site locality identification study

  16. Grafting of protein-protein binding sites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A strategy for grafting protein-protein binding sites is described. Firstly, key interaction residues at the interface of ligand protein to be grafted are identified and suitable positions in scaffold protein for grafting these key residues are sought. Secondly, the scaffold proteins are superposed onto the ligand protein based on the corresponding Ca and Cb atoms. The complementarity between the scaffold protein and the receptor protein is evaluated and only matches with high score are accepted. The relative position between scaffold and receptor proteins is adjusted so that the interface has a reasonable packing density. Then the scaffold protein is mutated to corresponding residues in ligand protein at each candidate position. And the residues having bad steric contacts with the receptor proteins, or buried charged residues not involved in the formation of any salt bridge are mutated. Finally, the mutated scaffold protein in complex with receptor protein is co-minimized by Charmm. In addition, we deduce a scoring function to evaluate the affinity between mutated scaffold protein and receptor protein by statistical analysis of rigid binding data sets.

  17. Impact of Binding Site Comparisons on Medicinal Chemistry and Rational Molecular Design.

    Science.gov (United States)

    Ehrt, Christiane; Brinkjost, Tobias; Koch, Oliver

    2016-05-12

    Modern rational drug design not only deals with the search for ligands binding to interesting and promising validated targets but also aims to identify the function and ligands of yet uncharacterized proteins having impact on different diseases. Additionally, it contributes to the design of inhibitors with distinct selectivity patterns and the prediction of possible off-target effects. The identification of similarities between binding sites of various proteins is a useful approach to cope with those challenges. The main scope of this perspective is to describe applications of different protein binding site comparison approaches to outline their applicability and impact on molecular design. The article deals with various substantial application domains and provides some outstanding examples to show how various binding site comparison methods can be applied to promote in silico drug design workflows. In addition, we will also briefly introduce the fundamental principles of different protein binding site comparison methods. PMID:27046190

  18. Characteristics of human erythrocyte insulin binding sites.

    OpenAIRE

    Okada, Yoshio

    1981-01-01

    Insulin and human erythrocyte cell membrane interactions were studied with respect to binding and dissociation. The per cent of specific binding of 125I-labeled insulin to erythrocytes was directly proportional to the cell concentration. The optimum pH for binding was 8.1. The initial binding rate was directly proportional to, and the steady state insulin binding was reversely proportional to, the incubation temperature. The per cent of specific binding of 125I-labeled insulin was 12.10 +/- 1...

  19. LASAGNA: A novel algorithm for transcription factor binding site alignment

    OpenAIRE

    Lee, Chih; Huang, Chun-Hsi

    2013-01-01

    Background Scientists routinely scan DNA sequences for transcription factor (TF) binding sites (TFBSs). Most of the available tools rely on position-specific scoring matrices (PSSMs) constructed from aligned binding sites. Because of the resolutions of assays used to obtain TFBSs, databases such as TRANSFAC, ORegAnno and PAZAR store unaligned variable-length DNA segments containing binding sites of a TF. These DNA segments need to be aligned to build a PSSM. While the TRANSFAC database provid...

  20. Whole-genome cartography of estrogen receptor alpha binding sites.

    Directory of Open Access Journals (Sweden)

    Chin-Yo Lin

    2007-06-01

    Full Text Available Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor alpha (ERalpha binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERalpha binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5' and 3' ends of adjacent transcript, suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs, 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERalpha binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERalpha-positive from ERalpha-negative breast tumors. The expression dynamics of the genes adjacent to ERalpha binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERalpha appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERalpha target genes. Unexpectedly, we found that only 22%-24% of the bona fide human ERalpha binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERalpha

  1. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  2. The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region.

    OpenAIRE

    Hirai, H; Kirsch, J.; Laube, B; Betz, H.; Kuhse, J

    1996-01-01

    The N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors is a heterooligomeric membrane protein composed of homologous subunits. Here, the contribution of the M3-M4 loop of the NR1 subunit to the binding of glutamate and the co-agonist glycine was investigated by site-directed mutagenesis. Substitution of the phenylalanine residues at positions 735 or 736 of the M3-M4 loop produced a 15- to 30-fold reduction in apparent glycine affinity without affecting the binding of glutam...

  3. Predicted metal binding sites for phytoremediation

    OpenAIRE

    Sharma, Ashok; Roy, Sudeep; Tripathi, Kumar Parijat; Roy, Pratibha; Mishra, Manoj; Khan, Feroz; Meena, Abha

    2009-01-01

    Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP's). Earlier work on MAP's have shown that heavy metals accumulated by aromatic and medicinal plants do no...

  4. Position specific variation in the rate of evolution intranscription factor binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Kellis, Manolis; Lander, EricS.; Eisen, Michael B.

    2003-08-28

    sequence data in the identification of transcription factor binding sites and is an important step toward understanding the evolution of functional non-coding DNA.

  5. Selection of functional tRNA primers and primer binding site sequences from a retroviral combinatorial library: identification of new functional tRNA primers in murine leukemia virus replication

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M; Pedersen, F S

    2000-01-01

    Retroviral reverse transcription is initiated from a cellular tRNA molecule and all known exogenous isolates of murine leukemia virus utilise a tRNA(Pro)molecule. While several studies suggest flexibility in murine leukemia virus primer utilisation, studies on human immunodeficiency virus and avian...... retro-viruses have revealed evidence of molecular adapt-ation towards the specific tRNA isoacceptor used as replication primer. In this study, murine leukemia virus tRNA utilisation is investigated by in vivo screening of a retroviral vector combinatorial library with randomised primer binding sites....... While most of the selected primer binding sites are complementary to the 3'-end of tRNA((Pro)), we also retrieved PBS sequences matching four other tRNA molecules and demonstrate that Akv murine leukemia virus vectors may efficiently replicate using tRNA(Arg(CCU)), tRNA(Phe(GAA))and a hitherto unknown...

  6. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  7. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E; Krogsdam, A M; Jorgensen, H F;

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...

  8. Temperature and pressure adaptation of the binding site of acetylcholinesterase.

    Science.gov (United States)

    Hochachka, P W

    1974-12-01

    1. Studies with a carbon substrate analogue, 3,3-dimethylbutyl acetate, indicate that the hydrophobic contribution to binding at the anionic site of acetylcholinesterase is strongly disrupted at low temperatures and high pressures. 2. Animals living in different physical environments circumvent this problem by adjusting the enthalpic and entropic contributions to binding. 3. An extreme example of this adaptational strategy is supplied by brain acetylcholinesterase extracted from an abyssal fish living at 2 degrees C and up to several hundred atmospheres of pressure. This acetylcholinesterase appears to have a smaller hydrophobic binding region in the anionic site, playing a measurably decreased role in ligand binding. PMID:4462739

  9. Determination of the binding sites for oxaliplatin on insulin using mass spectrometry-based approaches

    DEFF Research Database (Denmark)

    Møller, Charlotte; Sprenger, Richard R.; Stürup, Stefan; Højrup, Peter

    2011-01-01

    fragmentation of the intact insulin-oxaliplatin adduct using nano-electrospray ionisation quadrupole time-of-flight mass spectrometry (nESI-Q-ToF-MS), the major binding site was assigned to histidine5 on the insulin B chain. In order to simplify the interpretation of the mass spectrum, the disulphide bridges...... were reduced. This led to the additional identification of cysteine6 on the A chain as a binding site along with histidine5 on the B chain. Digestion of insulin-oxaliplatin with endoproteinase Glu-C (GluC) followed by reduction led to the formation of five peptides with Pt(dach) attached...

  10. Microbes bind complement inhibitor factor H via a common site.

    Science.gov (United States)

    Meri, T; Amdahl, H; Lehtinen, M J; Hyvärinen, S; McDowell, J V; Bhattacharjee, A; Meri, S; Marconi, R; Goldman, A; Jokiranta, T S

    2013-01-01

    To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in plasma and on host cells by plasma complement regulator factor H (FH). FH binds simultaneously to host cell surface structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19. Many pathogenic microbes protect themselves from complement by recruiting host FH. We analyzed how and why different microbes bind FH via domains 19-20 (FH19-20). We used a selection of FH19-20 point mutants to reveal the binding sites of several microbial proteins and whole microbes (Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumonia, Candida albicans, Borrelia burgdorferi, and Borrelia hermsii). We show that all studied microbes use the same binding region located on one side of domain 20. Binding of FH to the microbial proteins was inhibited with heparin showing that the common microbial binding site overlaps with the heparin site needed for efficient binding of FH to host cells. Surprisingly, the microbial proteins enhanced binding of FH19-20 to C3b and down-regulation of complement activation. We show that this is caused by formation of a tripartite complex between the microbial protein, FH, and C3b. In this study we reveal that seven microbes representing different phyla utilize a common binding site on the domain 20 of FH for complement evasion. Binding via this site not only mimics the glycosaminoglycans of the host cells, but also enhances function of FH on the microbial surfaces via the novel mechanism of tripartite complex formation. This is a unique example of convergent evolution resulting in enhanced immune evasion of important pathogens via utilization of a "superevasion site." PMID:23637600

  11. PeptiSite: a structural database of peptide binding sites in 4D

    OpenAIRE

    Acharya, Chayan; Kufareva, Irina; Ilatovskiy, Andrey V.; Abagyan, Ruben

    2014-01-01

    We developed PeptiSite, a comprehensive and reliable database of biologically and structurally characterized peptide-binding sites, in which each site is represented by an ensemble of its complexes with protein, peptide and small molecule partners. The unique features of the database include (1) the ensemble site representation that provides a fourth dimension to the otherwise three dimensional data, (2) comprehensive characterization of the binding site architecture that may consist of a mul...

  12. MicroRNA binding sites in C. elegans 3' UTRs.

    Science.gov (United States)

    Liu, Chaochun; Rennie, William A; Mallick, Bibekanand; Kanoria, Shaveta; Long, Dang; Wolenc, Adam; Carmack, C Steven; Ding, Ye

    2014-01-01

    MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Since the discovery of lin-4, the founding member of the miRNA family, over 360 miRNAs have been identified for Caenorhabditis elegans (C. elegans). Prediction and validation of targets are essential for elucidation of regulatory functions of these miRNAs. For C. elegans, crosslinking immunoprecipitation (CLIP) has been successfully performed for the identification of target mRNA sequences bound by Argonaute protein ALG-1. In addition, reliable annotation of the 3' untranslated regions (3' UTRs) as well as developmental stage-specific expression profiles for both miRNAs and 3' UTR isoforms are available. By utilizing these data, we developed statistical models and bioinformatics tools for both transcriptome-scale and developmental stage-specific predictions of miRNA binding sites in C. elegans 3' UTRs. In performance evaluation via cross validation on the ALG-1 CLIP data, the models were found to offer major improvements over established algorithms for predicting both seed sites and seedless sites. In particular, our top-ranked predictions have a substantially higher true positive rate, suggesting a much higher likelihood of positive experimental validation. A gene ontology analysis of stage-specific predictions suggests that miRNAs are involved in dynamic regulation of biological functions during C. elegans development. In particular, miRNAs preferentially target genes related to development, cell cycle, trafficking, and cell signaling processes. A database for both transcriptome-scale and stage-specific predictions and software for implementing the prediction models are available through the Sfold web server at http://sfold.wadsworth.org. PMID:24827614

  13. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.

    Directory of Open Access Journals (Sweden)

    V Joachim Haupt

    Full Text Available Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology - a drug's ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand

  14. Reliable prediction of transcription factor binding sites by phylogenetic verification

    OpenAIRE

    Li, Xiaoman; Zhong, Sheng; Wong, Wing H.

    2005-01-01

    We present a statistical methodology that largely improves the accuracy in computational predictions of transcription factor (TF) binding sites in eukaryote genomes. This method models the cross-species conservation of binding sites without relying on accurate sequence alignment. It can be coupled with any motif-finding algorithm that searches for overrepresented sequence motifs in individual species and can increase the accuracy of the coupled motif-finding algorithm. Because this method is ...

  15. Identification of albumin-binding proteins in capillary endothelial cells

    OpenAIRE

    1988-01-01

    Isolated fat tissue microvessels and lung, whose capillary endothelia express in situ specific binding sites for albumin, were homogenized and subjected to SDS-gel electrophoresis and electroblotting. The nitrocellulose strips were incubated with either albumin-gold (Alb-Au) and directly visualized, or with [125I]albumin (monomeric or polymeric) and autoradiographed. The extracts of both microvascular endothelium and the lung express albumin-binding proteins (ABPs) represented by two pairs of...

  16. PREDICTION OF ANTIGENIC AND BINDING SITES OF NEUROTOXIN 23 OF SCORPION (LYCHASMUCRONACTUS SP.

    Directory of Open Access Journals (Sweden)

    Bharati K Thosare

    2015-07-01

    Full Text Available Identification of antigenic and binding site of protein is highly desirable for the design of vaccines and immunodiagnostics. The present exercise deals with a prediction of antigenic as well as binding sites of neurotoxin 23 of Lychasmucronactus. This species of scorpion having diverse molecules of toxic peptide, the peptide neurotoxin 23 is 96 amino acids long of which 23 to 96 specifically code for neurotoxin. The total of 27 such different ligand binding residue were identified by ConSurf and Raptor X server. The web tool Ellipro which implements Modeller and Jmol viewer, predicted and visualized the linear and discontinuous antibody epitopes ofneurotoxin 23 protein sequence.Thus the information discussed here provides a clue for understanding antigenic site and molecular function of neurotoxin 23.

  17. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  18. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  19. Chloride binding site of neurotransmitter sodium symporters

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova; Quick, Matthias; Shi, Lei;

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs...

  20. Calculation of binding constants and concentration of binding sites in a reaction of a ligand with a heterogeneous system of binding sites

    International Nuclear Information System (INIS)

    A method is presented for the calculation of association constants and the concentration of binding sites in a reaction of a ligand with a heterogeneous system of binding sites. The Scatchard plot for such a system is curvelinear and the method employs previously established relationships between the parameters of the limiting slopes to such a curve and the above mentioned association constants and concentrations of binding sites. The special case of a system with two different and non-interacting groups of binding sites was solved. The expressions thus obtained were used to characterize the reaction of a polypeptide neurotoxin with its specific binding sites in a membranal preparation from insect central nervous system. Moreover it is evident from these expressions that the widely accepted method to analyze such system, by an intuitive generalization of the method applicable to homogeneous systems, is erroneous and should be avoided. (author)

  1. Opioid binding site in EL-4 thymoma cell line

    International Nuclear Information System (INIS)

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of [3H] bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/106 cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of [3H] bremazocine with an IC50 value = 0.57μM. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, [D-Pen2, D-Pen5] enkephalin and β-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC50 = 60μM, that was similar to naloxone. 32 references, 3 figures, 2 tables

  2. Human chorionic ganodotropin binding sites in the human endometrium

    International Nuclear Information System (INIS)

    The existence of high-affinity and low-capacity specific binding sites for luteinizing hormone/human chorionic gonadotropin (hCG) has been reported in porcine, rabbit and rat uteri. The authors have identified the hCG binding sites in the human endometrium collected from 35-42-year-old ovulatory and anovulatory women. The binding characteristics of hCG to endometrial tissue preparations from ovulatory and anovulatory women showed saturability with high affinity and low capacity. Scatchard plot analysis showed the dissociation constant of specific binding sites in the ovulatory women to be 3.5x10-10 mol/l and in anovulatory women to be 3.1x10-10 mol/l. The maximum binding capacity varied considerably between ovulatory and anovulatory endometrium. Among the divalent metal ions tested Zn2+ effected a remarkable increase in [125I]hCG binding to the endometrium, whereas Mn2+ showed a marginal increase and other metal ions did not have any effect. Data obtained with human endometrium indicate an influence of the functional state of the ovary on [125I]hCG binding to endometrium. 14 refs., 3 figs

  3. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  4. 3H-spiroperidol binding sites in blood platelets

    International Nuclear Information System (INIS)

    3H-spiroperidol, an antagonist of dopamine receptors in brain (striatum), was found to bind to human and rat platelet membrane preparations. The binding was rapid, reversible, saturable and specific. Unlabelled haloperidol displaced the specifically bound 3H-spiroperidol. Binding equilibrium was attained in 15 min at pH 7.4 and 37 degrees C. Scatchard analysis of 3H-spiroperidol binding revealed a single population of binding site with Kd of 7.6 nM in rat platelet membrane and Kd of 15 nM in human platelet membrane. Unlabelled 5-hydroxytryptamine produced no significant effect on 3H-spiroperidol binding to rat or human blood platelet membranes in the presence or absence of haloperidol. Some dopaminergic agents, known to inhibit spiroperidol binding in corpus striatum, also inhibited the same in rat and human blood platelet membranes under in vitro conditions. This study suggests the presence of specific 3H-spiroperidol binding sites in blood platelets

  5. A structural-based strategy for recognition of transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Beisi Xu

    Full Text Available Scanning through genomes for potential transcription factor binding sites (TFBSs is becoming increasingly important in this post-genomic era. The position weight matrix (PWM is the standard representation of TFBSs utilized when scanning through sequences for potential binding sites. However, many transcription factor (TF motifs are short and highly degenerate, and methods utilizing PWMs to scan for sites are plagued by false positives. Furthermore, many important TFs do not have well-characterized PWMs, making identification of potential binding sites even more difficult. One approach to the identification of sites for these TFs has been to use the 3D structure of the TF to predict the DNA structure around the TF and then to generate a PWM from the predicted 3D complex structure. However, this approach is dependent on the similarity of the predicted structure to the native structure. We introduce here a novel approach to identify TFBSs utilizing structure information that can be applied to TFs without characterized PWMs, as long as a 3D complex structure (TF/DNA exists. This approach utilizes an energy function that is uniquely trained on each structure. Our approach leads to increased prediction accuracy and robustness compared with those using a more general energy function. The software is freely available upon request.

  6. Relating the shape of protein binding sites to binding affinity profiles: is there an association?

    Directory of Open Access Journals (Sweden)

    Bitter István

    2010-10-01

    Full Text Available Abstract Background Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values and the geometry of protein binding sites. Molecular Affinity Fingerprints (MAFs were determined for 154 proteins based on their molecular docking energy results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were examined by principal component analysis; association between principal components extracted from these two sets of variables was then investigated by canonical correlation and redundancy analyses. Results PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained 94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors. Conclusions This is the first study to investigate complex multivariate associations between affinity profiles and the geometric properties of protein binding sites. We found that

  7. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP).

    Science.gov (United States)

    Van Nostrand, Eric L; Pratt, Gabriel A; Shishkin, Alexander A; Gelboin-Burkhart, Chelsea; Fang, Mark Y; Sundararaman, Balaji; Blue, Steven M; Nguyen, Thai B; Surka, Christine; Elkins, Keri; Stanton, Rebecca; Rigo, Frank; Guttman, Mitchell; Yeo, Gene W

    2016-06-01

    As RNA-binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNA molecules, binding site identification by UV crosslinking and immunoprecipitation (CLIP) of ribonucleoprotein complexes is critical to understanding RBP function. However, current CLIP protocols are technically demanding and yield low-complexity libraries with high experimental failure rates. We have developed an enhanced CLIP (eCLIP) protocol that decreases requisite amplification by ∼1,000-fold, decreasing discarded PCR duplicate reads by ∼60% while maintaining single-nucleotide binding resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP improves specificity in the discovery of authentic binding sites. We generated 102 eCLIP experiments for 73 diverse RBPs in HepG2 and K562 cells (available at https://www.encodeproject.org), demonstrating that eCLIP enables large-scale and robust profiling, with amplification and sample requirements similar to those of ChIP-seq. eCLIP enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP and RNA-centric perspectives on RBP activity. PMID:27018577

  8. Penicillin-binding site on the Escherichia coli cell envelope

    International Nuclear Information System (INIS)

    The binding of 35S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin

  9. Insulin binding sites in various segments of the rabbit nephron

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, R.; Emmanouel, D.S.; Katz, A.I.

    1983-07-01

    Insulin binds specifically to basolateral renal cortical membranes and modifies tubular electrolyte transport, but the target sites of this hormone in the nephron have not been identified. Using a microassay that permits measurement of hormone binding in discrete tubule segments we have determined the binding sites of /sup 125/I-insulin along the rabbit nephron. Assays were performed under conditions that minimize insulin degradation, and specific binding was measured as the difference between /sup 125/I-insulin bound in the presence or absence of excess (10(-5) M) unlabeled hormone. Insulin monoiodinated in position A14 was used in all assays. Specific insulin binding (attomol . cm-1 +/- SE) was highest in the distal convoluted tubule (180.5 +/- 15.0) and medullary thick ascending limb of Henle's loop (132.9 +/- 14.6), followed by the proximal convoluted and straight tubule. When expressed per milligram protein, insulin binding capacity was highest along the entire thick ascending limb (medullary and cortical portions) and the distal convoluted tubule, i.e., the ''diluting segment'' (congruent to 10(-13) mol . mg protein-1), and was lower (congruent to 4 X 10(-14) mol . mg protein-1), and remarkably similar, in all other nephron segments. Binding specificity was verified in competition studies with unlabeled insulin, insulin analogues (proinsulin and desoctapeptide insulin), and unrelated hormones (glucagon, 1-34 parathyroid hormone, prolactin, follicle-stimulating hormone). In addition, serum containing antiinsulin receptor antibody from two patients with type B insulin resistance syndrome markedly inhibited insulin binding to isolated tubules. Whether calculated per unit tubule length or protein content, insulin binding is highest in the thick ascending limb and the distal convoluted tubule, the same nephron sites where a regulatory role in sodium transport has been postulated for this hormone.

  10. Insulin binding sites in various segments of the rabbit nephron

    International Nuclear Information System (INIS)

    Insulin binds specifically to basolateral renal cortical membranes and modifies tubular electrolyte transport, but the target sites of this hormone in the nephron have not been identified. Using a microassay that permits measurement of hormone binding in discrete tubule segments we have determined the binding sites of 125I-insulin along the rabbit nephron. Assays were performed under conditions that minimize insulin degradation, and specific binding was measured as the difference between 125I-insulin bound in the presence or absence of excess (10(-5) M) unlabeled hormone. Insulin monoiodinated in position A14 was used in all assays. Specific insulin binding (attomol . cm-1 +/- SE) was highest in the distal convoluted tubule (180.5 +/- 15.0) and medullary thick ascending limb of Henle's loop (132.9 +/- 14.6), followed by the proximal convoluted and straight tubule. When expressed per milligram protein, insulin binding capacity was highest along the entire thick ascending limb (medullary and cortical portions) and the distal convoluted tubule, i.e., the ''diluting segment'' (congruent to 10(-13) mol . mg protein-1), and was lower (congruent to 4 X 10(-14) mol . mg protein-1), and remarkably similar, in all other nephron segments. Binding specificity was verified in competition studies with unlabeled insulin, insulin analogues (proinsulin and desoctapeptide insulin), and unrelated hormones (glucagon, 1-34 parathyroid hormone, prolactin, follicle-stimulating hormone). In addition, serum containing antiinsulin receptor antibody from two patients with type B insulin resistance syndrome markedly inhibited insulin binding to isolated tubules. Whether calculated per unit tubule length or protein content, insulin binding is highest in the thick ascending limb and the distal convoluted tubule, the same nephron sites where a regulatory role in sodium transport has been postulated for this hormone

  11. Binding-site assessment by virtual fragment screening.

    Directory of Open Access Journals (Sweden)

    Niu Huang

    Full Text Available The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock approximately 11,000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors.

  12. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites

    DEFF Research Database (Denmark)

    Dupont, Daniel Miotto; Thuesen, Cathrine K; Bøtkjær, Kenneth A;

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless......, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with...... therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to...

  13. Analysis of Surface Binding Sites (SBS) within GH62, GH13, and GH77

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cockburn, Darrell; Andersen, Susan;

    2015-01-01

    Certain interactions between carbohydrate active enzymes and polysaccharides involve surface binding sites (SBS) situated on catalytic domains outside of the active site. We recently undertook to develop a toolbox for SBS identification and characterization. In affinity gel electrophoresis (AGE......) SBS containing proteins are migrating slower in native polyacrylamide electrophoresis gels cast with polysaccharide versus without polysaccharide. Amylolytic enzymes from GH13 and GH77 and xylanases from GH10 and GH11 are the best studied GH families with respect to SBS, presenting about half of the...

  14. Agonist binding to high-affinity dopamine sites

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, J.L.

    1985-01-01

    The authors have characterized the dopamine D/sub 3/ site and its binding requirements. The dopamine D/sub 3/ site in calf caudate crude homogenate has a site density of 214-230 fmoles/mg. protein by both /sup 3/H-apomorphine (/sup 3/H-AOP) and /sup 3/H-dopamine (/sup 3/H-DA) Scatchard analysis of specific binding (SB). Stereospecific subsets of /sup 3/H-APO and /sup 3/H-DA sites were defined by the use of agonist and antagonist enantiomer-pairs as a rigorous test for D/sub 3/ site heterogeneity. IC/sub 50/ values for both /sup 3/H-APO and /sup 3/H-DA SB sites were assessed for 55 agonist ligands and an excellent correlation was obtained. The authors conclude that both /sup 3/H-ligands label the same D/sub 3/ site. The D/sub 3/ site affinities of 105 dopamine-agonist ligands, in particular 2-aminotetralins,, aporphines and flexible dopamine analogues were measured. Low D/sub 3/-site affinities of N-quaternary analogues confirm the need for a lone pair. Subadditivity of substituents' effects in semi-flexible DA analogues confirms their postulate that sidechain conformation is the critical determinant of affinity. They conclude that there are at least two high-affinity ligand conformations of the DA sidechain pharmacophore. These binding requirements are presented as two interface-Geometry tetrahedral models of the double H-bond interface between the D/sub 3/ site and the ideal ligand.

  15. The propagation of binding interactions to remote sites in proteins: analysis of the binding of the monoclonal antibody D1.3 to lysozyme.

    Science.gov (United States)

    Freire, E

    1999-08-31

    The interaction of a ligand with a protein occurs at a local site (the binding site) and involves only a few residues; however, the effects of that interaction are often propagated to remote locations. The chain of events initiated by binding provides the basis for fundamental biological phenomena such as allosterism, signal transduction, and structural-stability modification. In this paper, a structure-based statistical thermodynamic approach is presented and used to predict the propagation of the stabilization effects triggered by the binding of the monoclonal antibody D1.3 to hen egg white lysozyme. Previously, Williams et al. [Williams, D. C., Benjamin, D. C., Poljak, R. J. & Rule, G. S. (1996) J. Mol. Biol. 257, 866-876] showed that the binding of this antibody affects the stability of hen egg white lysozyme and that the binding effects propagate to a selected number of residues at remote locations from the binding epitope. In this paper, we show that this phenomenon can be predicted from structure. The formalism presented here permits the identification of the structural path followed by cooperative interactions that originate at the binding site. It is shown that an important condition for the propagation of binding effects to distal regions is the presence of a significant fraction of residues with low structural stability in the uncomplexed binding site. A survey of protein structures indicates that many binding sites have a dual character and are defined by regions of high and low structural stabilities. The low-stability regions might be involved in the transmission of binding information to other regions in the protein. PMID:10468572

  16. Thymocyte plasma membrane: the location of specific glucocorticoid binding sites

    International Nuclear Information System (INIS)

    In modern molecular endocrinology it is now possible to determine the localization of receptors for biologically active substances with the aid of ligands, with high affinity for the receptor, immobilized on polymers. The purpose of this paper is to study the ability of hydrocortisone (HC), immobilized on polyvinylpyrrolidone (PVP-HC), to reduce binding of tritium-HC by thymocytes of adrenalectomized rats. It is determined that specific binding sites for HC on rat thymocytes are also accessible for PVP-HC, which, due to the fact that this immobilized version of HC does not penetrate into the cell, leads to the conclusion that the binding sites for HC itself are located in the plasma membrane

  17. Autologous peptides constitutively occupy the antigen binding site on Ia

    DEFF Research Database (Denmark)

    Buus, S; Sette, A; Colon, S M;

    1988-01-01

    Low molecular weight material associated with affinity-purified class II major histocompatibility complex (MHC) molecules of mouse (Ia) had the expected properties of peptides bound to the antigen binding site of Ia. Thus, the low molecular weight material derived from the I-Ad isotype was...

  18. Structures of quinone binding sites in bc complexes: Functional implications

    International Nuclear Information System (INIS)

    Near-atomic resolution structures are becoming available for the respiratory chain enzyme known as ubiquinol:cytochrome c oxidoreductase or the cytochrome bc1 complex. Here we examine our current structure for the chicken bc1 complex to see what it can tell us about the mode of binding and mechanism of reaction of quinone at the two active sites

  19. Reliable prediction of transcription factor binding sites by phylogenetic verification.

    Science.gov (United States)

    Li, Xiaoman; Zhong, Sheng; Wong, Wing H

    2005-11-22

    We present a statistical methodology that largely improves the accuracy in computational predictions of transcription factor (TF) binding sites in eukaryote genomes. This method models the cross-species conservation of binding sites without relying on accurate sequence alignment. It can be coupled with any motif-finding algorithm that searches for overrepresented sequence motifs in individual species and can increase the accuracy of the coupled motif-finding algorithm. Because this method is capable of accurately detecting TF binding sites, it also enhances our ability to predict the cis-regulatory modules. We applied this method on the published chromatin immunoprecipitation (ChIP)-chip data in Saccharomyces cerevisiae and found that its sensitivity and specificity are 9% and 14% higher than those of two recent methods. We also recovered almost all of the previously verified TF binding sites and made predictions on the cis-regulatory elements that govern the tight regulation of ribosomal protein genes in 13 eukaryote species (2 plants, 4 yeasts, 2 worms, 2 insects, and 3 mammals). These results give insights to the transcriptional regulation in eukaryotic organisms. PMID:16286651

  20. Promoter-distal RNA polymerase II binding discriminates active from inactive CCAAT/ enhancer-binding protein beta binding sites

    Science.gov (United States)

    Savic, Daniel; Roberts, Brian S.; Carleton, Julia B.; Partridge, E. Christopher; White, Michael A.; Cohen, Barak A.; Cooper, Gregory M.; Gertz, Jason; Myers, Richard M.

    2015-01-01

    Transcription factors (TFs) bind to thousands of DNA sequences in mammalian genomes, but most of these binding events appear to have no direct effect on gene expression. It is unclear why only a subset of TF bound sites are actively involved in transcriptional regulation. Moreover, the key genomic features that accurately discriminate between active and inactive TF binding events remain ambiguous. Recent studies have identified promoter-distal RNA polymerase II (RNAP2) binding at enhancer elements, suggesting that these interactions may serve as a marker for active regulatory sequences. Despite these correlative analyses, a thorough functional validation of these genomic co-occupancies is still lacking. To characterize the gene regulatory activity of DNA sequences underlying promoter-distal TF binding events that co-occur with RNAP2 and TF sites devoid of RNAP2 occupancy using a functional reporter assay, we performed cis-regulatory element sequencing (CRE-seq). We tested more than 1000 promoter-distal CCAAT/enhancer-binding protein beta (CEBPB)-bound sites in HepG2 and K562 cells, and found that CEBPB-bound sites co-occurring with RNAP2 were more likely to exhibit enhancer activity. CEBPB-bound sites further maintained substantial cell-type specificity, indicating that local DNA sequence can accurately convey cell-type–specific regulatory information. By comparing our CRE-seq results to a comprehensive set of genome annotations, we identified a variety of genomic features that are strong predictors of regulatory element activity and cell-type–specific activity. Collectively, our functional assay results indicate that RNAP2 occupancy can be used as a key genomic marker that can distinguish active from inactive TF bound sites. PMID:26486725

  1. Structural Fingerprints of Transcription Factor Binding Site Regions

    Directory of Open Access Journals (Sweden)

    Peter Willett

    2009-03-01

    Full Text Available Fourier transforms are a powerful tool in the prediction of DNA sequence properties, such as the presence/absence of codons. We have previously compiled a database of the structural properties of all 32,896 unique DNA octamers. In this work we apply Fourier techniques to the analysis of the structural properties of human chromosomes 21 and 22 and also to three sets of transcription factor binding sites within these chromosomes. We find that, for a given structural property, the structural property power spectra of chromosomes 21 and 22 are strikingly similar. We find common peaks in their power spectra for both Sp1 and p53 transcription factor binding sites. We use the power spectra as a structural fingerprint and perform similarity searching in order to find transcription factor binding site regions. This approach provides a new strategy for searching the genome data for information. Although it is difficult to understand the relationship between specific functional properties and the set of structural parameters in our database, our structural fingerprints nevertheless provide a useful tool for searching for function information in sequence data. The power spectrum fingerprints provide a simple, fast method for comparing a set of functional sequences, in this case transcription factor binding site regions, with the sequences of whole chromosomes. On its own, the power spectrum fingerprint does not find all transcription factor binding sites in a chromosome, but the results presented here show that in combination with other approaches, this technique will improve the chances of identifying functional sequences hidden in genomic data.

  2. SuperSite: dictionary of metabolite and drug binding sites in proteins

    OpenAIRE

    Bauer, Raphael André; Günther, Stefan; Jansen, Dominic; Heeger, Carolin; Thaben, Paul Florian; Preissner, Robert

    2008-01-01

    The increasing structural information about target-bound compounds provide a rich basis to study the binding mechanisms of metabolites and drugs. SuperSite is a database, which combines the structural information with various tools for the analysis of molecular recognition. The main data is made up of 8000 metabolites including 1300 drugs, bound to about 290 000 different receptor binding sites. The analysis tools include features, like the highlighting of evolutionary conserved receptor resi...

  3. Architecture of the sugar binding sites in carbohydrate binding proteins--a computer modeling study.

    Science.gov (United States)

    Rao, V S; Lam, K; Qasba, P K

    1998-11-01

    Different sugars, Gal, GalNAc and Man were docked at the monosaccharide binding sites of Erythrina corallodenron (EcorL), peanut lectin (PNA), Lathyrus ochrus (LOLI), and pea lectin (PSL). To study the lectin-carbohydrate interactions, in the complexes, the hydroxymethyl group in Man and Gal favors, gg and gt conformations respectively, and is the dominant recognition determination. The monosaccharide binding site in lectins that are specific to Gal/GalNAc is wider due to the additional amino acid residues in loop D as compared to that in lectins specific to Man/Glc, and affects the hydrogen bonds of the sugar involving residues from loop D, but not its orientation in the binding site. The invariant amino acid residues Asp from loop A, and Asn and an aromatic residue (Phe or Tyr) in loop C provides the basic architecture to recognize the common features in C4 epimers. The invariant Gly in loop B together with one or two residues in the variable region of loop D/A holds the sugar tightly at both ends. Loss of any one of these hydrogen bonds leads to weak interaction. While the subtle variations in the sequence and conformation of peptide fragment that resulted due to the size and location of gaps present in amino acid sequence in the neighborhood of the sugar binding site of loop D/A seems to discriminate the binding of sugars which differ at C4 atom (galacto and gluco configurations). The variations at loop B are important in discriminating Gal and GalNAc binding. The present study thus provides a structural basis for the observed specificities of legume lectins which uses the same four invariant residues for binding. These studies also bring out the information that is important for the design/engineering of proteins with the desired carbohydrate specificity. PMID:9849627

  4. Shared Binding Sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A Toxins

    OpenAIRE

    Herrero, Salvador; González-Cabrera, Joel; Tabashnik, Bruce E; Ferré, Juan

    2001-01-01

    Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At lea...

  5. Binding site of MraZ transcription factor in Mollicutes.

    Science.gov (United States)

    Fisunov, G Y; Evsyutina, D V; Semashko, T A; Arzamasov, A A; Manuvera, V A; Letarov, A V; Govorun, V M

    2016-06-01

    Mollicutes (mycoplasmas) feature a significant loss of known regulators of gene expression. Here, we identified the recognition site of the MraZ-family regulator of Mycoplasma gallisepticum, which is conserved in many species of different clades within class Mollicutes. The MraZ binding site is AAAGTG[T/G], in the promoter of mraZ gene it forms a series of direct repeats with a structure (AAAGTG[T/G]N3)k, where k = 3 most frequently. MraZ binds to a single repeat as an octamer complex. MraZ can also bind a single binding site or a series of repeats with different spacer lengths (2-4 nt); thus, it may play a role in the regulation of multiple operons in Mollicutes. In M. gallisepticum, MraZ acts as a transcriptional activator. The overexpression of MraZ leads to moderate filamentation of cells and the formation of aggregates, likely as a result of incomplete cytokinesis. PMID:26945841

  6. 14C-glucose binding assay of the glucose transporter binding sites in muscular cell membrane

    International Nuclear Information System (INIS)

    A method of determining the binding sites of glucose transporter in rat muscular cell membrane was introduced. The crude products of cell membrane form the skeletal muscle of control and insulin treated rats were prepared, and then fractionated in sucrose gradient. Both plasma membrane and microsome membrane were incubated with D-[U-14C] glucose respectively for the measurement of radioactivity and Scatchard plot analysis. It was found that the binding sites of glucose transporter in plasma membrane and intracellular membrane were 5.6 nmol 14C-glucose/mg protein and 8.7 nmol 14C-glucose-mg protein respectively at basic state. Insulin treatment in experimental groups caused approximately 146% increase in plasma membrane fraction and 88% decrease in intracellular membrane fraction. Moreover, the kinetic data of Scatchard plot curve were similar to those of the [3H]-cytochalasin B binding assay. D-[U-14C] glucose binding assay of glucose transporter binding sites in muscular cell membrane is simple, easy and practicable. The D-[U-14C] glucose is commercially available

  7. Opioid binding site in EL-4 thymoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of (/sup 3/H) bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10/sup 6/ cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of (/sup 3/H) bremazocine with an IC/sub 50/ value = 0.57..mu..M. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, (D-Pen/sup 2/, D-Pen/sup 5/) enkephalin and ..beta..-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC/sub 50/ = 60..mu..M, that was similar to naloxone. 32 references, 3 figures, 2 tables.

  8. HDAC Inhibitors without an Active Site Zn2+-Binding Group

    DEFF Research Database (Denmark)

    Vickers, Chris J.; Olsen, Christian Adam; Leman, Luke J.;

    2012-01-01

    Natural and synthetic histone deacetylase (HDAC) inhibitors generally derive their strong binding affinity and high potency from a key functional group that binds to the Zn2+ ion within the enzyme active site. However, this feature is also thought to carry the potential liability of undesirable off......-target interactions with other metalloenzymes. As a step toward mitigating this issue, here, we describe the design, synthesis, and structure−activity characterizations of cyclic α3β-tetrapeptide HDAC inhibitors that lack the presumed indispensable Zn2+-binding group. The lead compounds (e.g., 15 and 26) display good...... potency against class 1 HDACs and are active in tissue culture against various human cancer cell lines. Importantly, enzymological analysis of 26 indicates that the cyclic α3β-tetrapeptide is a fast-on/ off competitive inhibitor of HDACs 1−3 with Ki values of 49, 33, and 37 nM, respectively. Our proof...

  9. Intravital imaging of Bacillus thuringiensis Cry1A toxin binding sites in the midgut of silkworm.

    Science.gov (United States)

    Li, Na; Wang, Jing; Han, Heyou; Huang, Liang; Shao, Feng; Li, Xuepu

    2014-02-15

    Identification of the resistance mechanism of insects against Bacillus thuringiensis Cry1A toxin is becoming an increasingly challenging task. This fact highlights the need for establishing new methods to further explore the molecular interactions of Cry1A toxin with insects and the receptor-binding region of Cry1A toxins for their wider application as biopesticides and a gene source for gene-modified crops. In this contribution, a quantum dot-based near-infrared fluorescence imaging method has been applied for direct dynamic tracking of the specific binding of Cry1A toxins, CrylAa and CrylAc, to the midgut tissue of silkworm. The in vitro fluorescence imaging displayed the higher binding specificity of CrylAa-QD probes compared to CrylAc-QD to the brush border membrane vesicles of midgut from silkworm. The in vivo imaging demonstrated that more CrylAa-QDs binding to silkworm midgut could be effectively and distinctly monitored in living silkworms. Furthermore, frozen section analysis clearly indicated the broader receptor-binding region of Cry1Aa compared to that of Cry1Ac in the midgut part. These observations suggest that the insecticidal activity of Cry toxins may depend on the receptor-binding sites, and this scatheless and visual near-infrared fluorescence imaging could provide a new avenue to study the resistance mechanism to maintain the insecticidal activity of B. thuringiensis toxins. PMID:24252542

  10. A systems biology approach to transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    Full Text Available BACKGROUND: The elucidation of mammalian transcriptional regulatory networks holds great promise for both basic and translational research and remains one the greatest challenges to systems biology. Recent reverse engineering methods deduce regulatory interactions from large-scale mRNA expression profiles and cross-species conserved regulatory regions in DNA. Technical challenges faced by these methods include distinguishing between direct and indirect interactions, associating transcription regulators with predicted transcription factor binding sites (TFBSs, identifying non-linearly conserved binding sites across species, and providing realistic accuracy estimates. METHODOLOGY/PRINCIPAL FINDINGS: We address these challenges by closely integrating proven methods for regulatory network reverse engineering from mRNA expression data, linearly and non-linearly conserved regulatory region discovery, and TFBS evaluation and discovery. Using an extensive test set of high-likelihood interactions, which we collected in order to provide realistic prediction-accuracy estimates, we show that a careful integration of these methods leads to significant improvements in prediction accuracy. To verify our methods, we biochemically validated TFBS predictions made for both transcription factors (TFs and co-factors; we validated binding site predictions made using a known E2F1 DNA-binding motif on E2F1 predicted promoter targets, known E2F1 and JUND motifs on JUND predicted promoter targets, and a de novo discovered motif for BCL6 on BCL6 predicted promoter targets. Finally, to demonstrate accuracy of prediction using an external dataset, we showed that sites matching predicted motifs for ZNF263 are significantly enriched in recent ZNF263 ChIP-seq data. CONCLUSIONS/SIGNIFICANCE: Using an integrative framework, we were able to address technical challenges faced by state of the art network reverse engineering methods, leading to significant improvement in direct

  11. The next generation of transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Anthony Mathelier

    Full Text Available Finding where transcription factors (TFs bind to the DNA is of key importance to decipher gene regulation at a transcriptional level. Classically, computational prediction of TF binding sites (TFBSs is based on basic position weight matrices (PWMs which quantitatively score binding motifs based on the observed nucleotide patterns in a set of TFBSs for the corresponding TF. Such models make the strong assumption that each nucleotide participates independently in the corresponding DNA-protein interaction and do not account for flexible length motifs. We introduce transcription factor flexible models (TFFMs to represent TF binding properties. Based on hidden Markov models, TFFMs are flexible, and can model both position interdependence within TFBSs and variable length motifs within a single dedicated framework. The availability of thousands of experimentally validated DNA-TF interaction sequences from ChIP-seq allows for the generation of models that perform as well as PWMs for stereotypical TFs and can improve performance for TFs with flexible binding characteristics. We present a new graphical representation of the motifs that convey properties of position interdependence. TFFMs have been assessed on ChIP-seq data sets coming from the ENCODE project, revealing that they can perform better than both PWMs and the dinucleotide weight matrix extension in discriminating ChIP-seq from background sequences. Under the assumption that ChIP-seq signal values are correlated with the affinity of the TF-DNA binding, we find that TFFM scores correlate with ChIP-seq peak signals. Moreover, using available TF-DNA affinity measurements for the Max TF, we demonstrate that TFFMs constructed from ChIP-seq data correlate with published experimentally measured DNA-binding affinities. Finally, TFFMs allow for the straightforward computation of an integrated TF occupancy score across a sequence. These results demonstrate the capacity of TFFMs to accurately model DNA

  12. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  13. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  14. Binding characterization, synthesis and biological evaluation of RXRα antagonists targeting the coactivator binding site.

    Science.gov (United States)

    Xu, Dingyu; Guo, Shangjie; Chen, Ziwen; Bao, Yuzhou; Huang, Fengyu; Xu, Dan; Zhang, Xindao; Zeng, Zhiping; Zhou, Hu; Zhang, Xiaokun; Su, Ying

    2016-08-15

    Previously we identified the first retinoid X receptor-alpha (RXRα) modulators that regulate the RXRα biological function via binding to the coregulator-binding site. Here we report the characterization of the interactions between the hit molecule and RXRα through computational modeling, mutagenesis, SAR and biological evaluation. In addition, we reported studies of additional new compounds and identified a molecule that mediated the NF-κB pathway by inhibiting the TNFα-induced IκBα degradation and p65 nuclear translocation. PMID:27450787

  15. Coenzyme A Binding to the Aminoglycoside Acetyltransferase (3)-IIIb Increases Conformational Sampling of Antibiotic Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaohu [ORNL; Norris, Adrianne [University of Tennessee, Knoxville (UTK); Baudry, Jerome Y [ORNL; Serpersu, Engin H [University of Tennessee, Knoxville (UTK)

    2011-01-01

    NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The {sup 15}N-{sup 1}H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.

