WorldWideScience

Sample records for binding scatchard analysis

  1. Computer program for Scatchard analysis of protein: Ligand interaction - use for determination of soluble and nuclear steroid receptor concentrations

    International Nuclear Information System (INIS)

    Leake, R.; Cowan, S.; Eason, R.

    1998-01-01

    Steroid receptor concentration may be determined routinely in biopsy samples of breast and endometrial cancer by the competition method. This method yields data for both the soluble and nuclear fractions of the tissue. The data are usually subject to Scatchard analysis. This Appendix describes a computer program written initially for a PDP-11. It has been modified for use with IBM, Apple Macintosh and BBC microcomputers. The nature of the correction for competition is described and examples of the printout are given. The program is flexible and its use for different receptors is explained. The program can be readily adapted to other assays in which Scatchard analysis is appropriate

  2. Singular Value Decomposition and Ligand Binding Analysis

    Directory of Open Access Journals (Sweden)

    André Luiz Galo

    2013-01-01

    Full Text Available Singular values decomposition (SVD is one of the most important computations in linear algebra because of its vast application for data analysis. It is particularly useful for resolving problems involving least-squares minimization, the determination of matrix rank, and the solution of certain problems involving Euclidean norms. Such problems arise in the spectral analysis of ligand binding to macromolecule. Here, we present a spectral data analysis method using SVD (SVD analysis and nonlinear fitting to determine the binding characteristics of intercalating drugs to DNA. This methodology reduces noise and identifies distinct spectral species similar to traditional principal component analysis as well as fitting nonlinear binding parameters. We applied SVD analysis to investigate the interaction of actinomycin D and daunomycin with native DNA. This methodology does not require prior knowledge of ligand molar extinction coefficients (free and bound, which potentially limits binding analysis. Data are acquired simply by reconstructing the experimental data and by adjusting the product of deconvoluted matrices and the matrix of model coefficients determined by the Scatchard and McGee and von Hippel equation.

  3. Human liver aldehyde dehydrogenase: coenzyme binding

    International Nuclear Information System (INIS)

    Kosley, L.L.; Pietruszko, R.

    1987-01-01

    The binding of [U- 14 C] NAD to mitochondrial (E2) and cytoplasmin(E1) aldehyde dehydrogenase was measured by gel filtration and sedimentation techniques. The binding data for NAD and (E1) yielded linear Scatchard plots giving a dissociation constant of 25 (+/- 8) uM and the stoichiometry of 2 mol of NAD bound per mol of E1. The binding data for NAD and (E2) gave nonlinear Scatchard plots. The binding of NADH to E2 was measured via fluorescence enhancement; this could not be done with E1 because there was no signal. The dissociation constant for E2 by this technique was 0.7 (+/- 0.4) uM and stoichiometry of 1.0 was obtained. The binding of [U- 14 C] NADH to (E1) and (E2) was also measured by the sedimentation technique. The binding data for (E1) and NADH gave linear Scatchard plots giving a dissociation constant of 13 (+/- 6) uM and the stoichiometry of 2.0. The binding data for NADH to (E2) gave nonlinear Scatchard plots. With (E1), the dissociation constants for both NAD and NADH are similar to those determined kinetically, but the stoichiometry is only half of that found by stopped flow technique. With (E2) the dissociation constant by fluorometric procedure was 2 orders of magnitude less than that from catalytic reaction

  4. Improved receptor analysis in PET using a priori information from in vitro binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Litton, J.-E.; Hall, H.; Blomqvist, G. [Department of Clinical Neuroscience, Karolinska Hospital, S-171 76 Stockholm (Sweden)

    1997-08-01

    An accurate determination of non-specific binding is required for the analysis of in vitro and in vivo receptor binding data. For some radioligands the non-specific binding is of the same magnitude as the specific binding. Furthermore, in vitro measurements have shown that the non-specific binding can be different in different brain regions. If this is the case in a PET study for determining B{sub max} and K{sub d}, a correction for the non-specific binding has to be applied. The aim of the present communication is to present a means for determining corrected B{sub max} and K{sub d} with Scatchard analysis using in vitro binding studies. The influence of non-specific binding on the free and specifically bound radioligand is expressed with the aid of a correction factor, which can be calculated from measurable quantities. Introduction of the corrected free and specifically bound radioligand should give binding parameters closer to reality than previously obtained results. (author)

  5. Binding of tritiated corticosterone in brain sections of adrenalectomized rat

    International Nuclear Information System (INIS)

    Sarrieau, A.; Vial, M.; Dussaillant, M.; Rostene, W.; Philibert, P.

    1983-01-01

    A new technique which permits to study the specific binding of tritiated corticosterone in brain sections of adrenalectomized rats is described. Under these conditions, the specific binding of the glucocorticoid represents 60 to 70% of the initial binding. The apparent dissociation constant and the number of binding sites, determined by Scatchard analysis, are in the range of 10 -8 M and 100 fmoles/mg of protein respectively [fr

  6. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the range of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.

  7. Effects of human low and high density lipoproteins on the binding of rat intermediate density lipoproteins to rat liver membranes

    International Nuclear Information System (INIS)

    Brissette, L.; Nol, S.P.

    1986-01-01

    Upon incubation with rat liver membranes, radioiodinated rat intermediate density lipoproteins (IDL) interacted with at least two binding sites having a low and a high affinity as demonstrated by the curvilinear Scatchard plots obtained from the specific binding data. The purpose of our work was to identify the nature of these binding sites. Human low density lipoproteins (LDL), contain apolipoprotein B only, and human high density lipoproteins (HDL3), containing neither apolipoprotein B nor E, were both capable of decreasing the specific binding of rat 125 I-IDL. The Scatchard analysis clearly revealed that only the low affinity component was affected by the addition of these human lipoproteins. In fact, the low affinity binding component gradually decreased as the amount of human LDL or HDL3 increased in the binding assay. At a 200-fold excess of human LDL or HDL3, the low affinity binding was totally masked, and the Scatchard plot of the specific 125 I-IDL binding became linear. Only the high affinity binding component was left, enabling a precise measurement of its binding parameters. In a series of competitive displacement experiments in which the binding assay contained a 200-fold excess of human LDL or HDL3, only unlabeled rat IDL effectively displaced the binding of rat 125 I-IDL. We conclude that the low affinity binding of rat IDL to rat liver membranes is due to weak interactions with unspecified lipoprotein binding sites. The camouflage of these sites by human lipoproteins makes possible the study of IDL binding to the high affinity component which likely represents the combined effect of IDL binding to both the remnant and the LDL receptors

  8. Improved assay for measuring heparin binding to bull sperm

    International Nuclear Information System (INIS)

    Miller, D.J.; Ax, R.L.

    1988-01-01

    The binding of heparin to sperm has been used to study capacitation and to rank relative fertility of bulls. Previous binding assays were laborious, used 10 7 sperm per assay point, and required large amounts of radiolabeled heparin. A modified heparin-binding assay is described that used only 5 x 10 4 cells per incubation well and required reduced amounts of [ 3 H] heparin. The assay was performed in 96-well Millititer plates, enabling easy incubation and filtering. Dissociation constants and concentrations of binding sites did not differ if analyzed by Scatchard plots, Woolf plots, or by log-logit transformed weighted nonlinear least squares regression, except in the case of outliers. In such cases, Scatchard analysis was more sensitive to outliers. Nonspecific binding was insignificant using nonlinear logistic fit regression and a proportion graph. The effects were tested of multiple free-thawing of sperm in either a commercial egg yolk extender, 40 mM Tris buffer with 8% glycerol, or 40 mM Tris buffer without glycerol. Freeze-thawing in extender did not affect the dissociation constant or the concentration of binding sites. However, freeze-thawing three times in 40 mM Tris reduced the concentration of binding sites and lowered the dissociation constant (raised the affinity). The inclusion of glycerol in the 40 mM Tris did not significantly affect the estimated dissociation constant or the concentration of binding sites as compared to 40 mM Tris without glycerol

  9. Binding Characteristics Of Ivermectin To Blood Cells | Nweke ...

    African Journals Online (AJOL)

    The binding characteristics of Ivermectin were determined using scatchard plots. The percentage binding to platelet rich plasma, white blood cells and red blood cells were 90.00 + 1.00, 96-90 + 1.05 and 46.20 + 1.10 S.D respectively. It was found to bind the highest to white blood cells and the least to red blood cells.

  10. (TH) diazepam binding to human granulocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bond, P.A.; Cundall, R.L.; Rolfe, B.

    1985-07-08

    (TH)-diazepam binds to sites on human granulocyte membranes, with little or no binding to platelets or lymphocytes. These (TH)-diazepam binding sites are of the peripheral type, being strongly inhibited by R05-4864 (Ki=6.23nM) but only weakly by clonazepam (Ki=14 M). Binding of (TH) diazepam at 0 is saturable, specific and stereoselective. Scatchard analysis indicates a single class of sites with Bmax of 109 +/- 17f moles per mg of protein and K/sub D/ of 3.07 +/- 0.53nM. Hill plots of saturation experiments gave straight lines with a mean Hill coefficient of 1.03 +/- 0.014. Binding is time dependent and reversible and it varies linearly with granulocyte protein concentration over the range 0.025-0.300 mg of protein. 11 references, 3 figures, 1 table.

  11. Characterization of high-affinity (/sup 3/H)ouabain binding in the rat central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Hauger, R.; Luu, H.M.; Meyer, D.K.; Goodwin, F.K.; Paul, S.M.

    1985-06-01

    The characteristics of (/sup 3/H)ouabain binding were examined in various areas of rat brain. In the striatum, Scatchard analysis revealed a single class of high-affinity binding sites with an apparent binding affinity (KD) of 10.4 +/- 0.9 nM and an estimated binding capacity (Bmax) of 7.6 +/- 1.9 pmol/mg protein. Similar monophasic Scatchard plots were found in the brainstem, cerebellum, hypothalamus, and frontal cerebral cortex. (/sup 3/H)Ouabain binding to rat brain was sodium- and ATP-dependent and strongly inhibited by potassium. Proscillariden A was the most potent cardiac glycoside tested in inhibiting specific (/sup 3/H)ouabain binding to brain membranes, and the rank order of inhibitory potencies for a series of cardiac glycosides was similar to that previously reported for inhibition of heart Na,K-ATPase. To assess whether the high-affinity binding sites for (/sup 3/H)ouabain were localized to neuronal or nonneuronal membranes, the effect of discrete kainic acid lesions on striatal (/sup 3/H)ouabain binding was examined. Kainic acid lesions of the striatum reduced (/sup 3/H)ouabain binding to striatal homogenates by 79.6 +/- 1.6%. This suggests that the high-affinity (/sup 3/H)ouabain binding sites measured in our experiments are localized to neuronal elements. Thus, the high-affinity binding of (/sup 3/H)ouabain to brain membranes may selectively label a neuronal form or conformation of Na,K-ATPase.

  12. Nuclear thyroid hormone receptors in rabbit heart: reduced triiodothyronine binding in atrium compared with ventricle

    International Nuclear Information System (INIS)

    Banerjee, S.K.; Ulrich, J.M.; Kaldor, G.J.

    1988-01-01

    Radiolabeled triiodothyronine (T3) binding to isolated nuclei was measured to compare the binding characteristics of the nuclear receptors in rabbit ventricular and atrial muscle cells. Scatchard analysis of the binding data yielded a maximum binding capacity of 170 +/- 20 fmol per mg DNA and apparent dissociation constant of 525 +/- 100 pM for ventricular nuclei. The binding capacity and the dissociation constant for the atrial muscle cell nuclei were 55 +/- 10 fmol per mg DNA and 500 +/- 75 pM, respectively. The results suggest that the binding capacity for T3 receptor in the atrium is considerably lower than that found in the ventricle. The reduced binding capacity of the T3 receptor in the atrium might reflect differences in the nuclear T3 receptors between ventricle and atrium

  13. Photoaffinity labelling of high affinity dopamine binding proteins

    International Nuclear Information System (INIS)

    Ross, G.M.; McCarry, B.E.; Mishra, R.K.

    1986-01-01

    A photoactive analogue of the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) has been synthesized and used to photoaffinity label dopamine binding proteins prepared from bovine caudate nucleus. N-(3-]N'-4-azidobenzamidol]-aminopropyl)-aminopropyl)-ADTN (AzB-AP-ADTN) was incubated with caudate membranes and irradiated with UV light. Membranes were then repeatedly washed by centrifugation to remove excess photolabel. A binding assay, using ( 3 H)-SCH 23390 (a D 1 specific antagonist), was then performed to evaluate the loss of receptor density in the photolyzed preparation. AzB-AP-ADTN irreversibly blocked ( 3 H)-SCH 23390 binding in a dose-dependent manner. Scatchard analysis revealed a decrease in the B/sub max/, with no significant change in the K/sub d/, of ( 3 H)-SCH 23390 binding. Compounds which compete for D 1 receptor binding (such as dopamine, SKF 38393 or apomorphine), proteted the SCH 23390 binding site from inactivation. This data would suggest that the novel photoaffinity ligand, AzB-AP-ADTN, can covalently label the D 1 (adenylate cyclase linked) dopamine receptor

  14. Binding of kappa- and sigma-opiates in rat brain

    International Nuclear Information System (INIS)

    Wolozin, B.L.; Nishimura, S.; Pasternak, G.W.

    1982-01-01

    Detailed displacements of [ 3 H]dihydromorphine by ketocyclazocine and SKF 10,047, [ 3 H]ethylketocyclazocine by SKF 10,047, and [ 3 H]SKF 10,047 by ketocyclazocine are all multiphasic, suggesting multiple binding sites. After treating brain tissue in vitro with naloxazone, all displacements lose the initial inhibition of 3 H-ligand binding by low concentrations of unlabeled drugs. Together with Scatchard analysis of saturation experiments, these studies suggest a common site which binds mu-, kappa, and sigma-opiates and enkephalins equally well and with highest affinity (KD less than 1 nM). The ability of unlabeled drugs to displace the low affinity binding of [ 3 H]dihydromorphine (KD . 3 nM), [ 3 H]ethylketocyclazocine (KD . 4 nM), [ 3 H]SKF 10,047 (KD . 6 nM), and D-Ala2-D-Leu5-[ 3 H]enkephalin (KD . 5 nM) remaining after treating tissue with naloxazone demonstrates unique pharmacological profiles for each. These results suggest the existence of distinct binding sites for kappa- and sigma-opiates which differ from those sites which selectively bind morphine (mu) and enkephalin

  15. Increased thyrotropin binding in hyperfunctioning thyroid nodules.

    Science.gov (United States)

    Müller-Gärtner, H W; Schneider, C; Bay, V; Tadt, A; Rehpenning, W; de Heer, K; Jessel, M

    1987-08-01

    The object of this study was to investigate TSH receptors in hyperfunctioning thyroid nodules (HFN). In HFN, obtained from seven patients, 125-I-TSH binding as determined by equilibrium binding analysis on particulate membrane preparations, was found to be significantly increased as compared with normal thyroid tissues (five patients; P less than 0.001). Scatchard analysis of TSH-binding revealed two kinds of binding sites for both normal thyroid tissue and HFN, and displayed significantly increased association constants of high- and low-affinity binding sites in HFN (Ka = 11.75 +/- 6.8 10(9) M-1, P less than 0.001 and Ka = 2.1 +/- 1.0 10(7) M-1, P less than 0.025; x +/- SEM) as compared with normal thyroid tissue (Ka = 0.25 +/- 0.06 10(9) M-1, Ka = 0.14 +/- 0.03 10(7) M-1; x +/- SEM). The capacity of the high-affinity binding sites in HFN was found to be decreased (1.8 +/- 1.1 pmol/mg protein, x +/- SEM) in comparison with normal thyroid tissue (4.26 +/- 1.27 pmol/mg protein; x +/- SEM). TSH-receptor autoradiography applied to cryostatic tissue sections confirmed increased TSH binding of the follicular epithelium in HFN. These data suggest that an increased affinity of TSH-receptor sites in HFN in iodine deficient areas may be an important event in thyroid autonomy.

  16. Exploring the site-selective binding of jatrorrhizine to human serum albumin: spectroscopic and molecular modeling approaches.

    Science.gov (United States)

    Mi, Ran; Hu, Yan-Jun; Fan, Xiao-Yang; Ouyang, Yu; Bai, Ai-Min

    2014-01-03

    This paper exploring the site-selective binding of jatrorrhizine to human serum albumin (HSA) under physiological conditions (pH=7.4). The investigation was carried out using fluorescence spectroscopy, UV-vis spectroscopy, and molecular modeling. The results of fluorescence quenching and UV-vis absorption spectra experiments indicated the formation of the complex of HSA-jatrorrhizine. Binding parameters calculating from Stern-Volmer method and Scatchard method were calculated at 298, 304 and 310 K, with the corresponding thermodynamic parameters ΔG, ΔH and ΔS as well. Binding parameters calculating from Stern-Volmer method and Scatchard method showed that jatrorrhizine bind to HSA with the binding affinities of the order 10(4) L mol(-1). The thermodynamic parameters studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the electrostatic interactions play a major role for jatrorrhizine-HSA association. Site marker competitive displacement experiments and molecular modeling calculation demonstrating that jatrorrhizine is mainly located within the hydrophobic pocket of the subdomain IIIA of HSA. Furthermore, the synchronous fluorescence spectra suggested that the association between jatrorrhizine and HSA changed molecular conformation of HSA. Copyright © 2013. Published by Elsevier B.V.

  17. A microcalorimetry and binding study on interaction of dodecyl trimethylammonium bromide with wigeon hemoglobin

    International Nuclear Information System (INIS)

    Bordbar, A.K.; Moosavi-Movahedi, A.A.; Amini, M.K.

    2003-01-01

    The thermodynamic parameters for the binding of dodecyl trimethylammonium bromide (DTAB) with wigeon hemoglobin (Hb) in aqueous solution at various pH and 27 deg. C have been measured by equilibrium dialysis and titration microcalorimetry techniques. The Scatchard plots represent unusual features at neutral and alkaline pH and specific binding at acidic pH. This leads us to analyze the binding data by fitting the data to the Hill equation for multiclasses of binding sites. The best fit was obtained with the equation for one class at acidic pH and two classes at neutral and alkaline pH. The thermodynamic analysis of the binding process shows that the strength of binding at neutral pH is more than these at other pH values. This can be related to the more accessible hydrophobic surface area of wigeon hemoglobin at this pH. The endothermic enthalpy data which was measured by microcalorimetry confirms the binding data analysis and represents the more regular and stable structure of wigeon hemoglobin at neutral pH

  18. Opioid binding site in EL-4 thymoma cell line

    International Nuclear Information System (INIS)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of [ 3 H] bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10 6 cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of [ 3 H] bremazocine with an IC 50 value = 0.57μM. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, [D-Pen 2 , D-Pen 5 ] enkephalin and β-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC 50 = 60μM, that was similar to naloxone. 32 references, 3 figures, 2 tables

  19. Vasoactive intestinal peptide (VIP) binds to guinea pig peritoneal eosinophils: A single class of binding sites with low affinity and high capacity

    International Nuclear Information System (INIS)

    Sakakibara, H.; Shima, K.; Takamatsu, J.; Said, S.I.

    1990-01-01

    VIP binds to specific receptors on lymphocytes and mononuclear cells and exhibits antiinflammatory properties. Eosinophils (Eos) contribute to inflammatory reactions but the regulation of Eos function is incompletely understood. The authors examined the binding of monoradioiodinated VIP, [Tyr( 125 I) 10 ] VIP ( 125 I-VIP), to Eos in guinea pigs. The interaction of 125 i-VIP with Eos was rapid, reversible, saturable and linearly dependent on the number of cells. At equilibrium the binding was competitively inhibited by native peptide or by the related peptide helodermin. Scatchard analysis suggested the presence of a single class of VIP binding sites with a low affinity and a high capacity. In the presence of isobutyl-methylxanthine, VIP, PHI or helodermin did not stimulate cyclic AMP accumulation in intact Eos, while PGE 2 or 1-isoproterenol did. VIP also did not inhibit superoxide anion generation from Eos stimulated by phorbol myristate acetate. The authors conclude that: (1) VIP binds to low-affinity, specific sites on guinea pig peritoneal eosinophils; (2) this binding is not coupled to stimulation of adenylate cyclase; and (3) the possible function of these binding sites is at present unknown

  20. The two-state dimer receptor model: a general model for receptor dimers.

    Science.gov (United States)

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2006-06-01

    Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.

  1. Human chorionic ganodotropin binding sites in the human endometrium

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Banerjee, J.; Sen, S.; Manna, P.R.

    1993-01-01

    The existence of high-affinity and low-capacity specific binding sites for luteinizing hormone/human chorionic gonadotropin (hCG) has been reported in porcine, rabbit and rat uteri. The authors have identified the hCG binding sites in the human endometrium collected from 35-42-year-old ovulatory and anovulatory women. The binding characteristics of hCG to endometrial tissue preparations from ovulatory and anovulatory women showed saturability with high affinity and low capacity. Scatchard plot analysis showed the dissociation constant of specific binding sites in the ovulatory women to be 3.5x10 -10 mol/l and in anovulatory women to be 3.1x10 -10 mol/l. The maximum binding capacity varied considerably between ovulatory and anovulatory endometrium. Among the divalent metal ions tested Zn 2+ effected a remarkable increase in [ 125 I]hCG binding to the endometrium, whereas Mn 2+ showed a marginal increase and other metal ions did not have any effect. Data obtained with human endometrium indicate an influence of the functional state of the ovary on [ 125 I]hCG binding to endometrium. 14 refs., 3 figs

  2. Temperature-dependent binding of cyclosporine to an erythrocyte protein

    International Nuclear Information System (INIS)

    Agarwal, R.P.; Threatte, G.A.; McPherson, R.A.

    1987-01-01

    In this competitive binding assay to measure endogenous binding capacity for cyclosporine (CsA) in erythrocyte lysates, a fixed amount of [ 3 H]CsA plus various concentrations of unlabeled CsA is incubated with aliquots of a test hemolysate. Free CsA is then adsorbed onto charcoal and removed by centrifugation; CsA complexed with a cyclosporine-binding protein (CsBP) remains in the supernate. We confirmed the validity of this charcoal-separation mode of binding analysis by comparison with equilibrium dialysis. Scatchard plot analysis of the results at 4 degrees C yielded a straight line with slope corresponding to a binding constant of 1.9 X 10(7) L/mol and a saturation capacity of approximately 4 mumol per liter of packed erythrocytes. Similar analysis of binding data at 24 degrees C and 37 degrees C showed that the binding constant decreased with increasing temperature, but the saturation capacity did not change. CsBP was not membrane bound but appeared to be freely distributed within erythrocytes. 125 I-labeled CsA did not complex with the erythrocyte CsBP. Several antibiotics and other drugs did not inhibit binding between CsA and CsBP. These findings may explain the temperature-dependent uptake of CsA by erythrocytes in whole blood and suggest that measurement of CsBP in erythrocytes or lymphocytes may help predict therapeutic response or toxicity after administration of CsA

  3. The effect of hyperthyroidism on opiate receptor binding and pain sensitivity

    International Nuclear Information System (INIS)

    Edmondson, E.A.; Bonnet, K.A.; Friedhoff, A.J.

    1990-01-01

    This study was conducted to determine the effect of thyroid hormone on opiate receptor ligand-binding and pain sensitivity. Specific opiate receptor-binding was performed on brain homogenates of Swiss-Webster mice. There was a significant increase in 3 H-naloxone-binding in thyroxine-fed subjects (hyperthyroid). Scatchard analysis revealed that the number of opiate receptors was increased in hyperthyroid mice (Bmax = 0.238 nM for hyperthyroid samples vs. 0.174 nM for controls). Binding affinity was unaffected (Kd = 1.54 nM for hyperthyroid and 1.58 nM for control samples). When mice were subjected to hotplate stimulation, the hyperthyroid mice were noted to be more sensitive as judged by pain aversion response latencies which were half that of control animals. After morphine administration, the hyperthyroid animals demonstrated a shorter duration of analgesia. These findings demonstrate that thyroxine increases opiate receptor number and native pain sensitivity but decreases the duration of analgesia from morphine

  4. The effect of hyperthyroidism on opiate receptor binding and pain sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Edmondson, E.A. (Baylor College of Medicine, Houston, TX (USA)); Bonnet, K.A.; Friedhoff, A.J. (New York Univ. School of Medicine, NY (USA))

    1990-01-01

    This study was conducted to determine the effect of thyroid hormone on opiate receptor ligand-binding and pain sensitivity. Specific opiate receptor-binding was performed on brain homogenates of Swiss-Webster mice. There was a significant increase in {sup 3}H-naloxone-binding in thyroxine-fed subjects (hyperthyroid). Scatchard analysis revealed that the number of opiate receptors was increased in hyperthyroid mice (Bmax = 0.238 nM for hyperthyroid samples vs. 0.174 nM for controls). Binding affinity was unaffected (Kd = 1.54 nM for hyperthyroid and 1.58 nM for control samples). When mice were subjected to hotplate stimulation, the hyperthyroid mice were noted to be more sensitive as judged by pain aversion response latencies which were half that of control animals. After morphine administration, the hyperthyroid animals demonstrated a shorter duration of analgesia. These findings demonstrate that thyroxine increases opiate receptor number and native pain sensitivity but decreases the duration of analgesia from morphine.

  5. Opioid binding site in EL-4 thymoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of (/sup 3/H) bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10/sup 6/ cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of (/sup 3/H) bremazocine with an IC/sub 50/ value = 0.57..mu..M. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, (D-Pen/sup 2/, D-Pen/sup 5/) enkephalin and ..beta..-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC/sub 50/ = 60..mu..M, that was similar to naloxone. 32 references, 3 figures, 2 tables.

  6. Analysis of chiral non-steroidal anti-inflammatory drugs flurbiprofen, ketoprofen and etodolac binding with HSA

    Directory of Open Access Journals (Sweden)

    Chang-Chuan Guo

    2011-08-01

    Full Text Available The protein binding of non-steroidal anti-inflammatory drugs flurbiprofen, ketoprofen and etodolac with human serum albumin (HSA was investigated using indirect chiral high performance liquid chromatography (HPLC and ultrafiltration techniques. S-(–-1-(1-naphthyl-ethylamine (S-NEA was utilized as chiral derivatization reagent and pre-column derivatization RP-HPLC method was established for the separation and assay of the three pairs of enantiomer. The method had good linear relationship over the investigated concentration range without interference. The average extraction efficiency was higher than 85% in different systems, and the intra-day and inter-day precisions were less than 15%. In serum albumin, the protein binding of etodolac enantiomers showed significant stereoselectivity that the affinity of S-enantiomer was stronger than R-enantiomer, and the stereoselectivity ratio reached 6.06; Flurbiprofen had only weak stereoselectivity in HSA, and ketoprofen had no stereoselectivity at all. Scatchard curves showed that all the three chiral drugs had two types of binding sites in HSA. Keywords: Protein binding, Non-steroidal anti-inflammatory drugs, Enantiomer, Stereoselectivity, Human serum albumin

  7. B700, a murine melanoma-specific antigen, binds Vitamin D3; conservation of binding among albuminoid molecules

    International Nuclear Information System (INIS)

    Farzaneh, N.K.; Walden, T.L. Jr.; Hearing, V.J.; Gersten, D.M.

    1990-01-01

    B700, a murine melanoma-specific antigen, is a member of the serum albumin protein family. Other members of this family include serum albumin (SMA), a-fetoprotein (AFP), vitamin D binding protein (DBP), and C700. The primary structure and biochemical functions of B700, as well as its in vivo metabolic fate are largely unknown. The authors examined the functional characteristics of MSA, AFP, and DBP, and for their ability to specifically bind [ 3 H]-1,25-dihydroxy-vitamin D 3 . Scatchard analysis revealed a single binding site for B700 with a Kd of 51,000 M and a Bmax of 4.51 x 10 -7 . There is no significant difference between the Kd and Bmax values among the albuminoid proteins. However, differences in the binding sites could be distinguished by competition of the 1,25-dihydroxy vitamin D 3 with other steroids. 2nM of vitamin D 3 , vitamin D 2 , or estrogen competed for the specific binding of 1,25-dihydroxy vitamin D 3 by B700 but not by DBP. The MSA binding site for 1,25 dihydroxy vitamin D 3 more closely resembles that of DBP than B700. These data indicate that the binding function of the albuminoid proteins has been conserved in the B700 melanoma antigen

  8. 2[125I]Iodomelatonin binding sites in spleens of guinea pigs

    International Nuclear Information System (INIS)

    Poon, A.M.S.; Pang, S.F.

    1992-01-01

    2-[ 125 I]Iodomelatonin was found to bind specifically to the membrane preparations of the spleens of guinea pigs with high affinity. The binding was rapid, stable, saturable and reversible. Scatchard analysis of the binding assays revealed an equilibrium dissociation constant (Kd) of 49.8±4.12 pmol/l and binding site density (Bmax) of 0.69±0.082 fmol/mg protein at mid-light. There was no significant change in the Kd or the Bmax at mid-dark. Kinetic analysis showed a Kd of 23.13±4.81 pmol/l, in agreement to that derived from the saturation studies. The 2-[ 125 I]iodomelatonin binding sites have the following order of potency: 2-iodomelatonin > melatonin > 6-chloromelatonin much-gt N-acetylserotonin, 6-hydroxymelatonin > 5-methoxytryptamine, 5-methoxytryptophol > serotonin, 5-methoxyindole-3-acetic acid > 5-hydroxytryptophol, 3-acetylindole, 1-acetylindole-3-carboxyaldehyde, L-tryptophan > tryptamine, 5-hydroxyindole-3-acetic acid. Differential centrifugation studies showed that the binding sites are localized mainly in the nuclear fraction, the rest are distributed in the microsomal fraction, mitochondrial fraction and cytosolic fraction. The demonstration of 2-[ 125 I]iodomelatonin binding sites in the spleen suggests the presence of melatonin receptors and a direct mechanism of action of melatonin on the immune system

  9. Dopamine receptors in the guinea-pig heart. A binding study

    International Nuclear Information System (INIS)

    Sandrini, M.; Benelli, A.; Baraldi, M.

    1984-01-01

    The binding of dopaminergic agonists and antagonists to guinea-pig myocardial membrane preparations was studied using 3 H-dopamine and 3 H-spiperone as radioligand. 3 H-Dopamine bound specifically to heart membranes while 3 H-spiperone did not. A Scatchard analysis of 3 H-dopamine binding showed a curvilinear plot indicating the presence of two dopamine receptor populations that we have termed high- (K/sub d/ = 1.2 nM, B/sub mx/ = 52.9 fmol/mg prot.) and low- (K/sub d/ = 11.8 nM, B/sub mx/ = 267.3 fmol/gm prot.) affinity binding sites, respectively. The charactization of the high-affinity component of 3 H-dopamine binding indicated that the binding is rapid, saturable, stereospecific, pH- and temperature-dependent, and displaced by dopaminergic agonists and antagonists known to act similarly in vivo. The finding that pretreatment with dibenamine (which has been described as an α-adrenoceptor irreversible blocker) did not affect the binding of dopamine to cardiac membrane preparations suggests that α-adrenoceptors and dopamine receptors have separate recognition sites in the heart. It is concluded that 3 H-dopamine binds to specific dopamine receptors in the heart of guinea-pigs

  10. Effect of membrane protein concentration on binding of 3H-imipramine in human platelets

    International Nuclear Information System (INIS)

    Barkai, A.I.; Kowalik, S.; Baron, M.

    1985-01-01

    Binding of 3 H-imipramine to platelet membranes has been implicated as a marker for depression. Comparing 3 H-IMI binding between depressed patients and normal subjects we observed an increase in the dissociation constant Kd with increasing membrane protein. This phenomenon was studied more rigorously in five normal subjects. Platelet membranes were prepared and adjusted to four concentrations of protein ranging from 100 to 800 micrograms/ml. The 3 H-IMI binding parameters of maximum binding sites number (Bmax) and Kd were obtained by Scatchard analysis at each membrane concentration. A positive linear relationship was found between K/sub d/ values and the concentration of membrane protein in the assay, but no change was observed in Bmax. The variability in Kd values reported in the literature may be accounted for in part by the different concentrations of membrane protein used in various studies

  11. Binding of radiolabelled luteinizing hormone to intact and ovariectomised rat uterus

    International Nuclear Information System (INIS)

    Sen, S.; Bhattacharya, S.

    1992-01-01

    Binding of ovine LH to uterine tissue preparation from intact and ovariectomised rat clearly indicates that uterus possesses specific binding sites for LH. Binding characteristics of LH to uterine tissue preparation from intact rat showed saturability with high affinity and low capacity. Scatchard plot analysis showed dissociation constant of the specific binding site to be 0.12 x 10 -9 mol/l and the number of binding sites was 2.31±0.05 fmol/mg protein. Ovariectomy did not change the binding affinity but effected a decrease in the number of binding sites (1.7 ± 0.08 f mol/mg protein). LH treatment of ovariectomized (ovx) rat had no effect on binding affinity but significantly increased the number of binding sites (3.23 ± 0.1 f mol/mg protein). Reduction of uterine weight due to ovariectomy and marked increase of ovx rat uterine weight by LH administration indicate a source of estrogen in ovx rat. An in vitro uterine tissue slice (from intact and ovx rat) incubation showed depletion of 17 β-estradiol (E 2 ) content in ovx rat which significantly elevated on LH addition. Data suggest the LH binding to rat uterine tissue has biological relevance. (author). 16 refs., 4 figs. 1 tab

  12. [3H]-beta-endorphin binding in rat brain

    International Nuclear Information System (INIS)

    Houghten, R.A.; Johnson, N.; Pasternak, G.W.

    1984-01-01

    The binding of [ 3 H]-beta-endorphin to rat brain homogenates is complex. Although Scatchard analysis of saturation studies yields a straight line, detailed competition studies are multiphasic, suggesting that even at low concentrations of the compound, the 3 H-ligand is binding to more than one class of site. A portion of [ 3 H]-beta-endorphin binding is sensitive to low concentrations of morphine or D-Ala2-Leu5-enkephalin (less than 5 nM). The inhibition observed with each compound alone (5 nM) is the same as that seen with both together (each at 5 nM). Thus, the binding remaining in the presence of both morphine and the enkephalin does not correspond to either mu or delta sites. The portion of [ 3 H]-beta-endorphin binding that is inhibited under these conditions appears to be equally sensitive to both morphine and the enkephalin and may correspond to mu1 sites. Treating membrane homogenates with naloxonazine, a mu1 selective antagonist, lowers [ 3 H]-beta-endorphin binding to the same degree as morphine and D-Ala2-Leu5-enkephalin alone or together. This possible binding of [ 3 H]-beta-endorphin to mu1 sites is consistent with the role of mu1 sites in beta-endorphin analgesia and catalepsy in vivo

  13. Opioid receptors in human neuroblastoma SH-SY5Y cells: evidence for distinct morphine (. mu. ) and enkephalin (delta) binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Kazmi, S.M.I.; Mishra, R.K.

    1986-06-13

    Human neuroblastoma SH-SY5Y cells exhibited a heterogeneous population of ..mu.. and delta types of opioid binding sites. These specific binding sites displayed the characteristic saturability, stereospecificity and reversibility, expected of a receptor. Scatchard analysis of (/sup 3/H)-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin (DADLE) in the presence of 10/sup -5/M D-Pro/sup 4/-morphiceptin (to block the ..mu.. receptors) and the competitive displacement by various highly selective ligands yielded the binding parameters of delta sites which closely resemble those of the delta receptors in brain and mouse neuroblastoma clones. Similarly, the high affinity binding of (/sup 3/H)-dihydromorphine, together with the higher potency of morphine analogues to displace (/sup 3/H)-naloxone binding established the presence of ..mu.. sites. Guanine nucleotides and NaCl significantly inhibited the association and increased the dissociation of (/sup 3/H)-DADLE binding.

  14. Interpretation of Ocular Melanin Drug Binding Assays. Alternatives to the Model of Multiple Classes of Independent Sites.

    Science.gov (United States)

    Manzanares, José A; Rimpelä, Anna-Kaisa; Urtti, Arto

    2016-04-04

    Melanin has a high binding affinity for a wide range of drugs. The determination of the melanin binding capacity and its binding affinity are important, e.g., in the determination of the ocular drug distribution, the prediction of drug effects in the eye, and the trans-scleral drug delivery. The binding parameters estimated from a given data set vary significantly when using different isotherms or different nonlinear fitting methods. In this work, the commonly used bi-Langmuir isotherm, which assumes two classes of independent sites, is confronted with the Sips isotherm. Direct, log-log, and Scatchard plots are used, and the interpretation of the binding curves in the latter is critically analyzed. In addition to the goodness of fit, the emphasis is placed on the physical meaning of the binding parameters. The bi-Langmuir model imposes a bimodal distribution of binding energies for the sites on the melanin granules, but the actual distribution is most likely continuous and unimodal, as assumed by the Sips isotherm. Hence, the latter describes more accurately the distribution of binding energies and also the experimental results of melanin binding to drugs and metal ions. Simulations are used to show that the existence of two classes of sites cannot be confirmed on the sole basis of the shape of the binding curve in the Scatchard plot, and that serious doubts may appear on the meaning of the binding parameters of the bi-Langmuir model. Experimental results of melanin binding to chloroquine and metoprolol are used to illustrate the importance of the choice of the binding isotherm and of the method used to evaluate the binding parameters.

  15. (/sup 3/H)-beta-endorphin binding in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Houghten, R.A.; Johnson, N.; Pasternak, G.W.

    1984-10-01

    The binding of (/sup 3/H)-beta-endorphin to rat brain homogenates is complex. Although Scatchard analysis of saturation studies yields a straight line, detailed competition studies are multiphasic, suggesting that even at low concentrations of the compound, the /sup 3/H-ligand is binding to more than one class of site. A portion of (/sup 3/H)-beta-endorphin binding is sensitive to low concentrations of morphine or D-Ala2-Leu5-enkephalin (less than 5 nM). The inhibition observed with each compound alone (5 nM) is the same as that seen with both together (each at 5 nM). Thus, the binding remaining in the presence of both morphine and the enkephalin does not correspond to either mu or delta sites. The portion of (/sup 3/H)-beta-endorphin binding that is inhibited under these conditions appears to be equally sensitive to both morphine and the enkephalin and may correspond to mu1 sites. Treating membrane homogenates with naloxonazine, a mu1 selective antagonist, lowers (/sup 3/H)-beta-endorphin binding to the same degree as morphine and D-Ala2-Leu5-enkephalin alone or together. This possible binding of (/sup 3/H)-beta-endorphin to mu1 sites is consistent with the role of mu1 sites in beta-endorphin analgesia and catalepsy in vivo.

  16. Detection and properties of A-factor-binding protein from Streptomyces griseus

    International Nuclear Information System (INIS)

    Miyake, K.; Horinouchi, S.; Yoshida, M.; Chiba, N.; Mori, K.; Nogawa, N.; Morikawa, N.; Beppu, T.

    1989-01-01

    The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel filtration. Scatchard analysis suggested that A-factor bound the protein in the molar ratio of 1:1 with a binding constant, Kd, of 0.7 nM. The number of the binding protein was roughly estimated to be 37 per genome. The inducing material virginiae butanolide C (VB-C), which has a structure very similar to that of A-factor and is essential for virginiamycin production in Streptomyces virginiae, did not inhibit binding. In addition, no protein capable of specifically binding 3 H-labeled VB-C was found in S. griseus. Together with the observation that VB-C had almost no biological activity on the restoration of streptomycin production or sporulation in an A-factor-deficient mutant of S. griseus, these results indicated that the binding protein had a strict ligand specificity. Examination for an A-factor-binding protein in Streptomyces coelicolor A3(2) and Streptomyces lividans showed the absence of any specifically binding protein

  17. Characterization of 125ITSH binding to its receptor in thyroid hyperplasies

    International Nuclear Information System (INIS)

    Bianco, A.C.; Nunes, M.T.

    1985-01-01

    An unpredictable and unbalanced response to a stimulus like TSH is indeed a striking characteristic of the follicles of the simple goiter. Since it is known that the first step for TSH action on its target cell is binding to specific TSH plasma membrane receptors, the binding of 125 ITSH to these receptors was studied in normal and ''cold'' hyperplastic thyroid fragments obtained at surgery. Through the Scatchard analysis it was verified that there are no differences with regard to the binding capacity of TSH receptors between normal and hyperplastic tissues. On the other hand, a significant decrease of the dissociation constant (Kd) was observed in hyperplastic tissue indicating higher affinity for TSH binding. It is known that intracellular iodine content can interfere with the TSH induced modifications on the thyroid folicular cells. It is supposed that this is mediated by interference on TSH binding to its receptor and/or activation of adenylate cyclase. Due to impaired organification capacity of ''cold'' tissue it is assumed that these cells present decreased intracellular iodine content. Therefore it is proposed that alterations of TSH binding to its receptors detected in the present investigation are consequent of the low iodine content of the hyperplastic folicular cell. (author) [pt

  18. Pathogenesis of Shigella diarrhea: rabbit intestinal cell microvillus membrane binding site for Shigella toxin

    International Nuclear Information System (INIS)

    Fuchs, G.; Mobassaleh, M.; Donohue-Rolfe, A.; Montgomery, R.K.; Grand, R.J.; Keusch, G.T.

    1986-01-01

    This study examined the binding of purified 125 I-labeled shigella toxin to rabbit jejunal microvillus membranes (MVMs). Toxin binding was concentration dependent, saturable, reversible, and specifically inhibited by unlabeled toxin. The calculated number of toxin molecules bound at 4 0 C was 7.9 X 10(10) (3 X 10(10) to 2 X 10(11))/micrograms of MVM protein or 1.2 X 10(6) per enterocyte. Scatchard analysis showed the binding site to be of a single class with an equilibrium association constant, K, of 4.7 X 10(9) M-1 at 4 0 C. Binding was inversely related to the temperature of incubation. A total of 80% of the labeled toxin binding at 4 0 C dissociated from MVM when the temperature was raised to 37 0 C, but reassociated when the temperature was again brought to 4 0 C. There was no structural or functional change of MVM due to toxin as monitored by electron microscopy or assay of MVM sucrase activity. These studies demonstrate a specific binding site for shigella toxin on rabbit MVMs. The physiological relevance of this receptor remains to be determined

  19. Effects of heparin on insulin binding and biological activity

    International Nuclear Information System (INIS)

    Kriauciunas, K.M.; Grigorescu, F.; Kahn, C.R.

    1987-01-01

    The effect of heparin, a polyanionic glycosaminoglycan known to alter the function of many proteins, on insulin binding and bioactivity was studied. Cultured human lymphocytes (IM-9) were incubated with varying concentrations of heparin, then extensively washed, and 125 I-labeled insulin binding was measured. Heparin at concentrations used clinically for anticoagulation (1-50 U/ml) inhibited binding in a dose-dependent manner; 50% inhibition of binding occurred with 5-10 U/ml. Scatchard analysis indicated that the decrease in binding was due to a decrease in both the affinity and the apparent number of available insulin receptors. The effect occurred within 10 min at 22 degrees C and persisted even after the cells were extensively washed. Inhibition of insulin binding also occurred when cells were preincubated with heparinized plasma or heparinized serum but not when cells were incubated with normal serum or plasma from blood anticoagulated with EDTA. By contrast, other polyanions and polycations, e.g., poly-L-glutamic acid, poly-L-lysine, succinylated poly-L-lysine, and histone, did not inhibit binding. Heparin also inhibited insulin binding in Epstein-Barr (EB) virus-transformed lymphocytes but had no effect on insulin binding to isolated adipocytes, human erythrocytes, or intact hepatoma cells. When isolated adipocytes were incubated with heparin, there was a dose-dependent inhibition of insulin-stimulated glucose oxidation and, to a lesser extent, of basal glucose oxidation. Although heparin has no effect on insulin binding to intact hepatoma cells, heparin inhibited both insulin binding and insulin-stimulated autophosphorylation in receptors solubilized from these cells

  20. Autoradiographic localization of calcitonin gene-related peptide (CGRP) binding sites in human and guinea pig lung

    International Nuclear Information System (INIS)

    Mak, J.C.; Barnes, P.J.

    1988-01-01

    125 I-Human calcitonin gene-related peptide (hCGRP) binding sites were localized in human and guinea pig lungs by an autoradiographic method. Scatchard analysis of saturation experiments from slide-mounted sections of guinea pig lung displayed specific 125 I-hCGRP binding sites with a dissociation constant (Kd) of 0.72 +/- 0.05 nM (mean +/- S.E.M., n = 3) and a maximal number of binding sites (Bmax) of 133.4 +/- 5.6 fmol/mg protein. In both human and guinea pig lung, autoradiography revealed that CGRP binding sites were widely distributed, with particularly dense labeling over bronchial and pulmonary blood vessels of all sizes and alveolar walls. Airway smooth muscle and epithelium of large airways was sparsely labeled but no labeling was found over submucosal glands. This localization corresponds well to the reported pattern of CGRP-like immunoreactive innervation. The findings of localization of CGRP binding sites on bronchial and pulmonary blood vessels indicate that CGRP may be important in the regulation of airway and pulmonary blood flow

  1. Diminished hepatic growth hormone receptor binding in sex-linked dwarf broiler and leghorn chickens.

    Science.gov (United States)

    Leung, F C; Styles, W J; Rosenblum, C I; Lilburn, M S; Marsh, J A

    1987-02-01

    Hepatic growth hormone (GH) receptor binding was compared in normal and sex-linked dwarfs (SLD) from both Hubbard and Cornell strain chickens. At 6, 8, and 20 weeks of age, hepatic GH receptor binding in the Hubbard SLD chickens was significantly lower than that of normal fast-growing birds. At 20 weeks of age, only 2 of 22 SLD chickens in the Hubbard broiler strain showed positive binding at a high enough level to allow for Scatchard analysis. The affinity constants and binding capacities of these two SLD chickens were numerically (but not significantly) lower than those of the normal fast-growing birds. We further examined hepatic GH receptor binding in two closely related White Leghorn strains of chickens that have been maintained as closed breeding populations for many years. We observed no detectable hepatic GH binding in the Cornell SLD chickens (N = 20), as compared to the normal-growing control strain (K strain). In both SLD strains, pretreatment with 4 M MgCl2 did not enhance GH binding, suggesting that there was no endogenous GH binding to the receptor. Based on these data, we suggest that the lack, or greatly reduced number, of GH receptors may be a major contributing factor to the dwarfism observed in these strains.

  2. Binding of tissue plasminogen activator to human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Beebe, D.P.

    1987-01-01

    The binding of purified, recombinant tissue plasminogen activator (tPA) to human umbilical vein endothelial cells (HUVEC) was studied in vitro using immunofluorescence as well as radiolabeled tPA. Immunofluorescence was performed on HUVEC grown on round glass coverslips using rabbit anti-human tPA and fluorescein-conjugated anti-rabbit immunoglobulin. Positive fluorescence was observed only after incubation of HUVEC with tPA. HUVEC were grown to confluence in 24-well tissue culture plates, washed, and incubated with a constant amount of 125 I-tPA and various concentrations of unlabeled tPA. The binding of tPA to HUVEC was found to be specific, saturable, and reversible. Scatchard analysis yielded as equilibrium constant (K/sub eq/) of 4.2 x 10 6 M -1 and 1.2 x 10 7 binding sites per cell. Binding was inhibited by positively charged amino acids and by D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone but not by carbohydrates including mannose, galactose, N-acetyl glucosamine and N-acetyl galactosamine. Neat human plasma abrogates but does not totally inhibit binding of tPA to HUVEC. Binding was neither enhanced nor inhibited by fibronectin. Although the affinity of binding of tPA to HUVEC is low, the endothelial cell may be involved in regulating plasma levels of tPA in vivo which may have therapeutic significance

  3. Binding of 45Ca2+ to particulate fractions of coleoptile tissue

    International Nuclear Information System (INIS)

    Vesper, M.J.; Saftner, R.A.; Sharma, D.; Evans, M.L.

    1976-01-01

    Using recently developed techniques, we have investigated the binding of 45 Ca 2+ to membrane preparations from corn (Zea mays L) and oat (Avena sativa L) colcoptile tissue. Scatchard plot analysis reveals at least two Ca 2+ binding sites in each tissue, a high affinity binding site (Ksub(m)=7.7 x 10 -7 M, n=6.9 x 10 -10 mol . 0.5g f.w. -1 in corn, Ksub(m)=4.93 x 10 -6 M, n=2.29 x 10 -9 mol . 0.5g f.w. -1 in Avena) and a low affinity binding site (Ksub(m)=9.01 x 10 -5 M, n=5.4 x 10 -8 mol . 0.5g f.w. -1 in corn; Ksub(m)=1.03 x 10 -4 M, n=3.40 x 10 -8 mol . 0.5g f.w. -1 in Avena). There is also some evidence of a third, lower affinity binding site in each tissue, especially corn. More detailed studies with corn coleoptile homogenates show that they contain a potent dialyzable inhibitor of Ca 2+ binding. Monovalent cations were observed to be ineffective as inhibitors of Ca 2+ binding in corn. However, of six divalent cations tested, all were capable of strong inhibition of Ca 2+ binding and there appeared to be a relationship between size of the atomic radius of the ion and potency as an inhibitor of calcium binding. (orig.) [de

  4. Characterization of a second ligand binding site of the insulin receptor

    International Nuclear Information System (INIS)

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan

    2006-01-01

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the α subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K d of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site

  5. C5a binding to human polymorphonuclear leukocyte plasma membrane (PMNLM) receptors

    International Nuclear Information System (INIS)

    Conway, R.G.; Mollison, K.W.; Carter, G.W.; Lane, B.

    1986-01-01

    Previous investigations of the C5a receptor have been performed using intact human PMNL. To circumvent some of the potential problems with such whole cell assays (e.g. internalization or metabolism of radioligand) the authors have developed a PMNLM binding assay. Human PMNLM were prepared by nitrogen cavitation and Percoll gradient centrifugation. Specific binding of [ 125 I]C5a to PMNLM was: high affinity, K/sub D/ = 0.6 nM; saturable, B/sub max/ = 8.7 pmol/mg protein; and reversible. Kinetic measurements agree with the K/sub D/ value obtained by Scatchard analysis. Furthermore, the binding activity of C5a correlates with biological activity as measured by myeloperoxidase release from human PMNL. Human serum C5a and recombinant C5a bind with similar affinities when measured by competition or direct binding and label the same number of sites in human PMNLM. The nonhydrolyzable GTP analog, GppNHp, induces a low affinity state of the C5a receptor (4-6 fold shift in K/sub D/) with little effect on B/sub max/. In summary, the criteria have been satisfied for identification of a biologically relevant C5a binding site in human PMNLM. Regulation of the C5a receptor and its membrane transduction mechanism(s) appears to involve guanyl nucleotides, as has been found for other chemoattractant receptors

  6. Evidence for the presence of a retinoic acid receptor in rat osteosarcoma cells

    International Nuclear Information System (INIS)

    Atkins, K.B.; Beitz, D.C.; Horst, R.L.; Reinhardt, T.A.

    1990-01-01

    Research has shown that ROS 17/2.8 cells respond to retinoic acid (RA) and do not express the cellular binding protein (CRABP) for RA. Initial experiments indicated the presence of a cytosolic and nuclear RA-binding activity. Both cytosolic and nuclear extracts were centrifuged (230,000g), and the supernatants labeled with [ 3 H]-RA±100-fold excess RA. Sucrose gradient analysis of the nuclear extract showed a specific RA-binding activity sedimenting at 3.3S. Scatchard analysis of the nuclear extract showed a single binding component with an apparent K d of 10 -9 M and an estimate of 1,700-3,000 copies/cell. The molecular weight of putative RAR was estimated to be 51KD by gel filtration. The cytosolic RA-binding activity co-sediments (2.0S) on a sucrose gradient with the cytosolic RA-binding activity from rat testis. Scatchard analysis resulted in an apparent Kd of 10 -8 M with an estimated 60,000 copies of CRABP/cell. These data indicate ROS 17/2.8 cells express both RAR and CRABP

  7. Specific binding of 125I-salmon calcitonin to rat brain

    International Nuclear Information System (INIS)

    Nakamuta, Hiromichi; Furukawa, Shinichi; Koida, Masao; Yajima, Haruaki; Orlowski, R.C.

    1981-01-01

    Rat brain particulate fraction was found to contain binding sites for 125 I-Salmon Calcitonin-I ( 125 I-SCT). Maximum binding occurred in the physiological pH range of 7.25 - 7.5. The binding reaction proceeded in a temperature-dependent manner. Binding sites were broadly distributed among the various rat brain regions and considerable regional differences existed in the affinity and density as detected by Scatchard analysis. The highest affinity was recorded in the case of the hypothalamus and the lowest in the case of the cerebellum. The KD (nM) and Bmax (pmole/mg protein) estimated for the binding to four regions were as follows: hypothalamus: 1.4 and 0.19, midbrain, hippocampus plus striatum: 1.5 and 0.08, pon plus medulla oblongata: 3.0 and 0.15 and cerebellum: 8.3 and 0.20. Using a particulate fraction of rat brain void of cerebellum and cortices, a binding assay for calcitonins was developed. Binding of 125 I-SCT was inhibited by unlabeled salmon, [Asu sup(1,7)]-eel and porcine calcitonins in a dose-dependent manner and the IC50s were 2.0, 8.0 and 30 nM, respectively. The IC50s were comparable to those estimated using a kidney particulate fraction. Human calcitonin, β-endorphin and substance P were weak inhibitors of the binding. Other peptides, drugs and putative neurotransmitters tested (totally 23 substances) failed to inhibit the binding at concentrations of 1.0 μM. The physiological significance of brain binding sites for calcitonin, with the possibility that the brain may possess endogenous ligands for these sites are discussed. (author)

  8. Relationship of nonreturn rates of dairy bulls to binding affinity of heparin to sperm

    International Nuclear Information System (INIS)

    Marks, J.L.; Ax, R.L.

    1985-01-01

    The binding of the glycosaminoglycan [ 3 H] heparin to bull spermatozoa was compared with nonreturn rates of dairy bulls. Semen samples from five bulls above and five below an average 71% nonreturn rate were used. Samples consisted of first and second ejaculates on a single day collected 1 d/wk for up to 5 consecutive wk. Saturation binding assays using [ 3 H] heparin were performed to quantitate the binding characteristics of each sample. Scatchard plot analyses indicated a significant difference in the binding affinity for [ 3 H] heparin between bulls of high and low fertility. Dissociation constants were 69.0 and 119.3 pmol for bulls of high and low fertility, respectively. In contrast, the number of binding sites for [ 3 H] heparin did not differ significantly among bulls. Differences in binding affinity of [ 3 H] heparin to bull sperm might be used to predict relative fertility of dairy bulls

  9. Fusicoccin-Binding Proteins in Arabidopsis thaliana (L.) Heynh. 1

    Science.gov (United States)

    Meyer, Christiane; Feyerabend, Martin; Weiler, Elmar W.

    1989-01-01

    Using the novel radioligand, [3H]-9′-nor-fusicoccin-8′-alcohol, high affinity binding sites for fusicoccin were characterized in preparations from leaves of Arabidopsis thaliana (L.) Heynh. The binding site copartitioned with the plasmalemma marker, vanadate-sensitive K+, Mg2+-ATPase, when microsomal fractions were further purified by aqueous two-phase partitioning in polyethylene glycol-dextran phase systems and sedimented at an equilibrium density of 1.17 grams per cubic centimeter in continuous sucrose density gradients, as did the ATPase marker. The binding of [3H]-9′-nor-fusicoccin-8′-alcohol was saturable and Scatchard analysis revealed a biphasic plot with two apparent dissociation constants (KD), KD1 = 1.5 nanomolar and KD2 = 42 nanomolar, for the radioligand. Binding was optimal at pH 6, thermolabile, and was reduced by 70% when the membrane vesicles were pretreated with trypsin. The data are consistent with the presence of one or several binding proteins for fusicoccin at the plasma membrane of A. thaliana. Binding of the radioligand was unaffected by pretreatment of the sites with various alkylating and reducing agents, but was reduced by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, diethylpyrocarbonate, chloramine T, and periodate. A number of detergents were tested to find optimum conditions for solubilization. Nonanoyl-N-methylglucamide (50 millimolar) solubilized 70% of the radioligand-binding protein complex in undissociated form. Photoaffinity labeling of membrane preparations with a tritiated azido analog of fusicoccin resulted in the labeling of a 34 ± 1 kilodalton polypeptide. Labeling of this polypeptide, presumably the fusicoccin-binding protein, was severely reduced in the presence of unlabeled fusicoccin. PMID:16666603

  10. Insulin stimulation of [3H]-ouabain binding to cerebrovascular (Na+ + K+)-ATPase

    International Nuclear Information System (INIS)

    Caspers, M.L.; Grammas, P.

    1986-01-01

    Brain microvessels were isolated from rat cerebral cortices. The binding of [ 3 H]-ouabain to microvascular (Na + + K + )-ATPase increased with microvessel protein (37-110μg) and was time dependent with maximum binding observed at 15 min at 37 0 C. Non-specific binding, measured in the presence of 50μM ouabain, was less than 2% of total binding. Scatchard analysis of preliminary [ 3 H]-ouabain binding data yielded a K/sub D/ of 44nM and a B/sub max/ of 12pmol/mg. Since the high affinity (α+) form of the enzyme is purportedly hormonally regulated, the effect of insulin on [ 3 H]-ouabain binding to microvessels was studied. Insulin (0.001-10μM) stimulation of [ 3 H]-ouabain binding was dose dependent. To assess whether this was a specific or a peptide-protective effect, assays were performed in the presence of bovine serum albumin (BSA). Addition of BSA (10μM) enhanced the amount of [ 3 H]-ouabain bound 4-fold. Further increases in the BSA concentration (20μM) did not increase binding. Addition of 10μM insulin evoked a 20% increase in [ 3 H]-ouabain binding above BSA-treated controls. In summary, the data suggest that the (α+) form of the (Na + + K + )-ATPase is present in cerebral endothelium and [ 3 H]-ouabain binding is significantly elevated by insulin in a dose dependent manner. Therefore, insulin may regulate microvascular (Na + + K + )-ATPase and thus be a modulator of blood-brain permeability to ions

  11. Muscarinic and alpha 1-adrenergic receptor binding characteristics of saw palmetto extract in rat lower urinary tract.

    Science.gov (United States)

    Suzuki, Mayumi; Oki, Tomomi; Sugiyama, Tomomi; Umegaki, Keizo; Uchida, Shinya; Yamada, Shizuo

    2007-06-01

    To elucidate the in vitro and ex vivo effects of saw palmetto extract (SPE) on autonomic receptors in the rat lower urinary tract. The in vitro binding affinities for alpha 1-adrenergic, muscarinic, and purinergic receptors in the rat prostate and bladder were measured by radioligand binding assays. Rats received vehicle or SPE (0.6 to 60 mg/kg/day) orally for 4 weeks, and alpha 1-adrenergic and muscarinic receptor binding in tissues of these rats were measured. Saw palmetto extract inhibited specific binding of [3H]prazosin and [N-methyl-3H]scopolamine methyl chloride (NMS) but not alpha, beta-methylene adenosine triphosphate [2,8-(3)H]tetrasodium salt in the rat prostate and bladder. The binding activity of SPE for muscarinic receptors was four times greater than that for alpha 1-adrenergic receptors. Scatchard analysis revealed that SPE significantly reduced the maximal number of binding sites (Bmax) for each radioligand in the prostate and bladder under in vitro condition. Repeated oral administration of SPE to rats brought about significant alteration in Bmax for prostatic [3H]prazosin binding and for bladder [3H]NMS binding. Such alteration by SPE was selective to the receptors in the lower urinary tract. Saw palmetto extract exerts significant binding activity on autonomic receptors in the lower urinary tract under in vitro and in vivo conditions.

  12. Identification and characterisation of an androgen receptor from zebrafish Danio rerio

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Andersen, Ole; Bjerregaard, Poul

    2007-01-01

    ) and goldfish (Carassius auratus). Binding assays with zfAR demonstrated high affinity, saturable, single class binding site, with the characteristics of an androgen receptor. Saturation experiments along with subsequent Scatchard analysis determined that the Kd of the zfAR for 3H-testosterone was 2 n...

  13. Inositol 1,4,5-trisphosphate binds to a specific receptor and releases microsomal calcium in the arterior pituitary gland

    International Nuclear Information System (INIS)

    Guillemette, G.; Balla, T.; Baukal, A.J.; Catt, K.J.

    1987-01-01

    The properties of inositol 1,4,5-trisphosphate (InsP 3 ) receptor sites in the anterior pituitary were evaluated by binding studies with InsP 3 labeled with 32 P to high specific radioactivity. Specific binding of Ins[ 32 P]P 3 was demonstrable in pituitary membrane preparations and was linearly proportional to the amount of membrane added over the range 0.5-2 mg of protein. Kinetic studies showed that specific InsP 3 binding was half-maximal in about 40 sec and reached a plateau after 15 min at 0 0 C. Scatchard analysis of the binding data was consistent with a single set of high affinity sites. The specificity of Ins[ 32 P]P 3 binding to these sites was illustrated by the much weaker affinity for structural analogs such as inositol 1-phosphate, phytic acid, 2,3-bisphosphoglycerate, and fructose 1,6-bisphosphate. To assess the functional relevance of the InsP 3 binding sites, the Ca 2+ -releasing activity of InsP 3 was measured in pituitary membrane preparations. Under physiological conditions within the cytosol, the high-affinity InsP 3 binding sites characterized in pituitary membranes could serve as the putative receptors through which InsP 3 triggers Ca 2+ mobilization in the anterior pituitary gland

  14. Stimulation of [3H]ouabain binding to rat synaptosomal (Na+ + K+)-ATPase by aluminum

    International Nuclear Information System (INIS)

    Caspers, M.L.; Dow, M.J.; Kwaiser, T.M.

    1991-01-01

    The objective of this study was to investigate the effect of aluminum on the (Na + + K + )-ATPase. Synaptosomes were prepared from the cerebral cortices of adult, male Sprague-Dawley rats. The stimulation of [ 3 H]ouabain binding to the high affinity isoform of the (Na + + K + )-ATPase produced by AlCl 3 developed slowly, with a maximum effect observed after a 40 min preincubation. AlCl 3 produced a 26.5% stimulation in [ 3 H]ouabain binding to the synaptosomal (Na + + K + )-ATPase and this stimulation increased to 33.3% at 100 μM. Scatchard analysis of [ 3 H]ouabain binding data in the presence of 100 μM AlCl 3 yielded a B max of 79.4 ± 3.5 pmol/mg protein, significantly elevated from the B max value obtained in the absence of aluminum. The K D values were similar in the presence or absence of aluminum. In summary, aluminum affects the functioning of the synaptosomal (Na + + K + )-ATPase. This may contribute, at least in part, to the disruption of neuronal function associated with disorders where elevated aluminum content in the CNS is noted

  15. Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Alderete, J.F.

    1984-08-01

    Lactoferrin acquisition and iron uptake by pathogenic Trichomonas vaginalis was examined. Saturation binding kinetics were obtained for trichomonads using increasing amounts of radioiodinated lactoferrin, while no significant binding by transferrin under similar conditions was achieved. Only unlabeled lactoferrin successfully and stoichiometrically competed with 125I-labeled lactoferrin binding. Time course studies showed maximal lactoferrin binding by 30 min at 37 degrees C. Data suggest no internalization of bound lactoferrin. The accumulation of radioactivity in supernatants after incubation of T. vaginalis with 125I-labeled lactoferrin and washing in PBS suggested the presence of low affinity sites for this host macromolecule. Scatchard analysis indicated the presence of 90,000 receptors per trichomonad with an apparent Kd of 1.0 microM. Two trichomonad lactoferrin binding proteins were identified by affinity chromatography and immunoprecipitation of receptor-ligand complexes. A 30-fold accumulation of iron was achieved using 59Fe-lactoferrin when compared to the steady state concentration of bound lactoferrin. The activity of pyruvate/ferrodoxin oxidoreductase, an enzyme involved in trichomonal energy metabolism, increased more than sixfold following exposure of the parasites to lactoferrin, demonstrating a biologic response to the receptor-mediated binding of lactoferrin. These data suggest that T. vaginalis possesses specific receptors for biologically relevant host proteins and that these receptors contribute to the metabolic processes of the parasites.

  16. Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors

    International Nuclear Information System (INIS)

    Peterson, K.M.; Alderete, J.F.

    1984-01-01

    Lactoferrin acquisition and iron uptake by pathogenic Trichomonas vaginalis was examined. Saturation binding kinetics were obtained for trichomonads using increasing amounts of radioiodinated lactoferrin, while no significant binding by transferrin under similar conditions was achieved. Only unlabeled lactoferrin successfully and stoichiometrically competed with 125I-labeled lactoferrin binding. Time course studies showed maximal lactoferrin binding by 30 min at 37 degrees C. Data suggest no internalization of bound lactoferrin. The accumulation of radioactivity in supernatants after incubation of T. vaginalis with 125I-labeled lactoferrin and washing in PBS suggested the presence of low affinity sites for this host macromolecule. Scatchard analysis indicated the presence of 90,000 receptors per trichomonad with an apparent Kd of 1.0 microM. Two trichomonad lactoferrin binding proteins were identified by affinity chromatography and immunoprecipitation of receptor-ligand complexes. A 30-fold accumulation of iron was achieved using 59Fe-lactoferrin when compared to the steady state concentration of bound lactoferrin. The activity of pyruvate/ferrodoxin oxidoreductase, an enzyme involved in trichomonal energy metabolism, increased more than sixfold following exposure of the parasites to lactoferrin, demonstrating a biologic response to the receptor-mediated binding of lactoferrin. These data suggest that T. vaginalis possesses specific receptors for biologically relevant host proteins and that these receptors contribute to the metabolic processes of the parasites

  17. Beta 2-adrenergic receptors on eosinophils. Binding and functional studies

    International Nuclear Information System (INIS)

    Yukawa, T.; Ukena, D.; Kroegel, C.; Chanez, P.; Dent, G.; Chung, K.F.; Barnes, P.J.

    1990-01-01

    We have studied the binding characteristics and functional effects of beta-adrenoceptors on human and guinea pig eosinophils. We determined the binding of the beta-antagonist radioligand [125I]pindolol (IPIN) to intact eosinophils obtained from the peritoneal cavity of guinea pigs and from blood of patients with eosinophilia. Specific binding was saturable, and Scatchard analysis showed a single binding site with a dissociation constant (Kd) of 24.6 pM and maximal number of binding sites (Bmax) of 7,166 per cell. ICI 118,551, a beta 2-selective antagonist, inhibited IPIN binding with a Ki value of 0.28 nM and was approximately 5,000-fold more effective than the beta 1-selective antagonist, atenolol. Isoproterenol increased cAMP levels about 5.5-fold above basal levels (EC50 = 25 microM); albuterol, a beta 2-agonist, behaved as a partial agonist with a maximal stimulation of 80%. Binding to human eosinophils gave similar results with a Kd of 25.3 pM and a Bmax corresponding to 4,333 sites per cell. Incubation of both human and guinea pig eosinophils with opsonized zymosan (2 mg/ml) or with phorbol myristate acetate (PMA) (10(-8) and 10(-6) M) resulted in superoxide anion generation and the release of eosinophil peroxidase; albuterol (10(-7) to 10(-5) M) had no inhibitory effect on the release of these products. Thus, eosinophils from patients with eosinophilia and from the peritoneal cavity of guinea pigs possess beta-receptors of the beta 2-subtype that are coupled to adenylate cyclase; however, these receptors do not modulate oxidative metabolism or degranulation. The possible therapeutic consequences of these observations to asthma are discussed

  18. Tumor necrosis factor: specific binding and internalization in sensitive and resistant cells

    International Nuclear Information System (INIS)

    Tsujimoto, M.; Yip, Y.K.; Vilcek, J.

    1985-01-01

    Highly purified, Escherichia coli-derived recombinant human tumor necrosis factor (TNF) was labeled with 125 I and employed to determine receptor binding, internalization, and intracellular degradation in murine L929 cells (highly sensitive to the cytotoxic action of TNF) and in diploid human FS-4 cells (resistant to TNF cytotoxicity). 125 I-labeled TNF bound specifically to high-affinity receptors on both L929 and FS-4 cells. Scatchard analysis of the binding data indicated the presence of 2200 binding sites per L929 cell and 7500 binding sites per FS-4 cell. The calculated dissociation constants are 6.1 x 10 -10 M and 3.2 x 10 -10 M for L929 and FS-4 cells, respectively. In both L929 and FS-4 cells, incubation at 37 0 C resulted in a rapid internalization of the bulk of the cell-bound TNF, followed by the appearance of trichloroacetic acid-soluble 125 I radioactivity in the tissue culture medium, due to degradation of TNF. Degradation but not cellular uptake of TNF was inhibited in the presence of chloroquine (an inhibitor of lysosomal proteases) in both L929 and FS-4 cells, suggesting that degradation occurs intracellularly, probably within lysosomes. These results show that resistance of FS-4 cells to TNF cytotoxicity is not due to a lack of receptors or their inability to internalize and degrade TNF

  19. Specific binding of lactoferrin to Escherichia coli isolated from human intestinal infections

    International Nuclear Information System (INIS)

    Naidu, S.S.; Erdei, J.; Forsgren, A.; Naidu, A.S.; Czirok, E.; Gado, I.; Kalfas, S.; Thoren, A.

    1991-01-01

    The degrees of human lactoferrin (HLf) and bovine lactoferrin (BLf) binding in 169 Escherichia coli strains isolated from human intestinal infections, and in an additional 68 strains isolated from healthy individuals, were examined in a 125 I-labelled protein binding assay. The binding was expressed as a percentage calculated from the total labelled ligand added to bacteria. The HLf and BLf binding to E. coli was in the range 3.7 to 73.4% and 4.8 to 61.6%, respectively. Enterotoxigenic strains demonstrated a significantly higher HLf binding (median = 19%) than enteropathogenic, enteroinvasive, enterohaemorrhagic strains or normal intestinal E. coli isolates (medians 6 to 9). Enteropathogenic strains belonging to serotypes O44 and O127 demonstrated significantly higher HLf binding compared to O26, O55, O111, O119 and O126. No significant differences in the degree of HLf or BLf binding were found between aerobactin-producing and non-producing strains. The interaction was further characterized in a high Lf-binging EPEC strain, E34663 (serotype O127). The binding was stable in the pH range 4.0 to 7.5, did not dissociate in the presence of 2M NaCl or 2M urea, and reached saturation within two h. Unlabelled HLf and BLf displaced the 125 I-HLf binding to E34663 in a dose-dependent manner. Apo- and iron-saturated forms of Lf demonstrated similar binding to E34663. Among various unlabelled subephithelial matrix proteins and carbohydrates tested (in 10 4 -fold excess) only fibronectin and fibrinogen caused a moderate inhibition of 125 I-HLf binding. According to Scatchard plot analysis, 5,400 HLf-binding sites/cell, with an affinity constant (K a ) of 1.4 x 10 -7 M, were estimated in strain E34663. These data establish the presence of a specific Lf-binding mechanism in E. coli. (au)

  20. Insulin binding to individual rat skeletal muscles

    International Nuclear Information System (INIS)

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G.

    1990-01-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding

  1. Displacement of DL-[3H]-2-amino-4-phosphonobutanoic acid ( [3H]APB) binding with methyl-substituted APB analogues and glutamate agonists

    International Nuclear Information System (INIS)

    Robinson, M.B.; Crooks, S.L.; Johnson, R.L.; Koerner, J.F.

    1985-01-01

    The binding of the excitatory amino acid antagonist DL-2-amino-4-phosphonobutanoic acid (DL-APB) to rat brain synaptic plasma membranes was characterized. As determined by Scatchard analysis, the binding was saturable and homogeneous with a Kd = 6.0 microM and Bmax = 380 pmol/mg of protein. The binding was dependent on the presence of Ca 2+ and Cl - ions and was diminished upon freezing. The association rate constant was 6.8 X 10(-3) microM -1 min -1 , and the dissociation rate constant was 2.0 X 10(-2) min -1 . The L isomers of APB, glutamate, and aspartate were more potent as displacers of APB binding than the D isomers. With the exception of kynurenic acid, all compounds examined in both systems were more potent as displacers of APB binding than as inhibitors of synaptic transmission. This difference in potency was most pronounced for agonists at dentate granule cells. L-Glutamate, D-glutamate, and L-glutamate tetrazole were between 140- and 7500-fold more potent as displacers of DL-APB binding than as inhibitors of synaptic transmission. D-2-Amino-5-phosphonopentanoic acid and alpha-methyl-APB were between 10- and 20-fold more potent as displacers of binding

  2. Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system

    International Nuclear Information System (INIS)

    Greenamyre, J.T.; Young, A.B.; Penney, J.B.

