WorldWideScience

Sample records for binding energy difference

  1. A = 4 0+ - 1+ binding-energy difference

    International Nuclear Information System (INIS)

    Gibson, B.F.; Lehman, D.R.

    1982-01-01

    The A = 4 Λ-hypernuclei provide a rich source of information about the s-wave properties of the fundamental hyperon-nucleon (YN) force as well as offer a unique opportunity to investigate the complications that arise in calculations of the properties of bound systems in which one baryon (here the Λ) with a given isospin couples strongly to another (the Σ) with a different isospin. The Λ 4 H - Λ 4 He isodoublet ground-state energies are not consistent with a charge symmetry hypothesis for the YN interaction. The (spin-flip) excitation energies are quite sensitive to the ΛN - ΣN coupling of the YN interaction. In particular, when one represents the free YN interaction in terms of one-channel effective ΛN potentials, the resulting 0 + (ground) state and 1 + (excited) spin-flip state are inversely ordered in terms of binding energies, the 1 + state being more bound. It is the Σ suppression that results from the reduced strength of the ΛN - ΣN off-diagonal coupling potential when the trinucleon core is restricted to isospin-1/2 which we study here. We find this spin-isospin suppression of the Λ-Σ conversion, which is due to the composite nature of the nuclear cores of the Λ 4 H and Λ 4 He hypernuclei, to be a significant factor in understanding the 0 + - 1 + binding energy relationship

  2. Experimental electron binding energies for thulium in different matrices

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Kovalík, Alojz; Filosofov, D. V.; Ryšavý, Miloš; Perevoshchikov, L. L.; Yushkevich, Yu. V.; Zbořil, M.

    2015-01-01

    Roč. 202, JUL (2015), s. 46-55 ISSN 0368-2048 R&D Projects: GA MŠk LG14004; GA ČR(CZ) GAP203/12/1896 Institutional support: RVO:61389005 Keywords : Tm-169 * (169)yb * atomic environment * electron binding energy * chemical shift * natural atomic level width Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.561, year: 2015

  3. Contribution of charge symmetry breaking interactions in binding energy difference of mirror nuclei

    International Nuclear Information System (INIS)

    Asghari, M.

    2006-01-01

    Nolen-Schiffer Anomaly in mirror nuclei due to the NN interactions with isospin mixing between T=0 and T=1 mesons of the same spin and parity are investigated. With the computation of coulomb energy along with the charge symmetry breaking effects provide a reasonably accurate description of binding energy differences between 39 Ca- 39 K , 41 Sc- 41 Ca mirror nuclei

  4. A test of Wigner's spin-isospin symmetry from double binding energy differences

    International Nuclear Information System (INIS)

    Van Isacker, P.; Warner, D.D.; Brenner, D.S.

    1995-01-01

    It is shown that the anomalously large double binding energy differences for even-even N = Z nuclei are a consequence of Wigner's SU(4) symmetry. These, and similar quantities for odd-mass and odd-odd nuclei, provide a simple and distinct signature of this symmetry in N ≅ Z nuclei. (authors). 16 refs., 2 figs., 1 tab

  5. Relativistic deformed mean-field calculation of binding energy differences of mirror nuclei

    International Nuclear Information System (INIS)

    Koepf, W.; Barreiro, L.A.

    1996-01-01

    Binding energy differences of mirror nuclei for A=15, 17, 27, 29, 31, 33, 39 and 41 are calculated in the framework of relativistic deformed mean-field theory. The spatial components of the vector meson fields and the photon are fully taken into account in a self-consistent manner. The calculated binding energy differences are systematically smaller than the experimental values and lend support to the existence of the Okamoto-Nolen-Schiffer anomaly found decades ago in nonrelativistic calculations. For the majority of the nuclei studied, however, the results are such that the anomaly is significantly smaller than the one obtained within state-of-the-art nonrelativistic calculations. (author). 35 refs

  6. Mechanical Control of ATP Synthase Function: Activation Energy Difference between Tight and Loose Binding Sites

    KAUST Repository

    Beke-Somfai, Tamás

    2010-01-26

    Despite exhaustive chemical and crystal structure studies, the mechanistic details of how FoF1-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations using a recent highresolution X-ray structure, we conclude that formation of the P-O bond may be achieved through a transition state (TS) with a planar PO3 - ion. Surprisingly, there is a more than 40 kJ/mol difference between barrier heights of the loose and tight binding sites of the enzyme. This indicates that even a relatively small change in active site conformation, induced by the γ-subunit rotation, may effectively block the back reaction in βTP and, thus, promote ATP. © 2009 American Chemical Society.

  7. Mechanical Control of ATP Synthase Function: Activation Energy Difference between Tight and Loose Binding Sites

    KAUST Repository

    Beke-Somfai, Tamás; Lincoln, Per; Nordén, Bengt

    2010-01-01

    Despite exhaustive chemical and crystal structure studies, the mechanistic details of how FoF1-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations

  8. A Correlation between the Activity of Candida antarctica Lipase B and Differences in Binding Free Energies of Organic Solvent and Substrate

    DEFF Research Database (Denmark)

    Banik, Sindrila Dutta; Nordblad, Mathias; Woodley, John

    2016-01-01

    in an inhibitory effect which is also confirmed by the binding free energies for the solvent and substrate molecules estimated from the simulations. Consequently, the catalytic activity of CALB decreases in polar solvents. This effect is significant, and CALB is over 10 orders of magnitude more active in nonpolar...... of the enzyme may be ascribed to binding of solvent molecules to the enzyme active site region and the solvation energy of substrate molecules in the different solvents. Polar solvent molecules interact strongly with CALB and compete with the substrate to bind to the active site region, resulting...

  9. The role of charge symmetry breaking in binding energy difference of 17F-17O, 15O-15N mirror nuclei

    International Nuclear Information System (INIS)

    Asghari, M.

    2004-01-01

    Charge symmetry breaking potential due to the exchange of pseudoscalar(π-η),(π-η') and vector(ρ-ω) mesons in mirror nuclei are considered. With the computation of coulomb energy along with the present charge symmetry breaking effects provide a reasonably accurate description of the binding energy differences between mirror nuclei

  10. Binding energies of cluster ions

    International Nuclear Information System (INIS)

    Parajuli, R.; Matt, S.; Scheier, P.; Echt, O.; Stamatovic, A.; Maerk, T.D.

    2002-01-01

    The binding energy of charged clusters may be measured by analyzing the kinetic energy released in the metastable decay of mass selected parent ions. Using finite heat bath theory to determine the binding energies of argon, neon, krypton, oxygen and nitrogen from their respective average kinetic energy released were carried out. A high-resolution double focussing two-sector mass spectrometer of reversed Nier-Johnson type geometry was used. MIKE ( mass-analysed ion kinetic energy) were measured to investigate decay reactions of mass-selected ions. For the inert gases neon (Ne n + ), argon (Ar n + ) and krypton (Kr n + ), it is found that the binding energies initially decrease with increasing size n and then level off at a value above the enthalpy of vaporization of the condensed phase. Oxygen cluster ions shown a characteristic dependence on cluster size (U-shape) indicating a change in the metastable fragmentation mechanism when going from the dimer to the decamer ion. (nevyjel)

  11. Skyrmions with low binding energies

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, Mike, E-mail: m.n.gillard@leeds.ac.uk; Harland, Derek, E-mail: d.g.harland@leeds.ac.uk; Speight, Martin, E-mail: speight@maths.leeds.ac.uk

    2015-06-15

    Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansätze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.

  12. Skyrmions with low binding energies

    International Nuclear Information System (INIS)

    Gillard, Mike; Harland, Derek; Speight, Martin

    2015-01-01

    Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansätze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values

  13. Skyrmions with low binding energies

    Directory of Open Access Journals (Sweden)

    Mike Gillard

    2015-06-01

    Full Text Available Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansätze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.

  14. The effect of higher order different meson exchange nucleon-nucleon interactions on the three-nucleon binding energy coupling problem

    International Nuclear Information System (INIS)

    Osman, A.; Ramadan, S.

    1989-01-01

    Faddeev equations of bound three-nucleon system are presented as a set of integral equations. To solve them, a sutable form of the nucleon-nucleon interactions is used: with the exchange of a scalar meson, a pseudoscalar meson and a massless vector meson. Higher orders of these different meson exchanges in the nucleon-nucleon interactions have been taken into account. With these nuclear forces and nucleon-nucleon interactions, the three-nucleon binding energy is calculated by solving the Faddeev integral equations. The obtained value of the three-nucleon binding energy is 8.441 MeV. The inclusion of the higher order terms of the different meson exchange in the nuclear nucleon-nucleon interaction is found to affect the three-nucleon binding by about 3.92%. 3 figs., 16 refs

  15. New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein-Protein Interfaces.

    Science.gov (United States)

    Simões, Inês C M; Costa, Inês P D; Coimbra, João T S; Ramos, Maria J; Fernandes, Pedro A

    2017-01-23

    Knowing how proteins make stable complexes enables the development of inhibitors to preclude protein-protein (P:P) binding. The identification of the specific interfacial residues that mostly contribute to protein binding, denominated as hot spots, is thus critical. Here, we refine an in silico alanine scanning mutagenesis protocol, based on a residue-dependent dielectric constant version of the Molecular Mechanics/Poisson-Boltzmann Surface Area method. We have used a large data set of structurally diverse P:P complexes to redefine the residue-dependent dielectric constants used in the determination of binding free energies. The accuracy of the method was validated through comparison with experimental data, considering the per-residue P:P binding free energy (ΔΔG binding ) differences upon alanine mutation. Different protocols were tested, i.e., a geometry optimization protocol and three molecular dynamics (MD) protocols: (1) one using explicit water molecules, (2) another with an implicit solvation model, and (3) a third where we have carried out an accelerated MD with explicit water molecules. Using a set of protein dielectric constants (within the range from 1 to 20) we showed that the dielectric constants of 7 for nonpolar and polar residues and 11 for charged residues (and histidine) provide optimal ΔΔG binding predictions. An overall mean unsigned error (MUE) of 1.4 kcal mol -1 relative to the experiment was achieved in 210 mutations only with geometry optimization, which was further reduced with MD simulations (MUE of 1.1 kcal mol -1 for the MD employing explicit solvent). This recalibrated method allows for a better computational identification of hot spots, avoiding expensive and time-consuming experiments or thermodynamic integration/ free energy perturbation/ uBAR calculations, and will hopefully help new drug discovery campaigns in their quest of searching spots of interest for binding small drug-like molecules at P:P interfaces.

  16. Ce3+ 5d-centroid shift and vacuum referred 4f-electron binding energies of all lanthanide impurities in 150 different compounds

    International Nuclear Information System (INIS)

    Dorenbos, Pieter

    2013-01-01

    A review on the wavelengths of all five 4f–5d transitions for Ce 3+ in about 150 different inorganic compounds (fluorides, chlorides, bromides, iodides, oxides, sulfides, selenides, nitrides) is presented. It provides data on the centroid shift and the crystal field splitting of the 5d-configuration which are then used to estimate the Eu 2+ inter 4f-electron Coulomb repulsion energy U(6,A) in compound A. The four semi-empirical models (the redshift model, the centroid shift model, the charge transfer model, and the chemical shift model) on lanthanide levels that were developed past 12 years are briefly reviewed. It will be demonstrated how those models together with the collected data of this work and elsewhere can be united to construct schemes that contain the binding energy of electrons in the 4f and 5d states for each divalent and each trivalent lanthanide ion relative to the vacuum energy. As example the vacuum referred binding energy schemes for LaF 3 and La 2 O 3 will be constructed. - Highlights: ► An compilation on all five Ce 3+ 4f–5d energies in 150 inorganic compounds is presented. ► The relationship between the 5d centroid shift and host cation electronegativity id demonstrated. ► The electronic structure scheme of the lanthanides in La 2 O 3 and LaF 3 is presented.

  17. P-shell hyperon binding energies

    International Nuclear Information System (INIS)

    Koetsier, D.; Amos, K.

    1991-01-01

    A shell model for lambda hypernuclei has been used to determine the binding energy of the hyperon in nuclei throughout the p shell. Conventional (Cohen and Kurath) potential energies for nucleon-nucleon interactions were used with hyperon-nucleon interactions taken from Nijmegen one boson exchange potentials. The hyperon binding energies calculated from these potentials compare well with measured values. 7 refs., 2 figs

  18. Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-03-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 +/- 0.01 eV around K valley in the Brillouin zone.

  19. Predicting accurate absolute binding energies in aqueous solution

    DEFF Research Database (Denmark)

    Jensen, Jan Halborg

    2015-01-01

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic. In this paper I summarize some of the many factors that could easily contribute 1-3 kcal......-represented by continuum models. While I focus on binding free energies in aqueous solution the approach also applies (with minor adjustments) to any free energy difference such as conformational or reaction free energy differences or activation free energies in any solvent....

  20. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  1. Binding energies of hypernuclei and hypernuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R. [Argonne National Lab., IL (United States)]|[Univ. of Illinois, Chicago, IL (United States). Dept. of Physics; Murali, S.; Usmani, Q.N. [Jamia Millia Islamia, New Delhi (India). Dept. of Physics

    1996-05-01

    In part 1 the effect of nuclear core dynamics on the binding energies of {Lambda} hypernuclei is discussed in the framework of variational correlated wave functions. In particular, the authors discuss a new rearrangement energy contribution and its effect on the core polarization. In part 2 they consider the interpretation of the {Lambda} single-particle energy in terms of basic {Lambda}-nuclear interactions using a local density approximation based on a Fermi hypernetted chain calculation of the A binding to nuclear matter. To account for the data strongly repulsive 3-body {Lambda}NN forces are required. Also in this framework they discuss core polarization for medium and heavier hypernuclei.

  2. Binding energies of hypernuclei and hypernuclear interactions

    International Nuclear Information System (INIS)

    Bodmer, A.R.; Univ. of Illinois, Chicago, IL; Murali, S.; Usmani, Q.N.

    1996-01-01

    In part 1 the effect of nuclear core dynamics on the binding energies of Λ hypernuclei is discussed in the framework of variational correlated wave functions. In particular, the authors discuss a new rearrangement energy contribution and its effect on the core polarization. In part 2 they consider the interpretation of the Λ single-particle energy in terms of basic Λ-nuclear interactions using a local density approximation based on a Fermi hypernetted chain calculation of the A binding to nuclear matter. To account for the data strongly repulsive 3-body ΛNN forces are required. Also in this framework they discuss core polarization for medium and heavier hypernuclei

  3. Fitting theories of nuclear binding energies

    International Nuclear Information System (INIS)

    Bertsch, G.F.; Sabbey, B.; Uusnaekki, M.

    2005-01-01

    In developing theories of nuclear binding energy such as density-functional theory, the effort required to make a fit can be daunting because of the large number of parameters that may be in the theory and the large number of nuclei in the mass table. For theories based on the Skyrme interaction, the effort can be reduced considerably by using the singular value decomposition to reduce the size of the parameter space. We find that the sensitive parameters define a space of dimension four or so, and within this space a linear refit is adequate for a number of Skyrme parameters sets from the literature. We find no marked differences in the quality of the fit among the SLy4, the BSk4, and SkP parameter sets. The root-mean-square residual error in even-even nuclei is about 1.5 MeV, half the value of the liquid drop model. We also discuss an alternative norm for evaluating mass fits, the Chebyshev norm. It focuses attention on the cases with the largest discrepancies between theory and experiment. We show how it works with the liquid drop model and make some applications to models based on Skyrme energy functionals. The Chebyshev norm seems to be more sensitive to new experimental data than the root-mean-square norm. The method also has the advantage that candidate improvements to the theories can be assessed with computations on smaller sets of nuclei

  4. To bind or not to bind? Different temporal binding effects from voluntary pressing and releasing actions.

    Science.gov (United States)

    Zhao, Ke; Chen, Yu-Hsin; Yan, Wen-Jing; Fu, Xiaolan

    2013-01-01

    Binding effect refers to the perceptual attraction between an action and an outcome leading to a subjective compression of time. Most studies investigating binding effects exclusively employ the "pressing" action without exploring other types of actions. The present study addresses this issue by introducing another action, releasing action or the voluntary lifting of the finger/wrist, to investigate the differences between voluntary pressing and releasing actions. Results reveal that releasing actions led to robust yet short-lived temporal binding effects, whereas pressing condition had steady temporal binding effects up to super-seconds. The two actions also differ in sensitivity to changes in temporal contiguity and contingency, which could be attributed to the difference in awareness of action. Extending upon current models of "willed action," our results provide insights from a temporal point of view and support the concept of a dual system consisting of predictive motor control and top-down mechanisms.

  5. Binding Energy and Equilibrium of Compact Objects

    Directory of Open Access Journals (Sweden)

    Germano M.

    2014-04-01

    Full Text Available The theoretical analysis of the existence of a limit mass for compact astronomic ob- jects requires the solution of the Einstein’s equations of g eneral relativity together with an appropriate equation of state. Analytical solutions exi st in some special cases like the spherically symmetric static object without energy sou rces that is here considered. Solutions, i.e. the spacetime metrics, can have a singular m athematical form (the so called Schwarzschild metric due to Hilbert or a nonsingula r form (original work of Schwarzschild. The former predicts a limit mass and, conse quently, the existence of black holes above this limit. Here it is shown that, the origi nal Schwarzschild met- ric permits compact objects, without mass limit, having rea sonable values for central density and pressure. The lack of a limit mass is also demonst rated analytically just imposing reasonable conditions on the energy-matter densi ty, of positivity and decreas- ing with radius. Finally the ratio between proper mass and to tal mass tends to 2 for high values of mass so that the binding energy reaches the lim it m (total mass seen by a distant observer. As it is known the negative binding energ y reduces the gravitational mass of the object; the limit of m for the binding energy provides a mechanism for stable equilibrium of any amount of mass to contrast the gravitatio nal collapse.

  6. First calculation of the deuteron binding energy

    International Nuclear Information System (INIS)

    Schaegger, B.

    2012-01-01

    No universal constant characterizing the nuclear force has yet been found as for gravity and electromagnetism. The neutron is globally neutral with a zero net charge. The charges contained in a neutron may be separated by the electric field of a nearby proton and therefore being attracted by electrostatic induction in the same way as a rubbed plastic pen attracts small pieces of paper. There is also a magnetic force that may repel the nucleons like magnets in the proper relative orientation. In the deuteron, the heavy hydrogen nucleus, the induced electrostatic attraction is equilibrated by the magnetic repulsion between the opposite and colinear moments of the nucleons. Equilibrium is calculated by minimizing the electromagnetic interaction potential, giving a binding energy of 1.6 MeV, not much lower than the experimental value, 2.2 MeV. No fitting parameter is used: it is a true ab initio calculation

  7. Measuring Intermolecular Binding Energies by Laser Spectroscopy.

    Science.gov (United States)

    Knochenmuss, Richard; Maity, Surajit; Féraud, Géraldine; Leutwyler, Samuel

    2017-02-22

    The ground-state dissociation energy, D0(S0), of isolated intermolecular complexes in the gas phase is a fundamental measure of the interaction strength between the molecules. We have developed a three-laser, triply resonant pump-dump-probe technique to measure dissociation energies of jet-cooled M•S complexes, where M is an aromatic chromophore and S is a closed-shell 'solvent' molecule. Stimulated emission pumping (SEP) via the S0→S1 electronic transition is used to precisely 'warm' the complex by populating high vibrational levels v" of the S0 state. If the deposited energy E(v") is less than D0(S0), the complex remains intact, and is then mass- and isomer-selectively detected by resonant two-photon ionization (R2PI) with a third (probe) laser. If the pumped level is above D0(S0), the hot complex dissociates and the probe signal disappears. Combining the fluorescence or SEP spectrum of the cold complex with the SEP breakoff of the hot complex brackets D0(S0). The UV chromophores 1-naphthol and carbazole were employed; these bind either dispersively via the aromatic rings, or form a hydrogen bond via the -OH or -NH group. Dissociation energies have been measured for dispersively bound complexes with noble gases (Ne, Kr, Ar, Xe), diatomics (N2, CO), alkanes (methane to n-butane), cycloalkanes (cyclopropane to cycloheptane), and unsaturated compounds (ethene, benzene). Hydrogen-bond dissociation energies have been measured for H2O, D2O, methanol, ethanol, ethers (oxirane, oxetane), NH3 and ND3.