  16. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    International Nuclear Information System (INIS)

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial [3H]diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli [3H]diazepam binding are those that are active in displacing [3H]benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed

  17. Flavopiridol inhibits glycogen phosphorylase by binding at the inhibitor site.

    Science.gov (United States)

    Oikonomakos, N G; Schnier, J B; Zographos, S E; Skamnaki, V T; Tsitsanou, K E; Johnson, L N

    2000-11-01

    Flavopiridol (L86-8275) ((-)-cis-5, 7-dihydroxy-2-(2-chlorophenyl)-8-[4-(3-hydroxy-1-methyl)-piperidinyl] -4H-benzopyran-4-one), a potential antitumor drug, currently in phase II trials, has been shown to be an inhibitor of muscle glycogen phosphorylase (GP) and to cause glycogen accumulation in A549 non-small cell lung carcinoma cells (Kaiser, A., Nishi, K., Gorin, F.A., Walsh, D.A., Bradbury, E. M., and Schnier, J. B., unpublished data). Kinetic experiments reported here show that flavopiridol inhibits GPb with an IC(50) = 15.5 microm. The inhibition is synergistic with glucose resulting in a reduction of IC(50) for flavopiridol to 2.3 microm and mimics the inhibition of caffeine. In order to elucidate the structural basis of inhibition, we determined the structures of GPb complexed with flavopiridol, GPb complexed with caffeine, and GPa complexed with both glucose and flavopiridol at 1.76-, 2.30-, and 2.23-A resolution, and refined to crystallographic R values of 0.216 (R(free) = 0.247), 0.189 (R(free) = 0.219), and 0.195 (R(free) = 0.252), respectively. The structures provide a rational for flavopiridol potency and synergism with glucose inhibitory action. Flavopiridol binds at the allosteric inhibitor site, situated at the entrance to the catalytic site, the site where caffeine binds. Flavopiridol intercalates between the two aromatic rings of Phe(285) and Tyr(613). Both flavopiridol and glucose promote the less active T-state through localization of the closed position of the 280s loop which blocks access to the catalytic site, thereby explaining their synergistic inhibition. The mode of interactions of flavopiridol with GP is different from that of des-chloro-flavopiridol with CDK2, illustrating how different functional parts of the inhibitor can be used to provide specific and potent binding to two different enzymes. PMID:10924512

  18. A Unitary Anesthetic-Binding Site at High Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vedula, L.; Brannigan, G; Economou, N; Xi, J; Hall, M; Liu, R; Rossi, M; Dailey, W; Grasty, K; et. al.

    2009-01-01

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABAA receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  19. A Unitary Anesthetic Binding Site at High Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vedula, L. Sangeetha; Brannigan, Grace; Economou, Nicoleta J.; Xi, Jin; Hall, Michael A.; Liu, Renyu; Rossi, Matthew J.; Dailey, William P.; Grasty, Kimberly C.; Klein, Michael L.; Eckenhoff, Roderic G.; Loll, Patrick J.; (Drexel-MED); (UPENN)

    2009-10-21

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  20. A Unitary Anesthetic Binding Site at High Resolution

    Energy Technology Data Exchange (ETDEWEB)

    L Vedula; G Brannigan; N Economou; J Xi; M Hall; R Liu; M Rossi; W Dailey; K Grasty; et. al.

    2011-12-31

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  1. Site-directed mutagenesis of boar proacrosin reveals residues involved in binding of zona pellucida glycoproteins.

    Science.gov (United States)

    Jansen, S; Jones, R; Jenneckens, I; Marschall, B; Kriegesmann, B; Coadwell, J; Brenig, B

    1998-10-01

    Proacrosin, the zymogen form of the serine protease beta-acrosin, is thought to function as a secondary binding molecule between mammalian gametes during fertilization (Jansen et al., 1995: Int J Dev Biol 39, 501-510). The interaction involves strong ionic bonds between positively charged amino acids on proacrosin and negatively charged polysulphate groups on zona pellucida glycoproteins. In this investigation, we identified the basic residues on proacrosin that are important for this binding. Site-directed mutagenesis shows that two groups of amino acids comprising His47, Arg50, and Arg51 together with Arg250, Lys252, and Arg253 are crucial because their deletion or replacement severely reduces affinity for zona glycoproteins. Molecular models of proacrosin reveal that these residues are located along one face of the protein on two exposed surface loops that project over and around the catalytic site. These findings support the hypothesis that polysulphate binding sites on proacrosin are formed by a restricted number of basic amino acids on the surface of the protein, presenting a specific orientation that is complementary to negatively charged sulphate groups on zona glycoproteins. Identification and elucidation of the stereochemistry of these charged moieties will aid design of new kinds of nonsteroidal antifertility agents. PMID:9740326

  2. Photoaffinity labelling of t-RNA binding sites

    International Nuclear Information System (INIS)

    For the photoaffinity labelling of E.coli ribosomes in the region of peptidyl transferase, an analogue to the substrate peptidyl-tRNA-ethyl-2-diazomalalonyl-Phe-tRNAsup(Phe) was synthesized. UV irradiation of the reversible complex with 70S ribosomes and poly(U) led to the formation of a covalent bond between N-acyl-Phe-tRNA and 23S-rRNA. The irreversibly bound N-acyl-phenylalanyl group may be transferred to puromycin in a reaction catalyzed by peptidyl transferase, in the presence of the Phe-tRNA, it forms products of a peptide synthesis covalently bound to 23S-RNA. The 23S-rRNA sequence thus labelled, which has not yet been identified, should therefore be in the active centre of the peptidyl transferase or in its near neighbourhood. An analysis of the reaction product showed that the N-acyl-Phe-tRNA is bound specifically to one or more sites of a 3'-terminal 18S fragment of the 23S-RNA. An attempt to prove the existence of further tRNA interaction with ribosonal substrate binding sites led to the discovery of a poly(U2,G)-stimulated, UV-inducible irreversible binding of valin-specific tRNA (E.coli) to 16S-rRNA in one or several tRNA decoding sites. A preliminary analysis of the T1 fragments of tRNAsup(Val) after binding to 16S-rRNA indicates that the DHU loop of tRNA takes part in this photoreaction. (orig.)

  3. Basis for Half-Site Ligand Binding in Yeast NAD+-Specific Isocitrate Dehydrogenase†

    OpenAIRE

    Lin, An-Ping; McAlister-Henn, Lee

    2011-01-01

    Yeast NAD+-specific isocitrate dehydrogenase is an allosterically regulated octameric enzyme composed of four heterodimers of a catalytic IDH2 subunit and a regulatory IDH1 subunit. Despite structural predictions that the enzyme would contain eight isocitrate binding sites, four NAD+ binding sites, and four AMP binding sites, only half of the sites for each ligand are measurable in binding assays. Based on a potential interaction between side chains of Cys-150 residues in IDH2 subunits in eac...

  4. Effect of positional dependence and alignment strategy on modeling transcription factor binding sites

    OpenAIRE

    Quader Saad; Huang Chun-Hsi

    2012-01-01

    Abstract Background Many consensus-based and Position Weight Matrix-based methods for recognizing transcription factor binding sites (TFBS) are not well suited to the variability in the lengths of binding sites. Besides, many methods discard known binding sites while building the model. Moreover, the impact of Information Content (IC) and the positional dependence of nucleotides within an aligned set of TFBS has not been well researched for modeling variable-length binding sites. In this pape...

  5. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  6. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively

    CERN Document Server

    Clifford, Jacob

    2015-01-01

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through Position Weight Matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain a...

  7. Recording-based identification of site liquefaction

    Institute of Scientific and Technical Information of China (English)

    Hu Yuxian; Zhang Yushan; Liang Jianwen; Ray Ruichong Zhang

    2005-01-01

    Reconnaissance reports and pertinent research on seismic hazards show that liquefaction is one of the key sources of damage to geotechnical and structural engineering systems. Therefore, identifying site liquefaction conditions plays an important role in seismic hazard mitigation. One of the widely used approaches for detecting liquefaction is based on the time-frequency analysis of ground motion recordings, in which short-time Fourier transform is typically used. It is known that recordings at a site with liquefaction are the result of nonlinear responses of seismic waves propagating in the liquefied layers underneath the site. Moreover, Fourier transform is not effective in characterizing such dynamic features as time-dependent frequency of the recordings rooted in nonlinear responses. Therefore, the aforementioned approach may not be intrinsically effective in detecting liquefaction. An alternative to the Fourier-based approach is presented in this study,which proposes time-frequency analysis of earthquake ground motion recordings with the aid of the Hilbert-Huang transform (HHT), and offers justification for the HHT in addressing the liquefaction features shown in the recordings. The paper then defines the predominant instantaneous frequency (PIF) and introduces the PIF-related motion features to identify liquefaction conditions at a given site. Analysis of 29 recorded data sets at different site conditions shows that the proposed approach is effective in detecting site liquefaction in comparison with other methods.

  8. Methods of Identification and Evaluation of Brownfield Sites

    Directory of Open Access Journals (Sweden)

    Safet Kurtović

    2014-04-01

    Full Text Available The basic objective of this paper was to determine the importance and potential restoration of brownfield sites in terms of economic prosperity of a particular region or country. In addition, in a theoretical sense, this paper presents the methods used in the identification of brownfield sites such as Smart Growth Network model and Thomas GIS model, and methods for evaluation of brownfield sites or the indexing method, cost-benefit and multivariate analysis.

  9. Methods of Identification and Evaluation of Brownfield Sites

    Directory of Open Access Journals (Sweden)

    Safet Kurtovic

    2016-01-01

    Full Text Available The basic objective of this paper was to determine the importance and potential restoration of brownfield sites in terms of economic prosperity of a particular region or country. In addition, in a theoretical sense, this paper presents the methods used in the identification of brownfield sites such as Smart Growth Network model and Thomas GIS model, and methods for evaluation of brownfield sites or the indexing method, cost-benefit and multivariate analysis.

  10. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher;

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first was a...

  11. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A

    2014-03-26

    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.Results: We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines " traffic lights" We observed a strong selection against CpG " traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.Conclusions: Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. 2013 Medvedeva et al.; licensee BioMed Central Ltd.

  12. Atrial natriuretic factor binding sites in experimental congestive heart failure

    International Nuclear Information System (INIS)

    A quantitative in vitro autoradiographic study was performed on the aorta, renal glomeruli, and adrenal cortex of cardiomyopathic hamsters in various stages of heart failure and correlated, in some instances, with in vivo autoradiography. The results indicate virtually no correlation between the degree of congestive heart failure and the density of 125I-labeled atrial natriuretic factor [(Ser99, Tyr126)ANF] binding sites (Bmax) in the tissues examined. Whereas the Bmax was increased in the thoracic aorta in moderate and severe heart failure, there were no significant changes in the zona glomerulosa. The renal glomeruli Bmax was lower in mild and moderate heart failure compared with control and severe heart failure. The proportion of ANF B- and C-receptors was also evaluated in sections of the aorta, adrenal, and kidney of control and cardiomyopathic hamsters with severe heart failure. (Arg102, Cys121)ANF [des-(Gln113, Ser114, Gly115, Leu116, Gly117) NH2] (C-ANF) at 10(-6) M displaced approximately 505 of (Ser99, Tyr126)125I-ANF bound in the aorta and renal glomeruli and approximately 20% in the adrenal zona glomerulosa in both series of animals. These results suggest that ANF may exert a buffering effect on the vasoconstriction of heart failure and to a certain extent may inhibit aldosterone secretion. The impairment of renal sodium excretion does not appear to be related to glomerular ANF binding sites at any stage of the disease

  13. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  14. NMR Mapping of the IFNAR1-EC binding site on IFNα2 reveals allosteric changes in the IFNAR2-EC binding site

    Science.gov (United States)

    Akabayov, Sabine Ruth; Biron, Zohar; Lamken, Peter; Piehler, Jacob; Anglister, Jacob

    2010-01-01

    All type I interferons (IFNs) bind to a common cell-surface receptor consisting of two subunits. IFNs initiate intracellular signal transduction cascades by simultaneous interaction with the extracellular domains of its receptor subunits IFNAR1 and IFNAR2. In this study we mapped the surface of IFNα2 interacting with the extracellular domain of IFNAR1 (IFNAR1-EC) by following changes in or the disappearance of the [1H,15N]-TROSY-HSQC cross peaks of IFNα2 caused by the binding of the extracellular domain of IFNAR1 (IFNAR1-EC) to the binary complex of IFNα2 with IFNAR2-EC. The NMR study on the 89 kDa complex was conducted at pH 8 and 308 K using an 800 MHz spectrometer. IFNAR1 binding affected a total of 47 out of 165 IFNα2 residues contained in two large patches on the face of the protein opposing the binding site for IFNAR2 and in a third patch located on the face containing the IFNAR2 binding site. The first two patches form the IFNAR1 binding site and one of these matches the IFNAR1 binding site previously identified by site-directed mutagenesis. The third patch partially matches the IFNα2 binding site for IFNAR2-EC indicating allosteric communication between the binding sites for the two receptor subunits. PMID:20047337

  15. Identification of Polyadenylation Sites within Arabidopsis Thaliana

    KAUST Repository

    Kalkatawi, Manal

    2011-09-01

    Machine Learning (ML) is a field of artificial intelligence focused on the design and implementation of algorithms that enable creation of models for clustering, classification, prediction, ranking and similar inference tasks based on information contained in data. Many ML algorithms have been successfully utilized in a variety of applications. The problem addressed in this thesis is from the field of bioinformatics and deals with the recognition of polyadenylation (poly(A)) sites in the genomic sequence of the plant Arabidopsis thaliana. During the RNA processing, a tail consisting of a number of consecutive adenine (A) nucleotides is added to the terminal nucleotide of the 3’- untranslated region (3’UTR) of the primary RNA. The process in which these A nucleotides are added is called polyadenylation. The location in the genomic DNA sequence that corresponds to the start of terminal A nucleotides (i.e. to the end of 3’UTR) is known as a poly(A) site. Recognition of the poly(A) sites in DNA sequence is important for better gene annotation and understanding of gene regulation. In this study, we built an artificial neural network (ANN) for the recognition of poly(A) sites in the Arabidopsis thaliana genome. Our study demonstrates that this model achieves improved accuracy compared to the existing predictive models for this purpose. The key factor contributing to the enhanced predictive performance of our ANN model is a distinguishing set of features used in creation of the model. These features include a number of physico-chemical characteristics of relevance, such as dinucleotide thermodynamic characteristics, electron-ion interaction potential, etc., but also many of the statistical properties of the DNA sequences from the region surrounding poly(A) site, such as nucleotide and polynucleotide properties, common motifs, etc. Our ANN model was compared in performance with several other ML models, as well as with the PAC tool that is specifically developed for

  16. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the

  17. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters.

    Science.gov (United States)

    Singh, Satinder K; Yamashita, Atsuko; Gouaux, Eric

    2007-08-23

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 A above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational design of

  18. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    International Nuclear Information System (INIS)

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 (angstrom) above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  19. TIM-4 structures identify a Metal Ion-dependent Ligand Binding Site where phosphatidylserine binds

    OpenAIRE

    Santiago, Cesar; Ballesteros, Angela; Martinez-Muñoz, Laura; Mellado, Mario; Kaplan, Gerardo G.; Freeman, Gordon J.; Casasnovas, José M.

    2007-01-01

    The T-cell immunoglobulin and mucin domain (TIM) proteins are important regulators of T cell responses. They have been linked to autoimmunity and cancer. Structures of the murine TIM-4 identified a Metal Ion-dependent Ligand Binding Site (MILIBS) in the immunoglobulin (Ig) domain of the TIM family. The characteristic CC’ loop of the TIM domain and the hydrophobic FG loop shaped a narrow cavity where acidic compounds penetrate and coordinate to a metal ion bound to conserved residues in the TI...

  20. Site identification: environmental and radiological considerations

    International Nuclear Information System (INIS)

    Radiological and environmental considerations are recognized as being of utmost importance in planning, siting, licensing, operating, and decommissioning a high-level nuclear waste repository. In such a complex undertaking, it is important to identify the major concerns anticipated to arise in all of these phases in order to address them as early as possible in the program. Three representative activities/studies are summarized which will identify some of the important radiological and environmental considerations which must be addressed through this prolonged sequence of events and will indicate how these considerations are being addressed. It should be emphasized that these are only three of many which could have been chosen. The three key activities/studies are: (1) the NWTS Program criteria for identifying repository sites, (2) the generic guide for preparing environmental evaluations for deep drilling and (3) a preliminary environmental assessment for disposal of mined rock during excavation of a repository

  1. Substance P and substance K receptor binding sites in the human gastrointestinal tract: localization by autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Gates, T.S.; Zimmerman, R.P.; Mantyh, C.R.; Vigna, S.R.; Maggio, J.E.; Welton, M.L.; Passaro, E.P. Jr.; Mantyh, P.W.

    1988-11-01

    Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for /sup 125/I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: (1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; (2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; (3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and (4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells.

  2. Identification of Treponema pallidum penicillin-binding proteins.

    OpenAIRE

    Cunningham, T M; Miller, J N; Lovett, M A

    1987-01-01

    Penicillin-binding proteins of 180, 89, 80, 68, 61, 41, and 38 kilodaltons were identified in Treponema pallidum (Nichols) by their covalent binding of [35S]benzylpenicillin. Penicillin-binding proteins are localized in the plasma membranes of many bacterial species and may serve as useful markers for determining plasma membrane intactness in T. pallidum fractionation studies.

  3. Demonstration of specific binding sites for 3H-RRR-alpha-tocopherol on human erythrocytes

    International Nuclear Information System (INIS)

    Previous work from our laboratory demonstrated specific binding sites for 3H-RRR-alpha-tocopherol (3H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for 3H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for 3H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane

  4. Demonstration of specific binding sites for /sup 3/H-RRR-alpha-tocopherol on human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kitabchi, A.E.; Wimalasena, J.

    1982-01-01

    Previous work from our laboratory demonstrated specific binding sites for /sup 3/H-RRR-alpha-tocopherol (/sup 3/H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for /sup 3/H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for /sup 3/H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane.

  5. L-(TH)glutamate binds to kainate-, NMDA- and AMPA-sensitive binding sites: an autoradiographic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monaghan, D.T.; Yao, D.; Cotman, C.W.

    1985-08-12

    The anatomical distribution of L-(TH)glutamate binding sites was determined in the presence of various glutamate analogues using quantitative autoradiography. The binding of L-(TH)glutamate is accounted for by the presence of 3 distinct binding sites when measured in the absence of CaS , Cl and Na ions. The anatomical distribution and pharmacological specificity of these binding sites correspond to that reported for the 3 excitatory amino acid binding sites selectively labelled by D-(TH)2-amino-5-phosphonopentanoate (D-(TH)AP5), (TH)kainate ((TH)KA) and (TH) -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ((TH)AMPA) which are thought to be selective ligands for the N-methyl-D-aspartate (NMDA), KA and quisqualate (QA) receptors, respectively. (Auth.). 29 refs.; 1 figure; 1 table.

  6. Predicting DNA-binding sites of proteins from amino acid sequence

    Directory of Open Access Journals (Sweden)

    Wu Feihong

    2006-05-01

    Full Text Available Abstract Background Understanding the molecular details of protein-DNA interactions is critical for deciphering the mechanisms of gene regulation. We present a machine learning approach for the identification of amino acid residues involved in protein-DNA interactions. Results We start with a Naïve Bayes classifier trained to predict whether a given amino acid residue is a DNA-binding residue based on its identity and the identities of its sequence neighbors. The input to the classifier consists of the identities of the target residue and 4 sequence neighbors on each side of the target residue. The classifier is trained and evaluated (using leave-one-out cross-validation on a non-redundant set of 171 proteins. Our results indicate the feasibility of identifying interface residues based on local sequence information. The classifier achieves 71% overall accuracy with a correlation coefficient of 0.24, 35% specificity and 53% sensitivity in identifying interface residues as evaluated by leave-one-out cross-validation. We show that the performance of the classifier is improved by using sequence entropy of the target residue (the entropy of the corresponding column in multiple alignment obtained by aligning the target sequence with its sequence homologs as additional input. The classifier achieves 78% overall accuracy with a correlation coefficient of 0.28, 44% specificity and 41% sensitivity in identifying interface residues. Examination of the predictions in the context of 3-dimensional structures of proteins demonstrates the effectiveness of this method in identifying DNA-binding sites from sequence information. In 33% (56 out of 171 of the proteins, the classifier identifies the interaction sites by correctly recognizing at least half of the interface residues. In 87% (149 out of 171 of the proteins, the classifier correctly identifies at least 20% of the interface residues. This suggests the possibility of using such classifiers to identify

  7. Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein

    Science.gov (United States)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2006-07-01

    Paracetamol (acetaminophen, AA) the most popular analgesic drug is commonly used in the treatment of pain in patients suffering from cancer. In our studies, we evaluated the competition in binding with serum albumin between paracetamol (AA) and cytarabine, antyleukemic drug (araC). The presence of one drug can alter the binding affinity of albumin towards the second one. Such interaction can result in changing of the free fraction of the one of these drugs in blood. Two spectroscopic methods were used to determine high affinity binding sites and the competition of the drugs. Basing on the change of the serum albumin fluorescence in the presence of either of the drugs the quenching ( KQ) constants for the araC-BSA and AA-BSA systems were calculated. Analysis of UV difference spectra allowed us to describe the changes in drug-protein complexes (araC-albumin and AA-albumin) induced by the presence of the second drug (AA and araC, respectively). The mechanism of competition between araC and AA has been proposed.

  8. Study on Synthesis and Binding Ability of a New Anion Receptor Containing NH Binding Sites

    Institute of Scientific and Technical Information of China (English)

    QIAO,Yan-Hong; LIN,Hai; LIN,Hua-Kuan

    2007-01-01

    A new colorimetric recognition receptor 1 based on the dual capability containing NH binding sites of selectively sensing anionic guest species has been synthesized. Compared with other halide anions, its UV/Vis absorption spectrum in dimethyl sulfoxide showed the response toward the presence of fluoride anion with high selectivity,and also displayed dramatic color changes from colorless to yellow in the presence of TBAF (5 × 10-5 mol/L). The similar UV/Vis absorption spectrum change also occurred when 1 was treated with AcO- while a little change with H2PO-4 and OH-. Receptor 1 has almost not affinity abilities to Cl-, Br- and I-. The binding ability of receptor 1to fluoride with high selectivity over other halides contributes to the anion size and the ability of forming hydrogen bonding. While the different ability of binding with geometrically triangular (AcO-), tetrahedral (H2PO-4 ) and linear (OH-) anions maybe result from their geometry configuration.

  9. Functional impact of HIV coreceptor-binding site mutations

    International Nuclear Information System (INIS)

    The bridging sheet region of the gp120 subunit of the HIV-1 Env protein interacts with the major virus coreceptors, CCR5 and CXCR4. We examined the impact of mutations in and adjacent to the bridging sheet region of an X4 tropic HIV-1 on membrane fusion and entry inhibitor susceptibility. When the V3-loop of this Env was changed so that CCR5 was used, the effects of these same mutations on CCR5 use were assayed as well. We found that coreceptor-binding site mutations had greater effects on CXCR4-mediated fusion and infection than when CCR5 was used as a coreceptor, perhaps related to differences in coreceptor affinity. The mutations also reduced use of the alternative coreceptors CCR3 and CCR8 to varying degrees, indicating that the bridging sheet region is important for the efficient utilization of both major and minor HIV coreceptors. As seen before with a primary R5 virus strain, bridging sheet mutations increased susceptibility to the CCR5 inhibitor TAK-779, which correlated with CCR5 binding efficiency. Bridging sheet mutations also conferred increased susceptibility to the CXCR4 ligand AMD-3100 in the context of the X4 tropic Env. However, these mutations had little effect on the rate of membrane fusion and little effect on susceptibility to enfuvirtide, a membrane fusion inhibitor whose activity is dependent in part on the rate of Env-mediated membrane fusion. Thus, mutations that reduce coreceptor binding and enhance susceptibility to coreceptor inhibitors can affect fusion and enfuvirtide susceptibility in an Env context-dependent manner

  10. XAS and Pulsed EPR Studies of the Copper Binding Site in Riboflavin Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Smith,S.; Bencze, K.; Wasiukanis, K.; Benore-Parsons, T.; Stemmler, T.

    2008-01-01

    Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 Angstroms, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a CuO3N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.

  11. Nuclear estradiol-binding sites in human breast cancer.

    Science.gov (United States)

    Vandewalle, B; Peyrat, J P; Bonneterre, J; Hecquet, B; Dewailly, D; Lefebvre, J

    1983-09-01

    The binding of estradiol to nuclear fractions extracted from human breast carcinomatous tissue was demonstrated. The material, which was extracted with KCl, had an approximate molecular weight of 37,000 and bound estradiol with both high and low affinity (Kd congruent to 1 nM, type A receptors; Kd congruent to 30 nM, type B receptors) as calculated according to the method of Scatchard. Competition studies indicated that both components were specific for estradiol, and among the 134 tumors studied the receptors were found to be linked in almost all cases. Thirty-six % of the tumors were nuclear receptor positive. Cytoplasmic estradiol and progesterone receptors were also measured. Among the cytoplasmic tumors positive for cytoplasmic and progesterone receptors, 37% were devoid of both types of nuclear receptors; this may explain the failure of endocrine therapy in some cases. The determination of nuclear binding sites in human breast tumors appeared to be an interesting criterion for the assessment of estradiol-dependent cell growth. PMID:6683589

  12. A sialic acid binding site in a human picornavirus.

    Directory of Open Access Journals (Sweden)

    Georg Zocher

    2014-10-01

    Full Text Available The picornaviruses coxsackievirus A24 variant (CVA24v and enterovirus 70 (EV70 cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC, a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 Å resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors. Biochemical studies verified the relevance of the binding site and demonstrated a preference of CVA24v for α2,6-linked glycans. This preference can be rationalized by molecular dynamics simulations that show that α2,6-linked glycans can establish more contacts with the viral capsid. Our results form an excellent platform for the design of antiviral compounds to prevent AHC.

  13. An aprotinin binding site localized in the hormone binding domain of the estrogen receptor from calf uterus.

    Science.gov (United States)

    Nigro, V; Medici, N; Abbondanza, C; Minucci, S; Moncharmont, B; Molinari, A M; Puca, G A

    1990-07-31

    It has been proposed that the estrogen receptor bears proteolytic activity responsible for its own transformation. This activity was inhibited by aprotinin. Incubation of transformed ER with aprotinin modified the proteolytic digestion of the hormone binding subunit by proteinase K. The smallest hormone-binding fragment of the ER, obtained by tryptic digestion, was still able to bind to aprotinin. These results suggest that aprotinin interacts with ER and the hormone-binding domain of ER is endowed with a specific aprotinin-binding site. PMID:1696480

  14. ncDNA and drift drive binding site accumulation

    Directory of Open Access Journals (Sweden)

    Ruths Troy

    2012-08-01

    Full Text Available Abstract Background The amount of transcription factor binding sites (TFBS in an organism’s genome positively correlates with the complexity of the regulatory network of the organism. However, the manner by which TFBS arise and accumulate in genomes and the effects of regulatory network complexity on the organism’s fitness are far from being known. The availability of TFBS data from many organisms provides an opportunity to explore these issues, particularly from an evolutionary perspective. Results We analyzed TFBS data from five model organisms – E. coli K12, S. cerevisiae, C. elegans, D. melanogaster, A. thaliana – and found a positive correlation between the amount of non-coding DNA (ncDNA in the organism’s genome and regulatory complexity. Based on this finding, we hypothesize that the amount of ncDNA, combined with the population size, can explain the patterns of regulatory complexity across organisms. To test this hypothesis, we devised a genome-based regulatory pathway model and subjected it to the forces of evolution through population genetic simulations. The results support our hypothesis, showing neutral evolutionary forces alone can explain TFBS patterns, and that selection on the regulatory network function does not alter this finding. Conclusions The cis-regulome is not a clean functional network crafted by adaptive forces alone, but instead a data source filled with the noise of non-adaptive forces. From a regulatory perspective, this evolutionary noise manifests as complexity on both the binding site and pathway level, which has significant implications on many directions in microbiology, genetics, and synthetic biology.

  15. High-affinity dextromethorphan binding sites in guinea pig brain. II. Competition experiments.

    Science.gov (United States)

    Craviso, G L; Musacchio, J M

    1983-05-01

    Binding of dextromethorphan (DM) to guinea pig brain is stereoselective, since levomethorphan is 20 times weaker than DM in competing for DM sites. In general, opiate agonists and antagonists as well as their corresponding dextrorotatory isomers are weak competitors for tritiated dextromethorphan ([3H]DM) binding sites and display IC50 values in the micromolar range. In contrast, several non-narcotic, centrally acting antitussives are inhibitory in the nanomolar range (IC50 values for caramiphen, carbetapentane, dimethoxanate, and pipazethate are 25 nM, 9 nM, 41 nM, and 190 nM, respectively). Other antitussives, such as levopropoxyphene, chlophedianol, and fominoben, have poor affinity for DM sites whereas the antitussive noscapine enhances DM binding by increasing the affinity of DM for its central binding sites. Additional competition studies indicate that there is no correlation of DM binding with any of the known or putative neurotransmitters in the central nervous system. DM binding is also not related to tricyclic antidepressant binding sites or biogenic amine uptake sites. However, certain phenothiazine neuroleptics and typical and atypical antidepressants inhibit binding with IC50 values in the nanomolar range. Moreover, the anticonvulsant drug diphenylhydantoin enhances DM binding in a manner similar to that of noscapine. Preliminary experiments utilizing acid extracts of brain have not demonstrated the presence of an endogenous ligand for DM sites. The binding characteristics of DM sites studied in rat and mouse brain indicate that the relative potencies of several antitussives to inhibit specific DM binding vary according to species. High-affinity, saturable, and stereoselective [3H]DM binding sites are present in liver homogenates, but several differences have been found for these peripheral binding sites and those described for brain. Although the nature of central DM binding sites is not known, the potent interaction of several classes of centrally

  16. Osteopontin: A uranium phosphorylated binding-site characterization

    International Nuclear Information System (INIS)

    Herein, we describe the structural investigation of one possible uranyl binding site inside a non structured protein. This approach couples spectroscopy, thermodynamics, and theoretical calculations (DFT) and studies the interaction of uranyl ions with a phospho-peptide, thus mimicking a possible osteopontin (OPN) hydroxyapatite growth-inhibition site. Although thermodynamical aspects were investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) and isothermal titration calorimetry (ITC), structural characterization was performed by extended X-ray absorption fine structure (EXAFS) at the U L(III)-edge combined with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. From the vibrational and fluorescence spectra, several structural models of a UO22+/peptide complex were developed and subsequently refined by using theoretical calculations to fit the experimental EXAFS obtained. The structural effect of the pH value was also considered under acidic to moderately acidic conditions (pH 1.5-5.5). Most importantly, the uranyl/peptide coordination environment was similar to that of the native protein. (authors)

  17. Identification of salivary mucin MUC7 binding proteins from Streptococcus gordonii

    Directory of Open Access Journals (Sweden)

    Thornton David J

    2009-08-01

    Full Text Available Abstract Background The salivary mucin MUC7 (previously known as MG2 can adhere to various strains of streptococci that are primary colonizers and predominant microorganisms of the oral cavity. Although there is a growing interest in interaction between oral pathogens and salivary mucins, studies reporting the specific binding sites on the bacteria are rather limited. Identification and characterization of the specific interacting proteins on the bacterial cell surface, termed adhesins, are crucial to further understand host-pathogen interactions. Results We demonstrate here, using purified MUC7 to overlay blots of SDS-extracts of Streptococcus gordonii cell surface proteins, 4 MUC7-binding bands, with apparent molecular masses of 62, 78, 84 and 133 kDa from the Streptococcus gordonii strain, PK488. Putative adhesins were identified by in-gel digestion and subsequent nanoLC-tandem mass spectrometry analysis of resultant peptides. The 62 kDa and 84 kDa bands were identified as elongation factor (EF Tu and EF-G respectively. The 78 kDa band was a hppA gene product; the 74 kDa oligopeptide-binding lipoprotein. The 133 kDa band contained two proteins; alpha enolase and DNA-directed RNA polymerase, beta' subunit. Some of these proteins, for example alpha enolase are expected to be intracellular, however, flow cytometric analysis confirmed its location on the bacterial surface. Conclusion Our data demonstrated that S. gordonii expressed a number of putative MUC7 recognizing proteins and these contribute to MUC7 mucin binding of this streptococcal strain.

  18. Computational Identification of Post Translational Modification Regulated RNA Binding Protein Motifs.

    Directory of Open Access Journals (Sweden)

    Andrew S Brown

    Full Text Available RNA and its associated RNA binding proteins (RBPs mitigate a diverse array of cellular functions and phenotypes. The interactions between RNA and RBPs are implicated in many roles of biochemical processing by the cell such as localization, protein translation, and RNA stability. Recent discoveries of novel mechanisms that are of significant evolutionary advantage between RBPs and RNA include the interaction of the RBP with the 3' and 5' untranslated region (UTR of target mRNA. These mechanisms are shown to function through interaction of a trans-factor (RBP and a cis-regulatory element (3' or 5' UTR by the binding of a RBP to a regulatory-consensus nucleic acid motif region that is conserved throughout evolution. Through signal transduction, regulatory RBPs are able to temporarily dissociate from their target sites on mRNAs and induce translation, typically through a post-translational modification (PTM. These small, regulatory motifs located in the UTR of mRNAs are subject to a loss-of-function due to single polymorphisms or other mutations that disrupt the motif and inhibit the ability to associate into the complex with RBPs. The identification of a consensus motif for a given RBP is difficult, time consuming, and requires a significant degree of experimentation to identify each motif-containing gene on a genomic scale. We have developed a computational algorithm to analyze high-throughput genomic arrays that contain differential binding induced by a PTM for a RBP of interest-RBP-PTM Target Scan (RPTS. We demonstrate the ability of this application to accurately predict a PTM-specific binding motif to an RBP that has no antibody capable of distinguishing the PTM of interest, negating the use of in-vitro exonuclease digestion techniques.

  19. Mapping convulsants’ binding to the GABA-A receptor chloride ionophore: a proposed model for channel binding sites

    OpenAIRE

    Kalueff, A.V.

    2006-01-01

    Gamma aminobutyric acid (GABA) type A receptors play a key role in brain inhibitory neurotransmission, and are ligand-activated chloride channels blocked by numerous convulsant ligands. Here we summarize data on binding of picrotoxin, tetrazoles, β-lactams, bicyclophosphates, butyrolactones and neurotoxic pesticides to GABA-A ionophore, and discuss functional and structural overlapping of their binding sites. The paper reviews data on convulsants’ binding sensitivity to different point mutati...

  20. Engineering of binding affinity at metal ion binding sites for the stabilization of proteins: Subtilisin as a test case

    International Nuclear Information System (INIS)

    A weak Ca2+ binding site in the bacterial serine protease subtilisin BPN' was chosen as a model to explore the feasibility of stabilizing a protein by increasing the binding affinity at a metal ion binding site. The existence of this weak Ca2+ binding site was first discovered through a study of the rate of thermal inactivation of wild-type subtilisin BPN' at 65/degrees/C as a function of the free [Ca2+]. Increasing the [Ca2+] in the range of 0.10-100 mM caused a 100-fold decrease in the rate of thermal inactivation. The data were found to closely fit a theoretical titration curve for a single Ca2+ specific binding site with an apparent log K/sub a/ = 1.49. A series of refined X-ray crystal structures of subtilisin in the presence of 0.0, 25.0, and 40.0 mM CaCl2 has allowed a detailed structural characterization of this Ca2+ binding site. Negatively charged side chains were introduced in the vicinity of the bound Ca2+ by changing Pro 172 and Gly 131 to Asp residues through site-directed and random mutagenesis techniques, respectively. These changes were found to increase the affinity of the Ca2+ binding site by 3.4- and 2-fold, respectively, when compared with the wild-type protein. X-ray studies of these new variants of subtilisin revealed the carboxylate side chains to be 6.8 and 13.2 /Angstrom/, respectively, from the bound Ca2+. These distances and the degree of enhanced binding are consistent with simple electrostatic theory. Moreover, when both Asp changes were introduced together, the binding affinity for Ca2+ was found to be increased about 6-fold over that for the wild-type protein, suggesting an independent and nearly additive effect on the total electrostatic potential at this locus

  1. Shared binding sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A toxins.

    Science.gov (United States)

    Herrero, S; González-Cabrera, J; Tabashnik, B E; Ferré, J

    2001-12-01

    Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At least two strains of diamondback moth (Plutella xylostella) with resistance to Cry1A toxins and reduced binding of Cry1A toxins have strong cross-resistance to Cry1Ja. Thus, we hypothesized that Cry1Ja shares binding sites with Cry1A toxins. We tested this hypothesis in six moth and butterfly species, each from a different family: Cacyreus marshalli (Lycaenidae), Lobesia botrana (Tortricidae), Manduca sexta (Sphingidae), Pectinophora gossypiella (Gelechiidae), P. xylostella (Plutellidae), and Spodoptera exigua (Noctuidae). Although the extent of competition varied among species, experiments with biotinylated Cry1Ja and radiolabeled Cry1Ac showed that Cry1Ja and Cry1Ac competed for binding sites in all six species. A recent report also indicates shared binding sites for Cry1Ja and Cry1A toxins in Heliothis virescens (Noctuidae). Thus, shared binding sites for Cry1Ja and Cry1A occur in all lepidopteran species tested so far. PMID:11722929

  2. Mutated primer binding sites interacting with different tRNAs allow efficient murine leukemia virus replication

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M; Lovmand, J;

    1993-01-01

    Two Akv murine leukemia virus-based retroviral vectors with primer binding sites matching tRNA(Gln-1) and tRNA(Lys-3) were constructed. The transduction efficiency of these mutated vectors was found to be comparable to that of a vector carrying the wild-type primer binding site matching t......RNA(Pro). Polymerase chain reaction amplification and sequence analysis of transduced proviruses confirmed the transfer of vectors with mutated primer binding sites and further showed that tRNA(Gln-2) may act efficiently in conjunction with the tRNA(Gln-1) primer binding site. We conclude that murine leukemia virus...... can replicate by using various tRNA molecules as primers and propose primer binding site-tRNA primer interactions to be of major importance for tRNA primer selection. However, efficient primer selection does not require perfect Watson-Crick base pairing at all 18 positions of the primer binding site....

  3. ECRbase: Database of Evolutionary Conserved Regions, Promoters, and Transcription Factor Binding Sites in Vertebrate Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Loots, G; Ovcharenko, I

    2006-08-08

    Evolutionary conservation of DNA sequences provides a tool for the identification of functional elements in genomes. We have created a database of evolutionary conserved regions (ECRs) in vertebrate genomes entitled ECRbase that is constructed from a collection of pairwise vertebrate genome alignments produced by the ECR Browser database. ECRbase features a database of syntenic blocks that recapitulate the evolution of rearrangements in vertebrates and a collection of promoters in all vertebrate genomes presented in the database. The database also contains a collection of annotated transcription factor binding sites (TFBS) in all ECRs and promoter elements. ECRbase currently includes human, rhesus macaque, dog, opossum, rat, mouse, chicken, frog, zebrafish, and two pufferfish genomes. It is freely accessible at http://ECRbase.dcode.org.

  4. Pharmacophore model of the quercetin binding site of the SIRT6 protein.

    Science.gov (United States)

    Ravichandran, S; Singh, N; Donnelly, D; Migliore, M; Johnson, P; Fishwick, C; Luke, B T; Martin, B; Maudsley, S; Fugmann, S D; Moaddel, R

    2014-04-01

    SIRT6 is a histone deacetylase that has been proposed as a potential therapeutic target for metabolic disorders and the prevention of age-associated diseases. We have previously reported on the identification of quercetin and vitexin as SIRT6 inhibitors, and studied structurally related flavonoids including luteolin, kaempferol, apigenin and naringenin. It was determined that the SIRT6 protein remained active after immobilization and that a single frontal displacement could correctly predict the functional activity of the immobilized enzyme. The previous study generated a preliminary pharmacophore for the quercetin binding site on SIRT6, containing 3 hydrogen bond donors and one hydrogen bond acceptor. In this study, we have generated a refined pharmacophore with an additional twelve quercetin analogs. The resulting model had a positive linear behavior between the experimental elution time verses the fit values obtained from the model with a correlation coefficient of 0.8456. PMID:24491483

  5. The hepcidin-binding site on ferroportin is evolutionarily conserved

    OpenAIRE

    De Domenico, Ivana; Nemeth, Elizabeta; Nelson, Jenifer M.; Phillips, John D.; Ajioka, Richard S.; Kay, Michael S.; Kushner, James P.; Ganz, Tomas; Ward, Diane M.; Kaplan, Jerry

    2008-01-01

    Mammalian iron homeostasis is regulated by the interaction of the liver-produced peptide hepcidin and its receptor, the iron transporter ferroportin. Hepcidin binds to ferroportin resulting in degradation of ferroportin and decreased cellular iron export. We identify the hepcidin-binding domain (HBD) on ferroportin and show that a synthetic 19 amino acid peptide corresponding to the HBD recapitulates the characteristics and specificity of hepcidin binding to cell surface ferroportin. The bind...

  6. Identification of covalent active site inhibitors of dengue virus protease

    Science.gov (United States)

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  7. Identification of covalent active site inhibitors of dengue virus protease.

    Science.gov (United States)

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  8. Energy-dependent fitness: A quantitative model for the evolution of yeast transcription factor binding sites

    OpenAIRE

    Mustonen, Ville; Kinney, Justin; Callan, Curtis G.; Lässig, Michael

    2008-01-01

    We present a genomewide cross-species analysis of regulation for broad-acting transcription factors in yeast. Our model for binding site evolution is founded on biophysics: the binding energy between transcription factor and site is a quantitative phenotype of regulatory function, and selection is given by a fitness landscape that depends on this phenotype. The model quantifies conservation, as well as loss and gain, of functional binding sites in a coherent way. Its predictions are supported...

  9. Multiplicity of carbohydrate-binding sites in -prism fold lectins: occurrence and possible evolutionary implications

    Indian Academy of Sciences (India)

    Alok Sharma; Divya Chandran; Desh D Singh; M Vijayan

    2007-09-01

    The -prism II fold lectins of known structure, all from monocots, invariably have three carbohydrate-binding sites in each subunit/domain. Until recently, -prism I fold lectins of known structure were all from dicots and they exhibited one carbohydrate-binding site per subunit/domain. However, the recently determined structure of the -prism fold I lectin from banana, a monocot, has two very similar carbohydrate-binding sites. This prompted a detailed analysis of all the sequences appropriate for two-lectin folds and which carry one or more relevant carbohydrate-binding motifs. The very recent observation of a -prism I fold lectin, griffithsin, with three binding sites in each domain further confirmed the need for such an analysis. The analysis demonstrates substantial diversity in the number of binding sites unrelated to the taxonomical position of the plant source. However, the number of binding sites and the symmetry within the sequence exhibit reasonable correlation. The distribution of the two families of -prism fold lectins among plants and the number of binding sites in them, appear to suggest that both of them arose through successive gene duplication, fusion and divergent evolution of the same primitive carbohydrate-binding motif involving a Greek key. Analysis with sequences in individual Greek keys as independent units lends further support to this conclusion. It would seem that the preponderance of three carbohydrate-binding sites per domain in monocot lectins, particularly those with the -prism II fold, is related to the role of plant lectins in defence.

  10. Identification of Tox chromatin binding properties and downstream targets by DamID-Seq

    Directory of Open Access Journals (Sweden)

    António Miguel de Jesus Domingues

    2016-03-01

    Full Text Available In recent years, DNA adenine methyltransferase identification (DamID has emerged as a powerful tool to profile protein-DNA interaction on a genome-wide scale. While DamID has been primarily combined with microarray analyses, which limits the spatial resolution and full potential of this technique, our group was the first to combine DamID with sequencing (DamID-Seq for characterizing the binding loci and properties of a transcription factor (Tox (sequencing data available at NCBI's Gene Expression Omnibus under the accession number GSE64240. Our approach was based on the combination and optimization of several bioinformatics tools that are here described in detail. Analysis of Tox proximity to transcriptional start sites, profiling on enhancers and binding motif has allowed us to identify this transcription factor as an important new regulator of neural stem cells differentiation and newborn neurons maturation during mouse cortical development. Here we provide a valuable resource to study the role of Tox as a novel key determinant of mammalian somatic stem cells during development of the nervous and lymphatic system, in which this factor is known to be active, and describe a useful pipeline to perform DamID-Seq analyses for any other transcription factor.