    1984-01-01

    Quantitative autoradiography was used to determine the distribution of L-[3H]glutamate-binding sites in the rat central nervous system. Autoradiography was carried out in the presence of Cl- and Ca2+ ions. Scatchard plots and Hill coefficients of glutamate binding suggested that glutamate was interacting with a single population of sites having a K-D of about 300 nM and a capacity of 14.5 pmol/mg of protein. In displacement studies, ibotenate also appeared to bind to a single class of non-interacting sites with a KI of 28 microM. However, quisqualate displacement of [3H]glutamate binding revealed two well-resolved sites with KIS of 12 nM and 114 microM in striatum. These sites were unevenly distributed, representing different proportions of specific glutamate binding in different brain regions. The distribution of glutamate-binding sites correlated very well with the projection areas of putative glutamatergic pathways. This technique provides an extremely sensitive assay which can be used to gather detailed pharmacological and anatomical information about L-[3H]glutamate binding in the central nervous system

  3. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    International Nuclear Information System (INIS)

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M.

    1989-01-01

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using 125 I-labeled melatonin ( 125 I-Mel), a potent melatonin agonist. 125 I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K d of 2.3 ± 1.0 x 10 -11 M and 2.06 ± 0.43 x 10 -10 M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5'-[γ-thio]triphosphate (GTP[γS]), significantly reduced the number of high-affinity receptors and increased the dissociation rate of 125 I-Mel from its receptor. Furthermore, GTP[γS] treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of 125 I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M r > 400,000 and M r ca. 110,000. This elution profile was markedly altered by pretreatment with GTP[γS] before solubilization; only the M r 110,000 peak was present in GTP[γS]-pretreated membranes. The results strongly suggest that 125 I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000

  4. Specific binding of an immunoreactive and biologically active 125I-labeled substance P derivative to mouse mesencephalic cells in primary culture

    International Nuclear Information System (INIS)

    Beaujouan, J.C.; Torrens, Y.; Herbet, A.; Daguet, M.C.; Glowinski, J.; Prochiantz, A.

    1982-01-01

    Binding characteristics of 125 I-labeled Bolton-Hunter substance P ([ 125 I]BHSP), a radioactive analogue of substance P, were studied with mesencephalic primary cultures prepared from embryonic mouse brain. Nonspecific binding represented no more than 20% of the total binding observed on the cells. In contrast, significant specific binding--saturable, reversible, and temperature-dependent--was demonstrated. Scatchard analysis of concentration-dependent binding saturation indicates a single population of noninteracting sites with a high affinity (Kd . 169 pM). Substance P and different substance P analogues were tested for their competitive potencies with regard to [ 125 I]BHSP binding. BHSP itself, substance P, (Tyr8)-substance P, and (nor-Leu11)-substance P strongly inhibited the binding. Good inhibition was also obtained with physalaemin and eledoisin, two peptides structurally related to substance P. When substance P C-terminal fragments were tested for their ability to compete with [ 125 I]BHSP binding, a good relationship was found between competitive activity and peptide length. Regional distribution of [ 125 I]BHSP binding sites was found using primary cultures obtained from different regions of embryonic mouse brain. Mesencephalic, hypothalamic, and striatal cultures had the highest [ 125 I]BHSP binding capacities, whereas cortical, hippocampal, and cerebellar cells shared only little binding activity. Finally, when mesencephalic cells were grown under conditions impairing glial development, [ 125 I]BHSP binding was not affected, demonstrating that binding sites are located on neuronal cells

  5. Affinity of the enantiomers of. alpha. - and. beta. -cyclazocine for binding to the phencyclidine and. mu. opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Todd, S.L.; Balster, R.L.; Martin, B.R. (Virginia Commonwealth Univ., Richmond (USA))

    1990-01-01

    The enantiomers in the {alpha} and {beta} series of cyclazocine were evaluated for their ability to bind to phencyclidine (PCP) and {mu}-opioid receptors in order to determine their receptor selectivity. The affinity of (-)-{beta}-cyclazocine for the PCP receptor was 1.5 greater than PCP itself. In contrast, (-)-{alpha}-cyclazocine, (+)-{alpha}-cyclazocine, and (+)-{beta}-cyclazocine were 3-, 5- and 138-fold less potent than PCP, respectively. Scatchard analysis of saturable binding of ({sup 3}H)Tyr-D-Ala-Gly-N-MePhe-Gly-ol (DAMGO) also exhibited a homogeneous population of binding sites with an apparent K{sub D} of 1.9 nM and an estimated Bmax of 117 pM. (3H)Tyr-D-Ala-Gly-N-MePhe-Gly-ol (DAMGO) binding studies revealed that (-)-{alpha}-cyclazocine (K{sub D} = 0.48 nM) was 31-, 1020- and 12,600-fold more potent than (-)-{beta}-cyclazocine, (+)-{alpha}-cyclazocine and (+)-{beta}-cyclazocine, respectively, for binding to the {mu}-opioid receptor. These data show that, although (-)-{beta}-cyclazocine is a potent PCP receptor ligand consistent with its potent PCP-like discriminative stimulus effects, it shows little selectivity for PCP receptor since it also potently displaces {mu}-opioid binding. However, these cyclazocine isomers, due to their extraordinary degree of stereoselectivity, may be useful in characterizing the structural requirements for benzomorphans having activity at the PCP receptor.

  6. Receptors for vasoactive intestinal peptide in rat anterior pituitary glands: Localization of binding to lactotropes

    International Nuclear Information System (INIS)

    Wanke, I.E.; Rorstad, O.P.

    1990-01-01

    Vasoactive intestinal peptide (VIP) has been implicated as a physiological PRL-releasing factor; however, characterization of VIP receptors on normal pituitaries using radioligand-binding methods has been problematic. In this study we demonstrated specific receptors for VIP in anterior pituitary glands of female rats using HPLC-purified monoiodinated [Tyr(125I)10]VIP. Binding of VIP was reversible, saturable to receptor and radioligand, regulated by guanine nucleotides, and dependent on time and temperature. Scatchard analysis of competitive binding studies indicated high and low affinity binding sites, with equilibrium dissociation constants (Kd) of 0.19 +/- 0.03 and 28 +/- 16 nM, respectively. The corresponding maximum numbers of binding sites were 158 +/- 34 fmol/mg and 11.7 +/- 6.9 pmol/mg. Binding was specific, as peptides with structural homology to VIP were less than 100th as potent as VIP. The rank order of potency of the peptides tested was VIP greater than rat (r) peptide histidine isoleucine = human (h) PHI greater than rGRF greater than bovine GRF = porcine PHI = VIP-(10-28) greater than hGRF greater than secretin greater than apamin greater than glucagon. Radioligand binding was associated primarily with lactotrope-enriched fractions prepared by unit gravity sedimentation of dispersed anterior pituitary cells. VIP stimulated PRL release from cultured rat anterior pituitary cells, with an ED50 of 1 nM. These results, comprising the first identification of specific VIP receptors in normal rat anterior pituitary tissue using radioligand-binding methods, provide additional support for a biological role of VIP in lactotrope function

  7. (/sup 3/H)ouabain binding to leukaemic cells and intralymphocytic sodium content in chronic lymphocytic leukaemia; no evidence for alterations of the Na/sup +//K/sup +/-pump

    Energy Technology Data Exchange (ETDEWEB)

    Berntorp, E; Berntorp, K

    1987-01-01

    The number of specific (/sup 3/H)ouabain binding sites and dissociation constants (K/sub d/) were determined by Scatchard analysis of values for leucocytes from patients with B-cell chronic lymphocytic leukaemia (CCL), chronic myeloid leukaemia (CML), acute blastic leukaemia (AL) and healthy subjects. CCL lymphocytes and normal B-cells bound significantly less (/sup 3/H)ouabain than did normal T-lymphocytes. CML granulocytes showed the same binding characteristics as normal granulocytes, while blast cells from AL patients bound significantly more (/sup 3/H)ouabain than did normal granulocytes or B-cells. The increased binding capacity in blast cells might, at least partly, reflect their larger cell size. A decrease in K/sub d/ values was only found in CLL lymphocytes, as compared with normal B-cells. Intralymphocytic sodium content in CLL lymphocytes was significantly increased, as sompared with that in T-cell-enriched normal lymphocytes. (/sup 3/H)ouabain binding did not show any relationship to different prognostic variables in CLL. The present data mainly argue against altered Na/sup +//K/sup +/-ATPase enzyme activity as an indicator of malignancy.

  8. Photolabeling and radioligand binding of human erythrocyte NaK-ATPase with 125I-derivatives of cymarin and digitoxigenin

    International Nuclear Information System (INIS)

    Lowndes, J.M.

    1988-01-01

    NaK-ATPase is an enzyme which maintains Na + and K + gradients across the plasma membrane of eukaryotic cells, and is specifically inhibited by cardiac glycosides. The cardiac glycoside binding site is located primarily on the catalytic α subunit but the glycoprotein β and proteolipid-γ subunits may also contribute to the structure of the site. In order to label the cardiac glycoside binding site of human erythrocytes, four photoaffinity ligands with very high specific radioactivity were synthesized. The compounds, which are abbreviated [ 125 I]AISC, [ 125 I]AIPP-GluD, [ 125 I]AIPP-GalD and [ 125 I]IA-GalD, were all effective photolabels for NaK-ATPase as shown by ouabain-protectable, covalent labeling of the α, β, and proteolipid-γ subunits. In order to study the possible existence of a very high affinity binding site in erythrocyte NaK-ATPase, a carrier-free radioligand, [ 125 I]I-TASC, was synthesized; this compound had the same structure as [ 125 I]AISC except that a light-sensitive azide group was replaced with a hydroxyl group. Competitive binding assays with cymarin against 0.2 nM [ 125 I]I-TASC suggested two classes of erythrocyte binding sites. Scatchard analysis of direct [ 125 I]I-TASC binding indicated that the very high affinity, low capacity class of erythrocyte bindings sites had a K D of 54 pM and a B max of 23 fmol/mg protein

  9. Photoaffinity labeling of serum vitamin D binding protein by 3-deoxy-3-azido-25-hydroxyvitamin D3

    International Nuclear Information System (INIS)

    Link, R.P.; Kutner, A.; Schnoes, H.K.; DeLuca, H.F.

    1987-01-01

    3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3

  10. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  11. Receptors for corticotropin-releasing hormone in human pituitary: Binding characteristics and autoradiographic localization to immunocytochemically defined proopiomelanocortin cells

    Energy Technology Data Exchange (ETDEWEB)

    Smets, G.; Vauquelin, G.; Moons, L.; Smitz, J.; Kloeppel, G. (Department of Experimental Pathology, Vrije Universiteit Brussel (Belgium))

    1991-08-01

    Using autoradiography combined with immunocytochemistry, the authors demonstrated that the target cells of CRH in the human pituitary were proopiomelanocortin cells. Scatchard analysis of (125I)Tyr0-oCRH saturation binding revealed the presence of one class of saturable, high affinity sites on pituitary tissue homogenate. The equilibrium dissociation constant (Kd) for (125I)Tyr0-oCRH ranged from 1.1-1.6 nM, and the receptor density was between 200-350 fmol/mg protein. Fixation of cryostat sections with 4% paraformaldehyde before tracer incubation improved both tissue preservation and localization of the CRH receptor at the cellular level. Additional postfixation with 1% glutaraldehyde inhibited tracer diffusion during subsequent immunocytochemistry and autoradiography. (125I)Tyr0-oCRH was found in cytoplasmic inclusions or at the cell periphery of ACTH/beta-endorphin cells in the anterior pituitary. Single cells of the posterior pituitary were also CRH receptor positive. Cells staining for PRL or GH were CRH receptor negative. They conclude that CRH binds only to high affinity receptors on ACTH/{beta}-endorphin cells in the human pituitary.

  12. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    Science.gov (United States)

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  13. Stimulation of ( sup 3 H)ouabain binding to rat synaptosomal (Na sup + + K sup + )-ATPase by aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, M.L.; Dow, M.J.; Kwaiser, T.M. (Univ. of Detroit, MI (United States))

    1991-03-11

    The objective of this study was to investigate the effect of aluminum on the (Na{sup +} + K{sup +})-ATPase. Synaptosomes were prepared from the cerebral cortices of adult, male Sprague-Dawley rats. The stimulation of ({sup 3}H)ouabain binding to the high affinity isoform of the (Na{sup +} + K{sup +})-ATPase produced by AlCl{sub 3} developed slowly, with a maximum effect observed after a 40 min preincubation. AlCl{sub 3} produced a 26.5% stimulation in ({sup 3}H)ouabain binding to the synaptosomal (Na{sup +} + K{sup +})-ATPase and this stimulation increased to 33.3% at 100 {mu}M. Scatchard analysis of ({sup 3}H)ouabain binding data in the presence of 100 {mu}M AlCl{sub 3} yielded a B{sub max} of 79.4 {plus minus} 3.5 pmol/mg protein, significantly elevated from the B{sub max} value obtained in the absence of aluminum. The K{sub D}values were similar in the presence or absence of aluminum. In summary, aluminum affects the functioning of the synaptosomal (Na{sup +} + K{sup +})-ATPase. This may contribute, at least in part, to the disruption of neuronal function associated with disorders where elevated aluminum content in the CNS is noted.

  14. Specific binding of [3H]LY186126, an analogue of indolidan (LY195115), to cardiac membranes enriched in sarcoplasmic reticulum vesicles

    International Nuclear Information System (INIS)

    Kauffman, R.F.; Utterback, B.G.; Robertson, D.W.

    1989-01-01

    LY186126 was found to be a potent inhibitor of type IV cyclic AMP phosphodiesterase located in the sarcoplasmic reticulum of canine cardiac muscle. This compound, a close structural analogue of indolidan (LY195115), was prepared in high specific activity, tritiated form to study the positive inotropic receptor(s) for cardiotonic phosphodiesterase inhibitors such as indolidan and milrinone. A high-affinity binding site for [ 3 H]LY186126 was observed (Kd = 4 nM) in purified preparations of canine cardiac sarcoplasmic reticulum vesicles. Binding was proportional to vesicle protein, was inactivated by subjecting membranes to proteolysis or boiling, and was dependent on added Mg2+. Scatchard analysis suggested the presence of a single class of binding sites in the membrane preparation. Indolidan, milrinone, and LY186126 (all at 1 microM) produced essentially complete displacement of bound [ 3 H]LY186126, while nifedipine, propranolol, and prazosin had little or no effect at this concentration. This represents the first reported use of a radioactive analogue to label the inotropic receptor for cardiotonic phosphodiesterase inhibitors. The results suggest that [ 3 H]LY186126 is a useful radioligand for examining the subcellular site(s) responsible for positive inotropic effects of these drugs

  15. Two distinct affinity binding sites for IL-1 on human cell lines

    International Nuclear Information System (INIS)

    Bensimon, C.; Wakasugi, N.; Tagaya, Y.; Takakura, K.; Yodoi, J.; Tursz, T.; Wakasugi, H.

    1989-01-01

    We used two human cell lines, NK-like YT-C3 and an EBV-containing B cell line, 3B6, as models to study the receptor(s) for IL-1. Two distinct types of saturable binding sites were found on both cell lines at 37 degrees C. Between 1 pM and 100 pM of 125I-IL-1-alpha concentration, saturable binding sites were detected on the YT-C3 cells with a K of 4 x 10(-11) M. The K found for the IL-1-alpha binding sites on 3B6 cells was 7.5 x 10(-11) M. An additional binding curve was detected above 100 pM on YT-C3 cells with a K of 7 x 10(-9) M and on 3B6 cells with a K of 5 x 10(-9) M. Scatchard plot analysis revealed 600 sites/cell with high affinity binding and 7000 sites/cell with low affinity for YT-C3 cells and 300 sites/cell with high affinity binding and 6000 sites/cell with low affinity for 3B6 cells. At 37 degrees C, the internalization of 125I-labeled IL-1 occurred via both high and low affinity IL-1R on both YT-C3 and 3B6 cells, whereas the rates of internalization for high affinity binding sites on YT-C3 cells were predominant in comparison to that of low affinity binding sites. In chemical cross-linking studies of 125 I-IL-1-alpha to 3B6 and YT-C3 cells, two protein bands were immunoprecipitated with Mr around 85 to 90 kDa leading to an estimation of the Mr of the IL-1R around 68 to 72 kDa. In similar experiments, the Mr found for the IL-1R expressed on the murine T cell line EL4 was slightly higher (around 80 kDa). Whether these distinct affinity binding sites are shared by a single molecule or by various chains remains to be elucidated

  16. Characterization of little skate (Leucoraja erinacea) recombinant transthyretin: Zinc-dependent 3,3',5-triiodo-l-thyronine binding.

    Science.gov (United States)

    Suzuki, Shunsuke; Kasai, Kentaro; Yamauchi, Kiyoshi

    2015-01-01

    Transthyretin (TTR) diverged from an ancestral 5-hydroxyisourate hydrolase (HIUHase) by gene duplication at some early stage of chordate evolution. To clarify how TTR had participated in the thyroid system as an extracellular thyroid hormone (TH) binding protein, TH binding properties of recombinant little skate Leucoraja erinacea TTR was investigated. At the amino acid level, skate TTR showed 37-46% identities with the other vertebrate TTRs. Because the skate TTR had a unique histidine-rich segment in the N-terminal region, it could be purified by Ni-affinity chromatography. The skate TTR was a 46-kDa homotetramer of 14.5kDa subunits, and had one order of magnitude higher affinity for 3,3',5-triiodo-l-thyronine (T3) and some halogenated phenols than for l-thyroxine. However, the skate TTR had no HIUHase activity. Ethylenediaminetetraacetic acid (EDTA) treatment inhibited [(125)I]T3 binding activity whereas the addition of Zn(2+) to the EDTA-treated TTR recovered [(125)I]T3 binding activity in a Zn(2+) concentration-dependent manner. Scatchard analysis revealed the presence of two classes of binding site for T3, with dissociation constants of 0.24 and 17nM. However, the high-affinity sites were completely abolished with 1mM EDTA, whereas the remaining low-affinity sites decreased binding capacity. The number of zinc per TTR was quantified to be 4.5-6.3. Our results suggest that skate TTR has tight Zn(2+)-binding sites, which are essential for T3 binding to at least the high-affinity sites. Zn(2+) binding to the N-terminal histidine-rich segment may play an important role in acquisition or reinforcement of TH binding ability during early evolution of TTR. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Neuropeptide Y binding sites in rat brain identified with purified neuropeptide Y-I125

    International Nuclear Information System (INIS)

    Walker, M.W.; Miller, R.J.

    1986-01-01

    Neuropeptide Y (NPY) is a widely distributed neuronally localized peptide with 36 amino acids, 5 of which are tyrosines. The authors wished to investigate the properties of specific receptors for NPY. They therefore labeled the tyrosines with I125 using chloramine T and then purified the peptide using HPLC. A single mono-iodinated species of NPY which yielded > 85% specific binding in rat forebrain synaptosomes was selected as the ligand for all subsequent experiments. A time course of binding showed that equilibrium conditions were reached in 60 minutes at 21 0 C. Scatchard plots revealed a single class of binding sites with a Kd and a Bmax of 3 x 10-10 M and 28 pmol/mg, respectively. Competition binding with unlabeled NPY showed 50% displacement of bound ligand at 1 x 10-10 M NPY. Competition binding with rat pancreatic polypeptide (RPP), a homologous peptide possessing little NPY-like activity, showed 50% displacement of bound ligand at 2 x 10 -7 M RPP. No binding was observed on F-11 or PC12 neuronal cell lines, or on HSWP fibroblast cells. They conclude that NPY-I125 purified to homogeneity with HPLC is a highly selective ligand for NPY receptor sites. They are currently investigating such sites in brain, gut, and other tissues

  18. Definition of IgG- and albumin-binding regions of streptococcal protein G.

    Science.gov (United States)

    Akerström, B; Nielsen, E; Björck, L

    1987-10-05

    Protein G, the immunoglobin G-binding surface protein of group C and G streptococci, also binds serum albumin. The albumin-binding site on protein G is distinct from the immunoglobulin G-binding site. By mild acid hydrolysis of the papain-liberated protein G fragment (35 kDa), a 28-kDa fragment was produced which retained full immunoglobulin G-binding activity (determined by Scatchard plotting) but had lost all albumin-binding capacity. A protein G (65 kDa), isolated after cloning and expression of the protein G gene in Escherichia coli, had comparable affinity to immunoglobulin G (5-10 X 10(10)M-1), but much higher affinity to albumin than the 35- and 28-kDa protein G fragments (31, 2.6, and 0 X 10(9)M-1, respectively). The amino-terminal amino acid sequences of the 65-, 35-, and 28-kDa fragments allowed us to exactly locate the three fragments in an overall sequence map of protein G, based on the partial gene sequences published by Guss et al. (Guss, B., Eliasson, M., Olsson, A., Uhlen, M., Frej, A.-K., Jörnvall, H., Flock, J.-I., and Lindberg, M. (1986) EMBO J. 5, 1567-1575) and Fahnestock et al. (Fahnestock, S. R., Alexander, P., Nagle, J., and Filpula, D. (1986) J. Bacteriol. 167, 870-880). In this map could then be deduced the location of three homologous albumin-binding regions and three homologous immunoglobulin G-binding regions.

  19. Demonstration of a specific C3a receptor on guinea pig platelets

    International Nuclear Information System (INIS)

    Fukuoka, Y.; Hugli, T.E.

    1988-01-01

    Guinea pig platelets reportedly contain receptors specific for the anaphylatoxin C3a based on both ligand-binding studies and functional responses. A portion of the human 125I-C3a that binds to guinea pig platelets is competitively displaced by excess unlabeled C3a; however, the majority of ligand uptake was nonspecific. Uptake of 125I-C3a by guinea pig platelets is maximal in 1 min, and stimulation of guinea pig platelets by thrombin, ADP, or the Ca2+ ionophore A23187 showed little influence on binding of the ligand. Scatchard analysis indicated that approximately 1200 binding sites for C3a exist per cell with an estimated Kd of 8 x 10(-10) M. Human C3a des Arg also binds to guinea pig platelets, but Scatchard analysis indicated that no specific binding occurred. Because the ligand-binding studies were complicated by high levels of nonspecific uptake, we attempted to chemically cross-link the C3a molecule to a specific component on the platelet surface. Cross-linkage of 125I-C3a to guinea pig platelets with bis(sulfosuccinimidyl)suberate revealed radioactive complexes at 105,000 and 115,000 m.w. on SDS-PAGE gels by autoradiographic analysis. In the presence of excess unlabeled C3a, complex formation was inhibited. No cross-linkage could be demonstrated between the inactive 125I-C3a des Arg and the putative C3a-R on guinea pig platelets. Human C3a, but not C3a des Arg induces serotonin release and aggregation of the guinea pig platelets. Human C3a was unable to induce either serotonin release or promote aggregation of human platelets. Uptake of human 125I-C3a by human platelets was not saturable, and Scatchard analysis was inconclusive. Attempts to cross-link 125I-C3a to components on the surface of human platelets also failed to reveal a ligand-receptor complex. Therefore, we conclude that guinea pig platelets have specific surface receptors to C3a and that human platelets appear devoid of receptors to the anaphylatoxin

  20. A radioreceptor assay of luteinizing hormone-releasing hormone receptor and characterization of LHRH binding to pituitary receptors in Shao duck

    International Nuclear Information System (INIS)

    Yang Peixin; Wu Meiwen; Chen Ziyuan

    2000-01-01

    The properties of Shao duck pituitary luteinizing hormone-releasing hormone (LHRH) receptors were analyzed in pituitary membrane preparation and isolated pituitary cells prepared by enzymatic dispersion with collagenase and trypsin, by using a super-agonist analog of (D-Lys 6 ) LHRH. High binding of 125 I-(D-Lys 6 ) LHRH to 10 6 cultured cells of Shao duck was observed after a 90 minute incubation at 4 degree C, while binding was significantly reduced after a 24h incubation. Binding of the radioligand was a function of tissue concentration of Shao duck pituitary membrane preparation, with a positive correlation over the range of 1-2 pituitary per-tube. Specific binding for 125 I-(D-Lys 6 ) LHRH increased with the increase in the amount of 125 I-(D-Lys 6 ) LHRH. The Scatchard analysis of data revealed a linear relationship between the amount of specific binding and the ratio of specific binding to free 1 '2 5 I(D-Lys 6 )LHRH, indicating a single class of high affinity sites. Equilibrium dissociation constant (Kd) was 0.34 nM in pituitary membrane preparation and 0.43 nM in isolated pituitary cells. Both Kd values were near and the maximum binding capacity (B max ) was great in isolated cells, suggesting no significant loss of the LHRH receptor population caused by the enzymatic procedure employed for cell dispersion in the present study. Addition of 9D-Lys 6 ) LHRH displaced bound 125 I-(D-Lys 6 ) LHRH. These results demonstrated the presence and provided characterization of LHRH receptors in Shao duck pituitary

  1. Elevated glucocorticoid receptor binding in cultured human lymphoblasts following hydroxyurea treatment: lack of effect on steroid responsiveness

    International Nuclear Information System (INIS)

    Littlefield, B.A.; Hoagland, H.C.; Greipp, P.R.

    1986-01-01

    While studying the effects of chemotherapy on glucocorticoid receptor (GR) binding levels in hematological malignancies, we observed a sizable increase in nuclear GR binding of [ 3 H]dexamethasone in peripheral leukocytes from a chronic basophilic leukemia patient following treatment with hydroxyurea plus prednisone, but not after prednisone alone. This apparent clinical effect of hydroxyurea led to an examination of hydroxyurea effects on GR binding and sensitivity in the glucocorticoid-sensitive human lymphoblast cell line GM4672A. GR binding levels in GM4672A cells were measured following a 3-day exposure to 50 microM hydroxyurea, a concentration chosen to have a minimal but measurable effect on cellular growth rates with little or no effect on cellular viability. Under these conditions, nuclear [ 3 H]dexamethasone receptor binding measured by Scatchard analysis using a whole-cell assay was elevated 2.4-fold over control values (P less than 0.05), while cytosolic residual receptor binding (measured at 37 0 C) remained unchanged. Thus, the total cellular content of measurable GR was increased, and this increase was totally accounted for by GR capable of nuclear binding. Hydroxyurea treatment of GM4672A cells had no effect on the affinity of nuclear or cytosolic GR for [ 3 H]dexamethasone. The increase in measurable nuclear-bound receptors occurred in a time-dependent manner over a period of 3 days and was fully reversible within 3 days following removal of hydroxyurea. The increase in receptor binding could not be explained by the slight alterations in cell cycle kinetics which occur at this low level of hydroxyurea. Despite increased receptor binding, cellular glucocorticoid responsiveness was unaltered as assessed by dexamethasone inhibition of cell growth and dexamethasone inhibition of a urokinase-like plasminogen activator

  2. Identification of leukotriene D4 specific binding sites in the membrane preparation isolated from guinea pig lung

    International Nuclear Information System (INIS)

    Mong, S.; Wu, H.L.; Clark, M.A.; Stadel, J.M.; Gleason, J.G.; Crooke, S.T.

    1984-01-01

    A radioligand binding assay has been established to study leukotriene specific binding sites in the guinea pig and rabbit tissues. Using high specific activity [ 3 H]-leukotriene D4 [( 3 H]-LTD4), in the presence or absence of unlabeled LTD4, the diastereoisomer of LTD4 (5R,6S-LTD4), leukotriene E4 (LTE4) and the end-organ antagonist, FPL 55712, the authors have identified specific binding sites for [ 3 H]-LTD4 in the crude membrane fraction isolated from guinea pig lung. The time required for [ 3 H]-LTD4 binding to reach equilibrium was approximately 20 to 25 min at 37 degrees C in the presence of 10 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl. The binding of [ 3 H]-LTD4 to the specific sites was saturable, reversible and stereospecific. The maximal number of binding sites (Bmax), derived from Scatchard analysis, was approximately 320 +/- 200 fmol per mg of crude membrane protein. The dissociation constants, derived from kinetic and saturation analyses, were 9.7 nM and 5 +/- 4 nM, respectively. The specific binding sites could not be detected in the crude membrane fraction prepared from guinea pig ileum, brain and liver, or rabbit lung, trachea, ileum and uterus. In radioligand competition experiments, LTD4, FPL 55712 and 5R,6S-LTD4 competed with [ 3 H]-LTD4. The metabolic inhibitors of arachidonic acid and SKF 88046, an antagonist of the indirectly-mediated actions of LTD4, did not significantly compete with [ 3 H]-LTD4 at the specific binding sites. These correlations indicated that these specific binding sites may be the putative leukotriene receptors in the guinea-pig lung

  3. Distribution of basic fibroblast growth factor binding sites in various tissue membrane preparations from adult guinea pig

    International Nuclear Information System (INIS)

    Ledoux, D.; Mereau, A.; Dauchel, M.C.; Barritault, D.; Courty, J.

    1989-01-01

    In order to localize a rich source of basic FGF receptor, we examined the distribution of basic FGF binding sites in brain, stomach, lung, spleen, kidney, liver and intestine membrane preparations from adult guinea pig. Comparative binding studies using iodinated basic FGF showed that a specific binding was detected in all the membrane preparations tested. Scatchard plots from iodinated basic FGF competition experiment with native basic FGF in various membrane preparations, suggested the presence of one class of binding sites in some tissues such as liver, kidney, spleen, lung, stomach, and intestine with an apparent dissociation constant (appKD) value ranging from 4 to 7.5 nM and the existence of a second class of higher affinity sites in brain membranes with appKD value of 15 pM. Characterization of these basic FGF high affinity interaction sites was performed using a cross-linking reagent. These results show for the first time that specific interaction sites for basic FGF are widely distributed, suggesting that this growth factor might play a role in the physiological functions of a number of adult organs

  4. Insulin binding and stimulation of hexose and amino acid transport by normal and receptor-defective human fibroblasts

    International Nuclear Information System (INIS)

    Longo, N.; Nagata, N.; Danner, D.; Priest, J.; Elsas, L.

    1986-01-01

    The authors analyzed insulin receptors in cells cultured from a sibship of related parents who had two offspring with severe insulin resistance (Leprechaunism). 124 I-Insulin (1 ng/ml) binding to skin fibroblasts from the proband, mother, and father was 9, 60 and 62% of control cells, respectively, at equilibrium, Non-linear regression analysis, utilizing a two receptors model, of curvilinear Scatchard plots indicated a reduced number of high-affinity binding sites in both parents. Influx of L-Proline (System A), L-Serine (ASC) and L-Leucine (L) was similar in control and mutant cells. Similarly, during the depletion of intracellular amino acid pools, there was a release from transinhibition for System A and a decrease of transstimulation of Systems ASC and L in both cell lines. Surprisingly, insulin augmented, normally, A system influx with an ED 50 = 70 ng/ml at 24 0 C and 7 ng/ml at 37 0 C. By contrast insulin failed to simulated 3-0-methyl-D-glucose influx into the proband's cells, while normal cells were stimulated 30% with an ED 50 of 6 ng/ml. These results indicate that defective high-affinity insulin binding is inherited as an autosomal recessive trait; that general membrane functions are intact; that insulin regulates A system amino acid and hexose transport by two different mechanisms; and, that the latter mechanism is impaired by this family's receptor mutation

  5. Immunospecific red cell binding of iodine 125-labeled immunoglobulin G erythrocyte autoantibodies

    International Nuclear Information System (INIS)

    Masouredis, S.P.; Branks, M.J.; Garratty, G.; Victoria, E.J.

    1987-01-01

    The primary interaction of autoantibodies with red cells has been studied by using labeled autoantibodies. Immunoglobulin G red cell autoantibodies obtained from IgG antiglobulin-positive normal blood donors were labeled with radioactive iodine and compared with alloanti-D with respect to their properties and binding behavior. Iodine 125 -labeled IgG autoantibody migrated as a single homogeneous peak with the same relative mobility as human IgG on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric focusing pattern of labeled autoantibodies varied from donor to donor but was similar to that of alloanti-D, consisting of multiple IgG populations with isoelectric points in the neutral to alkaline range. 125 I-autoantibody bound to all human red cells of common Rh phenotypes. Evidence for immunospecific antibody binding of the labeled autoantibody was based on variation in equilibrium binding to nonhuman and human red cells of common and rare phenotypes, enhanced binding after red cell protease modification, antiglobulin reactivity of cell-bound IgG comparable to that of cell-bound anti-D, and saturation binding in autoantibody excess. Scatchard analysis of two 125 I-autoantibody preparations yielded site numbers of 41,500 and 53,300 with equilibrium constants of 3.7 and 2.1 X 10(8) L X mol-1. Dog, rabbit, rhesus monkey, and baboon red cells were antigen(s) negative by quantitative adsorption studies adsorbing less than 3% of the labeled autoantibody. Reduced ability of rare human D--red blood cells to adsorb the autoantibody and identification of donor autoantibodies that bind to Rh null red blood cells indicated that eluates contained multiple antibody populations of complex specificities in contrast to anti-D, which consists of a monospecific antibody population. Another difference is that less than 70% of the autoantibody IgG was adsorbed by maximum binding red blood cells as compared with greater than 85% for alloanti-D

  6. Coexistence of beta 1- and beta 2-adrenoceptors in the rabbit heart: quantitative analysis of the regional distribution by (-)-/sup 3/H-dihydroalprenolol binding

    Energy Technology Data Exchange (ETDEWEB)

    Brodde, O.E.; Leifert, F.J.; Krehl, H.J.

    1982-01-01

    We determined the amount of beta 1- and beta 2-adrenoceptors in right and left atria and ventricles of rabbits. For this purpose inhibition of specific (-)-/sup 3/H-dihydroalprenolol ((-)-/sup 3/H-DHA) binding (5 nM) by beta 1-selective (practolol, metoprolol) and beta 2-selective (zinterol, IPS 339) adrenergic drugs was determined and analyzed by pseudo-Scatchard (Hofstee) plots. For both atria, inhibition of binding by the four selective beta-adrenergic drugs resulted in non-linear Hofstee plots, suggesting the coexistence of both beta-adrenoceptor subtypes. From these plots we calculated a beta 1:beta 2-adrenoceptor ratio of 72:28 for the right atrium and of 82:18 for the left. In contrast, only a very small amount of beta 2-adrenoceptors (approximately 5-7% of the total beta-adrenoceptor population) could be detected in the ventricles. For comparison we analyzed the inhibition of specific (-)-/sup 3/H-DHA binding in tissues with homogeneous population of beta-adrenoceptors (beta 1:guinea pig left ventricle; beta 2: cerebellum of mature rats). For both tissues the four selective beta-adrenergic drugs showed linear Hofstee plots, demonstrating that in tissues with homogeneous beta-receptor population interaction of each drug with the receptor followed simple mass-action kinetics. We conclude that beta 1- and beta 2-adrenoceptors coexist in rabbit atria while the ventricles are predominantly endowed the beta 1-adrenoceptors.

  7. Specific binding of (/sup 3/H)LY186126, an analogue of indolidan (LY195115), to cardiac membranes enriched in sarcoplasmic reticulum vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, R.F.; Utterback, B.G.; Robertson, D.W.

    1989-05-01

    LY186126 was found to be a potent inhibitor of type IV cyclic AMP phosphodiesterase located in the sarcoplasmic reticulum of canine cardiac muscle. This compound, a close structural analogue of indolidan (LY195115), was prepared in high specific activity, tritiated form to study the positive inotropic receptor(s) for cardiotonic phosphodiesterase inhibitors such as indolidan and milrinone. A high-affinity binding site for (/sup 3/H)LY186126 was observed (Kd = 4 nM) in purified preparations of canine cardiac sarcoplasmic reticulum vesicles. Binding was proportional to vesicle protein, was inactivated by subjecting membranes to proteolysis or boiling, and was dependent on added Mg2+. Scatchard analysis suggested the presence of a single class of binding sites in the membrane preparation. Indolidan, milrinone, and LY186126 (all at 1 microM) produced essentially complete displacement of bound (/sup 3/H)LY186126, while nifedipine, propranolol, and prazosin had little or no effect at this concentration. This represents the first reported use of a radioactive analogue to label the inotropic receptor for cardiotonic phosphodiesterase inhibitors. The results suggest that (/sup 3/H)LY186126 is a useful radioligand for examining the subcellular site(s) responsible for positive inotropic effects of these drugs.

  8. Analysis of subcomponents of the gamma-aminobutyric acid/benzodiazepine receptor macromolecular complex in mammalian central nervous system

    International Nuclear Information System (INIS)

    McCabe, R.T.

    1987-01-01

    Since the presence of endogenous gamma-aminobutyric acid (GABA) may affect benzodiazepine binding to tissue sections in autoradiographic studies, a protocol designed to check for this influence has been investigated. [ 3 H]Flunitrazepam (1 nM) was used to label benzodiazepine receptors for autoradiographic localization. Bicuculline was added to the incubation medium of an additional set of tissue sections to antagonize any potential effect of endogenous GABA. Binding in these sections was compared to that occurring in another set in which excess GABA was added to create further GABA enhancement. Binding was also compared to adjacent sections which were treated similarly but also preincubated in distilled-deionized water to burst the cells by osmotic shock and eliminate endogenous GABA, thereby preventing any effect on benzodiazepine binding. The results indicated that endogenous GABA is indeed present in the slide-mounted tissue sections and is affecting benzodiazepine receptor binding differentially in various regions of the brain depending on the density of GABAergic innervation. Scatchard analysis of saturation data demonstrated that the alteration in BZ binding due to GABA was a result of a change in the affinity rather than number of receptors present

  9. Steroid hormone and epidermal growth factor receptors in meningiomas.

    Science.gov (United States)

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  10. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules

    International Nuclear Information System (INIS)

    Bashkin, P.; Doctrow, S.; Klagsbrun, M.; Svahn, C.M.; Folkman, J.; Vlodavsky, I.

    1989-01-01

    Basic fibroblast growth factor (bFGF) exhibits specific binding to the extracellular matrix (ECM) produced by cultured endothelial cells. Binding was saturable as a function both of time and of concentration of 125 I-bFGF. Scatchard analysis of FGF binding revealed the presence of about 1.5 x 10 12 binding sites/mm 2 ECM with an apparent k D of 610 nM. FGF binds to heparan sulfate (HS) in ECM as evidenced by (i) inhibition of binding in the presence of heparin or HS at 0.1-1 μg/mL, but not by chondroitin sulfate, keratan sulfate, or hyaluronic acid at 10 μg/mL, (ii) lack of binding to ECM pretreated with heparitinase, but not with chondroitinase ABC, and (iii) rapid release of up to 90% of ECM-bound FGF by exposure to heparin, HS, or heparitinase, but not to chondroitin sulfate, keratan sulfate, hyaluronic acid, or chondroitinase ABC. Oligosaccharides derived from depolymerized heparin, and as small as the tetrasaccharide, released the ECM-bound FGF, but there was little or no release of FGF by modified nonanticoagulant heparins such as totally desulfated heparin, N-desulfated heparin, and N-acetylated heparin. FGF released from ECM was biologically active, as indicated by its stimulation of cell proliferation and DNA synthesis in vascular endothelial cells and 3T3 fibroblasts. Similar results were obtained in studies on release of endogenous FGF-like mitogenic activity from Descement's membranes of bovine corneas. It is suggested that ECM storage and release of bFGF provide a novel mechanism for regulation of capillary blood vessel growth. Whereas ECM-bound FGF may be prevented from acting on endothelial cells, its displacement by heparin-like molecules and/or HS-degrading enzymes may elicit a neovascular response

  11. (3H)leukotriene B4 binding to the guinea pig spleen membranes: a rich tissue source for a high affinity leukotriene B4 receptor site

    International Nuclear Information System (INIS)

    Cheng, J.B.; Kohi, F.; Townley, R.G.

    1986-01-01

    To select a tissue rich for the high affinity leukotriene (LT)B 4 receptor site, they compared binding of 1 nM ( 3 H)LTB 4 (180 Ci/mmol) to the crude membrane preparations of guinea pig spleen, thymus, lung, uterus, bladder, brain, adrenal gland, small intestine, liver, kidney and heart. They found that the membrane preparations from spleen contained the highest binding activity per mg protein. They characterized the LTB 4 binding to the spleen preparation in detail. LTB 4 binding was rapid, reversible, stereoselective and saturable. The data from equilibrium experiments showed a linear Scatchard plot with a K/sub d/ of 1.6 nM and a binding site density of 259 fmol/mg prot. The rank order of agents competing for spleen ( 3 H)LTB 4 binding at 25 0 C was: LTB 4 (K/sub i/ = 2.8 nM) > 20-OH-LTB 4 (23 nM) > LTA 4 (48 nM) > LTA 4 methyl ester (0.13 μM) > 20-COOH-LTB 4 (> 6.6 μM) ≥ arachidonic acid (0.15 mM) similarly ordered FPL-55,712 (0.11 mM). At 4 0 C, LTB 4 (2.3 nM) competed at least 10x more effectively than 20-OH-LTB 4 (29 nM) and 20-COOH-LTB 4 (> 6.6 μM). HPLC analysis indicated that incubation of 84 ng LTB 4 with the spleen membrane at 25 0 C did not result in the formation of 20-OH-LTB 4 ( 3 H)LTB 4 receptor binding sites

  12. Effect of Scoparia dulcis extract on insulin receptors in streptozotocin induced diabetic rats: studies on insulin binding to erythrocytes.

    Science.gov (United States)

    Pari, Leelavinothan; Latha, Muniappan; Rao, Chippada Appa

    2004-01-01

    We investigated the insulin-receptor-binding effect of Scoparia dulcis plant extract in streptozotocin (STZ)-induced male Wistar rats, using circulating erythrocytes (ER) as a model system. An aqueous extract of S dulcis plant (SPEt) (200 mg/kg body weight) was administered orally. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors. Glibenclamide was used as standard reference drug. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (55.0 +/- 2.8%) than in SPEt-treated (70.0 +/- 3.5%)- and glibenclamide-treated (65.0 +/- 3.3%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with SPEt- and glibenclamide-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from SPEt and glibenclamide treated diabetic rats having 2.5 +/- 0.15 x 10(10) M(-1) (Kd1); 17.0 +/- 1.0 x 10(-8) M(-1) (Kd2), and 2.0 +/- 0.1 x 10(-10) M(-1) (Kd1); 12.3 +/- 0.9 x 10(-8) M(-1) (Kd2) compared with 1.0 +/- 0.08 x 10(-10) M(-1) (Kd1); 2.7 +/- 0.25 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in STZ-induced diabetic rats. Treatment with SPEt and glibenclamide significantly improved specific insulin binding, with receptor number and affinity binding (p < 0.001) reaching almost normal non-diabetic levels. The data presented here show that SPEt and glibenclamide increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.

  13. Affinity purification of human granulocyte macrophage colony-stimulating factor receptor alpha-chain. Demonstration of binding by photoaffinity labeling

    International Nuclear Information System (INIS)

    Chiba, S.; Shibuya, K.; Miyazono, K.; Tojo, A.; Oka, Y.; Miyagawa, K.; Takaku, F.

    1990-01-01

    The human granulocyte macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, a low affinity component of the receptor, was solubilized and affinity-purified from human placenta using biotinylated GM-CSF. Scatchard analysis of 125 I-GM-CSF binding to the placental membrane extract disclosed that the GM-CSF receptor had a dissociation constant (Kd) of 0.5-0.8 nM, corresponding to the Kd value of the GM-CSF receptor alpha-chain on the intact placental membrane. Affinity labeling of the solubilized protein using a photoreactive cross-linking agent, N-hydroxysuccinimidyl-4-azidobenzoate (HSAB), demonstrated a single specific band of 70-95 kDa representing a ligand-receptor complex. Approximately 2 g of the placental membrane extract was subjected to a biotinylated GM-CSF-fixed streptavidin-agarose column, resulting in a single major band at 70 kDa on a silver-stained sodium dodecyl sulfate gel. The radioiodination for the purified material disclosed that the purified protein had an approximate molecular mass of 70 kDa and a pI of 6.6. Binding activity of the purified material was demonstrated by photoaffinity labeling using HSAB- 125 I-GM-CSF, producing a similar specific band at 70-95 kDa as was demonstrated for the crude protein

  14. Characterization and autoradiographic visualization of (+)-[3H]SKF10,047 binding in rat and mouse brain: further evidence for phencyclidine/sigma opiate receptor commonality

    International Nuclear Information System (INIS)

    Sircar, R.; Nichtenhauser, R.; Ieni, J.R.; Zukin, S.R.

    1986-01-01

    The binding specificity of (+)-[ 3 H]N-allylnormetazocine, the dextrorotatory isomer of the prototypical sigma opiate SKF10,047, was determined in rat and mouse brain and the neuroanatomical distribution of its binding sites elucidated by quantitative autoradiography in sections of rat brain. Computer-assisted Scatchard analysis revealed an apparent two-site fit of the binding data in both species and in all rat brain regions examined. In whole rat brain, the Kd values were 3.6 and 153 nM and the maximum binding values were 40 fmol and 1.6 pmol/mg of protein for the apparent high- and low-affinity binding sites, respectively. (+)-SKF10,047, haloperidol and pentazocine were among the most potent inhibitors of 7 nM (+)-[ 3 H]SKF10,047 binding to the higher affinity sites; rank orders of ligand potencies at these sites differ sharply from those that have been reported for the [ 3 H]phencyclidine (PCP) site, or for eliciting PCP-like or SKF10,047-like behaviors. By contrast, rank orders of potency of sigma opiods, PCP derivatives and dioxolanes for displacement of 100 nM (+)-[ 3 H]SKF10,047 from the more numerous lower affinity sites in the presence of 100 nM haloperidol agreed closely with their potencies in the [ 3 H]PCP binding assay as well as their potencies in exerting PCP- or SKF10,047-like behavioral effects. In order to compare directly the anatomical localizations of PCP and (+)-SKF10,047 binding sites, quantitative light microscopy autoradiography utilizing tritium-labeled PCP and (+)-SKF10,047 was carried out in rat brain sections. (+)-[ 3 H]SKF10,047 binding was observed to follow the regional pattern of [3H]PCP binding but also to bind in other regions not associated with PCP receptors

  15. Effect of diet on insulin binding and glucose transport in rat sarcolemmal vesicles

    International Nuclear Information System (INIS)

    Grimditch, G.K.; Barnard, R.J.; Sternlicht, E.; Whitson, R.H.; Kaplan, S.A.

    1987-01-01

    The purpose of this study was to compare the effects of a high-fat, high-sucrose diet (HFS) and a low-fat, high-complex carbohydrate diet (LFC) on glucose tolerance, insulin binding, and glucose transport in rat skeletal muscle. During the intravenous glucose tolerance test, peak glucose values at 5 min were significantly higher in the HFS group; 0-, 20-, and 60-min values were similar. Insulin values were significantly higher in the HFS group at all time points (except 60 min), indicating whole-body insulin resistance. Skeletal muscle was responsible, in part, for this insulin resistance, because specific D-glucose transport in isolated sarcolemmal (SL) vesicles under basal conditions was similar between LFC and HFS rats, despite the higher plasma insulin levels. Scatchard analyses of insulin binding curves to sarcolemmal vesicles revealed that the K/sub a/ of the high-affinity binding sites was significantly reduced by the HFS diet; no other binding changes were noted. Specific D-glucose transport in SL vesicles after maximum insulin stimulation (1 U/kg) was significantly depressed in the HFS group, indicating that HFS feeding also caused a postbinding defect. These results indicate that the insulin resistance in skeletal muscle associated with a HFS diet is due to both a decrease in the K/sub a/ of the high-affinity insulin receptors and a postbinding defect

  16. Radioreceptor assay for analysis of fentanyl and its analogs in biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Alburges, M.E.

    1988-01-01

    The assay is based on the competition of these drugs with ({sup 3}H) fentanyl for opioid receptors in membrane preparations of rat forebrain in vitro. The binding in stereospecific, reversible and saturable. Scatchard plots of saturation suggest the presence of high and low affinity binding sites. Morphine and hydromorphone complete with ({sup 3}H)fentanyl for the opioid receptor, but other morphine-like compounds were relatively weak displacers of ({sup 3}H)fentanyl. Many other commonly abused drugs do not compete with ({sup 3}H)fentanyl for the opioid receptors. Urine samples from animals injected with fentanyl, ({plus minus})-cis-3-methylfentanyl, alpha-methylfentanyl, butyrylfentanyl and benzylfentanyl were analyzed by radioreceptor assay, radioimmunoassay, and gas chromatography/mass spectrometry. Urinary analysis of fentanyl showed a good correlation with these three methods; however, discrepancies were observed in the analysis of fentanyl analogs. This radioreceptor assay is well-suited as an initial assay for the detection of active analogs of fentanyl in urine with good correlation with other techniques in the analysis of fentanyl; however, there is substantial disagreement between techniques in the quantitation of fentanyl analogs. The implications of these discrepancies are discussed.

  17. Radioreceptor assay for analysis of fentanyl and its analogs in biological samples

    International Nuclear Information System (INIS)

    Alburges, M.E.

    1988-01-01

    The assay is based on the competition of these drugs with [ 3 H] fentanyl for opioid receptors in membrane preparations of rat forebrain in vitro. The binding in stereospecific, reversible and saturable. Scatchard plots of saturation suggest the presence of high and low affinity binding sites. Morphine and hydromorphone complete with [ 3 H]fentanyl for the opioid receptor, but other morphine-like compounds were relatively weak displacers of [ 3 H]fentanyl. Many other commonly abused drugs do not compete with [ 3 H]fentanyl for the opioid receptors. Urine samples from animals injected with fentanyl, (±)-cis-3-methylfentanyl, alpha-methylfentanyl, butyrylfentanyl and benzylfentanyl were analyzed by radioreceptor assay, radioimmunoassay, and gas chromatography/mass spectrometry. Urinary analysis of fentanyl showed a good correlation with these three methods; however, discrepancies were observed in the analysis of fentanyl analogs. This radioreceptor assay is well-suited as an initial assay for the detection of active analogs of fentanyl in urine with good correlation with other techniques in the analysis of fentanyl; however, there is substantial disagreement between techniques in the quantitation of fentanyl analogs. The implications of these discrepancies are discussed

  18. A new unextracted-sample radioimmunoassay method for hepatic endogenous nuclear L-tri-iodothyronine content

    International Nuclear Information System (INIS)

    Yagura, T.; Walfish, P.G.

    1982-01-01

    Endogenous L-tri-iodothyronine content in an hepatic nuclear extract was measured by a new unextracted-sample radioimmunoassay method using 8-anilinonaphthalene-1-sulphonic acid to inhibit the L-[ 125 I]tri-iodothyronine binding to the nuclear L-tri-iodothyronine receptor within the extract. The amount of endogenous L-tri-iodothyronine was 10-40 pg/0.2 ml of hepatic nuclear extract from euthyroid rats, compared with less than 3.125 pg/0.2ml from thyroidectomized rats. The results obtained were compared with a Sephadex G-25 column extracted-sample radioimmunoassay method and showed a good agreement. The values for the endogenous L-tri-iodothyronine content were utilized to correct for the L-tri-iodothyronine concentration within the binding assay mixture in order to accurately determine by Scatchard analysis the binding characteristics of the nuclear L-tri-iodothyronine receptor. The validity of the correction for endogenous L-tri-iodothyronine was demonstrated by using a nuclear extract from a thyroidectomized rat which was preincubated with a small known amount of L-tri-iodothyronine before determining the nuclear L-tri-iodothyronine receptor binding characteristics. It is concluded that the necessity and validity of using endogenous L-tri-iodothyronine corrections in the Scatchard analytical computations of the nuclear L-tri-iodothyronine receptor binding characteristics has been demonstrated, being particularly more important for affinity constant than maximum binding capacity. (author)

  19. Binding kinetics of Clostridium difficile toxins A and B to intestinal brush border membranes from infant and adult hamsters

    International Nuclear Information System (INIS)

    Rolfe, R.D.

    1991-01-01

    This study was undertaken to determine if the relative resistance of neonates and infants to Clostridium difficile-associated intestinal disease can be related to age-dependent differences in intestinal receptors for C. difficile toxins A and B. Brush border membranes (BBMs) from the small intestines of adult and infant hamsters were examined for their ability to bind radiolabeled toxins A and B. [125I]toxin A bound to both infant and adult hamster BBMs at physiological temperature, whereas [125I]toxin B did not bind to the BBMs under any of the conditions examined. The number of [125I]toxin A molecules bound at saturation was approximately 4 x 10(10) per micrograms of membrane protein for adult BBMs and 1 x 10(11) per micrograms of membrane protein for infant BBMs. Scatchard plot analysis suggested the presence of a single class of toxin A binding sites on both infant and adult hamster BBMs. Maximal binding capacity and Kd values were 0.63 pmol/mg of protein and 66.7 nM, respectively, for the infant BBMs, and 0.24 pmol/mg of protein and 27 nM, respectively, for the adult BBMs. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analyses of extracted BBM proteins revealed differences in the proteins of infant and adult BBMs. However, there were not any detectable differences in the protein bands which bound [125I]toxin A between infant and adult hamsters. The results from these investigations indicate that differences in the binding kinetics of toxins A and/or B to infant and adult hamster BBMs do not account for the observed differences in their susceptibility to C. difficile-associated intestinal disease

  20. Binding kinetics of Clostridium difficile toxins A and B to intestinal brush border membranes from infant and adult hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Rolfe, R.D. (Texas Tech Univ. Health Sciences Center, Lubbock (USA))

    1991-04-01

    This study was undertaken to determine if the relative resistance of neonates and infants to Clostridium difficile-associated intestinal disease can be related to age-dependent differences in intestinal receptors for C. difficile toxins A and B. Brush border membranes (BBMs) from the small intestines of adult and infant hamsters were examined for their ability to bind radiolabeled toxins A and B. (125I)toxin A bound to both infant and adult hamster BBMs at physiological temperature, whereas (125I)toxin B did not bind to the BBMs under any of the conditions examined. The number of (125I)toxin A molecules bound at saturation was approximately 4 x 10(10) per micrograms of membrane protein for adult BBMs and 1 x 10(11) per micrograms of membrane protein for infant BBMs. Scatchard plot analysis suggested the presence of a single class of toxin A binding sites on both infant and adult hamster BBMs. Maximal binding capacity and Kd values were 0.63 pmol/mg of protein and 66.7 nM, respectively, for the infant BBMs, and 0.24 pmol/mg of protein and 27 nM, respectively, for the adult BBMs. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analyses of extracted BBM proteins revealed differences in the proteins of infant and adult BBMs. However, there were not any detectable differences in the protein bands which bound (125I)toxin A between infant and adult hamsters. The results from these investigations indicate that differences in the binding kinetics of toxins A and/or B to infant and adult hamster BBMs do not account for the observed differences in their susceptibility to C. difficile-associated intestinal disease.

  1. [3H]rauwolscine binding to myometrial α2-adrenoceptors in pregnant guinea pig

    International Nuclear Information System (INIS)

    Arkinstall, S.J.; Jones, C.T.

    1988-01-01

    Uterine sympathetic nerves can exert an excitatory influence in late pregnancy and during parturition. Neuronal norepinephrine release is increased at these times and a diminished α 2 -adrenoceptor-mediated prejunctional inhibition could account for this. To assess whether an altered receptor population may contribute, [ 3 H]rauwolscine was used to measure α 2 -adrenoceptors in myometrial membranes at time intervals throughout pregnancy. High affinity [ 3 H]rauwolscine binding yielded linear Scatchard plots that in nonpregnant myometrium indicated a maximum binding density B max of 217 ± 42.4 fmol/mg protein. α 2 -Adrenoceptor density was increased twofold at midpregnancy (31 days) and thereafter fell sharply by up to 90% toward term (67 ± 2 days). When uterine growth is accounted for and data are expressed in terms of total myometrial population, α 2 -adrenoceptor number was eightfold (midpregnancy) and fourfold (term) greater than the nonpregnant value of 804 ± 322.4 fmol/uterus. α 2 -Adrenoceptors were also found to bind dopamine with high affinity. These observations could indicate a pregnancy-related change in uterine sympathetic autoinhibitory capacity and, since α 2 -adrenoceptors appear also to be located postjunctionally, explain in part reports of altered myometrial responsiveness to norepinephrine infusion and also the uterotonic actions of dopamine

  2. Prostaglandin E and F2 alpha receptors in human myometrium during the menstrual cycle and in pregnancy and labor

    International Nuclear Information System (INIS)

    Giannopoulos, G.; Jackson, K.; Kredentser, J.; Tulchinsky, D.

    1985-01-01

    The binding of prostaglandins E1 and F2 alpha has been studied in the human myometrium and cervix during the menstrual cycle and in the myometrium of pregnant patients at term before and during labor. Tritium-labeled prostaglandin E1 and F2 alpha binding was saturable and reversible. Scatchard analysis of tritium-labeled prostaglandin E1 binding was linear, which suggests a single class of high-affinity binding sites with an estimated apparent equilibrium dissociation constant of 2.5 to 5.4 nmol/L and inhibitor affinities of 0.9, 273, 273, and 217 nmol/L for prostaglandins E2, A1, B1, and F2 alpha, respectively. Scatchard analysis of tritium-labeled prostaglandin F2 alpha, binding was also linear, but the affinity of these binding sites was much lower, with an average dissociation constant of 50 nmol/L and inhibitor affinities of 1.6, 2.2, and 11.2 nmol/L for prostaglandins E1, E2, and A1, respectively. In nonpregnant patients, the concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were similar in the myometrium during the proliferative and secretory phases of the menstrual cycle, but the concentration of these sites was much lower in the cervix. The concentration of the tritium-labeled prostaglandin E1 binding sites was significantly lower in the myometrium of pregnant patients at term than in the myometrium of nonpregnant patients. The concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were not significantly different in the upper and lower myometrium of pregnant patients at term or in the myometrium of such patients before and during labor. The concentrations of the tritium-labeled prostaglandin F2 alpha binding sites during the menstrual cycle and in pregnancy at term were similar to those of tritium-labeled prostaglandin E1 binding sites

  3. Prostaglandin E and F2 alpha receptors in human myometrium during the menstrual cycle and in pregnancy and labor

    Energy Technology Data Exchange (ETDEWEB)

    Giannopoulos, G.; Jackson, K.; Kredentser, J.; Tulchinsky, D.

    1985-12-15

    The binding of prostaglandins E1 and F2 alpha has been studied in the human myometrium and cervix during the menstrual cycle and in the myometrium of pregnant patients at term before and during labor. Tritium-labeled prostaglandin E1 and F2 alpha binding was saturable and reversible. Scatchard analysis of tritium-labeled prostaglandin E1 binding was linear, which suggests a single class of high-affinity binding sites with an estimated apparent equilibrium dissociation constant of 2.5 to 5.4 nmol/L and inhibitor affinities of 0.9, 273, 273, and 217 nmol/L for prostaglandins E2, A1, B1, and F2 alpha, respectively. Scatchard analysis of tritium-labeled prostaglandin F2 alpha, binding was also linear, but the affinity of these binding sites was much lower, with an average dissociation constant of 50 nmol/L and inhibitor affinities of 1.6, 2.2, and 11.2 nmol/L for prostaglandins E1, E2, and A1, respectively. In nonpregnant patients, the concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were similar in the myometrium during the proliferative and secretory phases of the menstrual cycle, but the concentration of these sites was much lower in the cervix. The concentration of the tritium-labeled prostaglandin E1 binding sites was significantly lower in the myometrium of pregnant patients at term than in the myometrium of nonpregnant patients. The concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were not significantly different in the upper and lower myometrium of pregnant patients at term or in the myometrium of such patients before and during labor. The concentrations of the tritium-labeled prostaglandin F2 alpha binding sites during the menstrual cycle and in pregnancy at term were similar to those of tritium-labeled prostaglandin E1 binding sites.

  4. Flow injection on-line oxidizing fluorometry coupled to dialysis sampling for the study of carbamazepine-protein binding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiqi [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)]. E-mail: zqzhang@snnu.edu.cn; Liang Guoxi [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2005-04-22

    The mechanism of binding of carbamazepine (CBZ) with bovine serum albumin (BSA) has been investigated in vitro based on a new flow injection fluorometry coupled to the technique of dialysis sampling. The CBZ and BSA were mixed in different molar ratios in 0.050 mol L{sup -1} phosphate buffer (containing 0.9% NaCl), pH 7.4, and incubated at 37 {+-} 0.5 deg. C in a water bath. The dialysis sampler was utilized to sample free CBZ from mixed solution with a relative dialytic efficiency of 7.6%. Then the CBZ in dialysis solution was injected into carrier and on-line oxidized by lead dioxide solid-phase reactor into fluorescent product with a maximum excitation wavelength of 355 nm and a maximum emission wavelength of 478 nm. The fluorescence intensity measured was linear proportional with the concentration of free CBZ in mixed solution over the range of 1 x 10{sup -5} to 2 x 10{sup -4} mol L{sup -1} with the detection limit of 6 x 10{sup -6} mol L{sup -1}. According to the fluorescence measurement results from mixed solution, the association constant (K) estimated for CBZ-BSA binding and the number of the binding site (n) with Scatchard analysis were 1.08 x 10{sup 4} L mol{sup -1} and 0.94, respectively. Stern-Volmer plots indicated the presence of dynamic component in the quenching mechanism. The acting force was suggested to be mainly hydrophobic and the distance between the acceptor and donor was 3.12 nm. The estimated binding parameters agreed well with literature values.

  5. Insulin binding characteristics in canine muscle tissue: effects of the estrous cycle phases

    Directory of Open Access Journals (Sweden)

    Álan G. Pöppl

    Full Text Available Abstract: Hormonal fluctuations during the different estrous cycle are a well-recognized cause of insulin resistance in bitches, and little is known about insulin receptor binding or post-binding defects associated with insulin resistance in dogs. To evaluate insulin binding characteristics in muscle tissue of bitches during the estrous cycle, 17 owned bitches were used in the study (six in anestrus, five in estrus, and six in diestrus. An intravenous glucose tolerance test (IVGTT was performed in all patients by means of injection of 1mL/kg of a glucose 50% solution (500mg/kg, with blood sample collection for glucose determination at 0, 3, 5, 7, 15, 30, 45 and 60 minutes after glucose infusion. Muscle samples, taken after spaying surgery, were immediately frozen in liquid nitrogen and then stored at -80 ºC until the membranes were prepared by sequential centrifugation after being homogenized. For binding studies, membranes were incubated in the presence of 20,000cpm of human 125I-insulin and in increasing concentrations of unlabeled human regular insulin for cold saturation. The IVGTT showed no differences among bitches during the estrous cycle regarding baseline glycemia or glycemic response after glucose infusion. Two insulin binding sites - high-affinity and low-affinity ones - were detected by Scatchard analysis, and significant statistical differences were observed in the dissociation constant (Kd1 and maximum binding capacity (Bmax1 of the high-affinity binding sites. The Kd1 for the anestrus group (6.54±2.77nM/mg of protein was smaller (P<0.001 than for the estrus (28.54±6.94nM/mg of protein and diestrus (15.56±3.88nM/mg of protein groups. Bmax1 in the estrus (0.83±0.42nM/mg of protein and diestrus (1.24±0.24nM/mg of protein groups were also higher (P<0.001 than the values observed in anestrus (0.35±0.06nM/mg of protein. These results indicate modulation of insulin binding characteristics during different phases of the estrous

  6. Insulin-like growth factor-I and insulin-like growth factor binding proteins in the bovine mammary gland: Receptors, endogenous secretion, and appearance in milk

    International Nuclear Information System (INIS)

    Campbell, P.G.

    1988-01-01

    This is the first study to characterize both insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins (IGFBPs) in bovine milk, to characterize the IGF-I receptor in the dry and lactating mammary gland, and to report de novo synthesis and secretion of IGF-I and IGFBP from normal mammary tissue. Immunoreactive IGF-I was principally associated with 45 kDa IGFBP in milk. Multiparous cows had a higher IGF-I concentration of 307 ng/ml than primiparous cows at 147 ng/ml. IGF-I concentration on day 56 of lactation was 34 ng/ml for combined parity groups. At parturition, IGF-I mass in blood and milk pools was 1.4 and 1.2 mg, respectively. Binding of 125 I-IGF-I was specific for IGF-I with anIC 50 of 2.2 ng which was a 10- and 1273-fold greater affinity than IGF-II and insulin, respectively. Association constants, as determined by Scatchard analysis, were similar for both pregnant and lactating cows at 3.5 and 4.0 L/nM, respectively. In addition, estimated mean receptor concentration was 0.25 and 0.23 pM/mg protein for pregnant and lactating cows, respectively. In a survey of mammary microscomes prepared from 48 cows, 125 I-IGF-I binding declined with progressing lactation and a similar trend was observed during pregnancy

  7. Cultured bovine brain capillary endothelial cells (BBCEC) - a blood-brain barrier model for studying the binding and internalization of insulin and insulin-like growth factor 1

    International Nuclear Information System (INIS)

    Keller, B.T.; Borchardt, R.T.

    1987-01-01

    Cultured bovine brain capillary endothelial cells (BBCEC) have previously been reported by their laboratory as a working model for studying nutrient and drug transport and metabolism at the blood-brain barrier. In the present study, they have utilized this culture system to investigate the binding and internalization of [ 125 I]-labelled insulin (INS) and insulin-like growth factor 1(IGF-1) by BBCEC. After 2 hrs at 23 0 C, the specific binding of INS and IGF-1 was 1.6% and 13.6%, respectively. At 37 0 C, the maximum specific binding was 0.9% for INS and 5.8% for IGF-1. Using an acid-wash technique to assess peptide internalization, it was observed that, at 37 0 C, approximately 60% of the bound INS rapidly became resistant to acid treatment, a value which was constant over 2 hr. With IGF-1, a similar proportion of the bound material, 62%, became resistant by 30 min, but subsequently decreased to 45% by 2 hr. Scatchard analysis of competitive binding studies indicated the presence of two binding sites for each protein, having K/sub d/'s of 0.82 nM and 19.2 nM for INS and 0.39 nM and 3.66 nM for IGF-1. Little change in the amount of INS binding was observed over a four-day interval as the cultures became a confluent monolayer. The present report of binding and internalization of these proteins suggests that the BBCEC may utilize a receptor-mediated process to internalize and/or transport (transcytosis) INS and IGF-1 from the circulation

  8. Microbial methodological artifacts in [3H]glutamate receptor binding assays

    International Nuclear Information System (INIS)

    Yoneda, Y.; Ogita, K.

    1989-01-01

    Incubation of radiolabeled L-glutamic acid, a putative central excitatory neurotransmitter, in 50 mM Tris-acetate buffer (pH 7.4) at 30 degrees C in the absence of brain synaptic membranes resulted in a significant adsorption of the radioactivity to glass fiber filters routinely employed to trap the bound ligand in receptor binding assays. The adsorption was not only eliminated by the inclusion of L-isomers of structurally related amino acids, but also inhibited by that of most presumed agonists and antagonists for the brain glutamate receptors. This displaceable adsorption was a temperature-dependent nonreversible, and saturable phenomenon. Scatchard analysis of these data revealed that the adsorption consisted of a single component with an apparent dissociation constant of 73 nM. The displaceable adsorption was significantly attenuated by a concurrent incubation with papain, pronase E, and phospholipase C. A significant amount of the radioactivity was detected in the pass-through fraction of the Dowex column following an application of the reaction mixture incubated with purified [ 3 H]glutamate at 30 degree C for 60 min in the absence of membranous proteins added. Complete abolition of the displaceable adsorption resulted from the use of incubation buffer boiled at 100 degrees C as well as filtered through a nitrocellulose membrane filter with a pore size of 0.45 micron immediately before use. These results suggest that the displaceable adsorption may be attributable to the radioactive metabolite of [ 3 H]glutamate by microorganisms contaminating the Tris-acetate buffer. This might in part contribute to some of the controversial results with regard to receptor binding studies on acidic amino acids

  9. Interaction of nogalamycin and analogs with DNA and other biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W C [Univ. of Minnesota, Minneapolis; Pschigoda, L M; Schpok, S L.F.; Moscowitz, A.; McGovren, J P; Neta, P; Merritt, M V; Li, L H

    1981-01-01

    The interaction with calf thymus DNA of the anthracycline antibiotics, nogalamycin and its analogs, was studied by electronic absorption, circular dichroism (CD), thermal denaturation, solvent partition and pulse radiolysis techniques. The Scatchard, thermal denaturation (..delta..T/sub m/), difference circular dichroism (..delta..CD) and solvent partition binding parameters gave the same order of relative binding on a given lot of DNA, but some parameters were DNA-lot-dependent. In general, molecules containing the sugar moiety nogalose at C-7 or those having the natural or dis stereochemistry of nogalamycin at C-7 bound more strongly to DNA than did the molecules lacking nogalose or those with the opposite configuration at C-7 (con stereochemistry). This stereochemical-binding correlation differs from that found for adriamycin which has the con stereochemistry, but which binds strongly to DNA. Scatchard binding parameters could not be obtained from the pulse radiolysis or solvent partition techniques because of solubility difficulties.

  10. Binding of the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs to tRNA(phe..

    Directory of Open Access Journals (Sweden)

    Anirban Basu

    Full Text Available BACKGROUND: Three new analogs of berberine with aryl/ arylalkyl amino carbonyl methyl substituent at the 9-position of the isoquinoline chromophore along with berberrubine were studied for their binding to tRNA(phe by wide variety of biophysical techniques like spectrophotometry, spectrofluorimetry, circular dichroism, thermal melting, viscosity and isothermal titration calorimetry. METHODOLOGY/ PRINCIPAL FINDINGS: Scatchard binding isotherms revealed that the cooperative binding mode of berberine was propagated in the analogs also. Thermal melting studies showed that all the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs stabilized the tRNA(phe more in comparison to berberine. Circular dichroism studies showed that these analogs perturbed the structure of tRNA(phe more in comparison to berberine. Ferrocyanide quenching studies and viscosity results proved the intercalative binding mode of these analogs into the helical organization of tRNA(phe. The binding was entropy driven for the analogs in sharp contrast to the enthalpy driven binding of berberine. The introduction of the aryl/arylalkyl amino carbonyl methyl substituent at the 9-position thus switched the enthalpy driven binding of berberine to entropy dominated binding. Salt and temperature dependent calorimetric studies established the involvement of multiple weak noncovalent interactions in the binding process. CONCLUSIONS/ SIGNIFICANCE: The results showed that 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs exhibited almost ten folds higher binding affinity to tRNA(phe compared to berberine whereas the binding of berberrubine was dramatically reduced by about twenty fold in comparison to berberine. The spacer length of the substitution at the 9-position of the isoquinoline chromophore appears to be critical in modulating the binding affinities towards tRNA(phe.

  11. Metal speciation in surface waters of the Great Lakes region. Annual report (final)

    International Nuclear Information System (INIS)

    Giesy, J.P.

    1983-01-01

    Predicting the dynamics of trace metals such as uranium by thermodynamic prediction models is contingent upon accurate stability constants. Conditional stability constants (K') for the binding of uranyl ion UO2(+2) to humic substances were determined by both Scatchard analyses and by fitting the data to a Gaussian model of multiple sites. UO2(+2) was separated from that which was bound to humic material by ion exchange. Uranium concentration was measured by laser fluorometry. There is a broad range of strengths of sites such that K' was dependent on the UO2(+2)/humic ratio. The maximum binding capacity of the humic material was .000483 M/g. The log K' determined for log metal/ligand ratios of -1.5 to -0.5, the ecologically significant range of interest for UO2(+2), which was from 10 - 50 microgram/l at the carbon concentration of 2.36 mg/l used in this study, was determined by Scatchard analysis to be 7.38. The estimate based on a Gaussian distribution was 6.85

  12. Nuclear triiodothyronine receptor binding characteristics and occupancy in obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Hillgartner, F.B.; Romsos, D.R.