  8. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  9. Binding-energy distribution and dephasing of localized biexcitons

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher; Umlauff, M.

    1997-01-01

    We report on the binding energy and dephasing of localized biexciton states in narrow ZnSe multiple quantum wells. The measured binding-energy distribution of the localized biexcitons shows a width of 2.2 meV centered at 8.5 meV, and is fairly independent of the exciton localization energy. In fo...

  10. Conformational Transitions and Convergence of Absolute Binding Free Energy Calculations

    Science.gov (United States)

    Lapelosa, Mauro; Gallicchio, Emilio; Levy, Ronald M.

    2011-01-01

    The Binding Energy Distribution Analysis Method (BEDAM) is employed to compute the standard binding free energies of a series of ligands to a FK506 binding protein (FKBP12) with implicit solvation. Binding free energy estimates are in reasonably good agreement with experimental affinities. The conformations of the complexes identified by the simulations are in good agreement with crystallographic data, which was not used to restrain ligand orientations. The BEDAM method is based on λ -hopping Hamiltonian parallel Replica Exchange (HREM) molecular dynamics conformational sampling, the OPLS-AA/AGBNP2 effective potential, and multi-state free energy estimators (MBAR). Achieving converged and accurate results depends on all of these elements of the calculation. Convergence of the binding free energy is tied to the level of convergence of binding energy distributions at critical intermediate states where bound and unbound states are at equilibrium, and where the rate of binding/unbinding conformational transitions is maximal. This finding mirrors similar observations in the context of order/disorder transitions as for example in protein folding. Insights concerning the physical mechanism of ligand binding and unbinding are obtained. Convergence for the largest FK506 ligand is achieved only after imposing strict conformational restraints, which however require accurate prior structural knowledge of the structure of the complex. The analytical AGBNP2 model is found to underestimate the magnitude of the hydrophobic driving force towards binding in these systems characterized by loosely packed protein-ligand binding interfaces. Rescoring of the binding energies using a numerical surface area model corrects this deficiency. This study illustrates the complex interplay between energy models, exploration of conformational space, and free energy estimators needed to obtain robust estimates from binding free energy calculations. PMID:22368530

  11. Evaluation of binding energies by using quantum mechanical methods

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia; Postolache, Carmen

    2002-01-01

    Evaluation of binding energies (BE) in molecular structure is needed for modelling chemical and radiochemical processes by quantum-chemical methods. An important field of application is evaluation of radiolysis and autoradiolysis stability of organic and inorganic compounds as well as macromolecular structures. The current methods of calculation do not allow direct determination of BE but only of total binding energies (TBE) and enthalpies. BEs were evaluated indirectly by determining the homolytic dissociation energies. The molecular structures were built and geometrically optimized by the molecular mechanics methods MM+ and AMBER. The energy minimizations were refined by semi-empirical methods. Depending on the chosen molecular structure, the CNDO, INDO, PM3 and AM1 methods were used. To reach a high confidence level the minimizations were done for gradients lower than 10 -3 RMS. The energy values obtained by the difference of the fragment TBLs, of the transition states and initial molecular structures, respectively, were associated to the hemolytic fragmentation energy and BE, respectively. In order to evaluate the method's accuracy and to establish the application fields of the evaluation methods, the obtained values of BEs were compared with the experimental data taken from literature. To this goal there were built, geometrically optimized by semi-empirical methods and evaluated the BEs for 74 organic and inorganic compounds (alkanes, alkene, alkynes, halogenated derivatives, alcohols, aldehydes, ketones, carboxylic acids, nitrogen and sulfur compounds, water, hydrogen peroxide, ammonia, hydrazine, etc. (authors)

  12. Protein Binding Capacity of Different Forages Tannin

    Science.gov (United States)

    Yusiati, L. M.; Kurniawati, A.; Hanim, C.; Anas, M. A.

    2018-02-01

    Eight forages of tannin sources(Leucaena leucocephala, Arachis hypogaea, Mimosa pudica, Morus alba L, Swietenia mahagoni, Manihot esculenta, Gliricidia sepium, and Bauhinia purpurea)were evaluated their tannin content and protein binding capacity. The protein binding capacity of tannin were determined using precipitation of bovine serum albumin (BSA). Swietenia mahagonihas higest total tannin level and condensed tannin (CT) compared with other forages (P<0.01). The Leucaena leucocephala has highest hydrolysable tannin (HT) level (P<0.01). The total and condensed tannin content of Swietenia mahagoni were 11.928±0.04 mg/100 mg and 9.241±0.02mg/100mg dry matter (DM) of leaves. The hydrolysable tannin content of Leucaena leucocephala was 5.338±0.03 mg/100 mg DM of leaves. Binding capacity was highest in Swietenia mahagoni and Leucaena leucocephala compared to the other forages (P<0.01). The optimum binding of BSA to tannin in Leucaena leucocephala and Swietenia mahagoniwere1.181±0.44 and 1.217±0.60mg/mg dry matter of leaves. The present study reports that Swietenia mahagoni has highest of tannin content and Leucaena leucocephala and Swietenia mahagoni capacity of protein binding.

  13. Implicit ligand theory for relative binding free energies

    Science.gov (United States)

    Nguyen, Trung Hai; Minh, David D. L.

    2018-03-01

    Implicit ligand theory enables noncovalent binding free energies to be calculated based on an exponential average of the binding potential of mean force (BPMF)—the binding free energy between a flexible ligand and rigid receptor—over a precomputed ensemble of receptor configurations. In the original formalism, receptor configurations were drawn from or reweighted to the apo ensemble. Here we show that BPMFs averaged over a holo ensemble yield binding free energies relative to the reference ligand that specifies the ensemble. When using receptor snapshots from an alchemical simulation with a single ligand, the new statistical estimator outperforms the original.

  14. Perturbation method for calculating impurity binding energy in an ...

    Indian Academy of Sciences (India)

    Nilanjan Sil

    2017-12-18

    Dec 18, 2017 ... Abstract. In the present paper, we have studied the binding energy of the shallow donor hydrogenic impurity, which is confined in an inhomogeneous cylindrical quantum dot (CQD) of GaAs-AlxGa1−xAs. Perturbation method is used to calculate the binding energy within the framework of effective mass ...

  15. Extrapolations of nuclear binding energies from new linear mass relations

    DEFF Research Database (Denmark)

    Hove, D.; Jensen, A. S.; Riisager, K.

    2013-01-01

    We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...

  16. Charge compensation and binding energy referencing in XPS analysis

    International Nuclear Information System (INIS)

    Metson, J.B.

    1999-01-01

    Full text: The past decade has seen a number of significant advances in the capabilities of commercial X-ray Photoelectron spectrometers. Of note have been the near universal adoption of monochromatised X-ray sources, very useful advances in spatial resolution, particularly in spectroscopy, and radical developments in sample handling and automation. However one of the most significant advances has been the development of several relatively new concepts in charge compensation. Throughout the evolution of XPS, the ability to compensate for surface charging and accurately determine binding energies, particularly with electrically inhomogenous samples, has remained one of the most intractable problems. Beginning perhaps with the Kratos, 'in the lens' electrostatic mirror/electron source coupled with a magnetic snorkel lens, a number of concepts have been advanced which take a quite different conceptual approach to charge compensation. They differ in a number of quite fundamental ways to the electron flood type compensators widely used and absolutely essential with instruments based on monochromatised sources. The concept of the local return of secondary electrons to their point of emission, largely negates the problems associated with differential charging across different regions of the surface, and suggests the possibility of overcoming one of the central limitations of XPS, that is the inability to compare absolute binding energies of species in different electrical as well as chemical environments. The general status of charge compensation and the use of internal binding energy references in XPS will be reviewed, along with some practical examples of where these techniques work, and where there is clearly still room for further development. Copyright (1999) Australian X-ray Analytical Association Inc

  17. On binding energy of trions in bulk materials

    Science.gov (United States)

    Filikhin, Igor; Kezerashvili, Roman Ya.; Vlahovic, Branislav

    2018-03-01

    We study the negatively T- and positively T+ charged trions in bulk materials in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing Faddeev equation in configuration space. Results of calculations of the binding energies for T- are consistent with previous computational studies and are in reasonable agreement with experimental measurements, while the T+ is unbound for all considered cases. The mechanism of formation of the binding energy of trions is analyzed by comparing contributions of a mass-polarization term related to kinetic energy operators and a term related to the Coulomb repulsion of identical particles.

  18. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations

    KAUST Repository

    Evoli, Stefania

    2016-11-10

    Human serum albumin possesses multiple binding sites and transports a wide range of ligands that include the anti-inflammatory drug ibuprofen. A complete map of the binding sites of ibuprofen in albumin is difficult to obtain in traditional experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S-isomer) of ibuprofen to albumin, by using absolute binding free energy calculations in combination with classical molecular dynamics (MD) simulations and molecular docking. The most favorable binding modes correctly reproduce several experimentally identified binding locations, which include the two Sudlow\\'s drug sites (DS2 and DS1) and the fatty acid binding sites 6 and 2 (FA6 and FA2). Previously unknown details of the binding conformations were revealed for some of them, and formerly undetected binding modes were found in other protein sites. The calculated binding affinities exhibit trends which seem to agree with the available experimental data, and drastically degrade when the ligand is modeled in a protonated (neutral) state, indicating that ibuprofen associates with albumin preferentially in its charged form. These findings provide a detailed description of the binding of ibuprofen, help to explain a wide range of results reported in the literature in the last decades, and demonstrate the possibility of using simulation methods to predict ligand binding to albumin.

  19. Structure-function relationships of Na+, K+, ATP, or Mg2+ binding and energy transduction in Na,K-ATPase

    DEFF Research Database (Denmark)

    Jorgensen, Peter L.; Pedersen, Per Amstrup

    2000-01-01

    Na,K-ATPase; Mutagenesis; Na+ binding; K+ binding; Tl+ binding; Mg2+ binding; ATP binding; Cation binding site; Energy transduction......Na,K-ATPase; Mutagenesis; Na+ binding; K+ binding; Tl+ binding; Mg2+ binding; ATP binding; Cation binding site; Energy transduction...

  20. Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7, and DMF in different molar ratios, as well as electrostatic potential.

    Science.gov (United States)

    Feng, Rui-Zhi; Zhang, Shu-Hai; Ren, Fu-de; Gou, Rui-Jun; Gao, Li

    2016-06-01

    Molecular dynamics method was employed to study the binding energies on the selected crystal planes of the ε-, γ-, β-conformation 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (ε-, γ-, β-CL-20) cocrystal explosives with 1,1-diamino-2,2-dinitroethylene (FOX-7), 1,3,5,7-tetranitro- 1,3,5,7-tetrazacyclooctane with β-conformation (β-HMX) and N,N-dimethylformamide (DMF) in different molar ratios. The oxygen balance, density, detonation velocity, detonation pressure, and surface electrostatic potential were analyzed. The results indicate that the binding energies E b (*) and stabilities are in the order of 1:1 > 2:1 > 3:1 > 5:1 > 8:1 (CL-20:FOX-7/β-HMX/DMF). The values of E b (*) and stabilities of the energetic-nonenergetic CL-20/DMF cocrystals are far larger than those of the energetic-energetic CL-20/FOX-7 and CL-20/β-HMX, and those of CL-20/β-HMX are the smallest. For CL-20/FOX-7 and CL-20/β-HMX, the largest E b (*) appears in the cocrystals with the 1:1, 1:2 or 1:3 molar ratio, and the stabilities of the cocrystals with the excess ratio of CL-20 are weaker than those in the cocrystals with the excess ratio of FOX-7 or β-HMX. In CL-20/FOX-7, CL-20 prefers adopting the γ-form, and ε-CL-20 is the preference in CL-20/β-HMX, and ε-CL-20 and β-CL-20 can be found in CL-20/DMF. The CL-20/FOX-7 and CL-20/β-HMX cocrystals with low molar ratios can meet the requirements of low sensitive high energetic materials. Surface electrostatic potential reveals the nature of the sensitivity change upon the cocrystal formation. Graphical Abstract MD method was employed to study the binding energies on the selected crystal planes in the ε-, γ-, β-CL-20 cocrystals with FOX-7, β-HMX and DMF in different molar ratios. Surface electrostatic potential reveals the nature of the sensitivity change in cocrystals.

  1. Sampling and energy evaluation challenges in ligand binding protein design.

    Science.gov (United States)

    Dou, Jiayi; Doyle, Lindsey; Jr Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L; Baker, David

    2017-12-01

    The steroid hormone 17α-hydroxylprogesterone (17-OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17-OHP containing an extended, nonpolar, shape-complementary binding pocket for the four-ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17-OHP with micromolar affinity. A co-crystal structure of one of the designs revealed that 17-OHP is rotated 180° around a pseudo-two-fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same "flipped" orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two-fold symmetry of the molecule. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  2. Using the fast fourier transform in binding free energy calculations.

    Science.gov (United States)

    Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L

    2018-04-30

    According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Atom-solid binding energy shifts for K 2p and Rb 3d sublevels

    International Nuclear Information System (INIS)

    Holappa, M.; Aksela, S.; Patanen, M.; Urpelainen, S.; Aksela, H.

    2011-01-01

    Highlights: → Binding energy shifts between atom and solid. K 2p and Rb 3d sublevels were studied. → Simultaneous measurements give accurate results. → Results can be used as a reference for cluster studies. - Abstract: Binding energy shifts between free and solid state atoms for K 2p and Rb 3d photolines have been determined by measuring the vapor and solid state spectra simultaneously in similar experimental conditions applying synchrotron radiation excited photoelectron spectroscopy. This method has the important benefit that the work function is not needed to correct for different reference energy levels, therefore much more accurate values for binding energy shifts are obtained.

  4. Effect of binding in cyclic phosphorylation-dephosphorylation process and in energy transformation.

    Science.gov (United States)

    Sarkar, A; Beard, D A; Franza, B R

    2006-07-01

    The effects of binding on the phosphorylation-dephosphorylation cycle (PDPC) - one of the key components of the signal transduction processes - is analyzed based on a mathematical model. The model shows that binding of proteins, forming a complex, diminishes the ultrasensitivity of the PDPC to the differences in activity between kinase and phosphatase in the cycle. It is also found that signal amplification depends upon the strength of the binding affinity of the protein (phosphorylated or dephosphorylated) to other proteins . It is also observed that the amplification of signal is not only dependent on phosphorylation potential but also on binding properties and resulting adjustments in binding energies.

  5. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Science.gov (United States)

    Pinnaduwage, Lal A.; Boiadjiev, Vassil I.; Hawk, John E.; Gehl, Anthony C.; Fernando, Gayanath W.; Rohana Wijewardhana, L. C.

    2008-03-01

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  6. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A; Boiadjiev, Vassil I; Hawk, John E; Gehl, Anthony C [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6122 (United States); Fernando, Gayanath W [Physics Department, University of Connecticut, Storrs, CT 06269 (United States); Wijewardhana, L C Rohana [Physics Department, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2008-03-12

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  7. Measurement of Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Chen, Xi; Zhu, Bairen; Cui, Xiaodong

    Excitonic effects are prominent in monolayer crystal of transition metal dichalcogenides (TMDCs) because of spatial confinement and reduced Coulomb screening. Here we use linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE) to measure the exciton binding energy of monolayer WS2. Peaks for excitonic absorptions of the direct gap located at K valley of the Brillouin zone and transitions from multiple points near Γ point of the Brillouin zone, as well as trion side band are shown in the linear absorption spectra of WS2. But there is no gap between distinct excitons and the continuum of the interband transitions. Strong electron-phonon scattering, overlap of excitons around Γ point and the transfer of the oscillator strength from interband continuum to exciton states make it difficult to resolve the electronic interband transition edge even down to 10K. The gap between excited states of the band-edge exciton and the single-particle band is probed by TP-PLE measurements. And the energy difference between 1s exciton and the single-particle gap gives the exciton binding energy of monolayer WS2 to be about 0.71eV. The work is supported by Area of excellency (AoE/P-04/08), CRF of Hong Kong Research Grant Council (HKU9/CRF/13G) and SRT on New Materials of The University of Hong Kong.

  8. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A.

    Science.gov (United States)

    Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris

    2016-04-15

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.

  9. An Accurate Redetermination of the $^{118}Sn$ Binding Energy

    CERN Document Server

    Borzakov, S B; Faikow-Stanczyk, H; Grigoriev, Yu V; Panteleev, T; Pospísil, S; Smotritsky, L M; Telezhnikov, S A

    2001-01-01

    The energy of well-known strong {gamma}-line from {{^198}Au}, the "gold standard", has been modified in the light of new adjustments in the fundamental constants and the value of 411.80176(12) keV was determined which is 0.29 eV lower than the latest 1999 value. An energy calibration procedure for determining the neutron binding energy, {B_n}, from complicated {(n , gamma)}-spectra has been developed. A mathematically simple minimization function consisting only of terms having as parameters the coefficients of the energy calibration curve (polynomial) is used. A priori information about the relationships among the energies of different peaks on the spectrum is taking into account by a Monte Carlo simulation. The procedure was used in obtaining of {B_n} for {{^118}Sn} and {{^64}Cu}. The {gamma}-ray spectrum from thermal neutron radiative capture by {{^117}Sn} has been measured on the IBR-2 pulsed reactor. {gamma}-rays were detected by a 72 cm^3 HPGe-detector. {B_n} for {{^64}Cu} was obtained from two {gamma}-...

  10. Non-abelian binding energies from the lightcone bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Li, Daliang [Department of Physics, Yale University,New Haven, CT 06511 (United States); Department of Physics and Astronomy, Johns Hopkins University,Baltimore, MD 21218 (United States); Meltzer, David [Department of Physics, Yale University,New Haven, CT 06511 (United States); Poland, David [Department of Physics, Yale University,New Haven, CT 06511 (United States); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2016-02-23

    We analytically study the lightcone limit of the conformal bootstrap for 4-point functions containing scalars charged under global symmetries. We show the existence of large spin double-twist operators in various representations of the global symmetry group. We then compute their anomalous dimensions in terms of the central charge C{sub T}, current central charge C{sub J}, and the OPE coefficients of low dimension scalars. In AdS, these results correspond to the binding energy of two-particle states arising from the exchange of gravitons, gauge bosons, and light scalar fields. Using unitarity and crossing symmetry, we show that gravity is universal and attractive among different types of two-particle states, while the gauge binding energy can have either sign as determined by the representation of the two-particle state, with universal ratios fixed by the symmetry group. We apply our results to 4D N=1 SQCD and the 3D O(N) vector models. We also show that in a unitary CFT, if the current central charge C{sub J} stays finite when the global symmetry group becomes infinitely large, such as the N→∞ limit of the O(N) vector model, then the theory must contain an infinite number of higher spin currents.

  11. Binding energy and single-particle energies in the 16O Region

    International Nuclear Information System (INIS)

    Fiase, J.O.; Sharma, L.K.