  11. Identification of Tox chromatin binding properties and downstream targets by DamID-Seq.

    Science.gov (United States)

    de Jesus Domingues, António Miguel; Artegiani, Benedetta; Dahl, Andreas; Calegari, Federico

    2016-03-01

    In recent years, DNA adenine methyltransferase identification (DamID) has emerged as a powerful tool to profile protein-DNA interaction on a genome-wide scale. While DamID has been primarily combined with microarray analyses, which limits the spatial resolution and full potential of this technique, our group was the first to combine DamID with sequencing (DamID-Seq) for characterizing the binding loci and properties of a transcription factor (Tox) (sequencing data available at NCBI's Gene Expression Omnibus under the accession number GSE64240). Our approach was based on the combination and optimization of several bioinformatics tools that are here described in detail. Analysis of Tox proximity to transcriptional start sites, profiling on enhancers and binding motif has allowed us to identify this transcription factor as an important new regulator of neural stem cells differentiation and newborn neurons maturation during mouse cortical development. Here we provide a valuable resource to study the role of Tox as a novel key determinant of mammalian somatic stem cells during development of the nervous and lymphatic system, in which this factor is known to be active, and describe a useful pipeline to perform DamID-Seq analyses for any other transcription factor. PMID:26981424

  12. Towards a structural classification of phosphate binding sites in protein-nucleotide complexes: an automated all-against-all structural comparison using geometric matching.

    Science.gov (United States)

    Brakoulias, Andreas; Jackson, Richard M

    2004-08-01

    A method is described for the rapid comparison of protein binding sites using geometric matching to detect similar three-dimensional structure. The geometric matching detects common atomic features through identification of the maximum common sub-graph or clique. These features are not necessarily evident from sequence or from global structural similarity giving additional insight into molecular recognition not evident from current sequence or structural classification schemes. Here we use the method to produce an all-against-all comparison of phosphate binding sites in a number of different nucleotide phosphate-binding proteins. The similarity search is combined with clustering of similar sites to allow a preliminary structural classification. Clustering by site similarity produces a classification of binding sites for the 476 representative local environments producing ten main clusters representing half of the representative environments. The similarities make sense in terms of both structural and functional classification schemes. The ten main clusters represent a very limited number of unique structural binding motifs for phosphate. These are the structural P-loop, di-nucleotide binding motif [FAD/NAD(P)-binding and Rossman-like fold] and FAD-binding motif. Similar classification schemes for nucleotide binding proteins have also been arrived at independently by others using different methods. PMID:15211509

  13. Identification of Glucose-Binding Pockets in Human Serum Albumin Using Support Vector Machine and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ranganarayanan, Preethi; Thanigesan, Narmadha; Ananth, Vivek; Jayaraman, Valadi K; Ramakrishnan, Vigneshwar

    2016-01-01

    Human Serum Albumin (HSA) has been suggested to be an alternate biomarker to the existing Hemoglobin-A1c (HbA1c) marker for glycemic monitoring. Development and usage of HSA as an alternate biomarker requires the identification of glycation sites, or equivalently, glucose-binding pockets. In this work, we combine molecular dynamics simulations of HSA and the state-of-art machine learning method Support Vector Machine (SVM) to predict glucose-binding pockets in HSA. SVM uses the three dimensional arrangement of atoms and their chemical properties to predict glucose-binding ability of a pocket. Feature selection reveals that the arrangement of atoms and their chemical properties within the first 4Å from the centroid of the pocket play an important role in the binding of glucose. With a 10-fold cross validation accuracy of 84 percent, our SVM model reveals seven new potential glucose-binding sites in HSA of which two are exposed only during the dynamics of HSA. The predictions are further corroborated using docking studies. These findings can complement studies directed towards the development of HSA as an alternate biomarker for glycemic monitoring. PMID:26886739

  14. Site locality identification study: Hanford Site. Volume I. Methodology, guidelines, and screening

    International Nuclear Information System (INIS)

    Presented in this report are the results of the site locality identification study for the Hanford Site using a screening process. To enable evaluation of the entire Hanford Site, the screening process was applied to a somewhat larger area; i.e., the Pasco Basin. The study consisted of a series of screening steps that progressively focused on smaller areas which are within the Hanford Site and which had a higher potential for containing suitable repository sites for nuclear waste than the areas not included for further study. Five site localities, designated H-1, H-2, H-3, H-4, H-5 (Figure A), varying in size from approximately 10 to 50 square miles, were identified on the Hanford Site. It is anticipated that each site locality may contain one or more candidate sites suitable for a nuclear waste repository. The site locality identification study began with definition of objectives and the development of guidelines for screening. Three objectives were defined: (1) maximize public health and safety; (2) minimize adverse environmental and socioeconomic impacts; and (3) minimize system costs. The screening guidelines have numerical values that provided the basis for the successive reduction of the area under study and to focus on smaller areas that had a higher likelihood of containing suitable sites

  15. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  16. Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin

    Energy Technology Data Exchange (ETDEWEB)

    Ehteshami, Mehdi [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rasoulzadeh, Farzaneh [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Mahboob, Soltanali [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rashidi, Mohammad-Reza, E-mail: rashidi@tbzmed.ac.ir [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of)

    2013-03-15

    Binding of a drug to the serum albumins as major serum transport proteins can be influenced by other ligands leading to alteration of its pharmacological properties. In the present study, binding characteristics of 6-mercaptopurine (6-MP) with bovine serum albumin (BSA) together with its displacement from its binding site by quercetin and rutin have been investigated by the spectroscopic method. According to the binding parameters, a static quenching component in overall dynamic quenching process is operative in the interaction between 6-MP and BSA. The binding of 6-MP to BSA occurred spontaneously due to entropy-driven hydrophobic interactions. The synchronous fluorescence spectroscopy study revealed that the secondary structure of BSA is changed in the presence of 6-MP and both Tyr and Trp residues participate in the interaction between 6-MP and BSA with the later one being more dominant. The binding constant value of 6-MP-BSA in the presence of quercetin and rutin increased. 6-MP was displaced by ibuprofen indicating that the binding site of 6-MP on albumin is site II. Therefore, the change of the pharmacokinetic and pharmacodynamic properties of 6-MP by quercetin and rutin through alteration of binding capacity of 6-MP to the serum albumin cannot be ruled out. In addition, the displacement study showed that 6-MP is located in site II of BSA. - Highlights: Black-Right-Pointing-Pointer Participation of both Tyr and particularly Trp residues in the interaction between 6-MP and BSA. Black-Right-Pointing-Pointer Involvement of a static quenching component in an overall dynamic quenching process. Black-Right-Pointing-Pointer Ability of quercetin and rutin to change the binding constants of 6-MP-BSA complex. Black-Right-Pointing-Pointer Binding of 6-MP to BSA through entropy-driven hydrophobic interactions.

  17. Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin

    International Nuclear Information System (INIS)

    Binding of a drug to the serum albumins as major serum transport proteins can be influenced by other ligands leading to alteration of its pharmacological properties. In the present study, binding characteristics of 6-mercaptopurine (6-MP) with bovine serum albumin (BSA) together with its displacement from its binding site by quercetin and rutin have been investigated by the spectroscopic method. According to the binding parameters, a static quenching component in overall dynamic quenching process is operative in the interaction between 6-MP and BSA. The binding of 6-MP to BSA occurred spontaneously due to entropy-driven hydrophobic interactions. The synchronous fluorescence spectroscopy study revealed that the secondary structure of BSA is changed in the presence of 6-MP and both Tyr and Trp residues participate in the interaction between 6-MP and BSA with the later one being more dominant. The binding constant value of 6-MP–BSA in the presence of quercetin and rutin increased. 6-MP was displaced by ibuprofen indicating that the binding site of 6-MP on albumin is site II. Therefore, the change of the pharmacokinetic and pharmacodynamic properties of 6-MP by quercetin and rutin through alteration of binding capacity of 6-MP to the serum albumin cannot be ruled out. In addition, the displacement study showed that 6-MP is located in site II of BSA. - Highlights: ► Participation of both Tyr and particularly Trp residues in the interaction between 6-MP and BSA. ► Involvement of a static quenching component in an overall dynamic quenching process. ► Ability of quercetin and rutin to change the binding constants of 6-MP–BSA complex. ► Binding of 6-MP to BSA through entropy-driven hydrophobic interactions

  18. Mapping the Binding Site of the Inhibitor Tariquidar That Stabilizes the First Transmembrane Domain of P-glycoprotein.

    Science.gov (United States)

    Loo, Tip W; Clarke, David M

    2015-12-01

    ABC (ATP-binding cassette) transporters are clinically important because drug pumps like P-glycoprotein (P-gp, ABCB1) confer multidrug resistance and mutant ABC proteins are responsible for many protein-folding diseases such as cystic fibrosis. Identification of the tariquidar-binding site has been the subject of intensive molecular modeling studies because it is the most potent inhibitor and corrector of P-gp. Tariquidar is a unique P-gp inhibitor because it locks the pump in a conformation that blocks drug efflux but activates ATPase activity. In silico docking studies have identified several potential tariquidar-binding sites. Here, we show through cross-linking studies that tariquidar most likely binds to sites within the transmembrane (TM) segments located in one wing or at the interface between the two wings (12 TM segments form 2 divergent wings). We then introduced arginine residues at all positions in the 12 TM segments (223 mutants) of P-gp. The rationale was that a charged residue in the drug-binding pocket would disrupt hydrophobic interaction with tariquidar and inhibit its ability to rescue processing mutants or stimulate ATPase activity. Arginines introduced at 30 positions significantly inhibited tariquidar rescue of a processing mutant and activation of ATPase activity. The results suggest that tariquidar binds to a site within the drug-binding pocket at the interface between the TM segments of both structural wings. Tariquidar differed from other drug substrates, however, as it stabilized the first TM domain. Stabilization of the first TM domain appears to be a key mechanism for high efficiency rescue of ABC processing mutants that cause disease. PMID:26507655

  19. Knowledge-based annotation of small molecule binding sites in proteins

    Directory of Open Access Journals (Sweden)

    Panchenko Anna R

    2010-07-01

    Full Text Available Abstract Background The study of protein-small molecule interactions is vital for understanding protein function and for practical applications in drug discovery. To benefit from the rapidly increasing structural data, it is essential to improve the tools that enable large scale binding site prediction with greater emphasis on their biological validity. Results We have developed a new method for the annotation of protein-small molecule binding sites, using inference by homology, which allows us to extend annotation onto protein sequences without experimental data available. To ensure biological relevance of binding sites, our method clusters similar binding sites found in homologous protein structures based on their sequence and structure conservation. Binding sites which appear evolutionarily conserved among non-redundant sets of homologous proteins are given higher priority. After binding sites are clustered, position specific score matrices (PSSMs are constructed from the corresponding binding site alignments. Together with other measures, the PSSMs are subsequently used to rank binding sites to assess how well they match the query and to better gauge their biological relevance. The method also facilitates a succinct and informative representation of observed and inferred binding sites from homologs with known three-dimensional structures, thereby providing the means to analyze conservation and diversity of binding modes. Furthermore, the chemical properties of small molecules bound to the inferred binding sites can be used as a starting point in small molecule virtual screening. The method was validated by comparison to other binding site prediction methods and to a collection of manually curated binding site annotations. We show that our method achieves a sensitivity of 72% at predicting biologically relevant binding sites and can accurately discriminate those sites that bind biological small molecules from non-biological ones. Conclusions

  20. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    International Nuclear Information System (INIS)

    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, [3H] dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for [3H] [D-Ala2, D-Leu5]enkephalin and [3H]ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites

  1. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Nielsen, Morten M.; Christiansen, Camilla;

    2015-01-01

    Carbohydrate converting enzymes often possess extra substrate binding regions that enhance their activity. These can be found either on separate domains termed carbohydrate binding modules or as so-called surface binding sites (SBSs) situated on the catalytic domain. SBSs are common in starch...

  2. Active site and laminarin binding in glycoside hydrolase family 55.

    Science.gov (United States)

    Bianchetti, Christopher M; Takasuka, Taichi E; Deutsch, Sam; Udell, Hannah S; Yik, Eric J; Bergeman, Lai F; Fox, Brian G

    2015-05-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  3. Identification of Enhancer Binding Proteins Important for Myxococcus xanthus Development▿

    OpenAIRE

    Giglio, Krista M.; Eisenstatt, Jessica; Garza, Anthony G.

    2009-01-01

    Enhancer binding proteins (EBPs) control the temporal expression of fruiting body development-associated genes in Myxococcus xanthus. Eleven previously uncharacterized EBP genes were inactivated. Six EBP gene mutations produced minor but reproducible defects in fruiting body development. One EBP gene mutation that affected A-motility produced strong developmental defects.

  4. Using circular permutation analysis to redefine the R17 coat protein binding site.

    Science.gov (United States)

    Gott, J M; Pan, T; LeCuyer, K A; Uhlenbeck, O C

    1993-12-14

    The bacteriophage R17 coat protein binding site consists of an RNA hairpin with a single purine nucleotide bulge in the helical stem. Circular permutation analysis (CPA) was used to examine binding effects caused by a single break in the phosphodiester backbone. This method revealed that breakage of all but one phosphodiester bond within a well-defined binding site substantially reduced the binding affinity. This is probably due to destabilization of the hairpin structure upon breaking the ribose phosphates at these positions. One circularly permuted isomer with the 5' and 3' ends at the bulged nucleotide bound with wild-type affinity. However, extending the 5' end of this CP isomer greatly reduces binding, making it unlikely that this circularly permuted binding site will be active when embedded in a larger RNA. CPA also locates the 5' and 3' boundaries of protein binding sites on the RNA. The 5' boundary of the R17 coat protein site as defined by CPA was two nucleotides shorter (nucleotides -15 to +2) than the previously determined site (-17 to +2). The smaller binding site was verified by terminal truncation experiments. A minimal-binding fragment (-14 to +2) was synthesized and was found to bind tightly to the coat protein. The site size determined by 3-ethyl-1-nitrosourea-modification interference was larger at the 5' end (-16 to +1), probably due, however, to steric effects of ethylation of phosphate oxygens. Thus, the apparent site size of a protein binding site is dependent upon the method used. PMID:7504949

  5. Evidence for a non-opioid sigma binding site din the guinea-pig myenteric plexus

    International Nuclear Information System (INIS)

    The presence of a binding site to (+)-(3H)SKF 10,047 was demonstrated in a guinea-pig myenteric plexus (MYP) membrane preparation. Specific binding to this receptor was saturable, reversible, linear with protein concentration and consisted of two components, a high affinity site and a low affinity site. Morphine and naloxone 10-4M were unable to displace (+)-(3H)SKF 10,047 binding. Haloperidol, imipramine, ethylketocyclazocine and propranolol were among the most potent compounds to inhibit this specific binding. These results suggest the presence of a non-opioid haloperidol sensitive sigma receptor in the MYP of the guinea-pig

  6. Evidence for a non-opioid sigma binding site din the guinea-pig myenteric plexus

    Energy Technology Data Exchange (ETDEWEB)

    Roman, F.; Pascaud, X.; Vauche, D.; Junien, J.

    1988-01-01

    The presence of a binding site to (+)-(/sup 3/H)SKF 10,047 was demonstrated in a guinea-pig myenteric plexus (MYP) membrane preparation. Specific binding to this receptor was saturable, reversible, linear with protein concentration and consisted of two components, a high affinity site and a low affinity site. Morphine and naloxone 10/sup -4/M were unable to displace (+)-(/sup 3/H)SKF 10,047 binding. Haloperidol, imipramine, ethylketocyclazocine and propranolol were among the most potent compounds to inhibit this specific binding. These results suggest the presence of a non-opioid haloperidol sensitive sigma receptor in the MYP of the guinea-pig.

  7. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    OpenAIRE

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L; Shi, Lei; Gracia, Luis; Raniszewska, Klaudia; Newman, Amy Hauck; Javitch, Jonathan A.; Weinstein, Harel; Gether, Ulrik; Loland, Claus J

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog LeuT. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopami...

  8. A systematic, large-scale comparison of transcription factor binding site models

    OpenAIRE

    Hombach, Daniela; Schwarz, Jana Marie; Peter N. Robinson; Schuelke, Markus; Seelow, Dominik

    2016-01-01

    Background The modelling of gene regulation is a major challenge in biomedical research. This process is dominated by transcription factors (TFs) and mutations in their binding sites (TFBSs) may cause the misregulation of genes, eventually leading to disease. The consequences of DNA variants on TF binding are modelled in silico using binding matrices, but it remains unclear whether these are capable of accurately representing in vivo binding. In this study, we present a systematic comparison ...

  9. Algorithm for prediction of tumour suppressor p53 affinity for binding sites in DNA

    OpenAIRE

    Veprintsev, Dmitry B.; Fersht, Alan R.

    2008-01-01

    The tumour suppressor p53 is a transcription factor that binds DNA in the vicinity of the genes it controls. The affinity of p53 for specific binding sites relative to other DNA sequences is an inherent driving force for specificity, all other things being equal. We measured the binding affinities of systematically mutated consensus p53 DNA-binding sequences using automated fluorescence anisotropy titrations. Based on measurements of the effects of every possible single base-pair substitution...

  10. Identification of a binding protein to the X gene promoter region of hepatitis B virus.

    Science.gov (United States)

    Nakamura, I; Koike, K

    1992-12-01

    The X protein of hepatitis B virus (HBV) is a transactivator to homologous and heterologous viral and cellular transcriptional regulatory elements. One sequence-specific binding protein, whose binding site located from nt 1102 to nt 1117 of HBV DNA, was identified by mobility shift assay and DNase I foot-printing analysis. A CAT assay experiment demonstrated this 16-bp binding site to have a promoter activity in the X gene transcription. The 58-bp DNA fragment (nt 1085 to nt 1142), which contains the above binding site, could be enhanced by the HBV enhancer. Mobility shift assay using the mutated 58-bp DNA fragments as probes, showed that the mutation, which damaged the palindrome structure between nt 1105 and nt 1112, resulted in loss of the binding activity. This mutation also remarkably reduced the promoter activity. The binding site differed from the target sequences of known transcriptional factors. This factor was thus concluded to be a binding protein to the X gene promoter (X-PBP) of HBV. A homology search demonstrated the binding site to be highly homologous to the promoter elements of human laminin receptor (2H5epitope) and lipoprotein receptor-related protein (LRP) genes. PMID:1448911

  11. rVISTA for Comparative Sequence-Based Discovery of Functional Transcription Factor Binding Sites

    Energy Technology Data Exchange (ETDEWEB)

    Loots, Gabriela G.; Ovcharenko, Ivan; Pachter, Lior; Dubchak, Inna; Rubin, Edward M.

    2002-03-08

    Identifying transcriptional regulatory elements represents a significant challenge in annotating the genomes of higher vertebrates. We have developed a computational tool, rVISTA, for high-throughput discovery of cis-regulatory elements that combines transcription factor binding site prediction and the analysis of inter-species sequence conservation. Here, we illustrate the ability of rVISTA to identify true transcription factor binding sites through the analysis of AP-1 and NFAT binding sites in the 1 Mb well-annotated cytokine gene cluster1 (Hs5q31; Mm11). The exploitation of orthologous human-mouse data set resulted in the elimination of 95 percent of the 38,000 binding sites predicted upon analysis of the human sequence alone, while it identified 87 percent of the experimentally verified binding sites in this region.

  12. Identification of lectin-binding proteins in Chlamydia species.

    OpenAIRE

    Swanson, A F; Kuo, C. C.

    1990-01-01

    Lectin-binding proteins of chlamydiae were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. All three Chlamydia species tested expressed two proteins when whole-elementary-body lysates were reacted with the biotinylated lectin Dolichos biflorus agglutinin. The protein with a molecular mass of 18 kilodaltons (kDa) responded strongly compared with a higher-molecular-mass protein that varied from 27 to 32 kDa with each chlamydia strain tested. Among six l...

  13. Identification of covalent active site inhibitors of dengue virus protease

    Directory of Open Access Journals (Sweden)

    Koh-Stenta X

    2015-12-01

    Full Text Available Xiaoying Koh-Stenta,1 Joma Joy,1 Si Fang Wang,1 Perlyn Zekui Kwek,1 John Liang Kuan Wee,1 Kah Fei Wan,2 Shovanlal Gayen,1 Angela Shuyi Chen,1 CongBao Kang,1 May Ann Lee,1 Anders Poulsen,1 Subhash G Vasudevan,3 Jeffrey Hill,1 Kassoum Nacro11Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR, Singapore; 2Novartis Institute for Tropical Diseases, Singapore; 3Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, SingaporeAbstract: Dengue virus (DENV protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described.Keywords: flavivirus protease, small molecule optimization, covalent inhibitor, active site binding, pyrazole ester derivatives

  14. Identification of potential transuranic waste tanks at the Hanford Site

    International Nuclear Information System (INIS)

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document

  15. Identification of Essential Cannabinoid-binding Domains: STRUCTURAL INSIGHTS INTO EARLY DYNAMIC EVENTS IN RECEPTOR ACTIVATION*

    OpenAIRE

    Shim, Joong-Youn; Bertalovitz, Alexander C.; Kendall, Debra A.

    2011-01-01

    The classical cannabinoid agonist HU210, a structural analog of (−)-Δ9-tetrahydrocannabinol, binds to brain cannabinoid (CB1) receptors and activates signal transduction pathways. To date, an exact molecular description of the CB1 receptor is not yet available. Utilizing the minor binding pocket of the CB1 receptor as the primary ligand interaction site, we explored HU210 binding using lipid bilayer molecular dynamics (MD) simulations. Among the potential ligand contact residues, we identifie...

  16. Identification and mapping of DNA binding proteins target sequences in long genomic regions by two-dimensional EMSA.

    Science.gov (United States)

    Chernov, Igor P; Akopov, Sergey B; Nikolaev, Lev G; Sverdlov, Eugene D

    2006-07-01

    Specific binding of nuclear proteins, in particular transcription factors, to target DNA sequences is a major mechanism of genome functioning and gene expression regulation in eukaryotes. Therefore, identification and mapping specific protein target sites (PTS) is necessary for understanding genomic regulation. Here we used a novel two-dimensional electrophoretic mobility shift assay (2D-EMSA) procedure for identification and mapping of 52 PTS within a 563-kb human genome region located between the FXYD5 and TZFP genes. The PTS occurred with approximately equal frequency within unique and repetitive genomic regions. PTS belonging to unique sequences tended to group together within gene introns and close to their 5' and 3' ends, whereas PTS located within repeats were evenly distributed between transcribed and intragenic regions. PMID:16869519

  17. A general pairwise interaction model provides an accurate description of in vivo transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Marc Santolini

    Full Text Available The identification of transcription factor binding sites (TFBSs on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs, in which each DNA base pair contributes independently to the transcription factor (TF binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM, a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting

  18. Common Internal Allosteric Network Links Anesthetic Binding Sites in a Pentameric Ligand-Gated Ion Channel.

    Science.gov (United States)

    Joseph, Thomas T; Mincer, Joshua S

    2016-01-01

    General anesthetics bind reversibly to ion channels, modifying their global conformational distributions, but the underlying atomic mechanisms are not completely known. We examine this issue by way of the model protein Gloeobacter violaceous ligand-gated ion channel (GLIC) using computational molecular dynamics, with a coarse-grained model to enhance sampling. We find that in flooding simulations, both propofol and a generic particle localize to the crystallographic transmembrane anesthetic binding region, and that propofol also localizes to an extracellular region shared with the crystallographic ketamine binding site. Subsequent simulations to probe these binding modes in greater detail demonstrate that ligand binding induces structural asymmetry in GLIC. Consequently, we employ residue interaction correlation analysis to describe the internal allosteric network underlying the coupling of ligand and distant effector sites necessary for conformational change. Overall, the results suggest that the same allosteric network may underlie the actions of various anesthetics, regardless of binding site. PMID:27403526

  19. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.

    Directory of Open Access Journals (Sweden)

    Xin He

    Full Text Available BACKGROUND: How transcription factors (TFs interact with cis-regulatory sequences and interact with each other is a fundamental, but not well understood, aspect of gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: We present a computational method to address this question, relying on the established biophysical principles. This method, STAP (sequence to affinity prediction, takes into account all combinations and configurations of strong and weak binding sites to analyze large scale transcription factor (TF-DNA binding data to discover cooperative interactions among TFs, infer sequence rules of interaction and predict TF target genes in new conditions with no TF-DNA binding data. The distinctions between STAP and other statistical approaches for analyzing cis-regulatory sequences include the utility of physical principles and the treatment of the DNA binding data as quantitative representation of binding strengths. Applying this method to the ChIP-seq data of 12 TFs in mouse embryonic stem (ES cells, we found that the strength of TF-DNA binding could be significantly modulated by cooperative interactions among TFs with adjacent binding sites. However, further analysis on five putatively interacting TF pairs suggests that such interactions may be relatively insensitive to the distance and orientation of binding sites. Testing a set of putative Nanog motifs, STAP showed that a novel Nanog motif could better explain the ChIP-seq data than previously published ones. We then experimentally tested and verified the new Nanog motif. A series of comparisons showed that STAP has more predictive power than several state-of-the-art methods for cis-regulatory sequence analysis. We took advantage of this power to study the evolution of TF-target relationship in Drosophila. By learning the TF-DNA interaction models from the ChIP-chip data of D. melanogaster (Mel and applying them to the genome of D. pseudoobscura (Pse, we found that only about half of the

  20. Multiple sup 3 H-oxytocin binding sites in rat myometrial plasma membranes

    Energy Technology Data Exchange (ETDEWEB)

    Crankshaw, D.; Gaspar, V.; Pliska, V. (McMaster Univ., Hamilton, Ontario, (Canada))

    1990-01-01

    The affinity spectrum method has been used to analyse binding isotherms for {sup 3}H-oxytocin to rat myometrial plasma membranes. Three populations of binding sites with dissociation constants (Kd) of 0.6-1.5 x 10(-9), 0.4-1.0 x 10(-7) and 7 x 10(-6) mol/l were identified and their existence verified by cluster analysis based on similarities between Kd, binding capacity and Hill coefficient. When experimental values were compared to theoretical curves constructed using the estimated binding parameters, good fits were obtained. Binding parameters obtained by this method were not influenced by the presence of GTP gamma S (guanosine-5'-O-3-thiotriphosphate) in the incubation medium. The binding parameters agree reasonably well with those found in uterine cells, they support the existence of a medium affinity site and may allow for an explanation of some of the discrepancies between binding and response in this system.

  1. Identification of Arsenic Direct-Binding Proteins in Acute Promyelocytic Leukaemia Cells

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-11-01

    Full Text Available The identification of arsenic direct-binding proteins is essential for determining the mechanism by which arsenic trioxide achieves its chemotherapeutic effects. At least two cysteines close together in the amino acid sequence are crucial to the binding of arsenic and essential to the identification of arsenic-binding proteins. In the present study, arsenic binding proteins were pulled down with streptavidin and identified using a liquid chromatograph-mass spectrometer (LC-MS/MS. More than 40 arsenic-binding proteins were separated, and redox-related proteins, glutathione S-transferase P1 (GSTP1, heat shock 70 kDa protein 9 (HSPA9 and pyruvate kinase M2 (PKM2, were further studied using binding assays in vitro. Notably, PKM2 has a high affinity for arsenic. In contrast to PKM2, GSTP1and HSPA9 did not combine with arsenic directly in vitro. These observations suggest that arsenic-mediated acute promyelocytic leukaemia (APL suppressive effects involve PKM2. In summary, we identified several arsenic binding proteins in APL cells and investigated the therapeutic mechanisms of arsenic trioxide for APL. Further investigation into specific signal pathways by which PKM2 mediates APL developments may lead to a better understanding of arsenic effects on APL.

  2. Identification of protein binding in pictorial art Cuban

    International Nuclear Information System (INIS)

    In this paper were implemented microanalysis methodologies by histochemical analysis, and infrared spectroscopy to determine the nature of the binder in paintings and Gas Chromatography (GC) coupled to Mass Spectrometry (MS) for identification of protein binders of common use in tempera technique with the aim of having these methods as part of the identification of artistic materials in Cuban cultural heritage carried out by Archaeometry Laboratory of Havana city's Historian Cabinet. The methodologies implemented were evaluated using model samples of traditional painting techniques with variable protein binder: yolk, egg white, casein, nut oil and animal glue; ageing for 5 years. The models samples were correctly identified. It was determined the interference of pigments with the presence of nitrogen by histochemical analysis with Amido Black dye. IR spectroscopy technique allowed to differentiate between oily and mixed (oil plus protein) techniques and tempera with yolk. Oily technique was identified in wall paintings of the New San Francisco church (XIX century) and the Obrapia House (XVII century) and the technique of tempera with animal glue in the polychrome of the XVIII century which represents St. John the Evangelist belonging to the San Juan de Letran church

  3. Prediction of the key binding site of odorant-binding protein of Holotrichia oblita Faldermann (Coleoptera: Scarabaeida).

    Science.gov (United States)

    Zhuang, X; Wang, Q; Wang, B; Zhong, T; Cao, Y; Li, K; Yin, J

    2014-06-01

    The scarab beetle Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae) is a predominant underground pest in the northern parts of China, and its larvae (grubs) cause great economic losses because of its wide range of host plants and covert habitats. Environmentally friendly strategies for controlling adults would have novel and broad potential applications. One potential pest management measure is the regulation of olfactory chemoreception to control target insect pests. In the process of olfactory recognition, odorant-binding proteins (OBPs) are believed to carry hydrophobic odorants from the environment to the surface of olfactory receptor neurons. To obtain a better understanding of the relationship between OBP structures and their ligands, homology modelling and molecular docking have been conducted on the interaction between HoblOBP1 and hexyl benzoate in the present study. Based on the results, site-directed mutagenesis and binding experiments were combined to describe the binding sites of HoblOBP1 and to explore its ligand-binding mechanism. After homology modelling of HoblOBP1, it was found that the three-dimensional structure of HoblOBP1 consists of six α-helices and three disulphide bridges that connect the helices, and the hydrophobic pockets are both composed of five helices. Based on the docking study, we found that van der Waals interactions and hydrophobic interactions are both important in the bonding between HoblOBP1 and hexyl benzoate. Intramolecular residues formed the hydrogen bonds in the C terminus of the protein and the bonds are crucial for the ligand-binding specificity. Finally, MET48, ILE80 and TYR111 are binding sites predicted for HoblOBP1. Using site-directed mutagenesis and fluorescence assays, it was found that ligands could not be recognized by mutant of Tyr111. A possible explanation is that the compound could not be recognized by the mutant, and remains in the binding cavity because of the loss of the intramolecular

  4. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin.

    Science.gov (United States)

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Ando, Hiromune; Kato, Ryuichi

    2016-08-26

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity. PMID:27318092

  5. Computational approaches for identification of conserved/unique binding pockets in the A chain of ricin

    Energy Technology Data Exchange (ETDEWEB)

    Ecale Zhou, C L; Zemla, A T; Roe, D; Young, M; Lam, M; Schoeniger, J; Balhorn, R

    2005-01-29

    Specific and sensitive ligand-based protein detection assays that employ antibodies or small molecules such as peptides, aptamers, or other small molecules require that the corresponding surface region of the protein be accessible and that there be minimal cross-reactivity with non-target proteins. To reduce the time and cost of laboratory screening efforts for diagnostic reagents, we developed new methods for evaluating and selecting protein surface regions for ligand targeting. We devised combined structure- and sequence-based methods for identifying 3D epitopes and binding pockets on the surface of the A chain of ricin that are conserved with respect to a set of ricin A chains and unique with respect to other proteins. We (1) used structure alignment software to detect structural deviations and extracted from this analysis the residue-residue correspondence, (2) devised a method to compare corresponding residues across sets of ricin structures and structures of closely related proteins, (3) devised a sequence-based approach to determine residue infrequency in local sequence context, and (4) modified a pocket-finding algorithm to identify surface crevices in close proximity to residues determined to be conserved/unique based on our structure- and sequence-based methods. In applying this combined informatics approach to ricin A we identified a conserved/unique pocket in close proximity (but not overlapping) the active site that is suitable for bi-dentate ligand development. These methods are generally applicable to identification of surface epitopes and binding pockets for development of diagnostic reagents, therapeutics, and vaccines.

  6. An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins†

    OpenAIRE

    He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E.

    2011-01-01

    Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional 1H-15N NMR signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without solving the protein-ligand complex structures...

  7. Evidence for two distinct binding sites for tau on microtubules

    Science.gov (United States)

    Makrides, Victoria; Massie, Michelle R.; Feinstein, Stuart C.; Lew, John

    2004-01-01

    The microtubule-associated protein tau regulates diverse and essential microtubule functions, from the nucleation and promotion of microtubule polymerization to the regulation of microtubule polarity and dynamics, as well as the spacing and bundling of axonal microtubules. Thermodynamic studies show that tau interacts with microtubules in the low- to mid-nanomolar range, implying moderate binding affinity. At the same time, it is well established that microtubule-bound tau does not undergo exchange with the bulk medium readily, suggesting that the tau-microtubule interaction is essentially irreversible. Given this dilemma, we investigated the mechanism of interaction between tau and microtubules in kinetic detail. Stopped-flow kinetic analysis reveals moderate binding affinity between tau and preassembled microtubules and rapid dissociation/association kinetics. In contrast, when microtubules are generated by copolymerization of tubulin and tau, a distinct population of microtubule-bound tau is observed, the binding of which seems irreversible. We propose that reversible binding occurs between tau and the surface of preassembled microtubules, whereas irreversible binding results when tau is coassembled with tubulin into a tau-microtubule copolymer. Because the latter is expected to be physiologically relevant, its characterization is of central importance. PMID:15096589

  8. Differential modulation by cations of sigma and phencyclidine binding sites in rat brain

    International Nuclear Information System (INIS)

    The present investigation attempted to differentiate haloperidol-sensitive sigma sites (sigma H) from phencyclidine (PCP) binding sites in rat brain membranes. We studied the effects of several cations at physiologically relevant concentrations on the binding of radioligands selective for sigma H sites ([3H]haloperidol, [3H](+)3-PPP**), and [3H](+)SKF10,047, or for PCP sites ([3H]PCP and [3H]TCP). The PCP sites displayed a markedly greater sensitivity to cations than sigma H sites. This property was reflected by a greater extent of inhibition of the binding of PCP-selective relative to sigma H-selective ligands at a given cation concentration, as well as by lower IC50's and by steeper slopes of the cation dose-response curves. Divalent cations were approximately 100 times more potent than monovalent cations. All cations were inhibitory, except Sr2+ and Ba2+ which, at micromolar concentrations, enhanced PCP binding but not sigma H binding. Thus, PCP-selective sites appeared to be distinct from sigma H sites with regards to several aspects of cation modulation. This is consistent with the view that PCP and sigma H sites are distinct molecular entities. Further, the marked cation sensitivity of the PCP site is consistent with the current hypothesis according to which the PCP site is linked to the N-methyl-D-aspartate (NMDA) receptor-cation channel complex

  9. Interaction of Palmitic Acid with Metoprolol Succinate at the Binding Sites of Bovine Serum Albumin

    OpenAIRE

    Mashiur Rahman; Farzana Prianka; Mohammad Shohel; Md. Abdul Mazid

    2014-01-01

    Purpose: The aim of this study was to characterize the binding profile as well as to notify the interaction of palmitic acid with metoprolol succinate at its binding site on albumin. Methods: The binding of metoprolol succinate to bovine serum albumin (BSA) was studied by equilibrium dialysis method (ED) at 27°C and pH 7.4, in order to have an insight in the binding chemistry of the drug to BSA in presence and absence of palmitic acid. The study was carried out using ranitidine as site-1 a...

  10. Resistance to Linezolid Caused by Modifications at Its Binding Site on the Ribosome

    DEFF Research Database (Denmark)

    Long, Katherine S.; Vester, Birte

    2012-01-01

    linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation...... evidence has been presented to confirm this. Furthermore, recent findings on the Cfr methyltransferase underscore the modification of 23S rRNA as a highly effective and transferable form of linezolid resistance. On a positive note, detailed knowledge of the linezolid binding site has facilitated the design...

  11. Characterization and autoradiographic localization of multiple tachykinin binding sites in gastrointestinal tract and bladder

    Energy Technology Data Exchange (ETDEWEB)

    Burcher, E.; Buck, S.H.; Lovenberg, W.; O' Donohue, T.L.

    1986-03-01

    Binding sites for the (125I)Bolton-Hunter-labeled tachykinins substance K (BHSK), eledoisin (BHE) and substance P (BHSP) were investigated using crude membrane suspensions and autoradiography. In smooth muscle membranes from guinea-pig small intestine and rat duodenum, specific binding of BHSK was saturable and reversible, showing a single class of sites with a KD of 1 to 3 nM and maximum number of specific binding sites of 1 to 2 fmol/mg of wet weight tissue. Pharmacological characterization of this binding revealed a novel receptor site (K) with affinity for substance K greater than kassinin greater than or equal to eledoisin greater than neuromedin K greater than substance P greater than physalaemin. Inhibition of the binding of BHSK in membranes from mouse urinary bladder exhibited a similar K-type pattern. In rat duodenum and mouse bladder membranes, the binding of BHE was inhibited by substance K greater than kassinin greater than eledoisin greater than neuromedin K greater than substance P greater than physalaemin indicating the same receptor site as for BHSK. In rat cerebral cortex membranes BHE binding was inhibited by neuromedin K = kassinin = eledoisin greater than physalaemin greater than substance K greater than substance P indicating a definitive tachykinin E receptor site. The same displacement pattern of BHE binding was also detected in longitudinal muscle membranes from the guinea-pig small intestine. In mouse bladder membranes and in rat and guinea-pig intestine, the binding of BHSP was inhibited by substance P greater than physalaemin greater than substance K greater than or equal to eledoisin = kassinin greater than neuromedin K indicating a definitive tachykinin P receptor site. Autoradiographic binding sites for both BHSK and BHSP were seen in circular muscle of the rat stomach, small intestine and colon and in circular and longitudinal muscle of the guinea-pig small intestine and colon.

  12. Location and nature of calcium-binding sites in salivary acidic proline-rich phosphoproteins

    International Nuclear Information System (INIS)

    The location of the calcium-binding sites in the human acidic proline-rich proteins, salivary proteins A and C, was determined by equilibrium dialysis of the tryptic peptides with buffers containing 45Ca. All the calcium-binding sites are located in the NH2-terminal tryptic peptide (TX peptide). The nature of the calcium binding sites in the TX peptide and native salivary proteins A and C, as well as dephosphorylated proteins was compared. Two types of sites can be distinguished in peptide TX. Type I sites have an apparent dissociation constant (K) of 38 μM and are responsible for the binding of 2.6 mol of Ca/mol of peptide. The corresponding figures for Type II sites are 780 μM and 5.3 mol of Ca/mol of peptide. In the native proteins, the amount of calcium bound at the type II sites decreases to 3.9 mol of Ca/mol of proteins A and C and K increases to 1100 μM. The amount of calcium bound at type I sites decreases to 1.5 mol/mol of protein A and 0.6 mol/mol of protein C, but there is no change in K. Dephosphorylation affects the calcium binding at both types of sites. The experiments indicate that the COOH-terminal parts of the native proteins affect the number and the nature of the protein calcium-binding sites. Proton and phosphorous NMR data demonstrate that β-COOH in aspartic acid, as well as phosphoserine, are part of the calcium-binding sites. The difference in calcium binding to salivary proteins A and C may be due at least partially to differences in the environment of one or more aspartic acids

  13. Location and nature of calcium-binding sites in salivary acidic proline-rich phosphoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Bennick, A. (Univ. of Toronto, Ontario); McLaughlin, A.C.; Grey, A.A.; Madapallimattam, G.

    1981-05-25

    The location of the calcium-binding sites in the human acidic proline-rich proteins, salivary proteins A and C, was determined by equilibrium dialysis of the tryptic peptides with buffers containing /sup 45/Ca. All the calcium-binding sites are located in the NH/sub 2/-terminal tryptic peptide (TX peptide). The nature of the calcium binding sites in the TX peptide and native salivary proteins A and C, as well as dephosphorylated proteins was compared. Two types of sites can be distinguished in peptide TX. Type I sites have an apparent dissociation constant (K) of 38 ..mu..M and are responsible for the binding of 2.6 mol of Ca/mol of peptide. The corresponding figures for Type II sites are 780 ..mu..M and 5.3 mol of Ca/mol of peptide. In the native proteins, the amount of calcium bound at the type II sites decreases to 3.9 mol of Ca/mol of proteins A and C and K increases to 1100 ..mu..M. The amount of calcium bound at type I sites decreases to 1.5 mol/mol of protein A and 0.6 mol/mol of protein C, but there is no change in K. Dephosphorylation affects the calcium binding at both types of sites. The experiments indicate that the COOH-terminal parts of the native proteins affect the number and the nature of the protein calcium-binding sites. Proton and phosphorous NMR data demonstrate that ..beta..-COOH in aspartic acid, as well as phosphoserine, are part of the calcium-binding sites. The difference in calcium binding to salivary proteins A and C may be due at least partially to differences in the environment of one or more aspartic acids.

  14. Activation of brown adipose tissue mitochondrial GDP binding sites

    International Nuclear Information System (INIS)

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of [3H]-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time

  15. Activation of brown adipose tissue mitochondrial GDP binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  16. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    Science.gov (United States)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  17. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry.

    Science.gov (United States)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects. Graphical Abstract ᅟ. PMID:27112153

  18. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    Science.gov (United States)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-04-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  19. Identification of a proline-binding motif regulating CD2-triggered T lymphocyte activation

    OpenAIRE

    Nishizawa, Kazuhisa; Freund, Christian; Li, Jing; Wagner, Gerhard; Reinherz, Ellis L.

    1998-01-01

    An intracellular protein termed CD2 binding protein 2 (CD2BP2), which binds to a site containing two PPPGHR segments within the cytoplasmic region of CD2, was identified. Mutagenesis and NMR analysis demonstrated that the CD2 binding region of CD2BP2 includes a 17-aa motif (GPY[orF]xxxxM[orV]xxWxxx GYF), also found in several yeast and Caenorhabditis elegans proteins of unknown function. In Jurkat T cells, over-expression of the isolated CD2BP2 domain binding to CD2 enhances the production of...

  20. SITE-DIRECTED MUTAGENESIS OF PROPOSED ACTIVE-SITE RESIDUES OF PENICILLIN-BINDING PROTEIN-5 FROM ESCHERICHIA-COLI

    NARCIS (Netherlands)

    VANDERLINDEN, MPG; DEHAAN, L; DIDEBERG, O; KECK, W

    1994-01-01

    Alignment of the amino acid sequence of penicillin-binding protein 5 (PBP5) with the sequences of other members of the family of active-site-serine penicillin-interacting enzymes predicted the residues playing a role in the catalytic mechanism of PBP5. Apart from the active-site (Ser(44)), Lys(47),

  1. Leveraging cross-species transcription factor binding site patterns

    DEFF Research Database (Denmark)

    Claussnitzer, Melina; Dankel, Simon N; Klocke, Bernward;

    2014-01-01

    Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to...

  2. Investigation of the metal binding site in methionine aminopeptidase by density functional theory

    DEFF Research Database (Denmark)

    Jørgensen, Anne Techau; Norrby, Per-Ola; Liljefors, Tommy

    2002-01-01

    All methionine aminopeptidases exhibit the same conserved metal binding site. The structure of this site with either Co2+ ions or Zn2+ ions was investigated using density functional theory. The calculations showed that the structure of the site was not influenced by the identity of the metal ions...... bridging oxygen, which is part of either a water molecule or a hydroxide ion. Within the site of hMetAP-2 the results strongly indicate that a hydroxide ion bridges the metal ions. By contrast, the nature of the oxygen bridging the metal ions within the metal binding site of eMetAP-1 cannot be determined...

  3. Saturable triiodothyronine-binding sites in the pituitary nuclei of salmonid teleost fish

    International Nuclear Information System (INIS)

    High-affinity, limited-capacity, 3,5,3'-triiodo-L-thyronine (T3)-binding sites were established by in vitro saturation analysis in cell nuclei of the pituitary gland of arctic charr. The sites were extracted from the purified nuclei using 0.4 M NaCl and incubated with [125I]T3 in the presence of 0.2 M NaCl. T3 saturable binding attained equilibrium after 18-24 hr of incubation at 4 degrees. The association constant ranged from 6.7 to 20.1 liters.mol-1 x 10(9), indicating a T3 affinity greater than that for T3-binding sites in rainbow trout liver. The maximal binding capacity ranged from 0.93 to 2.05 10(-13) mol.mg DNA-1, representing a mean site abundance corresponding to 60% of that for nuclei from trout liver. Thyroxine (T4) completely displaced [125I]T3 in the pituitary nuclei of arctic charr and T3 completely displaced [125I]T4 in the pituitary nuclei of rainbow trout, suggesting that in salmonids both T4 and T3 bind to the same single class of sites. However, the site affinity for T4 was approximately 20-50x less than that for T3. The possible roles of these sites in pituitary function as well as their relationship to other nuclear T3-binding sites in salmonid fish are discussed

  4. Computational investigation of stoichiometric effects, binding site heterogeneities, and selectivities of molecularly imprinted polymers.