    1987-01-01

    Obese (ob/ob) mice exhibit reduced adaptive thermogenesis associated with an impairment of thyroid hormone action. The mechanism underlying the latter defect was investigated by comparing the binding characteristics and occupancy of solubilized nuclear 3,5,3'-triiodothyronine (T 3 ) receptors from livers of lean and obese mice. T 3 concentration was measured by radioimmunoassay. Scatchard analysis showed minimal differences in B/sub max/ and K/sub d/ between phenotypes at both 4 and 8-10 wk of age, indicating that reduced hepatic thyroid hormone expression in obese mice is not caused by alterations in nuclear receptor concentration or affinity. In contrast, nuclear T 3 receptor occupancy (endogenous T 3 associated with the specific receptor divided by B/sub max/) was 14 and 23% lower in 4- and 8- to 10-wk old obese mice, respectively. Together with reported changes in hepatic thyroid hormone-sensitive enzymes, these data are consistent with a diminished nuclear T 3 signal initiating thyroid hormone action in obese mice. Decreased nuclear T 3 receptor occupancy may be secondary to a low transport of plasma T 3 to the nuclear pool. In conclusion, impaired hepatic thyroid hormone action in obese mice is mediated in part at least by a reduction in nuclear T 3 receptor occupancy

  13. Limitations in linearized analyses of binding equilibria: binding of TNP-ATP to the H(4)-H(5) loop of Na/K-ATPase

    Czech Academy of Sciences Publication Activity Database

    Kubala, Martin; Plášek, J.; Amler, Evžen

    2003-01-01

    Roč. 32, č. 4 (2003), s. 363-369 ISSN 0175-7571 Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM 113200001 Keywords : TNP-ATP * scatchard plot * sudium pump Subject RIV: BO - Biophysics Impact factor: 1.769, year: 2003

  14. Some theoretical aspects of hormone receptor determination

    International Nuclear Information System (INIS)

    Sluiter, W.J.

    1981-01-01

    Suitable antisera for determination of hormone receptors are not available for the majority of hormone receptors. Therefore, the determination of hormone receptors is mostly performed in terms of binding capacity for the appropriate hormone, using radioactive hormone labels. Some theoretical aspects of such a receptor determination are discussed including the length of incubation (total or unoccupied receptor concentration), single point or multiple point (Scatchard) analysis (regarding the influence of other specific binders), the correction procedure for non-specific binding and the influence of the circulating hormone level. (Auth.)

  15. Analysis of experimental positron-molecule binding energies

    International Nuclear Information System (INIS)

    Danielson, J R; Surko, C M; Young, J A

    2010-01-01

    Experiments show that positron annihilation on molecules frequently occurs via capture into vibrational Feshbach resonances. In these cases, the downshifts in the annihilation spectra from the vibrational mode spectra provide measures of the positron-molecule binding energies. An analysis of these binding energy data is presented in terms of the molecular dipole polarizability, the permanent dipole moment, and the number of π bonds in aromatic molecules. The results of this analysis are in reasonably good agreement with other information about positron-molecule bound states. Predictions for other targets and promising candidate molecules for further investigation are discussed.

  16. Molecular cloning, expression, functional characterization, chromosomal localization, and gene structure of junctate, a novel integral calcium binding protein of sarco(endo)plasmic reticulum membrane.

    Science.gov (United States)

    Treves, S; Feriotto, G; Moccagatta, L; Gambari, R; Zorzato, F

    2000-12-15

    Screening a cDNA library from human skeletal muscle and cardiac muscle with a cDNA probe derived from junctin led to the isolation of two groups of cDNA clones. The first group displayed a deduced amino acid sequence that is 84% identical to that of dog heart junctin, whereas the second group had a single open reading frame that encoded a polypeptide with a predicted mass of 33 kDa, whose first 78 NH(2)-terminal residues are identical to junctin whereas its COOH terminus domain is identical to aspartyl beta-hydroxylase, a member of the alpha-ketoglutarate-dependent dioxygenase family. We named the latter amino acid sequence junctate. Northern blot analysis indicates that junctate is expressed in a variety of human tissues including heart, pancreas, brain, lung, liver, kidney, and skeletal muscle. Fluorescence in situ hybridization analysis revealed that the genetic loci of junctin and junctate map to the same cytogenetic band on human chromosome 8. Analysis of intron/exon boundaries of the genomic BAC clones demonstrate that junctin, junctate, and aspartyl beta-hydroxylase result from alternative splicing of the same gene. The predicted lumenal portion of junctate is enriched in negatively charged residues and is able to bind calcium. Scatchard analysis of equilibrium (45)Ca(2+) binding in the presence of a physiological concentration of KCl demonstrate that junctate binds 21.0 mol of Ca(2+)/mol protein with a k(D) of 217 +/- 20 microm (n = 5). Tagging recombinant junctate with green fluorescent protein and expressing the chimeric polypeptide in COS-7-transfected cells indicates that junctate is located in endoplasmic reticulum membranes and that its presence increases the peak amplitude and transient calcium released by activation of surface membrane receptors coupled to InsP(3) receptor activation. Our study shows that alternative splicing of the same gene generates the following functionally distinct proteins: an enzyme (aspartyl beta-hydroxylase), a structural

  17. Affinities and densities of high-affinity [3H]muscimol (GABA-A) binding sites and of central benzodiazepine receptors are unchanged in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy

    International Nuclear Information System (INIS)

    Butterworth, R.F.; Lavoie, J.; Giguere, J.F.; Pomier-Layrargues, G.

    1988-01-01

    The integrity of GABA-A receptors and of central benzodiazepine receptors was evaluated in membrane preparations from prefrontal cortex and caudate nuclei obtained at autopsy from nine cirrhotic patients who died in hepatic coma and an equal number of age-matched control subjects. Histopathological studies revealed Alzheimer Type II astrocytosis in all cases in the cirrhotic group; controls were free from neurological, psychiatric or hepatic diseases. Binding to GABA-A receptors was studied using [ 3 H]muscimol as radioligand. The integrity of central benzodiazepine receptors was evaluated using [ 3 H]flunitrazepam and [ 3 H]Ro15-1788. Data from saturation binding assays was analyzed by Scatchard plot. No modifications of either affinities (Kd) or densities (Bmax) of [ 3 H]muscimol of central benzodiazepine binding sites were observed. These findings do not support recent suggestions that alterations of either high-affinity GABA or benzodiazepine receptors play a significant role in the pathogenesis of hepatic encephalopathy

  18. Two high-affinity ligand binding states of uterine estrogen receptor distinguished by modulation of hydrophobic environment

    International Nuclear Information System (INIS)

    Hutchens, T.W.; Li, C.M.; Zamah, N.M.; Besch, P.K.

    1987-01-01

    The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea buffers and control buffers by chromatography through small columns of Sephadex G-25 or by dialysis at 0.6 0 C. Equilibrium dissociation constants (K/sub d/) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17β-[ 3 H]estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification. These results demonstrate nonenzymatic means by which not only the binding capacity but also the affinity of receptor for estradiol can be reversibly controlled, suggesting that high concentrations of urea might be more effectively utilized during the physicochemical characterization and purification of steroid receptor proteins

  19. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Mean specific binding of insulin was significantly lowered in diabetic rats with a decrease in plasma insulin. This was due to a significant decrease in mean insulin receptors. Erythrocytes from diabetic rats showed a decreased ability for insulin–receptor binding when compared with THC-treated diabetic rats. Scatchard ...

  20. Global analysis of small molecule binding to related protein targets.

    Directory of Open Access Journals (Sweden)

    Felix A Kruger

    2012-01-01

    Full Text Available We report on the integration of pharmacological data and homology information for a large scale analysis of small molecule binding to related targets. Differences in small molecule binding have been assessed for curated pairs of human to rat orthologs and also for recently diverged human paralogs. Our analysis shows that in general, small molecule binding is conserved for pairs of human to rat orthologs. Using statistical tests, we identified a small number of cases where small molecule binding is different between human and rat, some of which had previously been reported in the literature. Knowledge of species specific pharmacology can be advantageous for drug discovery, where rats are frequently used as a model system. For human paralogs, we demonstrate a global correlation between sequence identity and the binding of small molecules with equivalent affinity. Our findings provide an initial general model relating small molecule binding and sequence divergence, containing the foundations for a general model to anticipate and predict within-target-family selectivity.

  1. Identification and characterization of alpha 1 adrenergic receptors in the canine prostate using [125I]-Heat

    International Nuclear Information System (INIS)

    Lepor, H.; Baumann, M.; Shapiro, E.

    1987-01-01

    We have recently utilized radioligand receptor binding methods to characterize muscarinic cholinergic and alpha adrenergic receptors in human prostate adenomas. The primary advantages of radioligand receptor binding methods are that neurotransmitter receptor density is quantitated, the affinity of unlabelled drugs for receptor sites is determined, and receptors can be localized using autoradiography on slide-mounted tissue sections. Recently, [ 125 I]-Heat, a selective and high affinity ligand with high specific activity (2200 Ci/mmole) has been used to characterize alpha 1 adrenergic receptors in the brain. In this study alpha 1 adrenergic receptors in the dog prostate were characterized using [ 125 I]-Heat. The Scatchard plots were linear indicating homogeneity of [ 125 I]-Heat binding sites. The mean alpha 1 adrenergic receptor density determined from these Scatchard plots was 0.61 +/- 0.07 fmol/mg. wet wt. +/- S.E.M. The binding of [ 125 I]-Heat to canine prostate alpha 1 adrenergic binding sites was of high affinity (Kd = 86 +/- 19 pM). Steady state conditions were reached following an incubation interval of 30 minutes and specific binding and tissue concentration were linear within the range of tissue concentrations assayed. The specificity of [ 125 I]-Heat for alpha 1 adrenergic binding sites was confirmed by competitive displacement assays using unlabelled clonidine and prazosin. Retrospective analysis of the saturation experiments demonstrated that Bmax can be accurately calculated by determining specific [ 125 I]-Heat binding at a single ligand concentration. [ 125 I]-Heat is an ideal ligand for studying alpha 1 adrenergic receptors in the prostate and its favorable properties should facilitate the autoradiographic localization of alpha 1 adrenergic receptors in the prostate

  2. Untitled

    African Journals Online (AJOL)

    from Scatchard plots. The change in free energy of binding AG, , and the change in free energy of dissociation of bound complex per binding site |-AG, /n) were calculated from K. It is proposed that ethanol stabilizes the surfactant monomers when compared with hydrophobic hydration and hence enhances hydrophobic ...

  3. Atrazine Molecular Imprinted Polymers: Comparative Analysis by Far-Infrared and Ultraviolet Induced Polymerization

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2014-01-01

    Full Text Available Atrazine molecular imprinted polymers (MIPs were comparatively synthesized using identical polymer formulation by far-infrared (FIR radiation and ultraviolet (UV-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIPuv possessed specific binding to atrazine compared with their MIPFIR radiation counterparts. Scatchard plot’s of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high- and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF and different selectivity index (SI for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM, Fourier transform infrared absorption (FT-IR, and mercury analyzer (MA. Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE of atrazine from lake water, followed by high performance liquid chromatography (HPLC analysis. Compared with commercial C18 SPE sorbent (86.4%–94.8%, higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%–97.1% and 94.4%–101.9%, for both MIPs, respectively.

  4. Pharmacologically relevant receptor binding characteristics and 5alpha-reductase inhibitory activity of free Fatty acids contained in saw palmetto extract.

    Science.gov (United States)

    Abe, Masayuki; Ito, Yoshihiko; Oyunzul, Luvsandorj; Oki-Fujino, Tomomi; Yamada, Shizuo

    2009-04-01

    Saw palmetto extract (SPE), used widely for the treatment of benign prostatic hyperplasia (BPH) has been shown to bind alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine (1,4-DHP) calcium channel antagonist receptors. Major constituents of SPE are lauric acid, oleic acid, myristic acid, palmitic acid and linoleic acid. The aim of this study was to investigate binding affinities of these fatty acids for pharmacologically relevant (alpha(1)-adrenergic, muscarinic and 1,4-DHP) receptors. The fatty acids inhibited specific [(3)H]prazosin binding in rat brain in a concentration-dependent manner with IC(50) values of 23.8 to 136 microg/ml, and specific (+)-[(3)H]PN 200-110 binding with IC(50) values of 24.5 to 79.5 microg/ml. Also, lauric acid, oleic acid, myristic acid and linoleic acid inhibited specific [(3)H]N-methylscopolamine ([(3)H]NMS) binding in rat brain with IC(50) values of 56.4 to 169 microg/ml. Palmitic acid had no effect on specific [(3)H]NMS binding. The affinity of oleic acid, myristic acid and linoleic acid for each receptor was greater than the affinity of SPE. Scatchard analysis revealed that oleic acid and lauric acid caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]prazosin, [(3)H]NMS and (+)-[(3)H]PN 200-110. The results suggest that lauric acid and oleic acid bind noncompetitively to alpha(1)-adrenergic, muscarinic and 1,4-DHP calcium channel antagonist receptors. We developed a novel and convenient method of determining 5alpha-reductase activity using LC/MS. With this method, SPE was shown to inhibit 5alpha-reductase activity in rat liver with an IC(50) of 101 microg/ml. Similarly, all the fatty acids except palmitic acid inhibited 5alpha-reductase activity, with IC(50) values of 42.1 to 67.6 microg/ml. In conclusion, lauric acid, oleic acid, myristic acid, and linoleic acid, major constituents of SPE, exerted binding activities of alpha(1)-adrenergic, muscarinic and 1,4-DHP receptors and inhibited 5

  5. Characterization of guinea pig myocardial leukotriene C4 binding sites. Regulation by cations and sulfhydryl-directed reagents

    International Nuclear Information System (INIS)

    Hogaboom, G.K.; Mong, S.; Stadel, J.M.; Crooke, S.T.

    1985-01-01

    Using [ 3 H]leukotriene C4 (LTC4) and radioligand-binding techniques, specific leukotriene C4 binding sites have been identified in membranes derived from guinea pig ventricular myocardium. High performance liquid chromatography analyses indicated that, in the presence of the gamma-glutamyl transpeptidase inhibitor L-serine-borate (80 mM), less than 2% of membrane-bound [ 3 H]LTC4 was converted at 20 degrees to [ 3 H]leukotriene D4 or [ 3 H]leukotriene E4. The specific binding of 4 nM [ 3 H]LTC4, in the presence of 80 mM L-serine-borate, reached a stable steady state within 15 min at 20 degrees (pH 7.5). A monophasic Scatchard plot of saturation binding data yielded a dissociation constant (Kd) of 27.5 +/- 6.0 nM and a maximum number of binding sites (Bmax) of 19.9 +/- 5.2 pmol/mg of membrane protein. Competition binding studies of [ 3 H]LTC4 with synthetic leukotriene C4, leukotriene D4, and leukotriene E4 and the putative peptidoleukotriene antagonists FPL 55712, SKF 88046, and 4R-hydroxy-5S-1-cysteinylglycine-6Z-nonadecanoic acid revealed an order of potency of leukotriene C4 much greater than 4R-hydroxy-5S-1-cysteinylglycine-6Z-nonadecanoic acid greater than SKF 88046 greater than LTE4 greater than LTD4 greater than FPL 55712. The specific [ 3 H]LTC4 binding was stimulated by the divalent cations Ca2+, Mg2+, and Mn2+ and to a lesser degree by the monovalent cations Na+, K+, Li+, and NH4+. CaCl2 (3 mM) and NaCl (150 mM) stimulated the LTC4 binding by increasing the Bmax to 42.6 +/- 5.9 and 35.0 +/- 2.0 pmol/mg, respectively, but had minimal effects on Kd

  6. Direct labelling of the human P2X7 receptor and identification of positive and negative cooperativity of binding.

    Science.gov (United States)

    Michel, A D; Chambers, L J; Clay, W C; Condreay, J P; Walter, D S; Chessell, I P

    2007-05-01

    The P2X(7) receptor exhibits complex pharmacological properties. In this study, binding of a [(3)H]-labelled P2X(7) receptor antagonist to human P2X(7) receptors has been examined to further understand ligand interactions with this receptor. The P2X(7) receptor antagonist, N-[2-({2-[(2-hydroxyethyl)amino]ethyl}amino)-5-quinolinyl]-2-tricyclo[3.3.1.1(3,7)]dec-1-ylacetamide (compound-17), was radiolabelled with tritium and binding studies were performed using membranes prepared from U-2 OS or HEK293 cells expressing human recombinant P2X(7) receptors. Binding of [(3)H]-compound-17 was higher in membranes prepared from cells expressing P2X(7) receptors than from control cells and was inhibited by ATP suggesting labelled sites represented human P2X(7) receptors. Binding was reversible, saturable and modulated by P2X(7) receptor ligands (Brilliant Blue G, KN62, ATP, decavanadate). Furthermore, ATP potency was reduced in the presence of divalent cations or NaCl. Radioligand binding exhibited both positive and negative cooperativity. Positive cooperativity was evident from bell shaped Scatchard plots, reduction in radioligand dissociation rate by unlabelled compound-17 and enhancement of radioligand binding by KN62 and unlabelled compound-17. ATP and decavanadate inhibited binding in a negative cooperative manner as they enhanced radioligand dissociation. These data demonstrate that human P2X(7) receptors can be directly labelled and provide novel insights into receptor function. The positive cooperativity observed suggests that binding of compound-17 to one subunit in the P2X(7) receptor complex enhances subsequent binding to other P2X(7) subunits in the same complex. The negative cooperative effects of ATP suggest that ATP and compound-17 bind at separate, interacting, sites on the P2X(7) receptor.

  7. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Directory of Open Access Journals (Sweden)

    Anders Gerd

    2008-01-01

    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  8. New insight on biological interaction analysis: new nanocrystalline mixed metal oxide SPME fiber for GC-FID analysis of BTEX and its application in human hemoglobin-benzene interaction studies.

    Directory of Open Access Journals (Sweden)

    Reza Hosseinzadeh

    Full Text Available Nanocrystalline mixed metal oxides (MMO of various metal cations were synthesized and were used for coating a piece of copper wire as a new high sensitive solid phase micro extraction (SPME fiber in extraction and determination of BTEX compounds from the headspace of aqueous samples prior to GC-FID analysis. Under optimum extraction conditions, the proposed fiber exhibited low detection limits, and quantification limits, good reproducibility, simple and fast preparation method, high fiber capacity and high thermal and mechanical durability. These are some of the most important advantages of the new fiber. The proposed fiber was used for human hemoglobin upon interaction with benzene. Binding isotherm, Scatchard and Klotz logarithmic plots were constructed using HS-SPME-GC data, accurately. The obtained binding isotherm analyzed using Hill method. The Hill parameters have been obtained by calculating saturation parameter from the ratio of measured chromatographic peak areas in the presence and absence of hemoglobin. In this interaction, Hill coefficient and Hill constant determined as (nH = 6.14 and log KH = 6.47 respectively. These results reveal the cooperativity of hemoglobin upon interaction with benzene.

  9. Neuroregulatory properties of substance P in the enteric nervous system

    International Nuclear Information System (INIS)

    Smith, K.E.

    1985-01-01

    Substance P (SP) is a putative neurotransmitter in both central and peripheral nervous systems. Its presence in intrinsic neurons of the gut, combined with its potent biological effects on this tissue, suggest that endogenous SP may play a role in the physiological regulation of gastrointestinal function. SP elicits potent, atropine-resistant contractions of guinea-pig ileum which mimic the effects of high-frequency electrical field stimulation. In addition, SP-like immunoreactivity was found to be released from segments of guinea-pig ileum in a calcium-dependent fashion by electrical stimulation. A SP radioligand binding assay was developed in order to characterize SP receptors in the rat gut. 3 H-SP binds with specificity and high-affinity to membranes of rat small intestine; Scatchard plots of saturation data are curved, indicating the presence of multiple binding sites. The K/sub D/ for the high-affinity site is 0.25 nM as determined by computerized non-linear least squares analysis. Specific binding is linear with protein, dependent on temperature, and reversible. The rate constants for association and dissociation of 0.5 nm 3 H-SP are: value derived form these constants, 0.34nM, agrees well with K/sub D/ derived from Scatchard plots. The rank order of potency for various tachykinins in inhibiting 3 H-SP binding indicates that the high-affinity site is a P-type tachykinin receptor. Specific 3 H-SP binding is modulated in a dose-related fashion by guanine nucleotides; a reduction in binding is seen which can be largely attributed to an increase in the rate of dissociation of 3 H-SP in the presence of GTP. This suggests that the binding site is a receptor linked to an effector system by a GTP-binding protein

  10. Effect of functional monomers and porogens on morphology, structure and recognition properties of 2-(4-methoxyphenyl)ethylamine imprinted polymers

    International Nuclear Information System (INIS)

    Luliński, Piotr; Maciejewska, Dorota

    2013-01-01

    2-(4-Methoxyphenyl)ethylamine imprinted polymers were obtained from seven functional monomers in four porogens, and their properties were tested. Binding experiments revealed the highest selectivity towards a template for the polymer prepared from methacrylic acid in toluene (MIP1). The binding capacities and the imprinting factors were different for the stationary and the dynamic evaluation procedures. For MIP1, the binding capacities were 6.991 ± 0.081 or 18.247 ± 0.005 μmol g −1 , and the imprinting factors were 1.97 or 3.84, for stationary and dynamic procedures, respectively. The Scatchard analysis of MIP1 showed two classes of binding sites with values of the dissociation constants K d equal to 16.2 and 192 μmol L −1 . Composition of polymers was supported by 13 C CP/MAS NMR, FTIR and SEM-EDS analyses. The binding abilities of MIP1 towards the structurally related compounds showed that the ethylamine group together with steric effects governed the recognition mechanism. Finally, the high affinity of MIP1 towards dopamine or serotonin, but low towards norepinephrine and epinephrine was demonstrated. - Graphical abstract: Obtained polymer possesses high ability to adsorb selectively dopamine or serotonin in presence of norepinephrine and epinephrine. Highlights: ► 4-Methoxyphenethylamine imprinted polymer was obtained with imprinting factor 3.84. ► Ethylamine group plays a crucial role in molecular recognition of the polymer matrix. ► Dopamine or serotonin was adsorbed selectively from multicomponent system. ► Imprinting effect was confirmed by Scatchard and Freudlich isotherm analyses

  11. Effect of functional monomers and porogens on morphology, structure and recognition properties of 2-(4-methoxyphenyl)ethylamine imprinted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Luliński, Piotr, E-mail: piotr.lulinski@wum.edu.pl; Maciejewska, Dorota, E-mail: dorota.maciejewska@wum.edu.pl

    2013-04-01

    2-(4-Methoxyphenyl)ethylamine imprinted polymers were obtained from seven functional monomers in four porogens, and their properties were tested. Binding experiments revealed the highest selectivity towards a template for the polymer prepared from methacrylic acid in toluene (MIP1). The binding capacities and the imprinting factors were different for the stationary and the dynamic evaluation procedures. For MIP1, the binding capacities were 6.991 ± 0.081 or 18.247 ± 0.005 μmol g{sup −1}, and the imprinting factors were 1.97 or 3.84, for stationary and dynamic procedures, respectively. The Scatchard analysis of MIP1 showed two classes of binding sites with values of the dissociation constants K{sub d} equal to 16.2 and 192 μmol L{sup −1}. Composition of polymers was supported by {sup 13}C CP/MAS NMR, FTIR and SEM-EDS analyses. The binding abilities of MIP1 towards the structurally related compounds showed that the ethylamine group together with steric effects governed the recognition mechanism. Finally, the high affinity of MIP1 towards dopamine or serotonin, but low towards norepinephrine and epinephrine was demonstrated. - Graphical abstract: Obtained polymer possesses high ability to adsorb selectively dopamine or serotonin in presence of norepinephrine and epinephrine. Highlights: ► 4-Methoxyphenethylamine imprinted polymer was obtained with imprinting factor 3.84. ► Ethylamine group plays a crucial role in molecular recognition of the polymer matrix. ► Dopamine or serotonin was adsorbed selectively from multicomponent system. ► Imprinting effect was confirmed by Scatchard and Freudlich isotherm analyses.

  12. Triiodothyronine (T3)-associated upregulation and downregulation of nuclear T3 binding in the human fibroblast cell (MRC-5)--stimulation of malic enzyme, glucose-6-phosphate-dehydrogenase, and 6-phosphogluconate-dehydrogenase by insulin, but not by T3

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The specific nuclear binding of triiodothyronine (T3) (NBT3) and the activity of malic enzyme (ME), glucose-6-phosphate-dehydrogenase (G6PD), and 6-phosphogluconate-dehydrogenase (6PGD) were studied in the human fibroblast cell (MRC-5). The overall apparent binding affinity (Ka) was 2.7 x 10(9) L.......mol-1 estimated from kinetic studies of nuclear T3 binding, and 2.5 x 10(9) L.mol-1 estimated from equilibrium studies. The scatchard plots were curvilinear and composed of a high-affinity binding site with Ka1 3.4 +/- 0.7 x 10(9) L.mol-1 and maximal binding capacity (MBC) MBC1 57.0 +/- 11.9 fmol/mg DNA...... and a low-affinity binding site with Ka2 2.9 +/- 1.1 x 10(8) L.mol-1 and MBC2 124.7 +/- 22.1 fmol/mg DNA (n = 6). Incubation of cells with 6 nmol/L T3 for 20 hours reduced NBT3 to 62.2% +/- 15.7% (P less than .01, n = 11). The Ka estimated from kinetic studies was reduced to 6.7 x 10(7) L.mol-1...

  13. Nuclear receptors for triiodothyronine. Part 1. Binding of triiodothyronine (T3) in rat liver nuclei after in vivo administration of labelled hormone

    International Nuclear Information System (INIS)

    Kubica, A.; Nauman, A.; Witkowska, E.; Nauman, J.

    1977-01-01

    The binding of T 3 ( 125 I) has been studied in liver nuclei prepared after in vivo administration of hormone to male Wistar rats. The preliminary study revealed that 30 minutes after administration of T 3 ( 125 I) in doses varied from 5 ng to 200 ng/100 g of body weight about 20% of total radioactivity was accumulated in the liver. The ratio of T 3 in serum to T 3 in liver was found to be almost stable (regardless of dose injected) with its value between 0.2 to 0.3. To purified nuclear fraction (prepared from liver homogenates made in 0.32 M sucrose + 1 mM magnesium chloride and ultracentrifuged through 2.4 M sucrose density gradient) contained about 4% of radioactivity present in liver. When distribution of in vivo administrated T 3 ( 125 I) in the nuclear fraction was examined it was found that 2.4 - 8.2% of radioactivity present in nuclei is unspecifically bound in external nuclear membrane. The remaining part of hormone was bound specifically to nuclei. About 10% of radioactivity in nuclei without outer membrane was presented in nucleoli. Saturation study and Scatchard analysis of results obtained revealed the presence of two classes of T 3 binding sites in the liver nuclei. The first class posses high affinity and limited maximal capacity being 2.4 ng of T 3 /g of liver tissue. The second class of binding sites have had lower affinity and maximal capacity around 20 ng of T 3 /g of liver tissue. The nuclear receptors were extracted with 0.4 M KCl - the procedure known to extract non-histone proteins and nucleic acids. Further study shown the presence of one class of specific T 3 binding sites in KCl extract with maximal capacity 800 pg T 3 /mg of protein. (author)

  14. Investigation and characterization of receptors for pituitary adenylate cyclase-activating polypeptide in human brain by radioligand binding and chemical cross-linking

    International Nuclear Information System (INIS)

    Suda, K.; Smith, D.M.; Ghatei, M.A.; Murphy, J.K.; Bloom, S.R.

    1991-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a novel peptide of hypothalamic origin which increases adenylate cyclase activity in rat anterior pituitary cell cultures. The 38-amino acid peptide shows a close sequence homology to vasoactive intestinal peptide (VIP). Binding sites for PACAP in membranes from postmortem human brain tissue were studied using [ 125 I]PACAP27 as the radioligand. High specific binding sites (amount of specific binding measured at 0.25 nM [ 125 I]PACAP27 in femtomoles per mg protein +/- SEM; n = 4) were present in hypothalamus (344.5 +/- 13.0), brain stem (343.0 +/- 29.3), cerebellum (292.0 +/- 21.1), cortex (259.6 +/- 19.8), and basal ganglia (259.2 +/- 50.3). Specific binding sites in pituitary, although present, were less abundant (35.0 +/- 8.9). Binding of [ 125 I]PACAP27 was reversible and time, pH, and temperature dependent. Despite the homology with VIP, VIP was a poor inhibitor of [ 125 I]PACAP27 binding (IC50, greater than 1 microM) compared with PACAP27 (IC50, 0.5-1.3 nM) and PACAP38 (IC50, 0.2-1.3 nM). Scatchard plots of [ 125 I]PACAP27 binding showed the presence of both high and lower affinity sites. Chemical cross-linking of PACAP-binding sites revealed that [ 125 I]PACAP27 was bound to polypeptide chains of 67,000 and 48,000 mol wt. Thus, we have demonstrated the presence of PACAP-specific receptors in human brain which are not VIP receptors. This opens the possibility of PACAP functioning as a novel neurotransmitter/neuromodulator in human brain

  15. Potent radiolabeled human renin inhibitor, [3H]SR42128: enzymatic, kinetic, and binding studies to renin and other aspartic proteases

    International Nuclear Information System (INIS)

    Cumin, F.; Nisato, D.; Gagnol, J.P.; Corvol, P.

    1987-01-01

    The in vitro binding of [ 3 H]SR42128 (Iva-Phe-Nle-Sta-Ala-Sta-Arg), a potent inhibitor of human renin activity, to purified human renin and a number of other aspartic proteases was examined. SR42128 was found to be a competitive inhibitor of human renin, with a K/sub i/ of 0.35 nM at pH 5.7 and 2.0 nM at pH 7.4; it was thus more effective at pH 5.7 than at pH 7.4. Scatchard analysis of the interaction binding of [ 3 H]SR42128 to human renin indicated that binding was reversible and saturable at both pH 5.7 and pH 7.4. There was a single class of binding sites, and the K/sub D/ was 0.9 nM at pH 5.7 and 1 nM at pH 7.4. The association rate was 10 times more rapid at pH 5.7 than at pH 7.4, but there was no difference between the rates of dissociation of the enzyme-inhibitor complex at the two pHs. The effect of pH on the binding of [ 3 H]SR42128 to human renin, cathepsin D, pepsin, and gastricsin was also examined over the pH range 3-8. All the aspartic proteases had a high affinity for the inhibitor at low pH. However, at pH 7.4, [ 3 H]SR42128 was bound only to human renin and to none of the other aspartic proteases. Competitive binding studies with [ 3 H]SR42128 and a number of other inhibitors on human renin or cathepsin D were used to examine the relationships between structure and activity in these systems. The study as a whole indicates that pH plays a major role in the binding of [ 3 H]SR42128 to aspartic proteases and that the nature of the inhibitor residue reacting with the renin S 2 subsites is of critical importance for the specificity of the renin-inhibitor interaction

  16. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  17. An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions.

    Directory of Open Access Journals (Sweden)

    Garima Tiwari

    Full Text Available Inhibitors of PDZ-peptide interactions have important implications in a variety of biological processes including treatment of cancer and Parkinson's disease. Even though experimental studies have reported characterization of peptidomimetic inhibitors of PDZ-peptide interactions, the binding modes for most of them have not been characterized by structural studies. In this study we have attempted to understand the structural basis of the small molecule-PDZ interactions by in silico analysis of the binding modes and binding affinities of a set of 38 small molecules with known K(i or K(d values for PDZ2 and PDZ3 domains of PSD-95 protein. These two PDZ domains show differential selectivity for these compounds despite having a high degree of sequence similarity and almost identical peptide binding pockets. Optimum binding modes for these ligands for PDZ2 and PDZ3 domains were identified by using a novel combination of semi-flexible docking and explicit solvent molecular dynamics (MD simulations. Analysis of the binding modes revealed most of the peptidomimectic ligands which had high K(i or K(d moved away from the peptide binding pocket, while ligands with high binding affinities remained in the peptide binding pocket. The differential specificities of the PDZ2 and PDZ3 domains primarily arise from differences in the conformation of the loop connecting βB and βC strands, because this loop interacts with the N-terminal chemical moieties of the ligands. We have also computed the MM/PBSA binding free energy values for these 38 compounds with both the PDZ domains from multiple 5 ns MD trajectories on each complex i.e. a total of 228 MD trajectories of 5 ns length each. Interestingly, computational binding free energies show good agreement with experimental binding free energies with a correlation coefficient of approximately 0.6. Thus our study demonstrates that combined use of docking and MD simulations can help in identification of potent inhibitors

  18. Qualitative and quantitative estimation of comprehensive synaptic connectivity in short- and long-term cultured rat hippocampal neurons with new analytical methods inspired by Scatchard and Hill plots

    Energy Technology Data Exchange (ETDEWEB)

    Tanamoto, Ryo; Shindo, Yutaka; Niwano, Mariko [Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University (Japan); Matsumoto, Yoshinori [Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University (Japan); Miki, Norihisa [Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522 (Japan); Hotta, Kohji [Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University (Japan); Oka, Kotaro, E-mail: oka@bio.keio.ac.jp [Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University (Japan)

    2016-03-18

    To investigate comprehensive synaptic connectivity, we examined Ca{sup 2+} responses with quantitative electric current stimulation by indium-tin-oxide (ITO) glass electrode with transparent and high electro-conductivity. The number of neurons with Ca{sup 2+} responses was low during the application of stepwise increase of electric current in short-term cultured neurons (less than 17 days in-vitro (DIV)). The neurons cultured over 17 DIV showed two-type responses: S-shaped (sigmoid) and monotonous saturated responses, and Scatchard plots well illustrated the difference of these two responses. Furthermore, sigmoid like neural network responses over 17 DIV were altered to the monotonous saturated ones by the application of the mixture of AP5 and CNQX, specific blockers of NMDA and AMPA receptors, respectively. This alternation was also characterized by the change of Hill coefficients. These findings indicate that the neural network with sigmoid-like responses has strong synergetic or cooperative synaptic connectivity via excitatory glutamate synapses. - Highlights: • We succeed to evaluate the maturation of neural network by Scathard and Hill Plots. • Long-term cultured neurons showed two-type responses: sigmoid and monotonous. • The sigmoid-like increase indicates the cooperatevity of neural networks. • Excitatory glutamate synapses cause the cooperatevity of neural networks.

  19. The effect of infectious brain edema on NMDA receptor binding in rat's brain

    International Nuclear Information System (INIS)

    Cheng Guansheng; Chen Jianfang; Chen Xiang

    1997-01-01

    PURPOSE: The effect of the infectious brain edema (IBE) induced by Bordetella Pertussis (BP) on the specific binding of 3 H MK-801 in rat's brain in vivo was determined. METHODS: BP was injected via left internal carotid artery in rat model of infectious brain edema. Male SD rats were divided into three groups: 1) Group control (NS, n = 11); 2) Group IBF (BP, n = 12); 3) Group pretreatment of MK-801 + PB (MK-801, n = 4). Normal saline or BP 0.2 ml/kg was injected into left internal carotid artery in NS and BP group respectively. MK-801 0.5 mg/kg per day was injected i.p. two days before injection of BP in group MK-801. Rats were killed by decapitation at 24 hours after injection of BP. The specific binding of N-methyl-D-aspartate (NMDA) receptor were measured with 3 H-MK-801 in the neuronal membrane of cerebral cortex. The Scatchard plots were performed. RESULTS: The B max values were 0.623 +- 0.082 and 0.606 +- 0.087 pmol/mg protein in group NS and BP respectively (t = 0.48, P>0.05). The Kd values were 43.1 +- 4.2 and 30.5 +- 3.0 nmol/L in group NS and BP respectively (t = 7.8, P<0.05). The specific binding of NMDA receptor was decreased by pretreatment of MK-801. CONCLUSIONS: The total number of NMDA receptor had not changed, whereas its affinity increased significantly in the model of brain edema induced by pertussis bacilli in rat. The increase of affinity of NMDA receptor can be blockaded by MK-801 pretreatment in vivo

  20. Supersensitivity of GABAergic systems induced within rat substantia nigra and globus pallidus by haloperidol

    International Nuclear Information System (INIS)

    Frey, J.J.M.

    1986-01-01

    The supersensitivity was demonstrated by an increase in the responsiveness of individual neurons within these brain regions to microiontophoretically-applied GABA and by an up regulation of GABA binding sites. Rates received haloperidol for 30 days in their feed and were then withdrawn from treatment for 48 hrs. 3 H-GABA binding was found to be significantly elevated with the SN R (55%) and GP (42%). Scatchard analysis of 3 H-muscimol binding isotherms indicated that the number (B max ) of high affinity binding sites within the GP was significantly increased (32%); within the SN R , significant increases were detected in the B max of both high (23%) and low (58%) affinity 3 H-muscimol binding sites. After CHAL treatment, signs of dopaminergic supersensitivity within the basal ganglia were also observed. Spontaneous locomotor activity and apomorphine-induced stereotyped behavior were increased and specific 3 H-spiroperidol binding was elevated within the striatum (60%) and GP (236%)

  1. High-affinity receptors for bombesin-like peptides in normal guinea pig lung membranes

    International Nuclear Information System (INIS)

    Lach, E.; Trifilieff, A.; Landry, Y.; Gies, J.P.

    1991-01-01

    The binding of the radiolabeled bombesin analogue [ 125 I-Tyr 4 ]bombesin to guinea-pig lung membranes was investigated. Binding of [ 125 I-Tyr 4 ]bombesin was specific, saturable, reversible and linearly related to the protein concentration. Scatchard analysis of equilibrium binding data at 25C indicated the presence of a single class of non-interacting binding sites for bombesin (B max = 7.7 fmol/mg protein). The value of the equilibrium dissociation constant (K D = 90 pM) agrees with a high-affinity binding site. Bombesin and structurally related peptides such as [ 125 I-Tyr 4 ]bombesin, neuromedin B and neuromedin C inhibited the binding of [ 125 I-Tyr 4 ]bombesin in an order of potencies as follows: [ 125 I-Tyr 4 ]bombesin > bombesin ≥ neuromedin C much-gt neuromedin B. These results indicate that guinea-pig lung membranes possess a single class of bombesin receptors with a high affinity for bombesin and a lower one for neuromedin B

  2. Binding of navy bean (Phaseolus vulgaris) lectin to the intestinal cells of the rat and its effect on the absorption of glucose

    International Nuclear Information System (INIS)

    Donatucci, D.A.; Liener, I.E.; Gross, C.J.

    1987-01-01

    The main objectives of this investigation were to study the binding of a lectin from navy beans with the epithelial cells of the rat intestine and to assess the effect of such binding on the ability of the intestine to absorb glucose. A Scatchard plot, based on the binding of 125 I-labeled lectin to isolated intestinal epithelial cells, was used to calculate an association constant (Ka) of 15 x 10(6)M-1 and the number of binding sites per cell, 12 x 10(6). Metabolic studies were conducted over a period of 5 d on groups of rats fed raw or autoclaved navy bean flour and casein with or without the purified lectin. Growth, protein digestibility, biological value and net protein utilization were significantly lower in animals that had been fed raw navy bean flour or casein plus lectin than in control groups fed diets containing autoclaved navy bean flour or casein alone. Vascular perfusion was used to measure the rate of uptake of glucose by the intestines of rats that had received the various dietary treatments. The rate of absorption of [ 14 C]glucose by intestines from rats fed raw navy bean flour or casein plus lectin was approximately one-half that of their counterparts fed the autoclaved flour or casein alone. These results provide evidence that the lectin, by virtue of its interference with intestinal absorption, is responsible, at least in part, for the nutritional inferiority of raw navy beans

  3. 3-D Image Analysis of Fluorescent Drug Binding

    Directory of Open Access Journals (Sweden)

    M. Raquel Miquel

    2005-01-01

    Full Text Available Fluorescent ligands provide the means of studying receptors in whole tissues using confocal laser scanning microscopy and have advantages over antibody- or non-fluorescence-based method. Confocal microscopy provides large volumes of images to be measured. Histogram analysis of 3-D image volumes is proposed as a method of graphically displaying large amounts of volumetric image data to be quickly analyzed and compared. The fluorescent ligand BODIPY FL-prazosin (QAPB was used in mouse aorta. Histogram analysis reports the amount of ligand-receptor binding under different conditions and the technique is sensitive enough to detect changes in receptor availability after antagonist incubation or genetic manipulations. QAPB binding was concentration dependent, causing concentration-related rightward shifts in the histogram. In the presence of 10 μM phenoxybenzamine (blocking agent, the QAPB (50 nM histogram overlaps the autofluorescence curve. The histogram obtained for the 1D knockout aorta lay to the left of that of control and 1B knockout aorta, indicating a reduction in 1D receptors. We have shown, for the first time, that it is possible to graphically display binding of a fluorescent drug to a biological tissue. Although our application is specific to adrenergic receptors, the general method could be applied to any volumetric, fluorescence-image-based assay.

  4. Fundamental considerations in ski binding analysis.

    Science.gov (United States)

    Mote, C D; Hull, M L

    1976-01-01

    1. The static adjustment of a ski binding by hand or by available machines is only an adjustment and is neither a static nor a dynamic evaluation of the binding design. Bindings of different design with identical static adjustments will perform differently in environments in which the forces are static or dynamic. 2. The concept of binding release force is a useful measure of binding adjustment, but it is inappropriate as a criterion for binding evaluation. First, it does not direct attention toward the injury causing mechanism, strain, or displacement in the leg. Second, it is only part of the evaluation in dynamic problems. 3. The binding release decision in present bindings is displacement controlled. The relative displacement of the boot and ski is the system variable. For any specified relative displacement the binding force can be any of an infinite number of possibilities determined by the loading path. 4. The response of the leg-ski system to external impulses applied to the ski is independent of the boot-ski relative motion as long as the boot recenters quickly in the binding. Response is dependent upon the external impulse plus system inertia, damping and stiffness. 5. When tested under half sinusoidal forces applied to a test ski, all bindings will demonstrate static and impulse loading regions. In the static region the force drives the binding to a relative release displacement. In the impulse region the initial velocity of the ski drives the binding to a release displacement. 6. The transition between the static and impulse loading regions is determined by the binding's capacity to store and dissipate energy along the principal loading path. Increased energy capacity necessitates larger external impulses to produce release. 7. In all bindings examined to date, the transmitted leg displacement or strain at release under static loading exceeds leg strain under dynamic or impact loading. Because static loading is responsible for many injuries, a skier

  5. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis

    Science.gov (United States)

    Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2014-06-01

    Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.

  6. Preliminary crystallographic analysis of the RNA-binding domain of HuR and its poly(U)-binding properties

    International Nuclear Information System (INIS)

    Wang, Hong; Li, Heng; Shi, Hui; Liu, Yang; Liu, Huihui; Zhao, Hui; Niu, Liwen; Teng, Maikun; Li, Xu

    2011-01-01

    Here, the recombinant ARE-binding region of HuR (residues 18–186) was crystallized in space group P2 1 2 1 2, with unit-cell parameters a = 41.2, b = 133.1, c = 31.4 Å. Human antigen R (HuR), a ubiquitously expressed member of the Hu protein family, is an important post-transcriptional regulator which has three RNA-recognition motif (RRM) domains. The two tandem N-terminal RRM domains can selectively bind to the AU-rich element (ARE), while the third one interacts with the poly(A) tail and other proteins. Here, the recombinant ARE-binding region of HuR (residues 18–186) was crystallized in space group P2 1 2 1 2, with unit-cell parameters a = 41.2, b = 133.1, c = 31.4 Å. X-ray diffraction data were collected to a resolution of 2.8 Å. Mutagenesis analysis and SPR assays revealed its poly(U)-binding properties

  7. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

    Directory of Open Access Journals (Sweden)

    Adrien Nicolaï

    Full Text Available ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD of Hsp70 propagates a signal to its substrate-binding domain (SBD. Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in

  8. Enhanced insulin binding to blood-brain barrier in vivo and to brain microvessels in vitro in newborn rabbits

    International Nuclear Information System (INIS)

    Frank, H.J.; Jankovic-Vokes, T.; Pardridge, W.M.; Morris, W.L.

    1985-01-01

    Insulin is a known growth factor in nonneural tissue, and recent studies have shown that there are insulin receptors throughout the adult and fetal central nervous system. Since insulin has only limited access to the adult brain, this study was undertaken to determine if insulin has increased availability to the newborn brain where it may act as a neonatal brain growth promoter. In vivo brain uptake of 125 I-insulin after a single-pass carotid injection was measured in newborn, 3-wk-old and 11-wk-old (adult) rabbits. The brain uptake index (BUI) relative to a 3 HOH reference was 22.0 +/- 1.1% (mean +/- SEM) for newborn, 12.8 +/- 0.6% for 3-wk-old, and 6.5 +/- 0.1% for adults. Specific 125 I-insulin binding to isolated cerebral microvessels was similarly increased in the newborn compared with the 3-wk-old and adult animals. Scatchard analysis revealed that the difference was due to an increase in receptor number with only minimal changes in the affinity. The increased availability of circulating insulin to the newborn brain was further corroborated by elevated CSF/serum and brain/serum insulin ratios in the newborn versus adult. These results suggest that insulin has increased access to the newborn brain where it may function as a growth factor

  9. Characterization and molecular features of the cell surface receptor for human granulocyte-macrophage colony-stimulating factor

    International Nuclear Information System (INIS)

    Chiba, S.; Tojo, A.; Kitamura, T.; Urabe, A.; Miyazono, K.; Takaku, F.

    1990-01-01

    The receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF) on the surfaces of normal and leukemic myeloid cells were characterized using 125I-labeled bacterially synthesized GM-CSF. The binding was rapid, specific, time dependent, and saturable. Scatchard analysis of the 125I-GM-CSF binding to peripheral blood neutrophils indicated the presence of a single class of binding site (Kd = 99 +/- 21 pM; 2,304 +/- 953 sites/cell). However, for peripheral blood monocytes and two GM-CSF-responsive myeloid cell lines (U-937 and TF-1), the Scatchard plots were biphasic curvilinear, which were best fit by curves derived from two binding site model: one with high affinity (Kd1 = 10-40 pM) and the other with low affinity (Kd2 = 0.9-2.0 nM). For U-937 cells, the number of high-affinity receptors was 1,058 +/- 402 sites/cell and that of low-affinity receptors was estimated to be 10,834 +/- 2,396 sites/cell. Cross-linking studies yielded three major bands with molecular masses of 150 kDa, 115 kDa, and 95 kDa, which were displaced by an excess amount of unlabeled GM-CSF, suggesting 135-kDa, 100-kDa, and 80-kDa species for the individual components of the human GM-CSF receptor. These bands comigrated for different cell types including peripheral blood neutrophils, U-937 cells and TF-1 cells. In experiments using U-937 cells, only the latter two bands appeared to be labeled in a dose-dependent manner in a low-affinity state. These results suggest that the human GM-CSF receptor possibly forms a multichain complex

  10. 26kDa endochitinase from barley seeds: real-time monitoring of the enzymatic reaction and substrate binding experiments using electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Dennhart, Nicole; Weigang, Linda M M; Fujiwara, Maho

    2009-01-01

    A 26 kDa endochitinase from barley seeds was enzymatically characterized exclusively by electrospray ionization mass spectrometry (ESI-MS). At first, oligosaccharide hydrolysis catalyzed by the barley chitinase was monitored in real-time by ESI-MS. The reaction time-course obtained by ESI......-MS monitoring was found to be consistent with the data obtained earlier by HPLC, and the quantitative profile was successfully simulated by kinetic modeling of the enzymatic hydrolysis. It is obvious that the real-time monitoring method by ESI-MS allows a faster and cheaper determination of the chitinase...... of the enzymatic activity in E67Q is definitely caused by a point mutation of Glu67 but not due to partial unfolding of the mutated enzyme. Finally, association constants of enzyme-oligosaccharide complexes were calculated from Scatchard plots obtained by mass spectra. The binding free energy values obtained for E...

  11. A web server for analysis, comparison and prediction of protein ligand binding sites.

    Science.gov (United States)

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  12. A fractal analysis of protein to DNA binding kinetics using biosensors.

    Science.gov (United States)

    Sadana, Ajit

    2003-08-01

    A fractal analysis of a confirmative nature only is presented for the binding of estrogen receptor (ER) in solution to its corresponding DNA (estrogen response element, ERE) immobilized on a sensor chip surface [J. Biol. Chem. 272 (1997) 11384], and for the cooperative binding of human 1,25-dihydroxyvitamin D(3) receptor (VDR) to DNA with the 9-cis-retinoic acid receptor (RXR) [Biochemistry 35 (1996) 3309]. Ligands were also used to modulate the first reaction. Data taken from the literature may be modeled by using a single- or a dual-fractal analysis. Relationships are presented for the binding rate coefficient as a function of either the analyte concentration in solution or the fractal dimension that exists on the biosensor surface. The binding rate expressions developed exhibit a wide range of dependence on the degree of heterogeneity that exists on the surface, ranging from sensitive (order of dependence equal to 1.202) to very sensitive (order of dependence equal to 12.239). In general, the binding rate coefficient increases as the degree of heterogeneity or the fractal dimension of the surface increases. The predictive relationships presented provide further physical insights into the reactions occurring on the biosensor surface. Even though these reactions are occurring on the biosensor surface, the relationships presented should assist in understanding and in possibly manipulating the reactions occurring on cellular surfaces.

  13. Proteomic analysis of heparin-binding proteins from human seminal ...

    Indian Academy of Sciences (India)

    Prakash

    (MALDI TOF/MS) for protein analysis of human HBPs. We resolved 70 ... Thus, the combined effects of seminal plasma components support the survival of ...... The BBXB motif of RANTES is the principal site for heparin binding and controls ...

  14. Transferrin receptors on human reticulocytes: variation in site number in hematologic disorders

    International Nuclear Information System (INIS)

    Shumak, K.H.; Rachkewich, R.A.

    1984-01-01

    Assays of binding of 125iodine-labeled ( 125 I) human transferrin were used to study transferrin receptor sites on reticulocytes from 15 normal subjects and from 66 patients with various hematologic disorders. In normal subjects, few or no transferrin receptors were detected whereas the average number of receptors per reticulocyte varied greatly from patient to patient, ranging from 0 to 67,700 in samples, from 35 patients, on which Scatchard analysis of binding of [ 125 I]-transferrin was done. Marked heterogeneity in the number of reticulocyte transferrin receptors in different hematologic disorders was also found in assays with [ 125 I]-OKT9 (monoclonal antibody to the human transferrin receptor). The number of receptors was not correlated with either the reticulocyte count or the hemoglobin

  15. Binding of matrix metalloproteinase inhibitors to extracellular matrix: 3D-QSAR analysis.

    Science.gov (United States)

    Zhang, Yufen; Lukacova, Viera; Bartus, Vladimir; Nie, Xiaoping; Sun, Guorong; Manivannan, Ethirajan; Ghorpade, Sandeep R; Jin, Xiaomin; Manyem, Shankar; Sibi, Mukund P; Cook, Gregory R; Balaz, Stefan

    2008-10-01

    Binding to the extracellular matrix, one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with extracellular matrix determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases, and other drug candidates. The nature of extracellular matrix binding was elucidated for 63 matrix metalloproteinase inhibitors, for which the association constants to an extracellular matrix mimic were reported here. The data did not correlate with lipophilicity as a common determinant of structure-nonspecific, orientation-averaged binding. A hypothetical structure of the binding site of the solidified extracellular matrix surrogate was analyzed using the Comparative Molecular Field Analysis, which needed to be applied in our multi-mode variant. This fact indicates that the compounds bind to extracellular matrix in multiple modes, which cannot be considered as completely orientation-averaged and exhibit structural dependence. The novel comparative molecular field analysis models, exhibiting satisfactory descriptive and predictive abilities, are suitable for prediction of the extracellular matrix binding for the untested chemicals, which are within applicability domains. The results contribute to a better prediction of the pharmacokinetic parameters such as the distribution volume and the tissue-blood partition coefficients, in addition to a more imminent benefit for the development of more effective matrix metalloproteinase inhibitors.

  16. Comparison of (/sup 125/I)beta-endorphin binding to rat brain and NG108-15 cells using a monoclonal antibody directed against the opioid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bidlack, J.M.; O' Malley, W.E.; Schulz, R.

    1988-02-01

    The properties of (/sup 125/I)beta h-endorphin-binding sites from rat brain membranes and membranes from the NG108-15 cell line were compared using a monoclonal antibody directed against the opioid receptor and opioid peptides as probes. The binding of (/sup 125/I)beta h-endorphin to both rat brain and NG108-15 membranes yielded linear Scatchard plots with Kd values of 1.2 nM and 1.5 nM, respectively, and Bmax values of 865 fmol/mg rat brain membrane protein and 1077 fmol/mg NG108-15 membrane protein. A monoclonal antibody, OR-689.2.4, capable of inhibiting mu and delta binding but not kappa binding to rat brain membranes, noncompetitively inhibited the binding of 1 nM (/sup 125/I)beta h-endorphin to rat brain and NG108-15 membranes with an IC50 value of 405 nM for rat brain membranes and 543 nM for NG108-15 membranes. The monoclonal antibody also inhibited the binding of 3 nM (/sup 3/H) (D-penicillamine2, D-penicillamine5) enkephalin to NG108-15 membranes with an IC50 value of 370 nM. In addition to blocking the binding of (/sup 125/I)beta h-endorphin to brain membranes, the antibody also displaced (/sup 125/I)beta h-endorphin from membranes. Site-specific opioid peptides had large variations in their IC50 values depending on whether they were inhibiting (/sup 125/I)beta h-endorphin binding to rat brain or the NG108-15 membranes. When the peptides were tested with the monoclonal antibody for their combined ability to inhibit (/sup 125/I)beta h-endorphin binding to both membrane preparations, the peptides and antibody blocked binding as though they were acting at allosterically coupled sites, not two totally independent sites. These studies suggest that mu-, delta-, and beta-endorphin-binding sites share some sequence homology with the 35,000-dalton protein that the antibody is directed against.

  17. Structural analysis of the receptors for granulocyte colony-stimulating factor on neutrophils

    International Nuclear Information System (INIS)

    Hanazono, Y.; Hosoi, T.; Kuwaki, T.; Matsuki, S.; Miyazono, K.; Miyagawa, K.; Takaku, F.

    1990-01-01

    We investigated granulocyte colony-stimulating factor (G-CSF) receptors on neutrophils from three patients with chronic myelogenous leukemia (CML) in the chronic phase, in comparison with four normal volunteers. Because we experienced some difficulties in radioiodinating intact recombinant human G-CSF, we developed a new derivative of human G-CSF termed YPY-G-CSF. It was easy to iodinate this protein using the lactoperoxidase method because of two additional tyrosine residues, and its radioactivity was higher than that previously reported. The biological activity of YPY-G-CSF as G-CSF was fully retained. Scatchard analysis demonstrated that CML neutrophils had a single class of binding sites (1400 +/- 685/cell) with a dissociation constant (Kd) of 245 +/- 66 pM. The number of sites and Kd value of CML neutrophils were not significantly different from those of normal neutrophils (p greater than 0.9). Cross-linking studies revealed two specifically labeled bands of [125I]YPY-G-CSF-receptor complexes with apparent molecular masses of 160 and 110 kd on both normal and CML neutrophils. This is the first report describing two receptor proteins on neutrophils. According to the analyses of the proteolytic process of these cross-linked complexes and proteolytic mapping, we assume that alternative splicing or processing from a single gene may generate two distinct receptor proteins that bind specifically to G-CSF but have different fates in intracellular metabolism

  18. DNA-magnetic Particle Binding Analysis by Dynamic and Electrophoretic Light Scattering.

    Science.gov (United States)

    Haddad, Yazan; Dostalova, Simona; Kudr, Jiri; Zitka, Ondrej; Heger, Zbynek; Adam, Vojtech

    2017-11-09

    Isolation of DNA using magnetic particles is a field of high importance in biotechnology and molecular biology research. This protocol describes the evaluation of DNA-magnetic particles binding via dynamic light scattering (DLS) and electrophoretic light scattering (ELS). Analysis by DLS provides valuable information on the physicochemical properties of particles including particle size, polydispersity, and zeta potential. The latter describes the surface charge of the particle which plays major role in electrostatic binding of materials such as DNA. Here, a comparative analysis exploits three chemical modifications of nanoparticles and microparticles and their effects on DNA binding and elution. Chemical modifications by branched polyethylenimine, tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane are investigated. Since DNA exhibits a negative charge, it is expected that zeta potential of particle surface will decrease upon binding of DNA. Forming of clusters should also affect particle size. In order to investigate the efficiency of these particles in isolation and elution of DNA, the particles are mixed with DNA in low pH (~6), high ionic strength and dehydration environment. Particles are washed on magnet and then DNA is eluted by Tris-HCl buffer (pH = 8). DNA copy number is estimated using quantitative polymerase chain reaction (PCR). Zeta potential, particle size, polydispersity and quantitative PCR data are evaluated and compared. DLS is an insightful and supporting method of analysis that adds a new perspective to the process of screening of particles for DNA isolation.

  19. MHC class I phenotype and function of human beta 2-microglobulin transgenic murine lymphocytes

    DEFF Research Database (Denmark)

    Bjerager, L; Pedersen, L O; Bregenholt, S

    1996-01-01

    . Based on data from cellular binding studies, Scatchard analyses and flow cytometry, it is concluded that exogenous h beta 2m does not bind to hybrid MHC class I (MHC-I) molecules composed of mouse heavy chain/h beta 2m molecules expressed on lymphocytes of transgenic mice. Immunoprecipitation and SDS......-PAGE analysis of metabolically labelled normal C57BL/6 lymph node cells showed binding of exogenous h beta 2m to MHC-I, in particular, to the H-2Db molecule through an exchange with endogenous mouse beta 2m. In contrast to normal H-2Db molecules, hybrid H-2Db expressed on the surface of transgenic lymphocytes...... binds radiolabelled peptide in the absence of exogenous added h beta 2m suggesting that a stable fraction of hybrid H-2Db molecules is empty or contain peptides with very low affinity. In a one-way allogenic mixed lymphocyte culture, transgenic splenocytes were found to be far less stimulatory than...

  20. Identification and in silico analysis of helical lipid binding regions in ...

    Indian Academy of Sciences (India)

    In supplementary table 1, all the results of the lipid binding region analysis for SecA from a number of ..... For those interested, a more detailed description will now be given for this particular analysis. First of ... MCPep Job Status Page Finished.

  1. Interaction of tea polyphenols with serum albumins: A fluorescence spectroscopic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Adity, E-mail: adityc17j@gmail.com

    2016-01-15

    Interactions of some tea polyphenols, namely (−) Catechin (C), (−)-epicatechin (EC), (–) epicatechin-3-gallate (ECG), (−)-epigallocatechin (EGC) and (−)-epigallocatechin-3-gallate (EGCG) are outlined with the serum albumin proteins. These interactions had all resulted in binding with the proteins with a concomitant static quenching of the protein fluorescence. A fluorescence technique has been considered as the tool to comprehend the polyphenol–protein interactions mainly and simultaneously other spectroscopic techniques used to verify the results have been discussed. In this mini review the different types of equations usually employed to calculate the binding constant values have been outlined, namely, modified Stern Volmer plot, Scatchard plot and Lineweaver Burk equation, with their corresponding results. The n values (number of binding sites) had always been close to unity suggesting a 1:1 complexation with the polyphenols and the protein. A structural change in the polyphenols has been found to alter the binding constant value and the galloyl moiety attached to the C ring of the polyphenols have been found to play a crucial role in this regard. It has been found that an increase in galloyl moiety increases binding of the catechins with proteins. - Highlights: • Review on interactions of some tea polyphenols with the serum albumin proteins. • Tea polyphenols include Catechin, epigallocatechin-3-gallate, epigallocatechin, epicatechin-3-gallate and epicatechin. • Fluorescence spectroscopic technique is mainly outlined. • Binding constant studies have been given importance. • Galloyl moiety in the C ring is crucial in increasing binding constant.

  2. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    Science.gov (United States)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  3. Nonlinear regression analysis for evaluating tracer binding parameters using the programmable K1003 desk computer

    International Nuclear Information System (INIS)

    Sarrach, D.; Strohner, P.

    1986-01-01

    The Gauss-Newton algorithm has been used to evaluate tracer binding parameters of RIA by nonlinear regression analysis. The calculations were carried out on the K1003 desk computer. Equations for simple binding models and its derivatives are presented. The advantages of nonlinear regression analysis over linear regression are demonstrated

  4. Radioligand purification prior to routine receptor assays

    International Nuclear Information System (INIS)

    Le Goff, J.-M.; Berthois, Y.; Martin, P.-M.

    1988-01-01

    The need to repurify the commercially available radioligands [ 3 H]estradiol and [ 3 H]testosterone before use in routine assays was investigated. Storage of these products for 2 months after delivery led to appreciable degradation of [ 3 H]estradiol compared to [ 3 H]testosterone. Unexpectedly, TLC and even HPLC procedures were ineffective in completely restoring the purity of [ 3 H]-estradiol and the unremoved polar products induced important variations in our estrogen receptor assays. An increase in non-specific binding and a concomitant decrease in total binding were observed resulting in an underestimation of specific binding sites and of the affinity constant. In some cases Scatchard analysis was not possible. The authors therefore strongly recommend the repurification of low-stability radioligands and propose an economic time-saving procedure for the purification of [ 3 H]estradiol by solvent differential partition which requires no high-cost investment in apparatus. (author)

  5. Binding free energy analysis of protein-protein docking model structures by evERdock.

    Science.gov (United States)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  6. Synthesis and Evaluation of Molecularly Imprinted Polymeric Microspheres for Chloramphenicol by Aqueous Suspension Polymerization as a High Performance Liquid Chromatography Stationary Phase

    International Nuclear Information System (INIS)

    Zhang, Yan; Lei, Jiandu

    2013-01-01

    Molecularly imprinted microsphere for chloramphenicol (CAP) with high adsorption capacity and excellent selectivity is prepared by aqueous suspension polymerization, in which chloramphenicol is used as template molecule and ethyl acetate as porogen. The CAP-imprinted microspheres are used as high performance liquid chromatography (HPLC) stationary phase and packed into stainless steel column (150 mm Χ 4.6 mm i. d.) for selective separation of chloramphenicol. HPLC analysis suggests that chloramphenicol can be distinguished from not only its structural analogs but also other broad-spectrum antibiotic such as erythromycin and tetracycline. In addition, the binding experiments of CAP-imprinted microspheres are carried out in ethanol/water (1:4, V:V), the results indicate that the maximum apparent static binding capacity of molecularly imprinted microspheres is up to 66.64 mg g -1 according to scatchard model

  7. Dopamine receptors in the Parkinsonian brain

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, U K; Loennberg, P; Koskinen, V [Turku Univ. (Finland). Dept. of Neurology

    1981-01-01

    Striatal dopamine receptors were studied in 44 patients with Parkinson disease by the radioligand-binding technique using /sup 3/H-spiroperidol. The specific binding of /sup 3/H-spiroperidol was either significantly increased or reduced in the caudate nucleus and putamen of parkinsonian patients without levodopa therapy. Scatchard analysis showed that there were corresponding changes in the receptor number, but no significant changes in the mean dissociation constant. The increased binding of /sup 3/H-spiroperidol in the basal ganglia was also found in parkinsonian patients suffering from psychotic episodes and treated with neuroleptic drugs. Normal and low binding of /sup 3/H-spiroperidol was found in patients treated with levodopa. Clinically, the patient with low binding were more disabled and had lost the beneficial response to levodopa. Thus in Parkinson disease in some patients a denervation supersensitivity seemed to develop and in some others a loss of postsynaptic dopamine receptor sites in the neostriatium. The latter alteration may contribute to the decreased response of parkinsonian patients to chronic levodopa therapy.

  8. Dopamine receptors in the Parkinsonian brain

    International Nuclear Information System (INIS)

    Rinne, U.K.; Loennberg, P.; Koskinen, V.

    1981-01-01

    Striatal dopamine receptors were studied in 44 patients with Parkinson disease by the radioligand-binding technique using 3 H-spiroperidol. The specific binding of 3 H-spiroperidol was either significantly increased or reduced in the caudate nucleus and putamen of parkinsonian patients without levodopa therapy. Scatchard analysis showed that there were corresponding changes in the receptor number, but no significant changes in the mean dissociation constant. The increased binding of 3 H-spiroperidol in the basal ganglia was also found in parkinsonian patients suffering from psychotic episodes and treated with neuroleptic drugs. Normal and low binding of 3 H-spiroperidol was found in patients treated with levodopa. Clinically, the patient with low binding were more disabled and had lost the beneficial response to levodopa. Thus in Parkinson disease in some patients a denervation supersensitivity seemed to develop and in some others a loss of postsynaptic dopamine receptor sites in the neostriatium. The latter alteration may contribute to the decreased response of parkinsonian patients to chronic levodopa therapy. (author)

  9. [Interaction of human factor X with thromboplastin].

    Science.gov (United States)

    Kiselev, S V; Zubairov, D M; Timarbaev, V N

    2003-01-01

    The binding of 125I-labeled human factor X to native and papaine-treated tissue tromboplastin in the presence of CaCl2 or EDTA was studied. The Scatchard analysis suggests the existence of high (Kd=l,8 x10(-9) M) and low affinity binding sites on the thromboplastin surface. The removal of Ca2+ reduced affinity of factor X to the high affinity sites. This was accompanied by some increase of their number. Proteolysis by papaine decreased affinity of high affinity sites and caused the increase of their number in the presence of Ca2+. In the absence of Ca2+ the affinity remained unchanged, but the number of sites decreased. At low concentrations of factor X positive cooperativity for high affinity binding sites was observed. It did not depend on the presence of Ca2+. The results indirectly confirm the role of hydrophobic interactons in Ca2+ dependent binding of factor X to thromboplastin and the fact that heterogeneity of this binding is determined by mesophase structure of the thromboplastin phospholipids.

  10. Possible mechanism of psoralen phototoxicity not involving direct interaction with DNA

    International Nuclear Information System (INIS)

    Laskin, J.D.; Lee, E.; Yurkow, E.J.; Laskin, D.L.; Gallo, M.A.

    1985-01-01

    Psoralens in combination with ultraviolet light (UVA; 320-400 nm) are used in the photochemical treatment of a variety of skin diseases including vitiligo, a skin depigmentational disorder, and psoriasis, a disease of accelerated epidermal cell proliferation. Although it is generally assumed that the major site of action of the psoralens is DNA, the authors have obtained evidence that another site may be the primary target for these compounds. They have identified specific, saturable, high-affinity binding sites for 8-methoxypsoralen on HeLa cells and have detected specific binding of 8-methoxypsoralen to four other human cell lines and five mouse cell lines. In HeLa cells, specific binding is reversible and independent of the ability of the compound to intercalate into DNA. In addition, binding sites become covalently modified by the psoralen after UVA exposure. Specific binding of 8-[methyoxy- 3 H]methoxypsoralen constitutes 79% of the label bound to the cells. Scatchard analysis indicated two classes of psoralen binding sites. Based on these findings, the authors hypothesize that specific binding sites for psoralens on mammalian cells mediate, at least in part, psoralen-induced phototoxicity

  11. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Directory of Open Access Journals (Sweden)

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  12. Radioligand binding analysis of α 2 adrenoceptors with [11C]yohimbine in brain in vivo: Extended Inhibition Plot correction for plasma protein binding

    DEFF Research Database (Denmark)

    Phan, Jenny-Ann; Landau, Anne M.; Jakobsen, Steen

    2017-01-01

    We describe a novel method of kinetic analysis of radioligand binding to neuroreceptors in brain in vivo, here applied to noradrenaline receptors in rat brain. The method uses positron emission tomography (PET) of [11C]yohimbine binding in brain to quantify the density and affinity of α 2...... Inhibition Plot introduced here yielded an estimate of the volume of distribution of non-displaceable ligand in brain tissue that increased with the increase of the free fraction of the radioligand in plasma. The resulting binding potentials of the radioligand declined by 50-60% in the presence of unlabeled...

  13. Application of molecularly imprinted polymers to selective removal of clofibric acid from water.

    Science.gov (United States)

    Dai, Chaomeng; Zhang, Juan; Zhang, Yalei; Zhou, Xuefei; Liu, Shuguang

    2013-01-01

    A new molecularly imprinted polymer (MIP) adsorbent for clofibric acid (CA) was prepared by a non-covalent protocol. Characterization of the obtained MIP was achieved by scanning electron microscopy (SEM) and nitrogen sorption. Sorption experimental results showed that the MIP had excellent binding affinity for CA and the adsorption of CA by MIP was well described by pseudo-second-order model. Scatchard plot analysis revealed that two classes of binding sites were formed in the MIP with dissociation constants of 7.52 ± 0.46 mg L(-1) and 114 ± 4.2 mg L(-1), respectively. The selectivity of MIP demonstrated higher affinity for CA over competitive compound than that of non-imprinted polymers (NIP). The MIP synthesized was used to remove CA from spiked surface water and exhibited significant binding affinity towards CA in the presence of total dissolved solids (TDS). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance.

  14. Application of molecularly imprinted polymers to selective removal of clofibric acid from water.

    Directory of Open Access Journals (Sweden)

    Chaomeng Dai

    Full Text Available A new molecularly imprinted polymer (MIP adsorbent for clofibric acid (CA was prepared by a non-covalent protocol. Characterization of the obtained MIP was achieved by scanning electron microscopy (SEM and nitrogen sorption. Sorption experimental results showed that the MIP had excellent binding affinity for CA and the adsorption of CA by MIP was well described by pseudo-second-order model. Scatchard plot analysis revealed that two classes of binding sites were formed in the MIP with dissociation constants of 7.52 ± 0.46 mg L(-1 and 114 ± 4.2 mg L(-1, respectively. The selectivity of MIP demonstrated higher affinity for CA over competitive compound than that of non-imprinted polymers (NIP. The MIP synthesized was used to remove CA from spiked surface water and exhibited significant binding affinity towards CA in the presence of total dissolved solids (TDS. In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance.

  15. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    Science.gov (United States)

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  16. In vitro measurement of avidity of radioiodinated antibodies

    International Nuclear Information System (INIS)

    Badger, C.C.; Krohn, K.A.; Bernstein, I.D.

    1987-01-01

    A determination of the ability of radiolabeled antibodies to bind to their target antigen is an essential step in the initial selection of antibodies for clinical use as well as a quality control measure. In our studies of the 131 I-labeled anti-Thy 1.1 antibody treatment of murine lymphoma, we have used cell binding assays with a combination of Lineweaver-Burk analysis to determine immunoreactivity and Scatchard analysis to determine antibody avidity. Both assays were systematically influenced by target cell fixation and measurement of avidity was dependent on immunoreactivity. For 131 I-labeled anti-Thy 1.1 antibody, avidity was a much more sensitive indicator of iodination damage and predictor of in vivo behavior than was immunoreactivity, while for other antibodies immunoreactivity has been a better indicator of labeling damage. Thus, immunoreactivity and avidity assays are complementary and knowledge of both factors is required for the design of sensitive quality control procedures for radiolabeled antibodies. (author)

  17. The acidic complexation of tetracycline with sucralfate for its mucoadhesive preparation.

    Science.gov (United States)

    Higo, Shoichi; Takeuchi, Hirofumi; Yamamoto, Hiromitsu; Hino, Tomoaki; Kawashima, Yoshiaki

    2004-08-01

    The complex of antibiotics with sucralfate (SF) was prepared with acid. The mechanism of the complexation and some factors concerning the preparation, which influence the mucoadhering property, were studied. The complexation was confirmed by the change in color and instrumental analysis. The acidic complex appeared to be produced by reagglomeration of SF preliminary particles. It was suggested that the amide or amine groups of tetracycline (TC) and aluminum moieties of SF serve as the binding sites. The potential of multiple binding sites and a priority in them were suggested by the Scatchard plot analysis. The additional amounts of acid and the increase in the surface area increased the number of sites. The amount of the additional acid appeared to be the most important factor during the preparation of the acidic complex. The appropriate amount of acid added appeared to produce a complex rich in TC. However, an excess amount might cause the excess dissociation of aluminum moieties, which destroys the mucoadhesive paste-forming property.

  18. Radioligand binding analysis of α 2 adrenoceptors with [11C]yohimbine in brain in vivo: Extended Inhibition Plot correction for plasma protein binding.

    Science.gov (United States)

    Phan, Jenny-Ann; Landau, Anne M; Jakobsen, Steen; Wong, Dean F; Gjedde, Albert

    2017-11-22

    We describe a novel method of kinetic analysis of radioligand binding to neuroreceptors in brain in vivo, here applied to noradrenaline receptors in rat brain. The method uses positron emission tomography (PET) of [ 11 C]yohimbine binding in brain to quantify the density and affinity of α 2 adrenoceptors under condition of changing radioligand binding to plasma proteins. We obtained dynamic PET recordings from brain of Spraque Dawley rats at baseline, followed by pharmacological challenge with unlabeled yohimbine (0.3 mg/kg). The challenge with unlabeled ligand failed to diminish radioligand accumulation in brain tissue, due to the blocking of radioligand binding to plasma proteins that elevated the free fractions of the radioligand in plasma. We devised a method that graphically resolved the masking of unlabeled ligand binding by the increase of radioligand free fractions in plasma. The Extended Inhibition Plot introduced here yielded an estimate of the volume of distribution of non-displaceable ligand in brain tissue that increased with the increase of the free fraction of the radioligand in plasma. The resulting binding potentials of the radioligand declined by 50-60% in the presence of unlabeled ligand. The kinetic unmasking of inhibited binding reflected in the increase of the reference volume of distribution yielded estimates of receptor saturation consistent with the binding of unlabeled ligand.