    2004-01-01

    In this paper we present the binding energy of 16 O together with single-particle energies in the oxygen region by folding together a Hamiltonian in the rest-frame of the nucleus with two-body correlation functions based on the Nijmegen potential. We have found that the binding energies are very sensitive to the core radius rc and that the effects of tensor correlations are non-negligible.Our calculated binding energy, E B = - 127.8 MeV with r c = 0.241 fm compares well with the experimental binding energy, E B = - 127.6 MeV

  12. Binding energy effects in cascade evolution and sputtering

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1995-06-01

    The MARLOWE model was extended to include a binding energy dependent on the local crystalline order, so that atoms are bound less strongly to their lattice sites near surfaces or associated damage. Sputtering and cascade evolution were studied on the examples of self-ion irradiations of Cu and Au monocrystals. In cascades, the mean binding energy is reduced ∼8% in Cu with little dependence on the initial recoil energy; in Au, it is reduced ∼9% at 1 keV and ∼15% at 100 keV. In sputtering, the mean binding energy is reduced ∼8% in Cu and ∼15% in Au with little energy dependence; the yields are increased about half as much. Most sites from which sputtered atoms originate are isolated in both metals. Small clusters of such sites occur in Cu, but there are some large clusters in Au, especially in [111] targets. There are always more large clusters with damage-dependent binding than with a constant binding energy, but only a few clusters are compact enough to be regarded as pits

  13. Funnel metadynamics as accurate binding free-energy method

    Science.gov (United States)

    Limongelli, Vittorio; Bonomi, Massimiliano; Parrinello, Michele

    2013-01-01

    A detailed description of the events ruling ligand/protein interaction and an accurate estimation of the drug affinity to its target is of great help in speeding drug discovery strategies. We have developed a metadynamics-based approach, named funnel metadynamics, that allows the ligand to enhance the sampling of the target binding sites and its solvated states. This method leads to an efficient characterization of the binding free-energy surface and an accurate calculation of the absolute protein–ligand binding free energy. We illustrate our protocol in two systems, benzamidine/trypsin and SC-558/cyclooxygenase 2. In both cases, the X-ray conformation has been found as the lowest free-energy pose, and the computed protein–ligand binding free energy in good agreement with experiments. Furthermore, funnel metadynamics unveils important information about the binding process, such as the presence of alternative binding modes and the role of waters. The results achieved at an affordable computational cost make funnel metadynamics a valuable method for drug discovery and for dealing with a variety of problems in chemistry, physics, and material science. PMID:23553839

  14. Exciton binding energy in a pyramidal quantum dot

    Indian Academy of Sciences (India)

    A ANITHA

    2018-03-27

    Mar 27, 2018 ... screening function on exciton binding energy in a pyramid-shaped quantum dot of ... tures may generate unique properties and they show .... where Ee is the ground-state energy of the electron in ... Figure 1. The geometry of the pyramidal quantum dot. base and H is the height of the pyramid which is taken.

  15. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Science.gov (United States)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  16. Universal binding energy relation for cleaved and structurally relaxed surfaces

    International Nuclear Information System (INIS)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-01-01

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress–displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements. (paper)

  17. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    Science.gov (United States)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  18. Analysis of experimental positron-molecule binding energies

    International Nuclear Information System (INIS)

    Danielson, J R; Surko, C M; Young, J A

    2010-01-01

    Experiments show that positron annihilation on molecules frequently occurs via capture into vibrational Feshbach resonances. In these cases, the downshifts in the annihilation spectra from the vibrational mode spectra provide measures of the positron-molecule binding energies. An analysis of these binding energy data is presented in terms of the molecular dipole polarizability, the permanent dipole moment, and the number of π bonds in aromatic molecules. The results of this analysis are in reasonably good agreement with other information about positron-molecule bound states. Predictions for other targets and promising candidate molecules for further investigation are discussed.

  19. An accurate redetermination of the 118Sn binding energy

    International Nuclear Information System (INIS)

    Borzakov, S.B.; Panteleev, Ts.Ts.; Telezhnikov, S.A.; Chrien, R.E.; Faikow-Stanczyk, H.; Grigor'ev, Yu.V.; Pospisil, S.; Smotritskij, L.M.

    2001-01-01

    The energy of well-known strong γ-line from 198 Au, the 'gold standard', has been modified in the light of new adjustments in the fundamental constants and the value of 411.80176(12) keV was determined which is 0.29 eV lower than the latest 1999 value. An energy calibration procedure for determining the neutron binding energy, B n , from complicated (n,γ)-spectra has been developed. A mathematically simple minimization function consisting only of terms having as parameters the coefficients of the energy calibration curve (polynomial) is used. A priori information about the relationships among the energies of different peaks on the spectrum was taken into account by a Monte Carlo simulation. The procedure was used in obtaining of B n for 118 Sn and 64 Cu. The γ-ray spectrum from thermal neutron radiative capture by 117 Sn has been measured on the IBR-2 pulsed reactor. γ-rays were detected by a 72 cm 2 HPGe-detector. B n for 64 Cu was obtained from two γ-spectra. One spectrum was measured on the IBR-2 by the same detector. The other spectrum was measured with a pair spectrometer at the Brookhaven High Flux Beam Reactor. From these two spectra B n for 64 Cu was determined equal to 7915.52(8) keV. The mean value of two most precise results of B n for 118 Sn was determined to be 9326.35(9) keV. The B n for 57Fe was determined to be 7646.08(9) keV

  20. Accurate determination of the binding energy of the formic acid dimer: The importance of geometry relaxation

    Science.gov (United States)

    Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2014-02-01

    The formic acid dimer in its C2h-symmetrical cyclic form is stabilized by two equivalent H-bonds. The currently accepted interaction energy is 18.75 kcal/mol whereas the experimental binding energy D0 value is only 14.22 ±0.12 kcal/mol [F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm, J. Chem. Phys. 136, 151101 (2012)]. Calculation of the binding energies De and D0 at the CCSD(T) (Coupled Cluster with Single and Double excitations and perturbative Triple excitations)/CBS (Complete Basis Set) level of theory, utilizing CCSD(T)/CBS geometries and the frequencies of the dimer and monomer, reveals that there is a 3.2 kcal/mol difference between interaction energy and binding energy De, which results from (i) not relaxing the geometry of the monomers upon dissociation of the dimer and (ii) approximating CCSD(T) correlation effects with MP2. The most accurate CCSD(T)/CBS values obtained in this work are De = 15.55 and D0 = 14.32 kcal/mol where the latter binding energy differs from the experimental value by 0.1 kcal/mol. The necessity of employing augmented VQZ and VPZ calculations and relaxing monomer geometries of H-bonded complexes upon dissociation to obtain reliable binding energies is emphasized.

  1. Nuclear Cartography: Patterns in Binding Energies and Subatomic Structure

    Science.gov (United States)

    Simpson, E. C.; Shelley, M.

    2017-01-01

    Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements…

  2. Polaron binding energy in polymers: poly[methyl(phenyl)silylene

    Czech Academy of Sciences Publication Activity Database

    Nožár, Juraj; Nešpůrek, Stanislav; Šebera, Jakub

    2012-01-01

    Roč. 18, č. 2 (2012), s. 623-629 ISSN 1610-2940 R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : polaron * polaron binding energy * polysilane Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.984, year: 2012

  3. Binding energy and formation heat of UO2

    International Nuclear Information System (INIS)

    Almeida, M.R. de; Veado, J.T.; Siqueira, M.L. de

    The Born-Haber cycle is utilized for the calculation of the heat of formation of UO 2 , on the assumption that the binding energy is predominantly ionic in character. The ionization potentials of U and the repulsion energy are two critical values that influence calculations. Calculations of the ionization potentials with non-relativistic Hartree-Fock-Gaspar-Kohn-Sham approximation are presented [pt

  4. Transport Gap and exciton binding energy determination in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Stefan; Schoell, Achim; Reinert, Friedrich; Umbach, Eberhard [University of Wuerzburg (Germany). Experimental Physics II; Casu, Benedetta [Inst. f. Physik. u. Theor. Chemie, Tuebingen (Germany)

    2008-07-01

    The transport gap of an organic semiconductor is defined as the energy difference between the HOMO and LUMO levels in the presence of a hole or electron, respectively, after relaxation has occurred. Its knowledge is mandatory for the optimisation of electronic devices based on these materials. UV photoelectron spectroscopy (UPS) and inverse photoelectron spectroscopy (IPES) are routinely applied to measure these molecular levels. However, the precise determination of the transport gap on the basis of the respective data is not an easy task. It involves fundamental questions about the properties of organic molecules and their condensates, about their reaction on the experimental probe, and on the evaluation of the spectroscopic data. In particular electronic relaxation processes, which occur on the time scale of the photo excitation, have to be considered adequately. We determined the transport gap for the organic semiconductors PTCDA, Alq3, DIP, CuPc, and PBI-H4. After careful data analysis and comparison to the respective values for the optical gap we obtain values for the exciton binding energies between 0.1-0.5 eV. This is considerably smaller than commonly believed and indicates a significant delocalisation of the excitonic charge over various molecular units.

  5. Alternate Energy Sources for Thermalplastic Binding Agent Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B.J.

    1999-01-01

    A study was conducted to investigate microwave and electron beam technologies as alternate energy sources to consolidate fiber coated with a thermoplastic binding agent into preforms for composite molding applications. Bench experiments showed that both microwave and electron beam energy can produce heat sufficient to melt and consolidate a thermoplastic binding agent applied to fiberglass mat, and several two- and three-dimensional fiberglass preforms were produced with each method. In both cases, it is postulated that the heating was accomplished by the effective interaction of the microwave or electron beam energy with the combination of the mat preform and the tooling used to shape the preform. Both methods contrast with conventional thermal energy applied via infrared heaters or from a heated tool in which the heat to melt the thermoplastic binding agent must diffuse over time from the outer surface of the preform toward its center under a thermal gradient. For these reasons, the microwave and electron beam energy techniques have the potential to rapidly consolidate thick fiber preforms more efficiently than the thermal process. With further development, both technologies have the potential to make preform production more cost effective by decreasing cycle time in the preform tool, reducing energy costs, and by enabling the use of less expensive tooling materials. Descriptions of the microwave and electron beam consolidation experiments and a summary of the results are presented in this report.

  6. Photoelectron spectroscopy on the charge reorganization energy and small polaron binding energy of molecular film

    Energy Technology Data Exchange (ETDEWEB)

    Kera, Satoshi, E-mail: kera@ims.ac.jp [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan); Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Ueno, Nobuo [Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan)

    2015-10-01

    Understanding of electron-phonon coupling as well as intermolecular interaction is required to discuss the mobility of charge carrier in functional molecular solids. This article summarizes recent progress in direct measurements of valence hole-vibration coupling in ultrathin films of organic semiconductors by using ultraviolet photoelectron spectroscopy (UPS). The experimental study of hole-vibration coupling of the highest occupied molecular orbital (HOMO) state in ordered monolayer film by UPS is essential to comprehend hole-hopping transport and small-polaron related transport in organic semiconductors. Only careful measurements can attain the high-resolution spectra and provide key parameters in hole-transport dynamics, namely the charge reorganization energy and small polaron binding energy. Analyses methods of the UPS HOMO fine feature and resulting charge reorganization energy and small polaron binding energy are described for pentacene and perfluoropentacene films. Difference between thin-film and gas-phase results is discussed by using newly measured high-quality gas-phase spectra of pentacene. Methodology for achieving high-resolution UPS measurements for molecular films is also described.

  7. Molecular dynamics simulations and free energy calculations of netropsin and distamycin binding to an AAAAA DNA binding site

    Science.gov (United States)

    Dolenc, Jožica; Oostenbrink, Chris; Koller, Jože; van Gunsteren, Wilfred F.

    2005-01-01

    Molecular dynamics simulations have been performed on netropsin in two different charge states and on distamycin binding to the minor groove of the DNA duplex d(CGCGAAAAACGCG)·d(CGCGTTTTTCGCG). The relative free energy of binding of the two non-covalently interacting ligands was calculated using the thermodynamic integration method and reflects the experimental result. From 2 ns simulations of the ligands free in solution and when bound to DNA, the mobility and the hydrogen-bonding patterns of the ligands were studied, as well as their hydration. It is shown that even though distamycin is less hydrated than netropsin, the loss of ligand–solvent interactions is very similar for both ligands. The relative mobilities of the ligands in their bound and free forms indicate a larger entropic penalty for distamycin when binding to the minor groove compared with netropsin, partially explaining the lower binding affinity of the distamycin molecule. The detailed structural and energetic insights obtained from the molecular dynamics simulations allow for a better understanding of the factors determining ligand–DNA binding. PMID:15687382

  8. Molecular dynamics simulations and free energy calculations of netropsin and distamycin binding to an AAAAA DNA binding site.

    Science.gov (United States)

    Dolenc, Jozica; Oostenbrink, Chris; Koller, Joze; van Gunsteren, Wilfred F

    2005-01-01

    Molecular dynamics simulations have been performed on netropsin in two different charge states and on distamycin binding to the minor groove of the DNA duplex d(CGCGAAAAACGCG).d(CGCGTTTTTCGCG). The relative free energy of binding of the two non-covalently interacting ligands was calculated using the thermodynamic integration method and reflects the experimental result. From 2 ns simulations of the ligands free in solution and when bound to DNA, the mobility and the hydrogen-bonding patterns of the ligands were studied, as well as their hydration. It is shown that even though distamycin is less hydrated than netropsin, the loss of ligand-solvent interactions is very similar for both ligands. The relative mobilities of the ligands in their bound and free forms indicate a larger entropic penalty for distamycin when binding to the minor groove compared with netropsin, partially explaining the lower binding affinity of the distamycin molecule. The detailed structural and energetic insights obtained from the molecular dynamics simulations allow for a better understanding of the factors determining ligand-DNA binding.

  9. Role of Electrostatics in Protein-RNA Binding: The Global vs the Local Energy Landscape.

    Science.gov (United States)

    Ghaemi, Zhaleh; Guzman, Irisbel; Gnutt, David; Luthey-Schulten, Zaida; Gruebele, Martin

    2017-09-14

    U1A protein-stem loop 2 RNA association is a basic step in the assembly of the spliceosomal U1 small nuclear ribonucleoprotein. Long-range electrostatic interactions due to the positive charge of U1A are thought to provide high binding affinity for the negatively charged RNA. Short range interactions, such as hydrogen bonds and contacts between RNA bases and protein side chains, favor a specific binding site. Here, we propose that electrostatic interactions are as important as local contacts in biasing the protein-RNA energy landscape toward a specific binding site. We show by using molecular dynamics simulations that deletion of two long-range electrostatic interactions (K22Q and K50Q) leads to mutant-specific alternative RNA bound states. One of these states preserves short-range interactions with aromatic residues in the original binding site, while the other one does not. We test the computational prediction with experimental temperature-jump kinetics using a tryptophan probe in the U1A-RNA binding site. The two mutants show the distinct predicted kinetic behaviors. Thus, the stem loop 2 RNA has multiple binding sites on a rough RNA-protein binding landscape. We speculate that the rough protein-RNA binding landscape, when biased to different local minima by electrostatics, could be one way that protein-RNA interactions evolve toward new binding sites and novel function.

  10. Binding energy of impurity states in an inverse parabolic quantum well under magnetic field

    International Nuclear Information System (INIS)

    Kasapoglu, E.; Sari, H.; Soekmen, I.

    2007-01-01

    We have investigated the effects of the magnetic field which is directed perpendicular to the well on the binding energy of the hydrogenic impurities in an inverse parabolic quantum well (IPQW) with different widths as well as different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The calculations were performed within the effective mass approximation, using a variational method. We observe that IPQW structure turns into parabolic quantum well with the inversion effect of the magnetic field and donor impurity binding energy in IPQW strongly depends on the magnetic field, Al concentration at the well center and well dimensions

  11. Binding Energy, Vapor Pressure and Melting Point of Semiconductor Nanoparticles

    International Nuclear Information System (INIS)

    H. H. Farrell; C. D. Van Siclen

    2007-01-01

    Current models for the cohesive energy of nanoparticles generally predict a linear dependence on the inverse particle diameter for spherical clusters, or, equivalently, on the inverse of the cube root of the number of atoms in the cluster. Although this is generally true for metals, we find that for the group IV semiconductors, C, Si and Ge, this linear dependence does not hold. Instead, using first principles, density functional theory calculations to calculate the binding energy of these materials, we find a quadratic dependence on the inverse of the particle size. Similar results have also been obtained for the metallic group IV elements Sn and Pb. This is in direct contradiction to current assumptions. Further, as a consequence of this quadratic behavior, the vapor pressure of semiconductor nanoparticles rises more slowly with decreasing size than would be expected. In addition, the melting point of these nanoparticles will experience less suppression than experienced by metal nanoparticles with comparable bulk binding energies. This non-linearity also affects sintering or Ostwald ripening behavior of these nanoparticles as well as other physical properties that depend on the nanoparticle binding energy. The reason for this variation in size dependence involves the covalent nature of the bonding in semiconductors, and even in the 'poor' metals. Therefore, it is expected that this result will hold for compound semiconductors as well as the elemental semiconductors

  12. Polaron binding energy and effective mass in the GaAs film

    International Nuclear Information System (INIS)

    Wu Zhenhua; Yan Liangxing; Tian Qiang; Li Hua; Liu Bingcan

    2012-01-01

    The binding energy and effective mass of a polaron in a GaAs film deposited on the Al 0.3 Ga 0.7 As substrate are studied theoretically by using the fractional-dimensional space approach. Our calculations show that the polaron binding energy and mass shift decrease monotonously with increasing the film thickness. For the film thicknesses with L w ≤ 70Å and the substrate thicknesses with L b ≤ 200Å, the different values of the substrate thickness influence the polaron binding energy and mass shift in the GaAs film. The polaron binding energy and mass shift increase monotonously with increasing the substrate thickness. For the film thickness with L w ≥ 70Å or the substrate thicknesses with L b ≤ 200Å, the different values of the substrate thickness have no significant influence on the polaron binding energy and mass shift in the GaAs film deposited on the Al 0.3 Ga 0.7 As substrate.

  13. Semiphenomenological studies of the ground state binding energies of hypernuclei

    International Nuclear Information System (INIS)

    Mian, M.

    1987-01-01

    We show that the binding energies of /sub Λ/ 5 He and p-shell hypernuclei can be satisfactorily explained in the folding model approach using a density dependent effective ΛN interaction. Our analysis predicts a very reasonable value of the range of the ΛN interaction. The calculated value of B/sub Λ/ of /sub Λ/ 7 Li using the cluster model density for 6 Li and the best fit parameters of this potential supports the view that 6 Li possesses an α-d cluster structure. Using this potential we also determine the average size parameter (a 0 ) of the oscillator shell model density of nucleons in Nnot =Z core nuclei from fitting the B/sub Λ/ values of the corresponding hypernuclei. The effect of different forms of density distribution of core nuclei on the values of potential parameters is investigated and is found to be very small. As regards the form of density dependence, a rho/sup 2/3/ form is found to be the most appropriate for this purpose and is used throughout this work. Other forms do not give a satisfactory account of the data

  14. Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds

    International Nuclear Information System (INIS)

    Dorenbos, Pieter

    2013-01-01

    Employing data from luminescence spectroscopy, the inter 4f-electron Coulomb repulsion energy U(6, A) in Eu 2+/3+ impurities together with the 5d-centroid energy shift ϵ c (1,3+,A) in Ce 3+ impurities in 40 different fluoride, chloride, bromide, iodide, oxide, sulfide, and nitride compounds has been determined. This work demonstrates that the chemical environment A affects the two energies in a similar fashion; a fashion that follows the anion nephelauxetic sequence F, O, Cl, Br, N, I, S, Se. One may then calculate U(6, A) from well established and accurate ϵ c (1,3+,A) values which are then used as input to the chemical shift model proposed in Dorenbos (2012) [19]. As output it provides the chemical shift of 4f-electron binding energy and therewith the 4f-electron binding energy relative to the vacuum energy. In addition this method provides a tool to routinely establish the binding energy of electrons at the top of the valence band (work function) and the bottom of the conduction band (electron affinity) throughout the entire family of inorganic compounds. How the electronic structure of the compound and lanthanide impurities therein change with type of compound and type of lanthanide is demonstrated. -- Highlights: ► A relationship between 5d centroid shift and 4f-electron Coulomb repulsion energy is established. ► Information on the absolute 4f-electron binding energy of lanthanides in 40 compounds is provided. ► A new tool to determine absolute binding energies of electrons in valence and conduction bands is demonstrated

  15. Computational scheme for pH-dependent binding free energy calculation with explicit solvent.

    Science.gov (United States)

    Lee, Juyong; Miller, Benjamin T; Brooks, Bernard R

    2016-01-01

    We present a computational scheme to compute the pH-dependence of binding free energy with explicit solvent. Despite the importance of pH, the effect of pH has been generally neglected in binding free energy calculations because of a lack of accurate methods to model it. To address this limitation, we use a constant-pH methodology to obtain a true ensemble of multiple protonation states of a titratable system at a given pH and analyze the ensemble using the Bennett acceptance ratio (BAR) method. The constant pH method is based on the combination of enveloping distribution sampling (EDS) with the Hamiltonian replica exchange method (HREM), which yields an accurate semi-grand canonical ensemble of a titratable system. By considering the free energy change of constraining multiple protonation states to a single state or releasing a single protonation state to multiple states, the pH dependent binding free energy profile can be obtained. We perform benchmark simulations of a host-guest system: cucurbit[7]uril (CB[7]) and benzimidazole (BZ). BZ experiences a large pKa shift upon complex formation. The pH-dependent binding free energy profiles of the benchmark system are obtained with three different long-range interaction calculation schemes: a cutoff, the particle mesh Ewald (PME), and the isotropic periodic sum (IPS) method. Our scheme captures the pH-dependent behavior of binding free energy successfully. Absolute binding free energy values obtained with the PME and IPS methods are consistent, while cutoff method results are off by 2 kcal mol(-1) . We also discuss the characteristics of three long-range interaction calculation methods for constant-pH simulations. © 2015 The Protein Society.