    Science.gov (United States)

    Terracina, Jacob J; Bergkvist, Magnus; Sharfstein, Susan T

    2016-06-01

    A series of quantum mechanical (QM) computational optimizations of molecularly imprinted polymer (MIP) systems were used to determine optimal monomer-to-target ratios. Imidazole- and xanthine-derived target molecules were studied. The investigation included both small-scale models (3-7 molecules) and larger-scale models (15-35 molecules). The optimal ratios differed between the small and larger scales. For the larger models containing multiple targets, binding-site surface area analysis was used to quantify the heterogeneity of these sites. The more fully surrounded sites had greater binding energies. No discretization of binding modes was seen, furthering arguments for continuous affinity distribution models. Molecular mechanical (MM) docking was then used to measure the selectivities of the QM-optimized binding sites. Selectivity was also shown to improve as binding sites become more fully encased by the monomers. For internal sites, docking consistently showed selectivity favoring the molecules that had been imprinted via QM geometry optimizations. The computationally imprinted sites were shown to exhibit size-, shape-, and polarity-based selectivity. Here we present a novel approach to investigate the selectivity and heterogeneity of imprinted polymer binding sites, by applying the rapid orientation screening of MM docking to the highly accurate QM-optimized geometries. Modeling schemes were designed such that no computing clusters or other specialized modeling equipment would be required. Improving the in silico analysis of MIP system properties will ultimately allow for the production of more sensitive and selective polymers. PMID:27207254

  5. Experimental and theoretical characterization of the high-affinity cation binding site of the purple membrane

    OpenAIRE

    Pardo, Leonardo; Sepulcre Sánchez, Francesc; Cladera Cerdà, Josep Bartomeu; Duñach, Mireia; Labarta, A.; Tejada, J.; Padrós Morell, Esteve

    1998-01-01

    Binding of Mn2+ or Mg2+ to the high-affinity site of the purple membrane from Halobacterium salinarium has been studied by superconducting quantum interference device magnetometry or by ab initio quantum mechanical calculations, respectively. The binding of Mn2+ cation, in a low-spin state, to the high-affinity site occurs through a major octahedral local symmetry character with a minor rhombic distortion and a coordination number of six. A molecular model of this binding site in the Schiff b...

  6. Functional Analyses of Transcription Factor Binding Sites that Differ between Present-Day and Archaic Humans

    Science.gov (United States)

    Weyer, Sven; Pääbo, Svante

    2016-01-01

    We analyze 25 previously identified transcription factor binding sites that carry DNA sequence changes that are present in all or nearly all present-day humans, yet occur in the ancestral state in Neandertals and Denisovans, the closest evolutionary relatives of humans. When the ancestral and derived forms of the transcription factor binding sites are tested using reporter constructs in 3 neuronal cell lines, the activity of 12 of the derived versions of transcription factor binding sites differ from the respective ancestral variants. This suggests that the majority of this class of evolutionary differences between modern humans and Neandertals may affect gene expression in at least some tissue or cell type. PMID:26454764

  7. Quantitative autoradiography of [125I] apamin binding sites in the central nervous system.

    Science.gov (United States)

    Janicki, P K; Horvath, E; Seibold, G; Habermann, E

    1984-01-01

    The binding sites for [125I] apamin in the central nervous system of rat, guinea-pig, chicken and frog were assessed by quantitative autoradiography on X-ray film. In rat and guinea-pig brain apamin labels preferentially the limbic-olfactory system, i.e. nucleus olfactorius, nuclei septi, habenula and hippocampus. In the rat spinal cord the peptide binds preferentially to the substantia gelatinosa. Tectum opticum and nuclei isthmi are labelled in chicken brain. In frog brain no preferentially "apamin-stained" area was found. The role of the cerebral binding sites is still unknown, whereas the spinal sites may be involved in apamin poisoning. PMID:6335967

  8. Quantitative autoradiography of [125I] apamin binding sites in the central nervous system

    International Nuclear Information System (INIS)

    The binding sites for [125I] apamin in the central nervous system of rat, guinea-pig, chicken and frog were assessed by quantitative autoradiography on X-ray film. In rat and guinea-pig brain apamin labels preferentially the limbic-olfactory system, i.e. nucleus olfactorius, nuclei septi, habenula and hippocampus. In the rat spinal cord the peptide binds preferentially to the substantia gelatinosa. Tectum opticum and nuclei isthmi are labelled in chicken brain. In frog brain no preferentially 'apamin-stained' area was found. The role of the cerebral binding sites is still unknown, whereas the spinal sites may be involved in apamin poisoning. (author)

  9. Quantitative autoradiography of (/sup 125/I) apamin binding sites in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Janicki, P.K.; Horvath, E.; Habermann, E. (Giessen Univ. (Germany, F.R.). Rudolf-Buchheim-Institut fuer Pharmakologie); Seibold, G. (Giessen Univ. (Germany, F.R.). Strahlenzentrum)

    1984-12-01

    The binding sites for (/sup 125/I) apamin in the central nervous system of rat, guinea-pig, chicken and frog were assessed by quantitative autoradiography on X-ray film. In rat and guinea-pig brain apamin labels preferentially the limbic-olfactory system, i.e. nucleus olfactorius, nuclei septi, habenula and hippocampus. In the rat spinal cord the peptide binds preferentially to the substantia gelatinosa. Tectum opticum and nuclei isthmi are labelled in chicken brain. In frog brain no preferentially 'apamin-stained' area was found. The role of the cerebral binding sites is still unknown, whereas the spinal sites may be involved in apamin poisoning.

  10. Bacterial Surface Display of Metal-Binding Sites

    Czech Academy of Sciences Publication Activity Database

    Kotrba, P.; Rulíšek, Lubomír; Ruml, T.

    Dordrecht: Springer, 2011 - (Kotrba, P.; Macková, M.; Macek, T.), s. 249-283 ISBN 978-94-007-0442-8 Grant ostatní: GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z40550506 Keywords : bioremediation * biosorption * metal-binding peptide * cell-surface display Subject RIV: EI - Biotechnology ; Bionics

  11. Phosphorus Binding Sites in Proteins: Structural Preorganization and Coordination

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix; Greisen, Per Junior; Junker, Märta Caroline;

    2014-01-01

    Phosphorus is a ubiquitous element of the cell, which is found throughout numerous key molecules related to cell structure, energy and information storage and transfer, and a diverse array of other cellular functions. In this work, we adopt an approach often used for characterizing metal binding ...

  12. Rat submaxillary gland contains predominantly P-type tachykinin binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Buck, S.H.; Burcher, E.

    1985-11-01

    The specific binding of the /sup 125/I-Bolton-Hunter labeled tachykinins substance K (BHSK), eledoisin (BHE), and substance P (BHSP) was examined in crude membrane suspensions and by autoradiography in rat submaxillary gland. All three ligands at 0.1 nM concentrations exhibited binding that was inhibited by tachykinins in a potency rank order of substance P greater than physalaemin greater than substance K greater than eledoisin greater than kassinin greater than neuromedin K with slope factors essentially equal to unity. All tachykinins were 5 to 10 times more potent in inhibiting BHSK and BHE binding compared to BHSP binding. Autoradiographic visualization of BHSK and BHSP binding sites in the gland revealed extensive labeling of mucous and serous acini. The intensity of labeling was much less for BHSK than for BHSP. The results indicate that the rat submaxillary gland contains predominantly P-type tachykinin binding sites.

  13. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L; Shi, Lei; Gracia, Luis; Raniszewska, Klaudia; Newman, Amy Hauck; Javitch, Jonathan A; Weinstein, Harel; Gether, Ulrik; Løland, Claus Juul

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog Leu......T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... mutagenesis and by trapping the radiolabeled cocaine analog [3H]CFT in the transporter, either by cross-linking engineered cysteines or with an engineered Zn2+-binding site that was situated extracellularly to the predicted common binding pocket. Our data demonstrate the molecular basis for the competitive...

  14. Internal binding sites for MSH: Analyses in wild-type and variant Cloudman melanoma cells

    International Nuclear Information System (INIS)

    Cloudman S91 mouse melanoma cells express both external (plasma membrane) and internal binding sites for MSH. Using 125I-beta melanotropin (beta-MSH) as a probe, we report here an extensive series of studies on the biological relevance of these internal sites. Cells were swollen in a hypotonic buffer and lysed, and a particulate fraction was prepared by high-speed centrifugation. This fraction was incubated with 125I-beta-MSH with or without excess nonradioactive beta-MSH in the cold for 2 hours. The material was then layered onto a step-wise sucrose gradient and centrifuged; fractions were collected and counted in a gamma counter or assayed for various enzymatic activities. The following points were established: (1) Specific binding sites for MSH were observed sedimenting at an average density of 50% sucrose in amelanotic cells and at higher densities in melanotic cells. (2) These sites were similar in density to those observed when intact cells were labeled externally with 125I-beta-MSH and then warmed to promote internalization of the hormone. (3) Most of the internal binding sites were not as dense as fully melanized melanosomes. (4) In control experiments, the MSH binding sites were not found in cultured hepatoma cells. (5) Variant melanoma cells, which differed from the wild-type in their responses to MSH, had reduced expression of internal binding sites even though their ability to bind MSH to the outer cell surface appeared normal. (MSH-induced responses included changes in tyrosinase, dopa oxidase, and dopachrome conversion factor activities, melanization, proliferation, and morphology.) (6) Isobutylmethylxanthine, which enhanced cellular responsiveness to MSH, also enhanced expression of internal binding sites. The results indicate that expression of internal binding sites for MSH is an important criterion for cellular responsiveness to the hormone

  15. Conversion of MyoD to a Neurogenic Factor: Binding Site Specificity Determines Lineage

    Directory of Open Access Journals (Sweden)

    Abraham P. Fong

    2015-03-01

    Full Text Available MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a “shared” E-box sequence (CAGCTG and a “private” sequence (CAGGTG or CAGATG, respectively. To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant gained binding to NeuroD2 private sites but maintained binding to a subset of MyoD-specific sites, activating part of both the muscle and neuronal programs. Sequence analysis revealed an enrichment for PBX/MEIS motifs at the subset of MyoD-specific sites bound by the chimera, and point mutations that prevent MyoD interaction with PBX/MEIS converted the chimera to a pure neurogenic factor. Therefore, redirecting MyoD binding from MyoD private sites to NeuroD2 private sites, despite preserved binding to the MyoD/NeuroD2 shared sites, is sufficient to change MyoD from a master regulator of myogenesis to a master regulator of neurogenesis.

  16. Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography

    International Nuclear Information System (INIS)

    In vitro autoradiography and computer video densitometry were used to localize and quantify binding of 125I-insulin in the hypothalamus of the rat brain. Highest specific binding was found in the arculate, dorsomedial, suprachiasmatic, paraventricular and periventricular regions. Significantly lower binding was present in the ventromedial nucleus and median eminence. The results are consistent with the hypothesis that insulin modulates the neural regulation of feeding by acting at sites in the hypothalamus. (author)

  17. Current Understanding of the Binding Sites, Capacity, Affinity, and Biological Significance of Metals in Melanin

    OpenAIRE

    Hong, Lian; Simon, John D.

    2007-01-01

    Metal chelation is often invoked as one of the main biological functions of melanin. In order to understand the interaction between metals and melanin, extensive studies have been carried out to determine the nature of the metal binding sites, binding capacity and affinity. These data are central to efforts aimed at elucidating the role metal binding plays in determining the physical, structural, biological, and photochemical properties of melanin. This article examines the current state of u...

  18. In Silico Investigation of the Neurotensin Receptor 1 Binding Site

    DEFF Research Database (Denmark)

    Lückmann, Michael; Holst, Birgitte; Schwartz, Thue W.;

    2016-01-01

    The neurotensin receptor 1 (NTSR1) belongs to the family of 7TM, G protein-coupled receptors, and is activated by the 13-amino-acid peptide neurotensin (NTS) that has been shown to play important roles in neurol. disorders and the promotion of cancer cells. Recently, a high-resoln. x-ray crystal...... structure of NTSR1 in complex with NTS8-13 has been detd., providing novel insights into peptide ligand recognition by 7TM receptors. SR48692, a potent and selective small mol. antagonist has previously been used extensively as a tool compd. to study NTSR1 receptor signaling properties. To investigate...... the binding mode of SR48692 and other small mol. compds. to NTSR1, we applied an Automated Ligand-guided Backbone Ensemble Receptor Optimization protocol (ALiBERO), taking receptor flexibility and ligand knowledge into account. Structurally overlapping binding poses for SR48692 and NTS8-13 were obsd., despite...

  19. Exploring the composition of protein-ligand binding sites on a large scale.

    Directory of Open Access Journals (Sweden)

    Nickolay A Khazanov

    Full Text Available The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data for establishing general trends of residue composition from currently available protein structures. We present an analysis of 3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant "valid" ligands from "invalid" small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no known biological function. Contacts are found to differ between these classes of ligands, indicating that residue composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future studies of binding-site composition.

  20. Identification of Actin-Binding Proteins from Maize Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  1. Evidence for two distinct binding sites for tau on microtubules

    OpenAIRE

    Makrides, Victoria; Massie, Michelle R.; Feinstein, Stuart C.; Lew, John

    2004-01-01

    The microtubule-associated protein tau regulates diverse and essential microtubule functions, from the nucleation and promotion of microtubule polymerization to the regulation of microtubule polarity and dynamics, as well as the spacing and bundling of axonal microtubules. Thermodynamic studies show that tau interacts with microtubules in the low- to mid-nanomolar range, implying moderate binding affinity. At the same time, it is well established that microtubule-bound tau does not undergo ex...

  2. Microbes Bind Complement Inhibitor Factor H via a Common Site

    OpenAIRE

    Meri, T.; Amdahl, H.; Lehtinen, M. J.; Hyvärinen, S.; McDowell, J.V.; Bhattacharjee, A.; Meri, S.; Marconi, R.; Goldman, A; Jokiranta, T. S.

    2013-01-01

    To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in plasma and on host cells by plasma complement regulator factor H (FH). FH binds simultaneously to host cell surface structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19. Many pathogenic ...

  3. Europium ion as a probe for binding sites to carrageenans

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Ana P.; Goncalves, Rogeria R.; Serra, Osvaldo A. [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo 14040-901 (Brazil); Zaniquelli, Maria Elisabete D. [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo 14040-901 (Brazil)], E-mail: medzaniquelli@ffclrp.usp.br; Wong, Kenneth [Laboratorio de Fisico-Quimica, Centro de Pesquisas de Paulinia, Rhodia Brasil, Paulinia, Sao Paulo (Brazil)

    2007-12-15

    Carrageenans, sulfated polysaccharides extracted from red algae, present a coil-helix transition and helix aggregation dependence on the type and concentration of counterions. In this study, we focus attention on a mixed valence counterion system: Eu{sup 3+}/Na{sup +} or K{sup +} with different gel-forming carrageenans: kappa, iota, and kappa-2. Results of stationary and time-dependent luminescence showed to be a suitable tool to probe ion binding to both the negatively charged sulfate group and the hydroxyl groups present in the biopolymer. For lower europium ion concentrations, a single longer decay emission lifetime was detected, which was attributed to the binding of europium ion to the carrageenan sulfate groups. An additional decay ascribed to europium binding to hydroxyl groups was observed above a threshold concentration, and this decay was dependent on the carrageenan charge density. Symmetry of the europium ion microenvironment was estimated by the ratio between the intensities of its emission bands, which has been shown to depend on the concentration of europium ions and on the specificity of the monovalent counterion bound to the carrageenan.

  4. Europium ion as a probe for binding sites to carrageenans

    International Nuclear Information System (INIS)

    Carrageenans, sulfated polysaccharides extracted from red algae, present a coil-helix transition and helix aggregation dependence on the type and concentration of counterions. In this study, we focus attention on a mixed valence counterion system: Eu3+/Na+ or K+ with different gel-forming carrageenans: kappa, iota, and kappa-2. Results of stationary and time-dependent luminescence showed to be a suitable tool to probe ion binding to both the negatively charged sulfate group and the hydroxyl groups present in the biopolymer. For lower europium ion concentrations, a single longer decay emission lifetime was detected, which was attributed to the binding of europium ion to the carrageenan sulfate groups. An additional decay ascribed to europium binding to hydroxyl groups was observed above a threshold concentration, and this decay was dependent on the carrageenan charge density. Symmetry of the europium ion microenvironment was estimated by the ratio between the intensities of its emission bands, which has been shown to depend on the concentration of europium ions and on the specificity of the monovalent counterion bound to the carrageenan

  5. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  6. Arabidopsis AtADF1 is Functionally Affected by Mutations on Actin Binding Sites

    Institute of Scientific and Technical Information of China (English)

    Chun-Hai Dong; Wei-Ping Tang; Jia-Yao Liu

    2013-01-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin,and is directly involved in the depolymerization of actin filaments.To better understand the actin binding sites of the Arabidopsis thaliana L.AtADF1,we generated mutants of AtADF1 and investigated their functions in vitro and in vivo.Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G-and F-actin binding.The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A,R137/A) form another actin binding site that is important for F-actin binding.Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L.plants overexpressing these mutants,we analyzed how these mutant proteins regulate actin organization and affect seedling growth.Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional,unless the affinity foractin monomers is also affected.The G-actin binding activity of the ADF plays an essential role in actin binding,depolymerization of actin polymers,and therefore in the control of actin organization.

  7. Quantitative autoradiography of 3H-nomifensine binding sites in rat brain

    International Nuclear Information System (INIS)

    The distribution of 3H-nomifensine binding sites in the rat brain has been studied by quantitative autoradiography. The binding of 3H-nomifensine to caudate putamen sections was saturable, specific, of a highly affinity (Kd = 56 nM) and sodium-dependent. The dopamine uptake inhibitors benztropine, nomifensine, cocaine, bupropion and amfonelic acid were the most potent competitors of 3H-nomifensine binding to striatal sections. The highest levels of (benztropine-displaceable) 3H-nomifensine binding sites were found in the caudate-putamen, the olfactory tubercle and the nucleus accumbens. 6-Hydroxy-dopamine-induced lesion of the ascending dopaminergic bundle resulted in a marked decrease in the 3H-ligand binding in these areas. Moderately high concentrations of the 3H-ligand were observed in the bed nucleus of the stria terminalis, the anteroventral thalamic nucleus, the cingulate cortex, the lateral septum, the hippocampus, the amygdala, the zona incerta and some hypothalamic nuclei. There were low levels of binding sites in the habenula, the dorsolateral geniculate body, the substantia nigra, the ventral tegmental area and the periaqueductal gray matter. These autoradiographic data are consistent with the hypothesis that 3H-nomifensine binds primarily to the presynaptic uptake site for dopamine but also labels the norepinephrine uptake site. 33 references, 2 figures, 1 table

  8. Quantitative autoradiography of /sup 3/H-nomifensine binding sites in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Scatton, B.; Dubois, A.; Dubocovich, M.L.; Zahniser, N.R.; Fage, D.

    1985-03-04

    The distribution of /sup 3/H-nomifensine binding sites in the rat brain has been studied by quantitative autoradiography. The binding of /sup 3/H-nomifensine to caudate putamen sections was saturable, specific, of a highly affinity (Kd = 56 nM) and sodium-dependent. The dopamine uptake inhibitors benztropine, nomifensine, cocaine, bupropion and amfonelic acid were the most potent competitors of /sup 3/H-nomifensine binding to striatal sections. The highest levels of (benztropine-displaceable) /sup 3/H-nomifensine binding sites were found in the caudate-putamen, the olfactory tubercle and the nucleus accumbens. 6-Hydroxy-dopamine-induced lesion of the ascending dopaminergic bundle resulted in a marked decrease in the /sup 3/H-ligand binding in these areas. Moderately high concentrations of the /sup 3/H-ligand were observed in the bed nucleus of the stria terminalis, the anteroventral thalamic nucleus, the cingulate cortex, the lateral septum, the hippocampus, the amygdala, the zona incerta and some hypothalamic nuclei. There were low levels of binding sites in the habenula, the dorsolateral geniculate body, the substantia nigra, the ventral tegmental area and the periaqueductal gray matter. These autoradiographic data are consistent with the hypothesis that /sup 3/H-nomifensine binds primarily to the presynaptic uptake site for dopamine but also labels the norepinephrine uptake site. 33 references, 2 figures, 1 table.

  9. Radiolabelling of phoneutria nigriventer spider toxin (Tx1): a tool to study its binding site

    International Nuclear Information System (INIS)

    The neurotoxin Tx1, isolated from the venom of the South American spider Phoneutria nigriventer produces tail elevation and spastic paralysis of posterior limbs after intracerebral ventricular injection in mice. Tx1 also produces ileum contraction in bioassay. We have investigated the binding of radioiodinated-Tx1 (125 I-Tx1) on the preparation of myenteric plexus-longitudinal muscle membrane from guinea pig ileum (MPLM) as a tool to characterize the interaction of this neurotoxin with its site. The neurotoxin Tx1 was radioiodinated with Na125 I by the lactoperoxidase method. 125 I-Tx1 specifically binds to a single class of noninteracting binding sites of high affinity (Kd= 3.5 x 10-10 M) and low capacity (1.2 pmol/mg protein). The specific binding increased in parallel with the protein concentration. In competition experiments the ligands of ionic channels used (sodium, potassium and calcium) did not affect the binding of 125 I-Tx1 to MPLM neither did the cholinergic ligands (hemicholinium-3, hexamethonium, d-tubocurarine and atropine). Another neurotoxin (Tx2-6, one of the isoforms of Tx2 pool) decreased toxin with MPLM and showed that toxin has a specific and saturable binding site in guinea pig ileum and this binding site appears to be related to the Tx2 site. (author)

  10. Protective Action of Resveratrol in Human Skin: Possible Involvement of Specific Receptor Binding Sites

    OpenAIRE

    Stéphane Bastianetto; Yvan Dumont; Albert Duranton; Freya Vercauteren; Lionel Breton; Rémi Quirion

    2010-01-01

    BACKGROUND: Resveratrol is a plant-derived polyphenol with purported protecting action on various disorders associated with aging. It has been suggested that resveratrol could exert its protective action by acting on specific plasma membrane polyphenol binding sites (Han Y.S., et al. (2006) J Pharmacol Exp Ther 318:238-245). The purpose of this study was to investigate, in human skin, the possible existence of specific binding sites that mediate the protective action of resveratrol. METHODS A...

  11. DETERMINANTS OF LIGAND BINDING AFFINITY AND COOPERATIVITY AT THE GLUT1 ENDOFACIAL SITE

    OpenAIRE

    Robichaud, Trista; Appleyard, Antony N.; Herbert, Richard B.; Henderson, Peter J. F.; Carruthers, Anthony

    2011-01-01

    Cytochalasin B (CB) and forskolin (FSK) inhibit GLUT1-mediated sugar transport in red cells by binding at or close to the GLUT1 endofacial sugar binding site. Paradoxically, very low concentrations of each of these inhibitors produce a modest stimulation of sugar transport (Cloherty, E. K., Levine, K. B., & Carruthers, A. (2001). The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Biochemistry, 40(51), 15549–15561). This result is consistent with t...

  12. Partial enterectomy decreases somatostatin-binding sites in residual intestine of rabbits

    OpenAIRE

    Colás Escudero, Begoña; Bodega Magro, Guillermo; Sanz, M.; Prieto Villapún, Juan Carlos; Arilla Ferreiro, Eduardo

    1988-01-01

    Three weeks after partial enterectomy in the rabbit there was an increased somatostatin concentration and a decreased number of somatostatin-binding sites (without changes in the corresponding affinity values) in the cytosol of the residual intestinal tissue, except in the terminal ileum and the colon. Five weeks after surgery both the somatostatin concentration and the number of somatostatin-binding sites returned towards control values. These results suggest that an increase in bowel ...

  13. Substance P receptor binding sites are expressed by glia in vivo after neuronal injury

    International Nuclear Information System (INIS)

    In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, the authors examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve and tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system

  14. Flow-cytometric determination of high-density-lipoprotein binding sites on human leukocytes

    International Nuclear Information System (INIS)

    In this method, leukocytes were isolated from 6 mL of EDTA-blood by density-gradient centrifugation and subsequently incubated with rhodamine isothiocyanate (RITC)-conjugated high-density lipoproteins (HDL). The receptor-bound conjugate particles were determined by fluorescent flow cytometry and compared with 125I-labeled HDL binding data for the same cells. Human granulocytes express the highest number of HDL binding sites (9.4 x 10(4)/cell), followed by monocytes (7.3 x 10(4)/cell) and lymphocytes (4.0 x 10(4)/cell). Compared with conventional analysis of binding of 125I-labeled HDL in tissue-culture dishes, the present determination revealed significantly lower values for nonspecific binding. In competition studies, the conjugate competes for the same binding sites as 125I-labeled HDL. With the use of tetranitromethane-treated HDL3, which fails to compete for the HDL receptor sites while nonspecific binding is not affected, we could clearly distinguish between 37 degrees C surface binding and specific 37 degrees C uptake of RITC-HDL3, confirming that the HDL receptor leads bound HDL particles into an intracellular pathway rather than acting as a docking type of receptor. Patients with familial dysbetalipoproteinemia showed a significantly higher number of HDL binding sites in the granulocyte population but normal in lymphocytes and monocytes, indicating increased uptake of cholesterol-containing lipoproteins. In patients with familial hypercholesterolemia, HDL binding was increased in all three cell types, indicating increased cholesterol uptake and increased cholesterol synthesis. The present method allows rapid determination of HDL binding sites in leukocytes from patients with various forms of hyper- and dyslipoproteinemias

  15. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.; Robey, F.A.

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly and...... of 25 mu M, while the IC50 of AP-(27-38)-peptide and AP-(33-38)-peptide are 10 mu M and 2 mu M, respectively, The understanding of the structure and function of active AP peptides will be useful for development of amyloid-targeted diagnostics and therapeutics....

  16. Comparative Analysis of Regulatory Motif Discovery Tools for Transcription Factor Binding Sites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the post-genomic era, identification of specific regulatory motifs or transcription factor binding sites (TFBSs) in non-coding DNA sequences, which is essential to elucidate transcriptional regulatory networks, has emerged as an obstacle that frustrates many researchers. Consequently, numerous motif discovery tools and correlated databases have been applied to solving this problem. However, these existing methods, based on different computational algorithms, show diverse motif prediction efficiency in non-coding DNA sequences. Therefore, understanding the similarities and differences of computational algorithms and enriching the motif discovery literatures are important for users to choose the most appropriate one among the online available tools. Moreover, there still lacks credible criterion to assess motif discovery tools and instructions for researchers to choose the best according to their own projects. Thus integration of the related resources might be a good approach to improve accuracy of the application. Recent studies integrate regulatory motif discovery tools with experimental methods to offer a complementary approach for researchers, and also provide a much-needed model for current researches on transcriptional regulatory networks. Here we present a comparative analysis of regulatory motif discovery tools for TFBSs.

  17. Precise detection of L. monocytogenes hitting its highly conserved region possessing several specific antibody binding sites.

    Science.gov (United States)

    Jahangiri, Abolfazl; Rasooli, Iraj; Reza Rahbar, Mohammad; Khalili, Saeed; Amani, Jafar; Ahmadi Zanoos, Kobra

    2012-07-21

    Listeria monocytogenes, a facultative intracellular fast-growing Gram-positive food-borne pathogen, can infect immunocompromised individuals leading to meningitis, meningoencephalitis and septicaemias. From the pool of virulence factors of the organism, ActA, a membrane protein, has a critical role in the life cycle of L. monocytogenes. High mortality rate of listeriosis necessitates a sensitive and rapid diagnostic test for precise identification of L. monocytogenes. We used bioinformatic tools to locate a specific conserved region of ActA for designing and developing an antibody-antigen based diagnostic test for the detection of L. monocytogenes. A number of databases were looked for ActA related sequences. Sequences were analyzed with several online software to find an appropriate region for our purpose. ActA protein was found specific to Listeria species with no homologs in other organisms. We finally introduced a highly conserved region within ActA sequence that possess several antibody binding sites specific to L. monocytogenes. This protein sequence can serve as an antigen for designing a relatively cheap, sensitive, and specific diagnostic test for detection of L. monocytogenes. PMID:22575546

  18. The TRPV5/6 calcium channels contain multiple calmodulin binding sites with differential binding properties.

    NARCIS (Netherlands)

    Kovalevskaya, N.V.; Bokhovchuk, F.M.; Vuister, G.W.

    2012-01-01

    The epithelial Ca(2+) channels TRPV5/6 (transient receptor potential vanilloid 5/6) are thoroughly regulated in order to fine-tune the amount of Ca(2+) reabsorption. Calmodulin has been shown to be involved into calcium-dependent inactivation of TRPV5/6 channels by binding directly to the distal C-t

  19. Ca2+ binding sites in calmodulin and troponin C alter interhelical angle movements.

    Science.gov (United States)

    Goto, Kunihiko; Toyama, Akira; Takeuchi, Hideo; Takayama, Kazuyoshi; Saito, Tsutomu; Iwamoto, Masatoshi; Yeh, Jay Z; Narahashi, Toshio

    2004-03-12

    Molecular dynamics analyses were performed to examine conformational changes in the C-domain of calmodulin and the N-domain of troponin C induced by binding of Ca(2+) ions. Analyses of conformational changes in calmodulin and troponin C indicated that the shortening of the distance between Ca(2+) ions and Ca(2+) binding sites of helices caused widening of the distance between Ca(2+) binding sites of helices on opposite sides, while the hydrophobic side chains in the center of helices hardly moved due to their steric hindrance. This conformational change acts as the clothespin mechanism. PMID:15013750

  20. Localization of binding sites for purified Escherichia coli P fimbriae in the human kidney.

    OpenAIRE

    Korhonen, T K; Virkola, R; Holthöfer, H

    1986-01-01

    Binding sites in the human kidney for purified P fimbriae of pyelonephritogenic Escherichia coli were determined. The purified KS71A (F7(1)) fimbriae bound only to epithelial elements of the kidney, i.e., to the apical aspect of proximal and distal tubular cells, as well as to the apical and cytoplasmic sites of collecting ducts. In addition, binding was seen at the vascular endothelium throughout the kidney and at the parietal epithelium of the glomeruli. The binding was specifically inhibit...

  1. Solution measurement of DNA curvature in papillomavirus E2 binding sites

    OpenAIRE

    Zimmerman, Jeff M.; Maher, L. James

    2003-01-01

    ‘Indirect readout’ refers to the proposal that proteins can recognize the intrinsic three-dimensional shape or flexibility of a DNA binding sequence apart from direct protein contact with DNA base pairs. The differing affinities of human papillomavirus (HPV) E2 proteins for different E2 binding sites have been proposed to reflect indirect readout. DNA bending has been observed in X-ray structures of E2 protein–DNA complexes. X-ray structures of three different E2 DNA binding sites revealed di...

  2. Molecular simulations of Taxawallin I inside classical taxol binding site of β-tubulin.

    Science.gov (United States)

    Khan, Inamullah; Nisar, Muhammad; Ahmad, Manzoor; Shah, Hamidullah; Iqbal, Zafar; Saeed, Muhammad; Halimi, Syed Muhammad Ashhad; Kaleem, Waqar Ahmad; Qayum, Mughal; Aman, Akhter; Abdullah, Syed Muhammad

    2011-03-01

    A new taxoid Taxawallin I (1) along with two known taxoids (2-3) were isolated from methanolic bark extract of Taxus wallichiana Zucc. Structural characterization was confirmed by mass and NMR spectral techniques. Taxawallin I exhibited significant in-vitro anticancer activity against HepG2, A498, NCI-H226 and MDR 2780AD cancer lines. Tubulin binding assay was performed to assess its tubulin binding activity. Molecular docking analysis was performed to study the potential binding mode inside the taxol binding site of β-tubulin. PMID:20969934

  3. Crystallographic location of two Zn2+ binding sites in the avian cytochrome bc1 complex

    International Nuclear Information System (INIS)

    The chicken mitochondrial ubiquinol cytochrome c oxidoreductase (bc1 complex) is inhibited by Zn2+ ions, but with higher Ki (∼3 microm) than the corresponding bovine enzyme. When equilibrated with mother liquor containing 200 mM ZnCl2 for 7 days, the crystalline chicken bc1 complex specifically binds Zn2+ at 4 sites representing two sites on each monomer in the dimer. These two sites are close to the stigmatellin-binding site, taken to be center Qo of the Q-cycle mechanism, and are candidates for the inhibitory site. One binding site is actually in the hydrophobic channel between the Qo site and the bulk lipid phase, and may interfere with quinone binding. The other is in a hydrophilic area between cytochromes b and c1, and might interfere with the egress of protons from the Qo site to the intermembrane aqueous medium. No zinc was bound near the putative proteolytic active site of subunits 1 and 2 (homologous to mitochondrial processing peptidase) under these conditions

  4. Competitive Binding Sites of a Ruthenium Arene Anticancer Complex on Oligonucleotides Studied by Mass Spectrometry: Ladder-Sequencing versus Top-Down

    Science.gov (United States)

    Wu, Kui; Hu, Wenbing; Luo, Qun; Li, Xianchan; Xiong, Shaoxiang; Sadler, Peter J.; Wang, Fuyi

    2013-03-01

    We report identification of the binding sites for an organometallic ruthenium anticancer complex [( η 6-biphenyl)Ru(en)Cl][PF6] ( 1; en = ethylenediamine) on the 15-mer single-stranded oligodeoxynucleotides (ODNs), 5'-CTCTCTX7G8Y9CTTCTC-3' [X = Y = T ( I); X = C and Y = A ( II); X = A and Y = T ( III); X = T and Y = A ( IV)] by electrospray ionization mass spectrometry (ESI-MS) in conjunction with enzymatic digestion or tandem mass spectrometry (top-down MS). ESI-MS combined with enzymatic digestion (termed MS-based ladder-sequencing), is effective for identification of the thermodynamically-favored G-binding sites, but not applicable to determine the thermodynamically unstable T-binding sites because the T-bound adducts dissociate during enzymatic digestion. In contrast, top-down MS is efficient for localization of the T binding sites, but not suitable for mapping ruthenated G bases, due to the facile fragmentation of G bases from ODN backbones prior to the dissociation of the phosphodiester bonds. The combination of the two MS approaches reveals that G8 in each ODN is the preferred binding site for 1, and that the T binding sites of 1 are either T7 or T11 on I and IV, and either T6 or T11 on II and III, respectively. These findings not only demonstrate for the first time that T-bases in single-stranded oligonucleotides are kinetically competitive with guanine for such organoruthenium complexes, but also illustrate the relative merits of the combination of ladder-sequencing and top-down MS approaches to elucidate the interactions of metal anticancer complexes with DNA.

  5. In vivo labelling in several rat tissues of 'peripheral type' benzodiazepine binding sites

    International Nuclear Information System (INIS)

    'Peripheral type' benzodiazepine binding sites in several rat tissues were labelled by intravenous injection of [3H]PK 11195 and [3H]RO5-4864. Binding was saturable in all tissues studied and regional distribution paralleled the in vitro binding. A similar potency order of displacing compounds was found in vivo and in vitro PK 11195 > PK 11211 > RO5-4864 > diazepam > dipyridamole > clonazepam. These results demonstrate the feasibility of using this technique to examine the effects of pharmacological manipulation on the binding sites in their native state. However, some properties (broader maximum during time course, higher percentage of particulate binding in the brain and independence of temperature) make [3H]PK 11195 the most suitable ligand for this kind of studies. (Auth.)

  6. Effect of cysteamine on cytosolic somatostatin binding sites in rabbit duodenal mucosa

    International Nuclear Information System (INIS)

    Administration of cysteamine in rabbits elicited a rapid depletion of both duodenal mucosa and plasma somatostatin. A significant reduction was observed within 5 min, returning toward control values by 150 min. The depletion of somatostatin was associated with an increase in the binding capacity and a decrease in the affinity of both high- and low-affinity binding sites present in cytosol of duodenal mucosa. Incubation of cytosolic fraction from control rabbits with 1 mM cysteamine did not modify somatostatin binding. Furthermore, addition of cysteamine at the time of binding assay did not affect the integrity of 125I-Tyr11-somatostatin. It is concluded that in vivo administration of cysteamine to rabbits depletes both duodenal mucosa and plasma somatostatin and leads to up-regulation of duodenal somatostatin binding sites

  7. Resonance energy transfer study on the proximity relationship between the GTP binding site and the rifampicin binding site of Escherichia coli RNA polymerase

    International Nuclear Information System (INIS)

    Terbium(III) upon complexation with guanosine 5'-triphosphate showed remarkable enhancement of fluorescence emission at 488 and 545 nm when excited at 295 nm. Analysis of the binding data yielded a value for the mean Kd between Tb(III) and GTP of 0.2 μM, with three binding sites for TB(III) on GTP. 31P and 1H NMR measurements revealed that Tb(III) mainly binds the phosphate moiety of GTP. Fluorescence titration of the emission signals of the TbGTP complex with varying concentrations of Escherichia coli RNA polymerase resulted in a Kd values of 4 μM between the TbGTP and the enzyme. It was observed that TbGTP can be incorporated in the place of GTP during E. coli RNA polymerase catalyzed abortive synthesis of dinucleotide tetraphosphate at T7A2 promoter. Both the substrate TbGTP and the inhibitor of the initiation of transcription rifampicin bind to the β-subunit of E. coli RNA polymerase. This allows the measurement of the fluorescence excited-state energy transfer from the donor TbGTP-RNA polymerase to the acceptor rifampicin. Both emission bands of Tb(III) overlap with the rifampicin absorption, and the distances at 50% efficiency of energy transfer were calculated to be 28 and 24 angstrom for the 488- and 545-nm emission bands, respectively. The distance between the substrate binding site and the rifampicin binding site on the β-subunit of E. coli RNA polymerase was measured to be around 30 angstrom. This suggest that the nature of inhibition of transcription by rifampicin is essentially noncompetitive with the substrate

  8. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    Science.gov (United States)

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS. PMID:18820259

  9. DNA-MATRIX: a tool for constructing transcription factor binding sites Weight matrix

    Directory of Open Access Journals (Sweden)

    Chandra Prakash Singh,

    2009-12-01

    Full Text Available Despite considerable effort to date, DNA transcription factor binding sites prediction in whole genome remains a challenge for the researchers. Currently the genome wide transcription factor binding sites prediction tools required either direct pattern sequence or weight matrix. Although there are known transcription factor binding sites pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a DNA-MATRIX tool for searching putative transcription factor binding sites in genomic sequences. DNA-MATRIX uses the simple heuristic approach for weight matrix construction, which can be transformed into different formats as per the requirement of researcher’s for further genome wide prediction and therefore provides the possibility to identify the conserved known DNA binding sites in the coregulated genes and also to search for a great variety of different regulatory binding patterns. The user may construct and save specific weight or frequency matrices in different formats derived through user selected set of known motif sequences.

  10. Oligomycin frames a common drug-binding site in the ATP synthase

    Energy Technology Data Exchange (ETDEWEB)

    Symersky, Jindrich; Osowski, Daniel; Walters, D. Eric; Mueller, David M. (Rosalind)

    2015-12-01

    We report the high-resolution (1.9 {angstrom}) crystal structure of oligomycin bound to the subunit c10 ring of the yeast mitochondrial ATP synthase. Oligomycin binds to the surface of the c10 ring making contact with two neighboring molecules at a position that explains the inhibitory effect on ATP synthesis. The carboxyl side chain of Glu59, which is essential for proton translocation, forms an H-bond with oligomycin via a bridging water molecule but is otherwise shielded from the aqueous environment. The remaining contacts between oligomycin and subunit c are primarily hydrophobic. The amino acid residues that form the oligomycin-binding site are 100% conserved between human and yeast but are widely different from those in bacterial homologs, thus explaining the differential sensitivity to oligomycin. Prior genetics studies suggest that the oligomycin-binding site overlaps with the binding site of other antibiotics, including those effective against Mycobacterium tuberculosis, and thereby frames a common 'drug-binding site.' We anticipate that this drug-binding site will serve as an effective target for new antibiotics developed by rational design.

  11. Subtilases and metal binding - the weak binding site of sutilisins revisited

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan; MacAuley, K.; Brzozowski, A. M.; Borchert, T. V.; Wilson, K. S.

    2007-01-01

    Roč. 14, č. 1 (2007), s. 28. ISSN 1211-5894. [Discussions in Structural Molecular Biology and Bioinformatics /6./. 29.03.2007-31.03.2007, Nové Hrady] R&D Projects: GA MŠk 1K05008 Institutional research plan: CEZ:AV0Z40500505 Keywords : subtilisin-like proteases * metal binding Subject RIV: CF - Physical ; Theoretical Chemistry

  12. Identification of corticotropin-releasing factor (CRF) target cells and effects of dexamethasone on binding in anterior pituitary using a fluorescent analog of CRF

    DEFF Research Database (Denmark)

    Schwartz, J; Billestrup, Nils; Perrin, M;

    1986-01-01

    A fluorescein-conjugated bioactive analog of corticotropin-releasing factor (CRF) was synthesized and used to label cells that have high affinity CRF-binding sites. Of cultured bovine anterior pituitary cells, 6.1 +/- 0.6% were visible by fluorescence microscopy after incubation with the analog....... Fluorescence was eliminated by coincubation with a 200-fold excess of unlabeled CRF. Treatment with dexamethasone (10(-9)-10(-7) M) decreased visible fluorescence in a dose-dependent manner. These results demonstrate the utility of a fluorescent CRF analog for identification of cells with specific CRF......-binding sites and suggest that binding of CRF to anterior pituitary cells is altered by glucocorticoids....

  13. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A.

    Science.gov (United States)

    Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris

    2016-01-01

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data. PMID:27092480

  14. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    Science.gov (United States)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  15. Characterization of an intracellular hyaluronic acid binding site in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    125I-HA, prepared by chemical modification at the reducing sugar, specifically binds to rat hepatocytes in suspension or culture. Intact hepatocytes have relatively few surface 125I-HA binding sites and show low specific binding. However, permeabilization of hepatocytes with the nonionic detergent digitonin results in increased specific 125I-HA binding (45-65%) and a very large increase in the number of specific 125I-HA binding sites. Scatchard analysis of equilibrium 125I-HA binding to permeabilized hepatocytes in suspension at 4 degrees C indicates a Kd = 1.8 x 10(-7) M and 1.3 x 10(6) molecules of HA (Mr approximately 30,000) bound per cell at saturation. Hepatocytes in primary culture for 24 h show the same affinity but the total number of HA molecules bound per cell at saturation decreases to approximately 6.2 x 10(5). Increasing the ionic strength above physiologic concentrations decreases 125I-HA binding to permeable cells, whereas decreasing the ionic strength above causes an approximately 4-fold increase. The divalent cation chelator EGTA does not prevent binding nor does it release 125I-HA bound in the presence of 2 mM CaCl2, although higher divalent cation concentrations stimulate 125I-HA binding. Ten millimolar CaCl2 or MnCl2 increases HA binding 3-6-fold compared to EGTA-treated cells. Ten millimolar MgCl2, SrCl2, or BaCl2 increased HA binding by 2-fold. The specific binding of 125I-HA to digitonin-treated hepatocytes at 4 degrees C increased greater than 10-fold at pH 5.0 as compared to pH 7

  16. Characterization of an intracellular hyaluronic acid binding site in isolated rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Frost, S.J.; Raja, R.H.; Weigel, P.H. (Univ. of Texas Medical Branch, Galveston (USA))

    1990-11-13

    125I-HA, prepared by chemical modification at the reducing sugar, specifically binds to rat hepatocytes in suspension or culture. Intact hepatocytes have relatively few surface 125I-HA binding sites and show low specific binding. However, permeabilization of hepatocytes with the nonionic detergent digitonin results in increased specific 125I-HA binding (45-65%) and a very large increase in the number of specific 125I-HA binding sites. Scatchard analysis of equilibrium 125I-HA binding to permeabilized hepatocytes in suspension at 4 degrees C indicates a Kd = 1.8 x 10(-7) M and 1.3 x 10(6) molecules of HA (Mr approximately 30,000) bound per cell at saturation. Hepatocytes in primary culture for 24 h show the same affinity but the total number of HA molecules bound per cell at saturation decreases to approximately 6.2 x 10(5). Increasing the ionic strength above physiologic concentrations decreases 125I-HA binding to permeable cells, whereas decreasing the ionic strength above causes an approximately 4-fold increase. The divalent cation chelator EGTA does not prevent binding nor does it release 125I-HA bound in the presence of 2 mM CaCl2, although higher divalent cation concentrations stimulate 125I-HA binding. Ten millimolar CaCl2 or MnCl2 increases HA binding 3-6-fold compared to EGTA-treated cells. Ten millimolar MgCl2, SrCl2, or BaCl2 increased HA binding by 2-fold. The specific binding of 125I-HA to digitonin-treated hepatocytes at 4{degrees}C increased greater than 10-fold at pH 5.0 as compared to pH 7.