  19. Visualizing the dental biofilm matrix by means of fluorescence lectin-binding analysis

    DEFF Research Database (Denmark)

    Tawakoli, Pune Nina; Neu, Thomas R; Busck, Mette Marie

    2017-01-01

    lectins to visualize and quantify extracellular glycoconjugates in dental biofilms. Lectin binding was screened on pooled supragingival biofilm samples collected from 76 subjects using confocal microscopy. FLBA was then performed with 10 selected lectins on biofilms grown in situ for 48 h in the absence......The extracellular matrix is a poorly studied, yet important component of dental biofilms. Fluorescence lectin-binding analysis (FLBA) is a powerful tool to characterize glycoconjugates in the biofilm matrix. This study aimed to systematically investigate the ability of 75 fluorescently labeled......-biofilms: Aleuria aurantia (AAL), Calystega sepiem (Calsepa), Lycopersicon esculentum (LEA), Morniga-G (MNA-G) and Helix pomatia (HPA). No significant correlation between the binding of specific lectins and bacterial composition was found. Fluorescently labeled lectins enable the visualization of glycoconjugates...

  20. Signatures of van der Waals binding: A coupling-constant scaling analysis

    Science.gov (United States)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-02-01

    The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.

  1. Tritium-labelled leukotriene B4 binding to the guinea-pig spleen membrane preparation: a rich tissue source for a high-affinity leukotriene B4 receptor site

    International Nuclear Information System (INIS)

    Cheng, J.B.; Cheng, E.I.; Kohi, F.; Townley, R.G.

    1986-01-01

    Intact human granulocytes contain a leukotriene (LT) B4 receptor binding site, but the limited supply of these cells could adversely affect further progress of the study of this receptor. To select a tissue homogenate rich for this site, we have characterized the binding of highly specific [ 3 H]LTB4 to guinea-pig spleen membranes and we have determined the ability of LTB4 to compete with [ 3 H]LTB4 for binding sites in the membranes of 10 nonspleen tissues. In the spleen membrane, MgCl2 and CaCl2 enhanced [ 3 H]LTB4 binding, but NaCl and KCl decreased it. Spleen [ 3 H] LTB4 binding was a function of protein concentration and was rapid, reversible, stereoselective and saturable. Kinetic analyses showed that the rate constant for association and dissociation at 25 0 C was 0.47 nM-1 min-1 and 0.099 min-1, respectively. A Scatchard plot of the data of the equilibrium experiment resulted a straight line with a dissociation constant of 1.8 nM and a density of 274 fmol/mg of protein. Moreover, the LTB4/[ 3 H]LTB4 competition study performed at 4 or 25 0 C revealed the inhibitory constant (Ki) of LTB4 to be in the nanomolar range. The rank order of agents competing for spleen [ 3 H]LTB4 binding was: LTB4 (Ki = 2.8 nM) greater than 20-hydroxy-LTB4 (23 nM) greater than LTA4 (48 nM) greater than LTA4 methyl ester (0.13 microM) greater than 20-carboxy-LTB4 (greater than 6.6 microM) greater than or equal to arachidonic acid (0.15mM) = FPL-55,712 and FPL-57,231 (0.1-0.2 mM). Competition studies further indicated that felodipine, a 1,4-dihyropyridine Ca++ channel blocker, exhibited micromolar inhibition of spleen [ 3 H]LTB4 binding

  2. Dopamine receptors in human gastrointestinal mucosa

    International Nuclear Information System (INIS)

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-01-01

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using 3 H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of 3 H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures

  3. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    Science.gov (United States)

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  4. Studies on binding and mitogenic effect of insulin and insulin-like growth factor I in glomerular mesangial cells

    International Nuclear Information System (INIS)

    Conti, F.G.; Striker, L.J.; Lesniak, M.A.; MacKay, K.; Roth, J.; Striker, G.E.

    1988-01-01

    The mesangial cells are actively involved in regulating glomerular hemodynamics. Their overlying endothelium is fenestrated; therefore, these cells are directly exposed to plasma substances, including hormones such as insulin and insulin-like growth factor I (IGF-I). These peptides may contribute to the mesangial sclerosis and cellular hyperplasia that characterize diabetic glomerulopathy. We report herein the characterization of the receptors and the mitogenic effects of IGF-I and insulin on mouse glomerular mesangial cells in culture. The IGF-I receptor was characterized on intact cells. The Kd of the IGF-I receptor was 1.47 X 10(-9) M, and the estimated number of sites was 64,000 receptors/cell. The binding was time, temperature, and pH dependent, and the receptor showed down-regulation after exposure to serum. The expression of the receptor did not change on cells at different densities. The specific binding for insulin was too low to allow characterization of the insulin receptor on intact cells. However, it was possible to identify the insulin receptor in a wheat germ agglutinin-purified preparation of solubilized mesangial cells. This receptor showed the characteristic features of the insulin receptor, including pH dependence of binding and a curvilinear Scatchard plot. The mitogenic effects of insulin and IGF-I on mesangial cells were measured by the incorporation of [3H]thymidine into DNA. IGF-I was more potent than insulin. The half-maximal response to IGF-I stimulation occurred at 1.3 X 10(-10) M, and a similar increase with insulin was observed at concentrations in the range of 10(-7) M, suggesting that this insulin action was mediated through the IGF-I receptor. These data show that the mouse microvascular smooth muscle cells of the glomerulus express a cell surface receptor for IGF-I in vitro and that this peptide is a potent mitogen for these mesangial cells

  5. Design, preparation, surface recognition properties, and characteristics of icariin molecularly imprinted polymers

    Directory of Open Access Journals (Sweden)

    Xiaohe Jia

    2015-12-01

    Full Text Available Icariin molecularly imprinted polymers (MIPs were prepared by precipitation polymerization. Prior to the polymerization, computer simulation was performed to sketchily choose the suitable functional monomer and the corresponding polymerization solvent. The optimized synthesis parameters, including the functional monomer acrylamide, the mixture of methanol and acetonitrile (V:V = 3:1 as the polymerization solvent, and the reaction molar ratio (1:6:80 of template molecule, functional monomer and cross-linker, were respectively obtained by single factor analysis and orthogonal design methods. The results of the adsorption experiments showed that the resultant MIPs exhibited good adsorption and recognition abilities to icariin. Scatchard analysis illustrated that the homogeneous binding sites only for icariin molecules were formed in the prepared MIPs.

  6. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.; Mushrush, Darren J.; Pruitt, Rory N.; Spiller, Benjamin W.; Barbieri, Joseph T.; Lacy, D. Borden (Vanderbilt); (MCW)

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  7. Characterization of cholecystokinin receptors on guinea pig gastric chief cell membranes

    International Nuclear Information System (INIS)

    Matozaki, T.; Sakamoto, C.; Nagao, M.; Nishisaki, H.; Konda, Y.; Nakano, O.; Matsuda, K.; Wada, K.; Suzuki, T.; Kasuga, M.

    1991-01-01

    The binding of cholecystokinin (CCK) to its receptors on guinea pig gastric chief cell membranes were characterized by the use of 125 I-CCK-octapeptide (CCK8). At 30 degrees C optimal binding was obtained at acidic pH in the presence of Mg2+, while Na+ reduced the binding. In contrast to reports on pancreatic and brain CCK receptors, scatchard analysis of CCK binding to chief cell membranes revealed two classes of binding sites. Whereas, in the presence of a non-hydrolyzable GTP analog, GTP gamma S, only a low affinity site of CCK binding was observed. Chief cell receptors recognized CCK analogs, with an order of potency of: CCK8 greater than gastrin-I greater than CCK4. Although all CCK receptor antagonists tested (dibutyryl cyclic GMP, L-364718 and CR1409) inhibited labeled CCK binding to chief cell membranes, the relative potencies of these antagonists in terms of inhibiting labeled CCK binding were different from those observed in either pancreatic membranes or brain membranes. The results indicate, therefore, that on gastric chief cell membranes there exist specific CCK receptors, which are coupled to G protein. Furthermore, chief cell CCK receptors may be distinct from pancreatic or brain type CCK receptors

  8. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-01-01

    High (17 nM) and low (603 nM) affinity binding sites for [ 3 ]tetrahydrotrazodone ([ 3 ] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [ 3 ]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [ 3 ] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [ 3 ]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  9. Isolation of a macrophage receptor for proteins modified by advanced glycosylation end products

    International Nuclear Information System (INIS)

    Radoff, S.; Vlassara, H.; Cerami, A.

    1987-01-01

    The nonenzymatic reaction of glucose with protein amino groups leads to the formation of irreversible AGE, such as the recently characterized glucose-derived crosslink, [2-furoyl-4(5)-(2-furanyl)-1-H-imidazole] (FFI). These products accumulate with time in aging tissues and diabetes, and are implicated in irreversible tissue damage. The authors have recently shown that macrophages bind and degrade AGE-proteins via a specific surface receptor, which is thus selectively removing senescent macromolecules. Scatchard plot analysis of binding data has indicated 1.5 x 10 5 receptors/cell with a binding affinity (Ka) of 1.7 x 10 7 /M. They have now isolated this receptor from murine macrophage RAW 264.7 membranes, solubilized with octylglucoside/protease inhibitors, and using FFI-Sepharose affinity chromatography and FPLC. The purified receptor binds radioactive FFI-containing compounds competitively. SDS-PAGE gels under reducing conditions indicate the receptor to be composed of two polypeptides, 83 Kda and 36 Kda. Crosslinking experiments with 125 I-AGE-albumin as ligand, indicate the 83 Kda subunit to be the AGE-binding peptide. These studies further characterize a macrophage receptor which selectively recognizes time-dependent glucose-modified proteins associated with aging and diabetes

  10. Integration of Visual Information in Auditory Cortex Promotes Auditory Scene Analysis through Multisensory Binding.

    Science.gov (United States)

    Atilgan, Huriye; Town, Stephen M; Wood, Katherine C; Jones, Gareth P; Maddox, Ross K; Lee, Adrian K C; Bizley, Jennifer K

    2018-02-07

    How and where in the brain audio-visual signals are bound to create multimodal objects remains unknown. One hypothesis is that temporal coherence between dynamic multisensory signals provides a mechanism for binding stimulus features across sensory modalities. Here, we report that when the luminance of a visual stimulus is temporally coherent with the amplitude fluctuations of one sound in a mixture, the representation of that sound is enhanced in auditory cortex. Critically, this enhancement extends to include both binding and non-binding features of the sound. We demonstrate that visual information conveyed from visual cortex via the phase of the local field potential is combined with auditory information within auditory cortex. These data provide evidence that early cross-sensory binding provides a bottom-up mechanism for the formation of cross-sensory objects and that one role for multisensory binding in auditory cortex is to support auditory scene analysis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. A kinetic analysis of kappa-opioid agonist binding using the selective radioligand (/sup 3/H)U69593

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.A.; Hunter, J.C.; Hill, R.G.; Hughes, J.

    1989-07-01

    The interaction of the nonselective opioid ligand (3H)bremazocine and of the kappa-opioid (3H)U69593 with the kappa-receptor was investigated in guinea-pig cortical membranes. Each radioligand bound to a single population of high-affinity sites, although (3H)U69593 apparently recognised only 70% of those sites labelled by (3H)bremazocine. Naloxone and the kappa-selective ligands U69593 and PD117302 exhibited full inhibition of the binding of both radioligands. Kinetic analysis demonstrated biphasic rates of association and dissociation for both (3H)bremazocine and (3H)U69593. Detailed analysis of the binding of (3H)U69593 revealed that the fast rate of association was dependent on radioligand concentration, in contrast to the slow rate, which was independent of ligand concentration. Guanylyl-5'-imidodiphosphate (GppNHp) inhibited binding of (3H)U69593; saturation analysis demonstrated that the inhibitory effects of GppNHp resulted in a decrease in affinity without any significant change in binding capacity. GppNHp attenuated the formation of the slow component of (3H)U69593 binding, while accelerating the fast component. The data are consistent with the formation of a high-affinity complex between the kappa-receptor and a guanine nucleotide binding protein. Guanine nucleotides promote the dissociation of this ternary complex and the stabilisation of a lower-affinity state of the receptor.

  12. Antibody binding constants from Farr test and other radioimmunoassays. A theoretical and experimental analysis

    International Nuclear Information System (INIS)

    Engel, J.; Schalch, W.

    1980-01-01

    For the reaction of monovalently reacting antibody (116-700pIEF) with its antigen (streptococcal group A-variant polysaccharide), an apparent binding constant Ksub(a) was derived by the ammonium sulfate precipitation technique (Farr assay) which was 40 times larger than the true binding constant K = 10 6 M -1 determined by fluorescence titration and equilibrium dialysis. For monovalently reacting antibodies the time needed for re-equilibration of the binding reaction is short as compared to the time of ammonium sulfate incubation. A thermodynamic analysis was therefore performed for the case of complete equilibration of all components in solution and in the ammonium sulfate precipitate. It was found that in this limiting case Ksub(a)/K is equal to the ratio of the solubilities of the antibody and the antibody complex corrected by the activity coefficients of the components in the precipitate. For other antibody-antigen reactions in which the antibody reacts with both binding sites to the same antigen molecule, re-equilibration of the binding reaction in solution is much slower. For such systems a disturbance of the binding reaction by the precipitation is less likely and correct binding constants may be obtained by the Farr technique or other radioimmunoassays involving precipitation. (author)

  13. High-Affinity Low-Capacity and Low-Affinity High-Capacity N-Acetyl-2-Aminofluorene (AAF) Macromolecular Binding Sites Are Revealed During the Growth Cycle of Adult Rat Hepatocytes in Primary Culture.

    Science.gov (United States)

    Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L

    2018-05-01

    Long-term cultures of primary adult rat hepatocytes were used to study the effects of N-acetyl-2-aminofluorene (AAF) on hepatocyte proliferation during the growth cycle; on the initiation of hepatocyte DNA synthesis in quiescent cultures; and, on hepatocyte DNA replication following the initiation of DNA synthesis. Scatchard analyses were used to identify the pharmacologic properties of radiolabeled AAF metabolite binding to hepatocyte macromolecules. Two classes of growth cycle-dependent AAF metabolite binding sites-a high-affinity low-capacity site (designated Site I) and a low-affinity high-capacity site (designated Site II)-associated with two spatially distinct classes of macromolecular targets, were revealed. Based upon radiolabeled AAF metabolite binding to purified hepatocyte genomic DNA or to DNA, RNA, proteins, and lipids from isolated nuclei, Site IDAY 4 targets (KD[APPARENT] ≈ 2-4×10-6 M and BMAX[APPARENT] ≈ 6 pmol/106 cells/24 h) were consistent with genomic DNA; and with AAF metabolized by a nuclear cytochrome P450. Based upon radiolabeled AAF binding to total cellular lysates, Site IIDAY 4 targets (KD[APPARENT] ≈ 1.5×10-3 M and BMAX[APPARENT] ≈ 350 pmol/106 cells/24 h) were consistent with cytoplasmic proteins; and with AAF metabolized by cytoplasmic cytochrome P450s. DNA synthesis was not inhibited by concentrations of AAF that saturated DNA binding in the neighborhood of the Site I KD. Instead, hepatocyte DNA synthesis inhibition required higher concentrations of AAF approaching the Site II KD. These observations raise the possibility that carcinogenic DNA adducts derived from AAF metabolites form below concentrations of AAF that inhibit replicative and repair DNA synthesis.

  14. Melanin-binding radiopharmaceuticals

    International Nuclear Information System (INIS)

    Packer, S.; Fairchild, R.G.; Watts, K.P.; Greenberg, D.; Hannon, S.J.

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed

  15. Determination of malachite green in aquatic products based on magnetic molecularly imprinted polymers.

    Science.gov (United States)

    Lin, Zheng-zhong; Zhang, Hong-yuan; Peng, Ai-hong; Lin, Yi-dong; Li, Lu; Huang, Zhi-yong

    2016-06-01

    Magnetic molecularly imprinted polymers (MMIPs) were synthesized through precipitation polymerization using malachite green (MG) as template, methacrylic acid as monomer, ethylene dimethacrylate as crosslinker, and Fe3O4 magnetite as magnetic component. MMIPs were characterized by scanning electron microscopy, Fourier transform infrared spectrometry, and vibrating sample magnetometry. Under the optimum condition, the MMIPs obtained exhibited quick binding kinetics and high affinity to MG in the solution. Scatchard plot analysis revealed that the MMIPs contained only one type of binding site with dissociation constant of 24.0 μg mL(-1). The selectivity experiment confirmed that the MMIPs exhibited higher selective binding capacity for MG than its structurally related compound (e.g., crystal violet). As a sorbent for the extraction of MG in sample preparation, MMIPs together with the absorbed analytes could easily be separated from the sample matrix with an external magnet. After elution with methanol/acetic acid (9:1, v/v), MG in the eluent was determined by high-performance liquid chromatography coupled with UV detector with recoveries of 94.0-115%. Results indicated that the as-prepared MMIPs are promising materials for MG analysis in aquatic products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding.

    Science.gov (United States)

    Lin, Ying-Ting

    2013-04-30

    A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.

  17. Enhanced glutamate, IP3 and cAMP activity in the cerebral cortex of Unilateral 6-hydroxydopamine induced Parkinson's rats: Effect of 5-HT, GABA and bone marrow cell supplementation

    Directory of Open Access Journals (Sweden)

    Romeo Chinthu

    2011-01-01

    Full Text Available Abstract Parkinson's disease is characterized by progressive cell death in the substantia nigra pars compacta, which leads to dopamine depletion in the striatum and indirectly to cortical dysfunction. Increased glutamatergic transmission in the basal ganglia is implicated in the pathophysiology of Parkinson's disease and glutamate receptor mediated excitotoxicity has been suggested to be one of the possible causes of the neuronal degeneration. In the present study, the effects of serotonin, gamma-aminobutyric acid and bone marrow cells infused intranigrally to substantia nigra individually and in combination on unilateral 6-hydroxydopamine induced Parkinson's rat model was analyzed. Scatchard analysis of total glutamate and NMDA receptor binding parameters showed a significant increase in Bmax (P

  18. Autocrine growth induced by the insulin-related factor in the insulin-independent teratoma cell line 1246-3A

    International Nuclear Information System (INIS)

    Yamada, Yukio; Serrero, G.

    1988-01-01

    An insulin-independent teratoma-derived cell line, called 1246-3A, has been isolated from the adipogenic cell line 1246, which stringently requires insulin for proliferation. The 1246-3A cell line, which can proliferate in the absence of exogenous insulin, produces in its conditioned medium a growth factor similar to pancreatic insulin by its biological and immunological properties. This factor, called insulin-related factor (IRF), was purified and iodinated to study its binding to cell surface receptors. 125 I-labeled IRF binding to intact 1246-3A cells is lower than to 1246 cells. Cell surface binding can be restored by culturing the 1246-3A cells in the presence of an anti-porcine insulin monoclonal antibody of by acid prewash of the cells prior to performing the binding. Scatchard analysis of binding indicates that IRF secreted by the 1246-3A cells partially occupies high-affinity binding sites on the producer cells. Moreover, insulin monoclonal antibody inhibits the proliferation of the IRF-producing 1246-3A cells, suggesting that these cells are dependent on the secreted IRF for growth in culture. The authors conclude that the insulin-related factor secreted by the insulin-independent 1246-3A cells stimulates their proliferation in an autocrine fashion

  19. Pharmacological characterization and autoradiographic localization of substance P receptors in guinea pig brain

    International Nuclear Information System (INIS)

    Dam, T.V.; Quirion, R.

    1986-01-01

    [ 3 H]Substance P ([ 3 H]SP) was used to characterize substance P (SP) receptor binding sites in guinea pig brain using membrane preparations and in vitro receptor autoradiography. Curvilinear Scatchard analysis shows that [ 3 H]SP binds to a high affinity site (Kd = 0.5 nM) with a Bmax of 16.4 fmol/mg protein and a low affinity site (Kd = 29.6 nM) with a Bmax of 189.1 fmol/mg protein. Monovalent cations generally inhibit [ 3 H]SP binding while divalent cations substantially increased it. The ligand selectivity pattern is generally similar to the one observed in rat brain membrane preparation with SP being more potent than SP fragments and other tachykinins. However, the potency of various nucleotides is different with GMP-PNP greater than GDP greater than GTP. The autoradiographic distribution of [ 3 H]SP binding sites shows that high amounts of sites are present in the hippocampus, striatum, olfactory bulb, central nucleus of the amygdala, certain thalamic nuclei and superior colliculus. The cortex is moderately enriched in [ 3 H]SP binding sites while the substantia nigra contains only very low amounts of sites. Thus, the autoradiographic distribution of SP binding sites is fairly similar in both rat and guinea pig brain

  20. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    International Nuclear Information System (INIS)

    Sakamoto, C.; Matozaki, T.; Nagao, M.; Baba, S.

    1987-01-01

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced 125 I-[Tyr 1 ]somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate [Gpp(NH)p]>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg 2+ . When pancreatic acini were treated with 1 μg/ml pertussis toxin for 4 h, subsequent 125 I-[Tyr 1 ]somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor

  1. Epidermal growth factor and its receptors in human pancreatic carcinoma

    International Nuclear Information System (INIS)

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N.

    1990-01-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells

  2. VIP receptors from porcine liver: High yield solubilization in a GTP-insensitive form

    International Nuclear Information System (INIS)

    Voisin, T.; Couvineau, A.; Guijarro, L.; Laburthe, M.

    1990-01-01

    Vasoactive intestinal peptide (VIP) receptors were solubilized from porcine liver membranes using CHAPS. The binding of 125 I-VIP to solubilized receptors was reversible, saturable and specific. Scatchard analysis indicated the presence of one binding site with a Kd of 6.5 ± 0.3 nM and a Bmax of 1.20 ± 0.15 pmol/mg protein. Solubilized and membrane-bound receptors displayed the same pharmacological profile since VIP and VIP-related peptides inhibited 125 I-VIP binding to both receptor preparations with the same rank order of potency e.g. VIP>helodermin>rat GRF>rat PHI>secretin>human GRF. GTP inhibited 125 I-VIP binding to membrane-bound receptors but not to solubilized receptors supporting functional uncoupling of VIP receptor and G protein during solubilization. Affinity labeling of solubilized and membrane-bound VIP receptors with 125 I-VIP revealed the presence of a single molecular component with Mr 55,000 in both cases. It is concluded that VIP receptors from porcine liver can be solubilized with a good yield, in a GTP-insensitive, G protein-free form. This represents a major advance towards the purification of VIP receptors

  3. Preparation and evaluation of molecularly imprinted polymer for selective recognition and adsorption of gossypol.

    Science.gov (United States)

    Zhi, Keke; Wang, Lulu; Zhang, Yagang; Zhang, Xuemin; Zhang, Letao; Liu, Li; Yao, Jun; Xiang, Wei

    2018-03-01

    Molecularly imprinted polymers (MIPs) were designed and prepared via bulk thermal polymerization with gossypol as the template molecule and dimethylaminoethyl methacrylate as the functional monomer. The morphology and microstructures of MIPs were characterized by scanning electron microscope and Brunauer-Emmett-Teller surface areas. Static adsorption tests were performed to evaluate adsorption behavior of gossypol by the MIPs. It was found that adsorption kinetics and adsorption isotherms data of MIPs for gossypol were fit well with the pseudo-second-order model and Freundlich model, respectively. Scatchard analysis showed that heterogeneous binding sites were formed in the MIPs, including lower-affinity binding sites with the maximum adsorption of 252 mg/g and higher-affinity binding sites with the maximum adsorption of 632 mg/g. Binding studies also revealed that MIPs had favorable selectivity towards gossypol compared with non-imprinted polymers. Furthermore, adsorption capacity of MIPs maintained above 90% after 5 regeneration cycles, indicating MIPs were recyclable and could be used multiple times. These results demonstrated that prepared MIPs could be a promising functional material for selective adsorption of gossypol. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Erythroblast transferrin receptors and transferrin kinetics in iron deficiency and various anemias

    International Nuclear Information System (INIS)

    Muta, K.; Nishimura, J.; Ideguchi, H.; Umemura, T.; Ibayashi, H.

    1987-01-01

    To clarify the role of transferrin receptors in cases of altered iron metabolism in clinical pathological conditions, we studied: number of binding sites; affinity; and recycling kinetics of transferrin receptors on human erythroblasts. Since transferrin receptors are mainly present on erythroblasts, the number of surface transferrin receptors was determined by assay of binding of 125 I-transferrin and the percentage of erythroblasts in bone marrow mononuclear cells. The number of binding sites on erythroblasts from patients with an iron deficiency anemia was significantly greater than in normal subjects. Among those with an aplastic anemia, hemolytic anemia, myelodysplastic syndrome, and polycythemia vera compared to normal subjects, there were no considerable differences in the numbers of binding sites. The dissociation constants (Kd) were measured using Scatchard analysis. The apparent Kd was unchanged (about 10 nmol/L) in patients and normal subjects. The kinetics of endocytosis and exocytosis of 125 I-transferrin, examined by acid treatment, revealed no variations in recycling kinetics among the patients and normal subjects. These data suggest that iron uptake is regulated by modulation of the number of surface transferrin receptors, thereby reflecting the iron demand of the erythroblast

  5. Analysis of leukocyte binding to depletion filters: role of passive binding, interaction with platelets, and plasma components.

    Science.gov (United States)

    Henschler, R; Rüster, B; Steimle, A; Hansmann, H L; Walker, W; Montag, T; Seifried, E

    2005-08-01

    Since limited knowledge exists on the mechanisms which regulate cell binding to leukocyte removal filter surfaces, we investigated the binding patterns of leukocytes to individual layers of leukocyte depletion filters. After passage of 1 unit of whole blood, blotting of isolated filter layers on glass slides or elution of cells from filter layers revealed that most leukocytes were located within the first 10 of a total of 28 filter layers, peaking at layers 6 to 8, with granulocytes binding on average to earlier filter layers than lymphocytes. Leukocytes preincubated with inhibitors of actin activation showed unchanged distribution between filter layers, suggesting that cytoskeletal activation does not significantly contribute to their binding. When leukocytes were directly incubated with single filter layers, binding of up to 30% of input cells was recorded in the absence of Ca(2+). Immunohistological analyses showed colocalization of platelets and leukocytes, with co-clustering of platelets and leukocytes. Monocytes and to some degree lymphocytes but not granulocytes competed with platelets for filter binding. Precoating of filter layers with individual plasma components showed that hyaluronic acid, plasma type fibronectin, and fibrinogen all increased the binding of leukocytes compared with albumin coating. In conclusion, leukocytes can bind passively to filters in a process which does not require Ca(2+), which is independent of cytoskeletal activation and which may depend on individual plasma components. These results are of importance when new selective cell enrichment or depletion strategies through specific filters are envisaged.

  6. [3H]CGP 61594, the first photoaffinity ligand for the glycine site of NMDA receptors

    International Nuclear Information System (INIS)

    Benke, D.; Honer, M.; Mohler, H.; Heckendorn, R.; Pozza, M.F.; Allgeier, H.; Angst, C.

    1999-01-01

    Activation of NMDA receptors requires the presence of glycine as a coagonist which binds to a site that is allosterically linked to the glutamate binding site. To identify the protein constituents of the glycine binding site in situ the photoaffinity label [ 3 H]CGP 61594 was synthesized. In reversible binding assays using crude rat brain membranes, [ 3 H]CGP 61594 labeled with high affinity (K D =23 nM) the glycine site of the NMDA receptor. This was evident from the Scatchard analysis, the displacing potencies of various glycine site ligands and the allosteric modulation of [ 3 H]CGP 61594 binding by ligands of the glutamate and polyamine sites. Electrophysiological experiments in a neocortical slice preparation identified CGP 61594 as a glycine antagonist. Upon UV-irradiation, a protein band of 115 kDa was specifically photolabeled by [ 3 H]CGP 61594 in brain membrane preparations. The photolabeled protein was identified as the NR1 subunit of the NMDA receptor by NR1 subunit-specific immunoaffinity chromatography. Thus, [ 3 H]CGP 61594 is the first photoaffinity label for the glycine site of NMDA receptors. It will serve as a tool for the identification of structural elements that are involved in the formation of the glycine binding domain of NMDA receptors in situ and will thereby complement the mutational analysis of recombinant receptors. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. [{sup 3}H]CGP 61594, the first photoaffinity ligand for the glycine site of NMDA receptors

    Energy Technology Data Exchange (ETDEWEB)

    Benke, D.; Honer, M.; Mohler, H. [Institute of Pharmacology, ETH and University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland); Heckendorn, R.; Pozza, M.F.; Allgeier, H.; Angst, C. [NS Research, Novartis Pharma AG, CH-4002 Basle (Switzerland)

    1999-02-01

    Activation of NMDA receptors requires the presence of glycine as a coagonist which binds to a site that is allosterically linked to the glutamate binding site. To identify the protein constituents of the glycine binding site in situ the photoaffinity label [{sup 3}H]CGP 61594 was synthesized. In reversible binding assays using crude rat brain membranes, [{sup 3}H]CGP 61594 labeled with high affinity (K{sub D}=23 nM) the glycine site of the NMDA receptor. This was evident from the Scatchard analysis, the displacing potencies of various glycine site ligands and the allosteric modulation of [{sup 3}H]CGP 61594 binding by ligands of the glutamate and polyamine sites. Electrophysiological experiments in a neocortical slice preparation identified CGP 61594 as a glycine antagonist. Upon UV-irradiation, a protein band of 115 kDa was specifically photolabeled by [{sup 3}H]CGP 61594 in brain membrane preparations. The photolabeled protein was identified as the NR1 subunit of the NMDA receptor by NR1 subunit-specific immunoaffinity chromatography. Thus, [{sup 3}H]CGP 61594 is the first photoaffinity label for the glycine site of NMDA receptors. It will serve as a tool for the identification of structural elements that are involved in the formation of the glycine binding domain of NMDA receptors in situ and will thereby complement the mutational analysis of recombinant receptors. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. High-throughput molecular binding analysis on open-microfluidic platform

    OpenAIRE

    Pan, Yuchen

    2016-01-01

    Biomolecular binding interactions underpin life sciences tools that are essential to fields as diverse as molecular biology and clinical chemistry. Merging needs in life science research entail fast, robust and quantitative binding reaction characterization, such as antibody selection, gene regulation screening and drug screening. Identification, characterization, and optimization of these diverse molecular binding reactions demands the availability of powerful, quantitative analytical tools....

  9. The interaction properties of the human Rab GTPase family--comparative analysis reveals determinants of molecular binding selectivity.

    Directory of Open Access Journals (Sweden)

    Matthias Stein

    Full Text Available Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood.Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics.We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity.

  10. Analysis of functional importance of binding sites in the Drosophila gap gene network model.

    Science.gov (United States)

    Kozlov, Konstantin; Gursky, Vitaly V; Kulakovskiy, Ivan V; Dymova, Arina; Samsonova, Maria

    2015-01-01

    The statistical thermodynamics based approach provides a promising framework for construction of the genotype-phenotype map in many biological systems. Among important aspects of a good model connecting the DNA sequence information with that of a molecular phenotype (gene expression) is the selection of regulatory interactions and relevant transcription factor bindings sites. As the model may predict different levels of the functional importance of specific binding sites in different genomic and regulatory contexts, it is essential to formulate and study such models under different modeling assumptions. We elaborate a two-layer model for the Drosophila gap gene network and include in the model a combined set of transcription factor binding sites and concentration dependent regulatory interaction between gap genes hunchback and Kruppel. We show that the new variants of the model are more consistent in terms of gene expression predictions for various genetic constructs in comparison to previous work. We quantify the functional importance of binding sites by calculating their impact on gene expression in the model and calculate how these impacts correlate across all sites under different modeling assumptions. The assumption about the dual interaction between hb and Kr leads to the most consistent modeling results, but, on the other hand, may obscure existence of indirect interactions between binding sites in regulatory regions of distinct genes. The analysis confirms the previously formulated regulation concept of many weak binding sites working in concert. The model predicts a more or less uniform distribution of functionally important binding sites over the sets of experimentally characterized regulatory modules and other open chromatin domains.

  11. Analysis of the interactions between human serum albumin/amphiphilic penicillin in different aqueous media: an isothermal titration calorimetry and dynamic light scattering study

    International Nuclear Information System (INIS)

    Barbosa, Silvia; Taboada, Pablo; Mosquera, Victor

    2005-01-01

    The complexation process of the amphiphilic penicillins sodium cloxacillin and sodium dicloxacillin with the protein human serum albumin (HSA) in aqueous buffered solutions of pH 4.5 and 7.4 at 25 o C was investigated through isothermal titration calorimetry (ITC) and dynamic light scattering. ITC experiments were carried out in the very dilute regime and showed that although hydrophobic interactions are the leading forces for complexation, electrostatic interactions also play an important role. The possibility of the formation of hydrogen bonds is also deduced from experimental data. The thermodynamic quantities of the binding mechanism, i.e, the enthalpy, ΔHITCi, entropy, ΔSITCi, Gibbs energy, ΔGITCi, binding constant, KITCi and the number of binding sites, n i , were obtained. The binding was saturable and is characterised by Langmuir adsorption isotherms. From ITC data and following a theoretical model, the number of bound and free penicillin molecules was calculated. From Scatchard plots, KITCi and n i were obtained and compared with those from ITC data. The interaction potential between the HSA-penicillin complexes and their stability were determined at pH 7.4 from the dependence of the diffusion coefficients on protein concentration by application of the DLVO colloidal stability theory. The results indicate decreasing stability of the colloidal dispersion of the drug-protein complexes with increase in the concentration of added drug

  12. Photolabeling of tonoplast from sugar beet cell suspensions by [3H]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar Na+/H+ antiport

    International Nuclear Information System (INIS)

    Barkla, B.J.; Charuk, J.H.M.; Blumwald, E.; Cragoe, E.J. Jr.

    1990-01-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na + /H + antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na + /H + exchange in a competitive manner with a K i of 2.5 and 5.9 micromolar for ΔpH-dependent 22 Na + influx in tonoplast vesicles and Na + -dependent H + efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [ 3 H]MIA to tonoplast membranes revealed a high affinity binding component with a K d of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na + /H + antiport. Photolabeling of the tonoplast with [ 3 H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog

  13. Photolabeling of tonoplast from sugar beet cell suspensions by [3H]-MIA, an inhibitor of the vacuolar Na+/H+ antiport

    International Nuclear Information System (INIS)

    Barkla, B.J.; Blumwald, E.

    1990-01-01

    A radiolabeled amiloride analog, [ 3 H]-MIA, was used for equilibrium binding studies and photolabeling of purified tonoplast vesicles. Scatchard analysis revealed a high affinity binding component with a K 4 of 1.4 μM which is closely related to constants of inhibition obtained for Na + -dependent H + efflux (5.9 μM) and pH-dependent 22 Na + influx (2.5 μM). This suggests that the high affinity component represents a class of sites associated with the Na + /H + antiport. Photolabeling of tonoplast with [ 3 H]-MIA in the presence of amiloride revealed the presence of two classes of receptors with distinct affinities for MIA, possibly representing the Na + /H + antiport and the Na + channel. In order to identify these receptors, amiloride analogues specific for the Na + /H + antiport or the Na + channel are being used to protect differentially against labeling of tonoplast proteins by photo-irradiation of [ 3 H]-MIA

  14. Photolabeling of tonoplast from sugar beet cell suspensions by [h]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar na/h antiport.

    Science.gov (United States)

    Barkla, B J; Charuk, J H; Cragoe, E J; Blumwald, E

    1990-07-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na(+)/H(+) antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na(+)/H(+) exchange in a competitive manner with a K(i) of 2.5 and 5.9 micromolar for DeltapH-dependent (22)Na(+) influx in tonoplast vesicles and Na(+)-dependent H(+) efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [(3)H]MIA to tonoplast membranes revealed a high affinity binding component with a K(d) of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na(+)/H(+) antiport. Photolabeling of the tonoplast with [(3)H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog.

  15. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell......Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  16. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis

    Science.gov (United States)

    Szkudlarek, A.; Sułkowska, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.

    2016-01-01

    Human serum albumin (HSA), transporting protein, is exposed during its life to numerous factors that cause its functions become impaired. One of the basic factors - glycation of HSA - occurs in diabetes and may affect HSA-drug binding. Accumulation of advanced glycation end-products (AGEs) leads to diseases e.g. diabetic and non-diabetic cardiovascular diseases, Alzheimer disease, renal disfunction and in normal aging. The aim of the present work was to estimate how non-enzymatic glycation of human serum albumin altered its tertiary structure using fluorescence technique. We compared glycated human serum albumin by glucose (gHSAGLC) with HSA glycated by fructose (gHSAFRC). We focused on presenting the differences between gHSAFRC and nonglycated (HSA) albumin used acrylamide (Ac), potassium iodide (KI) and 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS). Changes of the microenvironment around the tryptophan residue (Trp-214) of non-glycated and glycated proteins was investigated by the red-edge excitation shift method. Effect of glycation on ligand binding was examined by the binding of phenylbutazone (PHB) and ketoprofen (KP), which a primary high affinity binding site in serum albumin is subdomain IIA and IIIA, respectively. At an excitation and an emission wavelength of λex 335 nm and λem 420 nm, respectively the increase of fluorescence intensity and the blue-shift of maximum fluorescence was observed. It indicates that the glycation products decreases the polarity microenvironment around the fluorophores. Analysis of red-edge excitation shift method showed that the red-shift for gHSAFRC is higher than for HSA. Non-enzymatic glycation also caused, that the Trp residue of gHSAFRC becomes less accessible for the negatively charged quencher (I-), KSV value is smaller for gHSAFRC than for HSA. TNS fluorescent measurement demonstrated the decrease of hydrophobicity in the glycated albumin. KSV constants for gHSA-PHB systems are higher than for the unmodified serum

  17. Interaction studies of resistomycin from Streptomyces aurantiacus AAA5 with calf thymus DNA and bovine serum albumin

    Science.gov (United States)

    Vijayabharathi, R.; Sathyadevi, P.; Krishnamoorthy, P.; Senthilraja, D.; Brunthadevi, P.; Sathyabama, S.; Priyadarisini, V. Brindha

    2012-04-01

    Resistomycin, a secondary metabolite produced by Streptomyces aurantiacus AAA5. The binding interaction of resistomycin with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) was investigated by spectrophotometry, spectrofluorimetry, circular dichroism (CD) and synchronous fluorescence techniques under physiological conditions in vitro. Absorption spectral studies along with the fluorescence competition with ethidium bromide measurements and circular dichroism clearly suggest that the resistomycin bind with CT DNA relatively strong via groove binding. BSA interaction results revealed that the drug was found to quench the fluorescence intensity of the protein through a static quenching mechanism. The number of binding sites 'n' and apparent binding constant 'K' calculated according to the Scatchard equation exhibit a good binding property to bovine serum albumin protein. In addition, the results observed from synchronous fluorescence measurements clearly demonstrate the occurrence of conformational changes of BSA upon addition of the test compound.

  18. Effect of cobratoxin binding on the normal mode vibration within acetylcholine binding protein.

    Science.gov (United States)

    Bertaccini, Edward J; Lindahl, Erik; Sixma, Titia; Trudell, James R

    2008-04-01

    Recent crystal structures of the acetylcholine binding protein (AChBP) have revealed surprisingly small structural alterations upon ligand binding. Here we investigate the extent to which ligand binding may affect receptor dynamics. AChBP is a homologue of the extracellular component of ligand-gated ion channels (LGICs). We have previously used an elastic network normal-mode analysis to propose a gating mechanism for the LGICs and to suggest the effects of various ligands on such motions. However, the difficulties with elastic network methods lie in their inability to account for the modest effects of a small ligand or mutation on ion channel motion. Here, we report the successful application of an elastic network normal mode technique to measure the effects of large ligand binding on receptor dynamics. The present calculations demonstrate a clear alteration in the native symmetric motions of a protein due to the presence of large protein cobratoxin ligands. In particular, normal-mode analysis revealed that cobratoxin binding to this protein significantly dampened the axially symmetric motion of the AChBP that may be associated with channel gating in the full nAChR. The results suggest that alterations in receptor dynamics could be a general feature of ligand binding.

  19. Nuclear triiodothyronine receptors in rabbit heart

    International Nuclear Information System (INIS)

    Banerjee, S.K.; Ulrich, J.M.; Kaldor, G.J.

    1986-01-01

    Nuclear triiodothyronine receptors from rat liver have been characterized in detail by several investigators. However, little work has been done in this area using heart tissue. In this study they examined and characterized the triiodothyronine binding in rabbit hearts. Nuclei have been prepared from ventricular muscle cells of normal and thyrotoxic rabbits as well as from atrial muscle cells of normal rabbit. Hearts were perfused with a minimum essential medium containing collagenase and bovine serum albumin. Myocardial cells were isolated and then disrupted by sonication and washing with a Triton X-100 buffer solution. A discontinuous sucrose density gradient was then used to isolate the mycoardial nuclei. Radiolabelled triiodothyronine (T 3 ) binding to nuclei was examined using conditions described by established procedures. Scatchard analysis of the binding data yields maximum binding capacity (B/sub max/) of 0.17 +/- 0.2 pmol/mg DNA and apparent dissociation constant (K/sub d/) of 400 +/- 50 pM for normal heart T 3 -receptors. The apparent capacity for T 3 binding is approximately 40% greater in myocardial nuclei prepared from hearts of hyperthyroid rabbits. The binding capacity of atrial muscle nuclei is about fourfold lower than ventricular cell nuclei. The results suggest that binding capacity for T 3 -receptor in the atrium is considerably lower than that found in the ventricle

  20. Atrial natriuretic peptide receptor heterogeneity and effects on cyclic GMP accumulation

    International Nuclear Information System (INIS)

    Leitman, D.C.

    1988-01-01

    The effects of atrial natriuretic peptide (ANP), oxytocin (OT) and vasopressin (AVP) on guanylate cyclase activity and cyclic GMP accumulation were examined, since these hormones appear to be intimately associated with blood pressure and intravascular volume homeostasis. ANP was found to increase cyclic GMP accumulation in ten cell culture systems, which were derived from blood vessels, adrenal cortex, kidney, lung, testes and mammary gland. ANP receptors were characterized in intact cultured cells using 125 I-ANP 8-33 . Specific 125 I-ANP binding was saturable and of high affinity. Scratchard analysis of the binding data for all cell types exhibited a straight line, indicating that these cells possessed a single class of binding sites. Despite the presence of linear Scatchard plots, these studies demonstrated that cultured cells possess two functionally and physically distinct ANP-binding sites. Most of the ANP-binding sites in cultured cells have a molecular size of 66,000 daltons under reducing conditions. The identification of cultured cell types in which hormones (ANP and oxytocin) regulate guanylate cyclase activity and increase cyclic GMP synthesis will provide valuable systems to determine the mechanisms of hormone-receptor coupling to guanylate cyclase and the cellular processes regulated by cyclic GMP

  1. Analysis of binding energy activity of TIBO and HIV-RT based on ...

    African Journals Online (AJOL)

    Tetrahydro-imidazo[4,5,l-jk][1,4]-benzodiazepin-2 (1 H)one (TIBO) is a noncompetitive non nucleotide antiretroviral drug with a specific allosteric binding site of HIV-1 RT. The conformational analysis shows that the effect of the drug depends on the potential energy which varied due to the beta rotatable dihedral angles (N6 ...

  2. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution.

    Directory of Open Access Journals (Sweden)

    Amanda Tse

    Full Text Available Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib and promiscuous (Bosutinib, Dasatinib kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations

  3. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution

    Science.gov (United States)

    Tse, Amanda; Verkhivker, Gennady M.

    2015-01-01

    Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating

  4. Identification and characterization of luekotriene C4 and D4 receptors on a cultured smooth muscle cell line, BC3H-1

    International Nuclear Information System (INIS)

    Tamura, N.; Agrawal, D.K.; Townley, R.G.

    1987-01-01

    The authors studied the characteristics of the leukotriene (LT) C 4 and D 4 receptors on a cultured smooth muscle cell line, BC3H-1. Specific [ 3 H]LTC 4 binding to the cell membrane was greater than 80% of total binding and saturable at a density of 3.96 +/- 0.39 pmol/mg protein, with an apparent dissociation constant(Kd) of 14.3 +/- 2.0 nM (n=9). The association and dissociation of [ 3 H]LTC 4 binding were rapid and apparent equilibrium conditions were established within 5 min. Calculated Kd value of [ 3 H]LTC binding from the kinetic analysis was 9.9 nM. From the competition analysis, calculated Ki value of unlabeled LTC 4 to compete for the specific binding of [ 3 H]LTC 4 was 9.2 nM and was in good agreement with the Kd value obtained from the Scatchard plots or kinetic analysis. The maximum number of binding sites (Bmax) of [ 3 H]LTD 4 in the membrane of BC3H-1 cell line was about 11 times lower than that of the [ 3 H]LTC 4 . The calculated values of Kd and Bmax of [ 3 H]LTD 4 binding were 9.3 +/- 0.8 nM and 0.37 +/- 0.04 pmol/mg proteins, respectively (n=3). These findings demonstrate that BC3H-1 cell line possess both LTC 4 and LTD 4 receptors with a predominance of LTC 4 receptors. Thus, BC3H-1 cell line is a good model to study the regulation of LTC 4 and LTD 4 receptors. 34 references, 5 figures, 1 table

  5. A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies.

    Science.gov (United States)

    Ito, Hiroshi; Yokoi, Takashi; Ikoma, Yoko; Shidahara, Miho; Seki, Chie; Naganawa, Mika; Takahashi, Hidehiko; Takano, Harumasa; Kimura, Yuichi; Ichise, Masanori; Suhara, Tetsuya

    2010-01-01

    In positron emission tomography (PET) studies with radioligands for neuroreceptors, tracer kinetics have been described by the standard two-tissue compartment model that includes the compartments of nondisplaceable binding and specific binding to receptors. In the present study, we have developed a new graphic plot analysis to determine the total distribution volume (V(T)) and nondisplaceable distribution volume (V(ND)) independently, and therefore the binding potential (BP(ND)). In this plot, Y(t) is the ratio of brain tissue activity to time-integrated arterial input function, and X(t) is the ratio of time-integrated brain tissue activity to time-integrated arterial input function. The x-intercept of linear regression of the plots for early phase represents V(ND), and the x-intercept of linear regression of the plots for delayed phase after the equilibrium time represents V(T). BP(ND) can be calculated by BP(ND)=V(T)/V(ND)-1. Dynamic PET scanning with measurement of arterial input function was performed on six healthy men after intravenous rapid bolus injection of [(11)C]FLB457. The plot yielded a curve in regions with specific binding while it yielded a straight line through all plot data in regions with no specific binding. V(ND), V(T), and BP(ND) values calculated by the present method were in good agreement with those by conventional non-linear least-squares fitting procedure. This method can be used to distinguish graphically whether the radioligand binding includes specific binding or not.

  6. Expression, purification, crystallization and preliminary crystallographic analysis of laminin-binding protein (Lmb) from Streptococcus agalactiae

    International Nuclear Information System (INIS)

    Ragunathan, Preethi; Spellerberg, Barbara; Ponnuraj, Karthe

    2009-01-01

    Laminin-binding protein from S. agalactiae was expressed, purified and crystallized and X-ray diffraction data were collected to 2.5 Å resolution. Laminin-binding protein (Lmb), a surface-exposed lipoprotein from Streptococcus agalactiae (group B streptococcus), mediates attachment to human laminin and plays a crucial role in the adhesion/invasion of eukaryotic host cells. However, the structural basis of laminin binding still remains unclear. In the context of detailed structural analysis, the lmb gene has been cloned, expressed in Escherichia coli, purified and crystallized. The crystals diffracted to a resolution of 2.5 Å and belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 56.63, b = 70.60, c = 75.37 Å, β = 96.77°

  7. Distribution of corticotropin-releasing factor receptors in primate brain

    International Nuclear Information System (INIS)

    Millan, M.A.; Jacobowitz, D.M.; Hauger, R.L.; Catt, K.J.; Aguilera, G.

    1986-01-01

    The distribution and properties of receptors for corticotropin-releasing factor (CRF) were analyzed in the brain of cynomolgus monkeys. Binding of [ 125 I]tyrosine-labeled ovine CRF to frontal cortex and amygdala membrane-rich fractions was saturable, specific, and time- and temperature-dependent, reaching equilibrium in 30 min at 23 0 C. Scatchard analysis of the binding data indicated one class of high-affinity sites with a K/sub d/ of 1 nM and a concentration of 125 fmol/mg. As in the rat pituitary and brain, CRF receptors in monkey cerebral cortex and amygdala were coupled to adenylate cyclase. Autoradiographic analysis of specific CRF binding in brain sections revealed that the receptors were widely distributed in the cerebral cortex and limbic system. Receptor density was highest in the pars tuberalis of the pituitary and throughout the cerebral cortex, specifically in the prefrontal, frontal, orbital, cingulate, insular, and temporal areas, and in the cerebellar cortex. A low binding density was present in the superior colliculus, locus coeruleus, substantia gelatinosa, preoptic area, septal area, and bed nucleus of the stria terminalis. These data demonstrate that receptors for CRF are present within the primate brain at areas related to the central control of visceral function and behavior, suggesting that brain CRF may serve as a neurotransmitter in the coordination of endocrine and neural mechanisms involved in the response to stress

  8. (-)[125I]-iodopindolol, a new highly selective radioiodinated beta-adrenergic receptor antagonist: measurement of beta-receptors on intact rat astrocytoma cells

    International Nuclear Information System (INIS)

    Barovsky, K.; Brooker, G.

    1980-01-01

    (-)-Pindolol, one of the most potent beta-adrenergic receptor antagonists, was radioiodinated using chloramine-T oxidation of carrier-free Na 125I and separated from unreacted pindolol to yield 2200 Ci/mmole (-)-[125I]-iodopindolol ((-)-[125I]-IPin). Mass and ultraviolet spectra confirmed that the iodination occurred on the indole ring, presumably at the 3 position. The binding of radiolabeled (-)-[125I]-IPin to beta-adrenergic receptors has been studied using intact C6 rat astrocytoma cells (2B subclone) grown in monolayer cultures. Binding of (-)[125IPin was saturable with time and concentration. Using 13 pM (-)-[125I]IPin, binding equilibrium was reached in 90 min at 21-22 degrees C. The reverse rate constant was 0.026 min-1 at 21 0 C. Specific binding (expressed as 1 microM(-)-propranolol displaceable counts) of (-)-[125I]-IPin was 95% of total binding. Scatchard analysis of (-)-[125I]-I]Pin binding revealed approximately 4300 receptors/cell and a dissociation constant of 30 pM. This was in excellent agreement with the kinetically determined dissociation constant of 35 pM. Displacement by propranolol and isoproterenol showed that (-)-[125I]-IPin binding sites were pharmacologically and stereospecifically selective. These results indicate that (-)-[125I]-IPin, a pure (-)-stereoisomer, high specific activity radioligand, selectively binds to beta-adrenergic receptors in whole cells with a high percentage of specific binding and should therefore be useful in the study and measurement of cellular beta-adrenergic receptors

  9. Spectral analysis of naturally occurring methylxanthines (theophylline, theobromine and caffeine) binding with DNA.

    Science.gov (United States)

    Johnson, Irudayam Maria; Prakash, Halan; Prathiba, Jeyaguru; Raghunathan, Raghavachary; Malathi, Raghunathan

    2012-01-01

    Nucleic acids exist in a dynamic equilibrium with a number of molecules that constantly interact with them and regulate the cellular activities. The inherent nature of the structure and conformational integrity of these macromolecules can lead to altered biological activity through proper targeting of nucleic acids binding ligands or drug molecules. We studied the interaction of naturally occurring methylxanthines such as theophylline, theobromine and caffeine with DNA, using UV absorption and Fourier transform infrared (FTIR) spectroscopic methods, and especially monitored their binding affinity in the presence of Mg(2+) and during helix-coil transitions of DNA by temperature (T(m)) or pH melting profiles. The study indicates that all these molecules effectively bind to DNA in a dose dependent manner. The overall binding constants of DNA-theophylline = 3.5×10(3) M(-1), DNA-theobromine = 1.1×10(3) M(-1), and DNA-Caffeine = 3.8×10(3) M(-1). On the other hand T(m)/pH melting profiles showed 24-35% of enhanced binding activity of methylxanthines during helix-coil transitions of DNA rather than to its native double helical structure. The FTIR analysis divulged that theophylline, theobromine and caffeine interact with all the base pairs of DNA (A-T; G-C) and phosphate group through hydrogen bond (H-bond) interaction. In the presence of Mg(2+), methylxanthines altered the structure of DNA from B to A-family. However, the B-family structure of DNA remained unaltered in DNA-methylxanthines complexes or in the absence of Mg(2+). The spectral analyses indicated the order of binding affinity as "caffeine≥theophylline>theobromine" to the native double helical DNA, and "theophylline≥theobromine>caffeine to the denatured form of DNA and in the presence of divalent metal ions.

  10. Spectral analysis of naturally occurring methylxanthines (theophylline, theobromine and caffeine binding with DNA.

    Directory of Open Access Journals (Sweden)

    Irudayam Maria Johnson

    Full Text Available Nucleic acids exist in a dynamic equilibrium with a number of molecules that constantly interact with them and regulate the cellular activities. The inherent nature of the structure and conformational integrity of these macromolecules can lead to altered biological activity through proper targeting of nucleic acids binding ligands or drug molecules. We studied the interaction of naturally occurring methylxanthines such as theophylline, theobromine and caffeine with DNA, using UV absorption and Fourier transform infrared (FTIR spectroscopic methods, and especially monitored their binding affinity in the presence of Mg(2+ and during helix-coil transitions of DNA by temperature (T(m or pH melting profiles. The study indicates that all these molecules effectively bind to DNA in a dose dependent manner. The overall binding constants of DNA-theophylline = 3.5×10(3 M(-1, DNA-theobromine = 1.1×10(3 M(-1, and DNA-Caffeine = 3.8×10(3 M(-1. On the other hand T(m/pH melting profiles showed 24-35% of enhanced binding activity of methylxanthines during helix-coil transitions of DNA rather than to its native double helical structure. The FTIR analysis divulged that theophylline, theobromine and caffeine interact with all the base pairs of DNA (A-T; G-C and phosphate group through hydrogen bond (H-bond interaction. In the presence of Mg(2+, methylxanthines altered the structure of DNA from B to A-family. However, the B-family structure of DNA remained unaltered in DNA-methylxanthines complexes or in the absence of Mg(2+. The spectral analyses indicated the order of binding affinity as "caffeine≥theophylline>theobromine" to the native double helical DNA, and "theophylline≥theobromine>caffeine to the denatured form of DNA and in the presence of divalent metal ions.

  11. Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions

    Science.gov (United States)

    Janjua, Naveed Kausar; Siddiqa, Asima; Yaqub, Azra; Sabahat, Sana; Qureshi, Rumana; Haque, Sayed ul

    2009-12-01

    Mode of interactions of three flavonoids [morin (M), quercetin (Q), and rutin (R)] with chicken blood ds.DNA (ck.DNA) has been investigated spectrophotometrically at different temperatures including body temperature (310 K) and at two physiological pH values, i.e. 7.4 (human blood pH) and 4.7 (stomach pH). The binding constants, Kf, evaluated using Benesi-Hildebrand equation showed that the flavonoids bind effectively through intercalation at both pH values and body temperature. Quercetin, somehow, showed greater binding capabilities with DNA. The free energies of flavonoid-DNA complexes indicated the spontaneity of their binding. The order of binding constants of three flavonoids at both pH values were found to be Kf(Q) > Kf(R) > Kf(M) and at 310 K.

  12. Quantitation of alpha 1-adrenergic receptors in porcine uterine and mesenteric arteries

    International Nuclear Information System (INIS)

    Farley, D.B.; Ford, S.P.; Reynolds, L.P.; Bhatnagar, R.K.; Van Orden, D.E.

    1984-01-01

    The activation of vascular alpha-adrenergic receptors may be involved in the control of uterine blood flow. A radioligand binding assay with the use of the alpha 1-adrenergic antagonist 3 H-WB-4101 was established to characterize the alpha-adrenergic receptors in uterine and mesenteric arterial membranes obtained from nonpregnant pigs. Specific binding of 3 H-WB-4101 was rapid, saturable, and exhibited the alpha-adrenergic agonist potency order of (-)-epinephrine inhibition constant [Ki] . 0.6 mumol/L greater than (-)-norepinephrine (Ki . 1.5 mumol/L) much greater than (-)-isoproterenol (Ki . 120 mumol/L). The alpha-adrenergic antagonist phentolamine (Ki . 6.0 nmol/L) was 200 times more potent than the beta-adrenergic antagonist (+/-)-propranolol (Ki . 1,200 nmol/L); the alpha 1-selective antagonist prazosin (Ki . 1.2 nmol/L) was 130 times more potent than the alpha 2-selective antagonist yohimbine (Ki . 160 nmol/L). Scatchard analysis, as well as iterative curve-fitting analysis, demonstrated that 3 H-WB-4101 binding by arterial membranes was to a single class of binding sites. Uterine arteries exhibited greater maximal binding capacity (BMax) than that of mesenteric arteries (47.5 +/- 3.2 versus 30.9 +/- 3.6 fmol per milligram of protein, p less than 0.01), but the uterine artery dissociation constant (Kd) was higher, thus indicating a lower affinity, when compared with mesenteric artery (0.43 +/- 0.04 versus 0.33 +/- 0.04 nmol/L, p less than 0.05)

  13. Study on the interaction of phthalate esters to human serum albumin by steady-state and time-resolved fluorescence and circular dichroism spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoyun [National Key Laboratory of Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Wang, Zhaowei [College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Zhou, Ximin; Wang, Xiaoru [National Key Laboratory of Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen, Xingguo, E-mail: chenxg@lzu.edu.cn [National Key Laboratory of Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-09-15

    Highlights: {center_dot} Molecular docking revealed PAEs to be located in the hydrophobic pocket of HSA. {center_dot} HSA-DMP had one class of binding sites while HSA-BBP and HSA-DEHP had two types. {center_dot} Hydrophobic and hydrogen interactions dominated in the association of HSA-PAEs. {center_dot} The lifetime of Trp residue of HSA decreased after the addition of PAEs. {center_dot} The presences of PAEs could alter the second structure of HSA. - Abstract: Phthalate esters (PAEs) are globally pervasive contaminants that are considered to be endocrine disruptor chemicals and toxic environmental priority pollutants. In this paper, the interactions between PAEs and human serum albumin (HSA) were examined by molecular modelling, steady state and time-resolved fluorescence, ultraviolet-visible spectroscopy (UV-vis) and circular dichroism spectroscopy (CD). The association constants between PAEs and HSA were determined using the Stern-Volmer and Scatchard equations. The binding of dimethyl phthalate (DMP) to HSA has a single class of binding site and its binding constants (K) are 4.08 x 10{sup 3}, 3.97 x 10{sup 3}, 3.45 x 10{sup 3}, and 3.20 x 10{sup 3} L mol{sup -1} at 289, 296, 303, and 310 K, respectively. The Stern-Volmer and Scatchard plots both had two regression curves for HSA-butylbenzyl phthalate (BBP) and HSA-di-2-ethylhexyl phthalate (DEHP), which indicated that these bindings were via two types of binding sites: the numbers of binding site for the first type were lower than for the second type. The binding constants of the first type binding site were higher than those of the second type binding site at corresponding temperatures, the results suggesting that the first type of binding site had high affinity and the second binding site involved other sites with lower binding affinity and selectivity. The thermodynamic parameters of the binding reactions ({Delta}G{sup o}, {Delta}H{sup o} and {Delta}S{sup o}) were measured, and they indicated the presences

  14. Mobility-based correction for accurate determination of binding constants by capillary electrophoresis-frontal analysis.

    Science.gov (United States)

    Qian, Cheng; Kovalchik, Kevin A; MacLennan, Matthew S; Huang, Xiaohua; Chen, David D Y

    2017-06-01

    Capillary electrophoresis frontal analysis (CE-FA) can be used to determine binding affinity of molecular interactions. However, its current data processing method mandate specific requirement on the mobilities of the binding pair in order to obtain accurate binding constants. This work shows that significant errors are resulted when the mobilities of the interacting species do not meet these requirements. Therefore, the applicability of CE-FA in many real word applications becomes questionable. An electrophoretic mobility-based correction method is developed in this work based on the flux of each species. A simulation program and a pair of model compounds are used to verify the new equations and evaluate the effectiveness of this method. Ibuprofen and hydroxypropyl-β-cyclodextrinare used to demonstrate the differences in the obtained binding constant by CE-FA when different calculation methods are used, and the results are compared with those obtained by affinity capillary electrophoresis (ACE). The results suggest that CE-FA, with the mobility-based correction method, can be a generally applicable method for a much wider range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quantitative pharmacological analysis of 2-125I-iodomelatonin binding sites in discrete areas of the chicken brain

    International Nuclear Information System (INIS)

    Siuciak, J.A.; Krause, D.N.; Dubocovich, M.L.

    1991-01-01

    The authors have localized and characterized 2-125I-iodomelatonin binding sites in the chicken brain using in vitro quantitative autoradiography. Binding sites were widely distributed throughout the chicken brain, predominantly in regions associated with the visual system. The specific binding of 2-125I-iodomelatonin to discrete chicken brain areas was found to be saturable, reversible, and of high affinity. The specific binding of 2-125I-iodomelatonin (75 pm) was quantitated for 40 identifiable brain regions. Eight brain regions were chosen for binding characterization and pharmacological analysis: optic tectum, Edinger-Westphal nucleus, oculomotor nucleus, nucleus rotundus, ventral supraoptic decussation, ventrolateral geniculate nucleus, neostriatum, and ectostriatum. These regions showed no rostral-caudal gradient in 2-125I-iodomelatonin specific binding, and saturation analysis revealed a single class of high-affinity sites with KD values in the range of 33-48 pM and receptor site density (Bmax) ranging from 31 to 58 fmol/mg protein. Competition experiments carried out with various indoles revealed a similar order of pharmacological affinities in these areas: melatonin greater than 6-chloromelatonin greater than methoxyluzindole greater than N-acetylserotonin greater than luzindole much greater than 5-HT greater than 5-methoxytryptamine. The affinity constants determined by quantitative autoradiography for these compounds to compete for 2-125I-iodomelatonin binding in the optic tectum correlated well with the affinities in chicken brain membranes at 25 degrees C (r = 0.966; slope = 0.845; n = 7) and 0 degree C (r = 0.946; slope = 0.379; n = 7), chicken retinal membranes (r = 0.973; slope = 0.759; n = 7), and the potency or affinity of these compounds to affect the calcium-dependent release of 3H-dopamine from the rabbit retina (r = 0.902; slope = 0.506; n = 6)

  16. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML, which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.

  17. Pictorial binding: endeavor to classify

    Directory of Open Access Journals (Sweden)

    Zinchenko S.

    2015-01-01

    Full Text Available The article is devoted to the classification of bindings of the 1-19th centuries with a unique and untypical book binding decoration technique (encaustic, tempera and oil paintings. Analysis of design features, materials and techniques of art decoration made it possible to identify them as a separate type - pictorial bindings and divide them into four groups. The first group consists of Coptic bindings, decorated with icon-painting images in encaustic technique. The second group is made up of leather Western bindings of the 13-14th centuries, which have the decoration and technique of ornamentation close to iconography. The third group involves parchment bindings, ornamentation technique of which is closer to the miniature. The last group comprises bindings of East Slavic origin of the 15-19th centuries, decorated with icon-painting pictures made in the technique of tempera or oil painting. The proposed classification requires further basic research as several specific kinds of bindings have not yet been investigated

  18. Thermodynamical study of interaction of histone H1 chromosomal protein and mitoxantrone anticancer drug

    International Nuclear Information System (INIS)

    Jafargholizadeh, Naser; Zargar, Seyed Jalal; Safarian, Shahrokh; Habibi-Rezaei, Mehran

    2012-01-01

    Highlights: ► For the first time, our results show mitoxantrone anticancer drug binds to histone H1, via hydrophobic, hydrogen, van der Waals and electrostatic interactions. ► Binding of mitoxantrone molecules to histone H1 is positive cooperative. ► Histone H1 may be considered as a new target for mitoxantrone at the chromatin level. - Using ultraviolet spectroscopy technique, we have investigated the interaction of anticancer drug, mitoxantrone with calf thymus histone H1 chromosomal protein in 100 mM phosphate buffer, pH 7.0, at temperatures 300 and 310 K. UV spectroscopy results show interactions between mitoxantrone and histone H1 with a positive cooperative binding process which was confirmed by Scatchard plot. According to the obtained results, it is concluded that histone H1 can be considered as a target for mitoxantrone binding at the chromatin level.

  19. Specific binding of antigen-antibody in physiological environments: Measurement, force characteristics and analysis

    Science.gov (United States)

    Gu, Xin; Zhou, Jun; Zhou, Lu; Xie, Shusen; Petti, Lucia; Wang, Shaomin; Wang, Fuyan

    2018-05-01

    The specific recognition of the antigen by the antibody is the crucial step in immunoassays. Measurement and analysis of the specific recognition, including the ways in which it is influenced by external factors are of paramount significance for the quality of the immunoassays. Using prostate-specific antigen (PSA)/anti-PSA antibody and α-fetoprotein (AFP) /anti-AFP antibody as examples, we have proposed a novel solution for measuring the binding forces between the antigens and their corresponding antibodies in different physiological environments by combining laminar flow control technology and optical tweezers technology. On the basis of the experimental results, the different binding forces of PSA/anti-PSA antibody and AFP/anti-AFP antibody in the same phosphate-buffered saline (PBS) environments are analysed by comparing the affinity constant of the two antibodies and the number of antigenic determinants of the two antigens. In different electrolyte environments, the changes of the binding force of antigens-antibodies are explained by the polyelectrolyte effect and hydrophobic interaction. Furthermore, in different pH environments, the changes of binding forces of antigens-antibodies are attributed to the role of the denaturation of protein. The study aims to recognise the antigen-antibody immune mechanism, thus ensuring further understanding of the biological functions of tumour markers, and it promises to be very useful for the clinical diagnosis of early-stage cancer.

  20. Metformin and insulin receptors

    International Nuclear Information System (INIS)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    1984-01-01

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125 I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125 I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  1. Investigation of the immunological and receptor activity of human growth hormone in patients with acromegaly

    International Nuclear Information System (INIS)

    Dietz, A.

    1982-01-01

    Human growth hormone (hGH) was measured by means of the radioimmunoassay (RIA) and the radioreceptor assay (RRA). The receptors were liver plasma membranes (LPM) of pregnant rabbits. In the RIA, no cross-reaction was found with hPRL, whereas in the RRA the cross-reaction was 3 p.c. The Scatchard analysis revealed two binding sites for hGH at the receptor. Pre-treatment with hGH and Cortisol brought about an enhanced affinity without change of the specific bonding, whereas pre-treatment with bromocriptin showed no significant effect. Hypophyseal hGH was separated by means of gel chromatography into big-big and big-little hGH and a reduced receptor activity of the higher molecular hGH fraction was shown. The Scatchard analysis indicated a more unspecific bonding characteristic of the big hGH. Stimulation of hGH secretion by insulin hypoglycemia provoked an overproportional increase in big hGH in healthy persons, whereas in patients with acromegaly the secretion of little hGH was enhanced. The suppression of hGH secretion by long-term bromocriptin treatment led to a significant rise of the RIA/RRA quotient in patients with post-operative florid acromegaly. Acute administration of BC was shown to induce a stronger hGH drop in the RRA of responders than in their RIA, as compared to non-responders. By chromatographic separation it was found that in responders the secretion of little hGH is selectively inhibited, but no in non-responders. (orig.) [de

  2. Computational analysis of phosphopeptide binding to the polo-box domain of the mitotic kinase PLK1 using molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    David J Huggins

    2010-08-01

    Full Text Available The Polo-Like Kinase 1 (PLK1 acts as a central regulator of mitosis and is over-expressed in a wide range of human tumours where high levels of expression correlate with a poor prognosis. PLK1 comprises two structural elements, a kinase domain and a polo-box domain (PBD. The PBD binds phosphorylated substrates to control substrate phosphorylation by the kinase domain. Although the PBD preferentially binds to phosphopeptides, it has a relatively broad sequence specificity in comparison with other phosphopeptide binding domains. We analysed the molecular determinants of recognition by performing molecular dynamics simulations of the PBD with one of its natural substrates, CDC25c. Predicted binding free energies were calculated using a molecular mechanics, Poisson-Boltzmann surface area approach. We calculated the per-residue contributions to the binding free energy change, showing that the phosphothreonine residue and the mainchain account for the vast majority of the interaction energy. This explains the very broad sequence specificity with respect to other sidechain residues. Finally, we considered the key role of bridging water molecules at the binding interface. We employed inhomogeneous fluid solvation theory to consider the free energy of water molecules on the protein surface with respect to bulk water molecules. Such an analysis highlights binding hotspots created by elimination of water molecules from hydrophobic surfaces. It also predicts that a number of water molecules are stabilized by the presence of the charged phosphate group, and that this will have a significant effect on the binding affinity. Our findings suggest a molecular rationale for the promiscuous binding of the PBD and highlight a role for bridging water molecules at the interface. We expect that this method of analysis will be very useful for probing other protein surfaces to identify binding hotspots for natural binding partners and small molecule inhibitors.

  3. Structure-volume relationships: singular volume effects produced by cupric ion-globular protein interaction.

    Science.gov (United States)

    Katz, S; Shinaberry, G; Heck, E L; Squire, W

    1980-08-05

    The nature of the volume isotherms produced by the coordination of Cu(II) with ovalbumin and bovine serum albumin differs substantially from the adsorption isotherms produced by these systems. Whereas there was increased binding of Cu(II) associated with a pH increase from pH 5.3 to pH 7.4, the volume isotherms for these systems did not exhibit this type of pH dependence. The volume changes were determined at 30.0 +/- 0.001 degrees C with microdilatometers which could be read to 0.01 muL. The binding isotherms for ovalbumin at pH 5.3 and 7.4 and for bovine serum albumin at pH 5.3 was resolved by a Scatchard plot to yield the appropriate thermodynamic parameters. An algorithm was derived to calculate the distribution of the individual PMi complexes, i.e., PMi-1 + M in equilibrium (Ki) PMi where i equals 1, 2, 3, ..., n moles of cation, M, bound per mole of protein, P, for the above systems. The volume isotherms were then resolved in terms of the constituent delta Vi terms, i.e., the volume change produced by the formation of the individual PMi complexes. These values were verified by an independent graphical differentiation procedure. The coordination of Cu(II) to BSA at pH 7.4 produced a cooperative adsorption isotherm which was not amenable to a Scatchard analysis. The resultant anomalous volume isotherm was resolved into a component related to Cu(II)-site interaction and a negative volume effect attributable to a conformational change induced by complex formation. This structural transition which occurs at physiological pH may constitute a control mechanism for regulating the serum level of Cu(II) and possibly other divalent ions.

  4. BSSF: a fingerprint based ultrafast binding site similarity search and function analysis server

    Directory of Open Access Journals (Sweden)

    Jiang Hualiang

    2010-01-01

    Full Text Available Abstract Background Genome sequencing and post-genomics projects such as structural genomics are extending the frontier of the study of sequence-structure-function relationship of genes and their products. Although many sequence/structure-based methods have been devised with the aim of deciphering this delicate relationship, there still remain large gaps in this fundamental problem, which continuously drives researchers to develop novel methods to extract relevant information from sequences and structures and to infer the functions of newly identified genes by genomics technology. Results Here we present an ultrafast method, named BSSF(Binding Site Similarity & Function, which enables researchers to conduct similarity searches in a comprehensive three-dimensional binding site database extracted from PDB structures. This method utilizes a fingerprint representation of the binding site and a validated statistical Z-score function scheme to judge the similarity between the query and database items, even if their similarities are only constrained in a sub-pocket. This fingerprint based similarity measurement was also validated on a known binding site dataset by comparing with geometric hashing, which is a standard 3D similarity method. The comparison clearly demonstrated the utility of this ultrafast method. After conducting the database searching, the hit list is further analyzed to provide basic statistical information about the occurrences of Gene Ontology terms and Enzyme Commission numbers, which may benefit researchers by helping them to design further experiments to study the query proteins. Conclusions This ultrafast web-based system will not only help researchers interested in drug design and structural genomics to identify similar binding sites, but also assist them by providing further analysis of hit list from database searching.