  16. Incremental binding free energies of aluminum (III) vs. magnesium (II) complexes

    International Nuclear Information System (INIS)

    Mercero, Jose M.; Mujika, Jon I.; Matxain, Jon M.; Lopez, Xabier; Ugalde, Jesus M.

    2003-01-01

    A sequential ligand addition to the aluminum (III) cation has been studied using the B3LYP functional and a combined all-electron/pseudopotentials basis set. The aluminum complexes are compared with analogous magnesium (II) complexes. Different thermodynamical data, such as incremental binding energies, enthalpies, entropies and free energies, are presented for these addition reactions. While the magnesium (II) cation can only accommodate three negatively charged ligands, aluminum (III) accommodates four even after including bulk solvent effects. The main differences between both cations complexing with the neutral ligands, is that aluminum (III) is not able to form complexes with methanol until the number of methanol ligands is equal to 3. Magnesium (II) prefers to bind methanol and formamide when the number of ligands is small, while aluminum prefers formamide. For the largest complexes both cations prefer to bind water

  17. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.

    Science.gov (United States)

    Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle

    2015-06-09

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  18. How To Deal with Multiple Binding Poses in Alchemical Relative Protein–Ligand Binding Free Energy Calculations

    Science.gov (United States)

    2016-01-01

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  19. Free energy profiles of cocaine esterase-cocaine binding process by molecular dynamics and potential of mean force simulations.

    Science.gov (United States)

    Zhang, Yuxin; Huang, Xiaoqin; Han, Keli; Zheng, Fang; Zhan, Chang-Guo

    2016-11-25

    The combined molecular dynamics (MD) and potential of mean force (PMF) simulations have been performed to determine the free energy profile of the CocE)-(+)-cocaine binding process in comparison with that of the corresponding CocE-(-)-cocaine binding process. According to the MD simulations, the equilibrium CocE-(+)-cocaine binding mode is similar to the CocE-(-)-cocaine binding mode. However, based on the simulated free energy profiles, a significant free energy barrier (∼5 kcal/mol) exists in the CocE-(+)-cocaine binding process whereas no obvious free energy barrier exists in the CocE-(-)-cocaine binding process, although the free energy barrier of ∼5 kcal/mol is not high enough to really slow down the CocE-(+)-cocaine binding process. In addition, the obtained free energy profiles also demonstrate that (+)-cocaine and (-)-cocaine have very close binding free energies with CocE, with a negligible difference (∼0.2 kcal/mol), which is qualitatively consistent with the nearly same experimental K M values of the CocE enzyme for (+)-cocaine and (-)-cocaine. The consistency between the computational results and available experimental data suggests that the mechanistic insights obtained from this study are reasonable. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Binding energy and single–particle Energies in the 16 0 region ...

    African Journals Online (AJOL)

    ... single-particle energies in the oxygen region by folding together a Hamiltonian in the rest-frame of the nucleus with two-body correlation functions based on the Njimegen potential. We have found that the binding energies are very sensitive to the core radius rc and that the effects of tensor correlations are non-negligible.

  1. Integrating water exclusion theory into βcontacts to predict binding free energy changes and binding hot spots

    Science.gov (United States)

    2014-01-01

    Background Binding free energy and binding hot spots at protein-protein interfaces are two important research areas for understanding protein interactions. Computational methods have been developed previously for accurate prediction of binding free energy change upon mutation for interfacial residues. However, a large number of interrupted and unimportant atomic contacts are used in the training phase which caused accuracy loss. Results This work proposes a new method, βACV ASA , to predict the change of binding free energy after alanine mutations. βACV ASA integrates accessible surface area (ASA) and our newly defined β contacts together into an atomic contact vector (ACV). A β contact between two atoms is a direct contact without being interrupted by any other atom between them. A β contact’s potential contribution to protein binding is also supposed to be inversely proportional to its ASA to follow the water exclusion hypothesis of binding hot spots. Tested on a dataset of 396 alanine mutations, our method is found to be superior in classification performance to many other methods, including Robetta, FoldX, HotPOINT, an ACV method of β contacts without ASA integration, and ACV ASA methods (similar to βACV ASA but based on distance-cutoff contacts). Based on our data analysis and results, we can draw conclusions that: (i) our method is powerful in the prediction of binding free energy change after alanine mutation; (ii) β contacts are better than distance-cutoff contacts for modeling the well-organized protein-binding interfaces; (iii) β contacts usually are only a small fraction number of the distance-based contacts; and (iv) water exclusion is a necessary condition for a residue to become a binding hot spot. Conclusions βACV ASA is designed using the advantages of both β contacts and water exclusion. It is an excellent tool to predict binding free energy changes and binding hot spots after alanine mutation. PMID:24568581

  2. Exciton binding energy in a pyramidal quantum dot

    Science.gov (United States)

    Anitha, A.; Arulmozhi, M.

    2018-05-01

    The effects of spatially dependent effective mass, non-parabolicity of the conduction band and dielectric screening function on exciton binding energy in a pyramid-shaped quantum dot of GaAs have been investigated by variational method as a function of base width of the pyramid. We have assumed that the pyramid has a square base with area a× a and height of the pyramid H=a/2. The trial wave function of the exciton has been chosen according to the even mirror boundary condition, i.e. the wave function of the exciton at the boundary could be non-zero. The results show that (i) the non-parabolicity of the conduction band affects the light hole (lh) and heavy hole (hh) excitons to be more bound than that with parabolicity of the conduction band, (ii) the dielectric screening function (DSF) affects the lh and hh excitons to be more bound than that without the DSF and (iii) the spatially dependent effective mass (SDEM) affects the lh and hh excitons to be less bound than that without the SDEM. The combined effects of DSF and SDEM on exciton binding energy have also been calculated. The results are compared with those available in the literature.

  3. Cooper-pair size and binding energy for unconventional superconducting systems

    Science.gov (United States)

    Dinóla Neto, F.; Neto, Minos A.; Salmon, Octavio D. Rodriguez

    2018-06-01

    The main proposal of this paper is to analyze the size of the Cooper pairs composed by unbalanced mass fermions from different electronic bands along the BCS-BEC crossover and study the binding energy of the pairs. We are considering an interaction between fermions with different masses leading to an inter-band pairing. In addiction to the attractive interaction we have an hybridization term to couple both bands, which in general acts unfavorable for the pairing between the electrons. We get first order phase transitions as the hybridization breaks the Cooper pairs for the s-wave symmetry of the gap amplitude. The results show the dependence of the Cooper-pair size as a function of the hybridization for T = 0 . We also propose the structure of the binding energy of the inter-band system as a function of the two-bands quasi-particle energies.

  4. Towards accurate free energy calculations in ligand protein-binding studies.

    Science.gov (United States)

    Steinbrecher, Thomas; Labahn, Andreas

    2010-01-01

    Cells contain a multitude of different chemical reaction paths running simultaneously and quite independently next to each other. This amazing feat is enabled by molecular recognition, the ability of biomolecules to form stable and specific complexes with each other and with their substrates. A better understanding of this process, i.e. of the kinetics, structures and thermodynamic properties of biomolecule binding, would be invaluable in the study of biological systems. In addition, as the mode of action of many pharmaceuticals is based upon their inhibition or activation of biomolecule targets, predictive models of small molecule receptor binding are very helpful tools in rational drug design. Since the goal here is normally to design a new compound with a high inhibition strength, one of the most important thermodynamic properties is the binding free energy DeltaG(0). The prediction of binding constants has always been one of the major goals in the field of computational chemistry, because the ability to reliably assess a hypothetical compound's binding properties without having to synthesize it first would save a tremendous amount of work. The different approaches to this question range from fast and simple empirical descriptor methods to elaborate simulation protocols aimed at putting the computation of free energies onto a solid foundation of statistical thermodynamics. While the later methods are still not suited for the screenings of thousands of compounds that are routinely performed in computational drug design studies, they are increasingly put to use for the detailed study of protein ligand interactions. This review will focus on molecular mechanics force field based free energy calculations and their application to the study of protein ligand interactions. After a brief overview of other popular methods for the calculation of free energies, we will describe recent advances in methodology and a variety of exemplary studies of molecular dynamics

  5. Species differences in [11C]clorgyline binding in brain

    International Nuclear Information System (INIS)

    Fowler, Joanna S.; Ding, Yu-Shin; Logan, Jean; MacGregor, Robert R.; Shea, Colleen; Garza, Victor; Gimi, Raomond; Volkow, Nora D.; Wang, Gene-Jack; Schlyer, David; Ferrieri, Richard; Gatley, S. John; Alexoff, David; Carter, Pauline; King, Payton; Pappas, Naomi; Arnett, Carroll D.

    2001-01-01

    [ 11 C]Clorgyline selectively binds to MAO A in the human brain. This contrasts with a recent report that [ 11 C]clorgyline (in contrast to other labeled MAO A inhibitors) is not retained in the rhesus monkey brain . To explore this difference, we compared [ 11 C]clorgyline in the baboon brain before and after clorgyline pretreatment and we also synthesized deuterium substituted [ 11 C]clorgyline (and its nor-precursor) for comparison. [ 11 C]Clorgyline was not retained in the baboon brain nor was it influenced by clorgyline pretreatment or by deuterium substitution, contrasting to results in humans. This suggests a species difference in the susceptibility of MAO A to inhibition by clorgyline and represents an unusual example of where the behavior of a radiotracer in the baboon brain does not predict its behavior in the human brain

  6. Analysis of oxygen binding-energy variations for BaO on W

    Science.gov (United States)

    Haas, G. A.; Shih, A.; Mueller, D.; Thomas, R. E.

    Interatomic Auger analyses have been made of different forms of BaO layers on W substrates. Variations in Auger spectroscopy energies of the Ba4dBa5pO2p interatomic Auger transition were found to be largely governed by the O2p binding energy of the BaO adsorbate. This was illustrated by comparing results of the Auger data values with values derived from O2p binding energies using ultraviolet photoelectron spectroscopy. Very good agreement was observed not only for the W substrate but also for the W substrate which showed two oxygen-induced electronics state. Variations in binding energy were noted for different states of BaO lattice formation and for different amounts of oxidation, ranging from the transition of Ba to BaO and continuing to the BaO 2 stoichiometry and beyond. Effects were also reported for adsorbate alignment and thermal activation (i.e., reduction) of the oxidized state. An empirical relationship was found suggesting that the more tightly bound the O2p states of the BaO adsorbate were, the lower its work function would be. This link between binding energy and work function was observed to be valid not only for cases of poisoning by oxidation, but held as well during reactivation by the subsequent reduction of the oxide. In addition, this relationship also appeared to predict the low work function obtained through the introduction of substances such as Sc to the BaO-W system. Possible qualitative reasons which might contribute to this are discussed in terms of enhanced dipole effects and shifts in band structure.

  7. Binding Studies of Lamotrigine with Sera of Different Animal Species

    African Journals Online (AJOL)

    Erah

    Tropical Journal of Pharmaceutical Research, October 2009; 8 (5): 409-415. © Pharmacotherapy Group, ... determine the effect of species variation on drug plasma-protein interaction. Method: Binding data .... to membrane binding of drugs in each case. Another control ..... Goa KL, Ross SR, Chrisp P. Lamotrigine: a review.

  8. Effect of isovector coupling channel on the macroscopic part of the nuclear binding energy

    International Nuclear Information System (INIS)

    Haddad, S.

    2011-04-01

    The effect of the isovector coupling channel on the macroscopic part of the nuclear binding energy is determined utilizing the relativistic density dependent Thomas-Fermi approach for the calculation of the macroscopic part of the nuclear binding energy, and the dependency of this effect on the numbers of neutrons and protons is studied. The isovector coupling channel leads to increased nuclear binding energy, and this effect sharpens with growing excess of the number of neutrons on the number of protons. (author)

  9. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase.

    Science.gov (United States)

    Nascimento, Érica C M; Oliva, Mónica; Andrés, Juan

    2018-05-01

    In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

  10. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase

    Science.gov (United States)

    Nascimento, Érica C. M.; Oliva, Mónica; Andrés, Juan

    2018-05-01

    In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

  11. Computational identification of binding energy hot spots in protein-RNA complexes using an ensemble approach.

    Science.gov (United States)

    Pan, Yuliang; Wang, Zixiang; Zhan, Weihua; Deng, Lei

    2018-05-01

    Identifying RNA-binding residues, especially energetically favored hot spots, can provide valuable clues for understanding the mechanisms and functional importance of protein-RNA interactions. Yet, limited availability of experimentally recognized energy hot spots in protein-RNA crystal structures leads to the difficulties in developing empirical identification approaches. Computational prediction of RNA-binding hot spot residues is still in its infant stage. Here, we describe a computational method, PrabHot (Prediction of protein-RNA binding hot spots), that can effectively detect hot spot residues on protein-RNA binding interfaces using an ensemble of conceptually different machine learning classifiers. Residue interaction network features and new solvent exposure characteristics are combined together and selected for classification with the Boruta algorithm. In particular, two new reference datasets (benchmark and independent) have been generated containing 107 hot spots from 47 known protein-RNA complex structures. In 10-fold cross-validation on the training dataset, PrabHot achieves promising performances with an AUC score of 0.86 and a sensitivity of 0.78, which are significantly better than that of the pioneer RNA-binding hot spot prediction method HotSPRing. We also demonstrate the capability of our proposed method on the independent test dataset and gain a competitive advantage as a result. The PrabHot webserver is freely available at http://denglab.org/PrabHot/. leideng@csu.edu.cn. Supplementary data are available at Bioinformatics online.

  12. Accurate Estimation of the Standard Binding Free Energy of Netropsin with DNA

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2018-01-01

    Full Text Available DNA is the target of chemical compounds (drugs, pollutants, photosensitizers, etc., which bind through non-covalent interactions. Depending on their structure and their chemical properties, DNA binders can associate to the minor or to the major groove of double-stranded DNA. They can also intercalate between two adjacent base pairs, or even replace one or two base pairs within the DNA double helix. The subsequent biological effects are strongly dependent on the architecture of the binding motif. Discriminating between the different binding patterns is of paramount importance to predict and rationalize the effect of a given compound on DNA. The structural characterization of DNA complexes remains, however, cumbersome at the experimental level. In this contribution, we employed all-atom molecular dynamics simulations to determine the standard binding free energy of DNA with netropsin, a well-characterized antiviral and antimicrobial drug, which associates to the minor groove of double-stranded DNA. To overcome the sampling limitations of classical molecular dynamics simulations, which cannot capture the large change in configurational entropy that accompanies binding, we resort to a series of potentials of mean force calculations involving a set of geometrical restraints acting on collective variables.

  13. Enzymes in Commercial Cellulase Preparations Bind Differently to Dioxane Extracted Lignins

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, John M.; Mittal, Ashutosh; Katahira, Rui; Mansfield, Elisabeth; Taylor, Larry E.; Decker, Stephen R.; Himmel, Michael E.; Vinzant, Todd

    2017-04-24

    Commercial fungal cellulases used in biomass-to-biofuels processes can be grouped into three general classes: native, augmented, and engineered. To evaluate lignin binding affinities of different enzyme activities in various commercial cellulase formulations in order to determine if enzyme losses due to lignin binding can be modulated by using different enzymes of the same activity We used water:dioxane (1:9) to extract lignin from pretreated corn stover. Commercial cellulases were incubated with lignin and the unbound supernatants were evaluated for individual enzyme loss by SDS=PAGE and these were correlated with activity loss using various pNP-sugar substrates. Colorimetric assays for general glycosyl hydrolase activities showed distinct differences in enzyme binding to lignin for each enzyme activity. Native systems demonstrated low binding of endo- and exo-cellulases, high binding of xylanase, and moderate ..beta..-glucosidase binding. Engineered cellulase mixtures exhibited low binding of exo-cellulases, very strong binding of endocellulases and ..beta..- glucosidase, and mixed binding of xylanase activity. The augmented cellulase had low binding of exocellulase, high binding of endocellulase and xylanase, and moderate binding of ..beta..-glucosidase activities. Bound and unbound activities were correlated with general molecular weight ranges of proteins as measured by loss of proteins bands in bound fractions on SDS-PAGE gels. Lignin-bound high molecular weight bands correlated with binding of ..beta..-glucosidase activity. While ..beta..-glucosidases demonstrated high binding in many cases, they have been shown to remain active. Bound low molecular weight bands correlated with xylanase activity binding. Contrary to other literature, exocellulase activity did not show strong lignin binding. The variation in enzyme activity binding between the three classes of cellulases preparations indicate that it is certainly possible to alter the binding of specific

  14. Influence of host matrices on krypton electron binding energies and KLL Auger transition energies

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Perevoshchikov, L. L.; Kovalík, Alojz; Filosofov, D. V.; Yushkevich, Yu. V.; Ryšavý, Miloš; Lee, B. Q.; Kibédi, T.; Stuchbery, A. E.; Zhdanov, V. S.

    2014-01-01

    Roč. 197, DEC (2014), s. 64-71 ISSN 0368-2048 R&D Projects: GA ČR(CZ) GAP203/12/1896; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : Kr-83 * Rb-83 * Sr-83 * electron binding energy * KLL transitions * natural atomic level width * multiconfiguration Dirac-Fock calculations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.436, year: 2014

  15. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH isoforms.

    Directory of Open Access Journals (Sweden)

    Elaine C Thomas

    Full Text Available We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH, a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii communication occurs between the Bateman and catalytic domains and (iii the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.