  17. Autoradiographic localization of (/sup 125/I)-angiotensin II binding sites in the rat adrenal gland

    Energy Technology Data Exchange (ETDEWEB)

    Healy, D.P.; Maciejewski, A.R.; Printz, M.P.

    1985-03-01

    To gain greater insight into sites of action of circulating angiotensin II (Ang II) within the adrenal, we have localized the (/sup 125/I)-Ang II binding site using in vitro autoradiography. Autoradiograms were generated either by apposition of isotope-sensitive film or with emulsion-coated coverslips to slide-mounted adrenal sections labeled in vitro with 1.0 nM (/sup 125/I)-Ang II. Analysis of the autoradiograms showed that Ang II binding sites were concentrated in a thin band in the outer cortex (over the cells of the zona glomerulosa) and in the adrenal medulla, which at higher power was seen as dense patches. Few sites were evident in the inner cortex. The existence of Ang II binding sites in the adrenal medulla was confirmed by conventional homogenate binding techniques which revealed a single class of high affinity Ang II binding site (K/sub d/ . 0.7nM, B/sub max/ . 168.7 fmol/mg). These results suggest that the adrenal medulla may be a target for direct receptor-mediated actions of Ang II.

  18. Regression applied to protein binding site prediction and comparison with classification

    Directory of Open Access Journals (Sweden)

    Gala Jean-Luc

    2009-09-01

    Full Text Available Abstract Background The structural genomics centers provide hundreds of protein structures of unknown function. Therefore, developing methods enabling the determination of a protein function automatically is imperative. The determination of a protein function can be achieved by studying the network of its physical interactions. In this context, identifying a potential binding site between proteins is of primary interest. In the literature, methods for predicting a potential binding site location generally are based on classification tools. The aim of this paper is to show that regression tools are more efficient than classification tools for patches based binding site predictors. For this purpose, we developed a patches based binding site localization method usable with either regression or classification tools. Results We compared predictive performances of regression tools with performances of machine learning classifiers. Using leave-one-out cross-validation, we showed that regression tools provide better predictions than classification ones. Among regression tools, Multilayer Perceptron ranked highest in the quality of predictions. We compared also the predictive performance of our patches based method using Multilayer Perceptron with the performance of three other methods usable through a web server. Our method performed similarly to the other methods. Conclusion Regression is more efficient than classification when applied to our binding site localization method. When it is possible, using regression instead of classification for other existing binding site predictors will probably improve results. Furthermore, the method presented in this work is flexible because the size of the predicted binding site is adjustable. This adaptability is useful when either false positive or negative rates have to be limited.

  19. Identification and Structural Basis of Binding to Host Lung Glycogen by Streptococcal Virulence Factors

    Energy Technology Data Exchange (ETDEWEB)

    Lammerts van Bueren,A.; Higgins, M.; Wang, D.; Burke, R.; Boraston, A.

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.

  20. Endogenously generated plasmin at the vascular wall injury site amplifies lysine binding site-dependent plasminogen accumulation in microthrombi.

    Directory of Open Access Journals (Sweden)

    Tomasz Brzoska

    Full Text Available The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP. The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation.

  1. Transcriptional stimulation via SC site of Bombyx sericin-1 gene through an interaction with a DNA binding protein SGF-3.

    OpenAIRE

    Matsuno, K.; Takiya, S; Hui, C C; Suzuki, T.; Fukuta, M.; Ueno, K.; Suzuki, Y

    1990-01-01

    Three protein binding sites have been identified in the upstream region of the sericin-1 gene. Two of them, SA and SC sites, have been known as putative cis-acting elements. Using synthetic oligonucleotides of these binding sites, it was found that silk gland factor-1 (SGF-1) binds to the SA site, and silk gland factor-3 (SGF-3) binds to the SC site but not to a mutated SC site, SCM. Tissue distribution of the two factors was different. SGF-3 is present abundantly in the middle silk gland (MS...

  2. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckel, M.E.; Freund-Mercier, M.J. (Centre National de la Recherche Scientifique, Strasbourg (France))

    1989-08-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective {sup 125}I-labeled OT antagonist ({sup 125}I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of {sup 125}I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experiments showed first that {sup 125}I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.

  3. Characterization of a second ligand binding site of the insulin receptor

    International Nuclear Information System (INIS)

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the α subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K d of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site

  4. Putative hAPN receptor binding sites in SARS_CoV spike protein

    Institute of Scientific and Technical Information of China (English)

    YUXiao-Jing; LUOCheng; LinJian-Cheng; HAOPei; HEYou-Yu; GUOZong-Ming; QINLei; SUJiong; LIUBo-Shu; HUANGYin; NANPeng; LIChuan-Song; XIONGBin; LUOXiao-Min; ZHAOGuo-Ping; PEIGang; CHENKai-Xian; SHENXu; SHENJian-Hua; ZOUJian-Ping; HEWei-Zhong; SHITie-Liu; ZHONGYang; JIANGHua-Liang; LIYi-Xue

    2003-01-01

    AIM:To obtain the information of ligand-receptor binding between thd S protein of SARS_CoV and CD13, identify the possible interacting domains or motifs related to binding sites, and provide clues for studying the functions of SARS proteins and designing anti-SARS drugs and vaccines. METHODS: On the basis of comparative genomics, the homology search, phylogenetic analyses, and multi-sequence alignment were used to predict CD13 related interacting domains and binding sites sites in the S protein of SARS_CoV. Molecular modeling and docking simulation methods were employed to address the interaction feature between CD13 and S protein of SARS_CoV in validating the bioinformatics predictions. RESULTS:Possible binding sites in the SARS_CoV S protein to CD13 have been mapped out by using bioinformatics analysis tools. The binding for one protein-protein interaction pair (D757-R761 motif of the SARS_CoV S protein to P585-A653 domain of CD13) has been simulated by molecular modeling and docking simulation methods. CONCLUSION:CD13 may be a possible receptor of the SARS_CoV S protein which may be associated with the SARS infection. This study also provides a possible strategy for mapping the possible binding receptors of the proteins in a genome.

  5. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  6. A high affinity binding site for cytokinin to a particulate fraction in carrot suspension cells

    International Nuclear Information System (INIS)

    Carrot suspension cells contain one class of high affinity binding sites for cytokinin in an 80,000 X g particulate fraction. Binding of [8-14C] - benzylaminopurine (BA) to this fraction assayed by a sedimentation method was found to be optimal at ph 6.0 and thermolabile. Specific binding was proved in competition experiments in which labelled BA was displaced by increasing concentrations of unlabelled BA. Scatchard plots of these results displayed a dissociation constant (Ksub(d)) of 33+- 6 n.M. The number of binding sites found was 1,100+-120 fmol g-1 fresh weight which is equivalent to a frequency of 23,000 binding sites per cell. The specificity of the binding sites to cytokinins and their analogues followed the sequence BA with highest affinity, kinetin, zeatin, iP and adenine. The cytokinin ribosides generally had a lower affinity than their cytokinin bases, and the affinity decreased in the order [9 R] BA, [9 R] iP, [i R]Z, [9 R] A. (author)

  7. Cloning and characterisation of a nuclear, site specific ssDNA binding protein.

    Science.gov (United States)

    Smidt, M P; Russchen, B; Snippe, L; Wijnholds, J; Ab, G

    1995-07-11

    Estradiol inducible, liver-specific expression of the apoVLDL II gene is mediated through the estrogen receptor and a variety of other DNA-binding proteins. In the present study we report the cloning and characterisation of a single-strand DNA binding protein that interacts with the lower strand of a complex regulatory site, which includes the major estrogen responsive element and a site that resembles the rat albumin site D (apoVLDL II site D). Based on its binding specificity determined with electro-mobility shift assays, the protein is named single-strand D-box binding factor (ssDBF). Analysis of the deduced 302 amino acid sequence revealed that the protein belongs to the heteronuclear ribonucleoprotein A/B family (hnRNP A/B) and resembles other known eukaryotic single-strand DNA binding proteins. Transient transfection experiments in a chicken liver cell-line showed that the protein represses estrogen-induced transcription. A protein with similar binding characteristics is present in liver nuclear extract. The relevance of the occurrence of this protein to the expression of the apoVLDL II gene is discussed. PMID:7630716

  8. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    International Nuclear Information System (INIS)

    The mechanism by which delta9 tetrahydrocannabinol (delta9THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5'-Trimethylammonium-delta8THC (TMA) is a positively charged analog of delta-8THC modified on the 5' carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of [3H]-5'-trimethylammonium-delta-8THC ([3H]TMA) to rat neuronal membranes. [3H]TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of [3H]TMA binding activity of approximately 60,000 daltons apparent molecular weight

  9. Interaction of Palmitic Acid with Metoprolol Succinate at the Binding Sites of Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Mashiur Rahman

    2014-12-01

    Full Text Available Purpose: The aim of this study was to characterize the binding profile as well as to notify the interaction of palmitic acid with metoprolol succinate at its binding site on albumin. Methods: The binding of metoprolol succinate to bovine serum albumin (BSA was studied by equilibrium dialysis method (ED at 27°C and pH 7.4, in order to have an insight in the binding chemistry of the drug to BSA in presence and absence of palmitic acid. The study was carried out using ranitidine as site-1 and diazepam as site-2 specific probe. Results: Different analysis of binding of metoprolol succinate to bovine serum albumin suggested two sets of association constants: high affinity association constant (k1 = 11.0 x 105 M-1 with low capacity (n1 = 2 and low affinity association (k2 = 4.0×105 M-1 constant with high capacity (n2 = 8 at pH 7.4 and 27°C. During concurrent administration of palmitic acid and metoprolol succinate in presence or absence of ranitidine or diazepam, it was found that palmitic acid displaced metoprolol succinate from its binding site on BSA resulting reduced binding of metoprolol succinate to BSA. The increment in free fraction of metoprolol succinate was from 26.27% to 55.08% upon the addition of increased concentration of palmitic acid at a concentration of 0×10-5 M to 16×10-5 M. In presence of ranitidine and diazepam, palmitic acid further increases the free fraction of metoprolol succinate from 33.05% to 66.95% and 40.68% to 72.88%, respectively. Conclusion: This data provided the evidence of interaction at higher concentration of palmitic acid at the binding sites on BSA, which might change the pharmacokinetic properties of metoprolol succinate.

  10. Impact of disruption of secondary binding site S2 on dopamine transporter function.

    Science.gov (United States)

    Zhen, Juan; Reith, Maarten E A

    2016-09-01

    The structures of the leucine transporter, drosophila dopamine transporter, and human serotonin transporter show a secondary binding site (designated S2 ) for drugs and substrate in the extracellular vestibule toward the membrane exterior in relation to the primary substrate recognition site (S1 ). The present experiments are aimed at disrupting S2 by mutating Asp476 and Ile159 to Ala. Both mutants displayed a profound decrease in [(3) H]DA uptake compared with wild-type associated with a reduced turnover rate kcat . This was not caused by a conformational bias as the mutants responded to Zn(2+) (10 μM) similarly as WT. The dopamine transporters with either the D476A or I159A mutation both displayed a higher Ki for dopamine for the inhibition of [3H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding than did the WT transporter, in accordance with an allosteric interaction between the S1 and S2 sites. The results provide evidence in favor of a general applicability of the two-site allosteric model of the Javitch/Weinstein group from LeuT to dopamine transporter and possibly other monoamine transporters. X-ray structures of transporters closely related to the dopamine (DA) transporter show a secondary binding site S2 in the extracellular vestibule proximal to the primary binding site S1 which is closely linked to one of the Na(+) binding sites. This work examines the relationship between S2 and S1 sites. We found that S2 site impairment severely reduced DA transport and allosterically reduced S1 site affinity for the cocaine analog [(3) H]CFT. Our results are the first to lend direct support for the application of the two-site allosteric model, advanced for bacterial LeuT, to the human DA transporter. The model states that, after binding of the first DA molecule (DA1 ) to the primary S1 site (along with Na(+) ), binding of a second DA (DA2 ) to the S2 site triggers, through an allosteric interaction, the release of DA1 and Na(+) into the cytoplasm. PMID

  11. A nuclear magnetic resonance-based structural rationale for contrasting stoichiometry and ligand binding site(s) in fatty acid-binding proteins.

    Science.gov (United States)

    He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E

    2011-03-01

    Liver fatty acid-binding protein (LFABP) is a 14 kDa cytosolic polypeptide, differing from other family members in the number of ligand binding sites, the diversity of bound ligands, and the transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional (1)H-(15)N nuclear magnetic resonance (NMR) signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without determining the protein-ligand complex structures, to yield the stoichiometries for the bound ligands, their locations within the protein binding cavity, the sequence of ligand occupation, and the corresponding protein structural accommodations. Chemical shifts were monitored for wild-type LFABP and an R122L/S124A mutant in which electrostatic interactions viewed as being essential to fatty acid binding were removed. For wild-type LFABP, the results compared favorably with the data for previous tertiary structures of oleate-bound wild-type LFABP in crystals and in solution: there are two oleates, one U-shaped ligand that positions the long hydrophobic chain deep within the cavity and another extended structure with the hydrophobic chain facing the cavity and the carboxylate group lying close to the protein surface. The NMR titration validated a prior hypothesis that the first oleate to enter the cavity occupies the internal protein site. In contrast, (1)H and (15)N chemical shift changes supported only one liganded oleate for R122L/S124A LFABP, at an intermediate location within the protein cavity. A rationale based on protein sequence and electrostatics was developed to explain the stoichiometry and binding site trends for LFABPs and to put these findings into context within the larger protein family. PMID:21226535

  12. Arylfluorosulfates Inactivate Intracellular Lipid Binding Protein(s) through Chemoselective SuFEx Reaction with a Binding Site Tyr Residue.

    Science.gov (United States)

    Chen, Wentao; Dong, Jiajia; Plate, Lars; Mortenson, David E; Brighty, Gabriel J; Li, Suhua; Liu, Yu; Galmozzi, Andrea; Lee, Peter S; Hulce, Jonathan J; Cravatt, Benjamin F; Saez, Enrique; Powers, Evan T; Wilson, Ian A; Sharpless, K Barry; Kelly, Jeffery W

    2016-06-15

    Arylfluorosulfates have appeared only rarely in the literature and have not been explored as probes for covalent conjugation to proteins, possibly because they were assumed to possess high reactivity, as with other sulfur(VI) halides. However, we find that arylfluorosulfates become reactive only under certain circumstances, e.g., when fluoride displacement by a nucleophile is facilitated. Herein, we explore the reactivity of structurally simple arylfluorosulfates toward the proteome of human cells. We demonstrate that the protein reactivity of arylfluorosulfates is lower than that of the corresponding aryl sulfonyl fluorides, which are better characterized with regard to proteome reactivity. We discovered that simple hydrophobic arylfluorosulfates selectively react with a few members of the intracellular lipid binding protein (iLBP) family. A central function of iLBPs is to deliver small-molecule ligands to nuclear hormone receptors. Arylfluorosulfate probe 1 reacts with a conserved tyrosine residue in the ligand-binding site of a subset of iLBPs. Arylfluorosulfate probes 3 and 4, featuring a biphenyl core, very selectively and efficiently modify cellular retinoic acid binding protein 2 (CRABP2), both in vitro and in living cells. The X-ray crystal structure of the CRABP2-4 conjugate, when considered together with binding site mutagenesis experiments, provides insight into how CRABP2 might activate arylfluorosulfates toward site-specific reaction. Treatment of breast cancer cells with probe 4 attenuates nuclear hormone receptor activity mediated by retinoic acid, an endogenous client lipid of CRABP2. Our findings demonstrate that arylfluorosulfates can selectively target single iLBPs, making them useful for understanding iLBP function. PMID:27191344

  13. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  14. Isolation of active site and antibody-binding fragments of human erythrocyte transglutaminase

    International Nuclear Information System (INIS)

    Catalytically active human erythrocyte transglutaminase (TGase) was purified using an immunoaffinity column prepared from a monoclonal antibody to guinea pig liver TGase. The enzyme activity was completely inhibited by incorporation of iodo[14C]acetamide to the level of 1 mole per 1 mole of TGase. The 14C-labeled TGase was digested with cyanogen bromide, subjected to HPLC, and four pure peptides were isolated with molecular weights ranging from 3-22 KDa. Only one of the peptides was radiolabeled and characterized as an active site peptide of 10 KDa. Another peptide of 18 KDa was identified as a monoclonal antibody-binding domain of TGase. Although the active site and the antibody-binding domain were present on different cyanogen bromide fragments, the mouse anti-TGase inhibited 100% of TGase activity. The results suggest that the antibody-binding site is not located on the enzyme active site sequence, but that the three dimensional space configuration of the antigen-antibody complex hinders substrate binding to the active site. The radiolabeled active site cysteine residue was not found in the N-terminal 21 amino acids of the 10 KDa peptide. Additional fragments of the active site peptide are currently being analyzed

  15. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    International Nuclear Information System (INIS)

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, 3H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a 3H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of 3H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A4, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each

  16. Mercury Binding Sites in Thiol-Functionalized Mesostructured Silica

    International Nuclear Information System (INIS)

    Thiol-functionalized mesostructured silica with anhydrous compositions of (SiO2)1-x(LSiO1.5)x, where L is a mercaptopropyl group and x is the fraction of functionalized framework silicon centers, are effective trapping agents for the removal of mercuric(II) ions from water. In the present work, we investigate the mercury-binding mechanism for representative thiol-functionalized mesostructures by atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data and by Raman spectroscopy. The mesostructures with wormhole framework structures and compositions corresponding to x = 0.30 and 0.50 were prepared by direct assembly methods in the presence of a structure-directing amine porogen. PDF analyses of five mercury-loaded compositions with Hg/S ratios of 0.50-1.30 provided evidence for the bridging of thiolate sulfur atoms to two metal ion centers and the formation of chain structures on the pore surfaces. We find no evidence for Hg-O bonds and can rule out oxygen coordination of the mercury at greater than the 10% level. The relative intensities of the PDF peaks corresponding to Hg-S and Hg-Hg atomic pairs indicate that the mercury centers cluster on the functionalized surfaces by virtue of thiolate bridging, regardless of the overall mercury loading. However, the Raman results indicate that the complexation of mercury centers by thiolate depends on the mercury loading. At low mercury loadings (Hg/S (le) 0.5), the dominant species is an electrically neutral complex in which mercury most likely is tetrahedrally coordinated to bridging thiolate ligands, as in Hg(SBut)2. At higher loadings (Hg/S 1.0-1.3), mercury complex cations predominate, as evidenced by the presence of charge-balancing anions (nitrate) on the surface. This cationic form of bound mercury is assigned a linear coordination to two bridging thiolate ligands.

  17. Identification of recognition sites for myc/max/mxd network proteins by a whole human chromosome 19 selection strategy.

    Science.gov (United States)

    Akopov, S B; Chernov, I P; Wahlström, T; Kostina, M B; Klein, G; Henriksson, M; Nikolaev, L G

    2008-11-01

    In this study, we have identified 20 human sequences containing Myc network binding sites in a library from the whole human chromosome 19. We demonstrated binding of the Max protein to these sequences both in vitro and in vivo. The majority of the identified sequences contained one or several CACGTG or CATGTG E-boxes. Several of these sites were located within introns or in their vicinity and the corresponding genes were found to be up- or down-regulated in differentiating HL-60 cells. Our data show the proof of principle for using this strategy in identification of Max target genes, and this method can also be applied for other transcription factors. PMID:19120031

  18. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1.

    Science.gov (United States)

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong; Cho, Sung-Hwan; Xu, Dong; Stacey, Gary

    2016-01-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecular interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. The in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues. PMID:27583834

  19. Comparison of Different Ranking Methods in Protein-Ligand Binding Site Prediction

    Science.gov (United States)

    Gao, Jun; Liu, Qi; Kang, Hong; Cao, Zhiwei; Zhu, Ruixin

    2012-01-01

    In recent years, although many ligand-binding site prediction methods have been developed, there has still been a great demand to improve the prediction accuracy and compare different prediction algorithms to evaluate their performances. In this work, in order to improve the performance of the protein-ligand binding site prediction method presented in our former study, a comparison of different binding site ranking lists was studied. Four kinds of properties, i.e., pocket size, distance from the protein centroid, sequence conservation and the number of hydrophobic residues, have been chosen as the corresponding ranking criterion respectively. Our studies show that the sequence conservation information helps to rank the real pockets with the most successful accuracy compared to others. At the same time, the pocket size and the distance of binding site from the protein centroid are also found to be helpful. In addition, a multi-view ranking aggregation method, which combines the information among those four properties, was further applied in our study. The results show that a better performance can be achieved by the aggregation of the complementary properties in the prediction of ligand-binding sites. PMID:22942732

  20. Modular insulators: genome wide search for composite CTCF/thyroid hormone receptor binding sites.

    Directory of Open Access Journals (Sweden)

    Oliver Weth

    Full Text Available The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations.

  1. Effects of sodium on cell surface and intracellular TH-naloxone binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, A.E.; Wooten, G.F.

    1987-07-27

    The binding of the opiate antagonist TH-naloxone was examined in rat whole brain homogenates and in crude subcellular fractions of these homogenates (nuclear, synaptosomal, and mitochondrial fractions) using buffers that approximated intra- (low sodium concentration) and extracellular (high sodium concentration) fluids. Saturation studies showed a two-fold decrease in the dissociation constant (Kd) in all subcellular fractions examined in extracellular buffer compared to intracellular buffer. In contrast, there was no significant effect of the buffers on the Bmax. Thus, TH-naloxone did not distinguish between binding sites present on cell surface and intracellular tissues in these two buffers. These results show that the sodium effect of opiate antagonist binding is probably not a function of altered selection of intra- and extracellular binding sites. 17 references, 2 tables.

  2. Effects of sodium on cell surface and intracellular 3H-naloxone binding sites

    International Nuclear Information System (INIS)

    The binding of the opiate antagonist 3H-naloxone was examined in rat whole brain homogenates and in crude subcellular fractions of these homogenates (nuclear, synaptosomal, and mitochondrial fractions) using buffers that approximated intra- (low sodium concentration) and extracellular (high sodium concentration) fluids. Saturation studies showed a two-fold decrease in the dissociation constant (Kd) in all subcellular fractions examined in extracellular buffer compared to intracellular buffer. In contrast, there was no significant effect of the buffers on the Bmax. Thus, 3H-naloxone did not distinguish between binding sites present on cell surface and intracellular tissues in these two buffers. These results show that the sodium effect of opiate antagonist binding is probably not a function of altered selection of intra- and extracellular binding sites. 17 references, 2 tables

  3. Identification of essential cannabinoid-binding domains: structural insights into early dynamic events in receptor activation.

    Science.gov (United States)

    Shim, Joong-Youn; Bertalovitz, Alexander C; Kendall, Debra A

    2011-09-23

    The classical cannabinoid agonist HU210, a structural analog of (-)-Δ(9)-tetrahydrocannabinol, binds to brain cannabinoid (CB1) receptors and activates signal transduction pathways. To date, an exact molecular description of the CB1 receptor is not yet available. Utilizing the minor binding pocket of the CB1 receptor as the primary ligand interaction site, we explored HU210 binding using lipid bilayer molecular dynamics (MD) simulations. Among the potential ligand contact residues, we identified residues Phe-174(2.61), Phe-177(2.64), Leu-193(3.29), and Met-363(6.55) as being critical for HU210 binding by mutational analysis. Using these residues to guide the simulations, we determined essential cannabinoid-binding domains in the CB1 receptor, including the highly sought after hydrophobic pocket important for the binding of the C3 alkyl chain of classical and nonclassical cannabinoids. Analyzing the simulations of the HU210-CB1 receptor complex, the CP55940-CB1 receptor complex, and the (-)-Δ(9)-tetrahydrocannabinol-CB1 receptor complex, we found that the positioning of the C3 alkyl chain and the aromatic stacking between Trp-356(6.48) and Trp-279(5.43) is crucial for the Trp-356(6.48) rotamer change toward receptor activation through the rigid-body movement of H6. The functional data for the mutant receptors demonstrated reductions in potency for G protein activation similar to the reductions seen in ligand binding affinity for HU210. PMID:21795705

  4. The Adenovirus Type 3 Dodecahedron's RGD Loop Comprises an HSPG Binding Site That Influences Integrin Binding

    Directory of Open Access Journals (Sweden)

    H. Lortat-Jacob

    2010-01-01

    Full Text Available Human type 3 adenovirus dodecahedron (a virus like particle made of twelve penton bases features the ability to enter cells through Heparan Sulphate Proteoglycans (HSPGs and integrins interaction and is used as a versatile vector to deliver DNA or proteins. Cryo-EM reconstruction of the pseudoviral particle with Heparan Sulphate (HS oligosaccharide shows an extradensity on the RGD loop. A set of mutants was designed to study the respective roles of the RGD sequence (RGE mutant and of a basic sequence located just downstream. Results showed that the RGE mutant binding to the HS deficient CHO-2241 cells was abolished and unexpectedly, mutation of the basic sequence (KQKR to AQAS dramatically decreased integrin recognition by the viral pseudoparticle. This basic sequence is thus involved in integrin docking, showing a close interplay between HSPGs and integrin receptors.

  5. Structure-function studies of DNA binding domain of response regulator KdpE reveals equal affinity interactions at DNA half-sites.

    Directory of Open Access Journals (Sweden)

    Anoop Narayanan

    Full Text Available Expression of KdpFABC, a K(+ pump that restores osmotic balance, is controlled by binding of the response regulator KdpE to a specific DNA sequence (kdpFABC(BS via the winged helix-turn-helix type DNA binding domain (KdpE(DBD. Exploration of E. coli KdpE(DBD and kdpFABC(BS interaction resulted in the identification of two conserved, AT-rich 6 bp direct repeats that form half-sites. Despite binding to these half-sites, KdpE(DBD was incapable of promoting gene expression in vivo. Structure-function studies guided by our 2.5 Å X-ray structure of KdpE(DBD revealed the importance of residues R193 and R200 in the α-8 DNA recognition helix and T215 in the wing region for DNA binding. Mutation of these residues renders KdpE incapable of inducing expression of the kdpFABC operon. Detailed biophysical analysis of interactions using analytical ultracentrifugation revealed a 2∶1 stoichiometry of protein to DNA with dissociation constants of 200±100 and 350±100 nM at half-sites. Inactivation of one half-site does not influence binding at the other, indicating that KdpE(DBD binds independently to the half-sites with approximately equal affinity and no discernable cooperativity. To our knowledge, these data are the first to describe in quantitative terms the binding at half-sites under equilibrium conditions for a member of the ubiquitous OmpR/PhoB family of proteins.

  6. Discovering structural motifs using a structural alphabet: Application to magnesium-binding sites

    Directory of Open Access Journals (Sweden)

    Lim Carmay

    2007-03-01

    Full Text Available Abstract Background For many metalloproteins, sequence motifs characteristic of metal-binding sites have not been found or are so short that they would not be expected to be metal-specific. Striking examples of such metalloproteins are those containing Mg2+, one of the most versatile metal cofactors in cellular biochemistry. Even when Mg2+-proteins share insufficient sequence homology to identify Mg2+-specific sequence motifs, they may still share similarity in the Mg2+-binding site structure. However, no structural motifs characteristic of Mg2+-binding sites have been reported. Thus, our aims are (i to develop a general method for discovering structural patterns/motifs characteristic of ligand-binding sites, given the 3D protein structures, and (ii to apply it to Mg2+-proteins sharing 2+-structural motifs are identified as recurring structural patterns. Results The structural alphabet-based motif discovery method has revealed the structural preference of Mg2+-binding sites for certain local/secondary structures: compared to all residues in the Mg2+-proteins, both first and second-shell Mg2+-ligands prefer loops to helices. Even when the Mg2+-proteins share no significant sequence homology, some of them share a similar Mg2+-binding site structure: 4 Mg2+-structural motifs, comprising 21% of the binding sites, were found. In particular, one of the Mg2+-structural motifs found maps to a specific functional group, namely, hydrolases. Furthermore, 2 of the motifs were not found in non metalloproteins or in Ca2+-binding proteins. The structural motifs discovered thus capture some essential biochemical and/or evolutionary properties, and hence may be useful for discovering proteins where Mg2+ plays an important biological role. Conclusion The structural motif discovery method presented herein is general and can be applied to any set of proteins with known 3D structures. This new method is timely considering the increasing number of structures for

  7. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    Science.gov (United States)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  8. Outer membrane protein binding sites of complement component 3 during opsonization of Haemophilus influenzae.

    OpenAIRE

    Hetherington, S V; Patrick, C C; Hansen, E J

    1993-01-01

    Complement component 3 (C3) binding to Haemophilus influenzae type b (Hib) is an important step in host defense against invasive disease, but the details of this process remain poorly understood. We have shown that the P1 and P2 outer membrane proteins (OMPs) serve as binding sites for C3 on serum-opsonized Hib. Whole-cell lysates of opsonized Hib were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the resolved proteins were transferred to nitrocellulose. Immunobl...

  9. A Novel Alignment-Free Method for Comparing Transcription Factor Binding Site Motifs

    OpenAIRE

    Minli Xu; Zhengchang Su

    2010-01-01

    BACKGROUND: Transcription factor binding site (TFBS) motifs can be accurately represented by position frequency matrices (PFM) or other equivalent forms. We often need to compare TFBS motifs using their PFMs in order to search for similar motifs in a motif database, or cluster motifs according to their binding preference. The majority of current methods for motif comparison involve a similarity metric for column-to-column comparison and a method to find the optimal position alignment between ...

  10. Novel Phosphotidylinositol 4,5-Bisphosphate Binding Sites on Focal Adhesion Kinase

    OpenAIRE

    Jun Feng; Blake Mertz

    2015-01-01

    Focal adhesion kinase (FAK) is a protein tyrosine kinase that is ubiquitously expressed, recruited to focal adhesions, and engages in a variety of cellular signaling pathways. Diverse cellular responses, such as cell migration, proliferation, and survival, are regulated by FAK. Prior to activation, FAK adopts an autoinhibited conformation in which the FERM domain binds the kinase domain, blocking access to the activation loop and substrate binding site. Activation of FAK occurs through confor...

  11. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Jensen, Heidi Bisgaard; Larsen, M Andreas B; Mazier, Sonia;

    2011-01-01

    Analogs of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational...... with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine....

  12. Structural proof of a dimeric positive modulator bridging two identical AMPA receptor-binding sites

    DEFF Research Database (Denmark)

    Kaae, Birgitte Høiriis; Harpsøe, Kasper; Kastrup, Jette Sandholm Jensen;

    2007-01-01

    have dramatically increased potencies, more than three orders of magnitude higher than the corresponding monomers. Dimer (R,R)-2a was cocrystallized with the GluR2-S1S2J construct, and an X-ray crystallographic analysis showed (R,R)-2a to bridge two identical binding pockets on two neighboring GluR2...... subunits. Thus, this is biostructural evidence of a homomeric dimer bridging two identical receptor-binding sites....

  13. Identification of cofactor and herbicide binding domains in acetolactate synthase by bromopyruvate modification

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyk, D.E.; Schloss, J.V.

    1987-05-01

    Bromopyruvate is an affinity label for acetolactate synthase isozyme II from Salmonella typhimurium (ALSII). The concentration of bromopyruvate giving half-maximal inactivation is 0.1 mM, and the maximal rate of inactivation is 0.56 hr/sup -1/. Inactivation with (/sup 14/C)bromopyruvate is associated with the incorporation of 4 molecules of reagent per active site lost. Two cysteinyl residues are modified extremely rapidly, with no loss of enzymatic activity, as judged by quenching the reaction with thiol after its initial phase. Inactivation is a consequence of the additional two moles of reagent incorporated per mole of protomer. The additional incorporation is divided between one major and two minor sites of modification. Substantial protection against inactivation is afforded by FAD, with virtually complete protection provided by a mixture of FAD and thiamine pyrophosphate (TPP). The major site of modification, protected by FAD, is cysteinyl residue number67, based upon amino acid sequence analysis of the purified tryptic peptide that encompasses this site. The remaining site of modification, protected by TPP, is associated with cysteinyl residue number44. Both sites of modification are afforded protection by the sulfonylurea herbicide sulfometuron methyl (SM). Although inactivation by bromopyruvate exhibits rate saturation, indicating binding as a prerequisite to inactivation, neither pyruvate nor ..cap alpha..-ketobutyrate prevent modification of the enzyme by bromopyruvate. Thus, it would appear that the bromopyruvate binding site is not the site normally occupied by substrate.

  14. A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Bergmann, Rikke; Sørensen, Pernille Louise; Sander, Tommy; Balle, Thomas

    2013-01-01

    -gated chloride channel (GluCl) from C. elegans and includes additional structural information from the prokaryotic ligand-gated ion channel ELIC in a few regions. Available mutational data of the binding sites are well explained by the model and the proposed ligand binding poses. We suggest a GABA binding mode...... similar to the binding mode of glutamate in the GluCl X-ray structure. Key interactions are predicted with residues a1R66, b2T202, a1T129, b2E155, b2Y205 and the backbone of b2S156. Muscimol is predicted to bind similarly, however, with minor differences rationalized with quantum mechanical energy...

  15. Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein.

    Science.gov (United States)

    Ferreira, Ricardo J; Ferreira, Maria-José U; dos Santos, Daniel J V A

    2013-07-22

    P-Glycoprotein (Pgp) is one of the best characterized ABC transporters, often involved in the multidrug-resistance phenotype overexpressed by several cancer cell lines. Experimental studies contributed to important knowledge concerning substrate polyspecificity, efflux mechanism, and drug-binding sites. This information is, however, scattered through different perspectives, not existing a unifying model for the knowledge available for this transporter. Using a previously refined structure of murine Pgp, three putative drug-binding sites were hereby characterized by means of molecular docking. The modulator site (M-site) is characterized by cross interactions between both Pgp halves herein defined for the first time, having an important role in impairing conformational changes leading to substrate efflux. Two other binding sites, located next to the inner leaflet of the lipid bilayer, were identified as the substrate-binding H and R sites by matching docking and experimental results. A new classification model with the ability to discriminate substrates from modulators is also proposed, integrating a vast number of theoretical and experimental data. PMID:23802684

  16. Characterization of specific binding sites for [3H](d)-N-allylnormetazocine in rat brain membranes

    International Nuclear Information System (INIS)

    Binding of [3H](d)-N-allylnormetazocine ([3H](d)-NANM) to rat brain membranes is stereospecific, reversible, and saturable (Bmax . 260 fmol/mg of protein) and manifests moderately high affinity (Kd . 20 nM). The rank order of potency among opioidbenzomorphans and phencyclidine (PCP) analogs for competition for [3H](d)-NANM-binding sites is as follows: (d)-NANM . PCP-3-OH greater than (d)-cyclazocine greater than N-ethylphenylcyclohexylamine greater than PCP greater than (l)-cyclazocine . dextrorphan greater than (d/l)-ethylketocyclazocine greater than (d/l)-bremazocine greater than (1)-NANM greater than 1-phenylcyclohexylamine greater than levorphanol. Other opioid ligands, relatively selective for each of the types of opioid binding sites other than sigma, such as morphine (mu), H-Tyr-D-Ala(Me)Phe-NH-CH2-OH (mu), D-Ala2-D-Leu5-enkephalin (delta), tifluadom (kappa), and U 50488 (kappa) as well as etorphine and naloxone were all unable to compete with [3H](d)-NANM for specific binding even at a concentration of 1 microM. Regional distribution studies of [3H](d)-NANM-binding sites show high density in the hippocampus, thalamus, hypothalamus, and amygdala and low density in cerebellum and nonfrontal neocortex membranes of the rat brain. These binding sites are very sensitive to protein-modifying enzymes and reagents such as trypsin and N-ethylmaleimide and to heat denaturation. These results provide direct biochemical evidence for the existence of distinct (d)-NANM-binding sites in rat brain

  17. Rational design of a protein that binds integrin αvβ3 outside the ligand binding site

    Science.gov (United States)

    Turaga, Ravi Chakra; Yin, Lu; Yang, Jenny J.; Lee, Hsiauwei; Ivanov, Ivaylo; Yan, Chunli; Yang, Hua; Grossniklaus, Hans E.; Wang, Siming; Ma, Cheng; Sun, Li; Liu, Zhi-Ren

    2016-01-01

    Integrin αvβ3 expression is altered in various diseases and has been proposed as a drug target. Here we use a rational design approach to develop a therapeutic protein, which we call ProAgio, that binds to integrin αvβ3 outside the classical ligand-binding site. We show ProAgio induces apoptosis of integrin αvβ3-expressing cells by recruiting and activating caspase 8 to the cytoplasmic domain of integrin αvβ3. ProAgio also has anti-angiogenic activity and strongly inhibits growth of tumour xenografts, but does not affect the established vasculature. Toxicity analyses demonstrate that ProAgio is not toxic to mice. Our study reports a new integrin-targeting agent with a unique mechanism of action, and provides a template for the development of integrin-targeting therapeutics. PMID:27241473

  18. Interaction of triprolidine hydrochloride with serum albumins: thermodynamic and binding characteristics, and influence of site probes.

    Science.gov (United States)

    Sandhya, B; Hegde, Ashwini H; Kalanur, Shankara S; Katrahalli, Umesha; Seetharamappa, J

    2011-04-01

    The interaction between triprolidine hydrochloride (TRP) to serum albumins viz. bovine serum albumin (BSA) and human serum albumin (HSA) has been studied by spectroscopic methods. The experimental results revealed the static quenching mechanism in the interaction of TRP with protein. The number of binding sites close to unity for both TRP-BSA and TRP-HSA indicated the presence of single class of binding site for the drug in protein. The binding constant values of TRP-BSA and TRP-HSA were observed to be 4.75 ± 0.018 × 10(3) and 2.42 ± 0.024 × 10(4)M(-1) at 294 K, respectively. Thermodynamic parameters indicated that the hydrogen bond and van der Waals forces played the major role in the binding of TRP to proteins. The distance of separation between the serum albumin and TRP was obtained from the Förster's theory of non-radioactive energy transfer. The metal ions viz., K(+), Ca(2+), Co(2+), Cu(2+), Ni(2+), Mn(2+) and Zn(2+) were found to influence the binding of the drug to protein. Displacement experiments indicated the binding of TRP to Sudlow's site I on both BSA and HSA. The CD, 3D fluorescence spectra and FT-IR spectral results revealed the changes in the secondary structure of protein upon interaction with TRP. PMID:21215548

  19. Distribution of [3H]diadenosine tetraphosphate binding sites in rat brain

    International Nuclear Information System (INIS)

    The distribution of the diadenosine tetraphosphate high-affinity binding sites has been studied in rat brain by an autoradiographic method using [3H]diadenosine tetraphosphate as the ligand. The binding characteristics are comparable to those described in studies performed on rat brain synaptosomes. White matter is devoid of specific binding. The range of binding site densities in gray matter varies from 3 to 15 fmol/mg of tissue, exhibiting a widespread but heterogeneous distribution. The highest densities correspond to the seventh cranial nerve, medial superior olive, pontine nuclei, glomerular and external plexiform layers of the olfactory bulb, and the granule cell layer of the cerebellar cortex. Intermediate density levels of binding correspond to different cortical areas, several nuclei of the amygdala, and the oriens and pyramidal layers of the hippocampal formation.The localization of diadenosine tetraphosphate binding sites in the brain may provide information on the places where diadenosine polyphosphate compounds can be expected to function in the central nervous system. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Wnts grasp the WIF domain of Wnt Inhibitory Factor 1 at two distinct binding sites.

    Science.gov (United States)

    Kerekes, Krisztina; Bányai, László; Patthy, László

    2015-10-01

    Wnts have a structure resembling a hand with "thumb" and "index" fingers that grasp the cysteine rich domains of Frizzled receptors at two distinct binding sites. In the present work we show that the WIF domain of Wnt Inhibitory Factor 1 is also bound by Wnts at two sites. Using C-terminal domains of Wnt5a and Wnt7a and arginine-scanning mutagenesis of the WIF domain we demonstrate that, whereas the N-terminal, lipid-modified "thumb" of Wnts interacts with the alkyl-binding site of the WIF domain, the C-terminal domain of Wnts (Wnt-CTD) binds to a surface on the opposite side of the WIF domain. PMID:26342861

  1. Site-Specific Oligonucleotide Binding Represses Transcription of the Human c-myc Gene in vitro

    Science.gov (United States)

    Cooney, Michael; Czernuszewicz, Graznya; Postel, Edith H.; Flint, S. Jane; Hogan, Michael E.

    1988-07-01

    A 27-base-long DNA oligonucleotide was designed that binds to duplex DNA at a single site within the 5' end of the human c-myc gene, 115 base pairs upstream from the transcription origin P1. On the basis of the physical properties of its bound complex, it was concluded that the oligonucleotide forms a colinear triplex with the duplex binding site. By means of an in vitro assay system, it was possible to show a correlation between triplex formation at -115 base pairs and repression of c-myc transcription. The possibility is discussed that triplex formation (site-specific RNA binding to a DNA duplex) could serve as the basis for an alternative program of gene control in vivo.

  2. Ivermectin binding sites in human and invertebrate Cys-loop receptors.

    Science.gov (United States)

    Lynagh, Timothy; Lynch, Joseph W

    2012-08-01

    Ivermectin is a gold standard antiparasitic drug that has been used successfully to treat billions of humans, livestock and pets. Until recently, the binding site on its Cys-loop receptor target had been a mystery. Recent protein crystal structures, site-directed mutagenesis data and molecular modelling now explain how ivermectin binds to these receptors and reveal why it is selective for invertebrate members of the Cys-loop receptor family. Combining this with emerging genomic information, we are now in a position to predict species sensitivity to ivermectin and better understand the molecular basis of ivermectin resistance. An understanding of the molecular structure of the ivermectin binding site, which is formed at the interface of two adjacent subunits in the transmembrane domain of the receptor, should also aid the development of new lead compounds both as anthelmintics and as therapies for a wide variety of human neurological disorders. PMID:22677714

  3. Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD.

    OpenAIRE

    McKenna, T S; Lubroth, J; Rieder, E; Baxt, B; Mason, P W

    1995-01-01

    Binding of foot-and-mouth disease virus (FMDV) to cells requires an arginine-glycine-aspartic acid (RGD) sequence in the capsid protein VP1. We have genetically engineered an FMDV in which these three amino acids have been deleted, producing a virus particle which is unable to bind to cells. Cattle vaccinated with these receptor binding site-deleted virions were protected from disease when challenged with a virulent virus, demonstrating that these RGD-deleted viruses could serve as the basis ...

  4. Sodium-dependent reorganization of the sugar-binding site of SGLT1

    DEFF Research Database (Denmark)

    Hirayama, Bruce A; Loo, Donald D F; Díez-Sampedro, Ana;

    2007-01-01

    The sodium-dependent glucose cotransporter SGLT1 undergoes a series of voltage- and ligand-induced conformational changes that underlie the cotransport mechanism. In this study we describe how the binding of external Na changes the conformation of the sugar-binding domain, exposing residues that...... involved in transport. Arranging the four TMHs to account for Na-dependent accessibility and potential for sugar interaction allows us to propose a testable model for the SGLT1 sugar binding site. Udgivelsesdato: 2007-Nov-20...