  5. Development of magnetic molecularly imprinted polymers based on carbon nanotubes - application for trace analysis of pyrethroids in fruit matrices.

    Science.gov (United States)

    Ma, Guifu; Chen, Ligang

    2014-02-14

    The sensitive and efficient magnetic molecularly imprinted polymers (MMIPs) were successfully synthesized using carbon nanotubes as matrix and Fe3O4 particles as magnetic ingredient. Tetraethyl orthosilicate was used as modification material of the carbon nanotubes. Cyhalothrin, methacrylic acid and ethylene glycol dimethacrylate were used as template molecule, functional monomer and cross-linker, respectively. Azo-isobutyronitrile and polyvinylpyrrolidone were used as initiator and dispersant, respectively. The MMIPs were used for the separation of pyrethroids including beta-cyfluthrin, cyhalothrin, cyphenothrin and permethrin in fruit samples followed by high performance liquid chromatography analysis. The polymers were characterized with Fourier transform infrared spectrometry, Brunauer-Emmett-Teller method, transmission electron microscopy and a physical property measurement system. The isothermal absorption experiment, kinetics absorption experiment and selectivity of MMIPs were studied in detail. Scatchard analysis revealed that two kinds of different binding sites existed in MMIPs. The maximum adsorption capacities of two binding sites were 65.21 and 189.83mgg(-1), and dissociation constants were 7.11 and 30.40μgmL(-1), respectively. The kinetic property of MMIPs was well fitted to the second-order equation. The selectivity experiment indicated that MMIPs had higher selectivity toward cyhalothrin and its structural analogs than reference compound. The feasibility of detecting pyrethroids from real samples was testified in spiked fruit samples with different concentrations (0.025, 0.25 and 2.5mgkg(-1)). The LODs of beta-cyfluthrin, cyhalothrin, cyphenothrin and permethrin were 0.0072, 0.0035, 0.0062 and 0.0068mgkg(-1), respectively. Precisions of intra-day and inter-day ranging from 2.6% to 4.3% and 4.2% to 5.6% were obtained, respectively. This method was applied to determine pyrethroids in different fruit samples including apple, pear, orange, grape and

  6. Identification and characterization of a putative human platelet thromboxane A2/prostaglandin H2 receptor

    International Nuclear Information System (INIS)

    Saussy, D.L. Jr.

    1986-01-01

    The thromboxane A 2 (TXA 2 ) analog, 9,11-dimethylmethano-11,12-methano-16-(3-iodo-4-hydroxyphenyl)-13,14-dihydro-13-aza-15αβ-omega-tetranor TXA 2 (I-PTA-OH) was characterized as a competitive antagonist of TXA 2 mimetic-induced platelet aggregation, with a K/sub d/ of 190 nM in platelet rich plasma. This antagonism was specific for the putative thromboxane A 2 /prostaglandin H 2 (TXA 2 /PGH 2 ) receptor, since I-PTA-OH had no inhibitory effects on platelet aggregation stimulated by agonists which act independently of TXA 2 /PGH 2 , and did not inhibit platelet TXA 2 synthesis. [ 125 I]-PTA-OH binding to a particulate fraction from human platelets was saturable, displaceable, and linear with protein concentration. Scatchard analysis of equilibrium binding revealed a single class of high affinity binding sites, with a K/sub d/ of 30 +/- 4 nM and a B/sub max/ of 1.8 +/- 0.3 pmol/mg protein. Kinetic analysis yielded a k 1 of 1.35 x 10 6 M -1 x min -1 and a k√ 1 of 0.032 min -1 , K/sub d/ = k√ 1 /k 1 = 24 nM. The subcellular localization of the putative TXA 2 /PGH 2 receptor was determined using [ 125 I]-PTA-OH binding as a marker for the receptor. [ 125 I]-PTA-OH binding as a marker for the receptor. [ 125 I]-PTA-OH binding, was coenriched with markers for plasma membranes and dense tubular system; but not with markers for cytoplasmic constituents, mitochondria, or granules

  7. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics.

    Directory of Open Access Journals (Sweden)

    Donald W Lee

    Full Text Available With the development of single-particle tracking (SPT microscopy and host membrane mimics called supported lipid bilayers (SLBs, stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data

  8. The preparation of a radionuclide labeled peptide {sup 125}I-WH16 and its characters of binding to a human liver cancer cell line HepG2 in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Luo; Xiaohua, Zhu; Hua, Wu [Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong Univ. of Science and Technolgoy, Wuhan (China); Bing, Jia; Jing, Du; Fan, Wang

    2004-12-15

    Objective: To investigate the binding characters of a radionuclide labeled peptide {sup 125}I-WH16 which is affinitive to hepatocarcinoma cells in order to explore the potential feasibility of this artificially synthesized peptide to be a targeting reagent in diagnosis and therapy of liver cancer. Methods: 1) WH16 was labeled with Na{sup 125}I using Iodogen method, then isolated and identified with HPLC; 2)a. The tests of cell number (or time of incubation)- to-binding counts between {sup 125}I-WH16 and HepG2 cells were carried out in order to obtain better conditions for next in vitro tests; b. The average binding counts of {sup 125}I-WH16 treated HepG2 cells and L02 cells were compared in order to inspect the binding specificity between {sup 125}I-WH16 and HepG2 cells; c. A test of saturation of binding between {sup 125}I-WH16 and HepG2 cells was carried out in order to investigate the binding affinity between {sup 125}I-WH16 and HepG2 cells. Results: 1) The labeling rate of {sup 125}I was 50%. The specific activity of {sup 125}I-WH16 was 8.21x10{sup 15} Bq/mol. The radiochemical purity was 95% and the remnant radiochemical purity after a storage for 24 h at -20 degree C was 95%. The radioactive concentration was 6.64 x 10{sup 9} Bq/ L; 2) a. The binding of {sup 125}I-WH16 to HepG2 cells was cell number dependent and the optimal time of incubation was 3 h; b. There were obvious differences between HepG2 cells and L02 cells in binding with {sup 125}I-WH16; c. The binding of {sup 125}I-WH16 to HepG2 cells showed saturability. Scatchard plotting suggested that HepG2 cells contained only one type of WH16 receptors. The concentrations of Kd and Bmax were (1.42 {+-} 0.28) nmol/L and (12.15 {+-} 0.63) pmol/L, respectively. Hill modulus from Hill plotting was 1.03, which was close to 1 and suggesting that one receptor may bind only one ligand molecule. Conclusions: The present study indicates that the preparation of {sup 125}I-WH16 is stable and has good specificity and

  9. Imaging of aromatase distribution in rat and rhesus monkey brains with [11C]vorozole

    International Nuclear Information System (INIS)

    Takahashi, Kayo; Bergstroem, Mats; Fraendberg, Pernilla; Vesstroem, Eva-Lotta; Watanabe, Yasuyoshi; Langstroem, Bengt

    2006-01-01

    Aromatase is an enzyme that converts androgens to estrogens and may play a role in mood and mental status. The aim of this study was to demonstrate that brain aromatase distribution could be evaluated with a novel positron emission tomography (PET) tracer [ 11 C]vorozole. Vorozole is a nonsteroidal aromatase inhibitor that reversibly binds to the heme domain of aromatase. In vitro experiments in rat brain, using frozen section autoradiography, illustrated specific binding in the medial amygdala (MA), the bed nucleus of stria terminalis (BST) and the preoptic area (POA) of male rat brain. Specific binding in female rat brain was found in the MA and the BST; however, the signals were lower than those of males. The K d of [ 11 C]vorozole binding to aromatase in MA was determined to be 0.60±0.06 nM by Scatchard plot analysis using homogenates. An in vivo PET study in female rhesus monkey brain demonstrated the uptake of [ 11 C]vorozole in the amygdala, where the uptake was blocked by the presence of excess amounts of unlabeled vorozole. Thus, this tracer has a high affinity for brain aromatase and could have a potential for in vivo aromatase imaging. This technique might enable the investigation of human brain aromatase in healthy and diseased persons

  10. Distinct angiotensin II receptor in primary cultures of glial cells from rat brain

    International Nuclear Information System (INIS)

    Raizada, M.K.; Phillips, M.I.; Crews, F.T.; Sumners, C.

    1987-01-01

    Angiotensin II (Ang-II) has profound effects on the brain. Receptors for Ang-II have been demonstrated on neurons, but no relationship between glial cells and Agn-II has been established. Glial cells (from the hypothalamus and brain stem of 1-day-old rat brains) in primary culture have been used to demonstrate the presence of specific Ang-II receptors. Binding of 125 I-Ang-II to glial cultures was rapid, reversible, saturable, and specific for Ang-II. The rank order of potency of 125 I-Ang-II binding was determined. Scatchard analysis revealed a homogeneous population of high-affinity binding sites with a B/sub max/ of 110 fmol/mg of protein. Light-microscopic autoradiography of 125 I-Ang-II binding supported the kinetic data, documenting specific Ang-II receptors on the glial cells. Ang-II stimulated a dose-dependent hydrolysis of phosphatidylinositols in glial cells, an effect mediated by Ang-II receptors. However, Ang-II failed to influence [ 3 H] norepinephrine uptake, and catecholamines failed to regulate Ang-II receptors, effects that occur in neurons. These observations demonstrate the presence of specific Ang-II receptors on the glial cells in primary cultures derived from normotensive rat brain. The receptors are kinetically similar to, but functionally distinct from, the neuronal Ang-II receptors

  11. Combination of anti-retroviral drugs and radioimmunotherapy specifically kills infected cells from HIV infected individuals

    Directory of Open Access Journals (Sweden)

    Dina Tsukrov

    2016-09-01

    Full Text Available Eliminating virally infected cells is an essential component of any HIV eradication strategy. Radioimmunotherapy (RIT, a clinically established method for killing cells using radiolabeled antibodies, was recently applied to target HIV-1 gp41 antigen expressed on the surface of infect-ed cells. Since gp41 expression by infected cells is likely down-regulated in patients on an-tiretroviral therapy (ART, we evaluated the ability of RIT to kill ART-treated infected cells us-ing both in vitro models and lymphocytes isolated from HIV-infected subjects. Human peripheral blood mononuclear cells (PBMCs were infected with HIV and cultured in the presence of two clinically relevant ART combinations. Scatchard analysis of the 2556 human monoclonal anti-body to HIV gp41 binding to the infected and ART-treated cells demonstrated sufficient residual expression of gp41 on the cell surface to warrant subsequent RIT. This is the first time the quantification of gp41 post-ART is being reported. Cells were then treated with Bismuth-213-labeled 2556 antibody. conjugated to the human monoclonal antibody 2556, which binds to HIV gp41. Cell survival was quantified by Trypan blue and residual viremia by p24 ELISA. Cell surface gp41 expression was assessed by Scatchard analysis. The experiments were repeated using PBMCs isolated from blood specimens obtained from 15 HIV-infected individuals: ten on ART and five ART-naive. We found that 213Bi-2556 killed ART-treated infected PBMCs and reduced viral production to undetectable levels. ART and RIT co-treatment was more effective at reducing viral load in vitro than either therapy alone, indicating that gp41 expression under ART was sufficient to allow 213Bi-2556 to deliver cytocidal doses of radiation to infected cells. This study provides proof of concept that 213Bi-2556 may represent an innovative and effective targeting method for killing HIV-infected cells treated with ART, and supports continued development of 213Bi

  12. Diversifying selection and functional analysis of interleukin-4 suggests antagonism-driven evolution at receptor-binding interfaces

    Directory of Open Access Journals (Sweden)

    Brown Scott

    2010-07-01

    Full Text Available Abstract Background Interleukin-4 (IL4 is a secreted immunoregulatory cytokine critically involved in host protection from parasitic helminths 1. Reasoning that helminths may have evolved mechanisms to antagonize IL4 to maximize their dispersal, we explored mammalian IL4 evolution. Results This analysis revealed evidence of diversifying selection at 15 residues, clustered in epitopes responsible for IL4 binding to its Type I and Type II receptors. Such a striking signature of selective pressure suggested either recurrent episodes of pathogen antagonism or ligand/receptor co-evolution. To test the latter possibility, we performed detailed functional analysis of IL4 allotypes expressed by Mus musculus musculus and Mus musculus castaneus, which happen to differ at 5 residues (including three at positively selected sites in and adjacent to the site 1 epitope that binds the IL4Rα subunit shared by the Type I and Type II IL4 receptors. We show that this intra-species variation affects the ability of IL4 neither to bind IL4 receptor alpha (IL4Rα nor to signal biological responses through its Type I receptor. Conclusions Our results -- reminiscent of clustered positively selected sites revealing functionally important residues at host-virus interaction interfaces -- are consistent with IL4 having evolved to avoid recurrent pathogen antagonism, while maintaining the capacity to bind and signal through its cognate receptor. This work exposes what may be a general feature of evolutionary conflicts fought by pathogen antagonists at host protein-protein interaction interfaces involved in immune signaling: the emergence of receptor-binding ligand epitopes capable of buffering amino acid variation.

  13. Characterization and Functional Analysis of the Calmodulin-Binding Domain of Rac1 GTPase

    Science.gov (United States)

    Xu, Bing; Chelikani, Prashen; Bhullar, Rajinder P.

    2012-01-01

    Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s) in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151–164 in Rac1 is essential for calmodulin binding. Within the 151–164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A) demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A), activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration. PMID:22905193

  14. Characterization and functional analysis of the calmodulin-binding domain of Rac1 GTPase.

    Directory of Open Access Journals (Sweden)

    Bing Xu

    Full Text Available Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151-164 in Rac1 is essential for calmodulin binding. Within the 151-164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A, activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration.

  15. Effect of chronic psychogenic stress on some behavioral and neurochemical characteristics of rats

    International Nuclear Information System (INIS)

    Danchev, N.D.; Rozhanets, V.V.; Val'dman, A.V.

    1986-01-01

    This paper studies the behavioral, somatic, and certain neurochemical parameters in rats under conditions of unavoidable chronic stress, according to Hecht et al. in a situation of possible avoidance, with the same total number of aversive stimuli. Specific binding of tritium-flunitrazepam and tritium-dihydroalprenolol was studied. The dissociatin constant and the maximal concentration of ligand-receptor complexes were determined in Scatchard plots by means of an HP-33E computer. The protein concentration in the samples was determined by Peterson's method

  16. ANALYSIS OF STRUCTURAL ELEMENT OF FAMILY 6 CARBOHYDRATE BINDING MODULE (CTCBM6B OF ALPHA-L-ARABINOFURANOSIDASE FROM CLOSTRIDIUM THERMOCELLUM

    Directory of Open Access Journals (Sweden)

    Shadab Ahmed

    2013-06-01

    Full Text Available The amino acid sequence of a family 6 carbohydrate binding module (CtCBM6B from Clostridium thermocellum alpha-L-arabinofuranosidase showed close evolutionary relationship with some other member of family 6 carbohydrate binding modules. The CD spectrum analysis confirmed the secondary structure prediction of CtCBM6B as both showed beta-sheets (44-48% and random coils (52-54% and no alpha-helix. The hydrogen bonding plot of CtCBM6B showed many segments of parallel and anti-parallel beta-strands which was similar to the secondary structure prediction by PSIPRED VIEW. The three dimensional structure of CtCBM6B generated by MODELLER revealed a typical beta-sandwich architecture at its core, characteristic of beta-jelly roll CBM superfamily. The Ramachandran plot analysis by PROCHECK showed that out of 134 residues, 92.9% were in most favoured region, 6.2% in additionally allowed region and only 0.9% in generously allowed region which indicated a stable conformation of 3D model of CtCBM6B. The docking analysis of CtCBM6B for finding putative ligand binding sites showed that it has high binding affinity for arabinobiose, beta-L-arabinofuranose and beta-D-xylopyranose indicated by lower ligand binding energy (-14.28 kcal mol–1, -12.5 kcal mol–1 and -11.3 kcal mol–1, respectively. CtCBM6B also showed appreciable binding affinity with alpha-D-xylopyranose (–10.8 kcal mol–1, beta-L-arabinopyranose (–10.2 kcal mol-1, alpha-L-arabinopyranose (–10.0 kcal mol–1 and alpha-L-arabinofuranose (–8.75 kcal mol–1. The results indicated that CtCBM6B has high potential for binding arabinan, xylans and substituted xylans.

  17. Characterization of the dextran-binding domain in the glucan-binding protein C of Streptococcus mutans.

    Science.gov (United States)

    Takashima, Y; Fujita, K; Ardin, A C; Nagayama, K; Nomura, R; Nakano, K; Matsumoto-Nakano, M

    2015-10-01

    Streptococcus mutans produces multiple glucan-binding proteins (Gbps), among which GbpC encoded by the gbpC gene is known to be a cell-surface-associated protein involved in dextran-induced aggregation. The purpose of the present study was to characterize the dextran-binding domain of GbpC using bioinformatics analysis and molecular techniques. Bioinformatics analysis specified five possible regions containing molecular binding sites termed GB1 through GB5. Next, truncated recombinant GbpC (rGbpC) encoding each region was produced using a protein expression vector and five deletion mutant strains were generated, termed CDGB1 through CDGB5 respectively. The dextran-binding rates of truncated rGbpC that included the GB1, GB3, GB4 and GB5 regions in the upstream sequences were higher than that of the construct containing GB2 in the downstream region. In addition, the rates of dextran-binding for strains CDGB4 and CD1, which was entire gbpC deletion mutant, were significantly lower than for the other strains, while those of all other deletion mutants were quite similar to that of the parental strain MT8148. Biofilm structures formed by CDGB4 and CD1 were not as pronounced as that of MT8148, while those formed by other strains had greater density as compared to that of CD1. Our results suggest that the dextran-binding domain may be located in the GB4 region in the interior of the gbpC gene. Bioinformatics analysis is useful for determination of functional domains in many bacterial species. © 2015 The Society for Applied Microbiology.

  18. Characterization of the association of radiolabeled bleomycin A2 with HeLa cells

    International Nuclear Information System (INIS)

    Roy, S.N.; Horwitz, S.B.

    1984-01-01

    The association of [ 3 H]bleomycin A2 and Cu(II):[ 3 H]bleomycin A2 with HeLa cells has been characterized. Under the conditions of our experiments, approximately 0.1% of the total drug in the medium associates with HeLa cells. Both forms of the drug bind to HeLa cells in a specific and saturable manner, with a Km of 20 microM and a Vmax of 2.5 pmol/min/10(6) cells. Scatchard analysis of the specific binding data demonstrates a single set of high-affinity binding sites. Cytotoxic activities of both forms of the drug are similar, with a 50% lethal dose of 0.5 microM at 48 hr. The specific binding in HeLa cells of either the labeled metal-free drug or its copper complex is reversible by a 100-fold excess of either unlabeled drug. Interaction of the drug with cells is temperature sensitive but is unaffected by metabolic poisons, suggesting that this process is not energy dependent. Isolation of DNA from HeLa cells incubated with the drug indicates that 1 mol of either [ 3 H]bleomycin A2 or Cu(II):[ 3 H]bleomycin A2 binds per 10(8) nucleotides. Further studies with the radiolabeled drug are required to define precisely the mechanisms involved in bleomycin uptake and compartmentalization within the cell

  19. Capillary electrophoretic analysis reveals subcellular binding between individual mitochondria and cytoskeleton

    Science.gov (United States)

    Kostal, Vratislav; Arriaga, Edgar A.

    2011-01-01

    Interactions between the cytoskeleton and mitochondria are essential for normal cellular function. An assessment of such interactions is commonly based on bulk analysis of mitochondrial and cytoskeletal markers present in a given sample, which assumes complete binding between these two organelle types. Such measurements are biased because they rarely account for non-bound ‘free’ subcellular species. Here we report on the use of capillary electrophoresis with dual laser induced fluorescence detection (CE-LIF) to identify, classify, count and quantify properties of individual binding events of mitochondria and cytoskeleton. Mitochondria were fluorescently labeled with DsRed2 while F-actin, a major cytoskeletal component, was fluorescently labeled with Alexa488-phalloidin. In a typical subcellular fraction of L6 myoblasts, 79% of mitochondrial events did not have detectable levels of F-actin, while the rest had on average ~2 zeptomole F-actin, which theoretically represents a ~ 2.5-μm long network of actin filaments per event. Trypsin treatment of L6 subcellular fractions prior to analysis decreased the fraction of mitochondrial events with detectable levels of F-actin, which is expected from digestion of cytoskeletal proteins on the surface of mitochondria. The electrophoretic mobility distributions of the individual events were also used to further distinguish between cytoskeleton-bound from cytoskeleton-free mitochondrial events. The CE-LIF approach described here could be further developed to explore cytoskeleton interactions with other subcellular structures, the effects of cytoskeleton destabilizing drugs, and the progression of viral infections. PMID:21309532

  20. Insulin radioreceptor assay on murine splenic leukocytes and peripheral erythrocytes

    International Nuclear Information System (INIS)

    Shimizu, F.; Kahn, R.

    1982-01-01

    Insulin radioreceptor assays were developed using splenic leukocytes and peripheral erythrocytes from individual mice. Splenic leukocytes were prepared using an NH 4 Cl buffer which did not alter insulin binding, but gave much higher yields than density gradient methods. Mouse erythrocytes were isolated from heparinized blood by three passages over a Boyum gradient, and a similar buffer was used to separate cells from free [ 125 I]iodoinsulin at the end of the binding incubation. Insulin binding to both splenic leukocytes and peripheral erythrocytes had typical pH, temperature, and time dependencies, and increased linearly with an increased number of cells. Optimal conditions for the splenic leukocytes (6 x 10 7 /ml) consisted of incubation with [ 125 I]iodoinsulin at 15 C for 2 h in Hepes buffer, pH 8.0. In cells from 20 individual mice, the specific [ 125 I]iodoinsulin binding was 2.6 +/- 0.1% (SEM), and nonspecific binding was 0.3 +/- 0.04% (10.6% of total binding). Erythrocytes (2.8 x 10 9 /ml) were incubated with [ 125 ]iodoinsulin at 15 C for 2 h in Hepes buffer, pH 8.2. In cells from 25 individual mice, the specific [ 125 I]iodoinsulin binding was 4.5 +/- 0.2%, and nonspecific binding was 0.7 +/- 0.03% (13.6% of total binding). In both splenic leukocytes and peripheral erythrocytes, analysis of equilibrium binding data produced curvilinear Scatchard plots with approximately 3500 binding sites/leukocyte and 20 binding sites/erythrocyte. These data demonstrate that adequate numbers of splenic leukocytes and peripheral erythrocytes can be obtained from individual mice to study insulin binding in a precise and reproducible manner

  1. Radioimmunodetection of tumor with Ga-67 labeled antibodies

    International Nuclear Information System (INIS)

    Furukawa, Takako; Endo, Keigo; Ohmomo, Yoshiro

    1986-01-01

    Antibodies against tumor associated antigen; anti-AFP polyclonal antibody, anti-thyroglobulin monoclonal antibody and anti-hCG monoclonal antibody, were labeled with Ga-67, using deferoxamine (DF) as a bifunctional chelating agent. The immunoreactivity and in vivo stability of the Ga-67 labeled antibodies were examined. The effect of DF conjugation to antibodies on the antigen-binding activity was evaluated by RIA and Scatchard analysis or tanned sheep red blood cell hemagglutination technique. When DF was conjugated to antibody at the molar ratio of 1 : 1, the antibody activity of the DF-conjugated antibodies was fully retained. Whereas, in heavily conjugated antibodies, the maximum antigen binding capacity was reduced. Biodistribution study in normal mice demonstrated the high in vivo stability of Ga-67 labeled antibodies. The labeling of DF-antibody conjugated with Ga-67 was performed easily and quickly, with a high labeling efficiency, requiring no further purification. Thus, this labeling method, providing in vivo stability of Ga-67 labeled antibody and full retention of immunoreactivity, would be useful for the radioimmunodetection of various cancers. (author)

  2. Lung beta-adrenoceptors in pulmonary hypertension. A study of biopsy specimens in children with congenital heart disease

    International Nuclear Information System (INIS)

    Lopes, A.A.; Liberato, M.H.; Brentani, M.M.; Aiello, V.D.; Riso, A.A.; Ebaid, M.

    1991-01-01

    Characteristics of beta-adrenoceptors were analyzed using radioligand-binding techniques with 3H-dihydroalprenolol in lung specimens from 11 children with pulmonary hypertension (median age, three years) undergoing surgical repair of congenital heart defects and four pediatric control subjects (median age, five years) undergoing thoracotomy for removal of neoplasms or cysts. Scatchard analysis of 3H-DHA binding to lung membranes showed similar values of the dissociation constant in both groups (Kd = 0.72 +/- 0.22 nM in patients vs 1.22 +/- 0.22 nM in controls; p = NS). The receptor density was significantly increased in patients in comparison with controls, with respective values of 164 +/- 19 and 95 +/- 13 fmol/mg of protein (p less than 0.025), and correlated directly with mean pulmonary arterial pressure (r = 0.82; p less than 0.0005). No significant relationship was observed between receptor number and pulmonary arterial medial thickness. Thus, the increase in receptor density in these patients may be related to adaptative changes in cells other than vascular smooth muscle

  3. Photolabeling of Tonoplast from Sugar Beet Cell Suspensions by [3H]5-(N-Methyl-N-Isobutyl)-Amiloride, an Inhibitor of the Vacuolar Na+/H+ Antiport 1

    Science.gov (United States)

    Barkla, Bronwyn J.; Charuk, Jeffrey H. M.; Cragoe, Edward J.; Blumwald, Eduardo

    1990-01-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na+/H+ antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na+/H+ exchange in a competitive manner with a Ki of 2.5 and 5.9 micromolar for ΔpH-dependent 22Na+ influx in tonoplast vesicles and Na+-dependent H+ efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [3H]MIA to tonoplast membranes revealed a high affinity binding component with a Kd of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na+/H+ antiport. Photolabeling of the tonoplast with [3H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog. Images Figure 7 PMID:16667602

  4. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun; Peng, Chengbin; Li, Yue

    2016-01-01

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  5. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  6. Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding.

    Directory of Open Access Journals (Sweden)

    Jonghyun Park

    2010-11-01

    Full Text Available DNA binding by MutL homologs (MLH/PMS during mismatch repair (MMR has been considered based on biochemical and genetic studies. Bulk studies with MutL and its yeast homologs Mlh1-Pms1 have suggested an integral role for a single-stranded DNA (ssDNA binding activity during MMR. We have developed single-molecule Förster resonance energy transfer (smFRET and a single-molecule DNA flow-extension assays to examine MutL interaction with ssDNA in real time. The smFRET assay allowed us to observe MutL-ssDNA association and dissociation. We determined that MutL-ssDNA binding required ATP and was the greatest at ionic strength below 25 mM (K(D = 29 nM while it dramatically decreases above 100 mM (K(D>2 µM. Single-molecule DNA flow-extension analysis suggests that multiple MutL proteins may bind ssDNA at low ionic strength but this activity does not enhance stability at elevated ionic strengths. These studies are consistent with the conclusion that a stable MutL-ssDNA interaction is unlikely to occur at physiological salt eliminating a number of MMR models. However, the activity may infer some related dynamic DNA transaction process during MMR.

  7. Binding interaction between a queen pheromone component HOB and pheromone binding protein ASP1 of Apis cerana.

    Science.gov (United States)

    Weng, Chen; Fu, Yuxia; Jiang, Hongtao; Zhuang, Shulin; Li, Hongliang

    2015-01-01

    The honeybee's social behavior is closely related to the critical response to pheromone, while pheromone binding proteins (PBPs) play an important role in binding and transferring those pheromones. Here we report one known PBP, antennal special protein 1(ASP1), which has high affinity with a queen mandibular pheromone component, methyl-p-hydroxybenzoate (HOB). In this study, multiple fluorescent spectra, UV absorption spectra, circular dichroism (CD) spectra and molecular docking analysis were combined to clarify the binding process. Basically, fluorescence intensity of ASP1 could be considerably quenched by HOB with an appropriate interaction distance (3.1 nm), indicating that a complex, which is more stable in lower temperature, was formed. The fact ΔH < 0, ΔS < 0, by thermodynamic analysis, indicated the van der Waals and hydrogen bond as main driving force. Moreover, synchronous fluorescence spectra and CD spectra analysis showed the change of partial hydrophilicity of ASP1 and the increase of α-helix after HOB addition. In conclusion, ASP1 can strongly and spontaneously interact with HOB. But the binding ability decreases with the rise of temperature, which may be necessary for sufficient social stability of hives. This study provides elucidation of the detailed binding mechanism and potential physicochemical basis of thermal stability to the social behavior of honeybee. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Characterization of rat cerebral cortical beta adrenoceptor subtypes using (-)-[125I]-iodocyanopindolol

    International Nuclear Information System (INIS)

    Tiong, A.H.; Richardson, J.S.

    1990-01-01

    (-)-[125I]-Iodocyanopindolol [-(ICYP)], used to characterize beta adrenoceptors on membrane preparations from rat cerebral cortex, was shown to have affinity for both beta adrenoceptors and serotonin receptors. Therefore, 10 microM serotonin was added to the assays to prevent (-)ICYP binding to serotonin receptors. Under these conditions, (-)ICYP binding to the cortical membrane preparation was reversible and saturable, and the association reaction was very slow. The dissociation reaction was also very slow, and revealed two affinity states corresponding to a high and a low affinity state. Scatchard analysis showed a single class of binding sites with an equilibrium dissociation constant (KD) of 20.7 pM, and a maximal density of binding sites (Bmax) of 95.1 fmol/mg membrane protein. Displacement binding analyses revealed a potency series of (-) isoproterenol greater than (-) epinephrine equal to (-) norepinephrine, suggesting a predominance of the beta 1 adrenoceptor subtype. Detailed competition ligand binding studies with the selective beta 1 adrenoceptor antagonist ICI-89406 and the selective beta 2 adrenoceptor antagonist ICI-118551, showed that about 70% of the beta adrenoceptor population in the rat cortex is of the beta 1 subtype with the remainder being of the beta 2 subtype. We conclude that since (-)ICYP binds to both beta adrenoceptors and serotonin receptors, it is important to prevent the binding of (-)ICYP to serotonin receptors by adding a suppressing ligand like excess cold serotonin when assaying beta adrenoceptors. We have presented the first such characterization of rat cerebral cortical beta adrenoceptors with (-)ICYP in this study

  9. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    Science.gov (United States)

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  10. Structural analysis of protein-ligand interactions: the binding of endogenous compounds and of synthetic drugs.

    Science.gov (United States)

    Gallina, Anna M; Bork, Peer; Bordo, Domenico

    2014-02-01

    The large number of macromolecular structures deposited with the Protein Data Bank (PDB) describing complexes between proteins and either physiological compounds or synthetic drugs made it possible a systematic analysis of the interactions occurring between proteins and their ligands. In this work, the binding pockets of about 4000 PDB protein-ligand complexes were investigated and amino acid and interaction types were analyzed. The residues observed with lowest frequency in protein sequences, Trp, His, Met, Tyr, and Phe, turned out to be the most abundant in binding pockets. Significant differences between drug-like and physiological compounds were found. On average, physiological compounds establish with respect to drugs about twice as many hydrogen bonds with protein atoms, whereas drugs rely more on hydrophobic interactions to establish target selectivity. The large number of PDB structures describing homologous proteins in complex with the same ligand made it possible to analyze the conservation of binding pocket residues among homologous protein structures bound to the same ligand, showing that Gly, Glu, Arg, Asp, His, and Thr are more conserved than other amino acids. Also in the cases in which the same ligand is bound to unrelated proteins, the binding pockets showed significant conservation in the residue types. In this case, the probability of co-occurrence of the same amino acid type in the binding pockets could be up to thirteen times higher than that expected on a random basis. The trends identified in this study may provide an useful guideline in the process of drug design and lead optimization. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Thermodynamic analysis of allosamidin binding to the human chitotriosidase

    Energy Technology Data Exchange (ETDEWEB)

    Eide, Kristine Bistrup; Lundmark, Silje Thoresen [Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås (Norway); Sakuda, Shohei [Department of Applied Biological Chemistry, University of Tokyo, Bunkyo-Ku, Tokyo 113 (Japan); Sørlie, Morten, E-mail: morten.sorlie@umb.no [Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås (Norway)

    2013-08-10

    Highlights: • Large differences in thermodynamic signatures for family 18 chitinase inhibition. • Allosamidin binds tight to HCHT. • Binding driven by enthalpy change and desolvation. - Abstract: Human chitotriosidase (HCHT) is one of two active family 18 chitinases produced by humans, the other being acidic mammalian chitinase (AMCase). The enzyme is thought to be part of the innate human defense mechanism against fungal parasites. Recently, it has been shown that levels of HCHT bioactivity and protein are significantly increased in the circulation and lungs of systemic sclerosis patients and for this reason is a suggested therapeutic target. For this reason, we have undertaken a detailed thermodynamic investigation using isothermal titration calorimetry of the binding interaction of HCHT with the well-known family 18 chitinase inhibitor allosamidin. The binding is shown to be strong (K{sub d} = 0.20 ± 0.03 μM and ΔG{sub r}° = −38.9 ± 0.4 kJ/mol) and driven by favorable changes in enthalpy (ΔH{sub r}° = −50.2 ± 1.2 kJ/mol) and solvation entropy (−TΔS{sub solv}° = −41.8 ± 4.4 kJ/mol). It is accompanied with a large penalty in conformational entropy change (−TΔS{sub conf}° = 43.1 ± 4.2 kJ/mol)

  12. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    Science.gov (United States)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  13. Fundamental studies on the insulin receptor in rabbit erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Shinomiya, Y; Kagawa, S; Konishi, Y; Morimoto, H; Tsumura, Y [Hyogo Medical Coll. (Japan)

    1975-09-01

    The authors studied the binding of insulin to rabbit erythrocytes as a mode case in the hope of characterizing the physiologic role of the binding of insulin to receptor in both normal adults and patients. Specific binding sites for insulin were detected in rabbit erythrocytes. The characteristics of the binding were similar to those observed in other target tissues. The specific binding of /sup 125/I-labeled insulin was competitively inhibited by a small amount of unlabeled insulin and was completely inhibited by 1,000 ng/ml of unlabeled insulin. Glucagon, however, had no effect on the insulin binding to fat cells or liver membranes nor had it any effect on the binding of insulin to rabbit erythrocytes. Scatchard analysis of this binding reaction indicated two different binding sites with Ksub(aff)=3.2 x 10/sup 8//M, Ksub(diss)=3.1 x 10/sup -9/M; Ksub(aff)=1.4 x 10/sup 8//M, Ksub(diss)=7.1 x 10/sup -9/M respectively, and the binding capacities of each site were estimated at 0.011 ng/4 x 10/sup 8/ cells and 0.138 ng/4 x 10/sup 8/ cells. The binding of /sup 125/I-insulin to rabbit erythrocytes was a saturable function of the insulin concentration and was a linear function of cell concentration. The pH optimum for the reaction was 7.4 at 0/sup 0/C, the amount of insulin binding increased continuously under the reaction and this binding reaction reached a steady state after 10 to 15hr. On the other hand, the specific binding of insulin at higher temperatures showed maximal amounts after 20 to 30 min. and subsequently fell off at later time points.

  14. Structure-activity correlations for interactions of bicyclophosphorus esters and some polychlorocycloalkane and pyrethroid insecticides with the brain-specific t-butylbicyclophosphorothionate receptor

    International Nuclear Information System (INIS)

    Casida, J.E.; Lawrence, L.J.

    1985-01-01

    [ 35 S]t-Butylbicyclophosphorothionate or [ 35 S]TBPS is an improved radioligand for the picrotoxinin binding site in rat brain synaptic membranes. The toxic isomers of the hexachlorocyclohexanes, polychlorobornanes, and chlorinated cyclodienes displace [ 35 S]TBPS with a stereospecificity and potency generally correlated with their mammalian toxicity. In a few cases this correlation is improved by correction for metabolic activation or detoxification on using a coupled brain receptor/liver microsomal oxidase system. The alpha-cyano-3-phenoxybenzyl pyrethroids, although less potent, inhibit [ 35 S]TBPS binding in a stereospecific manner correlated with their toxicity. Scatchard analyses indicate that these three classes of polychlorocycloalkane insecticides act at the TBPS binding site within the gamma-aminobutyric acid (GABA) receptor-ionophore complex whereas the alpha-cyano pyrethroids interact with a closely associated site. These insecticides and TBPS analogs may serve as useful probes further to elucidate the topography of the TBPS binding site and its relationship to the chloride channel. 46 references

  15. Analysis of calcium-induced conformational changes in calcium-binding allergens and quantitative determination of their IgE binding properties.

    Science.gov (United States)

    Parody, Nuria; Fuertes, Miguel Angel; Alonso, Carlos; Pico de Coaña, Yago

    2013-01-01

    The polcalcin family is one of the most epidemiologically relevant families of calcium-binding allergens. Polcalcins are potent plant allergens that contain one or several EF-hand motifs and their allergenicity is primarily associated with the Ca(2+)-bound form of the protein. Conformation, stability, as well as IgE recognition of calcium-binding allergens greatly depend on the presence of protein-bound calcium ions. We describe a protocol that uses three techniques (SDS-PAGE, circular dichroism spectroscopy, and ELISA) to describe the effects that calcium has on the structural changes in an allergen and its IgE binding properties.

  16. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain.

    Directory of Open Access Journals (Sweden)

    Tingjun Hou

    2006-01-01

    Full Text Available Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3 domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well.

  17. Imaging of aromatase distribution in rat and rhesus monkey brains with [{sup 11}C]vorozole

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kayo [Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala SE-75124 (Sweden); Uppsala Imanet, Uppsala SE-75109 (Sweden)]. E-mail: kayo.takahashi@uppsala.imanet.se; Bergstroem, Mats [Uppsala Imanet, Uppsala SE-75109 (Sweden); Department of Pharmaceutical Biosciences, Uppsala University, Uppsala SE-75124 (Sweden); Fraendberg, Pernilla [Uppsala Imanet, Uppsala SE-75109 (Sweden); Vesstroem, Eva-Lotta [Uppsala Imanet, Uppsala SE-75109 (Sweden); Watanabe, Yasuyoshi [Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585 (Japan); Langstroem, Bengt [Uppsala Imanet, Uppsala SE-75109 (Sweden)

    2006-07-15

    Aromatase is an enzyme that converts androgens to estrogens and may play a role in mood and mental status. The aim of this study was to demonstrate that brain aromatase distribution could be evaluated with a novel positron emission tomography (PET) tracer [{sup 11}C]vorozole. Vorozole is a nonsteroidal aromatase inhibitor that reversibly binds to the heme domain of aromatase. In vitro experiments in rat brain, using frozen section autoradiography, illustrated specific binding in the medial amygdala (MA), the bed nucleus of stria terminalis (BST) and the preoptic area (POA) of male rat brain. Specific binding in female rat brain was found in the MA and the BST; however, the signals were lower than those of males. The K {sub d} of [{sup 11}C]vorozole binding to aromatase in MA was determined to be 0.60{+-}0.06 nM by Scatchard plot analysis using homogenates. An in vivo PET study in female rhesus monkey brain demonstrated the uptake of [{sup 11}C]vorozole in the amygdala, where the uptake was blocked by the presence of excess amounts of unlabeled vorozole. Thus, this tracer has a high affinity for brain aromatase and could have a potential for in vivo aromatase imaging. This technique might enable the investigation of human brain aromatase in healthy and diseased persons.

  18. The conserved potassium channel filter can have distinct ion binding profiles: structural analysis of rubidium, cesium, and barium binding in NaK2K.

    Science.gov (United States)

    Lam, Yee Ling; Zeng, Weizhong; Sauer, David Bryant; Jiang, Youxing

    2014-08-01

    Potassium channels are highly selective for K(+) over the smaller Na(+). Intriguingly, they are permeable to larger monovalent cations such as Rb(+) and Cs(+) but are specifically blocked by the similarly sized Ba(2+). In this study, we used structural analysis to determine the binding profiles for these permeant and blocking ions in the selectivity filter of the potassium-selective NaK channel mutant NaK2K and also performed permeation experiments using single-channel recordings. Our data revealed that some ion binding properties of NaK2K are distinct from those of the canonical K(+) channels KcsA and MthK. Rb(+) bound at sites 1, 3, and 4 in NaK2K, as it does in KcsA. Cs(+), however, bound predominantly at sites 1 and 3 in NaK2K, whereas it binds at sites 1, 3, and 4 in KcsA. Moreover, Ba(2+) binding in NaK2K was distinct from that which has been observed in KcsA and MthK, even though all of these channels show similar Ba(2+) block. In the presence of K(+), Ba(2+) bound to the NaK2K channel at site 3 in conjunction with a K(+) at site 1; this led to a prolonged block of the channel (the external K(+)-dependent Ba(2+) lock-in state). In the absence of K(+), however, Ba(2+) acts as a permeating blocker. We found that, under these conditions, Ba(2+) bound at sites 1 or 0 as well as site 3, allowing it to enter the filter from the intracellular side and exit from the extracellular side. The difference in the Ba(2+) binding profile in the presence and absence of K(+) thus provides a structural explanation for the short and prolonged Ba(2+) block observed in NaK2K. © 2014 Lam et al.

  19. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. (Parke-Davis Research Unit, Addenbrookes Hospital Site, Cambridge (England))

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  20. Methylene blue binding to DNA with alternating AT base sequence: minor groove binding is favored over intercalation.

    Science.gov (United States)

    Rohs, Remo; Sklenar, Heinz

    2004-04-01

    The results presented in this paper on methylene blue (MB) binding to DNA with AT alternating base sequence complement the data obtained in two former modeling studies of MB binding to GC alternating DNA. In the light of the large amount of experimental data for both systems, this theoretical study is focused on a detailed energetic analysis and comparison in order to understand their different behavior. Since experimental high-resolution structures of the complexes are not available, the analysis is based on energy minimized structural models of the complexes in different binding modes. For both sequences, four different intercalation structures and two models for MB binding in the minor and major groove have been proposed. Solvent electrostatic effects were included in the energetic analysis by using electrostatic continuum theory, and the dependence of MB binding on salt concentration was investigated by solving the non-linear Poisson-Boltzmann equation. We find that the relative stability of the different complexes is similar for the two sequences, in agreement with the interpretation of spectroscopic data. Subtle differences, however, are seen in energy decompositions and can be attributed to the change from symmetric 5'-YpR-3' intercalation to minor groove binding with increasing salt concentration, which is experimentally observed for the AT sequence at lower salt concentration than for the GC sequence. According to our results, this difference is due to the significantly lower non-electrostatic energy for the minor groove complex with AT alternating DNA, whereas the slightly lower binding energy to this sequence is caused by a higher deformation energy of DNA. The energetic data are in agreement with the conclusions derived from different spectroscopic studies and can also be structurally interpreted on the basis of the modeled complexes. The simple static modeling technique and the neglect of entropy terms and of non-electrostatic solute

  1. Functionally heterogenous ryanodine receptors in avian cerebellum.

    Science.gov (United States)

    Sierralta, J; Fill, M; Suárez-Isla, B A

    1996-07-19

    The functional heterogeneity of the ryanodine receptor (RyR) channels in avian cerebellum was defined. Heavy endoplasmic reticulum microsomes had significant levels of ryanodine and inositol 1,4,5-trisphosphate binding. Scatchard analysis and kinetic studies indicated the existence of at least two distinct ryanodine binding sites. Ryanodine binding was calcium-dependent but was not significantly enhanced by caffeine. Incorporation of microsomes into planar lipid bilayers revealed ion channels with pharmacological features (calcium, magnesium, ATP, and caffeine sensitivity) similar to the RyR channels found in mammalian striated muscle. Despite a wide range of unitary conductances (220-500 picosiemens, symmetrical cesium methanesulfonate), ryanodine locked both channels into a characteristic slow gating subconductance state, positively identifying them as RyR channels. Two populations of avian RyR channels were functionally distinguished by single channel calcium sensitivity. One population was defined by a bell-shaped calcium sensitivity analogous to the skeletal muscle RyR isoform (type I). The calcium sensitivity of the second RyR population was sigmoidal and analogous to the cardiac muscle RyR isoform (type II). These data show that there are at least two functionally distinct RyR channel populations in avian cerebellum. This leads to the possibility that these functionally distinct RyR channels are involved in different intracellular calcium signaling pathways.

  2. Synthesis of Molecularly Imprinted Polymers for Amino Acid Derivates by Using Different Functional Monomers

    Directory of Open Access Journals (Sweden)

    Sonia Scorrano

    2011-03-01

    Full Text Available Fmoc-3-nitrotyrosine (Fmoc-3-NT molecularly imprinted polymers (MIPs were synthesized to understand the influence of several functional monomers on the efficiency of the molecular imprinting process. Acidic, neutral and basic functional monomers, such as acrylic acid (AA, methacrylic acid (MAA, methacrylamide (MAM, 2-vinylpyridine (2-VP, 4-vinylpyridine (4-VP, have been used to synthesize five different polymers. In this study, the MIPs were tested in batch experiments by UV-visible spectroscopy in order to evaluate their binding properties. The MIP prepared with 2-VP exhibited the highest binding affinity for Fmoc-3NT, for which Scatchard analysis the highest association constant (2.49 × 104 M−1 was obtained. Furthermore, titration experiments of Fmoc-3NT into acetonitrile solutions of 2-VP revealed a stronger bond to the template, such that a total interaction is observed. Non-imprinted polymers as control were prepared and showed no binding affinities for Fmoc-3NT. The results are indicative of the importance of ionic bonds formed between the –OH residues of the template molecule and the pyridinyl groups of the polymer matrix. In conclusion, 2-VP assists to create a cavity which allows better access to the analytes.

  3. Existence of B/E and E receptors on Hep-G2 cells: a study using colloidal gold- and 125I-labeled lipoproteins

    International Nuclear Information System (INIS)

    Hesz, A.; Ingolic, E.; Krempler, F.; Kostner, G.M.

    1987-01-01

    The presence of specific receptors for apolipoprotein B (low-density lipoproteins) and apolipoprotein E (HDL-E) on Hep-G2 cells and human skin fibroblasts was studied by chemical methods and by electron microscopy using a differential gold labeling technique. Fibroblasts bound both types of lipoproteins to one and the same receptor (B/E receptor) as deduced from competition experiments with HDL-E and LDL. Labeled HDL-E, on the other hand, was only partially displaced by cold LDL but was completely displaced by unlabeled HDL-E. Scatchard analysis of lipoprotein binding to Hep-G2 cells revealed an approx 10 times higher binding affinity of apoE-containing lipoproteins as compared to apoB-containing ones. No differences between apoE- or apoB-containing lipoproteins with respect to the morphology of cell binding and intracellular processing were observed. The results are compatible with the concept that Hep-G2 cells possess two kinds of receptors, one specific for apoB- and apoE-containing lipoproteins (B/E receptor) and another specific for apoE only. From these studies we conclude that Hep-G2 cells may serve as a suitable model for studying the lipoprotein metabolism in the liver

  4. Computational analysis of a novel mutation in ETFDH gene highlights its long-range effects on the FAD-binding motif

    Directory of Open Access Journals (Sweden)

    Chang Jan-Gowth

    2011-10-01

    Full Text Available Abstract Background Multiple acyl-coenzyme A dehydrogenase deficiency (MADD is an autosomal recessive disease caused by the defects in the mitochondrial electron transfer system and the metabolism of fatty acids. Recently, mutations in electron transfer flavoprotein dehydrogenase (ETFDH gene, encoding electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO have been reported to be the major causes of riboflavin-responsive MADD. To date, no studies have been performed to explore the functional impact of these mutations or their mechanism of disrupting enzyme activity. Results High resolution melting (HRM analysis and sequencing of the entire ETFDH gene revealed a novel mutation (p.Phe128Ser and the hotspot mutation (p.Ala84Thr from a patient with MADD. According to the predicted 3D structure of ETF:QO, the two mutations are located within the flavin adenine dinucleotide (FAD binding domain; however, the two residues do not have direct interactions with the FAD ligand. Using molecular dynamics (MD simulations and normal mode analysis (NMA, we found that the p.Ala84Thr and p.Phe128Ser mutations are most likely to alter the protein structure near the FAD binding site as well as disrupt the stability of the FAD binding required for the activation of ETF:QO. Intriguingly, NMA revealed that several reported disease-causing mutations in the ETF:QO protein show highly correlated motions with the FAD-binding site. Conclusions Based on the present findings, we conclude that the changes made to the amino acids in ETF:QO are likely to influence the FAD-binding stability.

  5. 4-Alkynylphenylsilatranes: Insecticidal activity, mammalian toxicity, and mode of action

    International Nuclear Information System (INIS)

    Horsham, M.A.; Palmer, C.J.; Cole, L.M.; Casida, J.E.

    1990-01-01

    4-Ethynyl- and 4-(prop-1-ynyl)phenylsilatranes [N(CH 2 CH 2 O) 3 SiR, R = C 6 H 4 -4-C triple-bond CH or C 6 H 4 -4-C triple-bond CCH 3 ] are highly toxic to houseflies (pretreated with piperonyl butoxide) and milkweed bugs (topical LD 50 s 3-14 μg/g) and to mice (intraperitoneal LD 50 s 0.4-0.9 mg/kg), and they are moderately potent inhibitors of the [ 35 S]-tert-butylbicyclophosphorothionate or TBPS binding site (GABA-gated chloride channel) of mouse brain membranes. Scatchard analysis indicates noncompetitive interaction of 4-ethynylphenylsilatrane with the TBPS binding site. Phenylsilatrane analogues with 4-substituents of H, CH 3 , Cl, Br, and C triple-bond CSi(CH 3 ) 3 are highly toxic to mice but have little or no activity in the insect and receptor assays. Radioligand binding studies with [4- 3 H]phenylsilatrane failed to reveal a specific binding site in mouse brain. Silatranes with R = H, CH 3 , CH 2 Cl, CH double-bond CH 2 , OCH 2 CH 3 , and C 6 H 4 -4-CH 2 CH 3 are of little or no activity in the insect and mouse toxicity and TBPS binding site assays as are the trithia and monocyclic analogues of phenylsilatrane. 4-Alkynylphenylsilatranes are new probes to examine the GABA receptor-ionophore complex of insects and mammals

  6. Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands

    International Nuclear Information System (INIS)

    Vonderhaar, B.K.; Tang, E.; Lyster, R.R.; Nascimento, M.C.

    1986-01-01

    The specific binding of iodinated epidermal growth factor ([ 125 I]iodo-EGF) to membranes prepared from the mammary glands and spontaneous breast tumors of euthyroid and hypothyroid mice was measured in order to determine whether thyroid hormones regulate the EGF receptor levels in vivo. Membranes from hypothyroid mammary glands of mice at various developmental ages bound 50-65% less EGF than those of age-matched euthyroid controls. Treatment of hypothyroid mice with L-T4 before killing restored binding to the euthyroid control level. Spontaneous breast tumors arising in hypothyroid mice also bound 30-40% less EGF than tumors from euthyroid animals even after in vitro desaturation of the membranes of endogenous growth factors with 3 M MgCl2 treatment. The decrease in binding in hypothyroid membranes was due to a decrease in the number of binding sites, not to a change in affinity of the growth factor for its receptor, as determined by Scatchard analysis of the binding data. Both euthyroid and hypothyroid membranes bound EGF primarily to a single class of high affinity sites [dissociation constant (Kd) = 0.7-1.8 nM]. Euthyroid membranes bound 28.4 +/- (SE) 0.6 fmol/mg protein, whereas hypothyroid membranes bound 15.5 +/- 1.0 fmol/mg protein. These data indicate that EGF receptor levels in normal mammary glands and spontaneous breast tumors in mice are subject to regulation by thyroid status

  7. Analysis of electric moments of RNA-binding proteins: implications for mechanism and prediction

    Directory of Open Access Journals (Sweden)

    Sarai Akinori

    2011-02-01

    Full Text Available Abstract Background Protein-RNA interactions play important role in many biological processes such as gene regulation, replication, protein synthesis and virus assembly. Although many structures of various types of protein-RNA complexes have been determined, the mechanism of protein-RNA recognition remains elusive. We have earlier shown that the simplest electrostatic properties viz. charge, dipole and quadrupole moments, calculated from backbone atomic coordinates of proteins are biased relative to other proteins, and these quantities can be used to identify DNA-binding proteins. Closely related, RNA-binding proteins are investigated in this study. In particular, discrimination between various types of RNA-binding proteins, evolutionary conservation of these bulk electrostatic features and effect of conformational changes by complex formation are investigated. Basic binding mechanism of a putative RNA-binding protein (HI1333 from Haemophilus influenza is suggested as a potential application of this study. Results We found that similar to DNA-binding proteins (DBPs, RNA-binding proteins (RBPs also show significantly higher values of electric moments. However, higher moments in RBPs are found to strongly depend on their functional class: proteins binding to ribosomal RNA (rRNA constitute the only class with all three of the properties (charge, dipole and quadrupole moments being higher than control proteins. Neural networks were trained using leave-one-out cross-validation to predict RBPs from control data as well as pair-wise classification capacity between proteins binding to various RNA types. RBPs and control proteins reached up to 78% accuracy measured by the area under the ROC curve. Proteins binding to rRNA are found to be best distinguished (AUC = 79%. Changes in dipole and quadrupole moments between unbound and bound structures were small and these properties are found to be robust under complex formation. Conclusions Bulk electric

  8. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  9. Should developing countries take on binding commitments in a climate agreement? A cost-benefit analysis

    International Nuclear Information System (INIS)

    Kallbekken, Steffen; Westskog, Hege

    2003-01-01

    This paper explores the costs and benefits for all parties to a future climate agreement of developing countries taking on binding commitments. Such commitments would allow developing countries to participate in emissions trading, which has significantly lower transaction costs than the present Clean Development Mechanism (CDM). Thus we analyse whether the efficiency gains obtained by participating in emissions trading can offset the economic risk (due to the fact that future emissions cannot be known) incurred by taking on binding commitments. We use a dynamic computable general equilibrium model to carry out the analysis. We find that the efficiency gains that can be obtained by developing countries might not be very large compared to the risks they incur. Developing countries might therefore have good reasons not to embrace ''cap and trade'' emissions trading. (author)

  10. Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1

    Directory of Open Access Journals (Sweden)

    Wang Pu

    2010-10-01

    Full Text Available Abstract The Epstein-Barr Virus (EBV Nuclear Antigen 1 (EBNA1 protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP, regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP combined with massively parallel deep-sequencing (ChIP-Seq was used to identify cellular sites bound by EBNA1. Sites identified by ChIP-Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A consensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, suggesting that some of these sites are indirectly bound by EBNA1. EBNA1 also bound close to the transcriptional start sites of a large number of cellular genes, including HDAC3, CDC7, and MAP3K1, which we show are positively regulated by EBNA1. EBNA1 binding sites were enriched in some repetitive elements, especially LINE 1 retrotransposons, and had weak correlations with histone modifications and ORC binding. We conclude that EBNA1 can interact with a large number of cellular genes and chromosomal loci in latently infected cells, but that these sites are likely to represent a complex ensemble of direct and indirect EBNA

  11. Computational identification of antigen-binding antibody fragments.

    Science.gov (United States)

    Burkovitz, Anat; Leiderman, Olga; Sela-Culang, Inbal; Byk, Gerardo; Ofran, Yanay

    2013-03-01

    Determining which parts of the Ab are essential for Ag recognition and binding is crucial for understanding B cell-mediated immunity. Identification of fragments of Abs that maintain specificity to the Ag will also allow for the development of improved Ab-based therapy and diagnostics. In this article, we show that structural analysis of Ab-Ag complexes reveals which fragments of the Ab may bind the Ag on their own. In particular, it is possible to predict whether a given CDR is likely to bind the Ag as a peptide by analyzing the energetic contribution of each CDR to Ag binding and by assessing to what extent the interaction between that CDR and the Ag depends on other CDRs. To demonstrate this, we analyzed five Ab-Ag complexes and predicted for each of them which of the CDRs may bind the Ag on its own as a peptide. We then show that these predictions are in agreement with our experimental analysis and with previously published experimental results. These findings promote our understanding of the modular nature of Ab-Ag interactions and lay the foundation for the rational design of active CDR-derived peptides.

  12. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  13. Binding-site analysis of opioid receptors using monoclonal anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Conroy, W.G.

    1988-01-01

    Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG 3 k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of [ 3 H]naloxone. The antibody which did not inhibit the binding of [ 3 H]naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand, and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG 3 k antibody that blocked the binding of [ 3 H]naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form

  14. Chondroitin sulphate A (CSA)-binding of single recombinant Duffy-binding-like domains is not restricted to Plasmodium falciparum Erythrocyte Membrane Protein 1 expressed by CSA-binding parasites

    DEFF Research Database (Denmark)

    Resende, Mafalda; Ditlev, Sisse B; Nielsen, Morten A

    2009-01-01

    Individuals living in areas with high Plasmodium falciparum transmission acquire immunity to malaria over time and adults have a markedly reduced risk of contracting severe disease. However, pregnant women constitute an important exception. Pregnancy-associated malaria is a major cause of mother....... In this study, we confirm the CSA-binding of these DBL domains, however, the analysis of a number of DBL domains of a non-VAR2CSA origin shows that CSA-binding is not exclusively restricted to VAR2CSA DBL domains. Furthermore, we show that the VAR2CSA DBL domains as well as other DBL domains also bind heparan...

  15. Change in Allosteric Network Affects Binding Affinities of PDZ Domains: Analysis through Perturbation Response Scanning

    Science.gov (United States)

    Gerek, Z. Nevin; Ozkan, S. Banu

    2011-01-01

    The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation. PMID:21998559

  16. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets

    Directory of Open Access Journals (Sweden)

    Ashford Paul

    2012-03-01

    Full Text Available Abstract Background Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand, computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise from proteins' dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation in apo proteins. This variation can be explored by considering sets of related structures: computationally generated conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in defining particular pocket's boundaries. For a set of conformationally distinct structures the challenge is how to make reasonable comparisons between them given that a perfect structural alignment is not possible. Results We have developed a computational method, Provar, that provides a consistent representation of predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket prediction algorithms, of pockets across multiple simulated conformations and between homologous structures. We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis on a set of complexes and consider three case studies in detail: i analysis of a kinase superfamily highlights the

  17. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets.

    Science.gov (United States)

    Ashford, Paul; Moss, David S; Alex, Alexander; Yeap, Siew K; Povia, Alice; Nobeli, Irene; Williams, Mark A

    2012-03-14

    Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand, computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise from proteins' dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation in apo proteins. This variation can be explored by considering sets of related structures: computationally generated conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in defining particular pocket's boundaries. For a set of conformationally distinct structures the challenge is how to make reasonable comparisons between them given that a perfect structural alignment is not possible. We have developed a computational method, Provar, that provides a consistent representation of predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket prediction algorithms, of pockets across multiple simulated conformations and between homologous structures. We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis on a set of complexes and consider three case studies in detail: i) analysis of a kinase superfamily highlights the conserved occurrence of surface pockets at the active

  18. Quantifying transient binding of ISWI chromatin remodelers in living cells by pixel-wise photobleaching profile evolution analysis.

    Science.gov (United States)

    Erdel, Fabian; Rippe, Karsten

    2012-11-20

    Interactions between nuclear proteins and chromatin frequently occur on the time scale of seconds and below. These transient binding events are important for the fast identification of target sites as concluded from our previous analysis of the human chromatin remodelers Snf2H and Snf2L from the imitation switch (ISWI) family. Both ATP-driven molecular motor proteins are able to translocate nucleosomes along the DNA and appear to exert this activity only on a small number of nucleosomes to which they bind more tightly. For mechanistic studies, one needs to distinguish such translocation reactions or other long-lived interactions associated with conformational changes and/or ATP hydrolysis from nonproductive chromatin sampling during target search. These processes can be separated by measuring the duration of nucleosome binding with subsecond time resolution. To reach this goal, we have developed a fluorescence bleaching technique termed pixel-wise photobleaching profile evolution analysis (3PEA). It exploits the inherent time structure of confocal microscopy images and yields millisecond resolution. 3PEA represents a generally applicable approach to quantitate transient chromatin interactions in the 2- to 500-ms time regime within only ∼1 s needed for a measurement. The green autofluorescent protein (GFP)-tagged Snf2H and Snf2L and the inactive Snf2L+13 splice variant were studied by 3PEA in comparison to the isolated GFP or red autofluorescent protein and a GFP pentamer. Our results reveal that the residence time for transient chromatin binding of Snf2H and Snf2L is <2 ms, and strongly support the view that ISWI-type remodelers are only rarely active in unperturbed cells during G1 phase.

  19. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis

    Science.gov (United States)

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh

    2016-09-01

    The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298 K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb = (7.6 ± 0.21) × 105) between complex and protein have been obtained at 298 K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2 ± 0.11) × 106 M- 1. Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.

  20. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Directory of Open Access Journals (Sweden)

    Nadia Nikolaus

    2014-02-01

    Full Text Available Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  1. Homology Modelling of the GABA Transporter and Analysis of Tiagabine Binding

    DEFF Research Database (Denmark)

    Skovstrup, S.; Taboureau, Olivier; Bräuner-Osborne, H.

    2010-01-01

    by Phe 294) to the extracellular vestibule, where the side chain is stabilised by aliphatic residues. The tiagabine binding mode, reaching from the substrate binding site to the extracellular vestibule, forces the side chain of Phe 294 to adopt a distinct conformation from that found in the occluded...

  2. Glucocorticoid up-regulation of high-affinity interleukin 6 receptors on human epithelial cells

    International Nuclear Information System (INIS)

    Snyers, L.; De Wit, L.; Content, J.

    1990-01-01

    Interleukin 6 (IL-6) is a potent pleiotropic cytokine, known, among others, to stimulate immunoglobulin production by B cells and to trigger acute-phase protein synthesis by hepatocytes. Similar to IL-1, it is produced by monocytes and macrophages following an inflammatory challenge. Analysis of IL-6 receptor (IL-6R) expression on different human cell lines indicates that dexamethasone could up-regulate the number of IL-6R on one epithelial cell line (UAC) and on two hepatoma cell lines (HepG2 and Hep3B). This effect was confirmed by Scatchard analysis of binding experiments, using [ 35 S]methionine and [ 35 S]cysteine metabolically labeled IL-6. It was confirmed at the level of mRNA expression by Northern blot analysis. These results provide evidence for a link between IL-6 and glucocorticoids. They could represent an example of a system in which one role of glucocorticoids is to define more accurately the target of cytokines, and they could explain, at least partly, the frequently observed synergy between IL-6 and glucocorticoids, notably in the case of hepatocytes

  3. Correcting binding parameters for interacting ligand-lattice systems

    Science.gov (United States)

    Hervy, Jordan; Bicout, Dominique J.

    2017-07-01

    Binding of ligands to macromolecules is central to many functional and regulatory biological processes. Key parameters characterizing ligand-macromolecule interactions are the stoichiometry, inducing the number of ligands per macromolecule binding site, and the dissociation constant, quantifying the ligand-binding site affinity. Both these parameters can be obtained from analyses of classical saturation experiments using the standard binding equation that offers the great advantage of mathematical simplicity but becomes an approximation for situations of interest when a ligand binds and covers more than one single binding site on the macromolecule. Using the framework of car-parking problem with latticelike macromolecules where each ligand can cover simultaneously several consecutive binding sites, we showed that employing the standard analysis leads to underestimation of binding parameters, i.e., ligands appear larger than they actually are and their affinity is also greater than it is. Therefore, we have derived expressions allowing to determine the ligand size and true binding parameters (stoichiometry and dissociation constant) as a function of apparent binding parameters retrieved from standard saturation experiments.

  4. Hepatic receptors for homologous growth hormone in the eel

    International Nuclear Information System (INIS)

    Hirano, T.

    1991-01-01

    The specific binding of 125I-labeled eel growth hormone (eGH) to liver membranes of the eel was examined. The specific binding to the 10,000g pellet was greater than that to the 600g pellet. The specific binding was linear up to about 100 mg fresh tissue, and was saturable with increasing amounts of membrane. The specific binding was pH-, temperature-, and time-dependent, with the optimum pH at 7.4, and greater specific binding was obtained at 15 and 25 degrees than at 35 degrees. Scatchard analysis of liver binding gave an association constant of 1.1 x 10(9) M-1 and a capacity of 105 fmol/mg protein. The receptor preparation was highly specific for GHs. Natural and recombinant eel GHs as well as recombinant salmon GH competed equally with 125I-eGH for the receptor sites of the 10,000g liver membrane. Ovine GH was more potent in displacing the labeled eGH than the homologous eel hormone. Tilapia GH and ovine prolactin (PRL) were needed in greater amounts (40 times) than eGH to displace the labeled eGH. Salmon and tilapia PRLs were still less potent (500 times) than eGH. There was no displacement with eel PRL. No significant change in the specific binding was seen 1 week after hypophysectomy, whereas injection of eGH into the hypophysectomized eel caused a significant reduction after 24 hr. The binding to the membrane fractions from gills, kidney, muscle, intestine, and brain was low and exclusively nonspecific, indicating the presence of specific GH receptors predominantly in the liver

  5. Involvement of norepinephrine activity in the regulation of α1 adrenergic receptors in the medial preoptic nucleus of estradiol-treated rats

    International Nuclear Information System (INIS)

    Sortino, M.A.; Weiland, N.G.; Wise, P.M.

    1989-01-01

    To establish whether the diurnal decrease in the density of α1 receptors observed in the medial preoptic nucleus (MPN) of estrogen (E 2 )-treated rats is related to the concomitant diurnal increase in norepinephrine (NE) turnover rates, we quantitiated the density of [ 3 H]-Prazosin binding to α1 receptors after blockade of NE turnover with alpha-methyl-paratyrosine (αMPT). A series of preliminary studies was performed to rule out an interference of this drug with [ 3 H]-Prazosin binding to α1 adrenergic receptors in vitro and in vivo. Incubation of brain slices with αMPT produced a dose-dependent inhibition of [ 3 H]-Prazosin binding to α1 adrenergic receptors with an IC 50 of approximately 6 mM. Scatchard analysis demonstrated that αMPT exhibited a simple competitive interaction with [ 3 H]-Prazosin binding sites as shown by an increase in the apparent dissociation constant (Kd) of the ligand and no change in the number of α1 receptors (B/sub max/). In contrast, preincubation of brain slices with αMPT and prior in vivo administration of αMPT did not affect [ 3 H]-Prazosin binding to α1 adrenergic receptors. The density of α1 adrenergic receptors in MPN was quantitated autoradiographically. Blockade of NE turnover with αMPT only partially prevented the reduction in α1 receptor density observed in the E 2 -treated rats, suggesting that the decrease in the level of [ 3 H]-Prazosin binding sites cannot be completely ascribed to increased NE turnover rates

  6. Location analysis for the estrogen receptor-α reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements

    Science.gov (United States)

    Mason, Christopher E.; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M.; Kallen, Roland G.; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B.

    2010-01-01

    Location analysis for estrogen receptor-α (ERα)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERα-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: ERE sequence. We demonstrate that ∼50% of all ERα-bound loci do not have a discernable ERE and show that most ERα-bound EREs are not perfect consensus EREs. Approximately one-third of all ERα-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERα-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERα binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers. PMID:20047966

  7. Location analysis for the estrogen receptor-alpha reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements.

    Science.gov (United States)

    Mason, Christopher E; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M; Kallen, Roland G; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B

    2010-04-01

    Location analysis for estrogen receptor-alpha (ERalpha)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERalpha-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: ERE sequence. We demonstrate that approximately 50% of all ERalpha-bound loci do not have a discernable ERE and show that most ERalpha-bound EREs are not perfect consensus EREs. Approximately one-third of all ERalpha-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERalpha-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERalpha binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers.

  8. Binding analysis of ferritin with heme using α-casein and biotinylated-hemin: detection of heme-binding capacity of Dpr derived from heme synthesis-deficient Streptococcus mutans.

    Science.gov (United States)

    Mieno, Ayako; Yamamoto, Yuji; Yoshikawa, Yasunaga; Watanabe, Kiyotaka; Mukai, Takao; Orino, Koichi

    2013-01-01

    Bacterial and mammalian ferritins are known to bind heme. The use of α-casein and biotinylated hemin could be applicable to detection of protein-bound heme and of proteins with heme-binding capacity, respectively. Although commercial horse spleen ferritin and purified horse spleen ferritin (L:H subunit ratio=4) bound to an α-casein-coated plate, and this binding could be inhibited by hemin, recombinant iron-binding protein (rDpr), derived from heme-deficient Streptococcus mutans and expressed in Escherichia coli, did not bind to an α-casein-coated plate. Both horse spleen ferritins bound to α-casein-immobilized beads. Commercial horse spleen ferritin and rDpr showed direct binding to hemin-agarose beads. After preincubation of commercial horse spleen ferritin or rDpr with biotinylated hemin, they showed indirect binding to avidin-immobilized beads through biotinylated hemin. These results demonstrate that α-casein is useful for detection of heme-binding ferritin and that both hemin-agarose and the combination of biotinylated hemin and avidin-beads are useful for detection of the heme-binding capacity of ferritin. In addition, this study also revealed that Dpr, a decameric iron-binding protein, from heme-deficient cells binds heme.

  9. Comprehensive meta-analysis of Signal Transducers and Activators of Transcription (STAT genomic binding patterns discerns cell-specific cis-regulatory modules

    Directory of Open Access Journals (Sweden)

    Kang Keunsoo

    2013-01-01

    Full Text Available Abstract Background Cytokine-activated transcription factors from the STAT (Signal Transducers and Activators of Transcription family control common and context-specific genetic programs. It is not clear to what extent cell-specific features determine the binding capacity of seven STAT members and to what degree they share genetic targets. Molecular insight into the biology of STATs was gained from a meta-analysis of 29 available ChIP-seq data sets covering genome-wide occupancy of STATs 1, 3, 4, 5A, 5B and 6 in several cell types. Results We determined that the genomic binding capacity of STATs is primarily defined by the cell type and to a lesser extent by individual family members. For example, the overlap of shared binding sites between STATs 3 and 5 in T cells is greater than that between STAT5 in T cells and non-T cells. Even for the top 1,000 highly enriched STAT binding sites, ~15% of STAT5 binding sites in mouse female liver are shared by other STATs in different cell types while in T cells ~90% of STAT5 binding sites are co-occupied by STAT3, STAT4 and STAT6. In addition, we identified 116 cis-regulatory modules (CRM, which are recognized by all STAT members across cell types defining a common JAK-STAT signature. Lastly, in liver STAT5 binding significantly coincides with binding of the cell-specific transcription factors HNF4A, FOXA1 and FOXA2 and is associated with cell-type specific gene transcription. Conclusions Our results suggest that genomic binding of STATs is primarily determined by the cell type and further specificity is achieved in part by juxtaposed binding of cell-specific transcription factors.

  10. Statistical Mechanics Analysis of ATP Binding to a Multisubunit Enzyme

    International Nuclear Information System (INIS)

    Zhang Yun-Xin

    2014-01-01

    Due to inter-subunit communication, multisubunit enzymes usually hydrolyze ATP in a concerted fashion. However, so far the principle of this process remains poorly understood. In this study, from the viewpoint of statistical mechanics, a simple model is presented. In this model, we assume that the binding of ATP will change the potential of the corresponding enzyme subunit, and the degree of this change depends on the state of its adjacent subunits. The probability of enzyme in a given state satisfies the Boltzmann's distribution. Although it looks much simple, this model can fit the recent experimental data of chaperonin TRiC/CCT well. From this model, the dominant state of TRiC/CCT can be obtained. This study provide a new way to understand biophysical processe by statistical mechanics analysis. (interdisciplinary physics and related areas of science and technology)

  11. A novel comparative pattern count analysis reveals a chronic ethanol-induced dynamic shift in immediate early NF-κB genome-wide promoter binding during liver regeneration.