  16. Anisotropic Lithium Insertion Behavior in Silicon Nanowires: Binding Energy, Diffusion Barrier, and Strain Effect

    KAUST Repository

    Zhang, Qianfan; Cui, Yi; Wang, Enge

    2011-01-01

    Silicon nanowires (SiNWs) have recently been shown to be promising as high capacity lithium battery anodes. SiNWs can be grown with their long axis along several different crystallographic directions. Due to distinct atomic configuration and electronic structure of SiNWs with different axial orientations, their lithium insertion behavior could be different. This paper focuses on the characteristics of single Li defects, including binding energy, diffusion barriers, and dependence on uniaxial strain in [110], [100], [111], and [112] SiNWs. Our systematic ab initio study suggests that the Si-Li interaction is weaker when the Si-Li bond direction is aligned close to the SiNW long axis. This results in the [110] and [111] SiNWs having the highest and lowest Li binding energy, respectively, and it makes the diffusion barrier along the SiNW axis lower than other pathways. Under external strain, it was found that [110] and [001] SiNWs are the most and least sensitive, respectively. For diffusion along the axial direction, the barrier increases (decreases) under tension (compression). This feature results in a considerable difference in the magnitude of the energy barrier along different diffusion pathways. © 2011 American Chemical Society.

  17. Anisotropic Lithium Insertion Behavior in Silicon Nanowires: Binding Energy, Diffusion Barrier, and Strain Effect

    KAUST Repository

    Zhang, Qianfan

    2011-05-19

    Silicon nanowires (SiNWs) have recently been shown to be promising as high capacity lithium battery anodes. SiNWs can be grown with their long axis along several different crystallographic directions. Due to distinct atomic configuration and electronic structure of SiNWs with different axial orientations, their lithium insertion behavior could be different. This paper focuses on the characteristics of single Li defects, including binding energy, diffusion barriers, and dependence on uniaxial strain in [110], [100], [111], and [112] SiNWs. Our systematic ab initio study suggests that the Si-Li interaction is weaker when the Si-Li bond direction is aligned close to the SiNW long axis. This results in the [110] and [111] SiNWs having the highest and lowest Li binding energy, respectively, and it makes the diffusion barrier along the SiNW axis lower than other pathways. Under external strain, it was found that [110] and [001] SiNWs are the most and least sensitive, respectively. For diffusion along the axial direction, the barrier increases (decreases) under tension (compression). This feature results in a considerable difference in the magnitude of the energy barrier along different diffusion pathways. © 2011 American Chemical Society.

  18. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.

    Science.gov (United States)

    Cournia, Zoe; Allen, Bryce; Sherman, Woody

    2017-12-26

    Accurate in silico prediction of protein-ligand binding affinities has been a primary objective of structure-based drug design for decades due to the putative value it would bring to the drug discovery process. However, computational methods have historically failed to deliver value in real-world drug discovery applications due to a variety of scientific, technical, and practical challenges. Recently, a family of approaches commonly referred to as relative binding free energy (RBFE) calculations, which rely on physics-based molecular simulations and statistical mechanics, have shown promise in reliably generating accurate predictions in the context of drug discovery projects. This advance arises from accumulating developments in the underlying scientific methods (decades of research on force fields and sampling algorithms) coupled with vast increases in computational resources (graphics processing units and cloud infrastructures). Mounting evidence from retrospective validation studies, blind challenge predictions, and prospective applications suggests that RBFE simulations can now predict the affinity differences for congeneric ligands with sufficient accuracy and throughput to deliver considerable value in hit-to-lead and lead optimization efforts. Here, we present an overview of current RBFE implementations, highlighting recent advances and remaining challenges, along with examples that emphasize practical considerations for obtaining reliable RBFE results. We focus specifically on relative binding free energies because the calculations are less computationally intensive than absolute binding free energy (ABFE) calculations and map directly onto the hit-to-lead and lead optimization processes, where the prediction of relative binding energies between a reference molecule and new ideas (virtual molecules) can be used to prioritize molecules for synthesis. We describe the critical aspects of running RBFE calculations, from both theoretical and applied perspectives

  19. Locating Temporal Functional Dynamics of Visual Short-Term Memory Binding using Graph Modular Dirichlet Energy

    Science.gov (United States)

    Smith, Keith; Ricaud, Benjamin; Shahid, Nauman; Rhodes, Stephen; Starr, John M.; Ibáñez, Augustin; Parra, Mario A.; Escudero, Javier; Vandergheynst, Pierre

    2017-02-01

    Visual short-term memory binding tasks are a promising early marker for Alzheimer’s disease (AD). To uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks performed by healthy young volunteers. We probe the task’s transient physiological underpinnings by contrasting shape only (Shape) and shape-colour binding (Bind) conditions, displayed in the left and right sides of the screen, separately. Particularly, we introduce and implement a novel technique named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional network with unprecedented temporal precision. We find that connectivity in the Bind condition is less integrated with the global network than in the Shape condition in occipital and frontal modules during the encoding period of the right screen condition. Using MDE we are able to discern driving effects in the occipital module between 100-140 ms, coinciding with the P100 visually evoked potential, followed by a driving effect in the frontal module between 140-180 ms, suggesting that the differences found constitute an information processing difference between these modules. This provides temporally precise information over a heterogeneous population in promising tasks for the detection of AD.

  20. Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes

    Directory of Open Access Journals (Sweden)

    Bodee Nutho

    2014-11-01

    Full Text Available In the present study, our aim is to investigate the preferential binding mode and encapsulation of the flavonoid fisetin in the nano-pore of β-cyclodextrin (β-CD at the molecular level using various theoretical approaches: molecular docking, molecular dynamics (MD simulations and binding free energy calculations. The molecular docking suggested four possible fisetin orientations in the cavity through its chromone or phenyl ring with two different geometries of fisetin due to the rotatable bond between the two rings. From the multiple MD results, the phenyl ring of fisetin favours its inclusion into the β-CD cavity, whilst less binding or even unbinding preference was observed in the complexes where the larger chromone ring is located in the cavity. All MM- and QM-PBSA/GBSA free energy predictions supported the more stable fisetin/β-CD complex of the bound phenyl ring. Van der Waals interaction is the key force in forming the complexes. In addition, the quantum mechanics calculations with M06-2X/6-31G(d,p clearly showed that both solvation effect and BSSE correction cannot be neglected for the energy determination of the chosen system.

  1. An Energy Conservation Approach to Adsorbate-Induced Surface Stress and the Extraction of Binding Energy Using Nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A [ORNL; Boiadjiev, Vassil I [ORNL; Fernando, G. W. [University of Connecticut, Storrs; Hawk, J. E. [Oak Ridge National Laboratory (ORNL); Wijewardhana, L.C. R. [University of Cincinnati; Gehl, Anthony C [ORNL

    2008-01-01

    Microcantilevers are ideally-suited for the study of surface phenomena due to their large surface-to-volume ratios, which amplify surface effects. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. When the excess energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such experiments were conducted for three binding processes in vapor phase experiments: physisorption, hydrogen bonding, and chemisorption. To our knowledge, such an energy conservation approach has not been taken into account in adsorbate-induced surface effect investigations. Furthermore, these experiments illustrate that detailed molecular-level information on binding energies can be extracted from this simple micromechanical sensor.

  2. Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores

    Science.gov (United States)

    Benson, Mark L.; Faver, John C.; Ucisik, Melek N.; Dashti, Danial S.; Zheng, Zheng; Merz, Kenneth M.

    2012-05-01

    Two families of binding affinity estimation methodologies are described which were utilized in the SAMPL3 trypsin/fragment binding affinity challenge. The first is a free energy decomposition scheme based on a thermodynamic cycle, which included separate contributions from enthalpy and entropy of binding as well as a solvent contribution. Enthalpic contributions were estimated with PM6-DH2 semiempirical quantum mechanical interaction energies, which were modified with a statistical error correction procedure. Entropic contributions were estimated with the rigid-rotor harmonic approximation, and solvent contributions to the free energy were estimated with several different methods. The second general methodology is the empirical score LISA, which contains several physics-based terms trained with the large PDBBind database of protein/ligand complexes. Here we also introduce LISA+, an updated version of LISA which, prior to scoring, classifies systems into one of four classes based on a ligand's hydrophobicity and molecular weight. Each version of the two methodologies (a total of 11 methods) was trained against a compiled set of known trypsin binders available in the Protein Data Bank to yield scaling parameters for linear regression models. Both raw and scaled scores were submitted to SAMPL3. Variants of LISA showed relatively low absolute errors but also low correlation with experiment, while the free energy decomposition methods had modest success when scaling factors were included. Nonetheless, re-scaled LISA yielded the best predictions in the challenge in terms of RMS error, and six of these models placed in the top ten best predictions by RMS error. This work highlights some of the difficulties of predicting binding affinities of small molecular fragments to protein receptors as well as the benefit of using training data.

  3. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations

    KAUST Repository

    Evoli, Stefania; Mobley, David L.; Guzzi, Rita; Rizzuti, Bruno

    2016-01-01

    experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S

  4. Benchmark calculations with correlated molecular wave functions. VII. Binding energy and structure of the HF dimer

    International Nuclear Information System (INIS)

    Peterson, K.A.; Dunning, T.H. Jr.

    1995-01-01

    The hydrogen bond energy and geometry of the HF dimer have been investigated using the series of correlation consistent basis sets from aug-cc-pVDZ to aug-cc-pVQZ and several theoretical methods including Moller--Plesset perturbation and coupled cluster theories. Estimates of the complete basis set (CBS) limit have been derived for the binding energy of (HF) 2 at each level of theory by utilizing the regular convergence characteristics of the correlation consistent basis sets. CBS limit hydrogen bond energies of 3.72, 4.53, 4.55, and 4.60 kcal/mol are estimated at the SCF, MP2, MP4, and CCSD(T) levels of theory, respectively. CBS limits for the intermolecular F--F distance are estimated to be 2.82, 2.74, 2.73, and 2.73 A, respectively, for the same correlation methods. The effects of basis set superposition error (BSSE) on both the binding energies and structures have also been investigated for each basis set using the standard function counterpoise (CP) method. While BSSE has a negligible effect on the intramolecular geometries, the CP-corrected F--F distance and binding energy differ significantly from the uncorrected values for the aug-cc-pVDZ basis set; these differences decrease regularly with increasing basis set size, yielding the same limits in the CBS limit. Best estimates for the equilibrium properties of the HF dimer from CCSD(T) calculations are D e =4.60 kcal/mol, R FF =2.73 A, r 1 =0.922 A, r 2 =0.920 A, Θ 1 =7 degree, and Θ 2 =111 degree

  5. Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy.

    Science.gov (United States)

    Duan, Lili; Liu, Xiao; Zhang, John Z H

    2016-05-04

    Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.

  6. Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei

    2017-09-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.

  7. Immunochemical similarity of GTP-binding proteins from different systems

    International Nuclear Information System (INIS)

    Kalinina, S.N.

    1986-01-01

    It was found that antibodies against the GTP-binding proteins of bovine retinal photoreceptor membranes blocked the inhibitory effect of estradiol on phosphodiesterase from rat and human uterine cytosol and prevented the cumulative effect of catecholamines and guanylyl-5'-imidodiphosphate on rat skeletal muscle adenylate cyclase. It was established by means of double radial immunodiffusion that these antibodies form a precipitating complex with purified bovine brain tubulin as well as with retinal preparations obtained from eyes of the bull, pig, rat, frog, some species of fish, and one reptile species. Bands of precipitation were not observed with these antibodies when retinal preparations from invertebrates (squid and octopus) were used as the antigens. The antibodies obtained interacted with the α- and β-subunits of GTP-binding proteins from bovine retinal photoreceptor membranes

  8. Impact of domain knowledge on blinded predictions of binding energies by alchemical free energy calculations

    Science.gov (United States)

    Mey, Antonia S. J. S.; Jiménez, Jordi Juárez; Michel, Julien

    2018-01-01

    The Drug Design Data Resource (D3R) consortium organises blinded challenges to address the latest advances in computational methods for ligand pose prediction, affinity ranking, and free energy calculations. Within the context of the second D3R Grand Challenge several blinded binding free energies predictions were made for two congeneric series of Farsenoid X Receptor (FXR) inhibitors with a semi-automated alchemical free energy calculation workflow featuring FESetup and SOMD software tools. Reasonable performance was observed in retrospective analyses of literature datasets. Nevertheless, blinded predictions on the full D3R datasets were poor due to difficulties encountered with the ranking of compounds that vary in their net-charge. Performance increased for predictions that were restricted to subsets of compounds carrying the same net-charge. Disclosure of X-ray crystallography derived binding modes maintained or improved the correlation with experiment in a subsequent rounds of predictions. The best performing protocols on D3R set1 and set2 were comparable or superior to predictions made on the basis of analysis of literature structure activity relationships (SAR)s only, and comparable or slightly inferior, to the best submissions from other groups.

  9. Simulation of core-level binding energy shifts in germanium-doped lead telluride crystals

    International Nuclear Information System (INIS)

    Zyubin, A.S.; Dedyulin, S.N.; Yashina, L.V.; Shtanov, V.I.

    2007-01-01

    To simulate the changes in core-level binding energies in germanium-doped lead telluride, cluster calculations of the changes in the electrostatic potential at the corresponding centers have been performed. Different locations of the Ge atom in the crystal bulk have been considered: near vacancies, near another dopant site, and near the surface. For calculating the potential in the clusters that model the bulk and the surface of the lead telluride crystal (c-PbTe), the electron density obtained in the framework of the Hartree-Fock and hybrid density functional theory (DFT) methods has been used [ru

  10. Magnetic field effect on the ground-state binding energy in InGaN/GaN parabolic QWW

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine

    2013-01-01

    Within the framework of the effective mass scheme, the ground-state binding energy of hydrogenic shallow-donor impurity in wurtzite (WZ) (In,Ga)N/GaN parabolic transversal-section quantum-well wire (PQWW) subjected to magnetic field is investigated. The finite-difference method within the quasi-one-dimensional effective potential model is used. A cylindrical QWW effective radius is introduced to describe the lateral confinement strength. The results show that: (i) the binding energy is the largest for the impurity located at a point corresponding to the largest electron probability density and (ii) it increases with increasing external magnetic field

  11. Magnetic field effect on the ground-state binding energy in InGaN/GaN parabolic QWW

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of sciences, Dhar EL Mehrez, B.P 1796 Atlas Fez (Morocco); Specials Mathematics, CPGE Kénitra, Chakib Arsalane Street, Kénitra (Morocco); Jorio, Anouar; Zorkani, Izeddine [LPS, Faculty of sciences, Dhar EL Mehrez, B.P 1796 Atlas Fez (Morocco)

    2013-07-15

    Within the framework of the effective mass scheme, the ground-state binding energy of hydrogenic shallow-donor impurity in wurtzite (WZ) (In,Ga)N/GaN parabolic transversal-section quantum-well wire (PQWW) subjected to magnetic field is investigated. The finite-difference method within the quasi-one-dimensional effective potential model is used. A cylindrical QWW effective radius is introduced to describe the lateral confinement strength. The results show that: (i) the binding energy is the largest for the impurity located at a point corresponding to the largest electron probability density and (ii) it increases with increasing external magnetic field.

  12. Exciton binding energy in GaAsBiN spherical quantum dot heterostructures

    Science.gov (United States)

    Das, Subhasis; Dhar, S.

    2017-03-01

    The ground state exciton binding energies (EBE) of heavy hole excitons in GaAs1-x-yBixNy - GaAs spherical quantum dots (QD) are calculated using a variational approach under 1s hydrogenic wavefunctions within the framework of effective mass approximation. Both the nitrogen and the bismuth content in the material are found to affect the binding energy, in particular for larger nitrogen content and lower dot radii. Calculations also show that the ground state exciton binding energies of heavy holes increase more at smaller dot sizes as compared to that for the light hole excitons.

  13. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways.

    Science.gov (United States)

    Fantl, W J; Escobedo, J A; Martin, G A; Turck, C W; del Rosario, M; McCormick, F; Williams, L T

    1992-05-01

    The receptor for platelet-derived growth factor (PDGF) binds two proteins containing SH2 domains, GTPase activating protein (GAP) and phosphatidylinositol 3-kinase (PI3-kinase). The sites on the receptor that mediate this interaction were identified by using phosphotyrosine-containing peptides representing receptor sequences to block specifically binding of either PI3-kinase or GAP. These results suggested that PI3-kinase binds two phosphotyrosine residues, each located in a 5 aa motif with an essential methionine at the fourth position C-terminal to the tyrosine. Point mutations at these sites caused a selective elimination of PI3-kinase binding and loss of PDGF-stimulated DNA synthesis. Mutation of the binding site for GAP prevented the receptor from associating with or phosphorylating GAP, but had no effect on PI3-kinase binding and little effect on DNA synthesis. Therefore, GAP and PI3-kinase interact with the receptor by binding to different phosphotyrosine-containing sequence motifs.

  14. The fitness landscapes of cis-acting binding sites in different promoter and environmental contexts.

    Directory of Open Access Journals (Sweden)

    Ryan K Shultzaberger

    2010-07-01

    Full Text Available The biophysical nature of the interaction between a transcription factor and its target sequences in vitro is sufficiently well understood to allow for the effects of DNA sequence alterations on affinity to be predicted. But even in relatively simple in vivo systems, the complexities of promoter organization and activity have made it difficult to predict how altering specific interactions between a transcription factor and DNA will affect promoter output. To better understand this, we measured the relative fitness of nearly all Escherichia coli sigma(70 -35 binding sites in different promoter and environmental contexts by competing four randomized -35 promoter libraries controlling the expression of the tetracycline resistance gene (tetagainst each other in increasing concentrations of drug. We sequenced populations after competition to determine the relative enrichment of each -35 sequence. We observed a consistent relationship between the frequency of recovery of each -35 binding site and its predicted affinity for sigma(70 that varied depending on the sequence context of the promoter and drug concentration. Overall the relative fitness of each promoter could be predicted by a simple thermodynamic model of transcriptional regulation, in which the rate of transcriptional initiation (and hence fitness is dependent upon the overall stability of the initiation complex, which in turn is dependent upon the energetic contributions of all sites within the complex. As implied by this model, a decrease in the free energy of association at one site could be compensated for by an increase in the binding energy at another to produce a similar output. Furthermore, these data show that a large and continuous range of transcriptional outputs can be accessed by merely changing the -35, suggesting that evolved or engineered mutations at this site could allow for subtle and precise control over gene expression.

  15. Binding free energy analysis of protein-protein docking model structures by evERdock.

    Science.gov (United States)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  16. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane

    Science.gov (United States)

    Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S.; Gray, C. G.

    2008-03-01

    Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05±0.39kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.

  17. Effect of non-parabolicity on the binding energy of a hydrogenic donor in quantum well with a magnetic field

    International Nuclear Information System (INIS)

    Jayakumar, K.; Balasubramanian, S.; Tomak, M.

    1985-08-01

    A hydrogenic donor in a quantum well in the presence of a magnetic field perpendicular to the barrier is considered in the effective mass approximation. The non-parabolicity of the subband is included in the Hamiltonian by an energy-dependent effective mass. The donor binding energy is calculated variationally for different well widths and the effect of non-parabolicity is discussed in the light of recent experimental results. (author)

  18. Effect of magnetic field on the impurity binding energy of the excited ...

    Indian Academy of Sciences (India)

    The effect of external magnetic field on the excited state energies in a spherical quantum dot was studied. The impurity energy and binding energy were calculated using the variational method within the effective mass approximation and finite barrier potential. The results showed that by increasing the magnetic field, the ...

  19. Effect of magnetic field on the impurity binding energy of the excited ...

    Indian Academy of Sciences (India)

    Abstract. The effect of external magnetic field on the excited state energies in a spher- ical quantum dot was studied. The impurity energy and binding energy were calculated using the variational method within the effective mass approximation and finite barrier potential. The results showed that by increasing the magnetic ...

  20. Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.