  5. Novel benzimidazole inhibitors bind to a unique site in the kinesin spindle protein motor domain.

    Science.gov (United States)

    Sheth, Payal R; Shipps, Gerald W; Seghezzi, Wolfgang; Smith, Catherine K; Chuang, Cheng-Chi; Sanden, David; Basso, Andrea D; Vilenchik, Lev; Gray, Kimberly; Annis, D Allen; Nickbarg, Elliott; Ma, Yao; Lahue, Brian; Herbst, Ronald; Le, Hung V

    2010-09-28

    Affinity selection-mass spectrometry (AS-MS) screening of kinesin spindle protein (KSP) followed by enzyme inhibition studies and temperature-dependent circular dichroism (TdCD) characterization was utilized to identify a series of benzimidazole compounds. This series also binds in the presence of Ispinesib, a known anticancer KSP inhibitor in phase I/II clinical trials for breast cancer. TdCD and AS-MS analyses support simultaneous binding implying existence of a novel non-Ispinesib binding pocket within KSP. Additional TdCD analyses demonstrate direct binding of these compounds to Ispinesib-resistant mutants (D130V, A133D, and A133D + D130V double mutant), further strengthening the hypothesis that the compounds bind to a distinct binding pocket. Also importantly, binding to this pocket causes uncompetitive inhibition of KSP ATPase activity. The uncompetitive inhibition with respect to ATP is also confirmed by the requirement of nucleotide for binding of the compounds. After preliminary affinity optimization, the benzimidazole series exhibited distinctive antimitotic activity as evidenced by blockade of bipolar spindle formation and appearance of monoasters. Cancer cell growth inhibition was also demonstrated either as a single agent or in combination with Ispinesib. The combination was additive as predicted by the binding studies using TdCD and AS-MS analyses. The available data support the existence of a KSP inhibitory site hitherto unknown in the literature. The data also suggest that targeting this novel site could be a productive strategy for eluding Ispinesib-resistant tumors. Finally, AS-MS and TdCD techniques are general in scope and may enable screening other targets in the presence of known drugs, clinical candidates, or tool compounds that bind to the protein of interest in an effort to identify potency-enhancing small molecules that increase efficacy and impede resistance in combination therapy. PMID:20718440

  6. Autoradiographic distribution of 125I-galanin binding sites in the rat central nervous system

    International Nuclear Information System (INIS)

    Galanin (GAL) binding sites in coronal sections of the rat brain were demonstrated using autoradiographic methods. Scatchard analysis of 125I-GAL binding to slide-mounted tissue sections revealed saturable binding to a single class of receptors with a Kd of approximately 0.2 nM. 125I-GAL binding sites were demonstrated throughout the rat central nervous system. Dense binding was observed in the following areas: prefrontal cortex, the anterior nuclei of the olfactory bulb, several nuclei of the amygdaloid complex, the dorsal septal area, dorsal bed nucleus of the stria terminalis, the ventral pallidum, the internal medullary laminae of the thalamus, medial pretectal nucleus, nucleus of the medial optic tract, borderline area of the caudal spinal trigeminal nucleus adjacent to the spinal trigeminal tract, the substantia gelatinosa and the superficial layers of the dorsal spinal cord. Moderate binding was observed in the piriform, periamygdaloid, entorhinal, insular cortex and the subiculum, the nucleus accumbens, medial forebrain bundle, anterior hypothalamic, ventromedial, dorsal premamillary, lateral and periventricular thalamic nuclei, the subzona incerta, Forel's field H1 and H2, periventricular gray matter, medial and superficial gray strata of the superior colliculus, dorsal parts of the central gray, peripeduncular area, the interpeduncular nucleus, substantia nigra zona compacta, ventral tegmental area, the dorsal and ventral parabrachial and parvocellular reticular nuclei. The preponderance of GAL-binding in somatosensory as well as in limbic areas suggests a possible involvement of GAL in a variety of brain functions

  7. Disruption of NAD~+ binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions

    Institute of Scientific and Technical Information of China (English)

    Manali; Phadke; Natalia; Krynetskaia; Anurag; Mishra; Carlos; Barrero; Salim; Merali; Scott; A; Gothe; Evgeny; Krynetskiy

    2015-01-01

    AIM:To characterize phosphorylation of human glyceraldehyde 3-phosphate dehydrogenase(GAPDH),and mobility of GAPDH in cancer cells treated with chemotherapeutic agents. METHODS:We used proteomics analysis to detect and characterize phosphorylation sites within human GAPDH. Site-specific mutagenesis and alanine scanning was then performed to evaluate functional significance of phosphorylation sites in the GAPDH polypeptide chain. Enzymatic properties of mutated GAPDH variants were assessed using kinetic studies. Intranuclear dynamics parameters(diffusion coefficient and the immobile fraction) were estimated using fluorescence recovery after photobleaching(FRAP) experiments and confocal microscopy. Molecular modeling experiments were performed to estimate the effects of mutations on NAD+ cofactor binding.RESULTS:Using MALDI-TOF analysis,we identified novel phosphorylation sites within the NAD+ binding center of GAPDH at Y94,S98,and T99. Using polyclonal antibody specific to phospho-T99-containing peptide within GAPDH,we demonstrated accumulation of phospho-T99-GAPDH inthe nuclear fractions of A549,HCT116,and SW48 cancer cel s after cytotoxic stress. We performed site-mutagenesis,and estimated enzymatic properties,intranuclear distribution,and intranuclear mobility of GAPDH mutated variants. Site-mutagenesis at positions S98 and T99 in the NAD+ binding center reduced enzymatic activity of GAPDH due to decreased affinity to NAD+(Km = 741 ± 257 μmol/L in T99 I vs 57 ± 11.1 μmol/L in wild type GAPDH. Molecular modeling experiments revealed the effect of mutations on NAD+ binding with GAPDH. FRAP(fluorescence recovery after photo bleaching) analysis showed that mutations in NAD+ binding center of GAPDH abrogated its intranuclear interactions. CONCLUSION:Our results suggest an important functional role of phosphorylated amino acids in the NAD+ binding center in GAPDH interactions with its intranuclear partners.

  8. Computational prediction of cAMP receptor protein (CRP) binding sites in cyanobacterial genomes

    Science.gov (United States)

    Xu, Minli; Su, Zhengchang

    2009-01-01

    Background Cyclic AMP receptor protein (CRP), also known as catabolite gene activator protein (CAP), is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. Results We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. Conclusion The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The loss of CRPs in these species

  9. Computational prediction of cAMP receptor protein (CRP binding sites in cyanobacterial genomes

    Directory of Open Access Journals (Sweden)

    Su Zhengchang

    2009-01-01

    Full Text Available Abstract Background Cyclic AMP receptor protein (CRP, also known as catabolite gene activator protein (CAP, is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. Results We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. Conclusion The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The

  10. FunFOLDQA: a quality assessment tool for protein-ligand binding site residue predictions.

    Directory of Open Access Journals (Sweden)

    Daniel B Roche

    Full Text Available The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP experiment, utilizing the Matthews Correlation Coefficient (MCC and Binding-site Distance Test (BDT metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall's τ, Spearman's ρ and Pearson's r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC when Receiver Operator Characteristic (ROC analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%, and one of the top manual groups (FN293 tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site

  11. Role of DNA binding sites and slow unbinding kinetics in titration-based oscillators

    Science.gov (United States)

    Karapetyan, Sargis; Buchler, Nicolas E.

    2015-12-01

    Genetic oscillators, such as circadian clocks, are constantly perturbed by molecular noise arising from the small number of molecules involved in gene regulation. One of the strongest sources of stochasticity is the binary noise that arises from the binding of a regulatory protein to a promoter in the chromosomal DNA. In this study, we focus on two minimal oscillators based on activator titration and repressor titration to understand the key parameters that are important for oscillations and for overcoming binary noise. We show that the rate of unbinding from the DNA, despite traditionally being considered a fast parameter, needs to be slow to broaden the space of oscillatory solutions. The addition of multiple, independent DNA binding sites further expands the oscillatory parameter space for the repressor-titration oscillator and lengthens the period of both oscillators. This effect is a combination of increased effective delay of the unbinding kinetics due to multiple binding sites and increased promoter ultrasensitivity that is specific for repression. We then use stochastic simulation to show that multiple binding sites increase the coherence of oscillations by mitigating the binary noise. Slow values of DNA unbinding rate are also effective in alleviating molecular noise due to the increased distance from the bifurcation point. Our work demonstrates how the number of DNA binding sites and slow unbinding kinetics, which are often omitted in biophysical models of gene circuits, can have a significant impact on the temporal and stochastic dynamics of genetic oscillators.

  12. Cortisol decreases 2[[sup 125]I] iodomelatonin binding sites in the duck thymus

    Energy Technology Data Exchange (ETDEWEB)

    Poon, A.M.S.; Liu, Z.M.; Tang, F.; Pang, S.F. (Univ. of Hong Kong (China))

    1994-03-01

    The immunosuppressive effect of chronic glucocorticoid treatment on 2[[sup 125]I] iodomelatonin binding in the duck thymus was studied. Two-week-old ducks were injected intraperitoneally with either 1 mg of cortisol per day (experimental group) or an equivalent volume of vehicle (control group) in the middle of the light period for seven days. 2[[sup 125]I] iodomelatonin binding assays were performed on thymic membranes. Cortisol injection reduced the body weight gain, size of the bursa of Fabricius and absolute weights of the primary lymphoid organs but had no effect on the spleen weights. The relative weights of the spleen were increased while those of the primary lymphoid organs were unchanged. The density of the thymus 2[[sup 125]I] iodomelatonin binding sites was decreased while the affinity was not affected. The modulation of the thymic 2[[sup 125]I] iodomelatonin binding sites by changes in the immune status of the duck suggests that these binding sites represent physiologically relevant melatonin receptors and that melatonin exerts its action on the lymphoid tissues directly. The authors findings support the hypothesis that the thymus is the target site for the immunomodulatory interactions between the pineal melatonin and the adrenal steroids. A possible inhibitory influence of adrenal steroids on the immuno-enhancing effect of melatonin is also suggested. 34 refs., 3 tabs.

  13. The nucleotide-binding site of Aquifex aeolicus LpxC

    OpenAIRE

    Buetow, Lori; Dawson, Alice; Hunter, William N.

    2006-01-01

    The structure of recombinant Aquifex aeolicus UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) in complex with UDP has been determined to a resolution of 2.2 Å. Previous studies have characterized the binding sites of the fatty-acid and sugar moieties of the substrate, UDP-(3-O-hydroxymyristoyl)-N-­acetylglucosamine, but not that of the nucleotide. The uracil-binding site is constructed from amino acids that are highly conserved across species. Hydrophobic associations with the Phe155 and ...

  14. Increased number of ouabain binding sites in lymphocytes from borderline hypertensives

    DEFF Research Database (Denmark)

    Nielsen, J R; Pedersen, K E; Klitgaard, N A;

    1989-01-01

    Lymphocytes were used as a cellular model for the in vitro measurements of maximal ouabain binding sites in order to assess any changes in young men at increased risk of developing essential hypertension, and to analyse whether any such changes were associated to borderline hypertension and...... triglyceride, and serum cholesterol, which may influence the number of ouabain binding sites. Only BMI entered the stepwise model. These results indicate the presence of an increased number of sodium-potassium pumps in lymphocytes from borderline hypertensives. This difference may be attributed to the blood...

  15. Characterization of Genomic Vitamin D Receptor Binding Sites through Chromatin Looping and Opening

    OpenAIRE

    Seuter, Sabine; Neme, Antonio; Carlberg, Carsten

    2014-01-01

    The vitamin D receptor (VDR) is a transcription factor that mediates the genomic effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Genome-wide there are several thousand binding sites and hundreds of primary 1,25(OH)2D3 target genes, but their functional relation is largely elusive. In this study, we used ChIA-PET data of the transcription factor CTCF in combination with VDR ChIP-seq data, in order to map chromatin domains containing VDR binding sites. In total, we found 1,599 such VDR cont...

  16. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC and tilted domains

    Directory of Open Access Journals (Sweden)

    FranciscoJBarrantes

    2013-02-01

    Full Text Available The plasma membrane of eukaryotic cells contains several types of lipids displaying high biochemical variability in both their apolar moiety (e.g. the acyl chain of glycerolipids and their polar head (e.g. the sugar structure of glycosphingolipids. Among these lipids, cholesterol is unique because its biochemical variability is almost exclusively restricted to the oxidation of its polar -OH group. Although generally considered the most rigid membrane lipid, cholesterol can adopt a broad range of conformations due to the flexibility of its isooctyl chain linked to the polycyclic sterane backbone. Moreover, cholesterol is an asymmetric molecule displaying a planar face and a rough  face. Overall, these structural features open up a number of possible interactions between cholesterol and membrane lipids and proteins, consistent with the prominent regulatory functions that this unique lipid exerts on membrane components. The aim of this review is to describe how cholesterol interacts with membrane lipids and proteins at the molecular/atomic scale, with special emphasis on transmembrane domains of proteins containing either the consensus cholesterol-binding motifs CRAC and CARC or a tilted peptide. Despite their broad structural diversity, all these domains bind cholesterol through common molecular mechanisms, leading to the identification of a subset of amino acid residues that are overrepresented in both linear and three-dimensional membrane cholesterol-binding sites.

  17. Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution.

    Science.gov (United States)

    Sedlyarov, Vitaly; Fallmann, Jörg; Ebner, Florian; Huemer, Jakob; Sneezum, Lucy; Ivin, Masa; Kreiner, Kristina; Tanzer, Andrea; Vogl, Claus; Hofacker, Ivo; Kovarik, Pavel

    2016-01-01

    Precise regulation of mRNA decay is fundamental for robust yet not exaggerated inflammatory responses to pathogens. However, a global model integrating regulation and functional consequences of inflammation-associated mRNA decay remains to be established. Using time-resolved high-resolution RNA binding analysis of the mRNA-destabilizing protein tristetraprolin (TTP), an inflammation-limiting factor, we qualitatively and quantitatively characterize TTP binding positions in the transcriptome of immunostimulated macrophages. We identify pervasive destabilizing and non-destabilizing TTP binding, including a robust intronic binding, showing that TTP binding is not sufficient for mRNA destabilization. A low degree of flanking RNA structuredness distinguishes occupied from silent binding motifs. By functionally relating TTP binding sites to mRNA stability and levels, we identify a TTP-controlled switch for the transition from inflammatory into the resolution phase of the macrophage immune response. Mapping of binding positions of the mRNA-stabilizing protein HuR reveals little target and functional overlap with TTP, implying a limited co-regulation of inflammatory mRNA decay by these proteins. Our study establishes a functionally annotated and navigable transcriptome-wide atlas (http://ttp-atlas.univie.ac.at) of cis-acting elements controlling mRNA decay in inflammation. PMID:27178967

  18. Characterization of pancreatic somatostatin binding sites with a 125I-somatostatin 28 analog

    International Nuclear Information System (INIS)

    Somatostatin binding to guinea pig pancreatic acinar cell plasma membranes was characterized with an iodinated stable analog of somatostatin 28 (S28): 125I-[Leu8,DTrp22,Tyr25]S28. The binding was highly dependent on calcium ions. In 0.2 mM free Ca2+ medium, binding at 37 degrees C was saturable, slowly reversible and exhibited a single class of high affinity binding sites (KD = 0.05 +/- 0.01 nM, Bmax = 157 +/- 33 fmol/mg protein). Dissociation of bound radioactivity occurred with biphasic kinetics. Rate of dissociation increased when dissociation was measured at a time before equilibrium binding was reached. In 30 nM free Ca2+ medium, binding affinity and maximal binding capacity were decreased by about 4-fold. Decreasing calcium concentrations increased the amount of rapidly dissociating form of the receptor. Somatostatin 14 antagonist, Des AA1,2[AzaAla4-5,DTrp8, Phe12-13]-somatostatin was active at the membrane level in inhibiting the binding. We conclude that using 125I-[Leu8,DTrp22,Tyr25]S28 as radioligand allows us to characterize a population of specific somatostatin receptors which are not different from those we previously described with the radioligand 125I-[Tyr11]-somatostatin. Somatostatin receptors could exist in two interconvertible forms. Calcium ions are an essential component in the regulation of the conformational change of somatostatin receptors

  19. Identification of a Heparin-Binding Motif on Adeno-Associated Virus Type 2 Capsids†

    Science.gov (United States)

    Kern, A.; Schmidt, K.; Leder, C.; Müller, O. J.; Wobus, C. E.; Bettinger, K.; Von der Lieth, C. W.; King, J. A.; Kleinschmidt, J. A.

    2003-01-01

    Infection of cells with adeno-associated virus (AAV) type 2 (AAV-2) is mediated by binding to heparan sulfate proteoglycan and can be competed by heparin. Mutational analysis of AAV-2 capsid proteins showed that a group of basic amino acids (arginines 484, 487, 585, and 588 and lysine 532) contribute to heparin and HeLa cell binding. These amino acids are positioned in three clusters at the threefold spike region of the AAV-2 capsid. According to the recently resolved atomic structure for AAV-2, arginines 484 and 487 and lysine 532 on one site and arginines 585 and 588 on the other site belong to different capsid protein subunits. These data suggest that the formation of the heparin-binding motifs depends on the correct assembly of VP trimers or even of capsids. In contrast, arginine 475, which also strongly reduces heparin binding as well as viral infectivity upon mutation to alanine, is located inside the capsid structure at the border of adjacent VP subunits and most likely influences heparin binding indirectly by disturbing correct subunit assembly. Computer simulation of heparin docking to the AAV-2 capsid suggests that heparin associates with the three basic clusters along a channel-like cavity flanked by the basic amino acids. With few exceptions, mutant infectivities correlated with their heparin- and cell-binding properties. The tissue distribution in mice of recombinant AAV-2 mutated in R484 and R585 indicated markedly reduced infection of the liver, compared to infection with wild-type recombinant AAV, but continued infection of the heart. These results suggest that although heparin binding influences the infectivity of AAV-2, it seems not to be necessary. PMID:14512555

  20. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  1. Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Christy A.; Bryson, Steve; McLean, Gary R.; Creagh, A. Louise; Pai, Emil F.; Schrader, John W. (Toronto); (UBC)

    2008-10-17

    Immunoglobulin genes are generated somatically through specialized mechanisms resulting in a vast repertoire of antigen-binding sites. Despite the stochastic nature of these processes, the V-genes that encode most of the antigen-combining site are under positive evolutionary selection, raising the possibility that V-genes have been selected to encode key structural features of binding sites of protective antibodies against certain pathogens. Human, neutralizing antibodies to human cytomegalovirus that bind the AD-2S1 epitope on its gB envelope protein repeatedly use a pair of well-conserved, germline V-genes IGHV3-30 and IGKV3-11. Here, we present crystallographic, kinetic and thermodynamic analyses of the binding site of such an antibody and that of its primary immunoglobulin ancestor. These show that these germline V-genes encode key side chain contacts with the viral antigen and thereby dictate key structural features of the hypermutated, high-affinity neutralizing antibody. V-genes may thus encode an innate, protective immunological memory that targets vulnerable, invariant sites on multiple pathogens.

  2. Discovery and Characterization of a Cell-Permeable, Small-Molecule c-Abl Kinase Activator that Binds to the Myristoyl Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jingsong; Campobasso, Nino; Biju, Mangatt P.; Fisher, Kelly; Pan, Xiao-Qing; Cottom, Josh; Galbraith, Sarah; Ho, Thau; Zhang, Hong; Hong, Xuan; Ward, Paris; Hofmann, Glenn; Siegfried, Brett; Zappacosta, Francesca; Washio, Yoshiaki; Cao, Ping; Qu, Junya; Bertrand, Sophie; Wang, Da-Yuan; Head, Martha S.; Li, Hu; Moores, Sheri; Lai, Zhihong; Johanson, Kyung; Burton, George; Erickson-Miller, Connie; Simpson, Graham; Tummino, Peter; Copeland, Robert A.; Oliff, Allen (GSKPA)

    2014-10-02

    c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the {alpha}I helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the {alpha}I helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.

  3. In silico identification of anthropogenic chemicals as ligands of zebrafish sex hormone binding globulin

    International Nuclear Information System (INIS)

    Anthropogenic compounds with the capacity to interact with the steroid-binding site of sex hormone binding globulin (SHBG) pose health risks to humans and other vertebrates including fish. Building on studies of human SHBG, we have applied in silico drug discovery methods to identify potential binders for SHBG in zebrafish (Danio rerio) as a model aquatic organism. Computational methods, including; homology modeling, molecular dynamics simulations, virtual screening, and 3D QSAR analysis, successfully identified 6 non-steroidal substances from the ZINC chemical database that bind to zebrafish SHBG (zfSHBG) with low-micromolar to nanomolar affinities, as determined by a competitive ligand-binding assay. We also screened 80,000 commercial substances listed by the European Chemicals Bureau and Environment Canada, and 6 non-steroidal hits from this in silico screen were tested experimentally for zfSHBG binding. All 6 of these compounds displaced the [3H]5α-dihydrotestosterone used as labeled ligand in the zfSHBG screening assay when tested at a 33 μM concentration, and 3 of them (hexestrol, 4-tert-octylcatechol, and dihydrobenzo(a)pyren-7(8H)-one) bind to zfSHBG in the micromolar range. The study demonstrates the feasibility of large-scale in silico screening of anthropogenic compounds that may disrupt or highjack functionally important protein:ligand interactions. Such studies could increase the awareness of hazards posed by existing commercial chemicals at relatively low cost

  4. Spatial determinants of the alfalfa mosaic virus coat protein binding site.

    Science.gov (United States)

    Laforest, Siana M; Gehrke, Lee

    2004-01-01

    The biological functions of RNA-protein complexes are, for the most part, poorly defined. Here, we describe experiments that are aimed at understanding the functional significance of alfalfa mosaic virus RNA-coat protein binding, an interaction that parallels the initiation of viral RNA replication. Peptides representing the RNA-binding domain of the viral coat protein are biologically active in initiating replication and bind to a 39-nt 3'-terminal RNA with a stoichiometry of two peptides: 1 RNA. To begin to understand how RNA-peptide interactions induce RNA conformational changes and initiate replication, the AMV RNA fragment was experimentally manipulated by increasing the interhelical spacing, by interrupting the apparent nucleotide symmetry, and by extending the binding site. In general, both asymmetric and symmetric insertions between two proposed hairpins diminished binding, whereas 5' and 3' extensions had minimal effects. Exchanging the positions of the binding site hairpins resulted in only a moderate decrease in peptide binding affinity without changing the hydroxyl radical footprint protection pattern. To assess biological relevance in viral RNA replication, the nucleotide changes were transferred into infectious genomic RNA clones. RNA mutations that disrupted coat protein binding also prevented viral RNA replication without diminishing coat protein mRNA (RNA 4) translation. These results, coupled with the highly conserved nature of the AUGC865-868 sequence, suggest that the distance separating the two proposed hairpins is a critical binding determinant. The data may indicate that the 5' and 3' hairpins interact with one of the bound peptides to nucleate the observed RNA conformational changes. PMID:14681584

  5. Number of active transcription factor binding sites is essential for the Hes7 oscillator

    Directory of Open Access Journals (Sweden)

    de Angelis Martin

    2006-02-01

    Full Text Available Abstract Background It is commonly accepted that embryonic segmentation of vertebrates is regulated by a segmentation clock, which is induced by the cycling genes Hes1 and Hes7. Their products form dimers that bind to the regulatory regions and thereby repress the transcription of their own encoding genes. An increase of the half-life of Hes7 protein causes irregular somite formation. This was shown in recent experiments by Hirata et al. In the same work, numerical simulations from a delay differential equations model, originally invented by Lewis, gave additional support. For a longer half-life of the Hes7 protein, these simulations exhibited strongly damped oscillations with, after few periods, severely attenuated the amplitudes. In these simulations, the Hill coefficient, a crucial model parameter, was set to 2 indicating that Hes7 has only one binding site in its promoter. On the other hand, Bessho et al. established three regulatory elements in the promoter region. Results We show that – with the same half life – the delay system is highly sensitive to changes in the Hill coefficient. A small increase changes the qualitative behaviour of the solutions drastically. There is sustained oscillation and hence the model can no longer explain the disruption of the segmentation clock. On the other hand, the Hill coefficient is correlated with the number of active binding sites, and with the way in which dimers bind to them. In this paper, we adopt response functions in order to estimate Hill coefficients for a variable number of active binding sites. It turns out that three active transcription factor binding sites increase the Hill coefficient by at least 20% as compared to one single active site. Conclusion Our findings lead to the following crucial dichotomy: either Hirata's model is correct for the Hes7 oscillator, in which case at most two binding sites are active in its promoter region; or at least three binding sites are active, in which

  6. Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    Directory of Open Access Journals (Sweden)

    Selvaraj S

    2011-10-01

    Full Text Available Abstract Background Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology. Methods We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as binding propensity, neighboring residues in the vicinity of binding sites, conservation score and conformational switching. Results We observed that the binding propensities of amino acid residues are specific for protein-protein complexes. Further, typical dipeptides and tripeptides showed high preference for binding, which is unique to protein-protein complexes. Most of the binding site residues are highly conserved among homologous sequences. Our analysis showed that 7% of residues changed their conformations upon protein-protein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix. Conclusions The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.

  7. Tritium-bradykinin binding site localization in guinea pig urinary system

    International Nuclear Information System (INIS)

    Bradykinin (BK) causes vasodilation and increases free water and sodium excretion in the kidney and stimulates smooth muscle contraction in the ureter and bladder. Several proposed sites of action for BK include the renal medullary collecting duct, renal blood vessels and the ureter and bladder smooth muscle. This study employs 3H-BK autoradiography to localize the sites of BK action. 3H-BK binding sites in the kidney are localized in the medullary interstitium where BK may produce prostaglandins which mediate its blood flow, natriuretic and diuretic effects. 3H-BK binding sites in the ureter and bladder are localized in the lamina propria below the basal epithelial layer and absent over the muscle layers suggesting an indirect action on urinary tract smooth muscle

  8. Auto-FACE: an NMR based binding site mapping program for fast chemical exchange protein-ligand systems.

    Directory of Open Access Journals (Sweden)

    Janarthanan Krishnamoorthy

    Full Text Available BACKGROUND: Nuclear Magnetic Resonance (NMR spectroscopy offers a variety of experiments to study protein-ligand interactions at atomic resolution. Among these experiments, 15N Heteronuclear Single Quantum Correlation (HSQCexperiment is simple, less time consuming and highly informative in mapping the binding site of the ligand. The interpretation of 15N HSQC becomes ambiguous when the chemical shift perturbations are caused by non-specific interactions like allosteric changes and local structural rearrangement. Under such cases, detailed chemical exchange analysis based on chemical shift perturbation will assist in locating the binding site accurately. METHODOLOGY/PRINCIPAL FINDINGS: We have automated the mapping of binding sites for fast chemical exchange systems using information obtained from 15N HSQC spectra of protein serially titrated with ligand of increasing concentrations. The automated program Auto-FACE (Auto-FAst Chemical Exchange analyzer determines the parameters, e.g. rate of change of perturbation, binding equilibrium constant and magnitude of chemical shift perturbation to map the binding site residues.Interestingly, the rate of change of perturbation at lower ligand concentration is highly sensitive in differentiating the binding site residues from the non-binding site residues. To validate this program, the interaction between the protein hBcl(XL and the ligand BH3I-1 was studied. Residues in the hydrophobic BH3 binding groove of hBcl(XL were easily identified to be crucial for interaction with BH3I-1 from other residues that also exhibited perturbation. The geometrically averaged equilibrium constant (3.0 x 10(4 calculated for the residues present at the identified binding site is consistent with the values obtained by other techniques like isothermal calorimetry and fluorescence polarization assays (12.8 x 10(4. Adjacent to the primary site, an additional binding site was identified which had an affinity of 3.8 times weaker

  9. Recognition of anesthetic barbiturates by a protein binding site: a high resolution structural analysis.

    Directory of Open Access Journals (Sweden)

    Simon Oakley

    Full Text Available Barbiturates potentiate GABA actions at the GABA(A receptor and act as central nervous system depressants that can induce effects ranging from sedation to general anesthesia. No structural information has been available about how barbiturates are recognized by their protein targets. For this reason, we tested whether these drugs were able to bind specifically to horse spleen apoferritin, a model protein that has previously been shown to bind many anesthetic agents with affinities that are closely correlated with anesthetic potency. Thiopental, pentobarbital, and phenobarbital were all found to bind to apoferritin with affinities ranging from 10-500 µM, approximately matching the concentrations required to produce anesthetic and GABAergic responses. X-ray crystal structures were determined for the complexes of apoferritin with thiopental and pentobarbital at resolutions of 1.9 and 2.0 Å, respectively. These structures reveal that the barbiturates bind to a cavity in the apoferritin shell that also binds haloalkanes, halogenated ethers, and propofol. Unlike these other general anesthetics, however, which rely entirely upon van der Waals interactions and the hydrophobic effect for recognition, the barbiturates are recognized in the apoferritin site using a mixture of both polar and nonpolar interactions. These results suggest that any protein binding site that is able to recognize and respond to the chemically and structurally diverse set of compounds used as general anesthetics is likely to include a versatile mixture of both polar and hydrophobic elements.

  10. Locating the binding sites of antioxidants resveratrol, genistein and curcumin with tRNA.

    Science.gov (United States)

    N'soukpoé-Kossi, C N; Bourassa, P; Mandeville, J S; Bekale, L; Bariyanga, J; Tajmir-Riahi, H A

    2015-09-01

    We located the binding sites of antioxidants resveratrol, genistein and curcumin on tRNA in aqueous solution at physiological conditions using constant tRNA concentration and various polyphenol contents. FTIR, UV-visible, CD spectroscopic methods and molecular modeling were used to determine polyphenol binding sites, the binding constant and the effects of polyphenol complexation on tRNA conformation and particle formation. Structural analysis showed that polyphenols bind tRNA via G-C and A-U base pairs through hydrophilic, hydrophobic and H-bonding contacts with overall binding constants of K(res-tRNA)=8.95(±0.80)×10(3) M(-1), K(gen-tRNA)=3.07(±0.5)×10(3) M(-1) and K(cur-tRNA)=1.55(±0.3)×10(4) M(-1). Molecular modeling showed the participation of several nucleobases in polyphenol-tRNA adduct formation with free binding energy of -4.43 for resveratrol, -4.26 kcal/mol for genistein and -4.84 kcal/mol for curcumin, indicating that the interaction process is spontaneous at room temperature. While tRNA remains in A-family structure, major biopolymer aggregation and particle formation occurred at high polyphenol contents. PMID:26093317

  11. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines.

    Science.gov (United States)

    Chukwudi, Chinwe U

    2016-08-01

    The tetracycline antibiotics are known to be effective in the treatment of both infectious and noninfectious disease conditions. The 16S rRNA binding mechanism currently held for the antibacterial action of the tetracyclines does not explain their activity against viruses, protozoa that lack mitochondria, and noninfectious conditions. Also, the mechanism by which the tetracyclines selectively inhibit microbial protein synthesis against host eukaryotic protein synthesis despite conservation of ribosome structure and functions is still questionable. Many studies have investigated the binding of the tetracyclines to the 16S rRNA using the small ribosomal subunit of different bacterial species, but there seems to be no agreement between various reports on the exact binding site on the 16S rRNA. The wide range of activity of the tetracyclines against a broad spectrum of bacterial pathogens, viruses, protozoa, and helminths, as well as noninfectious conditions, indicates a more generalized effect on RNA. In the light of recent evidence that the tetracyclines bind to various synthetic double-stranded RNAs (dsRNAs) of random base sequences, suggesting that the double-stranded structures may play a more important role in the binding of the tetracyclines to RNA than the specific base pairs, as earlier speculated, it is imperative to consider possible alternative binding modes or sites that could help explain the mechanisms of action of the tetracyclines against various pathogens and disease conditions. PMID:27246781

  12. Pathogenesis of Shigella diarrhea: rabbit intestinal cell microvillus membrane binding site for Shigella toxin

    International Nuclear Information System (INIS)

    This study examined the binding of purified 125I-labeled shigella toxin to rabbit jejunal microvillus membranes (MVMs). Toxin binding was concentration dependent, saturable, reversible, and specifically inhibited by unlabeled toxin. The calculated number of toxin molecules bound at 40C was 7.9 X 10(10) (3 X 10(10) to 2 X 10(11))/micrograms of MVM protein or 1.2 X 10(6) per enterocyte. Scatchard analysis showed the binding site to be of a single class with an equilibrium association constant, K, of 4.7 X 10(9) M-1 at 40C. Binding was inversely related to the temperature of incubation. A total of 80% of the labeled toxin binding at 40C dissociated from MVM when the temperature was raised to 370C, but reassociated when the temperature was again brought to 40C. There was no structural or functional change of MVM due to toxin as monitored by electron microscopy or assay of MVM sucrase activity. These studies demonstrate a specific binding site for shigella toxin on rabbit MVMs. The physiological relevance of this receptor remains to be determined

  13. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What?

    Science.gov (United States)

    Puthenkalam, Roshan; Hieckel, Marcel; Simeone, Xenia; Suwattanasophon, Chonticha; Feldbauer, Roman V; Ecker, Gerhard F; Ernst, Margot

    2016-01-01

    Atomic resolution structures of cys-loop receptors, including one of a γ-aminobutyric acid type A receptor (GABAA receptor) subtype, allow amazing insights into the structural features and conformational changes that these pentameric ligand-gated ion channels (pLGICs) display. Here we present a comprehensive analysis of more than 30 cys-loop receptor structures of homologous proteins that revealed several allosteric binding sites not previously described in GABAA receptors. These novel binding sites were examined in GABAA receptor homology models and assessed as putative candidate sites for allosteric ligands. Four so far undescribed putative ligand binding sites were proposed for follow up studies based on their presence in the GABAA receptor homology models. A comprehensive analysis of conserved structural features in GABAA and glycine receptors (GlyRs), the glutamate gated ion channel, the bacterial homologs Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus GLIC, and the serotonin type 3 (5-HT3) receptor was performed. The conserved features were integrated into a master alignment that led to improved homology models. The large fragment of the intracellular domain that is present in the structure of the 5-HT3 receptor was utilized to generate GABAA receptor models with a corresponding intracellular domain fragment. Results of mutational and photoaffinity ligand studies in GABAA receptors were analyzed in the light of the model structures. This led to an assignment of candidate ligands to two proposed novel pockets, candidate binding sites for furosemide and neurosteroids in the trans-membrane domain were identified. The homology models can serve as hypotheses generators, and some previously controversial structural interpretations of biochemical data can be resolved in the light of the presented multi-template approach to comparative modeling. Crystal and cryo-EM microscopic structures of the closest homologs that were solved in different conformational

  14. Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    OpenAIRE

    Selvaraj S; Jayaram B; Saranya N; Gromiha M; Fukui Kazuhiko

    2011-01-01

    Abstract Background Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology. Methods We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such...

  15. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel; (Harvard-Med); (EMBL)

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  16. Characterization of two heparan sulphate-binding sites in the mycobacterial adhesin Hlp

    Directory of Open Access Journals (Sweden)

    Previato Jose O

    2008-05-01

    Full Text Available Abstract Background The histone-like Hlp protein is emerging as a key component in mycobacterial pathogenesis, being involved in the initial events of host colonization by interacting with laminin and glycosaminoglycans (GAGs. In the present study, nuclear magnetic resonance (NMR was used to map the binding site(s of Hlp to heparan sulfate and identify the nature of the amino acid residues directly involved in this interaction. Results The capacity of a panel of 30 mer synthetic peptides covering the full length of Hlp to bind to heparin/heparan sulfate was analyzed by solid phase assays, NMR, and affinity chromatography. An additional active region between the residues Gly46 and Ala60 was defined at the N-terminal domain of Hlp, expanding the previously defined heparin-binding site between Thr31 and Phe50. Additionally, the C-terminus, rich in Lys residues, was confirmed as another heparan sulfate binding region. The amino acids in Hlp identified as mediators in the interaction with heparan sulfate were Arg, Val, Ile, Lys, Phe, and Thr. Conclusion Our data indicate that Hlp interacts with heparan sulfate through two distinct regions of the protein. Both heparan sulfate-binding regions here defined are preserved in all mycobacterial Hlp homologues that have been sequenced, suggesting important but possibly divergent roles for this surface-exposed protein in both pathogenic and saprophic species.

  17. H274Y's Effect on Oseltamivir Resistance: What Happens Before the Drug Enters the Binding Site.

    Science.gov (United States)

    Yusuf, Muhammad; Mohamed, Nornisah; Mohamad, Suriyati; Janezic, Dusanka; Damodaran, K V; Wahab, Habibah A

    2016-01-25

    Increased reports of oseltamivir (OTV)-resistant strains of the influenza virus, such as the H274Y mutation on its neuraminidase (NA), have created some cause for concern. Many studies have been conducted in the attempt to uncover the mechanism of OTV resistance in H274Y NA. However, most of the reported studies on H274Y focused only on the drug-bound system, so the direct effects of the mutation on NA itself prior to drug binding still remain unclear. Therefore, molecular dynamics simulations of NA in apo form, followed by principal component analysis and interaction energy calculations, were performed to investigate the structural changes of the NA binding site as a result of the H274Y mutation. It was observed that the disruption of the NA binding site due to the H274Y mutation was initiated by the repulsive effect of Y274 on the 250-loop, which in turn altered the hydrogen-bonding network around residue 274. The rotated W295 side chain caused the upward movement of the 340-loop. Consequently, sliding box docking results suggested that the binding pathway of OTV was compromised because of the disruption of this binding site. This study also highlighted the importance of the functional group at C6 of the sialic acid mimicry. It is hoped that these results will improve the understanding of OTV resistance and shed some light on the design of a novel anti-influenza drug. PMID:26703840

  18. Investigation of the Copper Binding Site And the Role of Histidine As a Ligand in Riboflavin Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.R.; Bencze, K.Z.; Russ, K.A.; Wasiukanis, K.; Benore-Parsons, M.; Stemmler, T.L.

    2009-05-26

    Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 {angstrom}, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a Cu-O{sub 3}N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.

  19. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Derebe, Mehabaw G.; Sauer, David B.; Zeng, Weizhong; Alam, Amer; Shi, Ning; Jiang, Youxing (UTSMC); (ETH Zurich)

    2015-11-30

    Selective ion conduction across ion channel pores is central to cellular physiology. To understand the underlying principles of ion selectivity in tetrameric cation channels, we engineered a set of cation channel pores based on the nonselective NaK channel and determined their structures to high resolution. These structures showcase an ensemble of selectivity filters with a various number of contiguous ion binding sites ranging from 2 to 4, with each individual site maintaining a geometry and ligand environment virtually identical to that of equivalent sites in K{sup +} channel selectivity filters. Combined with single channel electrophysiology, we show that only the channel with four ion binding sites is K{sup +} selective, whereas those with two or three are nonselective and permeate Na{sup +} and K{sup +} equally well. These observations strongly suggest that the number of contiguous ion binding sites in a single file is the key determinant of the channel's selectivity properties and the presence of four sites in K{sup +} channels is essential for highly selective and efficient permeation of K{sup +} ions.

  20. New beginnings for matrix metalloproteinase inhibitors: identification of high-affinity zinc-binding groups.

    Science.gov (United States)

    Puerta, David T; Lewis, Jana A; Cohen, Seth M

    2004-07-14

    In an effort to identify promising non-hydroxamate inhibitors of matrix metalloproteinases (MMPs), several new zinc-binding groups (ZBGs) based on pyrone, pyrothione, hydroxypyridinone, and hydroxypyridinethione chelators have been examined. Structural studies with tris(pyrazolyl)borate model complexes show that these ligands bind to the MMP active site zinc(II) ion in a bidentate fashion, similar to that found with hydroxamate-based inhibitors. Fluorescence- and colorimetric-based enzyme assays have been used to determine the IC50 values for these ZBGs against MMP-3; mixed O,S-donor ligands were found to be remarkably potent, with IC50 values as much as 700-fold lower than that found for acetohydroxamic acid. Inhibitory activity was found to parallel metal binding affinity as determined in titrations with model complexes. These results demonstrate that MPIs based on new ZBGs are feasible and may indeed improve the overall performance of inhibitors designed against these important medicinal targets. PMID:15237990

  1. Preliminary screening and identification of the hepatocarcinoma cell-binding peptide

    International Nuclear Information System (INIS)

    Objective: To explore the feasibility of screening and isolating homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display random peptide library and to develop a new peptide which may be potentially used as targeting delivery carrier in the biological targeted diagnosis or therapy for liver cancer. Methods: A 12-mer peptide phage display library was used to screen and isolate peptides that bind to human hepatocarcinoma cells, and four rounds of subtractive panning were carried out with the human hepatocarcinoma cell line HepG2 as the target. The affinities of selected phage clones for human hepatocarcinoma cells were determined with enzyme-linked immunosorbent assay (ELISA) and compared with that to human liver cell and other tumor cells of different tissue origins, respectively. In addition, the binding site in the tumor cells was observed with immunofluorescence analysis under confocal light microscopy. The amino acid sequences of phages that bind HepG2 specifically were deduced through DNA sequencing. Based on the results of DNA sequence, a 16-mer peptide (WH16) was designed and synthesized. Binding ability of the new peptide, WH16, was determined with competitive inhibition test. Results: After four rounds of panning, the phages that were bound to and internalized in human hepatocarcinoma cells were isolated. ELISA and immunofluorescence analysis confirmed the affinity of these phages for hepatocarcinoma cells. 56.67%(17/30) of the isolated phages displayed repeated sequence FLLEPHLMDTSM, and FLEP was defined as conservative motif . Binding of the selected phage to HepG2 cells was inhibited by synthesized peptide WH16, that strongly support that cellular binding of the phage is mediated through its displayed peptide, and WH16 can also bind to HepG2. Conclusions: It is feasible to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display random peptide

  2. Preliminary screening and identification of the peptide binding to hepatocarcinoma cell

    International Nuclear Information System (INIS)

    Objective: The present study was performed to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display of random peptide library with the purpose of developing a new peptide which may be potentially used as target delivery carrier in the biological target diagnosis or therapy for liver cancer. Methods: A peptide 12-mer phage display library was used to screen and isolate peptide that bind to human hepatocarcinoma cell, and four rounds subtractive panning were carried out with the human hepatocarcinoma cell line HepG2 as the target. The affinities of selected phage clones to human hepatocarcinoma cell were determined with ELISA and compared with human liver cell and other tumor cells of different tissue origins respectively. In addition, the binding site in the tumor cells was observed with immunofluorescence analysis under confocal light microscopy. The amino acid sequences of phages that bind HepG2 specifically were deduced though DNA sequencing. Based on the results of DNA sequence, a 16-mer peptide (WH16) was designed and synthesized. Binding ability of the new peptide WH16 was determined with competitive inhibition test. Results: After four rounds panning, the phages that bound to and internalized in human hepatocarcinoma cell were isolated. ELISA and immunofluorescence analysis confirmed the affinity of these phages to hepatpcarcinoma cells 56.57%(17/30) of the isolated phages displayed repeated sequence FLLEPHLMDTSM, and FLEP was defined as conservative motif. Binding of the selected phage to HepG2 cells was inhibited by synthesized peptide WH16, which strongly support that cellular binding of phage is mediated though its displayed peptide and WH16 can also bind to HepG2. Conclusion: It is feasible to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display of random peptide libraries. The sequence of peptide that can bind to

  3. Specific binding sites for proadrenomedullin N-terminal 20 peptide (PAMP) in the rat.

    Science.gov (United States)

    Iwasaki, H; Hirata, Y; Iwashina, M; Sato, K; Marumo, F

    1996-07-01

    Adrenomedullin (AM), a potent and novel vasodilator 52-residue peptide originally isolated from pheochromocytoma, is processed from a precursor molecule (preproAM) in which another unique 20-residue sequence, termed proadrenomedullin N-terminal 20 peptide (PAMP), exists. Using [125I Tyr0] rat PAMP as a radioligand, we have examined PAMP binding sites in various rat tissues and cultured vascular smooth muscle cells (VSMC) from rat aorta. Specific binding sites for rat PAMP, although very low, were widely distributed in various rat tissues examined. The relatively more abundant sites were present in aorta and adrenal glands, followed by lung, kidney, brain, spleen, and heart. An equilibrium binding study using cultured rat VSMC revealed the presence of a single class of high-affinity [dissociation constant (Kd): 3.5 x 10(-8) M] binding sites for rat PAMP with a maximal binding capacity of 4.5 x 10(6) sites per cell. Binding studies revealed that synthetic rat PAMP(1-19)-NH2 was about 10-fold less potent, and rat PAMP(1-20)-OH and human PAMP were about 20-fold less potent than rat PAMP(1-20)-NH2. SDS-polyacylamide gel electrophoresis after affinity-labeling of membranes from various rat tissues (aorta, adrenal glands, lung) and VSMC revealed a distinct labeled band with the apparent molecular mass of 90 kDa, which was diminished by excess unlabeled rat PAMP. A nonhydrolyzable GTP analog (GTP-gammaS) dose-dependently reduced binding of [125I] rat PAMP to VSMC membranes, while ATP-gammaS had no effect. Neither cyclic AMP nor inositol-1,4,5-triphosphate formation was affected by rat PAMP in rat VSMC. The present study demonstrates for the first time that PAMP receptors are widely distributed in various rat tissues, among which aorta and adrenal glands have the most abundant sites. Our data suggest that PAMP receptors are functionally coupled to G-proteins, although its signal transduction remains obscure. The present study also shows that amidation of C-terminal residue

  4. The role of DNA binding sites and slow unbinding kinetics in titration-based oscillators

    CERN Document Server

    Karapetyan, Sargis

    2015-01-01

    Genetic oscillators, such as circadian clocks, are constantly perturbed by molecular noise arising from the small number of molecules involved in gene regulation. One of the strongest sources of stochasticity is the binary noise that arises from the binding of a regulatory protein to a promoter in the chromosomal DNA. In this study, we focus on two minimal oscillators based on activator titration and repressor titration to understand the key parameters that are important for oscillations and for overcoming binary noise. We show that the rate of unbinding from the DNA, despite traditionally being considered a fast parameter, needs to be slow to broaden the space of oscillatory solutions. The addition of multiple, independent DNA binding sites further expands the oscillatory parameter space for the repressor-titration oscillator and lengthens the period of both oscillators. This effect is a combination of increased effective delay of the unbinding kinetics due to multiple binding sites and increased promoter ul...

  5. Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling.