    Science.gov (United States)

    Kuttippurathu, Lakshmi; Patra, Biswanath; Hoek, Jan B; Vadigepalli, Rajanikanth

    2016-03-01

    Liver regeneration after partial hepatectomy is a clinically important process that is impaired by adaptation to chronic alcohol intake. We focused on the initial time points following partial hepatectomy (PHx) to analyze the genome-wide binding activity of NF-κB, a key immediate early regulator. We investigated the effect of chronic alcohol intake on immediate early NF-κB genome-wide localization, in the adapted state as well as in response to partial hepatectomy, using chromatin immunoprecipitation followed by promoter microarray analysis. We found many ethanol-specific NF-κB binding target promoters in the ethanol-adapted state, corresponding to the regulation of biosynthetic processes, oxidation-reduction and apoptosis. Partial hepatectomy induced a diet-independent shift in NF-κB binding loci relative to the transcription start sites. We employed a novel pattern count analysis to exhaustively enumerate and compare the number of promoters corresponding to the temporal binding patterns in ethanol and pair-fed control groups. The highest pattern count corresponded to promoters with NF-κB binding exclusively in the ethanol group at 1 h post PHx. This set was associated with the regulation of cell death, response to oxidative stress, histone modification, mitochondrial function, and metabolic processes. Integration with the global gene expression profiles to identify putative transcriptional consequences of NF-κB binding patterns revealed that several of ethanol-specific 1 h binding targets showed ethanol-specific differential expression through 6 h post PHx. Motif analysis yielded co-incident binding loci for STAT3, AP-1, CREB, C/EBP-β, PPAR-γ and C/EBP-α, likely participating in co-regulatory modules with NF-κB in shaping the immediate early response to PHx. We conclude that adaptation to chronic ethanol intake disrupts the NF-κB promoter binding landscape with consequences for the immediate early gene regulatory response to the acute challenge of PHx.

  12. An automated system for the analysis of G protein-coupled receptor transmembrane binding pockets: alignment, receptor-based pharmacophores, and their application.

    Science.gov (United States)

    Kratochwil, Nicole A; Malherbe, Pari; Lindemann, Lothar; Ebeling, Martin; Hoener, Marius C; Mühlemann, Andreas; Porter, Richard H P; Stahl, Martin; Gerber, Paul R

    2005-01-01

    G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Here, a comprehensive and automated method allowing fast analysis and comparison of these putative binding pockets across the entire GPCR family is presented. The method relies on a robust alignment algorithm based on conservation indices, focusing on pharmacophore-like relationships between amino acids. Analysis of conservation patterns across the GPCR family and alignment to the rhodopsin X-ray structure allows the extraction of the amino acids lining the TM binding pocket in a so-called ligand binding pocket vector (LPV). In a second step, LPVs are translated to simple 3D receptor pharmacophore models, where each amino acid is represented by a single spherical pharmacophore feature and all atomic detail is omitted. Applications of the method include the assessment of selectivity issues, support of mutagenesis studies, and the derivation of rules for focused screening to identify chemical starting points in early drug discovery projects. Because of the coarseness of this 3D receptor pharmacophore model, however, meaningful scoring and ranking procedures of large sets of molecules are not justified. The LPV analysis of the trace amine-associated receptor family and its experimental validation is discussed as an example. The value of the 3D receptor model is demonstrated for a class C GPCR family, the metabotropic glutamate receptors.

  13. [Ceruloplasmin receptor on human erythrocytes].

    Science.gov (United States)

    Saenko, E L; Basevich, V V; Iaropolov, A I

    1988-08-01

    The structural fragments of the human ceruloplasmin (CP) molecule and of erythrocyte receptors which provide for the specific interaction of CP with erythrocytes were identified, and their properties were investigated. The interaction of CP with erythrocytes, both intact and treated with neuroaminidase and proteolytic enzymes (trypsin, chymotrypsin, papaine, pronase E) is described. Experiments with CP reception were performed at 4 degrees C, using [125I]CP and [125I]asialo-CP. The parameters of binding were determined in Scatchard plots. It was demonstrated that the specific binding of CP to erythrocyte receptors is determined by its interaction with two structural sites of the carbohydrate moiety of the CP molecule, i.e., the terminal residues of sialic acids and a site, (formula; see text) located at a large distance from the chain terminus.

  14. Radioiodination of central nerves system dopamine D2 receptor imaging agent. IBZM preparation and preclinical study

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong; Hu Mingyang; Pan Shangren; Wang Bocheng

    1996-01-01

    To study preparation of central nerves system dopamine D2 imaging agent 131 I-IBZM and its preclinical investigation, peracetic acid was used as the oxidant for preparing radioiodinated 125 I-IBZM and 131 I-IBZM, D2 binding properties of IBZM were examined by in vitro binding saturation analysis, rat whole body and regional brain biodistribution, rat brain autoradiography and rabbit SPECT static imaging, etc. The results are: 1. The radiolabelling yields of 125 I-IBZM and 131 I-IBZM were 84.18% +- 3.06% and 78.50% +- 3.47%. The radiochemical purity were over 95% after being isolated by HPLC; and were over 90% after being isolated by organic extraction. 2. Scatchard plot of D2 receptor saturation binding analysis showed: K d = 0.53 +- 0.06 nmol/L, B max = 466.45 +- 45.88 fmol/mg protein. 3. The rat brain autoradiography and analysis showed that there was high 125 I-IBZM uptake in striatal area 2 hr after injection, the striatal/cerebellum ratio was 6.22 +- 0.48; the high 125 -IBZM uptake can be blocked by haloperidol--a special dopamine D2 receptor antagonist. 4. 131 I-IBZM rat biodistribution and rabbit SPECT planar imaging showed good initial brain uptake and retention, the initial uptake of rat brain was 1.893 +- 0.147% ID/g at 2 min and 1.044 +- 0.135% ID/g at 60 min. The results showed that the radioiodinated IBZM had high affinity, saturation and specificity to rat's and rabbit's central nerves system dopamine D2 receptors

  15. Exploring the binding sites and binding mechanism for hydrotrope encapsulated griseofulvin drug on γ-tubulin protein.

    Directory of Open Access Journals (Sweden)

    Shubhadip Das

    Full Text Available The protein γ-tubulin plays an important role in centrosomal clustering and this makes it an attractive therapeutic target for treating cancers. Griseofulvin, an antifungal drug, has recently been used to inhibit proliferation of various types of cancer cells. It can also affect the microtubule dynamics by targeting the γ-tubulin protein. So far, the binding pockets of γ-tubulin protein are not properly identified and the exact mechanism by which the drug binds to it is an area of intense speculation and research. The aim of the present study is to investigate the binding mechanism and binding affinity of griseofulvin on γ-tubulin protein using classical molecular dynamics simulations. Since the drug griseofulvin is sparingly soluble in water, here we also present a promising approach for formulating and achieving delivery of hydrophobic griseofulvin drug via hydrotrope sodium cumene sulfonate (SCS cluster. We observe that the binding pockets of γ-tubulin protein are mainly formed by the H8, H9 helices and S7, S8, S14 strands and the hydrophobic interactions between the drug and γ-tubulin protein drive the binding process. The release of the drug griseofulvin from the SCS cluster is confirmed by the coordination number analysis. We also find hydrotrope-induced alteration of the binding sites of γ-tubulin protein and the weakening of the drug-protein interactions.

  16. Reduced Numbers of Somatostatin Receptors in the Cerebral Cortex in Alzheimer's Disease

    Science.gov (United States)

    Flint Beal, M.; Mazurek, Michael F.; Tran, Vinh T.; Chattha, Geetinder; Bird, Edward D.; Martin, Joseph B.

    1985-07-01

    Somatostatin receptor concentrations were measured in patients with Alzheimer's disease and controls. In the frontal cortex (Brodmann areas 6, 9, and 10) and temporal cortex (Brodmann area 21), the concentrations of somatostatin in receptors in the patients were reduced to approximately 50 percent of control values. A 40 percent reduction was seen in the hippocampus, while no significant changes were found in the cingulate cortex, postcentral gyrus, temporal pole, and superior temporal gyrus. Scatchard analysis showed a reduction in receptor number rather than a change in affinity. Somatostatin-like immunoreactivity was significantly reduced in both the frontal and temporal cortex. Somatostatin-like immunoreactivity was linearly related to somatostatin-receptor binding in the cortices of Alzheimer's patients. These findings may reflect degeneration of postsynaptic neurons or cortical afferents in the patients' cerebral cortices. Alternatively, decreased somatostatinlike immunoreactivity in Alzheimer's disease might indicate increased release of somatostatin and down regulation of postsynaptic receptors.

  17. Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data.

    Science.gov (United States)

    Peng, Chen; Frommlet, Alexandra; Perez, Manuel; Cobas, Carlos; Blechschmidt, Anke; Dominguez, Santiago; Lingel, Andreas

    2016-04-14

    NMR binding assays are routinely applied in hit finding and validation during early stages of drug discovery, particularly for fragment-based lead generation. To this end, compound libraries are screened by ligand-observed NMR experiments such as STD, T1ρ, and CPMG to identify molecules interacting with a target. The analysis of a high number of complex spectra is performed largely manually and therefore represents a limiting step in hit generation campaigns. Here we report a novel integrated computational procedure that processes and analyzes ligand-observed proton and fluorine NMR binding data in a fully automated fashion. A performance evaluation comparing automated and manual analysis results on (19)F- and (1)H-detected data sets shows that the program delivers robust, high-confidence hit lists in a fraction of the time needed for manual analysis and greatly facilitates visual inspection of the associated NMR spectra. These features enable considerably higher throughput, the assessment of larger libraries, and shorter turn-around times.

  18. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  19. Zinc Binding by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Jasna Mrvčić

    2009-01-01

    Full Text Available Zinc is an essential trace element in all organisms. A common method for the prevention of zinc deficiency is pharmacological supplementation, especially in a highly available form of a metalloprotein complex. The potential of different microbes to bind essential and toxic heavy metals has recently been recognized. In this work, biosorption of zinc by lactic acid bacteria (LAB has been investigated. Specific LAB were assessed for their ability to bind zinc from a water solution. Significant amount of zinc ions was bound, and this binding was found to be LAB species-specific. Differences among the species in binding performance at a concentration range between 10–90 mg/L were evaluated with Langmuir model for biosorption. Binding of zinc was a fast process, strongly influenced by ionic strength, pH, biomass concentration, and temperature. The most effective metal-binding LAB species was Leuconostoc mesenteroides (27.10 mg of Zn2+ per gram of dry mass bound at pH=5 and 32 °C, during 24 h. FT-IR spectroscopy analysis and electron microscopy demonstrated that passive adsorption and active uptake of the zinc ions were involved.

  20. Genetic analysis of RPA single-stranded DNA binding protein in Haloferax volcanii

    OpenAIRE

    Stroud, A. L.

    2012-01-01

    Replication protein A (RPA) is a single-stranded DNA-binding protein that is present in all three domains of life. The roles of RPA include stabilising and protecting single- stranded DNA from nuclease degradation during DNA replication and repair. To achieve this, RPA uses an oligosaccharide-binding fold (OB fold) to bind single- stranded DNA. Haloferax volcanii encodes three RPAs – RPA1, RPA2 and RPA3, of which rpa1 and rpa3 are in operons with genes encoding associated proteins (APs). ...

  1. Behavior of Phenols and Phenoxyacids on a Bisphenol-A Imprinted Polymer. Application for Selective Solid-Phase Extraction from Water and Urine Samples

    Directory of Open Access Journals (Sweden)

    Eliseo Herrero-Hernández

    2011-05-01

    Full Text Available A molecularly imprinted polymer (MIP, obtained by precipitation polymerisation with 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate as cross-linker, and bisphenol-A (BPA as template, was prepared. The binding site configuration of the BPA-MIP was examined using Scatchard analysis. Moreover, the behaviour of the BPA-MIP for the extraction of several phenolic compounds (bisphenol-A, bisphenol-F, 4-nitrophenol, 3-methyl-4-nitrophenol and phenoxyacid herbicides such as 2,4-D, 2,4,5-T and 2,4,5-TP has been studied in organic and aqueous media in the presence of other pesticides in common use. It was possible to carry out the selective preconcentration of the target analytes from the organic medium with recoveries of higher than 70%. In an aqueous medium, hydrophobic interactions were found to exert a remarkably non-specific contribution to the overall binding process. Several parameters affecting the extraction efficiency of the BPA-MIP were evaluated to achieve the selective preconcentration of phenols and phenoxyacids from aqueous samples. The possibility of using the BPA-MIP as a selective sorbent to preconcentrate these compounds from other samples such as urine and river water was also explored.

  2. Is there a link between selectivity and binding thermodynamics profiles?

    Science.gov (United States)

    Tarcsay, Ákos; Keserű, György M

    2015-01-01

    Thermodynamics of ligand binding is influenced by the interplay between enthalpy and entropy contributions of the binding event. The impact of these binding free energy components, however, is not limited to the primary target only. Here, we investigate the relationship between binding thermodynamics and selectivity profiles by combining publicly available data from broad off-target assay profiling and the corresponding thermodynamics measurements. Our analysis indicates that compounds binding their primary targets with higher entropy contributions tend to hit more off-targets compared with those ligands that demonstrated enthalpy-driven binding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Proteome scale identification, classification and structural analysis of iron-binding proteins in bread wheat.

    Science.gov (United States)

    Verma, Shailender Kumar; Sharma, Ankita; Sandhu, Padmani; Choudhary, Neha; Sharma, Shailaja; Acharya, Vishal; Akhter, Yusuf

    2017-05-01

    Bread wheat is one of the major staple foods of worldwide population and iron plays a significant role in growth and development of the plant. In this report, we are presenting the genome wide identification of iron-binding proteins in bread wheat. The wheat genome derived putative proteome was screened for identification of iron-binding sequence motifs. Out of 602 putative iron-binding proteins, 130 were able to produce reliable structural models by homology techniques and further analyzed for the presence of iron-binding structural motifs. The computationally identified proteins appear to bind to ferrous and ferric ions and showed diverse coordination geometries. Glu, His, Asp and Cys amino acid residues were found to be mostly involved in iron binding. We have classified these proteins on the basis of their localization in the different cellular compartments. The identified proteins were further classified into their protein folds, families and functional classes ranging from structure maintenance of cellular components, regulation of gene expression, post translational modification, membrane proteins, enzymes, signaling and storage proteins. This comprehensive report regarding structural iron binding proteome provides useful insights into the diversity of iron binding proteins of wheat plants and further utilized to study their roles in plant growth, development and physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Interaction between the enamel matrix proteins amelogenin and ameloblastin

    International Nuclear Information System (INIS)

    Ravindranath, Hanumanth H.; Chen, Li-Sha; Zeichner-David, Margaret; Ishima, Rieko; Ravindranath, Rajeswari M.H.

    2004-01-01

    Enamel matrix consists of amelogenin and non-amelogenins. Though amelogenin is not involved in nucleation of minerals, the enamel mineralization is impaired when amelogenin or other matrix protein (ameloblastin/enamelin) genes are mutated. We hypothesize that amelogenin may promote enamel mineralization by interacting with the calcium-binding matrix proteins. Specific binding of amelogenin to N-acetylglucosamine (GlcNAc), GlcNAc-mimicking peptides (GMps), and their carrier proteins and the identification of amelogenin-trityrosyl-motif-peptide (ATMP) as a GlcNAc/GMp-binding domain in amelogenin favor the hypothesis. This study tested the interaction of amelogenin with ameloblastin, a carrier of GMp sequence at intermittent sites. Neither GlcNAc nor sialic acids were identified in the recombinant-ameloblastin. Amelogenin bound to recombinant-ameloblastin in both Western blots and in ELISA. More specifically, [ 3 H]ATMP bound to both recombinant and native ameloblastins. Dosimetry and Scatchard analyses showed the specific interaction between ATMP and ameloblastin, suggesting that amelogenin may interact with ameloblastin to form a heteromolecular assembly

  5. [Investigation on the interaction between pentadecafluorooctanoic acid and human serum albumin by capillary electrophoresis].

    Science.gov (United States)

    Gu, Yi; Guo, Ming; Lü, Da; Hou, Ping; Yin, Xinxin

    2018-01-08

    Capillary electrophoresis (CE) has been used to establish the analytical method of interaction between pentadecafluorooctanoic acid (PFOA) and human serum albumin (HSA). Under the physiological conditions, the interaction model of PFOA and HSA were constructed. Mobility method, plug-plug kinetic (PPK) method and simplified Hummel-Dreyer method were used to determine the interaction between derivatives and HSA. Non-linear regression, Scatchard equation and Klotz equation were adopted to obtain the interaction parameters. The results showed that all the three methods can be used to analyze the interaction of PFOA-HSA system. According to the interaction parameters, the most suitable CE method is simplified Hummel-Dreyer method while the most suitable theoretical equation is non-linear regression. The binding parameters indicated that the interaction of PFOA-HSA system has only one type of binding sites and the binding is stable. The research results have illustrated the interaction between HSA and PFOA, and provided a beneficial reference for in-depth research of the toxic mechanism of PFOA.

  6. Interaction between the enamel matrix proteins amelogenin and ameloblastin.

    Science.gov (United States)

    Ravindranath, Hanumanth H; Chen, Li-Sha; Zeichner-David, Margaret; Ishima, Rieko; Ravindranath, Rajeswari M H

    2004-10-22

    Enamel matrix consists of amelogenin and non-amelogenins. Though amelogenin is not involved in nucleation of minerals, the enamel mineralization is impaired when amelogenin or other matrix protein (ameloblastin/enamelin) genes are mutated. We hypothesize that amelogenin may promote enamel mineralization by interacting with the calcium-binding matrix proteins. Specific binding of amelogenin to N-acetylglucosamine (GlcNAc), GlcNAc-mimicking peptides (GMps), and their carrier proteins and the identification of amelogenin-trityrosyl-motif-peptide (ATMP) as a GlcNAc/GMp-binding domain in amelogenin favor the hypothesis. This study tested the interaction of amelogenin with ameloblastin, a carrier of GMp sequence at intermittent sites. Neither GlcNAc nor sialic acids were identified in the recombinant-ameloblastin. Amelogenin bound to recombinant-ameloblastin in both Western blots and in ELISA. More specifically, [(3)H]ATMP bound to both recombinant and native ameloblastins. Dosimetry and Scatchard analyses showed the specific interaction between ATMP and ameloblastin, suggesting that amelogenin may interact with ameloblastin to form a heteromolecular assembly.

  7. The necessity of connection structures in neural models of variable binding.

    Science.gov (United States)

    van der Velde, Frank; de Kamps, Marc

    2015-08-01

    In his review of neural binding problems, Feldman (Cogn Neurodyn 7:1-11, 2013) addressed two types of models as solutions of (novel) variable binding. The one type uses labels such as phase synchrony of activation. The other ('connectivity based') type uses dedicated connections structures to achieve novel variable binding. Feldman argued that label (synchrony) based models are the only possible candidates to handle novel variable binding, whereas connectivity based models lack the flexibility required for that. We argue and illustrate that Feldman's analysis is incorrect. Contrary to his conclusion, connectivity based models are the only viable candidates for models of novel variable binding because they are the only type of models that can produce behavior. We will show that the label (synchrony) based models analyzed by Feldman are in fact examples of connectivity based models. Feldman's analysis that novel variable binding can be achieved without existing connection structures seems to result from analyzing the binding problem in a wrong frame of reference, in particular in an outside instead of the required inside frame of reference. Connectivity based models can be models of novel variable binding when they possess a connection structure that resembles a small-world network, as found in the brain. We will illustrate binding with this type of model with episode binding and the binding of words, including novel words, in sentence structures.

  8. Fibrinogen-binding and platelet-aggregation activities of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein.

    Science.gov (United States)

    Collins, James; van Pijkeren, Jan-Peter; Svensson, Lisbeth; Claesson, Marcus J; Sturme, Mark; Li, Yin; Cooney, Jakki C; van Sinderen, Douwe; Walker, Alan W; Parkhill, Julian; Shannon, Oonagh; O'Toole, Paul W

    2012-09-01

    The marketplace for probiotic foods is burgeoning, measured in billions of euro per annum. It is imperative, however, that all bacterial strains are fully assessed for human safety. The ability to bind fibrinogen is considered a potential pathogenicity trait that can lead to platelet aggregation, serious medical complications, and in some instances, death. Here we examined strains from species frequently used as probiotics for their ability to bind human fibrinogen. Only one strain (CCUG 47825), a Lactobacillus salivarius isolate from a case of septicaemia, was found to strongly adhere to fibrinogen. Furthermore, this strain was found to aggregate human platelets at a level comparable to the human pathogen Staphylococcus aureus. By sequencing the genome of CCUG 47825, we were able to identify candidate genes responsible for fibrinogen binding. Complementing the genetic analysis with traditional molecular microbiological techniques enabled the identification of the novel fibrinogen receptor, CCUG_2371. Although only strain CCUG 47825 bound fibrinogen under laboratory conditions, homologues of the novel fibrinogen binding gene CCUG_2371 are widespread among L. salivarius strains, maintaining their potential to bind fibrinogen if expressed. We highlight the fact that without a full genetic analysis of strains for human consumption, potential pathogenicity traits may go undetected. © 2012 Blackwell Publishing Ltd.

  9. (+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] hydrochloride, hemihydrate (SNI-2011, cevimeline hydrochloride) induces saliva and tear secretions in rats and mice: the role of muscarinic acetylcholine receptors.

    Science.gov (United States)

    Iga, Y; Arisawa, H; Ogane, N; Saito, Y; Tomizuka, T; Nakagawa-Yagi, Y; Masunaga, H; Yasuda, H; Miyata, N

    1998-11-01

    We investigated effects of (+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] hydrochloride, hemihydrate (SNI-2011, cevimeline hydrochloride), a rigid analogue of acetylcholine, on saliva and tear secretions in rats and mice to evaluate its therapeutical efficacy for xerostomia and xerophthalmia in patients with Sjogren's syndrome and X-ray exposure in the head and neck. Intraduodenal administrations of SNI-2011 increased saliva secretion in a dose-dependent manner at doses ranging from 3 to 30 mg/kg in normal rats and mice, two strains of autoimmune disease mice and X-irradiated saliva secretion defective rats. The salivation elicited by SNI-2011 was completely inhibited by atropine. A similar atropine-sensitive response was observed in tear secretion. In rat submandibular/sublingual gland membranes, [3H]quinuclidinyl benzilate (QNB) binding was saturable, and Scatchard plot analysis revealed a single population of binding sites with a Kd of 22 pM and a maximal binding capacity of 60 fmol/mg protein. The competitive inhibition curve of the [3H]QNB binding by SNI-2011 was obtained, and its dissociation constant value calculated from IC50 was 1-2 microM. These results suggest that SNI-2011 increases saliva and tear secretions through a direct stimulation to muscarinic receptors in salivary and lacrimal glands, and they suggest that SNI-2011 should be beneficial to patients with Sjögren's syndrome and X-ray exposure in the head and neck.

  10. Thermal balneotherapy induces changes of the platelet serotonin transporter in healthy subjects.

    Science.gov (United States)

    Marazziti, Donatella; Baroni, Stefano; Giannaccini, Gino; Catena Dell'Osso, Mario; Consoli, Giorgio; Picchetti, Michela; Carlini, Marina; Massimetti, Gabriele; Provenzano, Serafina; Galassi, Antonio

    2007-10-01

    Although the beneficial effects of balneotherapy have been recognized since a long time, a few information is available on the biological mechanisms underlying them and the subjective feelings of increased well-being and mood. The links between the serotonin (5-HT) system and mood prompted us to investigate the 5-HT platelet transporter (SERT), which is considered a reliable, peripheral marker of the same structure present in presynaptic neurons, in 20 healthy volunteers before (t0) and 30 min after (t1) thermal balneotherapy with ozonized water of Montecatini spa, as compared with a similar group who underwent a bath in non-mineral water. The SERT was evaluated by means of the specific binding of (3)H-paroxetine ((3)H-Par) to platelet membranes. Equilibrium-saturation binding data, the maximal binding capacity (Bmax) and the dissociation constant (Kd), were obtained by means of the Scatchard analysis. The results showed that, while Bmax values did not change in both groups, the Kd values decreased significantly at t1 only in those subjects who bathed in ozonized water. The results of this study, while showing a decrease of the dissociation constant (Kd) which is the inverse of affinity constant, of (3)H-Par binding to SERT in all subjects after balneotherapy and not in those bathing in normal water, suggest that SERT modifications may be related to a specific effect of ozonized water and, perhaps, also to the increased sense of well-being.

  11. Modulation of the platelet serotonin transporter by thermal balneotherapy: a study in healthy subjects.

    Science.gov (United States)

    Baroni, S; Marazziti, D; Consoli, G; Picchetti, M; Catena-Dell'Osso, M; Galassi, A

    2012-05-01

    Although the beneficial effects of balneotherapy have been recognized since a long time, a few information is available on the biological mechanisms underlying them and the subjective feelings of increased well-being and mood. The links between the serotonin (5-HT) system and mood prompted us to investigate the 5-HT platelet transporter (SERT), which is considered a reliable, peripheral marker of the same structure present in presynaptic neurons, in 30 healthy volunteers before (t0) and 30 minutes after (t1) thermal balneotherapy with ozonized water, as compared with a similar group who underwent a bath in non-mineral water. MATERIALS AN METHODS: The SERT was evaluated by means of the specific binding of 3H-paroxetine (3H-Par) to platelet membranes. Equilibrium-saturation binding data, the maximal binding capacity (Bmax) and the dissociation constant (Kd), were obtained by means of the Scatchard analysis. The results showed that, while Bmax values did not change in both groups, the Kd values decreased significantly at t1 only in those subjects who bathed in ozonized water. The results of this study, while showing a decrease of the dissociation constant (Kd) which is the inverse of affinity constant, of 3H-Par binding to SERT in all subjects after balneotherapy and not in those bathing in normal water, suggest that SERT modifications may be related to a specific effect of ozonized water and, perhaps, also to the increased sense of well-being.

  12. Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina

    International Nuclear Information System (INIS)

    Hensler, J.G.; Cotterell, D.J.; Dubocovich, M.L.

    1987-01-01

    Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent [ 3 H]acetylcholine release from rabbit retina labeled in vitro with [ 3 H]choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of [ 3 H]acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of [ 3 H]acetylcholine with the following order of potency: apomorphine ≤ SKF(R)82526 3 H]acetylcholine: SCH 23390 (IC50 = 1 nM) 3 H]acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by [ 3 H]SCH 23390, or as determined by adenylate cyclase activity. [ 3 H]SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of [ 3 H]SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate [ 3 H]acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at [ 3 H]SCH 23390 binding sites (r = 0.755, P < .05, n = 8)

  13. Membrane receptors for very low density lipoprotein (VLDL) inhibitor of lymphocyte proliferation

    International Nuclear Information System (INIS)

    Yi, P.I.; Beck, G.; Zucker, S.

    1981-01-01

    Physiologic concentrations of human plasma very low density lipoproteins inhibit the DNA synthesis of lymphocytes stimulated by allogeneic cells or lectins. In this report reachers have compared the effects of isolated lipoproteins [very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)] and lipoprotein-depleted plasma (LDP) on DNA synthesis by phytohemagglutinin-stimulated human lymphocytes. The relative potency for the inhibition of lymphocyte proliferation was VLDL greater than LDL greater than HDL greater than LDP. Fifty percent inhibition of DNA synthesis was observed at a VLDL protein concentration of 1.5--2.0 microgram/ml. Researchers have further demonstrated the presence of specific receptors for VLDL on human lymphocytes. Native VLDL was more effective than LDL in competing for 125I-VLDL binding sites. Subsequent to binding to lymphocytes, 125I-VLDL was internalized and degraded to acid-soluble products. Based on a Scatchard analysis of VLDL binding at 4 degrees C, the number of VLDL receptors per lymphocyte was estimated at 28,000 +/- 1300. Based on an estimated mean binding affinity for the VLDL receptor complex at half saturation of approximately 8.8 X 10(7) liter/mole, it is estimated that 91% of lymphocyte VLDL receptors are occupied at physiologic VLDL concentrations in blood. Although the immune regulatory role of plasma lipoproteins is uncertain, researchers suggest tha VLDL and LDL-In may maintain circulating blood lymphocytes in a nonproliferative state via their respective cell receptor mechanisms

  14. Global Mapping of Transcription Factor Binding Sites by Sequencing Chromatin Surrogates: a Perspective on Experimental Design, Data Analysis, and Open Problems.

    Science.gov (United States)

    Wei, Yingying; Wu, George; Ji, Hongkai

    2013-05-01

    Mapping genome-wide binding sites of all transcription factors (TFs) in all biological contexts is a critical step toward understanding gene regulation. The state-of-the-art technologies for mapping transcription factor binding sites (TFBSs) couple chromatin immunoprecipitation (ChIP) with high-throughput sequencing (ChIP-seq) or tiling array hybridization (ChIP-chip). These technologies have limitations: they are low-throughput with respect to surveying many TFs. Recent advances in genome-wide chromatin profiling, including development of technologies such as DNase-seq, FAIRE-seq and ChIP-seq for histone modifications, make it possible to predict in vivo TFBSs by analyzing chromatin features at computationally determined DNA motif sites. This promising new approach may allow researchers to monitor the genome-wide binding sites of many TFs simultaneously. In this article, we discuss various experimental design and data analysis issues that arise when applying this approach. Through a systematic analysis of the data from the Encyclopedia Of DNA Elements (ENCODE) project, we compare the predictive power of individual and combinations of chromatin marks using supervised and unsupervised learning methods, and evaluate the value of integrating information from public ChIP and gene expression data. We also highlight the challenges and opportunities for developing novel analytical methods, such as resolving the one-motif-multiple-TF ambiguity and distinguishing functional and non-functional TF binding targets from the predicted binding sites. The online version of this article (doi:10.1007/s12561-012-9066-5) contains supplementary material, which is available to authorized users.

  15. Sigma opioid receptor: characterization and co-identity with the phencyclidine receptor

    International Nuclear Information System (INIS)

    Mendelsohn, L.G.; Kalra, V.; Johnson, B.G.; Kerchner, G.A.

    1985-01-01

    The properties of the sigma opioid receptor of rat brain cortex have been characterized using the prototypic ligand (+)-[ 3 H] SKF 10,047. Binding to this receptor was rapid, and equilibrium was obtained within 30 min at 37 degrees C. Specific binding was linear with protein concentration up to 500 micrograms/2 ml and was dependent upon protein integrity. Denaturation by boiling destroyed over 95% of the specific binding. A high-affinity binding site with a KD of 150 +/- 40 nM and a maximum binding of 2.91 +/- 0.84 pmol/mg of protein was determined from a Scatchard plot of the binding data. The addition of salt, either NaCl or CaCl 2 , to the buffers markedly decreased binding, with CaCl 2 being more potent than NaCl. A broad pH optimum for specific binding was observed; maximum binding was at pH 9.0. The affinity of a number of ligands for the sigma site and the phencyclidine receptor were compared. The binding (IC50) of 13 ligands to the sigma site showed a correlation of 0.86 (P less than .01) with binding to the phencyclidine site. The data demonstrate that the biochemical properties of the sigma and phencyclidine receptors are similar and support the view that these receptors are one and the same site

  16. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein

    DEFF Research Database (Denmark)

    Rolf, B; Oudenampsen-Krüger, E; Börchers, T

    1995-01-01

    The coding part of the cDNA for bovine liver-type fatty acid binding protein (L-FABP) has been amplified by RT-PCR, cloned and used for the construction of an Escherichia coli (E. coli) expression system. The recombinant protein made up to 25% of the soluble E. coli proteins and could be isolated...

  17. Interaction of sarcolysine with β-adrenergic receptors of tumor cells

    International Nuclear Information System (INIS)

    Belousova, A.K.; Solntseva, T.I.; Khabarov, S.V.

    1986-01-01

    The sites of specific binding of [L- 3 H]dihydroalprenolol ([ 3 H]DHA), possessing the properties of β-adrenergic receptors, coupled with adenylate cyclase, were detected by methods of competitive displacement and binding of β-adrenoblockers: [ 3 H]-DHA and L-propranolol on the surface of ascites sarcoma 37 cells. Specific binding of the ligand occurs rapidly and with saturation. The total number of binding sites in the case of total saturation is (30-40) x 10 3 per cell. An analysis of the results by the Scatchard method permitted the detection of two types of β-adrenoreceptors with high (K/sub d/ = 0.9-1.0 mM) and low (K/sub d/ = 15-20 nM) affinity for [ 3 H]DHA. The number of receptors of the first type is (5.0-7.5) x 10 3 , and of the second (20-30) x 10 3 per cell. Sarcolysine in 1-10 μM concentrations is capable of displacing [ 3 H]DHA bound to the β-adrenoreceptors, competing with it for common binding sites, and, like isoproterenol, inducing a brief increase in the content of cAMP in the tumor cells. Since sarcolysine noncompetitively inhibits cAMP phosphodiesterase of the plasma membranes of ascites sarcoma 37 cells in the same concentration range (2.5-25 μM), a possible functional association between the β-adrenoreceptors, adenylate cyclase, and the membrane cAMP phosphodiesterase and the participation of this complex in the antitumor effect of the cytostatic are suggested

  18. Analysis of mebendazole binding to its target biomolecule by laser flash photolysis.

    Science.gov (United States)

    Jornet, Dolors; Bosca, Francisco; Andreu, Jose M; Domingo, Luis R; Tormos, Rosa; Miranda, Miguel A

    2016-02-01

    Mebendazole (MBZ) and related anticancer benzimidazoles act binding the β-subunit of Tubulin (TU) before dimerization with α-TU with subsequent blocking microtubule formation. Laser flash photolysis (LFP) is a new tool to investigate drug-albumin interactions and to determine binding parameters such as affinity constant or population of binding sites. The aim of this study was to evaluate the interactions between the nonfluorescent mebendazole (MBZ) and its target biomolecule TU using this technique. Before analyzing the MBZ@TU complex it was needed to determine the photophysical properties of MBZ triplet excited state ((3)MBZ(⁎)) in different media. Hence, (3)MBZ(⁎) showed a transient absorption spectrum with maxima at 520 and 375 nm and a lifetime much longer in acetonitrile (12.5 μs) than in water (260 ns). The binding of MBZ to TU produces a greater increase of the lifetime of (3)MBZ(⁎) (25 μs). This fact and the strong electron acceptor capability observed for (3)MBZ* evidence that MBZ must not be located close to any electron donor amino acid of TU such as its tryptophan or cysteine residues. Adding increasing amounts of MBZ to aqueous TU was determined the MBZ-TU binding constant (2.0 ± 0.5 × 10(5)M(-1) at 298K) which decreased with increasing temperature. The LFP technique has proven to be a powerful tool to analyze the binding of drug-TU systems when the drug has a detectable triplet excited state. Results indicate that LFP could be the technique of choice to study the interactions of non-fluorescent drugs with their target biomolecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  20. Autoradiographic analysis of tritiated imipramine binding in the human brain post mortem: effects of suicide

    International Nuclear Information System (INIS)

    Gross-Isseroff, R.; Israeli, M.; Biegon, A.

    1989-01-01

    In vitro quantitative autoradiography of high-affinity tritiated imipramine binding sites was performed on brains of 12 suicide victims and 12 matched controls. Region-specific differences in imipramine binding were found between the two groups. Thus, the pyramidal and molecular layers of the cornu ammoni hippocampal fields and the hilus of the dentate gyrus exhibited 80%, 60%, and 90% increases in binding in the suicide group, respectively. The postcentral cortical gyrus, insular cortex, and claustrum had 45%, 28%, and 75% decreases in binding in the suicide group, respectively. No difference in imipramine binding was observed in prefrontal cortical regions, in the basal ganglia, and in mesencephalic nuclei. No sex and postmortem delay effects on imipramine binding were found. Imipramine binding was positively correlated with age, the effect of age being most pronounced in portions of the basal ganglia and temporal cortex

  1. CARBOHYDRATE-CONTAINING COMPOUNDS WHICH BIND TO CARBOHYDRATE BINDING RECEPTORS

    DEFF Research Database (Denmark)

    1995-01-01

    Carbohydrate-containing compounds which contain saccharides or derivatives thereof and which bind to carbohydrate binding receptors are useful in pharmaceutical products for treatment of inflammatory diseases and other diseases.......Carbohydrate-containing compounds which contain saccharides or derivatives thereof and which bind to carbohydrate binding receptors are useful in pharmaceutical products for treatment of inflammatory diseases and other diseases....

  2. Analysis of Metal-Binding Features of the Wild Type and Two Domain-Truncated Mutant Variants of Littorina littorea Metallothionein Reveals Its Cd-Specific Character

    Directory of Open Access Journals (Sweden)

    Òscar Palacios

    2017-07-01

    Full Text Available After the resolution of the 3D structure of the Cd9-aggregate of the Littorina littorea metallothionein (MT, we report here a detailed analysis of the metal binding capabilities of the wild type MT, LlwtMT, and of two truncated mutants lacking either the N-terminal domain, Lltr2MT, or both the N-terminal domain, plus four extra flanking residues (SSVF, Lltr1MT. The recombinant synthesis and in vitro studies of these three proteins revealed that LlwtMT forms unique M9-LlwtMT complexes with Zn(II and Cd(II, while yielding a complex mixture of heteronuclear Zn,Cu-LlwtMT species with Cu(I. As expected, the truncated mutants gave rise to unique M6-LltrMT complexes and Zn,Cu-LltrMT mixtures of lower stoichiometry with respect to LlwtMT, with the SSVF fragment having an influence on their metal binding performance. Our results also revealed a major specificity, and therefore a better metal-coordinating performance of the three proteins for Cd(II than for Zn(II, although the analysis of the Zn(II/Cd(II displacement reaction clearly demonstrates a lack of any type of cooperativity in Cd(II binding. Contrarily, the analysis of their Cu(I binding abilities revealed that every LlMT domain is prone to build Cu4-aggregates, the whole MT working by modules analogously to, as previously described, certain fungal MTs, like those of C. neoformans and T. mesenterica. It is concluded that the Littorina littorea MT is a Cd-specific protein that (beyond its extended binding capacity through an additional Cd-binding domain confers to Littorina littorea a particular adaptive advantage in its changeable marine habitat.

  3. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides......, without the need for phosphopeptide mimics or phosphatase inhibitors. As no proven ILKAP substrates were available, we selected phosphopeptide substrates among known PP2Cδ substrates including the protein kinases: p38, ATM, Chk1, Chk2 and RSK2 and synthesized directly on PEGA solid supports through a BAL...

  4. A simple method for determining polymeric IgA-containing immune complexes.

    Science.gov (United States)

    Sancho, J; Egido, J; González, E

    1983-06-10

    A simplified assay to measure polymeric IgA-immune complexes in biological fluids is described. The assay is based upon the specific binding of a secretory component for polymeric IgA. In the first step, multimeric IgA (monomeric and polymeric) immune complexes are determined by the standard Raji cell assay. Secondly, labeled secretory component added to the assay is bound to polymeric IgA-immune complexes previously fixed to Raji cells, but not to monomeric IgA immune complexes. To avoid false positives due to possible complement-fixing IgM immune complexes, prior IgM immunoadsorption is performed. Using anti-IgM antiserum coupled to CNBr-activated Sepharose 4B this step is not time-consuming. Polymeric IgA has a low affinity constant and binds weakly to Raji cells, as Scatchard analysis of the data shows. Thus, polymeric IgA immune complexes do not bind to Raji cells directly through Fc receptors, but through complement breakdown products, as with IgG-immune complexes. Using this method, we have been successful in detecting specific polymeric-IgA immune complexes in patients with IgA nephropathy (Berger's disease) and alcoholic liver disease, as well as in normal subjects after meals of high protein content. This new, simple, rapid and reproducible assay might help to study the physiopathological role of polymeric IgA immune complexes in humans and animals.

  5. Assembly of fibronectin into the extracellular matrix of early and late passage human skin fibroblasts

    International Nuclear Information System (INIS)

    Mann, D.M.

    1987-01-01

    The specific binding of soluble 125 I-human plasma fibronectin ( 125 I-HFN-P) to confluent cultures of early and late passage human skin fibroblasts was investigated. Previous studies HFN-P bound to fibroblast cell layers indicated that HNF-P was present in the cultures in two separate pools, distinguishable on the basis of their solubility in 1% deoxycholate. Examination of the kinetics of 125 I-HFN-P binding to Pool I of early and late passage cultures revealed that both cultures required 2-4 h to approach steady-state conditions. Other kinetic studies showed that the rates of low of 125 I-HFN-P from either Pool I or Pool II were similar for both cultures. Further, Scatchard analysis revealed a single class of Pool I binding sites with apparent dissociation constants (K/sub d/) of 5.3 x 10 -8 M (early passage) and 4.2 x 10 -8 M (late passage). These results indicate that early and late passage cultures of human fibroblasts exhibit differences in the number of cell surface biding sites for soluble fibronectin, and in the extent to which they incorporate soluble fibronectin into the extracellular matrix. Parameters which affect the fibronectin matrix assembly system of human skin fibroblasts were also examined. In addition, several monoclonal anti-fibronectin antibodies were characterized and developed as experimental probes for fibronectin structure and function

  6. An Electrostatic Funnel in the GABA-Binding Pathway.

    Directory of Open Access Journals (Sweden)

    Timothy S Carpenter

    2016-04-01

    Full Text Available The γ-aminobutyric acid type A receptor (GABAA-R is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a 'funnel' that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site.

  7. Feature binding in visual short term memory: A General Recognition Theory analysis.

    Science.gov (United States)

    Fitousi, Daniel

    2017-05-23

    Creating and maintaining accurate bindings of elementary features (e.g., color and shape) in visual short-term memory (VSTM) is fundamental for veridical perception. How are low-level features bound in memory? The present work harnessed a multivariate model of perception - the General Recognition Theory (GRT) - to unravel the internal representations underlying feature binding in VSTM. On each trial, preview and target colored shapes were presented in succession, appearing in either repeated or altered spatial locations. Participants gave two same/different responses: one with respect to color and one with respect to shape. Converging GRT analyses on the accuracy confusion matrices provided substantial evidence for binding in the form of violations of perceptual independence at the level of the individual stimulus, such that positive correlations were obtained when both features repeated or alternated together, while negative correlations were obtained when one feature repeated and the other alternated. This "cloverleaf" GRT pattern of binding was similar whether the spatial location of the preview and target repeated or altered. The current results are consistent with: (a) the discrete memory "slots" model of VSTM, and (b) the notion that spatial location is not necessary for the formation of "object files." The GRT approach presented here offers a viable quantitative model for testing various questions regarding feature binding in VSTM.

  8. A chemometric analysis of ligand-induced changes in intrinsic fluorescence of folate binding protein indicates a link between altered conformational structure and physico-chemical characteristics

    DEFF Research Database (Denmark)

    Bruun, Susanne W; Holm, Jan; Hansen, Steen Ingemann

    2009-01-01

    Ligand binding alters the conformational structure and physico-chemical characteristics of bovine folate binding protein (FBP). For the purpose of achieving further information we analyzed ligand (folate and methotrexate)-induced changes in the fluorescence landscape of FBP. Fluorescence excitation...... of folate accords fairly well with the disappearance of strongly hydrophobic tryptophan residues from the solvent-exposed surface of FBP. The PARAFAC has thus proven useful to establish a hitherto unexplained link between parallel changes in conformational structure and physico-chemical characteristics...... of FBP induced by folate binding. Parameters for ligand binding derived from PARAFAC analysis of the fluorescence data were qualitatively and quantitatively similar to those obtained from binding of radiofolate to FBP. Herein, methotrexate exhibited a higher affinity for FBP than in competition...

  9. Interaction of insulin-like growth factor I with porcine thyroid cells cultured in monolayer

    International Nuclear Information System (INIS)

    Saji, M.; Tsushima, T.; Isozaki, O.; Murakami, H.; Ohba, Y.; Sato, K.; Arai, M.; Mariko, A.; Shizume, K.

    1987-01-01

    The interaction of insulin-like growth factor I (IGF-I) with porcine thyroid cells cultured in monolayer was studied. Specific binding of [ 125 I]iodo-IGF-I to thyroid cells was a reversible process dependent on the time and temperature of incubation. A steady state was achieved in 18 h at 4 C and averaged 14.2 +/- 2% (mean +/- SD)/10(6) cells. Binding of [ 125 I]iodo-IGF-I was inhibited by unlabeled IGF-I; half-maximal inhibition occurred at concentrations of 2-5 ng/ml. Multiplication-stimulating activity (rat IGF-II) and pork insulin had relative potencies of 1:20 and 1:300 compared with IGF-I. Scatchard analysis of binding data revealed a single class of IGF-I receptors with a Ka of 4.3 X 10(10) M-1, 49,000 binding sites were estimated per cell. Affinity cross-linking and autoradiography demonstrated the presence of type I IGF receptors. Thyroid cells also had specific receptors for insulin, but specific binding of [ 125 I]iodoinsulin was much lower than that of [ 125 I]iodo-IGF-I. Preincubation of thyroid cells with IGF-I or insulin caused a concentration-dependent decrease in [ 125 I]iodo-IGF-I binding due to an apparent loss of receptors. Preincubation with epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, or TSH did not alter subsequent binding of [ 125 I]iodo-IGF-I. Low concentrations of IGF-I stimulated DNA synthesis and proliferation of thyroid cells and acted synergistically with epidermal growth factor. Multiplication-stimulating activity and insulin had relative potencies in stimulating DNA synthesis comparable to their abilities to inhibit the binding of [ 125 I]iodo-IGF-I to thyroid cells

  10. Partial characterization of insulin-like growth factor I in primary human lung cancers using immunohistochemical and receptor autoradiographic techniques

    International Nuclear Information System (INIS)

    Shigematsu, K.; Kataoka, Y.; Kamio, T.; Kurihara, M.; Niwa, M.; Tsuchiyama, H.

    1990-01-01

    We investigated primary human lung cancers resected surgically or obtained at autopsy. Included were squamous cell carcinoma (SQC) (five cases), adenocarcinoma (ADC) (six cases), large cell carcinoma (LCC) (four cases), and small cell carcinoma (SCC) (two cases). The objective of the study was to search for the presence of insulin-like growth factor I (IGF-I)-like immunoreactivity using immunohistochemical staining and for the localization of IGF-I binding sites, using in vitro quantitative receptor autoradiographic techniques. IGF-I-like immunostaining was present in all cases of SQC, ADC, and LCC, but not in cases of SCC. Strong immunostaining was observed in cases of SQC. On the other hand, ADC and LCC tissues showed a moderate or weak staining. Specific binding sites for IGF-I were present in all cases of SQC, ADC, LCC, and SCC examined. High densities of 125I-IGF-I binding sites were localized in cases of SQC and SCC. Low to high densities of the binding sites were found in LCC. Cases of ADC showed low densities of 125I-IGF-I binding sites. Specific binding obtained at a concentration of 80 pM 125I-IGF-I was competitively displaced by unlabeled IGF-I, with a 50% inhibitory concentration value of 1.84 +/- 0.31 x 10(-10) mol, whereas human insulin was much less potent in displacing the binding. This specificity profile is consistent with characteristics of IGF-I receptors. Scatchard analysis showed the presence of a single class of high affinity binding sites for IGF-I, with a Kd of approximately 1 nmol. Thus, the possibility that IGF-I may play a role in the growth of human lung cancers would have to be considered

  11. SPM analysis of parametric (R)-[11C]PK11195 binding images: plasma input versus reference tissue parametric methods.

    Science.gov (United States)

    Schuitemaker, Alie; van Berckel, Bart N M; Kropholler, Marc A; Veltman, Dick J; Scheltens, Philip; Jonker, Cees; Lammertsma, Adriaan A; Boellaard, Ronald

    2007-05-01

    (R)-[11C]PK11195 has been used for quantifying cerebral microglial activation in vivo. In previous studies, both plasma input and reference tissue methods have been used, usually in combination with a region of interest (ROI) approach. Definition of ROIs, however, can be labourious and prone to interobserver variation. In addition, results are only obtained for predefined areas and (unexpected) signals in undefined areas may be missed. On the other hand, standard pharmacokinetic models are too sensitive to noise to calculate (R)-[11C]PK11195 binding on a voxel-by-voxel basis. Linearised versions of both plasma input and reference tissue models have been described, and these are more suitable for parametric imaging. The purpose of this study was to compare the performance of these plasma input and reference tissue parametric methods on the outcome of statistical parametric mapping (SPM) analysis of (R)-[11C]PK11195 binding. Dynamic (R)-[11C]PK11195 PET scans with arterial blood sampling were performed in 7 younger and 11 elderly healthy subjects. Parametric images of volume of distribution (Vd) and binding potential (BP) were generated using linearised versions of plasma input (Logan) and reference tissue (Reference Parametric Mapping) models. Images were compared at the group level using SPM with a two-sample t-test per voxel, both with and without proportional scaling. Parametric BP images without scaling provided the most sensitive framework for determining differences in (R)-[11C]PK11195 binding between younger and elderly subjects. Vd images could only demonstrate differences in (R)-[11C]PK11195 binding when analysed with proportional scaling due to intersubject variation in K1/k2 (blood-brain barrier transport and non-specific binding).

  12. Albumin receptor effect may be due to a surface-induced conformational change in albumin

    International Nuclear Information System (INIS)

    Reed, R.G.; Burrington, C.M.

    1989-01-01

    To determine whether equilibrium binding between albumin and hepatocytes involves a cell surface receptor for albumin, we incubated freshly isolated rat hepatocytes with 125 I-albumin and determined the amount of albumin associated with the cells as a function of the total albumin concentration. The resulting two-phase binding curve showed the rat albumin-hepatocyte interaction to consist of a saturable binding interaction with a dissociation constant of 1.1 microM and 2 X 10(6) sites/cell in addition to a weak, nonsaturable binding interaction. However, the saturable binding of albumin to hepatocytes did not appear to result from the presence of an albumin receptor on the cell surface; the interaction was the same for different species of albumin, for chemically modified albumins, and for fragments of albumin representing mutually exclusive domains of the molecule. The saturable binding was, instead, found to involve a subpopulation of albumin with an enhanced affinity for the cell surface. We show that this subpopulation of albumin is generated upon contact with either solid surfaces or cell surfaces and can be transferred from one surface to another. We propose that the two-phase Scatchard binding curve and the ''albumin receptor effect'' reflect two populations of albumin that bind to the cell surface with different affinities rather than one population of albumin that binds to two classes of binding sites

  13. The study of zinc ions binding to casein.

    Science.gov (United States)

    Pomastowski, P; Sprynskyy, M; Buszewski, B

    2014-08-01

    The presented research was focused on physicochemical study of casein properties and the kinetics of zinc ions binding to the protein. Moreover, a fast and simple method of casein extraction from cow's milk has been proposed. Casein isoforms, zeta potential (ζ) and particle size of the separated caseins were characterized with the use of capillary electrophoresis, zeta potential analysis and field flow fractionation (FFF) technique, respectively. The kinetics of the metal-binding process was investigated in batch adsorption experiments. Intraparticle diffusion model, first-order and zero-order kinetic models were applied to test the kinetic experimental data. Analysis of changes in infrared bands registered for casein before and after zinc binding was also performed. The obtained results showed that the kinetic process of zinc binding to casein is not homogeneous but is expressed with an initial rapid stage with about 70% of zinc ions immobilized by casein and with a much slower second step. Maximum amount of bound zinc in the experimental conditions was 30.04mgZn/g casein. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells

    DEFF Research Database (Denmark)

    Pedersen, Natasja Wulff; Chandran, P. Anoop; Qian, Yu

    2017-01-01

    Manual analysis of flow cytometry data and subjective gate-border decisions taken by individuals continue to be a source of variation in the assessment of antigen-specific T cells when comparing data across laboratories, and also over time in individual labs. Therefore, strategies to provide...... automated analysis of major histocompatibility complex (MHC) multimer-binding T cells represent an attractive solution to decrease subjectivity and technical variation. The challenge of using an automated analysis approach is that MHC multimer-binding T cell populations are often rare and therefore...... laboratories. We used three different methods, FLOw Clustering without K (FLOCK), Scalable Weighted Iterative Flow-clustering Technique (SWIFT), and ReFlow to analyze flow cytometry data files from 28 laboratories. Each laboratory screened for antigen-responsive T cell populations with frequency ranging from 0...

  15. Characterize the interaction between naringenin and bovine serum albumin using spectroscopic approach

    International Nuclear Information System (INIS)

    Hu Yanjun; Wang Yang; Ouyang Yu; Zhou Juan; Liu Yi

    2010-01-01

    Naringenin, a flavanone compound highly enriched in grapefruits, has been identified as a possible inhibitor of cell proliferation; and thus has the potential to act as an antitumorigenic agent. In this study, the binding of naringenin to bovine serum albumin (BSA) was studied at the physiological conditions (pH=7.40) by fluorescence and UV-vis spectroscopy. Naringenin strongly quenches the intrinsic fluorescence of BSA, and a decrease in the fluorescence quenching constant was observed together with an increase in temperature, which indicates that the fluorescence quenching of BSA by naringenin is a result of the formation of naringenin-BSA complex. Binding parameters calculating from Stern-Volmer method and Scatchard method showed that naringenin bind to BSA with the binding affinities of the order 10 4 L mol -1 . Thermodynamic parameters such as ΔG, ΔH and ΔS, were calculated at different temperatures, showing that electrostatic interactions were mostly responsible for the binding of naringenin to BSA. Site marker competitive displacement experiments demonstrating that naringenin bind with high affinity to site I (subdomain IIA) of BSA. Furthermore, the effect of metal ions to naringenin-BSA system was studied, and the specific binding distance r (3.30 nm) between donor (Trp-212) and acceptor (naringenin) was obtained according to fluorescence resonance energy transfer (FRET).

  16. Integrating water exclusion theory into βcontacts to predict binding free energy changes and binding hot spots

    Science.gov (United States)

    2014-01-01

    Background Binding free energy and binding hot spots at protein-protein interfaces are two important research areas for understanding protein interactions. Computational methods have been developed previously for accurate prediction of binding free energy change upon mutation for interfacial residues. However, a large number of interrupted and unimportant atomic contacts are used in the training phase which caused accuracy loss. Results This work proposes a new method, βACV ASA , to predict the change of binding free energy after alanine mutations. βACV ASA integrates accessible surface area (ASA) and our newly defined β contacts together into an atomic contact vector (ACV). A β contact between two atoms is a direct contact without being interrupted by any other atom between them. A β contact’s potential contribution to protein binding is also supposed to be inversely proportional to its ASA to follow the water exclusion hypothesis of binding hot spots. Tested on a dataset of 396 alanine mutations, our method is found to be superior in classification performance to many other methods, including Robetta, FoldX, HotPOINT, an ACV method of β contacts without ASA integration, and ACV ASA methods (similar to βACV ASA but based on distance-cutoff contacts). Based on our data analysis and results, we can draw conclusions that: (i) our method is powerful in the prediction of binding free energy change after alanine mutation; (ii) β contacts are better than distance-cutoff contacts for modeling the well-organized protein-binding interfaces; (iii) β contacts usually are only a small fraction number of the distance-based contacts; and (iv) water exclusion is a necessary condition for a residue to become a binding hot spot. Conclusions βACV ASA is designed using the advantages of both β contacts and water exclusion. It is an excellent tool to predict binding free energy changes and binding hot spots after alanine mutation. PMID:24568581

  17. Crystallographic structure and substrate-binding interactions of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri.

    Science.gov (United States)

    Balan, Andrea; Santacruz-Pérez, Carolina; Moutran, Alexandre; Ferreira, Luís Carlos Souza; Neshich, Goran; Gonçalves Barbosa, João Alexandre Ribeiro

    2008-02-01

    In Xanthomonas axonopodis pv. citri (Xac or X. citri), the modA gene codes for a periplasmic protein (ModA) that is capable of binding molybdate and tungstate as part of the ABC-type transporter required for the uptake of micronutrients. In this study, we report the crystallographic structure of the Xac ModA protein with bound molybdate. The Xac ModA structure is similar to orthologs with known three-dimensional structures and consists of two nearly symmetrical domains separated by a hinge region where the oxyanion-binding site lies. Phylogenetic analysis of different ModA orthologs based on sequence alignments revealed three groups of molybdate-binding proteins: bacterial phytopathogens, enterobacteria and soil bacteria. Even though the ModA orthologs are segregated into different groups, the ligand-binding hydrogen bonds are mostly conserved, except for Archaeglobus fulgidus ModA. A detailed discussion of hydrophobic interactions in the active site is presented and two new residues, Ala38 and Ser151, are shown to be part of the ligand-binding pocket.

  18. Synthesis of Homoveratric Acid-Imprinted Polymers and Their Evaluation as Selective Separation Materials

    Directory of Open Access Journals (Sweden)

    Mariusz Dana

    2011-05-01

    Full Text Available A bulk polymerization method was used to easily and efficiently prepare homo-veratric acid (3,4-dimethoxyphenylacetic acid-imprinted polymers from eight basic monomers: 2-vinylpyridine, 4-vinylpyridine, 1-vinylimidazole, N-allylaniline, N-allylpiperazine, allylurea, allylthiourea, and allylamine, in the presence of homoveratric acid as a template in N,N-dimethylformamide as a porogen. The imprinted polymer prepared from allylamine had the highest affinity to the template, showing an imprinting factor of 3.43, and allylamine polymers MIP8/NIP8 were selected for further studies. Their binding properties were analyzed using the Scatchard method. The results showed that the imprinted polymers have two classes of heterogeneous binding sites characterized by two pairs of Kd, Bmax values: Kd(1 = 0.060 μmol/mL, Bmax(1 = 0.093 μmol/mg for the higher affinity binding sites, and Kd(2 = 0.455 μmol/mL, Bmax(2 = 0.248 μmol/mg for the lower affinity binding sites. Non-imprinted polymer has only one class of binding site, with Kd = 0.417 μmol/mL and Bmax = 0.184 μmol/mg. A computational analysis of the energies of the prepolymerization complexes was in agreement with the experimental results. It showed that the selective binding interactions arose from cooperative three point interactions between the carboxylic acid and the two methoxy groups in the template and amino groups in the polymer cavities. Those results were confirmed by the recognition studies performed with the set of structurally related compounds. Allylamine polymer MIP8 had no affinity towards biogenic amines. The obtained imprinted polymer could be used for selective separation of homoveratric acid.

  19. Characterization and evolutionary analysis of tributyltin-binding protein and pufferfish saxitoxin and tetrodotoxin-binding protein genes in toxic and nontoxic pufferfishes.

    Science.gov (United States)

    Hashiguchi, Y; Lee, J M; Shiraishi, M; Komatsu, S; Miki, S; Shimasaki, Y; Mochioka, N; Kusakabe, T; Oshima, Y

    2015-05-01

    Understanding the evolutionary mechanisms of toxin accumulation in pufferfishes has been long-standing problem in toxicology and evolutionary biology. Pufferfish saxitoxin and tetrodotoxin-binding protein (PSTBP) is involved in the transport and accumulation of tetrodotoxin and is one of the most intriguing proteins related to the toxicity of pufferfishes. PSTBPs are fusion proteins consisting of two tandem repeated tributyltin-binding protein type 2 (TBT-bp2) domains. In this study, we examined the evolutionary dynamics of TBT-bp2 and PSTBP genes to understand the evolution of toxin accumulation in pufferfishes. Database searches and/or PCR-based cDNA cloning in nine pufferfish species (6 toxic and 3 nontoxic) revealed that all species possessed one or more TBT-bp2 genes, but PSTBP genes were found only in 5 toxic species belonging to genus Takifugu. These toxic Takifugu species possessed two or three copies of PSTBP genes. Phylogenetic analysis of TBT-bp2 and PSTBP genes suggested that PSTBPs evolved in the common ancestor of Takifugu species by repeated duplications and fusions of TBT-bp2 genes. In addition, a detailed comparison of Takifugu TBT-bp2 and PSTBP gene sequences detected a signature of positive selection under the pressure of gene conversion. The complicated evolutionary dynamics of TBT-bp2 and PSTBP genes may reflect the diversity of toxicity in pufferfishes. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  20. Efficient identification of phosphatidylserine-binding proteins by ORF phage display

    International Nuclear Information System (INIS)

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela; Fan, Xianqun; Li, Wei

    2009-01-01

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in ∼300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.

  1. Linearized method: A new approach for kinetic analysis of central dopamine D2 receptor specific binding

    International Nuclear Information System (INIS)

    Watabe, Hiroshi; Hatazawa, Jun; Ishiwata, Kiichi; Ido, Tatsuo; Itoh, Masatoshi; Iwata, Ren; Nakamura, Takashi; Takahashi, Toshihiro; Hatano, Kentaro

    1995-01-01

    The authors proposed a new method (Linearized method) to analyze neuroleptic ligand-receptor specific binding in a human brain using positron emission tomography (PET). They derived the linear equation to solve four rate constants, k 3 , k 4 , k 5 , k 6 from PET data. This method does not demand radioactivity curve in plasma as an input function to brain, and can do fast calculations in order to determine rate constants. They also tested Nonlinearized method including nonlinear equations which is conventional analysis using plasma radioactivity corrected for ligand metabolites as an input function. The authors applied these methods to evaluate dopamine D 2 receptor specific binding of [ 11 C] YM-09151-2. The value of B max /K d = k 3 k 4 obtained by Linearized method was 5.72 ± 3.1 which was consistent with the value of 5.78 ± 3.4 obtained by Nonlinearized method

  2. Comparative structural analysis of lipid binding START domains.

    Directory of Open Access Journals (Sweden)

    Ann-Gerd Thorsell

    Full Text Available Steroidogenic acute regulatory (StAR protein related lipid transfer (START domains are small globular modules that form a cavity where lipids and lipid hormones bind. These domains can transport ligands to facilitate lipid exchange between biological membranes, and they have been postulated to modulate the activity of other domains of the protein in response to ligand binding. More than a dozen human genes encode START domains, and several of them are implicated in a disease.We report crystal structures of the human STARD1, STARD5, STARD13 and STARD14 lipid transfer domains. These represent four of the six functional classes of START domains.Sequence alignments based on these and previously reported crystal structures define the structural determinants of human START domains, both those related to structural framework and those involved in ligand specificity.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  3. Analysis of myelomonocytic leukemic differentiation by a cell surface marker panel including a fucose-binding lectin from Lotus tetragonolobus.

    Science.gov (United States)

    Elias, L; Van Epps, D E

    1984-06-01

    The fucose-binding lectin from Lotus tetragonolobus ( FBL -L) has been previously shown to bind specifically to normal cells of the myeloid and monocytic lineages. The purpose of this study was to explore the utility of fluoresceinated FBL -L as a leukemia differentiation marker in conjunction with a panel of other frequently used surface markers (Fc receptor, HLA-DR, OKM1, and antimonocyte antibody). FBL -L reacted with leukemic cells in 8/9 cases of clinically recognized acute myeloid leukemia, including myeloid blast crisis of chronic granulocytic leukemia, 3/3 cases of chronic phase chronic myelogenous leukemia, and in 2/7 cases of clinically undifferentiated acute leukemia. Correlations were noted between reactivity with FBL -L, and DR and Fc receptor expression. Among continuous cell lines, FBL -L bound with high intensity to a majority of HL-60 and U937 cells. The less well differentiated myeloblast cell lines, KG-1, KG1a , and HL-60 blast II, exhibited less FBL -L binding than HL-60 and U937. A moderate proportion of K562 cells exhibited low level binding of FBL -L. Several lymphoblastic cell lines exhibited a pattern of low intensity binding that was distinguishable from the high intensity binding pattern of the myeloblastic lines. FBL -L reactivity of U937 was enhanced by induction of differentiation with leukocyte conditioned medium, but not dimethylsulfoxide. Such treatments induced contrasting patterns of change of HL-60 and U937 when labeled with OKM1, alpha-Mono, and HLA-DR. These studies demonstrate the application of FBL -L to analysis and quantitation of myelomonocytic leukemic differentiation.

  4. Structural analysis of peptides capable of binding to more than one Ia antigen

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Colon, S

    1989-01-01

    The Ia binding regions were analyzed for three unrelated peptide Ag (sperm whale myoglobin 106-118, influenza hemagglutinin 130-142, and lambda repressor protein 12-26) for which binding to more than one Ia molecule has previously been demonstrated. By determining the binding profile of three...... separate series of truncated synthetic peptides, it was found that in all three cases the different Ia reactivities mapped to largely overlapping regions of the peptides; although, for two of the peptides, the regions involved in binding the different Ia specificities were distinct. Moreover, subtle...... differences were found to dramatically influence some, but not other, Ia reactivities. Using a large panel of synthetic peptides it was found that a significant correlation exists between the capacity of peptides to interact with different alleles of the same molecule (i.e., IAd and IAk), but no correlation...

  5. Aminoglycosylation can enhance the G-quadruplex binding activity of epigallocatechin.

    Directory of Open Access Journals (Sweden)

    Li-Ping Bai

    Full Text Available With the aim of enhancing G-quadruplex binding activity, two new glucosaminosides (16, 18 of penta-methylated epigallocatechin were synthesized by chemical glycosylation. Subsequent ESI-TOF-MS analysis demonstrated that these two glucosaminoside derivatives exhibit much stronger binding activity to human telomeric DNA and RNA G-quadruplexes than their parent structure (i.e., methylated EGC (14 as well as natural epigallocatechin (EGC, 6. The DNA G-quadruplex binding activity of 16 and 18 is even more potent than strong G-quadruplex binder quercetin, which has a more planar structure. These two synthetic compounds also showed a higher binding strength to human telomeric RNA G-quadruplex than its DNA counterpart. Analysis of the structure-activity relationship revealed that the more basic compound, 16, has a higher binding capacity with DNA and RNA G-quadruplexes than its N-acetyl derivative, 18, suggesting the importance of the basicity of the aminoglycoside for G-quadruplex binding activity. Molecular docking simulation predicted that the aromatic ring of 16 π-stacks with the aromatic ring of guanine nucleotides, with the glucosamine moiety residing in the groove of G-quadruplex. This research indicates that glycosylation of natural products with aminosugar can significantly enhance their G-quadruplex binding activities, thus is an effective way to generate small molecules targeting G-quadruplexes in nucleic acids. In addition, this is the first report that green tea catechin can bind to nucleic acid G-quadruplex structures.

  6. Multiple binding of bilirubin to human serum albumin and cobinding with laurate

    DEFF Research Database (Denmark)

    Sato, H; Honoré, B; Brodersen, R

    1988-01-01

    Numerical analysis of multiple binding of two ligands to one carrier has been accomplished, using the principle of several sets of acceptable binding constants, with bilirubin-laurate-albumin as an example. Binding of bilirubin to defatted human serum albumin was investigated by a spectroscopic...

  7. Comparison and analysis on the serum-binding characteristics of aspirin-zinc complex and aspirin.

    Science.gov (United States)

    Zhang, Hua-Xin; Zhang, Qun; Wang, Hong-Lin; Li, Li-Wei

    2017-09-01

    This study was designed to compare the protein-binding characteristics of aspirin-zinc complex (AZN) with those of aspirin itself. AZN was synthesized and interacted with a model transport protein, human serum albumin (HSA). Three-dimensional fluorescence, ultraviolet-visible and circular dichroism (CD) spectra were used to characterize the interaction of AZN with HSA under physiological conditions. The interaction mechanism was explored using a fluorescence quenching method and thermodynamic calculation. The binding site and binding locality of AZN on HSA were demonstrated using a fluorescence probe technique and Förster non-radiation energy transfer theory. Synchronous fluorescence and CD spectra were employed to reveal the effect of AZN on the native conformation of the protein. The HSA-binding results for AZN were compared with those for aspirin under consistent experimental conditions, and indicated that aspirin acts as a guide in AZN when binding to Sudlow's site I, in subdomain IIA of the HSA molecule. Moreover, compared with aspirin, AZN showed greater observed binding constants with, but smaller changes in the α-helicity of, HSA, which proved that AZN might be easier to transport and have less toxicity in vivo. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Analysis of the thermodynamics of binding of an SH3 domain to proline-rich peptides using a chimeric fusion protein.

    Science.gov (United States)

    Candel, Adela M; van Nuland, Nico A J; Martin-Sierra, Francisco M; Martinez, Jose C; Conejero-Lara, Francisco

    2008-03-14

    A complete understanding of the thermodynamic determinants of binding between SH3 domains and proline-rich peptides is crucial to the development of rational strategies for designing ligands for these important domains. Recently we engineered a single-chain chimeric protein by fusing the alpha-spectrin Src homology region 3 (SH3) domain to the decapeptide APSYSPPPPP (p41). This chimera mimics the structural and energetic features of the interaction between SH3 domains and proline-rich peptides. Here we show that analysing the unfolding thermodynamics of single-point mutants of this chimeric fusion protein constitutes a very useful approach to deciphering the thermodynamics of SH3-ligand interactions. To this end, we investigated the contribution of each proline residue of the ligand sequence to the SH3-peptide interaction by producing six single Pro-Ala mutants of the chimeric protein and analysing their unfolding thermodynamics by differential scanning calorimetry (DSC). Structural analyses of the mutant chimeras by circular dichroism, fluorescence and NMR together with NMR-relaxation measurements indicate conformational flexibility at the binding interface, which is strongly affected by the different Pro-Ala mutations. An analysis of the DSC thermograms on the basis of a three-state unfolding model has allowed us to distinguish and separate the thermodynamic magnitudes of the interaction at the binding interface. The model assumes equilibrium between the "unbound" and "bound" states at the SH3-peptide binding interface. The resulting thermodynamic magnitudes classify the different proline residues according to their importance in the interaction as P2 approximately P7 approximately P10>P9 approximately P6>P8, which agrees well with Lim's model for the interaction between SH3 domains and proline-rich peptides. In addition, the thermodynamic signature of the interaction is the same as that usually found for this type of binding, with a strong enthalpy

  9. Negligible effects of nonesterified fatty acids on serum thyroxine analysis by competitive protein-binding radioassay on Sephadex and by radioimmunoassay

    International Nuclear Information System (INIS)

    Alexander, N.M.; Nishimoto, M.

    1978-01-01

    Values for thyroxine by our competitive protein-binding assay on Sephadex (I) and by radioimmmunoassy (II) were identical for sera containing markedly increased concentrations of endogenous nonesterified fatty acids. Addition of as much as 5 mmol of long-chain saturated fatty acids per liter to normal serum had no significant effect on the thyroxine values by I; larger concentrations (10 mmol/liter) spuriously increased values by 20 to 30%. Added unsaturated fatty acids (1 mmol/liter) were without effect on procedure I, but spurious elevations in thyroxine appeared when concentrations were further increased up to 10 mmol/liter. The spurious effects by 2 to 5 mmol of added oleate and arachidonate (the most potent inhibitor of thyroxine binding to thyroxine-binding globulin) per liter could be reversed by washing the Sephadex columns with additional barbital buffer before binding with thyroxine-binding globulin (a step that is done on the gel). Three different II procedures were unaffected by as much as 5 mmol of added fatty acids per liter, but moderate spurious increases were noted with 10 mmol of oleate per liter. We conclude that method I is reliable for thyroxine analysis in nearly all sera from human subjects, because the concentrations of unsaturated fatty acids present either in vitro or in vivo are seldom large enough to interfere

  10. Radioiodination of central nerves system dopamine D2 receptor imaging agent. IBZM preparation and preclinical study

    Energy Technology Data Exchange (ETDEWEB)

    Yansong, Lin; Xiangtong, Lin; Mingyang, Hu; Shangren, Pan; Bocheng, Wang [Huashan Hospital of Shanghai Medical Univ., Shanghai (China)

    1996-11-01

    To study preparation of central nerves system dopamine D2 imaging agent {sup 131}I-IBZM and its preclinical investigation, peracetic acid was used as the oxidant for preparing radioiodinated {sup 125}I-IBZM and {sup 131}I-IBZM, D2 binding properties of IBZM were examined by in vitro binding saturation analysis, rat whole body and regional brain biodistribution, rat brain autoradiography and rabbit SPECT static imaging, etc. The results are: 1. The radiolabelling yields of {sup 125}I-IBZM and {sup 131}I-IBZM were 84.18% +- 3.06% and 78.50% +- 3.47%. The radiochemical purity were over 95% after being isolated by HPLC; and were over 90% after being isolated by organic extraction. 2. Scatchard plot of D2 receptor saturation binding analysis showed: K{sub d} = 0.53 +- 0.06 nmol/L, B{sub max} = 466.45 +- 45.88 fmol/mg protein. 3. The rat brain autoradiography and analysis showed that there was high {sup 125}I-IBZM uptake in striatal area 2 hr after injection, the striatal/cerebellum ratio was 6.22 +- 0.48; the high {sup 125}-IBZM uptake can be blocked by haloperidol--a special dopamine D2 receptor antagonist. 4. {sup 131}I-IBZM rat biodistribution and rabbit SPECT planar imaging showed good initial brain uptake and retention, the initial uptake of rat brain was 1.893 +- 0.147% ID/g at 2 min and 1.044 +- 0.135% ID/g at 60 min. The results showed that the radioiodinated IBZM had high affinity, saturation and specificity to rat`s and rabbit`s central nerves system dopamine D2 receptors.