    Directory of Open Access Journals (Sweden)

    Caselle Michele

    2007-09-01

    Full Text Available Abstract Background Specific binding of proteins to DNA is one of the most common ways gene expression is controlled. Although general rules for the DNA-protein recognition can be derived, the ambiguous and complex nature of this mechanism precludes a simple recognition code, therefore the prediction of DNA target sequences is not straightforward. DNA-protein interactions can be studied using computational methods which can complement the current experimental methods and offer some advantages. In the present work we use physical effective potentials to evaluate the DNA-protein binding affinities for the λ repressor-DNA complex for which structural and thermodynamic experimental data are available. Results The binding free energy of two molecules can be expressed as the sum of an intermolecular energy (evaluated using a molecular mechanics forcefield, a solvation free energy term and an entropic term. Different solvation models are used including distance dependent dielectric constants, solvent accessible surface tension models and the Generalized Born model. The effect of conformational sampling by Molecular Dynamics simulations on the computed binding energy is assessed; results show that this effect is in general negative and the reproducibility of the experimental values decreases with the increase of simulation time considered. The free energy of binding for non-specific complexes, estimated using the best energetic model, agrees with earlier theoretical suggestions. As a results of these analyses, we propose a protocol for the prediction of DNA-binding target sequences. The possibility of searching regulatory elements within the bacteriophage λ genome using this protocol is explored. Our analysis shows good prediction capabilities, even in absence of any thermodynamic data and information on the naturally recognized sequence. Conclusion This study supports the conclusion that physics-based methods can offer a completely complementary

  1. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder

    DEFF Research Database (Denmark)

    Mc Mahon, Brenda; Andersen, Sofie B.; Madsen, Martin K.

    2016-01-01

    controls with low seasonality scores and 17 patients diagnosed with seasonal affective disorder were scanned in both summer and winter to investigate differences in cerebral serotonin transporter binding across groups and across seasons. The two groups had similar cerebral serotonin transporter binding...... between summer and winter (Psex-(P = 0.02) and genotype-(P = 0.04) dependent. In the patients with seasonal affective disorder, the seasonal change in serotonin transporter binding was positively associated with change in depressive symptom...

  2. Systematic studies of binding energy dependence of neutron-proton momentum correlation function

    International Nuclear Information System (INIS)

    Wei, Y B; Ma, Y G; Shen, W Q; Ma, G L; Wang, K; Cai, X Z; Zhong, C; Guo, W; Chen, J G; Fang, D Q; Tian, W D; Zhou, X F

    2004-01-01

    Hanbury Brown-Twiss (HBT) results of the neutron-proton correlation function have been systematically investigated for a series of nuclear reactions with light projectiles with the help of the isospin-dependent quantum molecular dynamics model. The relationship between the binding energy per nucleon of the projectiles and the strength of the neutron-proton HBT at small relative momentum has been obtained. Results show that neutron-proton HBT results are sensitive to the binding energy per nucleon

  3. 4He binding energy calculation including full tensor-force effects

    Science.gov (United States)

    Fonseca, A. C.

    1989-09-01

    The four-body equations of Alt, Grassberger, and Sandhas are solved in the version where the (2)+(2) subamplitudes are treated exactly by convolution, using one-term separable Yamaguchy nucleon-nucleon potentials in the 1S0 and 3S1-3D1 channels. The resulting jp=1/2+ and (3/2+ three-body subamplitudes are represented in a separable form using the energy-dependent pole expansion. Converged bound-state results are calculated for the first time using the full interaction, and are compared with those obtained from a simplified treatment of the tensor force. The Tjon line that correlates three-nucleon and four-nucleon binding energies is shown using different nucleon-nucleon potentials. In all calculations the Coulomb force has been neglected.

  4. Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines

    International Nuclear Information System (INIS)

    Zhao, Junhua; Lu, Lixin; Rabczuk, Timon

    2014-01-01

    Recently, Geblinger et al. [Nat. Nanotechnol. 3, 195 (2008)] and Machado et al. [Phys. Rev. Lett. 110, 105502 (2013)] reported the experimental and molecular dynamics realization of S-like shaped single-walled carbon nanotubes (CNTs), the so-called CNT serpentines. We reported here results from continuum modeling of the binding energy γ between different single- and multi-walled CNT serpentines and substrates as well as the mechanical stability of the CNT serpentine formation. The critical length for the mechanical stability and adhesion of different CNT serpentines are determined in dependence of E i I i , d, and γ, where E i I i and d are the CNT bending stiffness and distance of the CNT translation period. Our continuum model is validated by comparing its solution to full-atom molecular dynamics calculations. The derived analytical solutions are of great importance for understanding the interaction mechanism between different single- and multi-walled CNT serpentines and substrates

  5. Health impacts of different energy sources

    International Nuclear Information System (INIS)

    1982-01-01

    Energy is needed to sustain the economy, health and welfare of nations. As a consequence of this, energy consumption figures are frequently used as an index of a nation's advancement. As a result of the global energy crisis, almost every nation has had to develop all its available energy resources and plan its future use of energy. The planners of national and international energy policies are however often faced with a problem of 'public acceptance' arising from the potential health and environmental impacts of developing energy resources. The public's desire to preserve the quality of man's health and his environment frequently results in opposition to many industrial innovations, including the generation and use of energy. Reliable, quantitative data and information are needed on the risks to health and the environment of different contemporary energy systems, to improve public understanding, and to serve as the basis from which national planners can choose between different energy supply options. With the exception of nuclear energy, even in technologically advanced countries little systematic research and development has been done on the quantitative assessment of the effects on health and the environment of the conventional energy sources. The need for this information has only been realized over the past decade as the climate and environment in many regions of the world has deteriorated with the unabated release of pollutants from factories and energy generating plants in particular. A number of countries have started national environmental health research programmes to monitor and regulate toxic emissions from industry and energy plants. Energy-related environmental health research has been supported and co-ordinated by various international organizations such as the International Atomic Energy Agency (IAEA), World Health Organization (WHO) and United Nations Environment Programme (UNEP). WHO has supported expert reviews on the potential health risks posed

  6. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.

    Science.gov (United States)

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-04-12

    Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.

  7. Ion Binding Energies Determining Functional Transport of ClC Proteins

    Science.gov (United States)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  8. Interdependence of different symmetry energy elements

    Science.gov (United States)

    Mondal, C.; Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.

    2017-08-01

    Relations between the nuclear symmetry energy coefficient and its density derivatives are derived. The relations hold for a class of interactions with quadratic momentum dependence and a power-law density dependence. The structural connection between the different symmetry energy elements as obtained seems to be followed by almost all reasonable nuclear energy density functionals, both relativistic and nonrelativistic, suggesting a universality in the correlation structure. This, coupled with known values of some well-accepted constants related to nuclear matter, helps in constraining values of different density derivatives of the nuclear symmetry energy, shedding light on the isovector part of the nuclear interaction.

  9. An accurate redetermination of the sup 1 sup 1 sup 8 Sn binding energy

    CERN Document Server

    Borzakov, S B; Faikow-Stanczyk, H; Grigoriev, Y V; Panteleev, T; Pospísil, S; Smotritsky, L M; Telezhnikov, S A

    2002-01-01

    The energy of well-known strong gamma line from sup 1 sup 9 sup 8 Au, the 'gold standard', has been modified in the light of new adjustments in the fundamental constants and the value of 411.80176(12) keV was determined, which is 0.29 eV lower than the latest 1999 value. An energy calibration procedure for determining the neutron binding energy, B sub n , from complicated (n, gamma) spectra has been developed. A mathematically simple minimization function consisting only of terms having as parameters the coefficients of the energy calibration curve (polynomial) is used. A priori information about the relationships among the energies of different peaks on the spectrum is taken into account by a Monte-Carlo simulation. The procedure was used in obtaining B sub n for sup 1 sup 1 sup 8 Sn. The gamma-ray spectrum from thermal neutron radiative capture by sup 1 sup 1 sup 7 Sn has been measured on the IBR-2 pulsed reactor. gamma-rays were detected by a 72 cm sup 3 HPGe detector. For a better determination of B sub n...

  10. CaFE: a tool for binding affinity prediction using end-point free energy methods.

    Science.gov (United States)

    Liu, Hui; Hou, Tingjun

    2016-07-15

    Accurate prediction of binding free energy is of particular importance to computational biology and structure-based drug design. Among those methods for binding affinity predictions, the end-point approaches, such as MM/PBSA and LIE, have been widely used because they can achieve a good balance between prediction accuracy and computational cost. Here we present an easy-to-use pipeline tool named Calculation of Free Energy (CaFE) to conduct MM/PBSA and LIE calculations. Powered by the VMD and NAMD programs, CaFE is able to handle numerous static coordinate and molecular dynamics trajectory file formats generated by different molecular simulation packages and supports various force field parameters. CaFE source code and documentation are freely available under the GNU General Public License via GitHub at https://github.com/huiliucode/cafe_plugin It is a VMD plugin written in Tcl and the usage is platform-independent. tingjunhou@zju.edu.cn. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    DEFF Research Database (Denmark)

    List, K; Høyer-Hansen, G; Rønne, E

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interfer......Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance......) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former...

  12. Energy Absorbing Effectiveness – Different Approaches

    Directory of Open Access Journals (Sweden)

    Kotełko Maria

    2018-03-01

    Full Text Available In the paper the study of different crashworthiness indicators used to evaluate energy absorbing effectiveness of thin-walled energy absorbers is presented. Several different indicators are used to assess an effectiveness of two types of absorbing structures, namely thin-walled prismatic column with flaws and thin-walled prismatic frustum (hollow or foam filled in both cases subjected to axial compressive impact load. The indicators are calculated for different materials and different geometrical parameters. The problem of selection of the most appropriate and general indicators is discussed.

  13. Measurement of specific [3H]-ouabain binding to different types of human leucocytes

    DEFF Research Database (Denmark)

    Boon, Arnold; Oh, V M; Taylor, John E.

    1984-01-01

    We have studied the specific binding of [3H]-ouabain to intact mononuclear leucocytes (82% lymphocytes) and polymorphonuclear leucocytes. In both types of cells [3H]-ouabain binding was saturable, confined to a single site of high affinity, slow to reach equilibrium, slow to reverse, temperature...... were expressed per square micron of cell surface area the difference between the two cell types was proportionately greater (83 and 186 sites per micron 2 respectively). We conclude that the [3H]-ouabain binding sites on mononuclear and polymorphonuclear leucocytes are similar in nature, but different...

  14. Free energy calculations offer insights into the influence of receptor flexibility on ligand-receptor binding affinities.

    Science.gov (United States)

    Dolenc, Jožica; Riniker, Sereina; Gaspari, Roberto; Daura, Xavier; van Gunsteren, Wilfred F

    2011-08-01

    Docking algorithms for computer-aided drug discovery and design often ignore or restrain the flexibility of the receptor, which may lead to a loss of accuracy of the relative free enthalpies of binding. In order to evaluate the contribution of receptor flexibility to relative binding free enthalpies, two host-guest systems have been examined: inclusion complexes of α-cyclodextrin (αCD) with 1-chlorobenzene (ClBn), 1-bromobenzene (BrBn) and toluene (MeBn), and complexes of DNA with the minor-groove binding ligands netropsin (Net) and distamycin (Dist). Molecular dynamics simulations and free energy calculations reveal that restraining of the flexibility of the receptor can have a significant influence on the estimated relative ligand-receptor binding affinities as well as on the predicted structures of the biomolecular complexes. The influence is particularly pronounced in the case of flexible receptors such as DNA, where a 50% contribution of DNA flexibility towards the relative ligand-DNA binding affinities is observed. The differences in the free enthalpy of binding do not arise only from the changes in ligand-DNA interactions but also from changes in ligand-solvent interactions as well as from the loss of DNA configurational entropy upon restraining.

  15. Hypernuclear interactions and the binding energies of and hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R.; Usmani, Q.N.

    1988-01-01

    By use of variational calculations a reasonable hadronic description is obtained of the s-shell hypernuclei, of /sub /ZBe, and of the well depth, with N forces which are consistent with p scattering and which are quite strongly spin-dependent, with reasonable TPE NN forces with strongly repulsive dispersive-type NN forces. For the latter we also consider a spin-dependent version which is somewhat favored by our analysis. /sub /ZBe is treated as a 2ed + system and is significantly overbound, approx. =1 MeV, if only ed ed and ed potentials are used. An ed ed potential obtained from the NN forces nicely accounts for this overbinding. The hypernuclei /sub /WHe and /sub / Be are treated as ed + 2 and 2ed + 2 systems. Use of the /sub / Be event gives approx. =1.5 MeV too little binding for /sub /WHe. The S0 potential obtained from /sub / Be is quite strongly attractive, comparable to the N and also to the NN potential without OPE. 18 refs.

  16. Role of codeposited impurities during growth. II. Dependence of morphology on binding and barrier energies

    Science.gov (United States)

    Sathiyanarayanan, Rajesh; Hamouda, Ajmi Bh.; Pimpinelli, A.; Einstein, T. L.

    2011-01-01

    In an accompanying article we showed that surface morphologies obtained through codeposition of a small quantity (2%) of impurities with Cu during growth (step-flow mode, θ = 40 ML) significantly depends on the lateral nearest-neighbor binding energy (ENN) to Cu adatom and the diffusion barrier (Ed) of the impurity atom on Cu(0 0 1). Based on these two energy parameters, ENN and Ed, we classify impurity atoms into four sets. We study island nucleation and growth in the presence of codeposited impurities from different sets in the submonolayer (θ⩽ 0.7 ML) regime. Similar to growth in the step-flow mode, we find different nucleation and growth behavior for impurities from different sets. We characterize these differences through variations of the number of islands (Ni) and the average island size with coverage (θ). Further, we compute the critical nucleus size (i) for all of these cases from the distribution of capture-zone areas using the generalized Wigner distribution.

  17. Energy consumption for different greenhouse constructions

    Energy Technology Data Exchange (ETDEWEB)

    Djevic, M.; Dimitrijevic, A. [Department for Agricultural Engineering, University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade (RS)

    2009-09-15

    In this paper the influence of greenhouse construction on energy efficiency in winter lettuce production was estimated for four different double plastic covered greenhouses in Serbia region. Plastic coverings were introduced in this region as a mean of making the plant production more energy efficient. Additionally, as a means of lowering energy consumption, tunnel structures were proposed. In order to see whether the greenhouse structure influences energy consumption, four different double plastic covered greenhouses. Two tunnel types, 9 x 58 m and 8 x 25 m, one gutter-connected structure and multi-span plastic covered greenhouse. The gutter-connected structure was 2 x 7 m wide and 39 m long while the multi-span structure was 20 x 6.4 m wide and 42 m long. On the basis of lettuce production output and the energy input, specific energy input, energy output-input ratio and energy productivity were estimated. Results show that the lowest energy consumption was obtained for multi-span greenhouse, 9.76 MJ/m{sup 2}. The highest energy consumption was obtained in tunnel, 9 x 58 m, 13.93 MJ/m{sup 2}. The highest value for output-input ratio was calculated for multi-span greenhouse (0.29), followed by gutter-connected greenhouse (0.21), tunnel 9 x 58 m (0.17) and tunnel, 8 x 25 m (0.15). Results also show that energy productivity can be higher if multi-span greenhouse structures are used. (author)

  18. BFEE: A User-Friendly Graphical Interface Facilitating Absolute Binding Free-Energy Calculations.

    Science.gov (United States)

    Fu, Haohao; Gumbart, James C; Chen, Haochuan; Shao, Xueguang; Cai, Wensheng; Chipot, Christophe

    2018-03-26

    Quantifying protein-ligand binding has attracted the attention of both theorists and experimentalists for decades. Many methods for estimating binding free energies in silico have been reported in recent years. Proper use of the proposed strategies requires, however, adequate knowledge of the protein-ligand complex, the mathematical background for deriving the underlying theory, and time for setting up the simulations, bookkeeping, and postprocessing. Here, to minimize human intervention, we propose a toolkit aimed at facilitating the accurate estimation of standard binding free energies using a geometrical route, coined the binding free-energy estimator (BFEE), and introduced it as a plug-in of the popular visualization program VMD. Benefitting from recent developments in new collective variables, BFEE can be used to generate the simulation input files, based solely on the structure of the complex. Once the simulations are completed, BFEE can also be utilized to perform the post-treatment of the free-energy calculations, allowing the absolute binding free energy to be estimated directly from the one-dimensional potentials of mean force in simulation outputs. The minimal amount of human intervention required during the whole process combined with the ergonomic graphical interface makes BFEE a very effective and practical tool for the end-user.

  19. Formation Mechanism and Binding Energy for Body-Centred Regular Icosahedral Structure of Li13 Cluster

    International Nuclear Information System (INIS)

    Liu Weina; Li Ping; Gou Qingquan; Zhao Yanping

    2008-01-01

    The formation mechanism for the body-centred regular icosahedral structure of Li 13 cluster is proposed. The curve of the total energy versus the separation R between the nucleus at the centre and nuclei at the apexes for this structure of Li 13 has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of -96.951 39 a.u. at R = 5.46a 0 . When R approaches to infinity, the total energy of thirteen lithium atoms has the value of -96.564 38 a.u. So the binding energy of Li 13 with respect to thirteen lithium atoms is 0.387 01 a.u. Therefore the binding energy per atom for Li 13 is 0.029 77 a.u. or 0.810 eV, which is greater than the binding energy per atom of 0.453 eV for Li 2 , 0.494 eV for Li 3 , 0.7878 eV for Li 4 , 0.632 eV for Li 5 , and 0.674 eV for Li 7 calculated by us previously. This means that the Li 13 cluster may be formed stably in a body-centred regular icosahedral structure with a greater binding energy

  20. Estimating Atomic Contributions to Hydration and Binding Using Free Energy Perturbation.

    Science.gov (United States)

    Irwin, Benedict W J; Huggins, David J

    2018-05-08

    We present a general method called atom-wise free energy perturbation (AFEP), which extends a conventional molecular dynamics free energy perturbation (FEP) simulation to give the contribution to a free energy change from each atom. AFEP is derived from an expansion of the Zwanzig equation used in the exponential averaging method by defining that the system total energy can be partitioned into contributions from each atom. A partitioning method is assumed and used to group terms in the expansion to correspond to individual atoms. AFEP is applied to six example free energy changes to demonstrate the method. Firstly, the hydration free energies of methane, methanol, methylamine, methanethiol, and caffeine in water. AFEP highlights the atoms in the molecules that interact favorably or unfavorably with water. Finally AFEP is applied to the binding free energy of human immunodeficiency virus type 1 protease to lopinavir, and AFEP reveals the contribution of each atom to the binding free energy, indicating candidate areas of the molecule to improve to produce a more strongly binding inhibitor. FEP gives a single value for the free energy change and is already a very useful method. AFEP gives a free energy change for each "part" of the system being simulated, where part can mean individual atoms, chemical groups, amino acids, or larger partitions depending on what the user is trying to measure. This method should have various applications in molecular dynamics studies of physical, chemical, or biochemical phenomena, specifically in the field of computational drug discovery.

  1. Binding energies of hypernuclei and Λ-nuclear interactions

    International Nuclear Information System (INIS)

    Bodmer, A.R.; Usmani, Q.N.

    1984-01-01

    Variational calculations indicate that a reasonable description of Λp scattering and of Λ separation energies can be obtained in terms of ΛN plus dispersive and TPE ΛNN forces. Results for the ΛΛ interaction and for 6 /sub Λ/He obtained from an analysis of 10 /sub ΛΛ/Be are discussed. Coulomb and ΛN charge symmetry breaking effects in the A = 4 hypernuclei are discussed

  2. Core-level binding energy shifts in Pt Ru nanoparticles: A puzzle resolved

    Science.gov (United States)

    Lewera, Adam; Zhou, Wei Ping; Hunger, Ralf; Jaegermann, Wolfram; Wieckowski, Andrzej; Yockel, Scott; Bagus, Paul S.