    Science.gov (United States)

    Hofer, Peter; Boeszoermenyi, Andras; Jaeger, Doris; Feiler, Ursula; Arthanari, Haribabu; Mayer, Nicole; Zehender, Fabian; Rechberger, Gerald; Oberer, Monika; Zimmermann, Robert; Lass, Achim; Haemmerle, Guenter; Breinbauer, Rolf; Zechner, Rudolf; Preiss-Landl, Karina

    2015-07-24

    The coordinated breakdown of intracellular triglyceride (TG) stores requires the exquisitely regulated interaction of lipolytic enzymes with regulatory, accessory, and scaffolding proteins. Together they form a dynamic multiprotein network designated as the "lipolysome." Adipose triglyceride lipase (Atgl) catalyzes the initiating step of TG hydrolysis and requires comparative gene identification-58 (Cgi-58) as a potent activator of enzyme activity. Here, we identify adipocyte-type fatty acid-binding protein (A-Fabp) and other members of the fatty acid-binding protein (Fabp) family as interaction partners of Cgi-58. Co-immunoprecipitation, microscale thermophoresis, and solid phase assays proved direct protein/protein interaction between A-Fabp and Cgi-58. Using nuclear magnetic resonance titration experiments and site-directed mutagenesis, we located a potential contact region on A-Fabp. In functional terms, A-Fabp stimulates Atgl-catalyzed TG hydrolysis in a Cgi-58-dependent manner. Additionally, transcriptional transactivation assays with a luciferase reporter system revealed that Fabps enhance the ability of Atgl/Cgi-58-mediated lipolysis to induce the activity of peroxisome proliferator-activated receptors. Our studies identify Fabps as crucial structural and functional components of the lipolysome. PMID:25953897

  6. The conserved WW-domain binding sites in Dystroglycan C-terminus are essential but partially redundant for Dystroglycan function

    DEFF Research Database (Denmark)

    Yatsenko, A S; Kucherenko, M M; Pantoja, M;

    2009-01-01

    function in the establishment of oocyte polarity in Drosophila. If either WW binding site is mutated, the Dg protein can still be active. However, simultaneous mutations in both WW binding sites abolish the Dg activities in both overexpression and loss-of-function oocyte polarity assays in vivo....... Additionally, sequence comparisons of WW binding sites in 12 species of Drosophila, as well as in humans, reveal a high level of conservation. This preservation throughout evolution supports the idea that both WW binding sites are functionally required. CONCLUSION: Based on the obtained results we propose that...

  7. The function of the secondary DNA-binding site of RecA protein during DNA strand exchange.

    OpenAIRE

    Mazin, A V; Kowalczykowski, S C

    1998-01-01

    RecA protein features two distinct DNA-binding sites. During DNA strand exchange, the primary site binds to single-stranded DNA (ssDNA), forming the helical RecA nucleoprotein filament. The weaker secondary site binds double-stranded DNA (dsDNA) during the homology search process. Here we demonstrate that this site has a second important function. It binds the ssDNA strand that is displaced from homologous duplex DNA during DNA strand exchange, stabilizing the initial heteroduplex DNA product...

  8. External location of sites on pig erythrocyte membranes that bind nitrobenzylthioinosine

    International Nuclear Information System (INIS)

    Nucleoside transport in erythrocytes of various species is inhibited by the binding of nitrobenzylthioinosine (NBMPR) to high affinity sites associated with nucleoside transport elements of the plasma membrane. The present study examined binding of [3H]NBMPR to unsealed ghosts and to sealed right-side-out vesicles (ROVs) and inside-out vesicles (IOVs) prepared from pig erythrocytes. Kd values for NBMPR dissociation from the ligand-site complex in unsealed ghosts, ROVs and IOVs were similar (1.6-2.4 nM), and Bmax values (mean +/- SD) were, respectively, 22.2 +/- 5.5, 25.8 +/- 6.4, and 37.3 +/- 4.0 molecules/fg of protein, reflecting differences in the protein content of the membrane preparations. When temperatures were decreased from 22 degrees to 4 degrees, NBMPR binding to erythrocyte membrane preparations was reduced in IOVs relative to that in unsealed ghosts and ROVs. At 22 degrees, the association of NBMPR molecules with IOVs was slower than with ROVs and unsealed ghosts, differences that were virtually eliminated by permeabilization of the membrane preparations with saponin. Thus, the binding sites were more accessible to external NBMPR in sealed ROVs and unsealed ghosts than in sealed IOVs, indicating that the NBMPR sites are located on the extracellular aspect of the membrane

  9. Replication and pathogenicity of primer binding site mutants of SL3-3 murine leukemia viruses

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Schmidt, J; Luz, A;

    1999-01-01

    Retroviral reverse transcription is primed by a cellular tRNA molecule annealed to an 18-bp primer binding site sequence. The sequence of the primer binding site coincides with that of a negatively acting cis element that mediates transcriptional silencing of murine leukemia virus (MLV) in...... undifferentiated embryonic cells. In this study we test whether SL3-3 MLV can replicate stably using tRNA primers other than the cognate tRNAPro and analyze the effect of altering the primer binding site sequence to match the 3' end of tRNA1Gln, tRNA3Lys, or tRNA1,2Arg in a mouse pathogenicity model. Contrary to...... findings from cell culture studies of primer binding site-modified human immunodeficiency virus type 1 and avian retroviruses, our findings were that SL3-3 MLV may stably and efficiently replicate with tRNA primers other than tRNAPro. Although lymphoma induction of the SL3-3 Lys3 mutant was significantly...

  10. External location of sites on pig erythrocyte membranes that bind nitrobenzylthioinosine

    Energy Technology Data Exchange (ETDEWEB)

    Agbanyo, F.R.; Cass, C.E.; Paterson, A.R.

    1988-03-01

    Nucleoside transport in erythrocytes of various species is inhibited by the binding of nitrobenzylthioinosine (NBMPR) to high affinity sites associated with nucleoside transport elements of the plasma membrane. The present study examined binding of (/sup 3/H)NBMPR to unsealed ghosts and to sealed right-side-out vesicles (ROVs) and inside-out vesicles (IOVs) prepared from pig erythrocytes. Kd values for NBMPR dissociation from the ligand-site complex in unsealed ghosts, ROVs and IOVs were similar (1.6-2.4 nM), and Bmax values (mean +/- SD) were, respectively, 22.2 +/- 5.5, 25.8 +/- 6.4, and 37.3 +/- 4.0 molecules/fg of protein, reflecting differences in the protein content of the membrane preparations. When temperatures were decreased from 22 degrees to 4 degrees, NBMPR binding to erythrocyte membrane preparations was reduced in IOVs relative to that in unsealed ghosts and ROVs. At 22 degrees, the association of NBMPR molecules with IOVs was slower than with ROVs and unsealed ghosts, differences that were virtually eliminated by permeabilization of the membrane preparations with saponin. Thus, the binding sites were more accessible to external NBMPR in sealed ROVs and unsealed ghosts than in sealed IOVs, indicating that the NBMPR sites are located on the extracellular aspect of the membrane.

  11. Characterisation of the zebrafish serotonin transporter functionally links TM10 to the ligand binding site

    DEFF Research Database (Denmark)

    Severinsen, Kasper; Müller, Heidi Kaastrup; Wiborg, Ove;

    2008-01-01

    [(3)H]-escitalopram binding in transiently transfected human embryonic kidney cells; HEK-293-MSR. Residues responsible for altered affinities inhibitors were pinpointed by generating cross-species chimeras and subsequent point mutations by site directed mutagenesis. drSERT has a higher affinity...

  12. Longer peptide can be accommodated in the MHC class I binding site by a protrusion mechanism

    DEFF Research Database (Denmark)

    Stryhn, A; Pedersen, L O; Holm, A; Buus, S

    2000-01-01

    and C termini of a bound peptide interact through hydrogen bonding networks to conserved residues at either end of the class I binding site. Accordingly, it is thought that the termini are fixed and that only minor variations in peptide size are possible through a central bulging mechanism. We find...

  13. Studies on ATP-diphosphohydrolase nucleotide-binding sites by intrinsic fluorescence

    Directory of Open Access Journals (Sweden)

    A.M. Kettlun

    2000-07-01

    Full Text Available Potato apyrase, a soluble ATP-diphosphohydrolase, was purified to homogeneity from several clonal varieties of Solanum tuberosum. Depending on the source of the enzyme, differences in kinetic and physicochemical properties have been described, which cannot be explained by the amino acid residues present in the active site. In order to understand the different kinetic behavior of the Pimpernel (ATPase/ADPase = 10 and Desirée (ATPase/ADPase = 1 isoenzymes, the nucleotide-binding site of these apyrases was explored using the intrinsic fluorescence of tryptophan. The intrinsic fluorescence of the two apyrases was slightly different. The maximum emission wavelengths of the Desirée and Pimpernel enzymes were 336 and 340 nm, respectively, suggesting small differences in the microenvironment of Trp residues. The Pimpernel enzyme emitted more fluorescence than the Desirée apyrase at the same concentration although both enzymes have the same number of Trp residues. The binding of the nonhydrolyzable substrate analogs decreased the fluorescence emission of both apyrases, indicating the presence of conformational changes in the neighborhood of Trp residues. Experiments with quenchers of different polarities, such as acrylamide, Cs+ and I- indicated the existence of differences in the nucleotide-binding site, as further shown by quenching experiments in the presence of nonhydrolyzable substrate analogs. Differences in the nucleotide-binding site may explain, at least in part, the kinetic differences of the Pimpernel and Desirée isoapyrases.

  14. Recognition of binding sites and targeting of drugs on nucleic acids

    Czech Academy of Sciences Publication Activity Database

    Šíp, Miroslav

    České Budějovice : Kopp Publishing, 2002 - (Berger, J.), s. 84-85 [Conference on Cell Biology /4./. České Budějovice (CZ), 09.09.2002-11.09.2002] Institutional research plan: CEZ:AV0Z5051902 Keywords : nucleic acid * binding sites Subject RIV: BO - Biophysics

  15. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    Science.gov (United States)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-01-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency. PMID:27432161

  16. Synthesis of Zn-MOF incorporating titanium-hydrides as active sites binding H2 molecules

    Science.gov (United States)

    Kim, Jongsik; Ok Kim, Dong; Wook Kim, Dong; Sagong, Kil

    2015-10-01

    This paper describes the synthetic effort for a Zn-MOF imparting Ti-H as a preferential binding site potentially capturing H2 molecules via Kubas-type interaction. The formation mechanism of Ti-H innate to the final material was potentially demonstrated to follow a radical dissociation rather than a β-hydrogen elimination and a C-H reductive elimination.

  17. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting.

    Science.gov (United States)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-01-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency. PMID:27432161

  18. Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Roberts, Rhonda; Chen, Tsing-Bau;

    2016-01-01

    -like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1), respectively. To define CGRP receptor binding sites, in vitro autoradiography was performed with [(3)H]MK-3207 (a CGRP receptor antagonist). CLR and RAMP1 mRNA and protein expression were detected in the pineal gland, medial mammillary...

  19. Asap: a framework for over-representation statistics for transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Troels T Marstrand

    Full Text Available BACKGROUND: In studies of gene regulation the efficient computational detection of over-represented transcription factor binding sites is an increasingly important aspect. Several published methods can be used for testing whether a set of hypothesised co-regulated genes share a common regulatory regime based on the occurrence of the modelled transcription factor binding sites. However there is little or no information available for guiding the end users choice of method. Furthermore it would be necessary to obtain several different software programs from various sources to make a well-founded choice. METHODOLOGY: We introduce a software package, Asap, for fast searching with position weight matrices that include several standard methods for assessing over-representation. We have compared the ability of these methods to detect over-represented transcription factor binding sites in artificial promoter sequences. Controlling all aspects of our input data we are able to identify the optimal statistics across multiple threshold values and for sequence sets containing different distributions of transcription factor binding sites. CONCLUSIONS: We show that our implementation is significantly faster than more naïve scanning algorithms when searching with many weight matrices in large sequence sets. When comparing the various statistics, we show that those based on binomial over-representation and Fisher's exact test performs almost equally good and better than the others. An online server is available at http://servers.binf.ku.dk/asap/.

  20. Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling

    Directory of Open Access Journals (Sweden)

    Shirmohammadi Adel

    2006-10-01

    Full Text Available Abstract Background Quantification of in-vivo biomolecule mass transport and reaction rate parameters from experimental data obtained by Fluorescence Recovery after Photobleaching (FRAP is becoming more important. Methods and results The Osborne-Moré extended version of the Levenberg-Marquardt optimization algorithm was coupled with the experimental data obtained by the Fluorescence Recovery after Photobleaching (FRAP protocol, and the numerical solution of a set of two partial differential equations governing macromolecule mass transport and reaction in living cells, to inversely estimate optimized values of the molecular diffusion coefficient and binding rate parameters of GFP-tagged glucocorticoid receptor. The results indicate that the FRAP protocol provides enough information to estimate one parameter uniquely using a nonlinear optimization technique. Coupling FRAP experimental data with the inverse modeling strategy, one can also uniquely estimate the individual values of the binding rate coefficients if the molecular diffusion coefficient is known. One can also simultaneously estimate the dissociation rate parameter and molecular diffusion coefficient given the pseudo-association rate parameter is known. However, the protocol provides insufficient information for unique simultaneous estimation of three parameters (diffusion coefficient and binding rate parameters owing to the high intercorrelation between the molecular diffusion coefficient and pseudo-association rate parameter. Attempts to estimate macromolecule mass transport and binding rate parameters simultaneously from FRAP data result in misleading conclusions regarding concentrations of free macromolecule and bound complex inside the cell, average binding time per vacant site, average time for diffusion of macromolecules from one site to the next, and slow or rapid mobility of biomolecules in cells. Conclusion To obtain unique values for molecular diffusion coefficient and

  1. Preliminary study of the metal binding site of an anti-DTPA-indium antibody by equilibrium binding immunoassays and immobilized metal ion affinity chromatography.

    Science.gov (United States)

    Boden, V; Colin, C; Barbet, J; Le Doussal, J M; Vijayalakshmi, M

    1995-01-01

    Creating metal coordination sites by modifying an existing enzyme or by eliciting antibodies against metal chelate haptens is of great interest in biotechnology to create enzyme catalysts with novel specificities. Here, we investigate the metal binding potential of a monoclonal antibody raised against a DTPA-In(III) hapten (mAb 734). We study its relative binding efficiency to metals of biological relevance by equilibrium binding immunoassays and immobilized metal ion affinity chromatography, two approaches which can give complementary information regarding composition and/or structure of the metal binding site(s). Fe(III), Fe(II), Cu(II), Mg(II), Ca(II), and Zn(II) binding was compared to In(III). All of them were shown to displace indium, but their affinity for mAb 734 decreased by 100-fold compared to indium. Competitive metal binding immunoassays between Zn(II) and In(III) revealed an unusual behavior by Zn(II) which remains to be explained. Moreover, IMAC allowed us to predict the metal binding amino acids involved in the antibody paratope. The antibody metal binding site was shown to contain at least two histidine residues in a cluster, and the presence of aspartic and glutamic acid as well as cysteine residues could not be excluded. Thus, simple competition studies allows us to obtain some partial information on the metal binding structural features of this anti-metal chelate antibody and to guide our screening of its catalytic potential. PMID:7578356

  2. Conformational Sampling and Binding Site Assessment of Suppression of Tumorigenicity 2 Ectodomain.

    Directory of Open Access Journals (Sweden)

    Chao-Yie Yang

    Full Text Available Suppression of Tumorigenicity 2 (ST2, a member of the interleukin-1 receptor (IL-1R family, activates type 2 immune responses to pathogens and tissue damage via binding to IL-33. Dysregulated responses contribute to asthma, graft-versus-host and autoinflammatory diseases and disorders. To study ST2 structure for inhibitor development, we performed the principal component (PC analysis on the crystal structures of IL1-1R1, IL1-1R2, ST2 and the refined ST2 ectodomain (ST2ECD models, constructed from previously reported small-angle X-ray scattering data. The analysis facilitates mapping of the ST2ECD conformations to PC subspace for characterizing structural changes. Extensive coverage of ST2ECD conformations was then obtained using the accelerated molecular dynamics simulations started with the IL-33 bound ST2ECD structure as instructed by their projected locations on the PC subspace. Cluster analysis of all conformations further determined representative conformations of ST2ECD ensemble in solution. Alignment of the representative conformations with the ST2/IL-33 structure showed that the D3 domain of ST2ECD (containing D1-D3 domains in most conformations exhibits no clashes with IL-33 in the crystal structure. Our experimental binding data informed that the D1-D2 domain of ST2ECD contributes predominantly to the interaction between ST2ECD and IL-33 underscoring the importance of the D1-D2 domain in binding. Computational binding site assessment revealed one third of the total detected binding sites in the representative conformations may be suitable for binding to potent small molecules. Locations of these sites include the D1-D2 domain ST2ECD and modulation sites conformed to ST2ECD conformations. Our study provides structural models and analyses of ST2ECD that could be useful for inhibitor discovery.

  3. Analysis of the Binding Sites of Porcine Sialoadhesin Receptor with PRRSV

    Directory of Open Access Journals (Sweden)

    Yibo Jiang

    2013-12-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV can infect pigs and cause enormous economic losses to the pig industry worldwide. Porcine sialoadhesin (pSN and CD163 have been identified as key viral receptors on porcine alveolar macrophages (PAM, a main target cell infected by PRRSV. In this study, the protein structures of amino acids 1–119 from the pSN and cSN (cattle sialoadhesin N-termini (excluding the 19-amino acid signal peptide were modeled via homology modeling based on mSN (mouse sialoadhesin template structures using bioinformatics tools. Subsequently, pSN and cSN homology structures were superposed onto the mSN protein structure to predict the binding sites of pSN. As a validation experiment, the SN N-terminus (including the wild-type and site-directed-mutant-types of pSN and cSN was cloned and expressed as a SN-GFP chimera protein. The binding activity between SN and PRRSV was confirmed by WB (Western blotting, FAR-WB (far Western blotting, ELISA (enzyme-linked immunosorbent assay and immunofluorescence assay. We found that the S107 amino acid residue in the pSN N-terminal played a crucial role in forming a special cavity, as well as a hydrogen bond for enhancing PRRSV binding during PRRSV infection. S107 may be glycosylated during PRRSV infection and may also be involved in forming the cavity for binding PRRSV along with other sites, including W2, Y44, S45, R97, R105, W106 and V109. Additionally, S107 might also be important for pSN binding with PRRSV. However, the function of these binding sites must be confirmed by further studies.

  4. Mammalian TBX1 preferentially binds and regulates downstream targets via a tandem T-site repeat.

    Directory of Open Access Journals (Sweden)

    Raquel Castellanos

    Full Text Available Haploinsufficiency or mutation of TBX1 is largely responsible for the etiology of physical malformations in individuals with velo-cardio-facial/DiGeorge syndrome (VCFS/DGS/22q11.2 deletion syndrome. TBX1 encodes a transcription factor protein that contains an evolutionarily conserved DNA binding domain termed the T-box that is shared with other family members. All T-box proteins, examined so far, bind to similar but not identical consensus DNA sequences, indicating that they have specific binding preferences. To identify the TBX1 specific consensus sequence, Systematic Evolution of Ligands by Exponential Enrichment (SELEX was performed. In contrast to other TBX family members recognizing palindrome sequences, we found that TBX1 preferentially binds to a tandem repeat of 5'-AGGTGTGAAGGTGTGA-3'. We also identified a second consensus sequence comprised of a tandem repeat with a degenerated downstream site. We show that three known human disease-causing TBX1 missense mutations (F148Y, H194Q and G310S do not alter nuclear localization, or disrupt binding to the tandem repeat consensus sequences, but they reduce transcriptional activity in cell culture reporter assays. To identify Tbx1-downstream genes, we performed an in silico genome wide analysis of potential cis-acting elements in DNA and found strong enrichment of genes required for developmental processes and transcriptional regulation. We found that TBX1 binds to 19 different loci in vitro, which may correspond to putative cis-acting binding sites. In situ hybridization coupled with luciferase gene reporter assays on three gene loci, Fgf8, Bmper, Otog-MyoD, show that these motifs are directly regulated by TBX1 in vitro. Collectively, the present studies establish new insights into molecular aspects of TBX1 binding to DNA. This work lays the groundwork for future in vivo studies, including chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq to further elucidate the

  5. Logic minimization and rule extraction for identification of functional sites in molecular sequences

    Directory of Open Access Journals (Sweden)

    Cruz-Cano Raul

    2012-08-01

    Full Text Available Abstract Background Logic minimization is the application of algebraic axioms to a binary dataset with the purpose of reducing the number of digital variables and/or rules needed to express it. Although logic minimization techniques have been applied to bioinformatics datasets before, they have not been used in classification and rule discovery problems. In this paper, we propose a method based on logic minimization to extract predictive rules for two bioinformatics problems involving the identification of functional sites in molecular sequences: transcription factor binding sites (TFBS in DNA and O-glycosylation sites in proteins. TFBS are important in various developmental processes and glycosylation is a posttranslational modification critical to protein functions. Methods In the present study, we first transformed the original biological dataset into a suitable binary form. Logic minimization was then applied to generate sets of simple rules to describe the transformed dataset. These rules were used to predict TFBS and O-glycosylation sites. The TFBS dataset is obtained from the TRANSFAC database, while the glycosylation dataset was compiled using information from OGLYCBASE and the Swiss-Prot Database. We performed the same predictions using two standard classification techniques, Artificial Neural Networks (ANN and Support Vector Machines (SVM, and used their sensitivities and positive predictive values as benchmarks for the performance of our proposed algorithm. SVM were also used to reduce the number of variables included in the logic minimization approach. Results For both TFBS and O-glycosylation sites, the prediction performance of the proposed logic minimization method was generally comparable and, in some cases, superior to the standard ANN and SVM classification methods with the advantage of providing intelligible rules to describe the datasets. In TFBS prediction, logic minimization produced a very small set of simple rules. In

  6. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Lindemose, Søren; Jensen, Michael Krogh; de Velde, Jan Van; O'Shea, Charlotte; Heyndrickx, Ken S.; Workman, Christopher; Vandepoele, Klaas; Skriver, Karen; De Masi, Federico

    2014-01-01

    regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domain's sequence. The developed methodology, including the application of...... the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene...

  7. Identification of Cisplatin-Binding Proteins Using Agarose Conjugates of Platinum Compounds

    OpenAIRE

    Takatoshi Karasawa; Martha Sibrian-Vazquez; Strongin, Robert M.; Peter S Steyger

    2013-01-01

    Cisplatin is widely used as an antineoplastic drug, but its ototoxic and nephrotoxic side-effects, as well as the inherent or acquired resistance of some cancers to cisplatin, remain significant clinical problems. Cisplatin's selectivity in killing rapidly proliferating cancer cells is largely dependent on covalent binding to DNA via cisplatin's chloride sites that had been aquated. We hypothesized that cisplatin's toxicity in slowly proliferating or terminally differentiated cells is primari...

  8. Cytofluorometric identification of plasmin-sensitive factor XIIIa binding to platelets.

    Science.gov (United States)

    Kreager, J A; Devine, D V; Greenberg, C S

    1988-08-30

    We have investigated the binding of blood coagulation factor XIIIa to thrombin-stimulated platelets using cytofluorometric analysis. Washed thrombin-stimulated platelets bound exogenously added factor XIIIa in a calcium-dependent reaction. The expression of endogenous platelet factor XIII was also detected on the surface of thrombin-stimulated platelets. When fluorescence analysis was performed based on particle size, factor XIIIa bound to the surface of greater than 95% of particles which contained more than one platelet, but only 50% of single platelets. The binding of factor XIIIa to thrombin-stimulated platelets was inhibited by plasmin. Plasmin also inhibited thrombin-dependent expression of the factor XIIIa binding site on platelets. Experiments in which thrombin-stimulated platelets were incubated with factor XIIIa in the presence of 125I-dimethylcasein or 3H-putrescine demonstrated that platelets bear both glutamyl and lysyl substrates for factor XIIIa. Thrombin increased the expression of factor XIIIa substrates by platelets. Plasmin inhibited both the expression of factor XIIIa substrates and degraded them. The binding of factor XIIIa to thrombin-stimulated platelets and the availability of factor XIIIa substrates on the platelet surface could provide a mechanism by which factor XIIIa stabilizes the hemostatic plug by promoting crosslinking reactions between platelet membrane proteins and adhesive glycoproteins. In contrast, plasmin inhibition of factor XIIIa binding and crosslinking could disrupt hemostasis. PMID:2903577

  9. A triad of lys12, lys41, arg78 spatial domain, a novel identified heparin binding site on tat protein, facilitates tat-driven cell adhesion.

    Directory of Open Access Journals (Sweden)

    Jing Ai

    Full Text Available Tat protein, released by HIV-infected cells, has a battery of important biological effects leading to distinct AIDS-associated pathologies. Cell surface heparan sulfate protoglycans (HSPGs have been accepted as endogenous Tat receptors, and the Tat basic domain has been identified as the heparin binding site. However, findings that deletion or substitution of the basic domain inhibits but does not completely eliminate Tat-heparin interactions suggest that the basic domain is not the sole Tat heparin binding site. In the current study, an approach integrating computational modeling, mutagenesis, biophysical and cell-based assays was used to elucidate a novel, high affinity heparin-binding site: a Lys12, Lys41, Arg78 (KKR spatial domain. This domain was also found to facilitate Tat-driven β1 integrin activation, producing subsequent SLK cell adhesion in an HSPG-dependent manner, but was not involved in Tat internalization. The identification of this new heparin binding site may foster further insight into the nature of Tat-heparin interactions and subsequent biological functions, facilitating the rational design of new therapeutics against Tat-mediated pathological events.

  10. Identification and radiological characterization of contaminated site in Spain. Andujar uranium mill site

    International Nuclear Information System (INIS)

    Empresa Nacional de Residuos Radioactivos, S.A. (ENRESA) is remediating an inactive uranium mill facility in the town of Andujar in the south of Spain. The Andujar plant became operational in 1959 and continued in operation until 1981. All solid waste generated during the operation of the plant are contained in a tailings pile, which covers an area of 9.4 hectares and has a total volume of about one million cubic meters. The remedial action plan proposed for Andujar mill site involved stabilizing and consolidating the uranium mill tailings and contaminated materials in place. The actual tailings pile was reshaped by flattening the sideslopes to improve stability. Tailings from sideslope flattening were relocated around the existing pile and on the top of the lower pile. Mill equipment, buildings and process facilities were dismantled and demolished and place in the tailings pile. Off-pile contaminated soils were excavated and placed on top of tailings pile in order to reduce the radon flux. The pile has been covered with a multilayer system to meet the three simultaneous demands of erosion control, infiltration and radon control. In this paper it is described the identification and radiological characterization of Andujar Uranium Mill site which was carried in three phases: During the first phase, the radioactive concentration in tailings was established, and site general parameters and potential spreading of contamination were defined. During the second phase, once stabilization in place was decided three main tasks were performed: a radon flux field test, a radionuclide migration study and radiometric study. During the third phase in order to establish the final conditions of the stabilized tailings pile and off-pile soils clean conditions after remediation works a radiometric survey was carried out. (author). 2 tabs

  11. Solubilization and characterization of haloperidol-sensitive (+)-[3H]SKF-10,047 binding sites (sigma sites) from rat liver membranes

    International Nuclear Information System (INIS)

    The zwitterionic detergent 3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate (CHAPS) produced optimal solubilization of (+)-[3H]SKF-10,047 binding sites from rat liver membranes at a concentration of 0.2%, well below the critical micellular concentration of the detergent. The pharmacological selectivity of the liver (+)-[3H]SKF-10,047 binding sites corresponds to that of sigma sites from rat and guinea pig brain. When the affinities of 18 different drugs at (+)-[3H]SKF-10,047 binding sites in membranes and solubilized preparations were compared, a correlation coefficient of 0.99 and a slope of 1.03 were obtained, indicating that the pharmacological selectivity of rat liver sigma sites is retained after solubilization. In addition, the binding of 20 nM [3H]progesterone to solubilized rat liver preparations was found to exhibit a pharmacological selectivity appropriate for sigma sites. A stimulatory effect of phenytoin on (+)-[3H]SKF-10,047 binding to sigma sites persisted after solubilization. When the solubilized preparation was subjected to molecular sizing chromatography, a single peak exhibiting specific (+)-[3H]SKF-10,047 binding was obtained. The binding activity of this peak was stimulated symmetrically when assays were performed in the presence of 300 microM phenytoin. The molecular weight of the CHAPS-solubilized sigma site complex was estimated to be 450,000 daltons. After solubilization with CHAPS, rat liver sigma sites were enriched to 12 pmol/mg of protein. The present results demonstrate a successful solubilization of sigma sites from rat liver membranes and provide direct evidence that the gonadal steroid progesterone binds to sigma sites. The results also suggest that the anticonvulsant phenytoin binds to an associated allosteric site on the sigma site complex

  12. STarMirDB: A database of microRNA binding sites.

    Science.gov (United States)

    Rennie, William; Kanoria, Shaveta; Liu, Chaochun; Mallick, Bibekanand; Long, Dang; Wolenc, Adam; Carmack, C Steven; Lu, Jun; Ding, Ye

    2016-06-01

    microRNAs (miRNAs) are an abundant class of small endogenous non-coding RNAs (ncRNAs) of ∼22 nucleotides (nts) in length. These small regulatory molecules are involved in diverse developmental, physiological and pathological processes. miRNAs target mRNAs (mRNAs) for translational repression and/or mRNA degradation. Predictions of miRNA binding sites facilitate experimental validation of miRNA targets. Models developed with data from CLIP studies have been used for predictions of miRNA binding sites in the whole transcriptomes of human, mouse and worm. The prediction results have been assembled into STarMirDB, a new database of miRNA binding sites available at http://sfold.wadsworth.org/starmirDB.php . STarMirDB can be searched by miRNAs or mRNAs separately or in combination. The search results are categorized into seed and seedless sites in 3' UTR, CDS and 5' UTR. For each predicted site, STarMirDB provides a comprehensive list of sequence, thermodynamic and target structural features that are known to influence miRNA: target interaction. A high resolution PDF diagram of the conformation of the miRNA:target hybrid is also available for visualization and publication. The results of a database search are available through both an interactive viewer and downloadable text files. PMID:27144897

  13. Evaluation of a novel virtual screening strategy using receptor decoy binding sites.

    Science.gov (United States)

    Patel, Hershna; Kukol, Andreas

    2016-01-01

    Virtual screening is used in biomedical research to predict the binding affinity of a large set of small organic molecules to protein receptor targets. This report shows the development and evaluation of a novel yet straightforward attempt to improve this ranking in receptor-based molecular docking using a receptor-decoy strategy. This strategy includes defining a decoy binding site on the receptor and adjusting the ranking of the true binding-site virtual screen based on the decoy-site screen. The results show that by docking against a receptor-decoy site with Autodock Vina, improved Receiver Operator Characteristic Enrichment (ROCE) was achieved for 5 out of fifteen receptor targets investigated, when up to 15 % of a decoy site rank list was considered. No improved enrichment was seen for 7 targets, while for 3 targets the ROCE was reduced. The extent to which this strategy can effectively improve ligand prediction is dependent on the target receptor investigated. PMID:27553084

  14. HPV 16 E2 binding sites 1 and 2 become more methylated than E2 binding site 4 during cervical carcinogenesis.

    Science.gov (United States)

    Leung, Tsin-Wah; Liu, Stephanie S; Leung, Rebecca C Y; Chu, Mandy M Y; Cheung, Annie N Y; Ngan, Hextan Y S

    2015-06-01

    E2 protein binding to the four E2 binding sites (E2BSs) at the long control region of Human Papillomavirus (HPV) 16/18 genome may exert either transcriptional activation/repression on E6 and E7 oncoproteins. Methylation status at the E2BSs may affect the relative binding of E2 protein to them. In this study, methylation percentage at E2BS 1, 2 (promoter-proximal), and 4 (promoter-distal) were assessed by pyrosequencing and compared among HPV 16/18-positive cervical cancer, high-grade, and low-grade Cervical Intraepithelial Neoplasia, Atypical Squamous Cells of Undetermined Significance, and normal cervical epithelium. HPV 16 E2BS1&2 were more methylated than HPV 16 E2BS4 in cervical cancer whereas in cervical premalignant lesions and normal epithelium, HPV 16 E2BS1&2 were less methylated than HPV 16 E2BS4. HPV 18 E2BS1&2 remained more methylated than E2BS4 in all histological groups. HPV 16 E2BS1&2 methylation increased from high-grade lesions to cervical cancer (P E2 protein to E2BS4. Increasing methylation at HPV 16/18 E2BSs are potentially useful adjunctive molecular markers for predicting progression from low-grade to high-grade cervical premalignant lesions and from high-grade lesions to cervical cancer. PMID:25648229

  15. Pharmacological characterization of axonally transported (125I)-alpha-bungatoxin binding sites in rat sciatic nerve

    International Nuclear Information System (INIS)

    The authors attempt to label the putative receptors as they are axonally transported in peripheral nerves. With the use of an innovative autoradiographic technique, this approach as enabled the investigation of the pharmacological properties of the toxin-binding site interaction. The tissue sections from adult male rat sciatic nerves were incubated for 60 min at room temperature in phosphate buffer saline containing 2 nM I 125-alpha-BuTX with or without displacer. A bright field micrograph as well as dark field autoradiograph is illustrated of a ligated (12 hr.) rat sciatic nerve section incubated with I 125-alpha-BuTX. If one presumes that axonally transported I 125-alpha-BuTX binding sites correspond to receptors whose destination is the presynaptic membrane, then the data presented in this study may provide a pharmacological basis for differentiating pre- and postsynaptic sites of action of cholinergic drugs on the mammalian neuromuscular junction

  16. Metal ion binding sites of bacteriorhodopsin. Laser-induced lanthanide luminescence study

    International Nuclear Information System (INIS)

    Laser-excited luminescence lifetimes of lanthanide ions bound to bacteriorhodopsin have been measured in deionized membranes. The luminescence titration curve, as well as the binding curve of apomembrane (retinal-free) with Eu3+, has shown that the removal of the retinal does not significantly affect the affinity of Eu3+ for the two high affinity sites of bacteriorhodopsin. The D2O effects on decay rate constants indicate that Eu3+ bound to the high affinity sites of native membrane or apomembrane is coordinated by about six ligands in the first coordination sphere. Tb3+ is shown to be coordinated by four ligands. The data indicate that metal ions bind to the protein with a specific geometry. From intermetal energy transfer experiments using Eu3+-Pr3+, Tb3+-Ho3+, and Tb3+-Er3+, the distance between the two high affinity sites is estimated to be 7-8 A

  17. The Tetrodotoxin Binding Site Is within the Outer Vestibule of the Sodium Channel

    Directory of Open Access Journals (Sweden)

    Gregory M. Lipkind

    2010-02-01

    Full Text Available Tetrodotoxin and saxitoxin are small, compact asymmetrical marine toxins that block voltage-gated Na channels with high affinity and specificity. They enter the channel pore’s outer vestibule and bind to multiple residues that control permeation. Radiolabeled toxins were key contributors to channel protein purification and subsequent cloning. They also helped identify critical structural elements called P loops. Spacial organization of their mutation-identified interaction sites in molecular models has generated a molecular image of the TTX binding site in the outer vestibule and the critical permeation and selectivity features of this region. One site in the channel’s domain I P loop determines affinity differences in mammalian isoforms.

  18. A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel

    DEFF Research Database (Denmark)

    Long, Katherine S; Porse, Bo T

    2003-01-01

    The antibiotic chloramphenicol produces modifications in 23S rRNA when bound to ribosomes from the bacterium Escherichia coli and the archaeon Halobacterium halobium and irradiated with 365 nm light. The modifications map to nucleotides m(5)U747 and C2611/C2612, in domains II and V, respectively......, of E.coli 23S rRNA and G2084 (2058 in E.coli numbering) in domain V of H.halobium 23S rRNA. The modification sites overlap with a portion of the macrolide binding site and cluster at the entrance to the peptide exit tunnel. The data correlate with the recently reported chloramphenicol binding site on...

  19. In vivo receptor binding of opioid drugs at the mu site

    International Nuclear Information System (INIS)

    The in vivo receptor binding of a series of opioid drugs was investigated in intact rats after s.c. administration of [3H]etorphine tracer, which selectively binds to mu sites in vivo. Receptor binding was determined by a membrane filtration assay immediately after sacrifice of the animals and brain homogenization. Coadministration of unlabeled opioid drugs together with tracer led to a dose-dependent decrease of in vivo tracer binding. Estimates of the doses required to occupy 50% of the mu sites in vivo established the following potency rank order: diprenorphine, naloxone, buprenorphine, etorphine, levallorphan, cyclazocine, sufentanil, nalorphine, ethylketocyclazocine, ketocyclazocine, pentazocine, morphine. In vivo-in vitro differences among the relative receptor binding potencies were only partially accounted for by differences in their access to the brain and the regulatory effects of Na+ and GTP, which are expected to reduce agonist affinities in vivo. The relationship among mu receptor occupancy in vivo and pharmacological effects of the opioid drugs is described

  20. Calcium-binding sites of calmodulin and electron transfer by inducible nitric oxide synthase.

    Science.gov (United States)

    Gribovskaja, Irena; Brownlow, Kaleb C; Dennis, Sam J; Rosko, Andrew J; Marletta, Michael A; Stevens-Truss, Regina

    2005-05-24

    Like that of the neuronal nitric oxide synthase (nNOS), the binding of Ca(2+)-bound calmodulin (CaM) also regulates the activity of the inducible isoform (iNOS). However, the role of each of the four Ca(2+)-binding sites of CaM in the activity of iNOS is unclear. Using a series of single-point mutants of Drosophila melanogaster CaM, the effect that mutating each of the Ca(2+)-binding sites plays in the transfer of electrons within iNOS has been examined. The same Glu (E) to Gln (Q) mutant series of CaM used previously [Stevens-Truss, R., Beckingham, K., and Marletta, M. A. (1997) Biochemistry 36, 12337-12345] to study the role of the Ca(2+)-binding sites in the activity of nNOS was used for these studies. We demonstrate here that activity of iNOS is dependent on Ca(2+) being bound to sites II (B2Q) and III (B3Q) of CaM. Nitric oxide ((*)NO) producing activity (as measured using the hemoglobin assay) of iNOS bound to the B2Q and B3Q CaMs was found to be 41 and 43% of the wild-type activity, respectively. The site I (B1Q) and site IV (B4Q) CaM mutants only minimally affected (*)NO production (95 and 90% of wild-type activity, respectively). These results suggest that NOS isoforms, although all possessing a prototypical CaM binding sequence and requiring CaM for activity, interact with CaM differently. Moreover, iNOS activation by CaM, like nNOS, is not dependent on Ca(2+) being bound to all four Ca(2+)-binding sites, but has specific and distinct requirements. This novel information, in addition to helping us understand NOS, should aid in our understanding of CaM target activation. PMID:15896003

  1. Antibody remodeling: a general solution to the design of a metal-coordination site in an antibody binding pocket.

    OpenAIRE

    Roberts, V A; Iverson, B L; Iverson, S A; Benkovic, S J; Lerner, R A; Getzoff, E D; Tainer, J A

    1990-01-01

    To develop a general approach to designing cofactor-binding sites for catalytic antibodies, we characterized structural patterns in the binding sites of antibodies and zinc enzymes. Superposition of eight sets of antibody light- and heavy-chain variable domains identified structurally conserved sites within the sequence-variable complementarity determining regions. The pattern for catalytic zinc sites included two ligands close in sequence, a sequence-distant ligand, and a main-chain hydrogen...

  2. Identification of novel viral receptors with cell line expressing viral receptor-binding protein.

    Science.gov (United States)

    Mei, Mei; Ye, Jianqiang; Qin, Aijian; Wang, Lin; Hu, Xuming; Qian, Kun; Shao, Hongxia

    2015-01-01

    The viral cell receptors and infection can be blocked by the expression of the viral receptor-binding protein. Thus, the viral cell receptor is an attractive target for anti-viral strategies, and the identification of viral cell receptor is critical for better understanding and controlling viral disease. As a model system for viral entry and anti-retroviral approaches, avian sarcoma/leukosis virus (ASLV, including the A-J ten subgroups) has been studied intensively and many milestone discoveries have been achieved based on work with ASLV. Here, we used a DF1 cell line expressed viral receptor-binding protein to efficiently identify chicken Annexin A2 (chANXA2) as a novel receptor for retrovirus ALV-J (avian leukosis virus subgroup J). Our data demonstrate that antibodies or siRNA to chANXA2 significantly inhibited ALV-J infection and replication, and over-expression of chANXA2 permitted the entry of ALV-J into its non-permissible cells. Our findings have not only identified chANXA2 as a novel biomarker for anti-ALV-J, but also demonstrated that cell lines with the expression of viral receptor-binding protein could be as efficient tools for isolating functional receptors to identify novel anti-viral targets. PMID:25604889

  3. Binding site for the adenosyl group of coenzyme B12 in diol dehydrase

    International Nuclear Information System (INIS)

    The binding of cob(II)alamin (CblII) and 5'-deoxyadenosine to diol dehydrase was studied spectroscopically and with [U-14C]5'-deoxyadenosine. CblII was bound to this enzyme forming a tight 1:1 complex which was resistant to oxidation by O2 even in the presence of CN-. An irreversible 1:1:1 ternary complex was formed between enzyme, CblII, and 5'-deoxyadenosine, when the enzyme was incubated first with the nucleoside and then with CblII. When this order of addition of the constituents was reversed, no 5'-deoxyadenosine was bound to the enzyme-CblII complex. Hydroxocobalamin could also bind to the enzyme together with the nucleoside, while other cob(III)alamins bearing a bulkier Co beta ligand displaced the nucleoside upon binding to the enzyme. The binding of [U-14C]5'-deoxyadenosine was strongly inhibited by unlabeled 5'-deoxy-ara-adenosine, 4',5'-anhydroadenosine, adenosine, adenine, and 5',8-cyclic adenosine, in this order, but not by 5'-deoxyuridine. These results constitute direct evidence for the presence of the binding site for the adenosyl group of adenosylcobalamin, which is spatially limited to and highly specific for adenine nucleosides. The binding of 5'-deoxyadenosine to the apoenzyme was reversible

  4. Novel Phosphotidylinositol 4,5-Bisphosphate Binding Sites on Focal Adhesion Kinase.

    Directory of Open Access Journals (Sweden)

    Jun Feng

    Full Text Available Focal adhesion kinase (FAK is a protein tyrosine kinase that is ubiquitously expressed, recruited to focal adhesions, and engages in a variety of cellular signaling pathways. Diverse cellular responses, such as cell migration, proliferation, and survival, are regulated by FAK. Prior to activation, FAK adopts an autoinhibited conformation in which the FERM domain binds the kinase domain, blocking access to the activation loop and substrate binding site. Activation of FAK occurs through conformational change, and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP2 are known to facilitate this process. PIP2 binding alters the autoinhibited conformation of the FERM and kinase domains and subsequently exposes the activation loop to phosphorylation. However, the detailed molecular mechanism of PIP2 binding and its role in FAK activation remain unclear. In this study, we conducted coarse-grained molecular dynamics simulations to investigate the binding of FAK to PIP2. Our simulations identified novel areas of basic residues in the kinase domain of FAK that potentially undergo transient binding to PIP2 through electrostatic attractions. Our investigation provides a molecular picture of PIP2-initiated FAK activation and introduces promising new pathways for future studies of FAK regulation.

  5. Characterization of [3H]leukotriene D4 binding sites in guinea-pig ventricular myocardium

    International Nuclear Information System (INIS)

    [3H]Leukotriene (LT) D4 was used to identify specific LTD4 binding sites in guinea-pig ventricular myocardial membranes. High-performance liquid chromatography analyses indicated that, in the presence of the gamma-glutamyl transpeptidase inhibitor L-serine-borate (80 mM), less than 3% of membrane-bound [3H]LTD4 was converted to [3H]LTC4 or [3H]LTE4 at 30 degrees C. The specific [3H] LTD4 binding, assayed in the presence of 80 mM L-serine-borate, reached a stable steady state within 45 min at 30 degrees C (pH 7.5). A monophasic Scatchard plot of saturation binding data yielded an apparent dissociation constant (Kd) of 3.4 +/- 2.1 nM and a maximum number of binding sites of 850 +/- 91 fmol/mg of protein. Competition binding studies with [3H]LTD4, synthetic 5S, 6R-LTD4 (LTD4) and its diastereoisomer 5R,6S-LTD4, LTE4, LTC4 and the putative LT antagonists FPL 55712, 4R-hydroxy-5S-1-cysteinylglycine-6Z-nonadecanoic acid (2-nor-LTD1) and SKF 88046 demonstrated a potency order of LTD4 greater than LTE4 greater than LTC4 greater than 5R,6S-LTD4 much greater than 2-nor-LTD1. FPL 55712 and SKF 88046 were ineffective in displacing the specific [3H]LTD4 binding. Pretreatment of the heart membranes with the sulfhydryl reducing reagent dithiothreitol decreased the specific [3H]LTD4 binding in a concentration-dependent manner. Scatchard analyses of saturation isotherms indicated that 0.3 mM dithiothreitol pretreatment of heart membranes decreased the maximum number of binding sites of the [3H]LTD4 binding to 368 +/- 61 fmol/mg of protein with minimal effects on the apparent Kd

  6. The propagation of binding interactions to remote sites in proteins: Analysis of the binding of the monoclonal antibody D1.3 to lysozyme

    OpenAIRE

    Freire, Ernesto

    1999-01-01

    The interaction of a ligand with a protein occurs at a local site (the binding site) and involves only a few residues; however, the effects of that interaction are often propagated to remote locations. The chain of events initiated by binding provides the basis for fundamental biological phenomena such as allosterism, signal transduction, and structural-stability modification. In this paper, a structure-based statistical thermodynamic approach is presented and used...