  11. The biological characteristics of anti-CD71 mouse/human chimeric antibody

    International Nuclear Information System (INIS)

    Wang Shuo; Jiang Lin; Lei Ping; Zhu Huifen; Shen Guanxin; Cui Wuren; Wang Yanggong

    2002-01-01

    Objective: To study the biological characteristics of an anti-CD71 mouse/human chimeric antibody (D2C). Methods: Analysis of the chimeric Ab production in culture supernatant was made by the standard concentration curve method with ELISA. The antibody was purified by DEAE-Sephredax-A50 ion-exchange chromatography and was confirmed by SDS-PAGE. The competition inhibition studies for binding to the same epitope on CD71 were performed between the chimeric Ab(D2C) in the culture supernatant was about 0.5-5 μg/ml in 5-day cultures when seeded at 1 x 10 5 cells/5ml compared with 12.5-25 μg/ml in the supernatant from their parental monoclonal Ab(7579). The purified chimeric Ab(D2C) from mouse ascetics was 1-2 mg/ml. The SDS-PAGE analysis of purified chimeric Ab(D2C) with discontinuous system confirmed two protein bands of 55 kDa and 25 kDa. It was clear that both chimeric Ab(D2C) and murine monoclonal Ab (7579) compete effectively to join the same epitope of CD71 each other. The chimeric antibody's affinity constant (Ka), quantitated by Scatchard analysis, is about 9.34-9.62 x 10 9 L/mol. Conclusion: The chimeric Ab(D2C) produced from the transfectomas is stable. The binding capacity of the chimeric Ab(D2C) to the antigen (CD71) was retained

  12. Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.

    Directory of Open Access Journals (Sweden)

    Caselle Michele

    2007-09-01

    Full Text Available Abstract Background Specific binding of proteins to DNA is one of the most common ways gene expression is controlled. Although general rules for the DNA-protein recognition can be derived, the ambiguous and complex nature of this mechanism precludes a simple recognition code, therefore the prediction of DNA target sequences is not straightforward. DNA-protein interactions can be studied using computational methods which can complement the current experimental methods and offer some advantages. In the present work we use physical effective potentials to evaluate the DNA-protein binding affinities for the λ repressor-DNA complex for which structural and thermodynamic experimental data are available. Results The binding free energy of two molecules can be expressed as the sum of an intermolecular energy (evaluated using a molecular mechanics forcefield, a solvation free energy term and an entropic term. Different solvation models are used including distance dependent dielectric constants, solvent accessible surface tension models and the Generalized Born model. The effect of conformational sampling by Molecular Dynamics simulations on the computed binding energy is assessed; results show that this effect is in general negative and the reproducibility of the experimental values decreases with the increase of simulation time considered. The free energy of binding for non-specific complexes, estimated using the best energetic model, agrees with earlier theoretical suggestions. As a results of these analyses, we propose a protocol for the prediction of DNA-binding target sequences. The possibility of searching regulatory elements within the bacteriophage λ genome using this protocol is explored. Our analysis shows good prediction capabilities, even in absence of any thermodynamic data and information on the naturally recognized sequence. Conclusion This study supports the conclusion that physics-based methods can offer a completely complementary

  13. ''Spare'' alpha 1-adrenergic receptors and the potency of agonists in rat vas deferens

    International Nuclear Information System (INIS)

    Minneman, K.P.; Abel, P.W.

    1984-01-01

    The existence of ''spare'' alpha 1-adrenergic receptors in rat vas deferens was examined directly using radioligand binding assays and contractility measurements. Alpha 1-adrenergic receptors in homogenates of rat vas deferens were labeled with [ 125 I]BE 2254 ( 125 IBE). Norepinephrine and other full alpha 1-adrenergic receptor agonists were much less potent in inhibiting 125 IBE binding than in contracting the vas deferens in vitro. Treatment with 300 nM phenoxybenzamine for 10 min to irreversibly inactivate alpha 1-adrenergic receptors caused a large decrease in the potency of full agonists in causing contraction of this tissue and a 23-48% decrease in the maximal contraction observed. Using those data, equilibrium constants for activation (Kact values) of the receptors by agonists were calculated. These Kact values agreed well with the equilibrium binding constants (KD values) determined from displacement of 125 IBE binding. The reduction in alpha 1-adrenergic receptor density following phenoxybenzamine treatment was determined by Scatchard analysis of specific 125 IBE binding sites and compared with the expected reduction (q values) calculated from the agonist dose-response curves before and after phenoxybenzamine treatment. This suggests that phenoxybenzamine functionally inactivates alpha 1-adrenergic receptors at or near the receptor binding site. These experiments suggest that the potencies of agonists in activating alpha 1-adrenergic receptors in rat vas deferens agree well with their potencies in binding to the receptors. The greater potency of agonists in causing contraction may be due to spare receptors in this tissue. The data also demonstrate that phenoxybenzamine irreversibly inactivates alpha 1-adrenergic receptors in rat vas deferens, but that the decrease in receptor density is much smaller than that predicted from receptor theory

  14. Leukotriene B4 receptors on guinea pig alveolar eosinophils

    International Nuclear Information System (INIS)

    Maghni, K.; de Brum-Fernandes, A.J.; Foeldes-Filep, E.G.; Gaudry, M.; Borgeat, P.; Sirois, P.

    1991-01-01

    The existence of receptors for LTB4 on highly purified guinea pig alveolar eosinophils was investigated. Massive infiltration of eosinophils in alveolar spaces was induced in guinea pigs by i.v. injections of Sephadex beads G50 (16 mg/kg). Alveolar eosinophils (50 x 10(6) cells) were purified to approximately 98% by Percoll continuous density gradient centrifugation. The binding studies indicated that alveolar eosinophils bind LTB4 in a saturable, reversible and specific manner. Scatchard analysis indicated the existence of high-affinity binding sites (Kd1 = 1.00 ± 0.22 nM; Bmax1 = 966 ± 266 sites/cell) and low-affinity binding sites (Kd2 = 62.5 ± 8.9 nM; Bmax2 = 5557 ± 757 sites/cell). The metabolism of LTB4 by alveolar eosinophils in binding conditions was assessed by RP-HPLC and no significant degradation of [3H]LTB4 was observed. LTB4 dose-dependently stimulated eosinophil migration in both chemokinesis and chemotaxis assays with an EC50 value of 1.30 ± 0.14 and 18.14 ± 1.57 nM, respectively. LTB4 caused a dose-dependent increase in the production of superoxide anion with an apparent EC50 value of 50 x 10(-9) M in the authors experimental conditions. LTB4 also induced a dose-dependent increase in the generation of TxA2 with an EC50 value of 46.2 x 10(-9) M. Taken together, their results demonstrated that guinea pig alveolar eosinophils express two classes of specific receptors for LTB4. The high-affinity binding sites seem associated to chemokinesis and chemotaxis whereas the low-affinity binding sites seem associated to superoxide anion production and generation of TxA2. The existence of LTB4 receptors in eosinophils could explain the presence of these cells in hypersensitivity reactions

  15. Analysis of expression and chitin-binding activity of the wing disc cuticle protein BmWCP4 in the silkworm, Bombyx mori.

    Science.gov (United States)

    Deng, Hui-Min; Li, Yong; Zhang, Jia-Ling; Liu, Lin; Feng, Qi-Li

    2016-12-01

    The insect exoskeleton is mainly composed of chitin filaments linked by cuticle proteins. When insects molt, the cuticle of the exoskeleton is renewed by degrading the old chitin and cuticle proteins and synthesizing new ones. In this study, chitin-binding activity of the wing disc cuticle protein BmWCP4 in Bombyx mori was studied. Sequence analysis showed that the protein had a conservative hydrophilic "R&R" chitin-binding domain (CBD). Western blotting showed that BmWCP4 was predominately expressed in the wing disc-containing epidermis during the late wandering and early pupal stages. The immunohistochemistry result showed that the BmWCP4 was mainly present in the wing disc tissues containing wing bud and trachea blast during day 2 of wandering stage. Recombinant full-length BmWCP4 protein, "R&R" CBD peptide (CBD), non-CBD peptide (BmWCP4-CBD - ), four single site-directed mutated peptides (M 1 , M 2 , M 3 and M 4 ) and four-sites-mutated peptide (M F ) were generated and purified, respectively, for in vitro chitin-binding assay. The results indicated that both the full-length protein and the "R&R" CBD peptide could bind with chitin, whereas the BmWCP4-CBD - could not bind with chitin. The single residue mutants M 1 , M 2 , M 3 and M 4 reduced but did not completely abolish the chitin-binding activity, while four-sites-mutated protein M F completely lost the chitin-binding activity. These data indicate that BmWCP4 protein plays a critical role by binding to the chitin filaments in the wing during larva-to-pupa transformation. The conserved aromatic amino acids are critical in the interaction between chitin and the cuticle protein. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  16. Comparative analysis the binding affinity of mycophenolic sodium and meprednisone with human serum albumin: Insight by NMR relaxation data and docking simulation.

    Science.gov (United States)

    Ma, Xiaoli; He, Jiawei; Yan, Jin; Wang, Qing; Li, Hui

    2016-03-25

    Mycophenolic sodium is an immunosuppressive agent that is always combined administration with corticosteroid in clinical practice. Considering the distribution and side-effect of the drug may change when co-administrated drug exist, this paper comparatively analyzed the binding ability of mycophenolic sodium and meprednisone toward human serum albumin by nuclear magnetic resonance relaxation data and docking simulation. The nuclear magnetic resonance approach was based on the analysis of proton selective and non-selective relaxation rate enhancement of the ligand in the absence and presence of macromolecules. The contribution of the bound ligand fraction to the observed relaxation rate in relation to protein concentration allowed the calculation of the affinity index. This approach allowed the comparison of the binding affinity of mycophenolic sodium and meprednisone. Molecular modeling was operated to simulate the binding model of ligand and albumin through Autodock 4.2.5. Competitive binding of mycophenolic sodium and meprednisone was further conducted through fluorescence spectroscopy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

    Science.gov (United States)

    Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C

    2001-07-01

    The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

  18. Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation.

    LENUS (Irish Health Repository)

    Murphy, Derek M

    2009-01-01

    BACKGROUND: Neuroblastoma, a cancer derived from precursor cells of the sympathetic nervous system, is a major cause of childhood cancer related deaths. The single most important prognostic indicator of poor clinical outcome in this disease is genomic amplification of MYCN, a member of a family of oncogenic transcription factors. METHODOLOGY: We applied MYCN chromatin immunoprecipitation to microarrays (ChIP-chip) using MYCN amplified\\/non-amplified cell lines as well as a conditional knockdown cell line to determine the distribution of MYCN binding sites within all annotated promoter regions. CONCLUSION: Assessment of E-box usage within consistently positive MYCN binding sites revealed a predominance for the CATGTG motif (p<0.0016), with significant enrichment of additional motifs CATTTG, CATCTG, CAACTG in the MYCN amplified state. For cell lines over-expressing MYCN, gene ontology analysis revealed enrichment for the binding of MYCN at promoter regions of numerous molecular functional groups including DNA helicases and mRNA transcriptional regulation. In order to evaluate MYCN binding with respect to other genomic features, we determined the methylation status of all annotated CpG islands and promoter sequences using methylated DNA immunoprecipitation (MeDIP). The integration of MYCN ChIP-chip and MeDIP data revealed a highly significant positive correlation between MYCN binding and DNA hypermethylation. This association was also detected in regions of hemizygous loss, indicating that the observed association occurs on the same homologue. In summary, these findings suggest that MYCN binding occurs more commonly at CATGTG as opposed to the classic CACGTG E-box motif, and that disease associated over expression of MYCN leads to aberrant binding to additional weaker affinity E-box motifs in neuroblastoma. The co-localization of MYCN binding and DNA hypermethylation further supports the dual role of MYCN, namely that of a classical transcription factor affecting the

  19. Charge compensation and binding energy referencing in XPS analysis

    International Nuclear Information System (INIS)

    Metson, J.B.

    1999-01-01

    Full text: The past decade has seen a number of significant advances in the capabilities of commercial X-ray Photoelectron spectrometers. Of note have been the near universal adoption of monochromatised X-ray sources, very useful advances in spatial resolution, particularly in spectroscopy, and radical developments in sample handling and automation. However one of the most significant advances has been the development of several relatively new concepts in charge compensation. Throughout the evolution of XPS, the ability to compensate for surface charging and accurately determine binding energies, particularly with electrically inhomogenous samples, has remained one of the most intractable problems. Beginning perhaps with the Kratos, 'in the lens' electrostatic mirror/electron source coupled with a magnetic snorkel lens, a number of concepts have been advanced which take a quite different conceptual approach to charge compensation. They differ in a number of quite fundamental ways to the electron flood type compensators widely used and absolutely essential with instruments based on monochromatised sources. The concept of the local return of secondary electrons to their point of emission, largely negates the problems associated with differential charging across different regions of the surface, and suggests the possibility of overcoming one of the central limitations of XPS, that is the inability to compare absolute binding energies of species in different electrical as well as chemical environments. The general status of charge compensation and the use of internal binding energy references in XPS will be reviewed, along with some practical examples of where these techniques work, and where there is clearly still room for further development. Copyright (1999) Australian X-ray Analytical Association Inc

  20. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    Science.gov (United States)

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  1. Quantitative analysis of rat Ig (sub)classes binding to cell surface antigens

    International Nuclear Information System (INIS)

    Nilsson, R.; Brodin, T.; Sjoegren, H.-O.

    1982-01-01

    An indirect 125 I-labeled protein A assay for detection of cell surface-bound rat immunoglobulins is presented. The assay is quantitative and rapid and detects as little as 1 ng of cell surface-bound Ig. It discriminates between antibodies belonging to different IgG subclasses, IgM and IgA. The authors describe the production and specificity control of the reagents used and show that the test can be used for quantitative analysis. A large number of sera from untreated rats are tested to evaluate the frequency of falsely positive responses and variation due to age, sex and strain of rat. With this test it is relatively easy to quantitate the binding of classes and subclasses of rat immunoglobulins in a small volume (6 μl) of untreated serum. (Auth.)

  2. Flow cytometric analysis of lectin binding to in vitro-cultured Perkinsus marinus surface carbohydrates

    Science.gov (United States)

    Gauthier, J.D.; Jenkins, J.A.; La Peyre, Jerome F.

    2004-01-01

    Parasite surface glycoconjugates are frequently involved in cellular recognition and colonization of the host. This study reports on the identification of Perkinsus marinus surface carbohydrates by flow cytometric analyses of fluorescein isothiocyanate-conjugated lectin binding. Lectin-binding specificity was confirmed by sugar inhibition and Kolmogorov-Smirnov statistics. Clear, measurable fluorescence peaks were discriminated, and no parasite autofluorescence was observed. Parasites (GTLA-5 and Perkinsus-1 strains) harvested during log and stationary phases of growth in a protein-free medium reacted strongly with concanavalin A and wheat germ agglutinin, which bind to glucose-mannose and N-acetyl-D-glucosamine (GlcNAc) moieties, respectively. Both P. marinus strains bound with lower intensity to Maclura pomifera agglutinin, Bauhinia purpurea agglutinin, soybean agglutinin (N-acetyl-D-galactosamine-specific lectins), peanut agglutinin (PNA) (terminal galactose specific), and Griffonia simplicifolia II (GlcNAc specific). Only background fluorescence levels were detected with Ulex europaeus agglutinin I (L-fucose specific) and Limulus polyphemus agglutinin (sialic acid specific). The lectin-binding profiles were similar for the 2 strains except for a greater relative binding intensity of PNA for Perkinsus-1 and an overall greater lectin-binding capacity of Perkinsus-1 compared with GTLA-5. Growth stage comparisons revealed increased lectin-binding intensities during stationary phase compared with log phase of growth. This is the first report of the identification of surface glycoconjugates on a Perkinsus spp. by flow cytometry and the first to demonstrate that differential surface sugar expression is growth phase and strain dependent. ?? American Society of Parasitologists 2004.

  3. Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Le Zhan

    Full Text Available Farnesoid X receptor (FXR, NR1H4 is a ligand-activated transcription factor, belonging to the nuclear receptor superfamily. FXR is highly expressed in the liver and is essential in regulating bile acid homeostasis. FXR deficiency is implicated in numerous liver diseases and mice with modulation of FXR have been used as animal models to study liver physiology and pathology. We have reported genome-wide binding of FXR in mice by chromatin immunoprecipitation - deep sequencing (ChIP-seq, with results indicating that FXR may be involved in regulating diverse pathways in liver. However, limited information exists for the functions of human FXR and the suitability of using murine models to study human FXR functions.In the current study, we performed ChIP-seq in primary human hepatocytes (PHHs treated with a synthetic FXR agonist, GW4064 or DMSO control. In parallel, RNA deep sequencing (RNA-seq and RNA microarray were performed for GW4064 or control treated PHHs and wild type mouse livers, respectively.ChIP-seq showed similar profiles of genome-wide FXR binding in humans and mice in terms of motif analysis and pathway prediction. However, RNA-seq and microarray showed more different transcriptome profiles between PHHs and mouse livers upon GW4064 treatment.In summary, we have established genome-wide human FXR binding and transcriptome profiles. These results will aid in determining the human FXR functions, as well as judging to what level the mouse models could be used to study human FXR functions.

  4. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  5. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  6. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Directory of Open Access Journals (Sweden)

    Janet L Smith

    2015-05-01

    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  7. Fundamental study on brain receptor mapping by neuronuclear medicine imaging. Quantitation of receptor autoradiography in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Shiro

    1988-04-01

    The usefulness of autoradiography in the quantitation of the rat brain receptor was evaluated. H-3 spiperone, H-3 quinuclidinyl benzylate (QNB), H-3 muscimol, H-3 diprenorphine, H-3 ketanserin, and H-3 dihydroalprenolol hydrochloride were used for autoradiography. Satisfactory autoradiograms with these H-3 labeled ligants were obtained for incubation time, washing time, and binding curve. The video digitizer system was the most suitable in autoradiography. Using appropriate conditions for the ligand-receptor interaction, receptor autoradiography and in vitro receptor assay were concordant as for the the number of maximum binding sites (Bmax) of the muscarinic acetylcholine receptor and equilibrium dissociation constant (Kd) of its antagonist, H-3 QNB. Receptor autoradiography with high spatial resolution allowed the comparison of Bmax and Kd in the brain. To improve conventional Scatchard analysis, used in the estimation of Bmax and Kd, a new mathematical method was developed for estimating individual rate constants and Bmax on the basis of time courses of association and dissociation. Using the new mathematical method, apparent equilibrium dissociation rate constant was in good agreement with that from a non-isomerization model. Autoradiography may provide a clue for the basic data on brain receptor mapping by a promising emission computerized tomography in neuropsychiatric diseases. (Namekawa, K.).

  8. A fundamental study on brain receptor mapping by neuronuclear medicine imaging

    International Nuclear Information System (INIS)

    Tsuji, Shiro

    1988-01-01

    The usefulness of autoradiography in the quantitation of the rat brain receptor was evaluated. H-3 spiperone, H-3 quinuclidinyl benzylate (QNB), H-3 muscimol, H-3 diprenorphine, H-3 ketanserin, and H-3 dihydroalprenolol hydrochloride were used for autoradiography. Satisfactory autoradiograms with these H-3 labeled ligants were obtained for incubation time, washing time, and binding curve. The video digitizer system was the most suitable in autoradiography. Using appropriate conditions for the ligand-receptor interaction, receptor autoradiography and in vitro receptor assay were concordant as for the the number of maximum binding sites (Bmax) of the muscarinic acetylcholine receptor and equilibrium dissociation constant (Kd) of its antagonist, H-3 QNB. Receptor autoradiography with high spatial resolution allowed the comparison of Bmax and Kd in the brain. To improve conventional Scatchard analysis, used in the estimation of Bmax and Kd, a new mathematical method was developed for estimating individual rate constants and Bmax on the basis of time courses of association and dissociation. Using the new mathematical method, apparent equilibrium dissociation rate constant was in good agreement with that from a non-isomerization model. Autoradiography may provide a clue for the basic data on brain receptor mapping by a promising emission computerized tomography in neuropsychiatric diseases. (Namekawa, K.)

  9. Mechanism of iron uptake by the pathogenic yeast, Candida albicans

    International Nuclear Information System (INIS)

    Ismail, A.

    1986-01-01

    C. albicans requires iron for growth and phenotypic development. When deprived of iron, mycelium and bud formation was suppressed. Survival of the organism was also reduced under iron-limiting conditions. The combination of elevated temperature and iron-deprivation further reduced phenotypic development and survival of the yeast. The combination of elevated temperature and iron starvation resulted in a decrease in both the growth rate and siderophore production. However, with time, the cells were able to show partial recovery in the growth rate which occurred concomitantly with an increase in siderophore production. In order for siderophores to be utilized, ferri-siderophore receptors must be produced. The receptor was shown to be located in the plasma membrane of the yeast. Scatchard analysis of the binding of ferri-siderophores to plasma membrane receptors showed an increase in receptor affinity and number of binding sites in iron-starved cells when compared to control cells. Autoradiograms of the 58 Fe-siderophore-protein complex following SDS-PAGE separation of candidal proteins revealed the presence of a ferri-siderophore receptor of approximately 10,000 daltons. C. albicans strains which lacked the ability to synthesize phenolate siderophore maintained a phenolate receptor and bound candidal phenolate siderophore better than non-candidal phenolate siderophores

  10. Analysis of oxygen binding-energy variations for BaO on W

    Science.gov (United States)

    Haas, G. A.; Shih, A.; Mueller, D.; Thomas, R. E.

    Interatomic Auger analyses have been made of different forms of BaO layers on W substrates. Variations in Auger spectroscopy energies of the Ba4dBa5pO2p interatomic Auger transition were found to be largely governed by the O2p binding energy of the BaO adsorbate. This was illustrated by comparing results of the Auger data values with values derived from O2p binding energies using ultraviolet photoelectron spectroscopy. Very good agreement was observed not only for the W substrate but also for the W substrate which showed two oxygen-induced electronics state. Variations in binding energy were noted for different states of BaO lattice formation and for different amounts of oxidation, ranging from the transition of Ba to BaO and continuing to the BaO 2 stoichiometry and beyond. Effects were also reported for adsorbate alignment and thermal activation (i.e., reduction) of the oxidized state. An empirical relationship was found suggesting that the more tightly bound the O2p states of the BaO adsorbate were, the lower its work function would be. This link between binding energy and work function was observed to be valid not only for cases of poisoning by oxidation, but held as well during reactivation by the subsequent reduction of the oxide. In addition, this relationship also appeared to predict the low work function obtained through the introduction of substances such as Sc to the BaO-W system. Possible qualitative reasons which might contribute to this are discussed in terms of enhanced dipole effects and shifts in band structure.

  11. Characterization of beta-adrenergic receptors and adenylate cyclase activity in rat brown fat

    International Nuclear Information System (INIS)

    Baresi, L.A.; Morley, J.E.; Scarpace, P.J.

    1986-01-01

    Catecholamines stimulate thermogenesis in rat brown fat through a mechanism which involves binding to the beta-adrenergic receptor (BAR), stimulation of adenylate cyclase (AC) and culminating with uncoupling of mitochondrial respiration from ATP synthesis. The authors characterized BAR, AC and cytochrome (cyt) c oxidase in CDF (F-344) interscapular brown fat. Scatchard analysis of [ 125 ]Iodopindolol binding yields a straight line consistent with a single class of antagonist binding sites with 41.8 +/- 12.0 fmol BAR/mg protein and a K/sub d/ of 118 +/- 15 pM. Binding was both specific and stereospecific. Competition with 1-propranolol (K/sub d/ = 6.7 nM) was 15 times more potent than d-propranolol (K/sub d/ = 103 nM). Competition with isoproterenol (K/sub d/ = 79 nM) was 10 times more potent than epinephrine (K/sub d/ = 820 nM) which was 35 times more potent than norepinephrine (K/sub d/ = 2.9 x 10 -5 M) suggesting predominate beta 2 -type BAR. Cyt c oxidase activity was assessed in brown fat mitochrondrial preparations. The ratio of BAR to cyt c activity was 959 +/- 275 nmol BAR/mol cyc c/min. Isoproterenol (0.1 mM) stimulated AC activity was 24 times GTP (0.1 mM) stimulated AC (98.5 vs 40.7 pmol cAMP/min/mg). NaF-stimulated AC was nine times basal activity (90.5 vs 11.3 pmol cAMP/min/mg). These data demonstrate the presence of a beta- 2 -type BAR coupled to adenylate cyclase in rat brown fat

  12. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    International Nuclear Information System (INIS)

    Scott, C.D.; Baxter, R.C.

    1987-01-01

    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [ 125 I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  13. Structural analysis of binding functionality of folic acid-PEG dendrimers against folate receptor.

    Science.gov (United States)

    Sampogna-Mireles, Diana; Araya-Durán, Ingrid D; Márquez-Miranda, Valeria; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D

    2017-03-01

    Dendrimers functionalized with folic acid (FA) are drug delivery systems that can selectively target cancer cells with folate receptors (FR-α) overexpression. Incorporation of polyethylene glycol (PEG) can enhance dendrimers solubility and pharmacokinetics, but ligand-receptor binding must not be affected. In this work we characterized, at atomic level, the binding functionality of conventional site-specific dendrimers conjugated with FA with PEG 750 or PEG 3350 as a linker. After Molecular Dynamics simulation, we observed that both PEG's did not interfere over ligand-receptor binding functionality. Although binding kinetics could be notably affected, the folate fragment from both dendrimers remained exposed to the solvent before approaching selectively to FR-α. PEG 3350 provided better solubility and protection from enzymatic degradation to the dendrimer than PEG 750. Also, FA-PEG3350 dendrimer showed a slightly better interaction with FR-α than FA-PEG750 dendrimer. Therefore, theoretical evidence supports that both dendrimers are suitable as drug delivery systems for cancer therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A new cationic porphyrin derivative (TMPipEOPP with large side arm substituents: a highly selective G-quadruplex optical probe.

    Directory of Open Access Journals (Sweden)

    Li-Na Zhu

    Full Text Available The discovery of uncommon DNA structures and speculation about their potential functions in genes has brought attention to specific DNA structure recognition. G-quadruplexes are four-stranded nucleic acid structures formed by G-rich DNA (or RNA sequences. G-rich sequences with a high potential to form G-quadruplexes have been found in many important genomic regions. Porphyrin derivatives with cationic side arm substituents are important G-quadruplex-binding ligands. For example, 5,10,15,20-Tetrakis(N-methylpyridinium-4-yl-21H,23H-porphyrin (TMPyP4, interacts strongly with G-quadruplexes, but has poor selectivity for G-quadruplex versus duplex DNA. To increase the G-quadruplex recognition specificity, a new cationic porphyrin derivative, 5,10,15,20-tetra-{4-[2-(1-methyl-1-piperidinylethoxy]phenyl} porphyrin (TMPipEOPP, with large side arm substituents was synthesized, and the interactions between TMPipEOPP and different DNA structures were compared. The results show that G-quadruplexes cause large changes in the UV-Vis absorption and fluorescence spectra of TMPipEOPP, but duplex and single-stranded DNAs do not, indicating that TMPipEOPP can be developed as a highly specific optical probe for discriminating G-quadruplex from duplex and single-stranded DNA. Visual discrimination is also possible. Job plot and Scatchard analysis suggest that a complicated binding interaction occurs between TMPipEOPP and G-quadruplexes. At a low [G-quadruplex]/[TMPipEOPP] ratio, one G-quadruplex binds two TMPipEOPP molecules by end-stacking and outside binding modes. At a high [G-quadruplex]/[TMPipEOPP] ratio, two G-quadruplexes bind to one TMPipEOPP molecule in a sandwich-like end-stacking mode.

  15. A new cationic porphyrin derivative (TMPipEOPP) with large side arm substituents: a highly selective G-quadruplex optical probe.

    Science.gov (United States)

    Zhu, Li-Na; Zhao, Shu-Juan; Wu, Bin; Li, Xiao-Zeng; Kong, De-Ming

    2012-01-01

    The discovery of uncommon DNA structures and speculation about their potential functions in genes has brought attention to specific DNA structure recognition. G-quadruplexes are four-stranded nucleic acid structures formed by G-rich DNA (or RNA) sequences. G-rich sequences with a high potential to form G-quadruplexes have been found in many important genomic regions. Porphyrin derivatives with cationic side arm substituents are important G-quadruplex-binding ligands. For example, 5,10,15,20-Tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphyrin (TMPyP4), interacts strongly with G-quadruplexes, but has poor selectivity for G-quadruplex versus duplex DNA. To increase the G-quadruplex recognition specificity, a new cationic porphyrin derivative, 5,10,15,20-tetra-{4-[2-(1-methyl-1-piperidinyl)ethoxy]phenyl} porphyrin (TMPipEOPP), with large side arm substituents was synthesized, and the interactions between TMPipEOPP and different DNA structures were compared. The results show that G-quadruplexes cause large changes in the UV-Vis absorption and fluorescence spectra of TMPipEOPP, but duplex and single-stranded DNAs do not, indicating that TMPipEOPP can be developed as a highly specific optical probe for discriminating G-quadruplex from duplex and single-stranded DNA. Visual discrimination is also possible. Job plot and Scatchard analysis suggest that a complicated binding interaction occurs between TMPipEOPP and G-quadruplexes. At a low [G-quadruplex]/[TMPipEOPP] ratio, one G-quadruplex binds two TMPipEOPP molecules by end-stacking and outside binding modes. At a high [G-quadruplex]/[TMPipEOPP] ratio, two G-quadruplexes bind to one TMPipEOPP molecule in a sandwich-like end-stacking mode.

  16. Functional consequences of piceatannol binding to glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Gerszon, Joanna; Serafin, Eligiusz; Buczkowski, Adam; Michlewska, Sylwia; Bielnicki, Jakub Antoni; Rodacka, Aleksandra

    2018-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the key redox-sensitive proteins whose activity is largely affected by oxidative modifications at its highly reactive cysteine residue in the enzyme's active site (Cys149). Prolonged exposure to oxidative stress may cause, inter alia, the formation of intermolecular disulfide bonds leading to accumulation of GAPDH aggregates and ultimately to cell death. Recently these anomalies have been linked with the pathogenesis of Alzheimer's disease. Novel evidences indicate that low molecular compounds may be effective inhibitors potentially preventing the GAPDH translocation to the nucleus, and inhibiting or slowing down its aggregation and oligomerization. Therefore, we decided to establish the ability of naturally occurring compound, piceatannol, to interact with GAPDH and to reveal its effect on functional properties and selected parameters of the dehydrogenase structure. The obtained data revealed that piceatannol binds to GAPDH. The ITC analysis indicated that one molecule of the tetrameric enzyme may bind up to 8 molecules of polyphenol (7.3 ± 0.9). Potential binding sites of piceatannol to the GAPDH molecule were analyzed using the Ligand Fit algorithm. Conducted analysis detected 11 ligand binding positions. We indicated that piceatannol decreases GAPDH activity. Detailed analysis allowed us to presume that this effect is due to piceatannol ability to assemble a covalent binding with nucleophilic cysteine residue (Cys149) which is directly involved in the catalytic reaction. Consequently, our studies strongly indicate that piceatannol would be an exceptional inhibitor thanks to its ability to break the aforementioned pathologic disulfide linkage, and therefore to inhibit GAPDH aggregation. We demonstrated that by binding with GAPDH piceatannol blocks cysteine residue and counteracts its oxidative modifications, that induce oligomerization and GAPDH aggregation.

  17. Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects.

    Science.gov (United States)

    Tetreau, Guillaume; Dittmer, Neal T; Cao, Xiaolong; Agrawal, Sinu; Chen, Yun-Ru; Muthukrishnan, Subbaratnam; Haobo, Jiang; Blissard, Gary W; Kanost, Michael R; Wang, Ping

    2015-07-01

    In insects, chitin is a major structural component of the cuticle and the peritrophic membrane (PM). In nature, chitin is always associated with proteins among which chitin-binding proteins (CBPs) are the most important for forming, maintaining and regulating the functions of these extracellular structures. In this study, a genome-wide search for genes encoding proteins with ChtBD2-type (peritrophin A-type) chitin-binding domains (CBDs) was conducted. A total of 53 genes encoding 56 CBPs were identified, including 15 CPAP1s (cuticular proteins analogous to peritrophins with 1 CBD), 11 CPAP3s (CPAPs with 3 CBDs) and 17 PMPs (PM proteins) with a variable number of CBDs, which are structural components of cuticle or of the PM. CBDs were also identified in enzymes of chitin metabolism including 6 chitinases and 7 chitin deacetylases encoded by 6 and 5 genes, respectively. RNA-seq analysis confirmed that PMP and CPAP genes have differential spatial expression patterns. The expression of PMP genes is midgut-specific, while CPAP genes are widely expressed in different cuticle forming tissues. Phylogenetic analysis of CBDs of proteins in insects belonging to different orders revealed that CPAP1s from different species constitute a separate family with 16 different groups, including 6 new groups identified in this study. The CPAP3s are clustered into a separate family of 7 groups present in all insect orders. Altogether, they reveal that duplication events of CBDs in CPAP1s and CPAP3s occurred prior to the evolutionary radiation of insect species. In contrast to the CPAPs, all CBDs from individual PMPs are generally clustered and distinct from other PMPs in the same species in phylogenetic analyses, indicating that the duplication of CBDs in each of these PMPs occurred after divergence of insect species. Phylogenetic analysis of these three CBP families showed that the CBDs in CPAP1s form a clearly separate family, while those found in PMPs and CPAP3s were clustered

  18. Nicotine-selective radiation-induced poly(acrylamide/maleic acid) hydrogels

    International Nuclear Information System (INIS)

    Saraydin, D.; Karadag, E.; Caldiran, Y.; Gueven, O.

    2001-01-01

    Nicotine-selective poly(acrylamide/maleic acid) (AAm/MA) hydrogels prepared by γ-irradiation were used in experiments on swelling, diffusion, and interactions of the pharmaceuticals nicotine, nicotinic acid, nicotinamide, and nikethamide. For AAm/MA hydrogel containing 60 mg maleic acid and irradiated at 5.2 kGy, the studies indicated that swelling increased in the following order; nicotine>nicotinamide>nikethamide>nicotinic acid>water. Diffusions of water and the pharmaceuticals within the hydrogels were found to be non-Fickian in character. AAm/MA hydrogel sorbed only nicotine and did not sorb nicotinamide, nikethamide and nicotinic acid in the binding experiments. S-type adsorption in Giles's classification system was observed. Some binding and thermodynamic parameters for AAm/MA hydrogel-nicotine system were calculated using the Scatchard method. The values of adsorption heat and free energy of this system were found to be negative whereas adsorption entropy was found to be positive. (author)

  19. In-silico analysis of amotosalen hydrochloride binding to CD-61 of platelets

    International Nuclear Information System (INIS)

    Chaudhary, H.T.

    2016-01-01

    To determine the docking of Amotosalen hydrochloride (AH) at CD-61 of platelets, and to suggest the cause of bleeding in AH treated platelets transfusion. Study Design: Descriptive study. Place and Duration of Study: Medical College, Taif University, Taif, Saudi Arabia, from October 2014 to May 2015. Methodology: The study was carried out in-silico. PDB (protein data bank) code of Tirofiban bound to CD-61 was 2vdm. CD-61 was docked with Tirofiban using online docking tools, i.e. Patchdock and Firedock. Then, Amotosalen hydrochloride and CD-61 were also docked. Best docking poses to active sites of 2vdm were found. Ligplot of interactions of ligands and CD-61 were obtained. Then comparison of hydrogen bonds, hydrogen bond lengths, and hydrophobic bonds of 2vdm molecule and best poses of docking results were done. Patchdock and Firedock results of best poses were also analysed using SPSS version 16. Results: More amino acids were involved in hydrogen and hydrophobic bonds in Patchdock and Firedock docking of Amotosalen hydrochloride with CD-61 than Patchdock and Firedock docking of CD-61 with Tirofiban. The binding energy was more in latter than former. Conclusion: Amotosalen hydrochloride binds to the active site of CD-61 with weaker binding force. Haemorrhage seen in Amotosalen hydrochloride-treated platelets might be due to binding of Amotosalen hydrochloride to CD-61. (author)

  20. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein

    International Nuclear Information System (INIS)

    Grosso, Marcos; Kalstein, Adrian; Parisi, Gustavo; Fernandez-Alberti, Sebastian; Roitberg, Adrian E.

    2015-01-01

    The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data

  1. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein

    Energy Technology Data Exchange (ETDEWEB)

    Grosso, Marcos; Kalstein, Adrian; Parisi, Gustavo; Fernandez-Alberti, Sebastian, E-mail: sfalberti@gmail.com [Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD Bernal (Argentina); Roitberg, Adrian E. [Departments of Physics and Chemistry, University of Florida, Gainesville, Florida 32611 (United States)

    2015-06-28

    The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data.

  2. Multiple affinity forms of the calcitonin gene-related peptide receptor in rat cerebellum

    International Nuclear Information System (INIS)

    Chatterjee, T.K.; Fisher, R.A.

    1991-01-01

    Binding of 125I-calcitonin gene-related peptide (125I-CGRP) to rat cerebellum membranes and the sensitivity to guanine nucleotides of binding were investigated. Cerebellum binding sites labeled by 125I-CGRP appear to be highly specific, inasmuch as CGRP inhibited binding with an IC50 of 100 pM but other peptides were inactive or much less active in displacing 125I-CGRP from these sites. 125I-CGRP binding sites in cerebellum membranes were saturable and of high affinity. Scatchard analysis of the saturation binding data revealed a homogeneous population of binding sites, with a KD of 224 ± 28 pM and Bmax of 131 ± 15 fmol/mg of protein. In the presence of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) (100 microM), a single population of binding sites, with a KD of 464 ± 77 pM and Bmax of 100 ± 14 fmol/mg of protein, was observed. The kinetics of association of 125I-CGRP with cerebellum membranes were monophasic at all ligand concentrations tested. However, the observed association rate constant (kobs) was not dependent on [125I-CGRP] in a linear fashion in either the absence or the presence of GTP gamma S (100 microM). The kinetics of dissociation of 125I-CGRP from cerebellum membranes were multiexponential, with fast and slow dissociating components having rate constants of 0.34 ± 0.01 and 0.025 ± 0.001 min-1, respectively. The fast dissociating component represented 60 ± 2% of the total specific binding sites. Dissociation of 125I-CGRP from cerebellum sites was much faster in the presence of GTP gamma S (100 microM) but still exhibited dissociation from two affinity components. The rate constants for these components of dissociation were 0.67 ± 0.03 and 0.077 ± 0.007 min-1, with the faster dissociating component representing 66 ± 1% of the total specific binding sites

  3. Modulation of enrofloxacin binding in OmpF by Mg2+ as revealed by the analysis of fast flickering single-porin current

    Science.gov (United States)

    Brauser, Annemarie; Schroeder, Indra; Gutsmann, Thomas; Cosentino, Cristian; Moroni, Anna; Winterhalter, Mathias

    2012-01-01

    One major determinant of the efficacy of antibiotics on Gram-negative bacteria is the passage through the outer membrane. During transport of the fluoroquinolone enrofloxacin through the trimeric outer membrane protein OmpF of Escherichia coli, the antibiotic interacts with two binding sites within the pore, thus partially blocking the ionic current. The modulation of one affinity site by Mg2+ reveals further details of binding sites and binding kinetics. At positive membrane potentials, the slow blocking events induced by enrofloxacin in Mg2+-free media are converted to flickery sojourns at the highest apparent current level (all three pores flickering). This indicates weaker binding in the presence of Mg2+. Analysis of the resulting amplitude histograms with β distributions revealed the rate constants of blocking (kOB) and unblocking (kBO) in the range of 1,000 to 120,000 s−1. As expected for a bimolecular reaction, kOB was proportional to blocker concentration and kBO independent of it. kOB was approximately three times lower for enrofloxacin coming from the cis side than from the trans side. The block was not complete, leading to a residual conductivity of the blocked state being ∼25% of that of the open state. Interpretation of the results has led to the following model: fast flickering as caused by interaction of Mg2+ and enrofloxacin is related to the binding site at the trans side, whereas the cis site mediates slow blocking events which are also found without Mg2+. The difference in the accessibility of the binding sites also explains the dependency of kOB on the side of enrofloxacin addition and yields a means of determining the most plausible orientation of OmpF in the bilayer. The voltage dependence suggests that the dipole of the antibiotic has to be adequately oriented to facilitate binding. PMID:22689827

  4. Binding and thermodynamics of REV peptide-ctDNA interaction.

    Science.gov (United States)

    Upadhyay, Santosh Kumar

    2017-03-01

    driven. ITC based analysis of salt dependence of binding constant gave a charge value (Z) = +4.01, as determined for the δlnK/δln[Na + ] parameter, suggesting the participation of only 3-4 Arg out of 11 Arg charge from REV peptide. The stoichiometry observed for the complex was three molar charge of REV peptide binding per molar charge of ctDNA. ITC based analysis further confirmed that the binding between ctDNA and REV peptide is governed by electrostatic interaction. Molecular interactions including H-bonding, van der Waals forces, and solvent molecules rearrangement, underlie the binding of REV peptide to ctDNA. © 2016 Wiley Periodicals, Inc.

  5. Recognition of anesthetic barbiturates by a protein binding site: a high resolution structural analysis.

    Directory of Open Access Journals (Sweden)

    Simon Oakley

    Full Text Available Barbiturates potentiate GABA actions at the GABA(A receptor and act as central nervous system depressants that can induce effects ranging from sedation to general anesthesia. No structural information has been available about how barbiturates are recognized by their protein targets. For this reason, we tested whether these drugs were able to bind specifically to horse spleen apoferritin, a model protein that has previously been shown to bind many anesthetic agents with affinities that are closely correlated with anesthetic potency. Thiopental, pentobarbital, and phenobarbital were all found to bind to apoferritin with affinities ranging from 10-500 µM, approximately matching the concentrations required to produce anesthetic and GABAergic responses. X-ray crystal structures were determined for the complexes of apoferritin with thiopental and pentobarbital at resolutions of 1.9 and 2.0 Å, respectively. These structures reveal that the barbiturates bind to a cavity in the apoferritin shell that also binds haloalkanes, halogenated ethers, and propofol. Unlike these other general anesthetics, however, which rely entirely upon van der Waals interactions and the hydrophobic effect for recognition, the barbiturates are recognized in the apoferritin site using a mixture of both polar and nonpolar interactions. These results suggest that any protein binding site that is able to recognize and respond to the chemically and structurally diverse set of compounds used as general anesthetics is likely to include a versatile mixture of both polar and hydrophobic elements.

  6. Production and characterization of a murine monoclonal IgM antibody to human C1q receptor (C1qR)

    International Nuclear Information System (INIS)

    Ghebrehiwet, B.

    1986-01-01

    A hybridoma cell line that produces a monoclonal antibody (MAb) to cell surface C1q receptor (C1qr) has been produced by fusion of the P3 x 63-Ag8.653 mouse myeloma cell line with the spleen cells of a CD-1 mouse that had been hyperimmunized with viable Raji cell suspensions (5 x 10 7 cells/inoculum). This MAb, designated II1/D1, is an IgM antibody with lambda-light chain specificity. Radiolabeled or unlabeled, highly purified II1/D1 was used to determine that: a) this antibody competes for C1q binding sites on C1qR-bearing cells; b) the molecule recognized by this MAb is the C1qR; and c) cells that are known to bind C1q also bind II1/D1 in a specific manner. Western blot analysis of solubilized Raji, or U937 cell membranes, showed that the 125 I-MAb detected a major protein band of approximately 85000 m.w. in its unreduced state, indicating that the C1qR is similar, if not identical, in both types of cells. Analyses of 125 I-II/D1 binding experiments revealed that the antibody bound to Raji cells or u937 cells in a specific manner. Uptake of the antibody was saturable, with equilibrium virtually attained within 35 min. Scatchard analysis of the binding data using the intact MAb suggests that the affinity constant K/sub D/ is 2.9 x 10 -10 M, and at apparent saturation, 24.6 ng of the antibody were bound per 2 x 10 6 cells, giving an estimated 7.8 x 10 3 antibody molecules bound per cell. That the II1/D1 antibody is specifically directed to the C1q was further evidenced by an ELISA in which the ability of C1qR-bearing cells to bind the MAb was abrogated by c-C1q in a specific dose-dependent manner

  7. Amelogenin interacts with cytokeratin-5 in ameloblasts during enamel growth.

    Science.gov (United States)

    Ravindranath, Rajeswari M H; Basilrose, Rajam M; Ravindranath, Naren H; Vaitheesvaran, Bhavapriya

    2003-05-30

    The enamel protein amelogenin binds to GlcNAc (Ravindranath, R. M. H., Moradian-Oldak, R., and Fincham, A.G. (1999) J. Biol. Chem. 274, 2464-2471) and to the GlcNAc-mimicking peptide (GMp) (Ravindranath, R. M. H., Tam, W., Nguyen, P., and Fincham, A. G. (2000) J. Biol. Chem. 275, 39654-39661). The GMp motif in the N-terminal region of the cytokeratin 14 of ameloblasts binds to trityrosyl motif peptide (ATMP) of amelogenin (Ravindranath, R. M. H., Tam, W., Bringas, P., Santos, V., and Fincham, A. G. (2001) J. Biol. Chem. 276, 36586 - 36597). K14 (Type I) pairs with K5 (Type II) in basal epithelial cells; GlcNAc-acylated K5 is identified in ameloblasts. Dosimetric analysis showed the binding affinity of amelogenin to K5 and to GlcNAc-acylated-positive control, ovalbumin. The specific binding of [3H]ATMP with K5 or ovalbumin was confirmed by Scatchard analysis. [3H]ATMP failed to bind to K5 after removal of GlcNAc. Blocking K5 with ATMP abrogates the K5-amelogenin interaction. K5 failed to bind to ATMP when the third proline was substituted with threonine, as in some cases of human X-linked amelogenesis imperfecta or when tyrosyl residues were substituted with phenylalanine. Confocal laser scan microscopic observations on ameloblasts during postnatal (PN) growth of the teeth showed that the K5-amelogenin complex migrated from the cytoplasm to the periphery (on PN day 1) and accumulated at the apical region on day 3. Secretion of amelogenin commences from day 1. K5, similar to K14, may play a role of chaperone during secretion of amelogenin. Upon secretion of amelogenin, K5 pairs with K14. Pairing of K5 and K14 commences on day 3 and ends on day 9. The pairing of K5 and K14 marks the end of secretion of amelogenin.

  8. Binding Isotherms and Time Courses Readily from Magnetic Resonance.

    Science.gov (United States)

    Xu, Jia; Van Doren, Steven R

    2016-08-16

    Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations.

  9. Analysis of the spectroscopic characteristics on the binding interaction between tosufloxacin and bovine lactoferrin

    International Nuclear Information System (INIS)

    Guo Ming; Zhang Luying; Lue Weijun; Cao Huaru

    2011-01-01

    The interaction between tosufloxacin (TELX) and bovine lactoferrin (BLF) in aqueous solution was analyzed by fluorescence spectroscopy and absorbance spectra. The binding parameters and energy-transfer efficiency parameters were determined and the mechanism of interaction was discussed. The effect of tosufloxacin acting on the BLF's conformation was detected and the unfolding procedure of BLF induced by tosufloxacin was explored by 'fluorescence phase diagram'. Following experimental data of fluorescence polarization values P and r, the saturation characteristic of such kind of binding reaction was observed for the first time. The interaction between tosufloxacin and BLF influenced by Ni 2+ and Co 2+ were also preliminarily explored in this work. - Research Highlights: →In this paper, a new saturation spectroscopic characteristic of non-covalent binding reaction is proposed. The saturated character of interaction of tosufloxacin binding with bovine lactoferrin is firstly observed by fluorescence polarization spectroscopy. →The unfolding procedure of bovine lactoferrin induced by drug ligand is analyzed by 'fluorescence phase diagram', and it is quantitatively characterized. →The binding parameters and energy-transfer efficiency parameters of bovine lactoferrin-tosufloxacin/tosufloxacin-Co 2+ (Ni 2+ ) system are determined and the mechanism of interaction is discussed.

  10. Mutational analysis of an archaeal minichromosome maintenance protein exterior hairpin reveals critical residues for helicase activity and DNA binding

    Directory of Open Access Journals (Sweden)

    Brewster Aaron S

    2010-08-01

    Full Text Available Abstract Background The mini-chromosome maintenance protein (MCM complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. While the eukaryotic complex consists of six homologous proteins (MCM2-7, the archaeon Sulfolobus solfataricus has only one MCM protein (ssoMCM, six subunits of which form a homohexamer. We have recently reported a 4.35Å crystal structure of the near full-length ssoMCM. The structure reveals a total of four β-hairpins per subunit, three of which are located within the main channel or side channels of the ssoMCM hexamer model generated based on the symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM structure. The fourth β-hairpin, however, is located on the exterior of the hexamer, near the exit of the putative side channels and next to the ATP binding pocket. Results In order to better understand this hairpin's role in DNA binding and helicase activity, we performed a detailed mutational and biochemical analysis of nine residues on this exterior β-hairpin (EXT-hp. We examined the activities of the mutants related to their helicase function, including hexamerization, ATPase, DNA binding and helicase activities. The assays showed that some of the residues on this EXT-hp play a role for DNA binding as well as for helicase activity. Conclusions These results implicate several current theories regarding helicase activity by this critical hexameric enzyme. As the data suggest that EXT-hp is involved in DNA binding, the results reported here imply that the EXT-hp located near the exterior exit of the side channels may play a role in contacting DNA substrate in a manner that affects DNA unwinding.

  11. Mannose-Binding Lectin Binds to Amyloid Protein and Modulates Inflammation

    Directory of Open Access Journals (Sweden)

    Mykol Larvie

    2012-01-01

    Full Text Available Mannose-binding lectin (MBL, a soluble factor of the innate immune system, is a pattern recognition molecule with a number of known ligands, including viruses, bacteria, and molecules from abnormal self tissues. In addition to its role in immunity, MBL also functions in the maintenance of tissue homeostasis. We present evidence here that MBL binds to amyloid β peptides. MBL binding to other known carbohydrate ligands is calcium-dependent and has been attributed to the carbohydrate-recognition domain, a common feature of other C-type lectins. In contrast, we find that the features of MBL binding to Aβ are more similar to the reported binding characteristics of the cysteine-rich domain of the unrelated mannose receptor and therefore may involve the MBL cysteine-rich domain. Differences in MBL ligand binding may contribute to modulation of inflammatory response and may correlate with the function of MBL in processes such as coagulation and tissue homeostasis.

  12. Site-directed mutational analysis of structural interactions of low molecule compounds binding to the N-terminal 8 kDa domain of DNA polymerase β

    International Nuclear Information System (INIS)

    Murakami, Shizuka; Kamisuki, Shinji; Takata, Kei-ichi; Kasai, Nobuyuki; Kimura, Seisuke; Mizushina, Yoshiyuki; Ohta, Keisuke; Sugawara, Fumio; Sakaguchi, Kengo

    2006-01-01

    We previously reported the mode of inhibition of DNA polymerase β (pol. β) by long chain fatty acids and a bile acid, involving binding analyses to the N-terminal 8-kDa DNA binding domain. Here we describe a site-directed mutational analysis in which the key amino acids (L11, K35, H51, K60, L77, and T79), which are direct interaction sites in the domain, were substituted with K, A, A, A, K, and A, respectively. And their pol. β interactions with a C24-long chain fatty acid, nervonic acid (NA), and a bile acid, lithocholic acid (LCA), were investigated by gel mobility shift assay and NMR spectroscopy. In the case of K35A, there was complete loss of DNA binding activity while K60A hardly has any activity. In contrast the other mutations had no appreciable effects. Thus, K35 and K60 are key amino acid sites for binding to template DNA. The DNA binding activities of L11K, H51A, and T79A as well as the wild type were inhibited by NA to the same extent. T79A demonstrated a disturbed interaction with LCA. 1 H- 15 N HSQC NMR analysis indicated that despite their many similarities, the wild-type and the mutant proteins displayed some significant chemical shift differences. Not only were the substituted amino acid residues three-dimensionally shifted, but some amino acids which are positioned far distant from the key amino acids showed a shift. These results suggest that the interaction surface was significantly distorted with the result that LCA could not bind to the domain. These findings confirm our previous biochemical and 3D structural proposals concerning inhibition by NA and LCA

  13. Insights into the structural characteristics and substrate binding analysis of chondroitin AC lyase (PsPL8A) from Pedobacter saltans.

    Science.gov (United States)

    Rani, Aruna; Dhillon, Arun; Sharma, Kedar; Goyal, Arun

    2018-04-01

    The structure of chondroitin AC lyase (PsPL8A) of family 8 polysaccharide lyase was characterized. Modeled PsPL8A structure showed, it contains N-terminal (α/α) 6 incomplete toroidal fold and a layered β sandwich structure at C-terminal. Ramchandran plot displayed 98.5% residues in favoured and 1.2% in generously allowed region. Secondary structure of PsPL8A by CD revealed 27.31% α helices 22.7% β sheets and 49.9% random coils. Protein melting study showed, PsPL8A completely unfolds at 60°C. SAXS analysis showed, PsPL8A is fully folded in solution form. The ab initio derived dummy model of PsPL8A superposed well with its modeled structure excluding some α-helices and loop region. Structural superposition and docking analysis showed, N153, W105, H203, Y208, Y212, R266 and E349 were involved in catalysis. Mutants N153A, H203A, Y212F, R266A and E349A created by SDM revealed no residual activity. Isothermal titration calorimetry analysis of Y212F and H203A with C4S polysaccharide, showed moderate binding by Y212F (Ka=9.56±3.81×10 5 ) and no binding with H203A, showing active contribution of Y212 in substrate binding. Residues Y212 and H203 or R266 might act as general base and general acid respectively. Residues N153 and E349 are likely contributing in charge neutralization and stabilizing enolate anion intermediate during β-elimination. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Pheromone Binding Protein EhipPBP1 Is Highly Enriched in the Male Antennae of the Seabuckthorn Carpenterworm and Is Binding to Sex Pheromone Components

    Directory of Open Access Journals (Sweden)

    Ping Hu

    2018-04-01

    Full Text Available The seabuckthorn carpenterworm moth Eogystia hippophaecolus is a major threat to seabuckthorn plantations, causing considerable ecological and economic losses in China. Transcriptomic analysis of E. hippophaecolus previously identified 137 olfactory proteins, including three pheromone-binding proteins (PBPs. We investigated the function of E. hippophaecolus PBP1 by studying its mRNA and protein expression profiles and its binding ability with different compounds. The highest levels of expression were in the antennae, particularly in males, with much lower levels of expression in the legs and external genitals. Recombinant PBP1 showed strong binding to sex-pheromone components, suggesting that antennal EhipPBP1 is involved in binding sex-pheromone components during pheromone communication.

  15. N-acetylcolchinol O-methyl ether and thiocolchicine, potent analogs of colchicine modified in the C ring. Evaluation of the mechanistic basis for their enhanced biological properties

    International Nuclear Information System (INIS)

    Kang, G.J.; Getahun, Z.; Muzaffar, A.; Brossi, A.; Hamel, E.

    1990-01-01

    Two colchicine analogs with modifications only in the C ring are better inhibitors than colchicine of cell growth and tubulin polymerization. Radiolabeled thiocolchicine (with a thiomethyl instead of a methoxy group at position C-10) and N-acetylcolchinol O-methyl ether (NCME) (with a methoxy-substituted benzenoid instead of the methoxy-substituted tropone C ring) were prepared for comparison with colchicine. Scatchard analysis indicated a single binding site with KD values of 1.0-2.3 microM. Thiocolchicine was bound 2-4 times as rapidly as colchicine, but the activation energies of the reactions were nearly identical (18 kcal/mol for colchicine, 20 kcal/mol for thiocolchicine). NCME bound to tubulin in a biphasic reaction. The faster phase was 60 times as fast as colchicine binding at 37 degrees C, and a substantial reaction occurred at 0 degrees C. The rate of the faster phase of NCME binding changed relatively little as a function of temperature, so the activation energy was only 7.0 kcal/mol. Dissociation reactions were also evaluated, and at 37 degrees C the half-lives of the tubulin-drug complexes were 11 min for NCME, 24 h for thiocolchicine, and 27 h for colchicine. Relative dissociation rates as a function of temperature varied little among the drug complexes. Activation energies for the dissociation reactions were 30 kcal/mol for thiocolchicine, 27 kcal/mol for NCME, and 24 kcal/mol for colchicine. Comparison of the activation energies of association and dissociation yielded free energies for the binding reactions of -20 kcal/mol for NCME, -10 kcal/mol for thiocolchicine, and -6 kcal/mol for colchicine. The greater effectiveness of NCME and thiocolchicine as compared with colchicine in biological assays probably derives from their more rapid binding to tubulin and the lower free energies of their binding reactions

  16. Investigation of naphthofuran moiety as potential dual inhibitor against BACE-1 and GSK-3β: molecular dynamics simulations, binding energy, and network analysis to identify first-in-class dual inhibitors against Alzheimer's disease.

    Science.gov (United States)

    Kumar, Akhil; Srivastava, Gaurava; Srivastava, Swati; Verma, Seema; Negi, Arvind S; Sharma, Ashok

    2017-08-01

    BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer's disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors. Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.

  17. Mutational analysis of the pumpkin (Cucurbita maxima) phloem exudate lectin, PP2 reveals Ser-104 is crucial for carbohydrate binding.

    Science.gov (United States)

    Bobbili, Kishore Babu; Bandari, Shyam; Grobe, Kay; Swamy, Musti J

    2014-07-18

    The pumpkin phloem lectin (PP2) is an RNA-binding, defense-related, chitooligosaccharide-specific, homodimeric lectin of Mr 48 kDa expressed at high concentrations in the sieve elements and companion cells of pumpkin (Cucurbita maxima). In the present study, PP2 was expressed in the methylotrophic yeast Pichia pastoris with the Saccharomyces α-factor sequence to direct the recombinant protein into the secretory pathway as a prerequisite for unimpaired folding and posttranslational glycosylation of recombinant PP2. Previous computational modeling and ligand docking studies predicted a putative chitooligosaccharide-binding site on the PP2 surface, which was divided into three subsites, with two amino acid residues in each subsite identified as possible candidates for interaction with chitooligosaccharides (CHOs). In this work, mutational analysis and hemagglutination assays were employed to verify the role of the predicted residues in the carbohydrate binding activity of the protein. The results obtained revealed that mutation of Ser-104 to Ala (S104A) at subsite-2 resulted in about 90% loss of agglutination activity of the protein, indicating that Ser-104 is crucial for the binding of CHOs to PP2. Also, L100A (at subsite-1) and K200A (at subsite-3) independently decreased the lectin activity by about 40%, indicating that these two residues also contribute significantly to sugar binding by PP2. Together, these findings confirm that all the three subsites contribute to varying degrees toward PP2-carbohydrate interaction, and confirm the validity of the computational model, as proposed earlier. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Computer and Statistical Analysis of Transcription Factor Binding and Chromatin Modifications by ChIP-seq data in Embryonic Stem Cell

    Directory of Open Access Journals (Sweden)

    Orlov Yuriy

    2012-06-01

    Full Text Available Advances in high throughput sequencing technology have enabled the identification of transcription factor (TF binding sites in genome scale. TF binding studies are important for medical applications and stem cell research. Somatic cells can be reprogrammed to a pluripotent state by the combined introduction of factors such as Oct4, Sox2, c-Myc, Klf4. These reprogrammed cells share many characteristics with embryonic stem cells (ESCs and are known as induced pluripotent stem cells (iPSCs. The signaling requirements for maintenance of human and murine embryonic stem cells (ESCs differ considerably. Genome wide ChIP-seq TF binding maps in mouse stem cells include Oct4, Sox2, Nanog, Tbx3, Smad2 as well as group of other factors. ChIP-seq allows study of new candidate transcription factors for reprogramming. It was shown that Nr5a2 could replace Oct4 for reprogramming. Epigenetic modifications play important role in regulation of gene expression adding additional complexity to transcription network functioning. We have studied associations between different histone modification using published data together with RNA Pol II sites. We found strong associations between activation marks and TF binding sites and present it qualitatively. To meet issues of statistical analysis of genome ChIP-sequencing maps we developed computer program to filter out noise signals and find significant association between binding site affinity and number of sequence reads. The data provide new insights into the function of chromatin organization and regulation in stem cells.

  19. Genome Wide Analysis of Nucleotide-Binding Site Disease Resistance Genes in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Shenglong Tan

    2012-01-01

    Full Text Available Nucleotide-binding site (NBS disease resistance genes play an important role in defending plants from a variety of pathogens and insect pests. Many R-genes have been identified in various plant species. However, little is known about the NBS-encoding genes in Brachypodium distachyon. In this study, using computational analysis of the B. distachyon genome, we identified 126 regular NBS-encoding genes and characterized them on the bases of structural diversity, conserved protein motifs, chromosomal locations, gene duplications, promoter region, and phylogenetic relationships. EST hits and full-length cDNA sequences (from Brachypodium database of 126 R-like candidates supported their existence. Based on the occurrence of conserved protein motifs such as coiled-coil (CC, NBS, leucine-rich repeat (LRR, these regular NBS-LRR genes were classified into four subgroups: CC-NBS-LRR, NBS-LRR, CC-NBS, and X-NBS. Further expression analysis of the regular NBS-encoding genes in Brachypodium database revealed that these genes are expressed in a wide range of libraries, including those constructed from various developmental stages, tissue types, and drought challenged or nonchallenged tissue.

  20. An overview of the prediction of protein DNA-binding sites.

    Science.gov (United States)

    Si, Jingna; Zhao, Rui; Wu, Rongling

    2015-03-06

    Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  1. Functional consequences of piceatannol binding to glyceraldehyde-3-phosphate dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Joanna Gerszon

    Full Text Available Glyceraldehyde-3-phosphate dehydrogenase (GAPDH is one of the key redox-sensitive proteins whose activity is largely affected by oxidative modifications at its highly reactive cysteine residue in the enzyme's active site (Cys149. Prolonged exposure to oxidative stress may cause, inter alia, the formation of intermolecular disulfide bonds leading to accumulation of GAPDH aggregates and ultimately to cell death. Recently these anomalies have been linked with the pathogenesis of Alzheimer's disease. Novel evidences indicate that low molecular compounds may be effective inhibitors potentially preventing the GAPDH translocation to the nucleus, and inhibiting or slowing down its aggregation and oligomerization. Therefore, we decided to establish the ability of naturally occurring compound, piceatannol, to interact with GAPDH and to reveal its effect on functional properties and selected parameters of the dehydrogenase structure. The obtained data revealed that piceatannol binds to GAPDH. The ITC analysis indicated that one molecule of the tetrameric enzyme may bind up to 8 molecules of polyphenol (7.3 ± 0.9. Potential binding sites of piceatannol to the GAPDH molecule were analyzed using the Ligand Fit algorithm. Conducted analysis detected 11 ligand binding positions. We indicated that piceatannol decreases GAPDH activity. Detailed analysis allowed us to presume that this effect is due to piceatannol ability to assemble a covalent binding with nucleophilic cysteine residue (Cys149 which is directly involved in the catalytic reaction. Consequently, our studies strongly indicate that piceatannol would be an exceptional inhibitor thanks to its ability to break the aforementioned pathologic disulfide linkage, and therefore to inhibit GAPDH aggregation. We demonstrated that by binding with GAPDH piceatannol blocks cysteine residue and counteracts its oxidative modifications, that induce oligomerization and GAPDH aggregation.

  2. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  3. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Apparent non-statistical binding in a ditopic receptor for guanosine

    NARCIS (Netherlands)

    Likhitsup, Asawin; Deeth, Robert J.; Otto, Sijbren; Marsh, Andrew

    2009-01-01

    Analysis of stepwise association constants for guests binding to more than one site in a receptor is expected to give a ratio of the first association constant to the second of about 4 : 1 on statistical grounds (since a second guest should have an equal chance of binding to a different site on the

  5. Preliminary screening and identification of the hepatocarcinoma cell-binding peptide

    International Nuclear Information System (INIS)

    Zhu Xiaohua; Wu Hua

    2004-01-01

    Objective: To explore the feasibility of screening and isolating homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display random peptide library and to develop a new peptide which may be potentially used as targeting delivery carrier in the biological targeted diagnosis or therapy for liver cancer. Methods: A 12-mer peptide phage display library was used to screen and isolate peptides that bind to human hepatocarcinoma cells, and four rounds of subtractive panning were carried out with the human hepatocarcinoma cell line HepG2 as the target. The affinities of selected phage clones for human hepatocarcinoma cells were determined with enzyme-linked immunosorbent assay (ELISA) and compared with that to human liver cell and other tumor cells of different tissue origins, respectively. In addition, the binding site in the tumor cells was observed with immunofluorescence analysis under confocal light microscopy. The amino acid sequences of phages that bind HepG2 specifically were deduced through DNA sequencing. Based on the results of DNA sequence, a 16-mer peptide (WH16) was designed and synthesized. Binding ability of the new peptide, WH16, was determined with competitive inhibition test. Results: After four rounds of panning, the phages that were bound to and internalized in human hepatocarcinoma cells were isolated. ELISA and immunofluorescence analysis confirmed the affinity of these phages for hepatocarcinoma cells. 56.67%(17/30) of the isolated phages displayed repeated sequence FLLEPHLMDTSM, and FLEP was defined as conservative motif . Binding of the selected phage to HepG2 cells was inhibited by synthesized peptide WH16, that strongly support that cellular binding of the phage is mediated through its displayed peptide, and WH16 can also bind to HepG2. Conclusions: It is feasible to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display random peptide

  6. Preliminary screening and identification of the hepatocarcinoma cell-binding peptide

    Energy Technology Data Exchange (ETDEWEB)

    Xiaohua, Zhu; Hua, Wu [Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan (China)

    2004-12-15

    Objective: To explore the feasibility of screening and isolating homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display random peptide library and to develop a new peptide which may be potentially used as targeting delivery carrier in the biological targeted diagnosis or therapy for liver cancer. Methods: A 12-mer peptide phage display library was used to screen and isolate peptides that bind to human hepatocarcinoma cells, and four rounds of subtractive panning were carried out with the human hepatocarcinoma cell line HepG2 as the target. The affinities of selected phage clones for human hepatocarcinoma cells were determined with enzyme-linked immunosorbent assay (ELISA) and compared with that to human liver cell and other tumor cells of different tissue origins, respectively. In addition, the binding site in the tumor cells was observed with immunofluorescence analysis under confocal light microscopy. The amino acid sequences of phages that bind HepG2 specifically were deduced through DNA sequencing. Based on the results of DNA sequence, a 16-mer peptide (WH16) was designed and synthesized. Binding ability of the new peptide, WH16, was determined with competitive inhibition test. Results: After four rounds of panning, the phages that were bound to and internalized in human hepatocarcinoma cells were isolated. ELISA and immunofluorescence analysis confirmed the affinity of these phages for hepatocarcinoma cells. 56.67%(17/30) of the isolated phages displayed repeated sequence FLLEPHLMDTSM, and FLEP was defined as conservative motif . Binding of the selected phage to HepG2 cells was inhibited by synthesized peptide WH16, that strongly support that cellular binding of the phage is mediated through its displayed peptide, and WH16 can also bind to HepG2. Conclusions: It is feasible to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display random peptide

  7. Analysis of angiotensin II binding to human platelets: Differences in young and old subjects

    International Nuclear Information System (INIS)

    Siebers, M.J.; Goodfriend, T.L.; Ball, D.; Elliott, M.E.

    1990-01-01

    We examined the binding of radiolabeled angiotensin II (AII) to human platelets to characterize the apparent increase in AII receptors observed in older subjects. At 22 degrees C, the amount of radioactivity associated with platelets from older subjects increased continuously for more than 2 hours. The same amount of radioactivity was displaced by addition of unlabeled AII at 30 min and 60 min. In the presence of phenylarsine oxide, in the cold, or when labeled antagonist was the ligand, binding came to equilibrium by 30 min. High pressure liquid chromatography demonstrated that 125 I-AII was the major radioactive compound in the supernatant and platelets after incubation, but the platelets also contained radiolabeled AII fragments. Thus, some degradation accompanied interaction of AII and platelets. Phenylarsine oxide did not prevent degradation of bound AII, suggesting that degradation precedes internalization. On average, maximum binding was greater in older subjects whether platelets were incubated with 125 I-AII alone, with 125 I-AII and phenylarsine oxide to prevent internalization, or when the competitive inhibitor 125 I-sar1,ile8-AII was the radioligand. Variability of binding among subjects also increased with age. Thus, platelets bind, degrade, and internalize AII, and the three processes occur to a greater extent in platelets from some, but not all older subjects

  8. Analysis of binding ability of two tetramethylpyridylporphyrins to albumin and its complex with bilirubin

    Science.gov (United States)

    Solomonov, Alexey V.; Shipitsyna, Maria K.; Vashurin, Arthur S.; Rumyantsev, Evgeniy V.; Timin, Alexander S.; Ivanov, Sergey P.

    2016-11-01

    An interaction between 5,10,15,20-tetrakis-(N-methyl-x-pyridyl)porphyrins, x = 2; 4 (TMPyPs) with bovine serum albumin (BSA) and its bilirubin (BR) complex was investigated by UV-Viz and fluorescence spectroscopy under imitated physiological conditions involving molecular docking studies. The parameters of forming intermolecular complexes (binding constants, quenching rate constants, quenching sphere radius etc.) were determined. It was showed that the interaction between proteins and TMPyPs occurs via static quenching of protein fluorescence and has predominantly hydrophobic and electrostatic character. It was revealed that obtained complexes are relatively stable, but in the case of TMPyP4 binding with proteins occurs better than TMPyP2. Nevertheless, both TMPyPs have better binding ability with free protein compared to BRBSA at the same time. The influence of TMPyPs on the conformational changes in protein molecules was studied using synchronous fluorescence spectroscopy. It was found that there is no competition of BR with TMPyPs for binging sites on protein molecule and BR displacement does not occur. Molecular docking calculations have showed that TMPyPs can bind with albumin via tryptophan residue in the hydrophilic binding site of protein molecule but it is not one possible interaction way.

  9. A putative carbohydrate-binding domain of the lactose-binding Cytisus sessilifolius anti-H(O) lectin has a similar amino acid sequence to that of the L-fucose-binding Ulex europaeus anti-H(O) lectin.

    Science.gov (United States)

    Konami, Y; Yamamoto, K; Osawa, T; Irimura, T

    1995-04-01

    The complete amino acid sequence of a lactose-binding Cytisus sessilifolius anti-H(O) lectin II (CSA-II) was determined using a protein sequencer. After digestion of CSA-II with endoproteinase Lys-C or Asp-N, the resulting peptides were purified by reversed-phase high performance liquid chromatography (HPLC) and then subjected to sequence analysis. Comparison of the complete amino acid sequence of CSA-II with the sequences of other leguminous seed lectins revealed regions of extensive homology. The amino acid sequence of a putative carbohydrate-binding domain of CSA-II was found to be similar to those of several anti-H(O) leguminous lectins, especially to that of the L-fucose-binding Ulex europaeus lectin I (UEA-I).

  10. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  11. Dendrimers bind antioxidant polyphenols and cisplatin drug.

    Directory of Open Access Journals (Sweden)

    Amine Abderrezak

    Full Text Available Synthetic polymers of a specific shape and size play major role in drug delivery systems. Dendrimers are unique synthetic macromolecules of nanometer dimensions with a highly branched structure and globular shape with potential applications in gene and drug delivery. We examine the interaction of several dendrimers of different compositions mPEG-PAMAM (G3, mPEG-PAMAM (G4 and PAMAM (G4 with hydrophilic and hydrophobic drugs cisplatin, resveratrol, genistein and curcumin at physiological conditions. FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyse drug binding mode, the binding constant and the effects of drug complexation on dendrimer stability and conformation. Structural analysis showed that cisplatin binds dendrimers in hydrophilic mode via Pt cation and polymer terminal NH(2 groups, while curcumin, genistein and resveratrol are located mainly in the cavities binding through both hydrophobic and hydrophilic contacts. The overall binding constants of durg-dendrimers are ranging from 10(2 M(-1 to 10(3 M(-1. The affinity of dendrimer binding was PAMAM-G4>mPEG-PAMAM-G4>mPEG-PAMAM-G3, while the order of drug-polymer stability was curcumin>cisplatin>genistein>resveratrol. Molecular modeling showed larger stability for genisten-PAMAM-G4 (ΔG = -4.75 kcal/mol than curcumin-PAMAM-G4 ((ΔG = -4.53 kcal/mol and resveratrol-PAMAM-G4 ((ΔG = -4.39 kcal/mol. Dendrimers might act as carriers to transport hydrophobic and hydrophilic drugs.