    2007-10-01

    Synchrotron measurements of Pt and Ru core-level binding energies, BE's, in Pt-Ru nanoparticles, as a function of Pt content, quantify earlier indications that the Pt 4f BE shift is much larger than the Ru 3d BE shift. A complementary theoretical analysis relates the BE shifts to changes in the metal-metal distances as the composition of the nanoparticle changes. We establish that the large Pt and small Ru BE shifts arise from the different response of these metals to changes in the bond distances, an unexpected result. Our results give evidence that the magnitudes of the BE shifts depend on whether the d band is open, as for Ru, or essentially filled, as for Pt.

  3. Orbital momentum distribution and binding energies for the complete valence shell of molecular bromine

    International Nuclear Information System (INIS)

    Frost, L.; Grisogono, A.M.; Weigold, E.

    1987-08-01

    The binding energy spectrum of Br 2 has been recorded in both the outer and inner valence regions using electron momentum spectroscopy. The measurements are compared with the results of several Green's function calculations using different approximations and based on both polarized and unpolarized wave functions. The inner valence region, observed for the first time, is found to exhibit complex structure that is shown to be due to many-body effects, thus indicating a breakdown of the simple MO picture for ionization in this region. Momentum distributions for the three outer valence orbitals are also measured and compared with spherically averaged calculations using the target Hartree-Fock and plane wave impulse approximations. The effect of polarization functions in the basis set is investigated. Orbital density maps in both momentum and position space have been calculated and compared with the experimental measurements

  4. Orbital momentum distributions and binding energies for the complete valence shell of molecular iodine

    International Nuclear Information System (INIS)

    Grisogono, A.M.; Pascual, R.; Weigold, E.

    1988-03-01

    The complete valence shell binding energy spectrum (8-43eV) of I 2 has been measured by using electron momentum spectroscopy at 1000eV. The complete inner valence region, corresponding to ionization from the 10 σ u and 10 σ g orbitals, has been measured for the first time and shows extensive splitting of the ionization strength due to electron correlation effects in the ion. Many-body calculations using the Green's function method have been carried out and are compared with the data. Momentum distributions, measured in both the outer and inner valence regions, are compared with those given by SCF orbital wave functions calculated with a number of different basis sets. Computed orbital position and momentum density maps for oriented I 2 molecules are discussed in comparison with the measured and calculated spherically averaged momentum distributions

  5. Towards Automated Binding Affinity Prediction Using an Iterative Linear Interaction Energy Approach

    Directory of Open Access Journals (Sweden)

    C. Ruben Vosmeer

    2014-01-01

    Full Text Available Binding affinity prediction of potential drugs to target and off-target proteins is an essential asset in drug development. These predictions require the calculation of binding free energies. In such calculations, it is a major challenge to properly account for both the dynamic nature of the protein and the possible variety of ligand-binding orientations, while keeping computational costs tractable. Recently, an iterative Linear Interaction Energy (LIE approach was introduced, in which results from multiple simulations of a protein-ligand complex are combined into a single binding free energy using a Boltzmann weighting-based scheme. This method was shown to reach experimental accuracy for flexible proteins while retaining the computational efficiency of the general LIE approach. Here, we show that the iterative LIE approach can be used to predict binding affinities in an automated way. A workflow was designed using preselected protein conformations, automated ligand docking and clustering, and a (semi-automated molecular dynamics simulation setup. We show that using this workflow, binding affinities of aryloxypropanolamines to the malleable Cytochrome P450 2D6 enzyme can be predicted without a priori knowledge of dominant protein-ligand conformations. In addition, we provide an outlook for an approach to assess the quality of the LIE predictions, based on simulation outcomes only.

  6. Combined effects of hydrostatic pressure and electric field on the donor binding energy and polarizability in laterally coupled double InAs/GaAs quantum-well wires

    International Nuclear Information System (INIS)

    Tangarife, E.; Duque, C.A.

    2010-01-01

    This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a nonlinear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum well wires.

  7. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  8. First lattice calculation of the B-meson binding and kinetic energies

    CERN Document Server

    Crisafulli, M; Martinelli, G; Sachrajda, Christopher T C

    1995-01-01

    We present the first lattice calculation of the B-meson binding energy \\labar and of the kinetic energy -\\lambda_1/2 m_Q of the heavy-quark inside the pseudoscalar B-meson. This calculation has required the non-perturbative subtraction of the power divergences present in matrix elements of the Lagrangian operator \\bar h D_4 h and of the kinetic energy operator \\bar h \\vec D^2 h. The non-perturbative renormalisation of the relevant operators has been implemented by imposing suitable renormalisation conditions on quark matrix elements, in the Landau gauge. Our numerical results have been obtained from several independent numerical simulations at \\beta=6.0 and 6.2, and using, for the meson correlators, the results obtained by the APE group at the same values of \\beta. Our best estimate, obtained by combining results at different values of \\beta, is \\labar =190 \\err{50}{30} MeV. For the \\overline{MS} running mass, we obtain \\overline {m}_b(\\overline {m}_b) =4.17 \\pm 0.06 GeV, in reasonable agreement with previous...

  9. Binding energies of hypernuclei and Λ-nuclear interactions

    International Nuclear Information System (INIS)

    Bodmer, A.R.; Usmani, Q.N.

    1985-01-01

    Variational Monte Carlo calculations have been made for the s-shell hypernuclei and also of 9 Be hypernuclei with a 2α + Λ model. The well depth is calculated variationally with the Fermi hypernetted chain method. A satisfactory description of all the relevant experimental Λ separation energies and also of the Λp scattering can be obtained with reasonable TPE ΛN and ΛNN forces and strongly repulsive dispersive ΛNN forces which are preferred to be spin dependent. We discuss variational calculations for 6 He and 10 Be hypernuclei with α + 2Λ and 2α + 2Λ models, and the results obtained for the ΛΛ interaction and for 6 He hypernuclei from analysis of 10 Be hypernuclei Coulomb effects and charge symmetry breaking in the A = 4 hypernuclei are discussed. 24 refs., 5 figs

  10. Binding energies of hypernuclei and. lambda. -nuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R.; Usmani, Q.N.

    1985-01-01

    Variational Monte Carlo calculations have been made for the s-shell hypernuclei and also of /sup 9/Be hypernuclei with a 2..cap alpha.. + ..lambda.. model. The well depth is calculated variationally with the Fermi hypernetted chain method. A satisfactory description of all the relevant experimental ..lambda.. separation energies and also of the ..lambda..p scattering can be obtained with reasonable TPE ..lambda..N and ..lambda..NN forces and strongly repulsive dispersive ..lambda..NN forces which are preferred to be spin dependent. We discuss variational calculations for /sup 6/He and /sup 10/Be hypernuclei with ..cap alpha.. + 2..lambda.. and 2..cap alpha.. + 2..lambda.. models, and the results obtained for the ..lambda lambda.. interaction and for /sup 6/He hypernuclei from analysis of /sup 10/Be hypernuclei Coulomb effects and charge symmetry breaking in the A = 4 hypernuclei are discussed. 24 refs., 5 figs.

  11. Biexciton binding energy in ZnSe quantum wells and quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans-Peter; Langbein, Wolfgang; Hvam, Jørn Märcher

    2002-01-01

    The biexciton binding energy E-XX is investigated in ZnSe/ZnMgSe quantum wells and quantum wires as a function of the lateral confinement by transient four-wave mixing. In the quantum wells one observes for decreasing well width a significant increase in the relative binding energy, saturating...... for well widths less than 8 nm. In the quantum wires an increase of 30% is found in the smallest quantum wire structures compared to the corresponding quantum well value. A simple analytical model taking into account the quantum confinement in these low-dimensional systems is used to explain...

  12. Pressure-dependent shallow donor binding energy in InGaN/GaN square QWWs

    International Nuclear Information System (INIS)

    Ghazi, Haddou El; Jorio, Anouar; Zorkani, Izeddine

    2013-01-01

    Using a variational approach, we perform a theoretical study of hydrostatic pressure effect on the ground-state of axial hydrogenic shallow-donor impurity binding energy in InGaN/GaN square quantum well wire (SQWWs) as a function of the side length within the effective-mass scheme and finite potential barrier. The pressure dependence of wire length, effective mass, dielectric constant and potential barrier are taken into account. Numerical results show that: (i) the binding energy is strongly affected by the wire length and the external applied pressure and (ii) its maximum moves to the narrow wire in particular for height pressure.

  13. Simple method for determining binding energies of fullerene and complex atomic negative ions

    Science.gov (United States)

    Felfli, Zineb; Msezane, Alfred

    2017-04-01

    A robust potential which embeds fully the vital core polarization interaction has been used in the Regge pole method to explore low-energy electron scattering from C60, Eu and Nb through the total cross sections (TCSs) calculations. From the characteristic dramatically sharp resonances in the TCSs manifesting negative ion formation in these systems, we extracted the binding energies for the C60, Euand Nbanions they are found to be in outstanding agreement with the measured electron affinities of C60, Eu and Nb. Common among these considered systems, including the standard atomic Au is the formation of their ground state negative ions at the second Ramsauer-Townsend (R-T) minima of their TCSs. Indeed, this is a signature of all the fullerenes and complex atoms considered thus far. Shape resonances, R-T minima and binding energies of the resultant anions are presented. This work was supported by U.S. DOE, Basic Energy Sciences, Office of Energy Research.

  14. Structure-based prediction of free energy changes of binding of PTP1B inhibitors

    Science.gov (United States)

    Wang, Jing; Ling Chan, Shek; Ramnarayan, Kal

    2003-08-01

    The goals were (1) to understand the driving forces in the binding of small molecule inhibitors to the active site of PTP1B and (2) to develop a molecular mechanics-based empirical free energy function for compound potency prediction. A set of compounds with known activities was docked onto the active site. The related energy components and molecular surface areas were calculated. The bridging water molecules were identified and their contributions were considered. Linear relationships were explored between the above terms and the binding free energies of compounds derived based on experimental inhibition constants. We found that minimally three terms are required to give rise to a good correlation (0.86) with predictive power in five-group cross-validation test (q2 = 0.70). The dominant terms are the electrostatic energy and non-electrostatic energy stemming from the intra- and intermolecular interactions of solutes and from those of bridging water molecules in complexes.

  15. Using docking and alchemical free energy approach to determine the binding mechanism of eEF2K inhibitors and prioritizing the compound synthesis.

    Science.gov (United States)

    Wang, Qiantao; Edupuganti, Ramakrishna; Tavares, Clint D J; Dalby, Kevin N; Ren, Pengyu

    2015-01-01

    A-484954 is a known eEF2K inhibitor with submicromolar IC50 potency. However, the binding mechanism and the crystal structure of the kinase remains unknown. Here, we employ a homology eEF2K model, docking and alchemical free energy simulations to probe the binding mechanism of eEF2K, and in turn, guide the optimization of potential lead compounds. The inhibitor was docked into the ATP-binding site of a homology model first. Three different binding poses, hypothesis 1, 2, and 3, were obtained and subsequently applied to molecular dynamics (MD) based alchemical free energy simulations. The calculated relative binding free energy of the analogs of A-484954 using the binding pose of hypothesis 1 show a good correlation with the experimental IC50 values, yielding an r (2) coefficient of 0.96 after removing an outlier (compound 5). Calculations using another two poses show little correlation with experimental data, (r (2) of less than 0.5 with or without removing any outliers). Based on hypothesis 1, the calculated relative free energy suggests that bigger cyclic groups, at R1 e.g., cyclobutyl and cyclopentyl promote more favorable binding than smaller groups, such as cyclopropyl and hydrogen. Moreover, this study also demonstrates the ability of the alchemical free energy approach in combination with docking and homology modeling to prioritize compound synthesis. This can be an effective means of facilitating structure-based drug design when crystal structures are not available.

  16. Transformation of cooperative free energies between ligation systems of hemoglobin: resolution of the carbon monoxide binding intermediates.

    Science.gov (United States)

    Huang, Y; Ackers, G K

    1996-01-23

    A strategy has been developed for quantitatively "translating" the distributions of cooperative free energy between different oxygenation analogs of hemoglobin (Hb). The method was used to resolve the cooperative free energies of all eight carbon monoxide binding intermediates. These parameters of the FeCOHb system were determined by thermodynamic transformation of corresponding free energies obtained previously for all species of the Co/FeCO system, i.e., where cobalt-substituted hemes comprise the unligated sites [Speros, P. C., et al. (1991) Biochemistry 30, 7254-7262]. Using hybridized combinations of normal and cobalt-substituted Hb, ligation analog systems Co/FeX (X = CO, CN) were constructed and experimentally quantified. Energetics of cobalt-induced structural perturbation were determined for all species of both the "mixed metal" Co/Fe system and also the ligated Co/FeCN system. It was found that major energetic perturbations of the Co/Fe hybrid species originate from a pure cobalt substitution effect on the alpha subunits. These perturbations are transduced to the beta subunit within the same dimeric half-tetramer, resulting in alteration of the free energies for binding at the nonsubstituted (Fe) sites. Using the linkage strategy developed in this study along with the determined energetics of these couplings, the experimental assembly free energies for the Co/FeCO species were transformed into cooperative free energies of the 10 Fe/FeCO species. The resulting values were found to distribute according to predictions of a symmetry rule mechanism proposed previously [Ackers, G. K., et al. (1992) Science 255, 54-63]. Their distribution is consistent with accurate CO binding data of normal Hb [Perrella, M., et al. (1990b) Biophys. Chem. 37, 211-223] and also with accurate O2 binding data obtained under the same conditions [Chu, A. H., et al. (1984) Biochemistry 23, 604-617].

  17. Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites.

    Science.gov (United States)

    Umari, Paolo; Mosconi, Edoardo; De Angelis, Filippo

    2018-02-01

    The performance of lead-halide perovskites in optoelectronic devices is due to a unique combination of factors, including highly efficient generation, transport, and collection of photogenerated charge carriers. The mechanism behind efficient charge generation in lead-halide perovskites is still largely unknown. Here, we investigate the factors that influence the exciton binding energy (E b ) in a series of metal-halide perovskites using accurate first-principles calculations based on solution of the Bethe-Salpeter equation, coupled to ab initio molecular dynamics simulations. We find that E b is strongly modulated by screening from low-energy phonons, which account for a factor ∼2 E b reduction, while dynamic disorder and rotational motion of the organic cations play a minor role. We calculate E b = 15 meV for MAPbI 3 , in excellent agreement with recent experimental estimates. We then explore how different material combinations (e.g., replacing Pb → Pb:Sn→ Sn; and MA → FA → Cs) may lead to different E b values and highlight the mechanisms underlying E b tuning.

  18. Shedding Light on the EOS-Gravity Degeneracy and Constraining the Nuclear Symmetry Energy from the Gravitational Binding Energy of Neutron Stars

    Directory of Open Access Journals (Sweden)

    He Xiao-Tao

    2016-01-01

    Full Text Available A thorough understanding of properties of neutron stars requires both a reliable knowledge of the equation of state (EOS of super-dense nuclear matter and the strong-field gravity theories simultaneously. To provide information that may help break this EOS-gravity degeneracy, we investigate effects of nuclear symmetry energy on the gravitational binding energy of neutron stars within GR and the scalar-tensor subset of alternative gravity models. We focus on effects of the slope L of nuclear symmetry energy at saturation density and the high-density behavior of nuclear symmetry energy. We find that the variation of either the density slope L or the high-density behavior of nuclear symmetry energy leads to large changes in the binding energy of neutron stars. The difference in predictions using the GR and the scalar-tensor theory appears only for massive neutron stars, and even then is significantly smaller than the difference resulting from variations in the symmetry energy.

  19. Differences in Binding and Monitoring Mechanisms Contribute to Lifespan Age Differences in False Memory

    Science.gov (United States)

    Fandakova, Yana; Shing, Yee Lee; Lindenberger, Ulman

    2013-01-01

    Based on a 2-component framework of episodic memory development across the lifespan (Shing & Lindenberger, 2011), we examined the contribution of memory-related binding and monitoring processes to false memory susceptibility in childhood and old age. We administered a repeated continuous recognition task to children (N = 20, 10-12 years),…

  20. Hydrostatic-pressure effects on the donor binding energy in GaAs-(Ga, Al)As quantum dots

    International Nuclear Information System (INIS)

    Perez-Merchancano, S T; Paredes-Gutierrez, H; Silva-Valencia, J

    2007-01-01

    The binding energy of shallow hydrogenic impurities in a spherical quantum dot under isotropic hydrostatic pressure is calculated using a variational approach within the effective mass approximation. The binding energy is computed as a function of hydrostatic pressure, dot size and impurity position. The results show that the impurity binding energy increases with the pressure for any position of the impurity. Also, we have found that the binding energy depends on the location of the impurity and the pressure effects are less pronounced for impurities on the edge

  1. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    International Nuclear Information System (INIS)

    Zheng, Y.; Brion, C.E.; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E.; Chakravorty, S.J.; Davidson, E.R.; Sgamellotti, A.; von Niessen, W.

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green's function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs

  2. Metastable decay and binding energies of van der Waals cluster ions

    International Nuclear Information System (INIS)

    Ernstberger, B.; Krause, H.; Neusser, H.J.

    1991-01-01

    In this work the appearance potentials for the metastable decay channel of a series of van der Waals dimer ions are presented. Ionization and metastable dissociation is achieved by resonance-enhanced two-photon absorption in a linear reflectron time-of-flight mass spectrometer. From the appearance potentials the binding energy of the neutral dimers is obtained and from the additionally measured ionization potentials binding energies of the dimer cations are achieved. The contribution of charge transfer resonance interaction to the binding in cluster ions is evaluated by investigation of several homo- and heterodimers of aromatic components and the heterodimer benzene/cyclohexane as an example for a dimer consisting of an aromatic and a nonaromatic component. (orig.)

  3. Lowest excited-state impurity binding energy in InGaN/GaN parabolic QWW: magnetic field effect

    International Nuclear Information System (INIS)

    Haddou El Ghazi; Anouar Jorio; Izeddine Zorkani

    2013-01-01

    In this paper, we have investigated the magnetic field effect on the lowest excited-state binding energy of hydrogenic shallow-donor impurity in wurtzite (In,Ga)N/GaN parabolic transversal-section quantum-well wire (PQWW) using the finite-difference method within the quasi-one-dimensional effective potential model. The calculations are performed within the framework of the effective mass approximation. A cylindrical QWW effective radius is taken into account to describe the lateral confinement strength. The numerical results show that: (i) the probability density is the largest on a circularity whose radius is the effective radius and (ii) the lowest excited-state binding energy is the largest when an impurity is located on this circularity while it starts to decrease as the impurity is away from the circularity. (author)

  4. Coulomb energy differences in mirror nuclei

    International Nuclear Information System (INIS)

    Lenzi, Silvia M

    2006-01-01

    By comparing the excitation energies of analogue states in mirror nuclei, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. They can be described in the shell model framework by including electromagnetic and nuclear isospin-non-conserving interactions. Calculations for the mirror energy differences in nuclei of the f 7/2 shell are described and compared with recent experimental data. These studies are extended to mirror nuclei in the upper sd and fp shells

  5. Simultaneous effects of hydrostatic pressure and electric field on impurity binding energy and polarizability in coupled InAs/GaAs quantum wires

    International Nuclear Information System (INIS)

    Tangarife, E.; Duque, C.A.

    2011-01-01

    This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. Calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a non-linear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum-well wires. -- Research highlights: → Binding energy for donor impurity in coupled wires strongly depends on the confinement potential. → Polarizability for donor impurity in coupled wires strongly depends on the confinement potential. → Binding energy strongly depends on the direction of the applied electric field. → Polarizability strongly depends on the direction of the applied electric field. → The coupling between the two parallel wires increases with the hydrostatic pressure.

  6. Core electron binding energy shifts of AlBr3 and Al2Br6 vapor

    International Nuclear Information System (INIS)

    Mueller, Astrid M.; Plenge, Juergen; Leone, Stephen R.; Canton, Sophie E.; Rude, Bruce S.; Bozek, John D.