  7. Interaction of malachite green with bovine serum albumin: Determination of the binding mechanism and binding site by spectroscopic methods

    International Nuclear Information System (INIS)

    The interaction between malachite green (MG) and bovine serum albumin (BSA) under simulative physiological conditions was investigated by the methods of fluorescence spectroscopy, UV-vis absorption and circular dichroism (CD) spectroscopy. Fluorescence data showed that the fluorescence quenching of BSA by MG was the result of the formation of the MG-BSA complex. According to the modified Stern-Volmer equation, the effective quenching constants (Ka) between MG and BSA at four different temperatures were obtained to be 3.734 x 104, 3.264 x 104, 2.718 x 104, and 2.164 x 104 L mol-1, respectively. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be -27.25 kJ mol-1 and -11.23 J mol-1 K-1, indicating that van der Waals force and hydrogen bonds were the dominant intermolecular force in stabilizing the complex. Site marker competitive experiments indicated that the binding of MG to BSA primarily took place in sub-domain IIA. The binding distance (r) between MG and the tryptophan residue of BSA was obtained to be 4.79 nm according to Foerster theory of non-radioactive energy transfer. The conformational investigation showed that the presence of MG decreased the α-helical content of BSA (from 62.6% to 55.6%) and induced the slight unfolding of the polypeptides of protein, which confirmed some micro-environmental and conformational changes of BSA molecules

  8. Identification of the Receptor Binding Domain of the Mouse Mammary Tumor Virus Envelope Protein

    Science.gov (United States)

    Zhang, Yuanming; Rassa, John C.; deObaldia, Maria Elena; Albritton, Lorraine M.; Ross, Susan R.

    2003-01-01

    Mouse mammary tumor virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse transferrin receptor 1 for cell entry. To characterize the interaction of MMTV with its receptor, we aligned the MMTV envelope surface (SU) protein with that of Friend murine leukemia virus (F-MLV) and identified a putative receptor-binding domain (RBD) that included a receptor binding sequence (RBS) of five amino acids and a heparin-binding domain (HBD). Mutation of the HBD reduced virus infectivity, and soluble heparan sulfate blocked infection of cells by wild-type pseudovirus. Interestingly, some but not all MMTV-like elements found in primary and cultured human breast cancer cell lines, termed h-MTVs, had sequence alterations in the putative RBS. Single substitution of one of the amino acids found in an h-MTV RBS variant in the RBD of MMTV, Phe40 to Ser, did not alter species tropism but abolished both virus binding to cells and infectivity. Neutralizing anti-SU monoclonal antibodies also recognized a glutathione S-transferase fusion protein that contained the five-amino-acid RBS region from MMTV. The critical Phe40 residue is located on a surface of the MMTV RBD model that is distant from and may be structurally more rigid than the region of F-MLV RBD that contains its critical binding site residues. This suggests that, in contrast to other murine retroviruses, binding to its receptor may result in few or no changes in MMTV envelope protein conformation. PMID:12970432

  9. A novel human polycomb binding site acts as a functional polycomb response element in Drosophila.

    Directory of Open Access Journals (Sweden)

    Suresh Cuddapah

    Full Text Available Polycomb group (PcG proteins are key chromatin regulators implicated in multiple processes including embryonic development, tissue homeostasis, genomic imprinting, X-chromosome inactivation, and germ cell differentiation. The PcG proteins recognize target genomic loci through cis DNA sequences known as Polycomb Response Elements (PREs, which are well characterized in Drosophila. However, mammalian PREs have been elusive until two groups reported putative mammalian PREs recently. Consistent with the existence of mammalian PREs, here we report the identification and characterization of a potential PRE from human T cells. The putative human PRE has enriched binding of PcG proteins, and such binding is dependent on a key PcG component SUZ12. We demonstrate that the putative human PRE carries both genetic and molecular features of Drosophila PRE in transgenic flies, implying that not only the trans PcG proteins but also certain features of the cis PREs are conserved between mammals and Drosophila.

  10. Opposing effects of estradiol- and testosterone-membrane binding sites on T47D breast cancer cell apoptosis

    International Nuclear Information System (INIS)

    Classical steroid mode of action involves binding to intracellular receptors, the later acting as ligand-activated nuclear transcription factors. Recently, membrane sites for different steroids have been also identified, mediating rapid, non-genomic, steroid actions. Membrane sites for estrogen and androgen have been found in a number of different cell types, bearing or not classical intracellular receptors. In the present study, with the use of radioligand binding, flow cytometry and confocal laser microscopy, we report that T47D human breast cancer cells express specific and saturable membrane receptors for both estrogen (K D 4.06 ± 3.31 nM) and androgen (K D 7.64 ± 3.15 nM). Upon activation with BSA-conjugated, non-permeable ligands (E2-BSA and testosterone-BSA), membrane estrogen receptors protect cells from serum-deprivation-induced apoptosis, while androgen receptors induce apoptosis in serum-supplemented T47D cells. In addition, co-incubation of cells with a fixed concentration of one steroid and varying concentrations of the other reversed the abovementioned effect (apoptosis for androgen, and anti-apoptosis for E2), suggesting that the fate of the cell depends on the relative concentration of either steroid in the culture medium. We also report the identification of membrane receptors for E2 and androgen in biopsy slides from breast cancer patients. Both sites are expressed, with the staining for membrane E2 being strongly present in ER-negative, less differentiated, more aggressive tumors. These findings suggest that aromatase inhibitors may exert their beneficial effects on breast cancer by also propagating the metabolism of local steroids towards androgen, inducing thus cell apoptosis through membrane androgen receptor activation

  11. Mutational Mapping and Modeling of the Binding Site for (S)-Citalopram in the Human Serotonin Transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Olsen, Lars; Hansen, Kasper B.;

    2010-01-01

    , and (S)-citalopram, which are competitive inhibitors of the transport function. Knowledge of the molecular details of the antidepressant binding sites in SERT has been limited due to lack of structural data on SERT. Here, we present a characterization of the (S)-citalopram binding pocket in human SERT...... (hSERT) using mutational and computational approaches. Comparative modeling and ligand docking reveal that (S)-citalopram fits into the hSERT substrate binding pocket, where (S)-citalopram can adopt a number of different binding orientations. We find, however, that only one of these binding modes is...... functionally relevant from studying the effects of 64 point mutations around the putative substrate binding site. The mutational mapping also identify novel hSERT residues that are crucial for (S)-citalopram binding. The model defines the molecular determinants for (S)-citalopram binding to hSERT and...

  12. Target molecular weights for red cell band 3 stilbene and mercurial binding sites

    International Nuclear Information System (INIS)

    Radiation inactivation was used to measure the target sizes for binding of disulfonic stilbene anion transport inhibitor 4,4'-dibenzamido-2,2'-disulfonic stilbene (DBDS) and mercurial water transport inhibitor p-chloromercuribenzene sulfonate (pCMBS) to human erythrocytes. The measured target size for erythrocyte ghost acetylcholinesterase was 78 +/- 3 kDa. DBDS binding to ghost membranes was measured by a fluorescence enhancement technique. Radiation (0-26 Mrad) had no effect on total membrane protein and DBDS binding affinity, whereas DBDS binding stoichiometry decreased exponentially with radiation dose, giving a target size of 59 +/- 4 kDa. H2-4,4'-diisothiocyano-2,2'-disulfonic stilbene (H2-DIDS, 5 microM) blocked greater than 95% of DBDS binding at all radiation doses. pCMBS binding was measured from the time course of tryptophan fluorescence quenching in ghosts treated with the sulfhydryl reagent N-ethylmaleimide (NEM). Radiation did not affect the kinetics of tryptophan quenching, whereas the total amplitude of the fluorescence signal inactivated with radiation with a target size of 31 +/- 6 kDa. These results support the notion that DBDS and pCMBS bind to the transmembrane domain of erythrocyte band 3 in NEM-treated ghosts and demonstrate that radiation inactivation may probe a target significantly smaller than a covalently linked protein subunit. The small target size for the band 3 stilbene binding site may correspond to the intramembrane domain of the band 3 monomer (52 kDa), which is physically distinct from the cytoplasmic domain (42 kDa)

  13. eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models.

    Directory of Open Access Journals (Sweden)

    Michal Brylinski

    2014-09-01

    Full Text Available Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4-9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite.

  14. Characterization of specific binding sites for PAF in the iris and ciliary body of rabbit

    International Nuclear Information System (INIS)

    The protective effect exerted by BN 52021 a specific PAF-receptor antagonist in experimentally induced ocular inflammatory disorders led us to investigate the possible presence of specific receptors for PAF in rabbit iris and ciliary body. Two classes of PAF binding sites were found in isolated iris and ciliary process of pigmented rabbit eyes: a high affinity site Kd1 congruent to 4.9 +/- 0.47 nM, Bmax1 congruent to 3.17 +/- 0.50 pmoles/mg protein, a low affinity sites Kd2 congruent to 11.6 +/- 0.33 nM, Bmax2 congruent to 12.46 +/- 2.3 pmoles/mg protein for iris. The specific binding was not affected by lyso-PAF the biologically inactive precursor and metabolite of PAF, up to 10(-6) M; inhibition by unlabelled PAF demonstrated a biphasic curve partially antagonized by BN 52021. The present results demonstrate the presence of specific binding sites for PAF in rabbit eyes which could mediate the action of this mediator in eye inflammatory processes and explain the protective effect observed with BN 52021

  15. Endogenous progesterone and its cellular binding sites in wheat exposed to drought stress.

    Science.gov (United States)

    Janeczko, Anna; Oklešťková, Jana; Siwek, Agata; Dziurka, Michał; Pociecha, Ewa; Kocurek, Maciej; Novák, Ondřej

    2013-11-01

    Progesterone is a basic hormone that regulates the metabolism in mammals. The presence of this compound has also been found in certain plants. It is believed that progesterone can regulate growth processes and resistance to stress, however, its precise role in plants remains unknown. The research conducted in this study was aimed at analyzing the content of endogenous progesterone and its cellular binding sites in the leaves of spring wheat exposed to drought. Changes were studied in two cultivars of wheat - a cultivar sensitive to drought (Katoda) and tolerant cultivar (Monsun). Plants had undergone periodic droughts during the seedling stage or in the phase of heading. The occurrence of free progesterone as well as its conjugated forms was observed in wheat studied. The amount of progesterone ranged from 0.2 to 5.8pmolgFW(-1) and was dependent on the cultivar, age of the plants, stage of development and fluctuated as a result of the exposure to drought. Cv. Katoda responded to a water deficit by lowering the amount of progesterone and cv. Monsun by increasing its level. Progesterone in plants grown in limited water conditions occurred primarily in a free form. While in the optimal watering conditions, some of its pool was found in the form of conjugates. In the spring wheat the occurrence of binding sites for progesterone was detected in cell membranes, cytoplasm and nuclei in the range of 10-36fmol/mg of protein. The wheat cultivars tested, Monsun and Katoda, differ in their concentration of cellular binding sites for progesterone. This number varied in the individual fractions during different stages of plant development and due to the effect of drought stress. The number of binding sites for progesterone located in the membrane fraction of seedlings and flag leaves increased significantly under drought in the cv. Katoda (35-46%), but did not change in the cv. Monsun. Whereas the number of cytoplasmic progesterone binding sites increased during the drought in

  16. A new histochemical method using human placenta alkaline phosphatase for demonstrating concanavalin A binding sites on cell surfaces

    Directory of Open Access Journals (Sweden)

    Kanzaki,Yoshito

    1975-12-01

    Full Text Available Human placenta alkaline phosphatase (HP-ALP, a glycoprotein, was stained histochemically for the purpose of examining the concanavalin A (Con A binding sites on the cell surface. HP-ALP was bound to the cell surface by Con A. This simple method successfully detected Con A binding sites on the cell surface.

  17. Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Ruzanski, Christian;

    2014-01-01

    Surface binding sites (SBSs) interact with carbohydrates outside of the enzyme active site. They are frequently situated on catalytic domains and are distinct from carbohydrate binding modules (CBMs). SBSs are found in a variety of enzymes and often seen in crystal structures. Notably about half ...

  18. Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus.

    OpenAIRE

    Naeve, C W; Hinshaw, V S; Webster, R G

    1984-01-01

    Avian influenza virus reassortants containing human influenza virus hemagglutinins do not replicate in ducks. Two mutations in the receptor-binding site of a human hemagglutinin at residues 226 and 228 allowed replication in ducks. The mutations resulted in a receptor-binding-site sequence identical to the known avian influenza virus sequences.

  19. Analysis of Binding Site Hot Spots on the Surface of Ras GTPase

    Energy Technology Data Exchange (ETDEWEB)

    Buhrman, Greg; O; #8242; Connor, Casey; Zerbe, Brandon; Kearney, Bradley M.; Napoleon, Raeanne; Kovrigina, Elizaveta A.; Vajda, Sandor; Kozakov, Dima; Kovrigin, Evgenii L.; Mattos, Carla (NCSU); (MCW); (BU)

    2012-09-17

    We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the 'off' and 'on' allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target.

  20. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional diversity

    DEFF Research Database (Denmark)

    Svensson, Birte; Cockburn, Darrell

    2013-01-01

    universal and is in fact rare among some families of enzymes. In some cases an alternative to possessing a CBM is for the enzyme to bind to the substrate at a site on the catalytic domain, but away from the active site. Such a site is termed a surface (or secondary) binding site (SBS). SBSs have been...... identified in enzymes from a wide variety of families, though almost half are found in the α-amylase family GH13. The roles attributed to SBSs are not limited to targeting the enzyme to the substrate, but also include a variety of others such as guiding the substrate into the active site, altering enzyme...... specificity and acting as an allosteric site. Although SBSs share many roles with CBMs they may not simply be an alternative to CBMs, but rather complementary as SBSs and CBMs frequently co-occur in enzymes. Despite a relatively long history, it is only in recent years that SBSs have been studied in great...

  1. Identification of protein functions from a molecular surface database, eF-site.

    Science.gov (United States)

    Kinoshita, Kengo; Furui, Jun'ichi; Nakamura, Haruki

    2002-01-01

    A bioinformatics method was developed to identify the protein surface around the functional site and to estimate the biochemical function, using a newly constructed molecular surface database named the eF-site (electrostatic surface of Functional site. Molecular surfaces of protein molecules were computed based on the atom coordinates, and the eF-site database was prepared by adding the physical properties on the constructed molecular surfaces. The electrostatic potential on each molecular surface was individually calculated solving the Poisson-Boltzmann equation numerically for the precise continuum model, and the hydrophobicity information of each residue was also included. The eF-site database is accessed by the internet (http://pi.protein.osaka-u.ac.jp/eF-site/). We have prepared four different databases, eF-site/antibody, eF-site/prosite, eF-site/P-site, and eF-site/ActiveSite, corresponding to the antigen binding sites of antibodies with the same orientations, the molecular surfaces for the individual motifs in PROSITE database, the phosphate binding sites, and the active site surfaces for the representatives of the individual protein family, respectively. An algorithm using the clique detection method as an applied graph theory was developed to search of the eF-site database, so as to recognize and discriminate the characteristic molecular surfaces of the proteins. The method identifies the active site having the similar function to those of the known proteins. PMID:12836670

  2. Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation

    Energy Technology Data Exchange (ETDEWEB)

    Soisson, Stephen M.; Parthasarathy, Gopalakrishnan; Adams, Alan D.; Sahoo, Soumya; Sitlani, Ayesha; Sparrow, Carl; Cui, Jisong; Becker, Joseph W. (Merck)

    2008-07-08

    The farnesoid X receptor (FXR), a member of the nuclear hormone receptor family, plays important roles in the regulation of bile acid and cholesterol homeostasis, glucose metabolism, and insulin sensitivity. There is intense interest in understanding the mechanisms of FXR regulation and in developing pharmaceutically suitable synthetic FXR ligands that might be used to treat metabolic syndrome. We report here the identification of a potent FXR agonist (MFA-1) and the elucidation of the structure of this ligand in ternary complex with the human receptor and a coactivator peptide fragment using x-ray crystallography at 1.9-{angstrom} resolution. The steroid ring system of MFA-1 binds with its D ring-facing helix 12 (AF-2) in a manner reminiscent of hormone binding to classical steroid hormone receptors and the reverse of the pose adopted by naturally occurring bile acids when bound to FXR. This binding mode appears to be driven by the presence of a carboxylate on MFA-1 that is situated to make a salt-bridge interaction with an arginine residue in the FXR-binding pocket that is normally used to neutralize bound bile acids. Receptor activation by MFA-1 differs from that by bile acids in that it relies on direct interactions between the ligand and residues in helices 11 and 12 and only indirectly involves a protonated histidine that is part of the activation trigger. The structure of the FXR:MFA-1 complex differs significantly from that of the complex with a structurally distinct agonist, fexaramine, highlighting the inherent plasticity of the receptor.

  3. Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein.

    OpenAIRE

    Thiesen, H J; Bach, C.

    1990-01-01

    We developed a rapid method designated Target Detection Assay (TDA) to determine DNA binding sites for putative DNA binding proteins. A purified, functionally active DNA binding protein and a pool of random double-stranded oligonucleotides harbouring PCR primer sites at each end are included the TDA cycle which consists of four separate steps: a DNA protein incubation step, a protein DNA complex separation step, a DNA elution step and a polymerase chain reaction (PCR) DNA amplification step. ...

  4. Monoclonal antibodies that bind the renal Na+/glucose symport system. 1. Identification

    International Nuclear Information System (INIS)

    Phlorizin is a specific, high-affinity ligand that binds the active site of the Na+/glucose symporter by a Na+-dependent mechanism but is not itself transported across the membrane. The authors have isolated a panel of monoclonal antibodies that influence high-affinity, Na+-dependent phlorizin binding to pig renal brush border membranes. Antibodies were derived after immunization of mice either with highly purified renal brush border membranes or with apical membranes purified from LLC-PK1, a cell line of pig renal proximal tubule origin. Antibody 11A3D6, an IgG/sub 2b/, reproducibly stimulated Na+-dependent phlorizin binding whereas antibody 18H10B12, an IgM, strongly inhibited specific binding. These effects were maximal after 30-min incubation and exhibited saturation at increased antibody concentrations. Antibodies did not affect Na+-dependent sugar uptake in vesicles but significantly prevented transport inhibition by bound phlorizin. Antibodies recognized a 75-kDa antigen identified by Western blot analysis of brush border membranes, and a 75-kDa membrane protein could be immunoprecipitated by 18H10B12. These properties, provide compelling evidence that the 75-kDa antigen recognized by these antibodies is a component of the renal Na+/glucose symporter

  5. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    Science.gov (United States)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-08-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  6. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  7. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    International Nuclear Information System (INIS)

    Studies of [3H]diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot [Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture]. Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the [3H]diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT

  8. The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites

    International Nuclear Information System (INIS)

    We have characterized the interaction of the serotonin transporter ligand [3H]-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine (DASB) with rhesus monkey brain in vitro using tissue homogenate binding and autoradiographic mapping. [3H]-DASB, a tritiated version of the widely used [11C] positron emission tomography tracer, was found to selectively bind to a single population of sites with high affinity (K d=0.20±0.04 nM). The serotonin transporter density (B max) obtained for rhesus frontal cortex was found to be 66±8 fmol/mg protein using [3H]-DASB, similar to the B max value obtained using the reference radioligand [3H]-citalopram, a well-characterized and highly selective serotonin reuptake inhibitor (83±22 fmol/mg protein). Specific binding sites of both [3H]-DASB and [3H]-citalopram were similarly and nonuniformly distributed throughout the rhesus central nervous system, in a pattern consistent with serotonin transporter localization reported for human brain. Regional serotonin transporter densities, estimated from optical densities of the autoradiographic images, were well correlated between the two radioligands. Finally, DASB and fluoxetine showed dose-dependent full inhibition of [3H]-citalopram binding in a competition autoradiographic study, with K i values in close agreement with those obtained from rhesus brain homogenates. This side-by-side comparison of [3H]-DASB and [3H]-citalopram binding sites in rhesus tissue homogenates and in adjacent rhesus brain slices provides additional support for the use of [11C]-DASB to assess the availability and distribution of serotonin transporters in nonhuman primates

  9. The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Zhizhen [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)]. E-mail: zhizhen_zeng@merck.com; Chen, T.-B. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Miller, Patricia J. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Dean, Dennis [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Tang, Y.S. [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Sur, Cyrille [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Williams, David L. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)

    2006-05-15

    We have characterized the interaction of the serotonin transporter ligand [{sup 3}H]-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine (DASB) with rhesus monkey brain in vitro using tissue homogenate binding and autoradiographic mapping. [{sup 3}H]-DASB, a tritiated version of the widely used [{sup 11}C] positron emission tomography tracer, was found to selectively bind to a single population of sites with high affinity (K {sub d}=0.20{+-}0.04 nM). The serotonin transporter density (B {sub max}) obtained for rhesus frontal cortex was found to be 66{+-}8 fmol/mg protein using [{sup 3}H]-DASB, similar to the B {sub max} value obtained using the reference radioligand [{sup 3}H]-citalopram, a well-characterized and highly selective serotonin reuptake inhibitor (83{+-}22 fmol/mg protein). Specific binding sites of both [{sup 3}H]-DASB and [{sup 3}H]-citalopram were similarly and nonuniformly distributed throughout the rhesus central nervous system, in a pattern consistent with serotonin transporter localization reported for human brain. Regional serotonin transporter densities, estimated from optical densities of the autoradiographic images, were well correlated between the two radioligands. Finally, DASB and fluoxetine showed dose-dependent full inhibition of [{sup 3}H]-citalopram binding in a competition autoradiographic study, with K {sub i} values in close agreement with those obtained from rhesus brain homogenates. This side-by-side comparison of [{sup 3}H]-DASB and [{sup 3}H]-citalopram binding sites in rhesus tissue homogenates and in adjacent rhesus brain slices provides additional support for the use of [{sup 11}C]-DASB to assess the availability and distribution of serotonin transporters in nonhuman primates.

  10. Binding of dioxygen to non-metal sites in proteins: exploration of the importance of binding site size versus hydrophobicity in the copper amine oxidase from Hansenula polymorpha.

    Science.gov (United States)

    Goto, Yoshio; Klinman, Judith P

    2002-11-19

    Copper amine oxidases (CAOs) contain 2,4,5-trihydroxyphenylalanyl quinone (TPQ) and a copper ion in their active sites, catalyzing amine oxidation to aldehyde and ammonia concomitant with the reduction of molecular oxygen to hydrogen peroxide. Kinetic studies on the CAO from bovine serum (BSAO) [Su and Klinman (1999) Biochemistry 37, 12513-12525] and the recent reports on the cobalt substituted form of the enzyme from Hansenula polymorpha (HPAO) [Mills and Klinman (2000) J. Am. Chem. Soc. 122, 9897-9904, and Mills et al. (2002) Biochemistry, 41, 10577-10584] support pre-binding of molecular oxygen prior to a rate-limiting electron transfer from the reduced form of TPQ (p-aminohydroquinone form) to dioxygen. Although there is significant sequence homology between BSAO and HPAO, k(cat)/K(m)(O2) for BSAO under the optimal condition is one order of magnitude lower than that for HPAO. From a comparison of amino acid sequences for BSAO and HPAO, together with the X-ray crystal structure of HPAO, a plausible dioxygen pre-binding site has been identified that involves Y407, L425, and M634 in HPAO; the latter two residues are altered in BSAO to A490 and T695. To determine which of these residues plays a greater role in dioxygen chemistry, k(cat)/K(m)(O2) was determined in HPAO for the M634 --> T and L425 --> A mutants. The L425 --> A mutation does not alter k(cat)/K(m)(O2) to a large extent, whereas the M634 --> T decreased k(cat)/K(m)(O2) by one order of a magnitude, creating a catalyst that is similar to BSAO. A series of mutants at M634 (to F, L, and Q) were, therefore, prepared in HPAO and characterized with regard to k(cat)/K(m)(O2) as a function of pH. Structure reactivity correlations show a linear relationship of rate with side chain volume, rather than hydrophobicity, indicating that dioxygen reactivity increases with the bulk of the residue at position 634. This site also shows specificity for O2, in relation to the co-gas N2, since substitution of the inert gas N

  11. FR258900, a potential anti-hyperglycemic drug, binds at the allosteric site of glycogen phosphorylase.

    Science.gov (United States)

    Tiraidis, Costas; Alexacou, Kyra-Melinda; Zographos, Spyros E; Leonidas, Demetres D; Gimisis, Thanasis; Oikonomakos, Nikos G

    2007-08-01

    FR258900 has been discovered as a novel inhibitor of human liver glycogen phosphorylase a and proved to suppress hepatic glycogen breakdown and reduce plasma glucose concentrations in diabetic mice models. To elucidate the mechanism of inhibition, we have determined the crystal structure of the cocrystallized rabbit muscle glycogen phosphorylase b-FR258900 complex and refined it to 2.2 A resolution. The structure demonstrates that the inhibitor binds at the allosteric activator site, where the physiological activator AMP binds. The contacts from FR258900 to glycogen phosphorylase are dominated by nonpolar van der Waals interactions with Gln71, Gln72, Phe196, and Val45' (from the symmetry-related subunit), and also by ionic interactions from the carboxylate groups to the three arginine residues (Arg242, Arg309, and Arg310) that form the allosteric phosphate-recognition subsite. The binding of FR258900 to the protein promotes conformational changes that stabilize an inactive T-state quaternary conformation of the enzyme. The ligand-binding mode is different from those of the potent phenoxy-phthalate and acyl urea inhibitors, previously described, illustrating the broad specificity of the allosteric site. PMID:17600143

  12. Fluconazole Binding and Sterol Demethylation in Three CYP51 Isoforms Indicate Differences in Active Site Topology

    Energy Technology Data Exchange (ETDEWEB)

    Bellamine, A.; Lepesheva, Galina I.; Waterman, Mike (Vanderbilt)

    2010-11-16

    14{alpha}-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal infections, and using site-directed mutagenesis, we have found that fluconazole binding and substrate metabolism vary among three different CYP51 isoforms: human, fungal, and mycobacterial. In C. albicans, the Y132H mutant from isolates shows no effect on fluconazole binding, whereas the F145L mutant results in a 5-fold increase in its IC{sub 50} for fluconazole, suggesting that F145 (conserved only in fungal 14{alpha}-demethylases) interacts with this azole. In C. albicans, F145L accounts, in part, for the difference in fluconazole sensitivity reported between mammals and fungi, providing a basis for treatment of fungal infections. The C. albicans Y132H and human Y145H CYP51 mutants show essentially no effect on substrate metabolism, but the Mycobacterium tuberculosis F89H CYP51 mutant loses both its substrate binding and metabolism. Because these three residues align in the three isoforms, the results indicate that their active sites contain important structural differences, and further emphasize that fluconazole and substrate binding are uncoupled properties.

  13. Sequence-based prediction of protein-peptide binding sites using support vector machine.

    Science.gov (United States)

    Taherzadeh, Ghazaleh; Yang, Yuedong; Zhang, Tuo; Liew, Alan Wee-Chung; Zhou, Yaoqi

    2016-05-15

    Protein-peptide interactions are essential for all cellular processes including DNA repair, replication, gene-expression, and metabolism. As most protein-peptide interactions are uncharacterized, it is cost effective to investigate them computationally as the first step. All existing approaches for predicting protein-peptide binding sites, however, are based on protein structures despite the fact that the structures for most proteins are not yet solved. This article proposes the first machine-learning method called SPRINT to make Sequence-based prediction of Protein-peptide Residue-level Interactions. SPRINT yields a robust and consistent performance for 10-fold cross validations and independent test. The most important feature is evolution-generated sequence profiles. For the test set (1056 binding and non-binding residues), it yields a Matthews' Correlation Coefficient of 0.326 with a sensitivity of 64% and a specificity of 68%. This sequence-based technique shows comparable or more accurate than structure-based methods for peptide-binding site prediction. SPRINT is available as an online server at: http://sparks-lab.org/. © 2016 Wiley Periodicals, Inc. PMID:26833816

  14. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    Science.gov (United States)

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-11-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.

  15. Influence of heterogeneity of binding sites of humic acid on its complexation with actinyl ions

    International Nuclear Information System (INIS)

    The influence of heterogeneity of binding sites of humic acid was investigated using three different experimental approaches. 1) Complexation with UO22+ was studied by fluorescence spectroscopy. Considering the quenching phenomena, the apparent stability constants of complexation of humic acid with UO22+ were evaluated and compared with the values reported in the literature. 2) Complexation kinetics of NpO2+ with humic acid and fulvic acid was investigated by kinetic spectra. The complexation kinetics was found to be controlled by the heterogeneity of binding sites. 3) The migration of humic acid-NpO2+ complexes was discussed experimentally by column experiments and analytically by a migration model. The concentration profile of NpO2+ in the column was qualitatively simulated. (author)

  16. Asap: a framework for over-representation statistics for transcription factor binding sites

    DEFF Research Database (Denmark)

    Marstrand, Troels T; Frellsen, Jes; Moltke, Ida;

    2008-01-01

    promoter sequences. Controlling all aspects of our input data we are able to identify the optimal statistics across multiple threshold values and for sequence sets containing different distributions of transcription factor binding sites. CONCLUSIONS: We show that our implementation is significantly faster...... regime based on the occurrence of the modelled transcription factor binding sites. However there is little or no information available for guiding the end users choice of method. Furthermore it would be necessary to obtain several different software programs from various sources to make a well...... than more naïve scanning algorithms when searching with many weight matrices in large sequence sets. When comparing the various statistics, we show that those based on binomial over-representation and Fisher's exact test performs almost equally good and better than the others. An online server is...

  17. Spatial relationships between the amine binding site and the copper in plasma amine oxidase

    International Nuclear Information System (INIS)

    Porcine plasma amine oxidase was covalently modified with a series of fluorine containing phenylhydrazine inhibitors. One mole of phenylhydrazine modifies one mole of enzyme at the amine substrate binding site. NMR relaxation measurements on the fluorine nuclei were obtained at two field strengths for each inhibitor-enzyme complex. These measurements were used to calculate the exact distance and spatial orientation between the inhibitor binding site and the copper cofactor. The copper lies in the plane of the aromatic ring of the inhibitor 10.9, 14.3, and 15.5 A from the ortho-, meta-, and para-positions of the ring, respectively. Since the inhibitors react with the active carbonyl cofactor, this defines the spatial relationship between the copper and the active carbonyl cofactor in the enzyme

  18. Genome wide mapping of Foxo1 binding-sites in murine T lymphocytes

    Directory of Open Access Journals (Sweden)

    Will Liao

    2014-12-01

    Full Text Available The Forkhead box O (Foxo family of transcription factors has a critical role in controlling the development, differentiation, and function of T cells. However, the direct target genes of Foxo transcription factors in T cells have not been well characterized. In this study, we focused on mapping the genome wide Foxo1-binding sites in naïve CD4+ T cells, CD8+ T cells, and Foxp3+ regulatory T (Treg cells. By using chromatin immunoprecipitation coupled with deep sequencing (ChIP-Seq, we identified Foxo1 binding sites that were shared among or specific to the three T cell populations. Here we describe the experiments, quality controls, as well as the deep sequencing data. Part of the data analysis has been published by Ouyang W et al. in Nature 2012 [1] and Kim MV et al. in Immunity 2013 [2], and the associated data set were uploaded to NCBI Gene Expression Omnibus.

  19. Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin.

    Science.gov (United States)

    Rohacova, Jana; Sastre, German; Marin, M Luisa; Miranda, Miguel A

    2011-09-01

    Binding of natural bile acids to human serum albumin (HSA) is an important step in enterohepatic circulation and provides a measure of liver function. In this article, we report on the use of four dansyl (Dns) derivatives of cholic acid (ChA) to demonstrate a regiodifferentiation in their relative affinity for the two binding sites of HSA. Using both steady-state and time-resolved fluorescence, formation of Dns-ChA@HSA complexes was confirmed; the corresponding binding constants were determined, and their distribution between bulk solution and HSA microenvironment was estimated. By means of energy transfer from Trp to the Dns moiety, donor-acceptor distances were estimated (21-25 Å) and found to be compatible with both site 1 and site 2 occupancies. Nevertheless, titration using warfarin and ibuprofen as specific displacement probes clearly indicated that 3α- and 3β-Dns-ChA bind to HSA at site 2, whereas their C-7 regioisomers bind to HSA at site 1. Furthermore, the C-3-labeled compounds are displaced by lithocholic acid, whereas they are insensitive to ChA, confirming the assumption that the former binds to HSA at site 2. Thus, Dns labeling provides a useful tool to modulate the relative affinity of ChA to the major binding sites of HSA and, in combination with other fluorescent ChA analogs, to mimic the binding behavior of natural bile acids. PMID:21797258

  20. Streptococcus pneumoniae Genome-wide Identification and Characterization of BOX Element-binding Domains.

    Science.gov (United States)

    Zhang, Qiao; Wang, Changzheng; Wan, Min; Wu, Yin; Ma, Qianli

    2015-11-01

    The BOX elements are short repetitive DNA sequences that distribute randomly in intergenic regions of the Streptococcus pneumoniae genome. The function and origin of such elements are still unknown, but they were found to modulate expression of neighboring genes. Evidences suggested that the modulation's mechanism can be fulfilled by sequence-specific interaction of BOX elements with transcription factor family proteins. However, the type and function of these BOX-binding proteins still remain largely unexplored to date. In the current study we described a synthetic protocol to investigate the recognition and interaction between a highly conserved site of BOX elements and the DNA-binding domains of a variety of putative transcription factors in the pneumococcal genome. With the protocol we were able to predict those high-affinity domain binders of the conserved BOX DNA site (BOX DNA) in a high-throughput manner, and analyzed sequence-specific interaction in the domainDNA recognition at molecular level. Consequently, a number of putative transcription factor domains with both high affinity and specificity for the BOX DNA were identified, from which the helix-turn-helix (HTH) motif of a small heat shock factor was selected as a case study and tested for its binding capability toward the double-stranded BOX DNA using fluorescence anisotropy analysis. As might be expected, a relatively high affinity was detected for the interaction of HTH motif with BOX DNA with dissociation constant at nanomolar level. Molecular dynamics simulation, atomic structure examination and binding energy analysis revealed a complicated network of intensive nonbonded interactions across the complex interface, which confers both stability and specificity for the complex architecture. PMID:27491035

  1. Functional and phylogenetic analyses of chromosome 21 promoters and hominid-specific transcription factor binding sites

    OpenAIRE

    Querfurth, Robert

    2011-01-01

    The focus of this work addresses functional studies of human and primate promoters, and the genome-wide localization and validation of human-specific transcription factor binding sites of the essential transcription factor GABPa. In this context, the development of an improved PCR protocol, including the careful adjustment of PCR additives to compose an efficient enhancer mix, was central to the amplification of large GC-rich promoter fragments used as source for the functional studies. Based...

  2. Glycosaminoglycans that bind cold-insoluble globulin in cell-substratum adhesion sites of murine fibroblasts.

    OpenAIRE

    Laterra, J; Ansbacher, R; Culp, L A

    1980-01-01

    Glycosaminoglycans (GAGs) and glycoprotein-derived glycopeptide from mouse BALB/c3T3 and simian virus 40-transformed 3T3 whole cells or their adhesion sites, which are left bound to the serum-coated tissue culture substratum after detachment of cells mediated by [ethylenebis-(oxyethylenenitrilo]tetraacetic acid (EGTA), were analyzed for specific binding to Sepharose columns derivatized with cold-insoluble globulin (CIg). CIg is the serum-contained form of fibronectin and is required for the a...

  3. SPIC: A novel similarity metric for comparing transcription factor binding site motifs based on information contents

    OpenAIRE

    Zhang, Shaoqiang; Zhou, Xiguo; Du, Chuanbin; Su, Zhengchang

    2013-01-01

    Background Discovering transcription factor binding sites (TFBS) is one of primary challenges to decipher complex gene regulatory networks encrypted in a genome. A set of short DNA sequences identified by a transcription factor (TF) is known as a motif, which can be expressed accurately in matrix form such as a position-specific scoring matrix (PSSM) and a position frequency matrix. Very frequently, we need to query a motif in a database of motifs by seeking its similar motifs, merge similar ...

  4. Flexible protein-peptide docking using CABS-dock with knowledge about the binding site

    OpenAIRE

    Kurcinski, Mateusz; Ciemny, Maciej Pawel; Blaszczyk, Maciej; Kolinski, Andrzej; Kmiecik, Sebastian

    2016-01-01

    Despite considerable efforts, structural prediction of protein-peptide complexes is still a very challenging task, mainly due to two reasons: high flexibility of the peptides and transient character of their interactions with proteins. Recently we have developed an automated web server CABS-dock (http://biocomp.chem.uw.edu.pl/CABSdock), which conducts flexible protein-peptide docking without any knowledge about the binding site. Our method allows for full flexibility of the peptide, whereas t...

  5. Probing the orthosteric binding site of GABAA receptors with heterocyclic GABA carboxylic acid bioisosteres

    DEFF Research Database (Denmark)

    Petersen, Jette G; Bergmann, Rikke; Krogsgaard-Larsen, Povl; Balle, Thomas; Frølund, Bente

    2013-01-01

    selective and potent GABAAR agonists. This review investigates the use of heterocyclic carboxylic acid bioisosteres within the GABAAR area. Several heterocycles including 3-hydroxyisoxazole, 3-hydroxyisoxazoline, 3-hydroxyisothiazole, and the 1- and 3-hydroxypyrazole rings have been employed in order to map...... the orthosteric binding site. The physicochemical properties of the heterocyclic moieties making them suitable for bioisosteric replacement of the carboxylic acid in the molecule of GABA are discussed. A variety of synthetic strategies for synthesis of the heterocyclic scaffolds are available...

  6. Protective action of resveratrol in human skin: possible involvement of specific receptor binding sites.

    Directory of Open Access Journals (Sweden)

    Stéphane Bastianetto

    Full Text Available BACKGROUND: Resveratrol is a plant-derived polyphenol with purported protecting action on various disorders associated with aging. It has been suggested that resveratrol could exert its protective action by acting on specific plasma membrane polyphenol binding sites (Han Y.S., et al. (2006 J Pharmacol Exp Ther 318:238-245. The purpose of this study was to investigate, in human skin, the possible existence of specific binding sites that mediate the protective action of resveratrol. METHODS AND FINDINGS: Using human skin tissue, we report here the presence of specific [(3H]-resveratrol binding sites (K(D  =  180 nM that are mainly located in the epidermis. Exposure of HaCaT cells to the nitric oxide free radical donor sodium nitroprusside (SNP; 0.3-3 mM resulted in cell death which was reduced by resveratrol (EC(50  =  14.7 µM, and to a much lesser extent by the resveratrol analogue piceatannol (EC(50  =  95 µM and epigallocatechin gallate (EC(50  =  200 µM, a green-tea derived polyphenol. The protective action of resveratrol likely relates to its anti-apoptotic effect since at the same range of concentration it was able to reduce both the number of apoptotic cells as well as mitochondrial apoptotic events triggered by SNP. CONCLUSION: Taken together, these findings suggest that resveratrol, by acting on specific polyphenol binding sites in epidermis, may be useful to prevent skin disorders associated with aging.

  7. FR258900, a potential anti-hyperglycemic drug, binds at the allosteric site of glycogen phosphorylase

    OpenAIRE

    Tiraidis, C.; Alexacou, K. M.; Zographos, Spyros E.; Leonidas, Demetres D.; Gimisis, T.; Oikonomakos, Nikos G.

    2007-01-01

    FR258900 has been discovered as a novel inhibitor of human liver glycogen phosphorylase a and proved to suppress hepatic glycogen breakdown and reduce plasma glucose concentrations in diabetic mice models. To elucidate the mechanism of inhibition, we have determined the crystal structure of the cocrystallized rabbit muscle glycogen phosphorylase b–FR258900 complex and refined it to 2.2 Å resolution. The structure demonstrates that the inhibitor binds at the allosteric activator site, where th...

  8. Dual Binding Site and Selective Acetylcholinesterase Inhibitors Derived from Integrated Pharmacophore Models and Sequential Virtual Screening

    OpenAIRE

    2014-01-01

    In this study, we have employed in silico methodology combining double pharmacophore based screening, molecular docking, and ADME/T filtering to identify dual binding site acetylcholinesterase inhibitors that can preferentially inhibit acetylcholinesterase and simultaneously inhibit the butyrylcholinesterase also but in the lesser extent than acetylcholinesterase. 3D-pharmacophore models of AChE and BuChE enzyme inhibitors have been developed from xanthostigmine derivatives through HypoGen an...

  9. Polymorphisms in miRNA binding sites of nucleotide excision repair genes and colorectal cancer risk

    Czech Academy of Sciences Publication Activity Database

    Naccarati, Alessio; Pardini, Barbara; Landi, S.; Landi, D.; Slyšková, Jana; Novotný, J.; Levý, M.; Poláková, Veronika; Lipská, L.; Vodička, Pavel

    2012-01-01

    Roč. 33, č. 7 (2012), s. 1346-1351. ISSN 0143-3334 R&D Projects: GA ČR GAP304/10/1286; GA ČR GP305/09/P194 Institutional research plan: CEZ:AV0Z50390703 Keywords : DNA repair * polymorphisms * miRNA binding sites Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.635, year: 2012

  10. Transcriptional Activation of sclA by Mga Requires a Distal Binding Site in Streptococcus pyogenes

    OpenAIRE

    Almengor, Audry C.; McIver, Kevin S.

    2004-01-01

    Streptococcus pyogenes (the group A streptococcus [GAS]) is a medically significant pathogen of humans, causing a range of diseases from pharyngitis to necrotizing fasciitis. Several important GAS virulence genes are under the control of a pleiotropic regulator called Mga, or the multiple gene regulator of GAS, including the gene encoding the streptococcal collagen-like protein, or sclA. Analysis of the genome sequence upstream of sclA revealed two potential Mga-binding sites with homology to...

  11. Genome-wide de novo prediction of cis-regulatory binding sites in prokaryotes

    OpenAIRE

    Zhang, Shaoqiang; Xu, Minli; Li, Shan; Su, Zhengchang

    2009-01-01

    Although cis-regulatory binding sites (CRBSs) are at least as important as the coding sequences in a genome, our general understanding of them in most sequenced genomes is very limited due to the lack of efficient and accurate experimental and computational methods for their characterization, which has largely hindered our understanding of many important biological processes. In this article, we describe a novel algorithm for genome-wide de novo prediction of CRBSs with high accuracy. We desi...

  12. Consistent improvement of cross docking results using binding site ensembles generated with Elastic Network Normal Modes

    OpenAIRE

    Rueda, Manuel; Bottegoni, Giovanni; Abagyan, Ruben

    2009-01-01

    The representation of protein flexibility is still a challenge for the state-of-the-art flexible ligand docking protocols. In this article we use a large and diverse benchmark to prove that is possible to improve consistently the cross docking performance against a single receptor conformation by using an equilibrium ensemble of binding site conformers. The benchmark contained 28 proteins, and the top ranked near native poses for the ligand were found 20% more efficiently than using a single ...

  13. Structural and functional analysis of a novel haloalkane dehalogenase with two halide-binding sites

    Czech Academy of Sciences Publication Activity Database

    Chaloupková, R.; Prudnikova, T.; Řezáčová, Pavlína; Prokop, Z.; Koudeláková, T.; Daniel, L.; Březovský, J.; Ikeda-Ohtsubo, W.; Sato, Y.; Kutý, Michal; Nagata, Y.; Kutá-Smatanová, Ivana; Damborský, J.

    2014-01-01

    Roč. 70, July (2014), s. 1884-1897. ISSN 0907-4449 Grant ostatní: GA ČR(CZ) GAP207/12/0775; GA MŠk(CZ) LO1214; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 ; RVO:67179843 Keywords : haloalkane dehalogenase * halide-binding site * catalytic activity * substrate specificity * enzyme stability Subject RIV: CE - Biochemistry Impact factor: 7.232, year: 2013

  14. Binding-site analysis of opioid receptors using monoclonal anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG3k antibodies which bound to opioid rece