  12. Fragment growing induces conformational changes in acetylcholine-binding protein: A structural and thermodynamic analysis

    NARCIS (Netherlands)

    Edink, E.S.; Rucktooa, P.; Retra, K.; Akdemir, A.; Nahar, T.T.; Zuiderveld, O.P.; van Elk, R.; Janssen, E.; van Nierop, P.; van Muijlwijk-Koezen, J.E.; Smit, A.B.; Sixma, T.K.; Leurs, R.; de Esch, I.J.P.

    2011-01-01

    Optimization of fragment hits toward high-affinity lead compounds is a crucial aspect of fragment-based drug discovery (FBDD). In the current study, we have successfully optimized a fragment by growing into a ligand-inducible subpocket of the binding site of acetylcholine-binding protein (AChBP).

  13. [3H]Ethynylbicycloorthobenzoate ([3H]EBOB) binding in recombinant GABAA receptors.

    Science.gov (United States)

    Yagle, Monica A; Martin, Michael W; de Fiebre, Christopher M; de Fiebre, NancyEllen C; Drewe, John A; Dillon, Glenn H

    2003-12-01

    Ethynylbicycloorthobenzoate (EBOB) is a recently developed ligand that binds to the convulsant site of the GABAA receptor. While a few studies have examined the binding of [3H]EBOB in vertebrate brain tissue and insect preparations, none have examined [3H]EBOB binding in preparations that express known configurations of the GABAA receptor. We have thus examined [3H]EBOB binding in HEK293 cells stably expressing human alpha1beta2gamma2 and alpha2beta2gamma2 GABAA receptors, and the effects of CNS convulsants on its binding. The ability of the CNS convulsants to displace the prototypical convulsant site ligand, [35S]TBPS, was also assessed. Saturation analysis revealed [3H]EBOB binding at a single site, with a K(d) of approximately 9 nM in alpha1beta2gamma2 and alpha2beta2gamma2 receptors. Binding of both [3H]EBOB and [35S]TBPS was inhibited by dieldrin, lindane, tert-butylbicycloorthobenzoate (TBOB), PTX, TBPS, and pentylenetetrazol (PTZ) at one site in a concentration-dependent fashion. Affinities were in the high nM to low microM range for all compounds except PTZ (low mM range), and the rank order of potency for these convulsants to displace [3H]EBOB and [35S]TBPS was the same. Low [GABA] stimulated [3H]EBOB binding, while higher [GABA] (greater than 10 microM) inhibited [3H]EBOB binding. Overall, our data demonstrate that [3H]EBOB binds to a single, high affinity site in alpha1beta2gamma2 and alpha2beta2gamma2 GABAA receptors, and modulation of its binding is similar to that seen with [35S]TBPS. [3H]EBOB has a number of desirable traits that may make it preferable to [35S]TBPS for analysis of the convulsant site of the GABAA receptor.

  14. Structural and mutational analyses of the receptor binding domain of botulinum D/C mosaic neurotoxin: Insight into the ganglioside binding mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Nuemket, Nipawan [Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Yoshikazu [Creative Research Institution ' Sousei,' Hokkaido University, Sapporo 001-0021 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Tsukamoto, Kentaro; Tsuji, Takao [Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192 (Japan); Nakamura, Keiji; Kozaki, Shunji [Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531 (Japan); Yao, Min [Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Isao, E-mail: tanaka@castor.sci.hokudai.ac.jp [Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2011-07-29

    Highlights: {yields} We determined the crystal structure of the receptor binding domain of BoNT in complex with 3'-sialyllactose. {yields} An electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. {yields} Alanine site-directed mutagenesis showed that GBS and GBL are important for ganglioside binding. {yields} A cell binding mechanism, which involves cooperative contribution of two sites, was proposed. -- Abstract: Clostridium botulinum type D strain OFD05, which produces the D/C mosaic neurotoxin, was isolated from cattle killed by the recent botulism outbreak in Japan. The D/C mosaic neurotoxin is the most toxic of the botulinum neurotoxins (BoNT) characterized to date. Here, we determined the crystal structure of the receptor binding domain of BoNT from strain OFD05 in complex with 3'-sialyllactose at a resolution of 3.0 A. In the structure, an electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. Alanine site-directed mutagenesis showed the significant contribution of the residues surrounding the cleft to ganglioside recognition. In addition, a loop adjoining the cleft also plays an important role in ganglioside recognition. In contrast, little effect was observed when the residues located around the surface previously identified as the protein receptor binding site in other BoNTs were substituted. The results of cell binding analysis of the mutants were significantly correlated with the ganglioside binding properties. Based on these observations, a cell binding mechanism of BoNT from strain OFD05 is proposed, which involves cooperative contribution of two ganglioside binding sites.

  15. Genome-wide analysis of Pax8 binding provides new insights into thyroid functions

    Directory of Open Access Journals (Sweden)

    Ruiz-Llorente Sergio

    2012-04-01

    Full Text Available Abstract Background The transcription factor Pax8 is essential for the differentiation of thyroid cells. However, there are few data on genes transcriptionally regulated by Pax8 other than thyroid-related genes. To better understand the role of Pax8 in the biology of thyroid cells, we obtained transcriptional profiles of Pax8-silenced PCCl3 thyroid cells using whole genome expression arrays and integrated these signals with global cis-regulatory sequencing studies performed by ChIP-Seq analysis Results Exhaustive analysis of Pax8 immunoprecipitated peaks demonstrated preferential binding to intragenic regions and CpG-enriched islands, which suggests a role of Pax8 in transcriptional regulation of orphan CpG regions. In addition, ChIP-Seq allowed us to identify Pax8 partners, including proteins involved in tertiary DNA structure (CTCF and chromatin remodeling (Sp1, and these direct transcriptional interactions were confirmed in vivo. Moreover, both factors modulate Pax8-dependent transcriptional activation of the sodium iodide symporter (Nis gene promoter. We ultimately combined putative and novel Pax8 binding sites with actual target gene expression regulation to define Pax8-dependent genes. Functional classification suggests that Pax8-regulated genes may be directly involved in important processes of thyroid cell function such as cell proliferation and differentiation, apoptosis, cell polarity, motion and adhesion, and a plethora of DNA/protein-related processes. Conclusion Our study provides novel insights into the role of Pax8 in thyroid biology, exerted through transcriptional regulation of important genes involved in critical thyrocyte processes. In addition, we found new transcriptional partners of Pax8, which functionally cooperate with Pax8 in the regulation of thyroid gene transcription. Besides, our data demonstrate preferential location of Pax8 in non-promoter CpG regions. These data point to an orphan CpG island-mediated mechanism

  16. Spinal cord regeneration by modulating bone marrow with neurotransmitters and Citicholine: Analysis at micromolecular level.

    Science.gov (United States)

    Paulose, Cheramadathukudiyil Skaria; John, Ponnezhathu Sebastian; Chinthu, Romeo; Akhilraj, Puthenveetil Raju; Anju, Thoppil Raveendran

    2017-04-01

    Spinal cord injury results in disruption of brain-spinal cord fibre connectivity, leading to progressive tissue damage at the site of injury and resultant paralysis of varying degrees. The current study investigated the role of autologous bone marrow modulated with neurotransmitters and neurotransmitter stimulating agent, Citicholine, in spinal cord of spinal cord injured rats. Radioreceptor assay using [3H] ligand was carried out to quantify muscarinic receptor. Gene expression studies were done using Real Time PCR analysis. Scatchard analysis of muscarinic M1 receptor showed significantly decreased B max (p neurotransmitters combination along with bone marrow or Citicholine with bone marrow can reverse the muscarinic receptor alterations in the spinal cord of spinal cord injured rats, which is a promising step towards a better therapeutic intervention for spinal cord injury because of the positive role of cholinergic system in regulation of both locomotor activity and synaptic plasticity. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  17. Evaluation of anti-podoplanin rat monoclonal antibody NZ-1 for targeting malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yukinari, E-mail: yukinari-k@bea.hi-ho.ne.j [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Kaneko, Mika Kato [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Mishima, Kazuhiko [Saitama Medical University International Medical Center 1397-1 Yamane Hidaka-shi, Saitama 350-1298 (Japan); Srivastava, Nidhi; Chandramohan, Vidyalakshmi; Pegram, Charles [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Keir, Stephen T. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Kuan, C.-T.; Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-10-15

    Introduction: Podoplanin/aggrus is a mucin-like sialoglycoprotein that is highly expressed in malignant gliomas. Podoplanin has been reported to be a novel marker to enrich tumor-initiating cells, which are thought to resist conventional therapies and to be responsible for cancer relapse. The purpose of this study was to determine whether an anti-podoplanin antibody is suitable to target radionuclides to malignant gliomas. Methods: The binding affinity of an anti-podoplanin antibody, NZ-1 (rat IgG{sub 2a}), was determined by surface plasmon resonance and Scatchard analysis. NZ-1 was radioiodinated with {sup 125}I using Iodogen [{sup 125}I-NZ-1(Iodogen)] or N-succinimidyl 4-guanidinomethyl 3-[{sup 131}I]iodobenzoate ([{sup 131}I]SGMIB-NZ-1), and paired-label internalization assays of NZ-1 were performed. The tissue distribution of {sup 125}I-NZ-1(Iodogen) and that of [{sup 131}I]SGMIB-NZ-1 were then compared in athymic mice bearing glioblastoma xenografts. Results: The dissociation constant (K{sub D}) of NZ-1 was determined to be 1.2x10{sup -10} M by surface plasmon resonance and 9.8x10{sup -10} M for D397MG glioblastoma cells by Scatchard analysis. Paired-label internalization assays in LN319 glioblastoma cells indicated that [{sup 131}I]SGMIB-NZ-1 resulted in higher intracellular retention of radioactivity (26.3{+-}0.8% of initially bound radioactivity at 8 h) compared to that from the {sup 125}I-NZ-1(Iodogen) (10.0{+-}0.1% of initially bound radioactivity at 8 h). Likewise, tumor uptake of [{sup 131}I]SGMIB-NZ-1 (39.9{+-}8.8 %ID/g at 24 h) in athymic mice bearing D2159MG xenografts in vivo was significantly higher than that of {sup 125}I-NZ-1(Iodogen) (29.7{+-}6.1 %ID/g at 24 h). Conclusions: The overall results suggest that an anti-podoplanin antibody NZ-1 warrants further evaluation for antibody-based therapy against glioblastoma.

  18. Evaluation of anti-podoplanin rat monoclonal antibody NZ-1 for targeting malignant gliomas

    International Nuclear Information System (INIS)

    Kato, Yukinari; Vaidyanathan, Ganesan; Kaneko, Mika Kato; Mishima, Kazuhiko; Srivastava, Nidhi; Chandramohan, Vidyalakshmi; Pegram, Charles; Keir, Stephen T.; Kuan, C.-T.; Bigner, Darell D.; Zalutsky, Michael R.

    2010-01-01

    Introduction: Podoplanin/aggrus is a mucin-like sialoglycoprotein that is highly expressed in malignant gliomas. Podoplanin has been reported to be a novel marker to enrich tumor-initiating cells, which are thought to resist conventional therapies and to be responsible for cancer relapse. The purpose of this study was to determine whether an anti-podoplanin antibody is suitable to target radionuclides to malignant gliomas. Methods: The binding affinity of an anti-podoplanin antibody, NZ-1 (rat IgG 2a ), was determined by surface plasmon resonance and Scatchard analysis. NZ-1 was radioiodinated with 125 I using Iodogen [ 125 I-NZ-1(Iodogen)] or N-succinimidyl 4-guanidinomethyl 3-[ 131 I]iodobenzoate ([ 131 I]SGMIB-NZ-1), and paired-label internalization assays of NZ-1 were performed. The tissue distribution of 125 I-NZ-1(Iodogen) and that of [ 131 I]SGMIB-NZ-1 were then compared in athymic mice bearing glioblastoma xenografts. Results: The dissociation constant (K D ) of NZ-1 was determined to be 1.2x10 -10 M by surface plasmon resonance and 9.8x10 -10 M for D397MG glioblastoma cells by Scatchard analysis. Paired-label internalization assays in LN319 glioblastoma cells indicated that [ 131 I]SGMIB-NZ-1 resulted in higher intracellular retention of radioactivity (26.3±0.8% of initially bound radioactivity at 8 h) compared to that from the 125 I-NZ-1(Iodogen) (10.0±0.1% of initially bound radioactivity at 8 h). Likewise, tumor uptake of [ 131 I]SGMIB-NZ-1 (39.9±8.8 %ID/g at 24 h) in athymic mice bearing D2159MG xenografts in vivo was significantly higher than that of 125 I-NZ-1(Iodogen) (29.7±6.1 %ID/g at 24 h). Conclusions: The overall results suggest that an anti-podoplanin antibody NZ-1 warrants further evaluation for antibody-based therapy against glioblastoma.

  19. RNA-binding properties and mapping of the RNA-binding domain from the movement protein of Prunus necrotic ringspot virus.

    Science.gov (United States)

    Herranz, M Carmen; Pallás, Vicente

    2004-03-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is involved in intercellular virus transport. In this study, putative RNA-binding properties of the PNRSV MP were studied. The PNRSV MP was produced in Escherichia coli using an expression vector. Electrophoretic mobility shift assays (EMSAs) using DIG-labelled riboprobes demonstrated that PNRSV MP bound ssRNA cooperatively without sequence specificity. Two different ribonucleoprotein complexes were found to be formed depending on the molar MP : PNRSV RNA ratio. The different responses of the complexes to urea treatment strongly suggested that they have different structural properties. Deletion mutagenesis followed by Northwestern analysis allowed location of a nucleic acid binding domain to aa 56-88. This 33 aa RNA-binding motif is the smallest region delineated among members of the family Bromoviridae for which RNA-binding properties have been demonstrated. This domain is highly conserved within all phylogenetic subgroups previously described for PNRSV isolates. Interestingly, the RNA-binding domain described here and the one described for Alfamovirus are located at the N terminus of their corresponding MPs, whereas similar domains previously characterized in members of the genera Bromovirus and Cucumovirus are present at the C terminus, strongly reflecting their corresponding phylogenetic relationships. The evolutionary implications of this observation are discussed.

  20. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding

    International Nuclear Information System (INIS)

    Vaezeslami, Soheila; Jia, Xiaofei; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H.

    2008-01-01

    A water network stabilizes the structure of cellular retionic acid binding protein II. The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the α2 helix at its entrance. This chain of interactions acts as a ‘pillar’ that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the α2 helix adopting an altered conformation compared with wild-type CRABPII

  1. The starch-binding domain family CBM41 - an in silico analysis of evolutionary relationships

    DEFF Research Database (Denmark)

    Janeček, Štefan; Majzlová, Katarína; Svensson, Birte

    2017-01-01

    Within the CAZy database, there are 81 carbohydrate-binding module (CBM) families. A CBM represents a non-catalytic domain in a modular arrangement of glycoside hydrolases (GHs). The present in silico study has been focused on starch-binding domains from the family CBM41 that are usually part...

  2. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin

    2007-01-01

    We report the genome-wide identification of estrogen receptor alpha (ERalpha)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERalpha-binding regions...... genes. The majority of ERalpha-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS...... signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERalpha to DNA in intact chromatin....

  3. Three-dimensional (3D) structure prediction and function analysis of the chitin-binding domain 3 protein HD73_3189 from Bacillus thuringiensis HD73.

    Science.gov (United States)

    Zhan, Yiling; Guo, Shuyuan

    2015-01-01

    Bacillus thuringiensis (Bt) is capable of producing a chitin-binding protein believed to be functionally important to bacteria during the stationary phase of its growth cycle. In this paper, the chitin-binding domain 3 protein HD73_3189 from B. thuringiensis has been analyzed by computer technology. Primary and secondary structural analyses demonstrated that HD73_3189 is negatively charged and contains several α-helices, aperiodical coils and β-strands. Domain and motif analyses revealed that HD73_3189 contains a signal peptide, an N-terminal chitin binding 3 domains, two copies of a fibronectin-like domain 3 and a C-terminal carbohydrate binding domain classified as CBM_5_12. Moreover, analysis predicted the protein's associated localization site to be the cell wall. Ligand site prediction determined that amino acid residues GLU-312, TRP-334, ILE-341 and VAL-382 exposed on the surface of the target protein exhibit polar interactions with the substrate.

  4. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    Science.gov (United States)

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  5. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays

    Directory of Open Access Journals (Sweden)

    Regina Augustin

    2011-01-01

    Full Text Available The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases.

  6. Insight on AV-45 binding in white and grey matter from histogram analysis: a study on early Alzheimer's disease patients and healthy subjects

    Science.gov (United States)

    Nemmi, Federico; Saint-Aubert, Laure; Adel, Djilali; Salabert, Anne-Sophie; Pariente, Jérémie; Barbeau, Emmanuel; Payoux, Pierre; Péran, Patrice

    2014-01-01

    Purpose AV-45 amyloid biomarker is known to show uptake in white matter in patients with Alzheimer’s disease (AD) but also in healthy population. This binding; thought to be of a non-specific lipophilic nature has not yet been investigated. The aim of this study was to determine the differential pattern of AV-45 binding in healthy and pathological populations in white matter. Methods We recruited 24 patients presenting with AD at early stage and 17 matched, healthy subjects. We used an optimized PET-MRI registration method and an approach based on intensity histogram using several indexes. We compared the results of the intensity histogram analyses with a more canonical approach based on target-to-cerebellum Standard Uptake Value (SUVr) in white and grey matters using MANOVA and discriminant analyses. A cluster analysis on white and grey matter histograms was also performed. Results White matter histogram analysis revealed significant differences between AD and healthy subjects, which were not revealed by SUVr analysis. However, white matter histograms was not decisive to discriminate groups, and indexes based on grey matter only showed better discriminative power than SUVr. The cluster analysis divided our sample in two clusters, showing different uptakes in grey but also in white matter. Conclusion These results demonstrate that AV-45 binding in white matter conveys subtle information not detectable using SUVr approach. Although it is not better than standard SUVr to discriminate AD patients from healthy subjects, this information could reveal white matter modifications. PMID:24573658

  7. Insight on AV-45 binding in white and grey matter from histogram analysis: a study on early Alzheimer's disease patients and healthy subjects

    International Nuclear Information System (INIS)

    Nemmi, Federico; Saint-Aubert, Laure; Peran, Patrice; Adel, Djilali; Salabert, Anne-Sophie; Payoux, Pierre; Pariente, Jeremie; Barbeau, Emmanuel J.

    2014-01-01

    AV-45 amyloid biomarker is known to show uptake in white matter in patients with Alzheimer's disease (AD), but also in the healthy population. This binding, thought to be of a non-specific lipophilic nature, has not yet been investigated. The aim of this study was to determine the differential pattern of AV-45 binding in white matter in healthy and pathological populations. We recruited 24 patients presenting with AD at an early stage and 17 matched, healthy subjects. We used an optimized positron emission tomography-magnetic resonance imaging (PET-MRI) registration method and an approach based on an intensity histogram using several indices. We compared the results of the intensity histogram analyses with a more canonical approach based on target-to-cerebellum Standard Uptake Value (SUVr) in white and grey matter using MANOVA and discriminant analyses. A cluster analysis on white and grey matter histograms was also performed. White matter histogram analysis revealed significant differences between AD and healthy subjects, which were not revealed by SUVr analysis. However, white matter histograms were not decisive to discriminate groups, and indices based on grey matter only showed better discriminative power than SUVr. The cluster analysis divided our sample into two clusters, showing different uptakes in grey, but also in white matter. These results demonstrate that AV-45 binding in white matter conveys subtle information not detectable using the SUVr approach. Although it is not more efficient than standard SUVr in discriminating AD patients from healthy subjects, this information could reveal white matter modifications. (orig.)

  8. RNA-binding IMPs promote cell adhesion and invadopodia formation

    DEFF Research Database (Denmark)

    Vikesaa, Jonas; Hansen, Thomas V O; Jønson, Lars

    2006-01-01

    Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading and inva......Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading...... and invadopodia formation. Loss of IMPs was associated with a coordinate downregulation of mRNAs encoding extracellular matrix and adhesion proteins. The transcripts were present in IMP RNP granules, implying that IMPs were directly involved in the post-transcriptional control of the transcripts. In particular......-mediated invadopodia formation. Taken together, our results indicate that RNA-binding proteins exert profound effects on cellular adhesion and invasion during development and cancer formation....

  9. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  10. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Lindemose, Søren; Jensen, Michael Krogh; de Velde, Jan Van

    2014-01-01

    regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domain's sequence. The developed methodology, including the application......Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve...... the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene...

  11. Purification, crystallization and preliminary crystallographic analysis of Streptococcus pyogenes laminin-binding protein Lbp

    International Nuclear Information System (INIS)

    Linke, Christian; Caradoc-Davies, Tom T.; Proft, Thomas; Baker, Edward N.

    2008-01-01

    The S. pyogenes laminin-binding protein Lbp, which is essential for adhesion to human laminin, has been expressed, purified and crystallized. The laminin-binding protein Lbp (Spy2007) from Streptococcus pyogenes (a group A streptococcus) mediates adhesion to the human basal lamina glycoprotein laminin. Accordingly, Lbp is essential in in vitro models of cell adhesion and invasion. However, the molecular and structural basis of laminin binding by bacteria remains unknown. Therefore, the lbp gene has been cloned for recombinant expression in Escherichia coli. Lbp has been purified and crystallized from 30%(w/v) PEG 1500 by the sitting-drop vapour-diffusion method. The crystals belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 42.62, b = 92.16, c = 70.61 Å, β = 106.27°, and diffracted to 2.5 Å resolution

  12. Purification, crystallization and preliminary crystallographic analysis of Streptococcus pyogenes laminin-binding protein Lbp

    Energy Technology Data Exchange (ETDEWEB)

    Linke, Christian, E-mail: clin180@ec.auckland.ac.nz [School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Caradoc-Davies, Tom T. [School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Australian Synchrotron, Clayton, Victoria 3168 (Australia); Proft, Thomas [School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Baker, Edward N. [School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand)

    2008-02-01

    The S. pyogenes laminin-binding protein Lbp, which is essential for adhesion to human laminin, has been expressed, purified and crystallized. The laminin-binding protein Lbp (Spy2007) from Streptococcus pyogenes (a group A streptococcus) mediates adhesion to the human basal lamina glycoprotein laminin. Accordingly, Lbp is essential in in vitro models of cell adhesion and invasion. However, the molecular and structural basis of laminin binding by bacteria remains unknown. Therefore, the lbp gene has been cloned for recombinant expression in Escherichia coli. Lbp has been purified and crystallized from 30%(w/v) PEG 1500 by the sitting-drop vapour-diffusion method. The crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 42.62, b = 92.16, c = 70.61 Å, β = 106.27°, and diffracted to 2.5 Å resolution.

  13. Up-regulation of β-adrenoreceptors by drugs which cause depression

    International Nuclear Information System (INIS)

    Brand, L.; Van Rooyen, J.M.; Offermeier, J.

    1988-01-01

    A number of drugs associated with depressive episodes in man were investigated for their effects on rat cortical β-adrenoceptors, in view of the down-regulation of β-adrenoceptors caused by chronic administration of anti-depressant drugs. Scatchard analyses of [ 3 H]dihydro-alprenolol binding data provided B max and K D values for the cortical β-adrenoceptors. Up-regulation of the receptors occurred after daily injections of phenobarbitone for seven days (by 55%), pentobarbitone (by 143%), reserpine (by 82%) and propranolol (by 64%). β-adrenoceptors were not affected by daily injections of clonidine, chlorpromazine and flupenthixol for seven days. This work confirms the up-regulatory effect on β-adrenoceptors of certain drugs which produce depressions in man

  14. Adsorptive removal of Methylene blue and Methyl orange from aqueous media by carboxylated diaminoethane sporopollenin: On the usability of an aminocarboxilic acid functionality-bearing solid-stationary phase in column techniques

    International Nuclear Information System (INIS)

    Ayar, Ahmet; Gezici, Orhan; Kuecuekosmanoglu, Muhittin

    2007-01-01

    The adsorption phenomena of Methylene blue (MB) and Methyl orange (MO) on a carboxylated diaminoethane sporopollenin (CDAE-S) solid phase were investigated in a column arrangement by using breakthrough technique. The adsorption phenomena were evaluated using some common adsorption isotherm models and Scatchard plot analysis, and obtained results were interpreted for evaluating the usability of CDAE-S for removal, recovery and preconcentration of the studied dyes both at the laboratory and industrial scales. On the basis of Scatchard plot analysis, the interaction types between the CDAE-S and the studied dyes were criticized in terms of affinity phenomena. Thus, the usability of a biomacromolecule-derived material, CDAE-S, as a cheap, environmentally-friendly and effective solid-stationary phase exhibiting both cation-exchange and anion-exchange characteristics at the same time, is discussed through the present study. Besides, from the obtained results, the protonated CDAE-S, which functionally resembles an amino acid structure, are presented as a two-in-one solid-stationary phase, and its adaptability to common processes performed under column conditions is also drawn in detail

  15. Neutron activation analysis of heavy metal binding by fungal cell walls

    International Nuclear Information System (INIS)

    Crusberg, T.C.; Mayer, J.A.

    1994-01-01

    Aqueous effluents are produced during nuclear power and nuclear weapons development activities which frequently contain low levels of dissolved radioactive nuclides. A number of laboratories are now focusing attention to renewable biological materials to provide traps for low concentrations of dissolved radioactive metal ions in wastewater effluents. The term BIOTRAP can be used to describe such materials, and in this laboratory cell wall preparations of the fungus Penicillium ochro-chloron have been employed to demonstrate their capacity and affinity to reversibly bind and remove copper(2). Since neutron activation analysis (NAA) was readily available, that method was one of several applied to this problem as a suitable analytical methodology to study heavy metal-to-BIOTRAP interactions. Copper and mercury provide good examples of metals which are capable of undergoing activation by thermal neutrons. In NAA, 63 Cu (69.1% natural abundance) is converted to 64 Cu which has a half live of 12.7 hr, and 202 Hg (29.7 % natural abundance) is converted to 203 Hg which has a half life of 46.,6 d

  16. Synthesis and characterization of imprinted sorbent for separation of gramine from bovine serum albumin

    International Nuclear Information System (INIS)

    Luliński, Piotr; Klejn, Dorota; Maciejewska, Dorota

    2016-01-01

    The aim of this study was to develop an efficient sorbent for separation of N,N-dimethyl-3-aminomethylindole (gramine) from bovine serum albumin. An imprinting technology was involved in the synthesis of polymers from nine different functional monomers in the presence of ethylene glycol dimethacrylate as a cross-linker. The analysis of binding capacities showed that the highest specificity towards gramine was achieved when 4-vinylbenzoic acid was used as the functional monomer in methanol to form the bulk imprinted polymer, MIP1 (imprinting factor equal to 21.3). The Scatchard analysis of MIP1 showed two classes of binding sites with the dissociation constants K_d equal to 0.105 and 6.52 μmol L"−"1. The composition and morphology of polymers were defined by "1"3C CP/MAS NMR, BET and SEM-EDS analyses. The recognition mechanism of MIP1 was tested using the structurally related bioanalytes, and the dominant role of indole moiety and ethylamine side chain was revealed. A new MISPE protocol was optimized for separation of gramine. The total recoveries on MIP1 were equal to 94 ± 12 % from standard solutions and 85 ± 11 % from bovine serum albumin. - Highlights: • Indole alkaloid (gramine) imprinted polymer was synthesized. • Very high specifity of sorbent towards gramine was achieved. • Physico-chemical characteristics of novel material was presented. • Efficient MISPE protocol was proposed for separation of gramine from model sample.

  17. Synthesis and characterization of imprinted sorbent for separation of gramine from bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Luliński, Piotr; Klejn, Dorota; Maciejewska, Dorota, E-mail: dmaciejewska@wum.edu.pl

    2016-08-01

    The aim of this study was to develop an efficient sorbent for separation of N,N-dimethyl-3-aminomethylindole (gramine) from bovine serum albumin. An imprinting technology was involved in the synthesis of polymers from nine different functional monomers in the presence of ethylene glycol dimethacrylate as a cross-linker. The analysis of binding capacities showed that the highest specificity towards gramine was achieved when 4-vinylbenzoic acid was used as the functional monomer in methanol to form the bulk imprinted polymer, MIP1 (imprinting factor equal to 21.3). The Scatchard analysis of MIP1 showed two classes of binding sites with the dissociation constants K{sub d} equal to 0.105 and 6.52 μmol L{sup −1}. The composition and morphology of polymers were defined by {sup 13}C CP/MAS NMR, BET and SEM-EDS analyses. The recognition mechanism of MIP1 was tested using the structurally related bioanalytes, and the dominant role of indole moiety and ethylamine side chain was revealed. A new MISPE protocol was optimized for separation of gramine. The total recoveries on MIP1 were equal to 94 ± 12 % from standard solutions and 85 ± 11 % from bovine serum albumin. - Highlights: • Indole alkaloid (gramine) imprinted polymer was synthesized. • Very high specifity of sorbent towards gramine was achieved. • Physico-chemical characteristics of novel material was presented. • Efficient MISPE protocol was proposed for separation of gramine from model sample.

  18. Competitive protein binding assay

    International Nuclear Information System (INIS)

    Kaneko, Toshio; Oka, Hiroshi

    1975-01-01

    The measurement of cyclic GMP (cGMP) by competitive protein binding assay was described and discussed. The principle of binding assay was represented briefly. Procedures of our method by binding protein consisted of preparation of cGMP binding protein, selection of 3 H-cyclic GMP on market, and measurement procedures. In our method, binding protein was isolated from the chrysalis of silk worm. This method was discussed from the points of incubation medium, specificity of binding protein, the separation of bound cGMP from free cGMP, and treatment of tissue from which cGMP was extracted. cGMP existing in the tissue was only one tenth or one scores of cGMP, and in addition, cGMP competed with cGMP in binding with binding protein. Therefore, Murad's technique was applied to the isolation of cGMP. This method provided the measurement with sufficient accuracy; the contamination by cAMP was within several per cent. (Kanao, N.)

  19. Structure prediction and binding sites analysis of curcin protein of Jatropha curcas using computational approaches.

    Science.gov (United States)

    Srivastava, Mugdha; Gupta, Shishir K; Abhilash, P C; Singh, Nandita

    2012-07-01

    Ribosome inactivating proteins (RIPs) are defense proteins in a number of higher-plant species that are directly targeted toward herbivores. Jatropha curcas is one of the biodiesel plants having RIPs. The Jatropha seed meal, after extraction of oil, is rich in curcin, a highly toxic RIP similar to ricin, which makes it unsuitable for animal feed. Although the toxicity of curcin is well documented in the literature, the detailed toxic properties and the 3D structure of curcin has not been determined by X-ray crystallography, NMR spectroscopy or any in silico techniques to date. In this pursuit, the structure of curcin was modeled by a composite approach of 3D structure prediction using threading and ab initio modeling. Assessment of model quality was assessed by methods which include Ramachandran plot analysis and Qmean score estimation. Further, we applied the protein-ligand docking approach to identify the r-RNA binding residue of curcin. The present work provides the first structural insight into the binding mode of r-RNA adenine to the curcin protein and forms the basis for designing future inhibitors of curcin. Cloning of a future peptide inhibitor within J. curcas can produce non-toxic varieties of J. curcas, which would make the seed-cake suitable as animal feed without curcin detoxification.

  20. Application of magnetic molecularly imprinted polymers for extraction of imidacloprid from eggplant and honey.

    Science.gov (United States)

    Kumar, Niranjan; Narayanan, Neethu; Gupta, Suman

    2018-07-30

    A magnetic molecularly imprinted polymer (MMIP) adsorbent for imidacloprid was prepared using non-covalent approach with functionalized nano Fe 3 O 4 particles (magnetic cores), imidacloprid (template), acrylic acid (functional monomer), ethylene glycol dimethacrylate (cross linker) and azobisisobutyronitrile (initiator) and used for selective separation of imidacloprid from honey and vegetable samples. The polymers were characterized using FT-IR spectroscopy, SEM and TEM images. For analysis of imidacloprid LC-MS/MS equipment was used. Adsorption kinetics was best explained by pseudo-second-order kinetic model. Adsorption data fitted well into linearized Freundlich equation (R 2  > 0.98). Scatchard plot analysis indicates the presence of two classes of binding sites in the MMIPs with the C max of 1889.6 µg g -1 and 65448.9 µg g -1 , respectively. MMIPs demonstrated much higher affinity for imidacloprid over structurally similar analogues acetamiprid (α = 23.59) and thiamethoxam (α = 17.15). About 87.1 ± 5.0% and 90.6 ± 5.6% of the added imidacloprid was recovered from MMIPs in case of fortified eggplant and honey samples, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Kinetic analysis of transport and opioid receptor binding of [3H](-)-cyclofoxy in rat brain in vivo: Implications for human studies

    International Nuclear Information System (INIS)

    Sawada, Y.; Kawai, R.; McManaway, M.; Otsuki, H.; Rice, K.C.; Patlak, C.S.; Blasberg, R.G.

    1991-01-01

    [3H]Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB); estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using [18F]CF and positron emission tomography

  2. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  3. The expression of selenium-binding protein 1 is decreased in uterine leiomyoma

    Directory of Open Access Journals (Sweden)

    Quddus M Ruhul

    2010-12-01

    Full Text Available Abstract Background Selenium has been shown to inhibit cancer development and growth through the mediation of selenium-binding proteins. Decreased expression of selenium-binding protein 1 has been reported in cancers of the prostate, stomach, colon, and lungs. No information, however, is available concerning the roles of selenium-binding protein 1 in uterine leiomyoma. Methods Using Western Blot analysis and immunohistochemistry, we examined the expression of selenium-binding protein 1 in uterine leiomyoma and normal myometrium in 20 patients who had undergone hysterectomy for uterine leiomyoma. Results and Discussion The patient age ranged from 34 to 58 years with a mean of 44.3 years. Proliferative endometrium was seen in 8 patients, secretory endometrium in 7 patients, and atrophic endometrium in 5 patients. Two patients showed solitary leiomyoma, and eighteen patients revealed 2 to 5 tumors. Tumor size ranged from 1 to 15.5 cm with a mean of 4.3 cm. Both Western Blot analysis and immunohistochemistry showed a significant lower level of selenium-binding protein 1 in leiomyoma than in normal myometrium. Larger tumors had a tendency to show a lower level of selenium-binding protein 1 than smaller ones, but the difference did not reach a statistical significance. The expression of selenium-binding protein 1 was the same among patients with proliferative, secretory, and atrophic endometrium in either leiomyoma or normal myometrium. Also, we did not find a difference of selenium-binding protein 1 level between patients younger than 45 years and older patients in either leiomyoma or normal myometrium. Conclusions Decreased expression of selenium-binding protein 1 in uterine leiomyoma may indicate a role of the protein in tumorigenesis. Our findings may provide a basis for future studies concerning the molecular mechanisms of selenium-binding protein 1 in tumorigenesis as well as the possible use of selenium in prevention and treatment of uterine

  4. Exploring the composition of protein-ligand binding sites on a large scale.

    Directory of Open Access Journals (Sweden)

    Nickolay A Khazanov

    Full Text Available The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data for establishing general trends of residue composition from currently available protein structures. We present an analysis of 3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant "valid" ligands from "invalid" small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no known biological function. Contacts are found to differ between these classes of ligands, indicating that residue composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future studies of binding-site composition.

  5. [3H]naloxone as an opioid receptor label: Analysis of binding site heterogeneity and use for determination of opioid affinities of casomorphin analogues

    International Nuclear Information System (INIS)

    Schnittler, M.; Repke, H.; Liebmann, C.; Schrader, U.; Schulze, H.P.; Neubert, K.

    1990-01-01

    The nonselective antagonist [ 3 H]naloxone was used to identify opioid receptors in rat brain membranes. The multiple naloxone binding sites were related to different opioid receptors by means of selective opiod ligands as well as various β-casomorphin analogues. Analysis of binding site heterogeneity was performed using several computer curve fitting methods. The results indicate that structurally modified casomorphin peptides are able to discriminate between μ 1 and μ 2 binding sites. The affinities to the μ sites obtained with [ 3 H]naloxone as label are in a good agreement with those from experiments with the μ selective radioligand [ 3 H]DAGO. The μ 1 site affinities of these casomorphin derivatives are well correlated with their antinociceptive potencies. This finding suggests the mediation of the analgesic activity via the high-affinity μ 1 subtype. (author)

  6. A microscopic insight from conformational thermodynamics to functional ligand binding in proteins.

    Science.gov (United States)

    Sikdar, Samapan; Chakrabarti, J; Ghosh, Mahua

    2014-12-01

    We show that the thermodynamics of metal ion-induced conformational changes aid to understand the functions of protein complexes. This is illustrated in the case of a metalloprotein, alpha-lactalbumin (aLA), a divalent metal ion binding protein. We use the histograms of dihedral angles of the protein, generated from all-atom molecular dynamics simulations, to calculate conformational thermodynamics. The thermodynamically destabilized and disordered residues in different conformational states of a protein are proposed to serve as binding sites for ligands. This is tested for β-1,4-galactosyltransferase (β4GalT) binding to the Ca(2+)-aLA complex, in which the binding residues are known. Among the binding residues, the C-terminal residues like aspartate (D) 116, glutamine (Q) 117, tryptophan (W) 118 and leucine (L) 119 are destabilized and disordered and can dock β4GalT onto Ca(2+)-aLA. No such thermodynamically favourable binding residues can be identified in the case of the Mg(2+)-aLA complex. We apply similar analysis to oleic acid binding and predict that the Ca(2+)-aLA complex can bind to oleic acid through the basic histidine (H) 32 of the A2 helix and the hydrophobic residues, namely, isoleucine (I) 59, W60 and I95, of the interfacial cleft. However, the number of destabilized and disordered residues in Mg(2+)-aLA are few, and hence, the oleic acid binding to Mg(2+)-bound aLA is less stable than that to the Ca(2+)-aLA complex. Our analysis can be generalized to understand the functionality of other ligand bound proteins.

  7. Theoretical Analysis of Allosteric and Operator Binding for Cyclic-AMP Receptor Protein Mutants

    Science.gov (United States)

    Einav, Tal; Duque, Julia; Phillips, Rob

    2018-02-01

    Allosteric transcription factors undergo binding events both at their inducer binding sites as well as at distinct DNA binding domains, and it is often difficult to disentangle the structural and functional consequences of these two classes of interactions. In this work, we compare the ability of two statistical mechanical models - the Monod-Wyman-Changeux (MWC) and the Koshland-N\\'emethy-Filmer (KNF) models of protein conformational change - to characterize the multi-step activation mechanism of the broadly acting cyclic-AMP receptor protein (CRP). We first consider the allosteric transition resulting from cyclic-AMP binding to CRP, then analyze how CRP binds to its operator, and finally investigate the ability of CRP to activate gene expression. In light of these models, we examine data from a beautiful recent experiment that created a single-chain version of the CRP homodimer, thereby enabling each subunit to be mutated separately. Using this construct, six mutants were created using all possible combinations of the wild type subunit, a D53H mutant subunit, and an S62F mutant subunit. We demonstrate that both the MWC and KNF models can explain the behavior of all six mutants using a small, self-consistent set of parameters. In comparing the results, we find that the MWC model slightly outperforms the KNF model in the quality of its fits, but more importantly the parameters inferred by the MWC model are more in line with structural knowledge of CRP. In addition, we discuss how the conceptual framework developed here for CRP enables us to not merely analyze data retrospectively, but has the predictive power to determine how combinations of mutations will interact, how double mutants will behave, and how each construct would regulate gene expression.

  8. Spectroscopic analysis on the binding interaction between tetracycline hydrochloride and bovine proteins β-casein, α-lactalbumin

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Hongna; Tang, Lin, E-mail: tanglin@sdnu.edu.cn; Gao, Xin; Jia, Jingjing; Lv, Henghui

    2016-10-15

    We investigated the binding interaction between tetracycline hydrochloride (TCH) and bovine proteins β-casein (β-CN), α-lactalbumin (α-LA) in aqueous solution by multi-spectroscopic methods and molecular modeling techniques. Fluorescence and time-resolved fluorescence showed that TCH effectively quenched the intrinsic fluorescence of bovine proteins via static quenching, while there was a single class of binding site on protein. Thermodynamic parameters revealed that electrostatic forces played major roles in the interaction between β-CN and TCH, whereas α-LA-TCH complex were stabilized by hydrogen bonds and van der Waals forces. Moreover, circular dichroism spectra (CD spectra), ultraviolet visible absorption spectra (UV–vis absorption spectra), and fluorescence Excitation-Emission Matrix (EEM) spectra results indicated the secondary structure of bovine proteins was changed in the presence of TCH with the α-helix percentage of protein-TCH complexes decreased. Molecular modeling analysis supported the experimental results well. In addition, the research of surface hydrophobicity further verified tertiary structure of proteins was changed in the presence of TCH and the possible changes of protein function. These results achieved from experiments may be valuable in the milk industry and food safety.

  9. Spectroscopic analysis on the binding interaction between tetracycline hydrochloride and bovine proteins β-casein, α-lactalbumin

    International Nuclear Information System (INIS)

    Bi, Hongna; Tang, Lin; Gao, Xin; Jia, Jingjing; Lv, Henghui

    2016-01-01

    We investigated the binding interaction between tetracycline hydrochloride (TCH) and bovine proteins β-casein (β-CN), α-lactalbumin (α-LA) in aqueous solution by multi-spectroscopic methods and molecular modeling techniques. Fluorescence and time-resolved fluorescence showed that TCH effectively quenched the intrinsic fluorescence of bovine proteins via static quenching, while there was a single class of binding site on protein. Thermodynamic parameters revealed that electrostatic forces played major roles in the interaction between β-CN and TCH, whereas α-LA-TCH complex were stabilized by hydrogen bonds and van der Waals forces. Moreover, circular dichroism spectra (CD spectra), ultraviolet visible absorption spectra (UV–vis absorption spectra), and fluorescence Excitation-Emission Matrix (EEM) spectra results indicated the secondary structure of bovine proteins was changed in the presence of TCH with the α-helix percentage of protein-TCH complexes decreased. Molecular modeling analysis supported the experimental results well. In addition, the research of surface hydrophobicity further verified tertiary structure of proteins was changed in the presence of TCH and the possible changes of protein function. These results achieved from experiments may be valuable in the milk industry and food safety.

  10. Analysis of Hereditary Elliptocytosis with Decreased Binding of Eosin-5-maleimide to Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Suemori

    2015-01-01

    Full Text Available Flow cytometric test for analyzing the eosin-5-maleimide (EMA binding to red blood cells has been believed to be a specific method for diagnosing hereditary spherocytosis (HS. However, it has been reported that diseases other than HS, such as hereditary pyropoikilocytosis (HPP and Southeast Asian ovalocytosis (SAO, which are forms in the category of hereditary elliptocytosis (HE, show decreased EMA binding to red blood cells. We analyzed EMA binding to red blood cells in 101 healthy control subjects and 42 HS patients and obtained a mean channel fluorescence (MCF cut-off value of 36.4 (sensitivity 0.97, specificity 0.95. Using this method, we also analyzed 12 HE patients. Among them, four HE patients showed the MCF at or below the cut-off value. It indicates that some HE patients have decreased EMA binding to red blood cells. Two of these four HE patients were classified as common HE, and two were spherocytic HE with reduced spectrin. This study demonstrates that, in addition to patients with HPP or SAO, some HE patients have decreased EMA binding to red blood cells.

  11. Acid-basic and complexation properties of a sedimentary humic acid. A study on the Barra Bonita reservoir of Tietê river, São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Abate Gilberto

    2001-01-01

    Full Text Available Acid-base and complexation properties of humic acid (HA isolated from a river sediment were studied by potentiometric titration, adopting the discrete site distribution model and the modified Gran functions for data fitting. Six classes of titratable groups were characterized, with pKa values between 2.4 and 10.2. Carboxylic groups accounted for 66% of the total of ionizable sites. The complexing properties were studied with regard to Cu2+, Pb2+, Cd2+ and Zn2+ ions by potentiometric titration using Cu ion selective electrode, or amalgam electrodes (Pb, Cd and Zn. The data treatment by the Scatchard method revealed two binding sites for copper and lead and one binding site for cadmium and zinc. The average stability constants were in the following order: log KHA-Cu > log KHA-Pb > log KHA-Cd @ log KHA-Zn, while the complexing capacity order, Cc, was: Pb > Cu > Cd @ Zn.

  12. Specificity of anion-binding in the substrate-pocket ofbacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Facciotti, Marc T.; Cheung, Vincent S.; Lunde, Christopher S.; Rouhani, Shahab; Baliga, Nitin S.; Glaeser, Robert M.

    2003-08-30

    The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff-base binding site, and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side-chain of S85. On the basis of these x-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K{sub d}, for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.

  13. Identifying Interactions that Determine Fragment Binding at Protein Hotspots.

    Science.gov (United States)

    Radoux, Chris J; Olsson, Tjelvar S G; Pitt, Will R; Groom, Colin R; Blundell, Tom L

    2016-05-12

    Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project.

  14. Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Harndahl, Mikkel; Rasmussen, Michael

    2011-01-01

    a HLA-I molecule (HLA-A*11:01), thereby generating recombinant human/swine chimeric MHC-I molecules as well as the intact SLA-1*0401 molecule. Biochemical peptide-binding assays and positional scanning combinatorial peptide libraries were used to analyze the peptide-binding motifs of these molecules....... A pan-specific predictor of peptide–MHC-I binding, NetMHCpan, which was originally developed to cover the binding specificities of all known HLA-I molecules, was successfully used to predict the specificities of the SLA-1*0401 molecule as well as the porcine/human chimeric MHC-I molecules. These data......In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules. These are highly polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating CTLs. The polymorphism of the MHC...

  15. Analysis of fluorescently labeled substance P analogs: binding, imaging and receptor activation

    Directory of Open Access Journals (Sweden)

    Simmons Mark A

    2001-06-01

    Full Text Available Abstract Background Substance P (SP is a peptide neurotransmitter found in central and peripheral nerves. SP is involved in the control of smooth muscle, inflammation and nociception. The amino acid sequence of SP is Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2. Five different forms of fluorescently labeled SP have recently been synthesized, in which Alexa 488, BODIPY Fl, fluorescein, Oregon Green 488 or tetramethylrhodamine has been covalently linked to SP at Lys3. Here, these novel analogs are characterized as to their ligand binding, receptor activation and fluorescence labeling properties. Results Competition binding studies, using radiolabeled [125I] SP, revealed that all of the labeled forms of SP, except for Alexa 488-SP, effectively competed with radiolabeled SP for binding at the rat SP receptor. With the exception of Alexa 488-SP, all of the SP analogs produced Ca++ elevations and fluorescence labeling of the SP receptor expressed in Chinese hamster ovary cells. In SP-responsive neurons, BODIPY Fl-SP and Oregon Green 488-SP were as effective as unlabeled SP in producing a reduction of the M-type K+ current. Fluorescein-SP produced variable results, while tetramethylrhodamine-SP was less potent and Alexa 488-SP was less effective on intact neurons. Conclusions The above results show that fluorescent labeling of SP altered the biological activity and the binding properties of the parent peptide. Oregon Green 488 and BODIPY FL-SP are the most useful fluorophores for labeling SP without affecting its biological activity. Given these results, these probes can now be utilized in further investigations of the mechanisms of SPR function, including receptor localization, internalization and recycling.

  16. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G.

    Science.gov (United States)

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus

    2017-01-01

    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm -positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis , respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis . The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis.

  17. Characterization of receptors for recombinant human tumor necrosis factor-alpha from human placental membranes

    International Nuclear Information System (INIS)

    Aiyer, R.A.; Aggarwal, B.B.

    1990-01-01

    High affinity receptors for recombinant human tumor necrosis factor-alpha (rhTNF-alpha) were identified on membranes prepared from full term human placenta. Highly purified rhTNF-alpha iodinated by the iodogen method was found to bind placental membranes in a displaceable manner with an approximate dissociation constant (KD) of 1.9 nM. The membrane bound TNF-alpha receptor could be solubilized by several detergents with optimum extraction being obtained with 1% Triton X-100. The binding of 125I-rhTNF-alpha to the solubilized receptor was found to be time and temperature dependent, yielding maximum binding within 1 h, 24 h and 48 h at 37 degrees C, 24 degrees C and 4 degrees C, respectively. However, the maximum binding obtainable at 4 degrees C was only 40% of that at 37 degrees C. The binding 125I-rhTNF-alpha to solubilized placental membrane extracts was displaceable by unlabeled rhTNF-alpha, but not by a related protein recombinant human tumor necrosis factor-beta (rhTNF-beta; previously called lymphotoxin). This is similar to the behavior of TNF-alpha receptors derived from detergent-solubilized cell extracts, although on intact cells, both rhTNF-alpha and rhTNF-beta bind with equal affinity to TNF receptors. The Scatchard analysis of the binding data of the solubilized receptor revealed high affinity binding sites with a KD of approximately 0.5 nM and a receptor concentration of about 1 pmole/mg protein. Gel filtration of the solubilized receptor-ligand complexes on Sephacryl S-300 revealed two different peaks of radioactivity at approximate molecular masses of 50,000 Da and 400,000 Da. The 400,000 dalton peak corresponded to the receptor-ligand complex. Overall, our results suggest that high affinity receptors for TNF-alpha are present on human placental membranes and provide evidence that these receptors may be different from that of rhTNF-beta

  18. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    Science.gov (United States)

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Directory of Open Access Journals (Sweden)

    Xu Yu-Dong

    2010-08-01

    Full Text Available Abstract Background The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR, which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma. Methods In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism. Results In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses. Conclusions Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.

  20. The conserved Tarp actin binding domain is important for chlamydial invasion.

    Directory of Open Access Journals (Sweden)

    Travis J Jewett

    2010-07-01

    Full Text Available The translocated actin recruiting phosphoprotein (Tarp is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells.

  1. Characterization of a high affinity cocaine binding site in rat brain

    International Nuclear Information System (INIS)

    Calligaro, D.; Eldefrawi, M.

    1986-01-01

    Binding of [ 3 H]cocaine to synaptic membranes from whole rat brain was reversible and saturable. Nonlinear regression analysis of binding isotherms indicated two binding affinities: one with k/sub d/ = 16 nM, B/sub max/ = 0.65 pmoles/mg protein and the other with K/sub d/ = 660 nM, B/sub max/ = 5.1 pmoles/mg protein. The high-affinity binding of [ 3 H]cocaine was sensitive to the actions of trypsin and chymotrypsin but not carboxypeptidase, and was eliminated by exposure of the membranes to 95 0 C for 5 min. Specific binding at 2 nM was higher at pH 8.8 than at pH 7.0. Binding of [ 3 H]cocaine (15 nM) was inhibited by increasing concentrations of Na + ions. Several cocaine analogues, neurotransmitter uptake inhibitors and local anesthetics displaced specific [ 3 H]cocaine binding at 2 nM with various potencies. The cocaine analogue (-)-norcocaine was the most potent (IC 50 = 10 nM), while the local anesthetic tetracaine was the least potent in inhibiting [ 3 H]cocaine binding. Several biogenic amine uptake inhibitors, including tricyclic antidepressants and phencyclidine, had IC 50 values below μM concentrations

  2. Preliminary screening and identification of the peptide binding to hepatocarcinoma cell

    International Nuclear Information System (INIS)

    Zhu Xiaohua; Wu Ha

    2004-01-01

    Objective: The present study was performed to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display of random peptide library with the purpose of developing a new peptide which may be potentially used as target delivery carrier in the biological target diagnosis or therapy for liver cancer. Methods: A peptide 12-mer phage display library was used to screen and isolate peptide that bind to human hepatocarcinoma cell, and four rounds subtractive panning were carried out with the human hepatocarcinoma cell line HepG2 as the target. The affinities of selected phage clones to human hepatocarcinoma cell were determined with ELISA and compared with human liver cell and other tumor cells of different tissue origins respectively. In addition, the binding site in the tumor cells was observed with immunofluorescence analysis under confocal light microscopy. The amino acid sequences of phages that bind HepG2 specifically were deduced though DNA sequencing. Based on the results of DNA sequence, a 16-mer peptide (WH16) was designed and synthesized. Binding ability of the new peptide WH16 was determined with competitive inhibition test. Results: After four rounds panning, the phages that bound to and internalized in human hepatocarcinoma cell were isolated. ELISA and immunofluorescence analysis confirmed the affinity of these phages to hepatpcarcinoma cells 56.57%(17/30) of the isolated phages displayed repeated sequence FLLEPHLMDTSM, and FLEP was defined as conservative motif. Binding of the selected phage to HepG2 cells was inhibited by synthesized peptide WH16, which strongly support that cellular binding of phage is mediated though its displayed peptide and WH16 can also bind to HepG2. Conclusion: It is feasible to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display of random peptide libraries. The sequence of peptide that can bind to

  3. Preliminary screening and identification of the peptide binding to hepatocarcinoma cell

    Energy Technology Data Exchange (ETDEWEB)

    Xiaohua, Zhu; Ha, Wu [Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2004-07-01

    Objective: The present study was performed to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display of random peptide library with the purpose of developing a new peptide which may be potentially used as target delivery carrier in the biological target diagnosis or therapy for liver cancer. Methods: A peptide 12-mer phage display library was used to screen and isolate peptide that bind to human hepatocarcinoma cell, and four rounds subtractive panning were carried out with the human hepatocarcinoma cell line HepG2 as the target. The affinities of selected phage clones to human hepatocarcinoma cell were determined with ELISA and compared with human liver cell and other tumor cells of different tissue origins respectively. In addition, the binding site in the tumor cells was observed with immunofluorescence analysis under confocal light microscopy. The amino acid sequences of phages that bind HepG2 specifically were deduced though DNA sequencing. Based on the results of DNA sequence, a 16-mer peptide (WH16) was designed and synthesized. Binding ability of the new peptide WH16 was determined with competitive inhibition test. Results: After four rounds panning, the phages that bound to and internalized in human hepatocarcinoma cell were isolated. ELISA and immunofluorescence analysis confirmed the affinity of these phages to hepatpcarcinoma cells 56.57%(17/30) of the isolated phages displayed repeated sequence FLLEPHLMDTSM, and FLEP was defined as conservative motif. Binding of the selected phage to HepG2 cells was inhibited by synthesized peptide WH16, which strongly support that cellular binding of phage is mediated though its displayed peptide and WH16 can also bind to HepG2. Conclusion: It is feasible to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display of random peptide libraries. The sequence of peptide that can bind to

  4. Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Fabrizio Fierro

    2017-09-01

    Full Text Available Human G-protein coupled receptors (hGPCRs constitute a large and highly pharmaceutically relevant membrane receptor superfamily. About half of the hGPCRs' family members are chemosensory receptors, involved in bitter taste and olfaction, along with a variety of other physiological processes. Hence these receptors constitute promising targets for pharmaceutical intervention. Molecular modeling has been so far the most important tool to get insights on agonist binding and receptor activation. Here we investigate both aspects by bioinformatics-based predictions across all bitter taste and odorant receptors for which site-directed mutagenesis data are available. First, we observe that state-of-the-art homology modeling combined with previously used docking procedures turned out to reproduce only a limited fraction of ligand/receptor interactions inferred by experiments. This is most probably caused by the low sequence identity with available structural templates, which limits the accuracy of the protein model and in particular of the side-chains' orientations. Methods which transcend the limited sampling of the conformational space of docking may improve the predictions. As an example corroborating this, we review here multi-scale simulations from our lab and show that, for the three complexes studied so far, they significantly enhance the predictive power of the computational approach. Second, our bioinformatics analysis provides support to previous claims that several residues, including those at positions 1.50, 2.50, and 7.52, are involved in receptor activation.

  5. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins

    OpenAIRE

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their func...

  6. To bind or not to bind? Different temporal binding effects from voluntary pressing and releasing actions.

    Science.gov (United States)

    Zhao, Ke; Chen, Yu-Hsin; Yan, Wen-Jing; Fu, Xiaolan

    2013-01-01

    Binding effect refers to the perceptual attraction between an action and an outcome leading to a subjective compression of time. Most studies investigating binding effects exclusively employ the "pressing" action without exploring other types of actions. The present study addresses this issue by introducing another action, releasing action or the voluntary lifting of the finger/wrist, to investigate the differences between voluntary pressing and releasing actions. Results reveal that releasing actions led to robust yet short-lived temporal binding effects, whereas pressing condition had steady temporal binding effects up to super-seconds. The two actions also differ in sensitivity to changes in temporal contiguity and contingency, which could be attributed to the difference in awareness of action. Extending upon current models of "willed action," our results provide insights from a temporal point of view and support the concept of a dual system consisting of predictive motor control and top-down mechanisms.

  7. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Science.gov (United States)

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  8. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Directory of Open Access Journals (Sweden)

    Mihaly Varadi

    Full Text Available Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  9. Measurement of {sup 11}C-raclopride binding in micropig brain with high and low specific activities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Jin; Lee, Jae Sung; Eo, Jae Seon [Seoul National University College of Medicine, Seoul (Korea, Republic of)] (and others)

    2005-07-01

    In vitro, a saturation hyperbola or Scatchard plot is applied for the determination of receptor density (Bmax) and affinity (Kd). Simillary, Bmax and Kd could be obtained in vivo by performing two or more PET experiments with high and low specific activities (SA). To measure these parameters, the binding potential (BP) of 11C-raclopride for striatal D2 receptor in micropig brain at high and low SA was measured in this study. A normal male PWG micropig (weight: 38 kg, age: 24 months) was used in this study. The animals were anesthetized with ketamine (2 mL/10 kg, i.m.) and xylazine (1mL/10kg, i.m.), and placed in a supine position. Dynamic PET data was acquired for 60 min after injection of 11C-raclopride (2.5 mCi) through the catheter placed in a femoral vein. High SA and low SA (6.8 uCi/nmol) PET and T1 SPGR MRI scans were performed. MR image was co-registered to the static PET images and ROIs were drawn on striatum and cerebellum to obtain the time activity curve. The BP in striatum was computed by both the Lammertsma and Logan reference tissue methods using cerebellum tissue input function. BP parametric images were also generated using the Logan method. The value of striatum BP was 1.46/0.32 (high SA / low SA) and 1.34/0.31 in Lammertsma and Logan methods, respectively. The D2 occupancy by the cold raclopride was approximately 78% in micropig striatum. The Logan BP parametric image visualized well the change of receptor occupancy between the two scans. In this study, BP values at high and low SA and their percent change estimated by the two different methods were correlated well. This preliminary result suggests that the experimental procedures established in this study would be useful for the quantification of the density of D2 receptor and affinity in the micropig brain.

  10. Identification of potential small molecule binding pockets on Rho family GTPases.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Ortiz-Sanchez

    Full Text Available Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (>100 and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.

  11. Binding of (/sup 3/H)imipramine to human platelet membranes with compensation for saturable binding to filters and its implication for binding studies with brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, O.M.; Wood, K.M.; Williams, D.C.

    1984-08-01

    Apparent specific binding of (/sup 3/H)imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high- and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding (KD less than 2 microM) of imipramine to human platelet membranes was demonstrated and its significance discussed.

  12. Amelogenin-cytokeratin 14 interaction in ameloblasts during enamel formation.

    Science.gov (United States)

    Ravindranath, R M; Tam, W Y; Bringas, P; Santos, V; Fincham, A G

    2001-09-28

    The enamel protein amelogenin binds to the GlcNAc-mimicking peptide (GMp) (Ravindranath, R. M. H., Tam, W., Nguyen, P., and Fincham, A. G. (2000) J. Biol. Chem. 275, 39654-39661). The GMp motif is found in the N-terminal region of CK14, a differentiation marker for ameloblasts. The binding affinity of CK14 and amelogenin was confirmed by dosimetric binding of CK14 to recombinant amelogenin (rM179), and to the tyrosine-rich amelogenin polypeptide. The specific binding site for CK14 was identified in the amelogenin trityrosyl motif peptide (ATMP) of tyrosine-rich amelogenin polypeptide and specific interaction between CK14 and [(3)H]ATMP was confirmed by Scatchard analysis. Blocking rM179 with GlcNAc, GMp, or CK14 with ATMP abrogates the CK14-amelogenin interaction. CK14 failed to bind to ATMP when the third proline was substituted with threonine, as in some cases of human X-linked amelogenesis imperfecta or when tyrosyl residues were substituted with phenylalanine. Morphometry of developing teeth distinguished three phases of enamel formation; growth initiation phase (days 0-1), prolific growth phase (days 1-7), and growth cessation phase (post-day 7). Confocal microscopy revealed co-assembly of CK14/amelogenin in the perinuclear region of ameloblasts on day 0, migration of the co-assembled CK14/amelogenin to the apical region of the ameloblasts from day 1, reaching a peak on days 3-5, and a collapse of the co-assembly. Autoradiography with [(3)H]ATMP and [(3)H]GMp corroborated the dissociation of the co-assembly at the ameloblast Tomes' process. It is proposed that CK14 play a chaperon role for nascent amelogenin polypeptide during amelogenesis.

  13. Studies on interaction of insulin and insulin receptor in rat liver cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y; Hara, H; Kawate, R; Kawasaki, T [Hiroshima Univ. (Japan). School of Medicine

    1975-07-01

    Rat liver was homogenized with a Polytron PT 20 ST and fractionated by differential centrifugation. Prepared plasma membranes (100 ..mu..g protein) were incubated with enzymatically iodinated /sup 125/I-insulin (0.3 ng, specific activity 107 ..mu..Ci/..mu..g) in 25 mM Tris-HCl buffer, pH 7.5, containing 0.9% NaCl and 1% bovine serum albumin. The 12,000xg- and 17,000xg-sediments obtained after subfractionation of liver homogenates showed almost equally high specific binding activity with /sup 125/I-insulin and less activity was detected in the 600 g-, 5,000 g- and 40,000 g- sediments and the 40,000 g- supernatant. Specific binding of insulin with the membrane fraction was time-, temperature- and ionic strength-dependent. The highest binding was obtained under conditions in which the membrane fraction was incubated with insulin for 24 hours at 4/sup 0/C in the buffer containing 1 M NaCl. Under these conditions, specific binding of /sup 125/I-insulin was 26.8% of the total radioactivity. The effect of native insulin on the binding of /sup 125/I-insulin with the membrane fraction was studied in the range of 0--6.4 x 10/sup 5/ ..mu..U/ml of unlabeled insulin and a distinct competitive displacement of /sup 125/I-insulin with native insulin was observed between 10 and 10/sup 4/ ..mu..U/ml. Kinetic studies by Scatchard plot analysis of the above results revealed heterogeneity in insulin receptors or receptor sites, one with a high affinity of 10/sup 9/ M/sup -1/ order and the other with a low affinity of 10/sup 8/ M/sup -1/ order. Both affinities were also affected by temperature and ionic strength.

  14. Development of estrogen receptor beta binding prediction model using large sets of chemicals.

    Science.gov (United States)

    Sakkiah, Sugunadevi; Selvaraj, Chandrabose; Gong, Ping; Zhang, Chaoyang; Tong, Weida; Hong, Huixiao

    2017-11-03

    We developed an ER β binding prediction model to facilitate identification of chemicals specifically bind ER β or ER α together with our previously developed ER α binding model. Decision Forest was used to train ER β binding prediction model based on a large set of compounds obtained from EADB. Model performance was estimated through 1000 iterations of 5-fold cross validations. Prediction confidence was analyzed using predictions from the cross validations. Informative chemical features for ER β binding were identified through analysis of the frequency data of chemical descriptors used in the models in the 5-fold cross validations. 1000 permutations were conducted to assess the chance correlation. The average accuracy of 5-fold cross validations was 93.14% with a standard deviation of 0.64%. Prediction confidence analysis indicated that the higher the prediction confidence the more accurate the predictions. Permutation testing results revealed that the prediction model is unlikely generated by chance. Eighteen informative descriptors were identified to be important to ER β binding prediction. Application of the prediction model to the data from ToxCast project yielded very high sensitivity of 90-92%. Our results demonstrated ER β binding of chemicals could be accurately predicted using the developed model. Coupling with our previously developed ER α prediction model, this model could be expected to facilitate drug development through identification of chemicals that specifically bind ER β or ER α .

  15. Association of Ulex europaeus agglutinin I binding with invasion in endometrial carcinoma.

    Science.gov (United States)

    Ambros, R A; Kurman, R J

    1993-10-01

    Ulex europaeus agglutinin I (UEA-I), a lectin which specifically binds L-fucose, has been shown to extensively bind endometrial carcinoma cells but not benign endometrial glands. Patterns of UEA-I binding were examined in five cases of uteri containing proliferative endometrium, five cases of endometrial hyperplasia, and 54 cases of endometrioid (typical) carcinoma of the endometrium and correlated with the histologic features of the tumor and its behavior. Whereas proliferative endometrium showed luminal staining only, diffuse cytoplasmic staining was frequently seen in hyperplasia and carcinoma. Carcinomas with a high percentage of tumor cells staining with UEA-I tended to be high-grade with a greater tendency to deep myometrial and vascular invasion than tumors with little or no staining. By univariate survival analysis, the extent of UEA-I binding was found to correlate with patient survival. By multivariate analysis, however, survival correlated most closely with the presence of deep myometrial and vascular invasion, and UEA-I binding was not found to be an independent prognostic indicator. This study suggests that increased fucosylation of proteins in endometrioid cancer cells may play a role in myometrial and vascular invasion.

  16. Conformational Transitions and Convergence of Absolute Binding Free Energy Calculations

    Science.gov (United States)

    Lapelosa, Mauro; Gallicchio, Emilio; Levy, Ronald M.

    2011-01-01

    The Binding Energy Distribution Analysis Method (BEDAM) is employed to compute the standard binding free energies of a series of ligands to a FK506 binding protein (FKBP12) with implicit solvation. Binding free energy estimates are in reasonably good agreement with experimental affinities. The conformations of the complexes identified by the simulations are in good agreement with crystallographic data, which was not used to restrain ligand orientations. The BEDAM method is based on λ -hopping Hamiltonian parallel Replica Exchange (HREM) molecular dynamics conformational sampling, the OPLS-AA/AGBNP2 effective potential, and multi-state free energy estimators (MBAR). Achieving converged and accurate results depends on all of these elements of the calculation. Convergence of the binding free energy is tied to the level of convergence of binding energy distributions at critical intermediate states where bound and unbound states are at equilibrium, and where the rate of binding/unbinding conformational transitions is maximal. This finding mirrors similar observations in the context of order/disorder transitions as for example in protein folding. Insights concerning the physical mechanism of ligand binding and unbinding are obtained. Convergence for the largest FK506 ligand is achieved only after imposing strict conformational restraints, which however require accurate prior structural knowledge of the structure of the complex. The analytical AGBNP2 model is found to underestimate the magnitude of the hydrophobic driving force towards binding in these systems characterized by loosely packed protein-ligand binding interfaces. Rescoring of the binding energies using a numerical surface area model corrects this deficiency. This study illustrates the complex interplay between energy models, exploration of conformational space, and free energy estimators needed to obtain robust estimates from binding free energy calculations. PMID:22368530

  17. SP-A binding sites on bovine alveolar macrophages.

    Science.gov (United States)

    Plaga, S; Plattner, H; Schlepper-Schaefer, J

    1998-11-25

    Surfactant protein A (SP-A) binding to bovine alveolar macrophages was examined in order to characterize SP-A binding proteins on the cell surface and to isolate putative receptors from these cells that could be obtained in large amounts. Human SP-A, unlabeled or labeled with gold particles, was bound to freshly isolated macrophages and analyzed with ELISA or the transmission electron microscope. Binding of SP-A was inhibited by Ca2+ chelation, by an excess of unlabeled SP-A, or by the presence of 20 mg/ml mannan. We conclude that bovine alveolar macrophages expose binding sites for SP-A that are specific and that depend on Ca2+ and on mannose residues. For isolation of SP-A receptors with homologous SP-A as ligand we isolated SP-A from bovine lung lavage. SDS-PAGE analysis of the purified SP-A showed a protein of 32-36 kDa. Functional integrity of the protein was demonstrated. Bovine SP-A bound to Dynabeads was used to isolate SP-A binding proteins. From the fractionated and blotted proteins of the receptor preparation two proteins bound SP-A in a Ca2+-dependent manner, a 40-kDa protein showing mannose dependency and a 210-kDa protein, showing no mannose sensitivity. Copyright 1998 Academic Press.

  18. Dynamics of TBP binding to the TATA box

    Science.gov (United States)

    Schluesche, Peter; Heiss, Gregor; Meisterernst, Michael; Lamb, Don C.

    2008-02-01

    Gene expression is highly controlled and regulated in living cells. One of the first steps in gene transcription is recognition of the promoter site by the TATA box Binding Protein (TBP). TBP recruits other transcriptions factors and eventually the RNA polymerase II to transcribe the DNA in mRNA. We developed a single pair Förster Resonance Energy Transfer (spFRET) assay to investigate the mechanism of gene regulation. Here, we apply this assay to investigate the initial binding process of TBP to the adenovirus major late (AdML) promoter site. From the spFRET measurements, we were able to identify two conformations of the TBP-DNA complex that correspond to TBP bound in the correct and the opposite orientation. Increased incubation times or the presence of the transcription factor TFIIA improved the alignment of TBP on the promoter site. Binding of TBP to the TATA box shows a rich dynamics with abrupt transitions between multiple FRET states. A frame-wise histogram analysis revealed the presence of at least six discrete states, showing that TBP binding is more complicated than previously thought. Hence, the spFRET assay is very sensitive to the conformation of the TBP-DNA complex and is very promising tool for investigating the pathway of TBP binding in detail.

  19. pocketZebra: a web-server for automated selection and classification of subfamily-specific binding sites by bioinformatic analysis of diverse protein families.

    Science.gov (United States)

    Suplatov, Dmitry; Kirilin, Eugeny; Arbatsky, Mikhail; Takhaveev, Vakil; Svedas, Vytas

    2014-07-01

    The new web-server pocketZebra implements the power of bioinformatics and geometry-based structural approaches to identify and rank subfamily-specific binding sites in proteins by functional significance, and select particular positions in the structure that determine selective accommodation of ligands. A new scoring function has been developed to annotate binding sites by the presence of the subfamily-specific positions in diverse protein families. pocketZebra web-server has multiple input modes to meet the needs of users with different experience in bioinformatics. The server provides on-site visualization of the results as well as off-line version of the output in annotated text format and as PyMol sessions ready for structural analysis. pocketZebra can be used to study structure-function relationship and regulation in large protein superfamilies, classify functionally important binding sites and annotate proteins with unknown function. The server can be used to engineer ligand-binding sites and allosteric regulation of enzymes, or implemented in a drug discovery process to search for potential molecular targets and novel selective inhibitors/effectors. The server, documentation and examples are freely available at http://biokinet.belozersky.msu.ru/pocketzebra and there are no login requirements. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Preparation and characterisation of core-shell CNTs@MIPs nanocomposites and selective removal of estrone from water samples.

    Science.gov (United States)

    Gao, Ruixia; Su, Xiaoqian; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2011-01-15

    This paper reports the preparation of carbon nanotubes (CNTs) functionalized with molecularly imprinted polymers (MIPs) for advanced removal of estrone. CNTs@Est-MIPs nanocomposites with a well-defined core-shell structure were obtained using a semi-covalent imprinting strategy, which employed a thermally reversible covalent bond at the surface of silica-coated CNTs for a large-scale production. The morphology and structure of the products were characterised by transmission electron microscopy and Fourier transform infrared spectroscopy. The adsorption properties were demonstrated by equilibrium rebinding experiments and Scatchard analysis. The results demonstrate that the imprinted nanocomposites possess favourable selectivity, high capacity and fast kinetics for template molecule uptake, yielding an adsorption capacity of 113.5 μmol/g. The synthetic process is quite simple, and the different batches of synthesized CNTs@Est-MIPs nanocomposites showed good reproducibility in template binding. The feasibility of removing estrogenic compounds from environmental water using the CNTs@Est-MIPs nanocomposites was demonstrated using water samples spiked with estrone. Copyright © 2010 Elsevier B.V. All rights reserved.