    2006-01-01

    The Al 2p and Br 3d inner-shell photoelectron spectra of aluminum tribromide monomer and dimer vapor were measured at 90 and 95 eV photon energy, respectively, to determine the core electron binding energies of the atoms in the two molecular species. While AlBr 3 has three identical Br atoms, Al 2 Br 6 exhibits four terminal and two bridging Br atoms. The species are identified by their distinct valence photoelectron spectra. Comparison of the observed Al 2p 1/2 and Al 2p 3/2 electron binding energies of AlBr 3 with those of Al 2 Br 6 shows that there is a chemical shift of (0.15 ± 0.03) eV to lower energy in the dimer. In Al 2 Br 6 , an assignment is proposed in which the Br 3d 3/2 and Br 3d 5/2 binding energies of terminal Br atoms are (1.18 ± 0.03) eV lower than those of bridging Br atoms. This assignment assumes that both types of Br atoms have similar cross-sections for ionization. With this result, the Br 3d 3/2 and Br 3d 5/2 binding energies of Br atoms in AlBr 3 are (0.81 ± 0.03) eV lower than those of bridging Br atoms of the dimer but (0.37 ± 0.03) eV higher than those of terminal Br atoms of the dimer. The obtained chemical shifts are considered in terms of the binding relations and electron density distributions in both molecules. Chemical shifts that are larger than a few hundred millielectron volts, as observed in the Al 2 Br 6 /AlBr 3 system, offer potential to study the dissociation dynamics of the dimer in a femtosecond visible or ultraviolet-pump/XUV-probe experiment

  7. Comparison of experimental and theoretical binding and transition energies in the actinide region

    International Nuclear Information System (INIS)

    Krause, M.O.; Nestor, C.W. Jr.

    1977-01-01

    The status of experimental and theoretical binding and transition energy determinations is reviewed extending the comparison between experiment and theory to encompass representative series of data for all actinides. This comprehensive comparison reveals areas where improvements may be indicated, showing whether theoretical treatments including all known contributions to the lowest order would be adequate in all instances. 45 references

  8. Analysis of binding energy activity of TIBO and HIV-RT based on ...

    African Journals Online (AJOL)

    Tetrahydro-imidazo[4,5,l-jk][1,4]-benzodiazepin-2 (1 H)one (TIBO) is a noncompetitive non nucleotide antiretroviral drug with a specific allosteric binding site of HIV-1 RT. The conformational analysis shows that the effect of the drug depends on the potential energy which varied due to the beta rotatable dihedral angles (N6 ...

  9. Exciton binding energy in wurtzite InGaN/GaN quantum wells

    International Nuclear Information System (INIS)

    Park, Seoung-Hwan; Kim, Jong-Jae; Kim, Hwa-Min

    2004-01-01

    The internal field and carrier density effects on the exciton binding energies in wurtzite (WZ) InGaN/GaN quantum-well (QW) structures are investigated using the multiband effective-mass theory, and are compared with those obtained from the at-band model and with those of GaN/AlGaN QW structures. The exciton binding energy is significantly reduced with increasing sheet carrier density, suggesting that excitons are nearly bleached at densities around 10 12 cm -2 for both InGaN/GaN and GaN/AlGaN QW structures. With the inclusion of the internal field, the exciton binding energy is substantialy reduced compared to that of the at-band model in the investigated region of the wells. This can be explained by a decrease in the momentum matrix element and an increase in the inverse screening length due to the internal field. The exciton binding energy of the InGaN/GaN structure is smaller than that of the GaN/AlGaN structure because InGaN/GaN structures have a smaller momentum matrix element and a larger inverse screening length than GaN/AlGaN structures.

  10. Efficient Energy use in Different Applications

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lars

    2007-05-15

    There is a steadily growing awareness for environmental issues caused by the increased energy use, mainly in the industrial world. The use of fossil fuels has reached the point where it can not be looked at as an endless source. The resources are decreasing at a pace where alternative energy sources will be a necessity for this and future generations. Global warming, due to increased concentration of greenhouse gases in the atmosphere, has become one of the most important issues on the political agenda at all levels. A widespread opinion is that energy conservation technologies are needed and a shift towards renewable energy sources is required to attain a sustainable development of our society and a progress in the developing countries. This thesis is focusing on two different energy conservation technologies in different applications. The open absorption system, a modification of an absorption heat pump is a promising technique in moist air processes, recovering the latent heat in the air and decreasing the total heat demand. The technology has been tested in two full scale pilot plants at a sawmill operating four timber dryers and another unit installed at an indoor swimming pool. The technique has had positive outcomes in both operational and energy conservation respects. It has been shown that the energy demand was decreased considerably in both applications. The investment cost has proved to be relatively high, but optimization of operational parameters shows a potential to decrease the initial investment and make the technology more competitive. Pressurized entrained-flow high temperature black liquor gasification (PEHT-BLG), developed by Chemrec AB, is another novel technique presented in this thesis. Black liquor is an important by-product in the papermaking process. Chemicals and energy is recovered in the conventional recovery boiler where superheated steam is produced to generate electricity and process heat. The cooking chemicals are recovered from the

  11. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    Science.gov (United States)

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  12. Binding Thermodynamics of Ferredoxin:NADP+ Reductase: Two Different Protein Substrates and One Energetics

    Science.gov (United States)

    Martínez-Júlvez, Marta; Medina, Milagros; Velázquez-Campoy, Adrián

    2009-01-01

    Abstract The thermodynamics of the formation of binary and ternary complexes between Anabaena PCC 7119 FNR and its substrates, NADP+ and Fd, or Fld, has been studied by ITC. Despite structural dissimilarities, the main difference between Fd and Fld binding to FNR relates to hydrophobicity, reflected in different binding heat capacity and number of water molecules released from the interface. At pH 8, the formation of the binary complexes is both enthalpically and entropically driven, accompanied by the protonation of at least one ionizable group. His299 FNR has been identified as the main responsible for the proton exchange observed. However, at pH 10, where no protonation occurs and intrinsic binding parameters can be obtained, the formation of the binary complexes is entropically driven, with negligible enthalpic contribution. Absence of the FMN cofactor in Fld does not alter significantly the strength of the interaction, but considerably modifies the enthalpic and entropic contributions, suggesting a different binding mode. Ternary complexes show negative cooperativity (6-fold and 11-fold reduction in binding affinity, respectively), and an increase in the enthalpic contribution (more favorable) and a decrease in the entropic contribution (less favorable), with regard to the binary complexes energetics. PMID:19527656

  13. Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping

    Energy Technology Data Exchange (ETDEWEB)

    Jie Liu

    2011-02-01

    The DOE Hydrogen Sorption Center of Excellence (HSCoE) was formed in 2005 to develop materials for hydrogen storage systems to be used in light-duty vehicles. The HSCoE and two related centers of excellence were created as follow-on activities to the DOE Office of Energy Efficiency and Renewable Energy’s (EERE’s) Hydrogen Storage Grand Challenge Solicitation issued in FY 2003. The Hydrogen Sorption Center of Excellence (HSCoE) focuses on developing high-capacity sorbents with the goal to operate at temperatures and pressures approaching ambient and be efficiently and quickly charged in the tank with minimal energy requirements and penalties to the hydrogen fuel infrastructure. The work was directed at overcoming barriers to achieving DOE system goals and identifying pathways to meet the hydrogen storage system targets. To ensure that the development activities were performed as efficiently as possible, the HSCoE formed complementary, focused development clusters based on the following four sorption-based hydrogen storage mechanisms: 1. Physisorption on high specific surface area and nominally single element materials 2. Enhanced H2 binding in Substituted/heterogeneous materials 3. Strong and/or multiple H2 binding from coordinated but electronically unsatruated metal centers 4. Weak Chemisorption/Spillover. As a member of the team, our group at Duke studied the synthesis of various carbon-based materials, including carbon nanotubes and microporous carbon materials with controlled porosity. We worked closely with other team members to study the effect of pore size on the binding energy of hydrogen to the carbon –based materials. Our initial project focus was on the synthesis and purification of small diameter, single-walled carbon nanotubes (SWNTs) with well-controlled diameters for the study of their hydrogen storage properties as a function of diameters. We developed a chemical vapor deposition method that synthesized gram quantities of carbon nanotubes with

  14. Limited tryptic proteolysis of the benzodiazepine binding proteins in different species reveals structural homologies.

    Science.gov (United States)

    Friedl, W; Lentes, K U; Schmitz, E; Propping, P; Hebebrand, J

    1988-12-01

    Peptide mapping can be used to elucidate further the structural similarities of the benzodiazepine binding proteins in different vertebrate species. Crude synaptic membrane preparations were photoaffinity-labeled with [3H]flunitrazepam and subsequently degraded with various concentrations of trypsin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by fluorography allowed a comparison of the molecular weights of photolabeled peptides in different species. Tryptic degradation led to a common peptide of 40K in all species investigated, a finding indicating that the benzodiazepine binding proteins are structurally homologous in higher bony fishes and tetrapods.

  15. Neuroticism Associates with Cerebral in Vivo Serotonin Transporter Binding Differently in Males and Females

    DEFF Research Database (Denmark)

    Tuominen, Lauri; Miettunen, Jouko; Cannon, Dara M

    2017-01-01

    scores from 91 healthy males and 56 healthy females. We specifically tested if the association between neuroticism and serotonin transporter is different in females and males. Results: We found that neuroticism and thalamic serotonin transporter binding potentials were associated in both males......). Conclusions: The finding is in agreement with recent studies showing that the serotonergic system is involved in affective disorders differently in males and females and suggests that contribution of thalamic serotonin transporter to the risk of affective disorders depends on sex....... and females, but with opposite directionality. Higher neuroticism associated with higher serotonin transporter binding potential in males (standardized beta 0.292, P=.008), whereas in females, higher neuroticism associated with lower serotonin transporter binding potential (standardized beta -0.288, P=.014...

  16. Stark effect-dependent of ground-state donor binding energy in InGaN/GaN parabolic QWW

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Zorkani, Izeddine; Jorio, Anouar

    2013-01-01

    Using the finite-difference method within the quasi-one-dimensional effective potential model and effective mass approximation, the ground-state binding energy of hydrogenic shallow-donor impurity in wurtzite (WZ) (In,Ga)N/GaN parabolic transversal-section quantum-well wires (PQWWs) subjected to external electric field is investigated. An effective radius of a cylindrical QWW describing the strength of the lateral confinement is introduced. The results show that (i) the position of the largest electron probability density in x–y plane is located at a point and it is pushed along the negative sense by the electric field directed along the positive sense, (ii) the ground-state binding energy is largest for the impurity located at this point and starts to decrease when the impurity is away from this point, (iii) the ground-state binding energy decreases with increase in the external electric field and effective radius, and (iv) the Stark-shift increases with the increase of the external electric field and the effective radius

  17. Species Differences in the Binding of Sodium 4-Phenylbutyrate to Serum Albumin.

    Science.gov (United States)

    Yamasaki, Keishi; Enokida, Taisuke; Taguchi, Kazuaki; Miyamura, Shigeyuki; Kawai, Akito; Miyamoto, Shuichi; Maruyama, Toru; Seo, Hakaru; Otagiri, Masaki

    2017-09-01

    Sodium 4-phenylbutyrate (PB) is clinically used as a drug for treating urea cycle disorders. Recent research has shown that PB also has other pharmacologic activities, suggesting that it has the potential for use as a drug for treating other disorders. In the process of drug development, preclinical testing using experimental animals is necessary to verify the efficacy and safety of PB. Although the binding of PB to human albumin has been studied, our knowledge of its binding to albumin from the other animal species is extremely limited. To address this issue, we characterized the binding of PB to albumin from several species (human, bovine, rabbit, and rat). The results indicated that PB interacts with 1 high-affinity site of albumin from these species, which corresponds to site II of human albumin. The affinities of PB to human and bovine albumins were higher than those to rabbit and rat albumin, and that to rabbit albumin was the lowest. Binding and molecular docking studies using structurally related compounds of PB suggested that species differences in the affinity are attributed to differences in the structural feature of the PB-binding sites on albumins (e.g., charge distribution, hydrophobicity, shape, or size). Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level.

    Science.gov (United States)

    Olsson, Martin A; Söderhjelm, Pär; Ryde, Ulf

    2016-06-30

    In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158-224 atoms). We use single-step exponential averaging (ssEA) and the non-Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi-empirical PM6-DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free-energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  19. Converging ligand‐binding free energies obtained with free‐energy perturbations at the quantum mechanical level

    Science.gov (United States)

    Olsson, Martin A.; Söderhjelm, Pär

    2016-01-01

    In this article, the convergence of quantum mechanical (QM) free‐energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa‐acid deep‐cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158–224 atoms). We use single‐step exponential averaging (ssEA) and the non‐Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi‐empirical PM6‐DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free‐energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27117350

  20. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first...

  1. Binding Energy and Lifetime of Excitons in InxGa1-xAs/GaAs Quantum Wells

    DEFF Research Database (Denmark)

    Orani, D.; Polimeni, A.; Patane, A.

    1997-01-01

    We report a systematic study of exciton binding energies and lifetimes in InGaAs/GaAs quantum wells. The experimental binding energies have been deduced from photoluminescence excitation measurements taking into account the contribution of the 2s state of the exciton and the line broadening...

  2. Calculation of relative free energies for ligand-protein binding, solvation, and conformational transitions using the GROMOS software.

    Science.gov (United States)

    Riniker, Sereina; Christ, Clara D; Hansen, Halvor S; Hünenberger, Philippe H; Oostenbrink, Chris; Steiner, Denise; van Gunsteren, Wilfred F

    2011-11-24

    The calculation of the relative free energies of ligand-protein binding, of solvation for different compounds, and of different conformational states of a polypeptide is of considerable interest in the design or selection of potential enzyme inhibitors. Since such processes in aqueous solution generally comprise energetic and entropic contributions from many molecular configurations, adequate sampling of the relevant parts of configurational space is required and can be achieved through molecular dynamics simulations. Various techniques to obtain converged ensemble averages and their implementation in the GROMOS software for biomolecular simulation are discussed, and examples of their application to biomolecules in aqueous solution are given. © 2011 American Chemical Society

  3. Studies on Aryl-Substituted Phenylalanines: Synthesis, Activity, and Different Binding Modes at AMPA Receptors

    DEFF Research Database (Denmark)

    Szymanska, Ewa; Frydenvang, Karla Andrea; Pickering, Darryl S

    2016-01-01

    , not previously seen for amino acid-based AMPA receptor antagonists, X-ray crystal structures of both eutomers in complex with the GluA2 ligand binding domain were solved. The cocrystal structures of (S)-37 and (R)-38 showed similar interactions of the amino acid parts but unexpected and different orientations...

  4. Comparison of nitric oxide binding to different pure and mixed protoporphyrin IX monolayers

    NARCIS (Netherlands)

    Knoben, W.; Crego-Calama, M.; Brongersma, S.H.

    2012-01-01

    The nitric oxide (NO) binding properties of monolayers of four different protoporphyrins IX adsorbed on aluminum oxide surfaces have been investigated. XPS and AFM results are consistent with the presence of a monolayer of porphyrins, bound to the surface by their carboxylic acid groups and with the

  5. Similar serotonin-2A receptor binding in rats with different coping styles or levels of aggression

    DEFF Research Database (Denmark)

    Visser, Anniek Kd; Ettrup, Anders; Klein, Anders Bue

    2015-01-01

    is not an important molecular marker for coping style. Since neither an antagonist nor an agonist tracer showed any binding differences, it is unlikely that the affinity state of the 5-HT2A R is co-varying with levels of aggression or active avoidance in WTG, RHA and RLA. This article is protected by copyright. All...

  6. Absolute binding free energy calculations of CBClip host–guest systems in the SAMPL5 blind challenge

    Science.gov (United States)

    Tofoleanu, Florentina; Pickard, Frank C.; König, Gerhard; Huang, Jing; Damjanović, Ana; Baek, Minkyung; Seok, Chaok; Brooks, Bernard R.

    2016-01-01

    Herein, we report the absolute binding free energy calculations of CBClip complexes in the SAMPL5 blind challenge. Initial conformations of CBClip complexes were obtained using docking and molecular dynamics simulations. Free energy calculations were performed using thermodynamic integration (TI) with soft-core potentials and Bennett’s acceptance ratio (BAR) method based on a serial insertion scheme. We compared the results obtained with TI simulations with soft-core potentials and Hamiltonian replica exchange simulations with the serial insertion method combined with the BAR method. The results show that the difference between the two methods can be mainly attributed to the van der Waals free energies, suggesting that either the simulations used for TI or the simulations used for BAR, or both are not fully converged and the two sets of simulations may have sampled difference phase space regions. The penalty scores of force field parameters of the 10 guest molecules provided by CHARMM Generalized Force Field can be an indicator of the accuracy of binding free energy calculations. Among our submissions, the combination of docking and TI performed best, which yielded the root mean square deviation of 2.94 kcal/mol and an average unsigned error of 3.41 kcal/mol for the ten guest molecules. These values were best overall among all participants. However, our submissions had little correlation with experiments. PMID:27677749

  7. Binding of plasma proteins to titanium dioxide nanotubes with different diameters

    Science.gov (United States)

    Kulkarni, Mukta; Flašker, Ajda; Lokar, Maruša; Mrak-Poljšak, Katjuša; Mazare, Anca; Artenjak, Andrej; Čučnik, Saša; Kralj, Slavko; Velikonja, Aljaž; Schmuki, Patrik; Kralj-Iglič, Veronika; Sodin-Semrl, Snezna; Iglič, Aleš

    2015-01-01

    Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2) nanotubes (NTs) by electrochemical anodization. The zeta potential (ζ-potential) of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm). We also showed a dose-dependent effect of serum amyloid A protein binding to NTs. These results and theoretical calculations of total available surface area for binding of proteins indicate that the largest surface area (also considering the NT lengths) is available for 100 nm NTs, with decreasing surface area for 50 and 15 nm NTs. These current investigations will have an impact on increasing the binding ability of biomedical devices in the body leading to increased durability of biomedical devices. PMID:25733829

  8. Calculation of positron binding energies using the generalized any particle propagator theory

    International Nuclear Information System (INIS)

    Romero, Jonathan; Charry, Jorge A.; Flores-Moreno, Roberto; Varella, Márcio T. do N.; Reyes, Andrés

    2014-01-01

    We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ∼0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach

  9. Differences in both glycosylation and binding properties between rat and mouse liver prolactin receptors.

    Science.gov (United States)

    Lascols, O; Cherqui, G; Munier, A; Picard, J; Capeau, J

    1994-05-01

    To investigate whether glycanic chains of prolactin receptors (PRL-R) play a role in hormone binding activity, comparison was made of rat and mouse liver solubilized receptors with respect to both their affinity for the hormone and their glycosylation properties. As compared with rat receptors, mouse receptors exhibited a 2-fold higher affinity for human growth hormone (hGH), the hormone being bound by both tissues with a lactogenic specificity. Along with this increased affinity, mouse receptors had a 2 lower M(r) relative to rat receptors (62 kDa versus 64 kDa as measured on hGH cross-linked receptors). These differences could be ascribed to different glycosylation properties of the receptors from the two species, as supported by the followings. 1) After treatment with endoglycosidase F (endo F), rat and mouse PRL-R no longer exhibited any difference in their M(r) (54 kDa for both cross-linked receptors). 2) Neuraminidase treatment increased by 37% the binding of hGH to mouse receptors, but was ineffective on the hormone-binding to rat receptors. Conversely, wheat germ agglutinin (WGA), another sialic acid specific probe, decreased hGH binding to rat receptors by 25%, but had no effect on this process for mouse ones. 3) Marked differences were observed in the recoveries of rat and mouse hormone-receptor (HR) complexes from ricin-1- (RCA1-), concanavalin A- (ConA-) and WGA-immobilized lectins. These differences were reduced (RCA1 and ConA) or abolished (WGA) after rat and mouse receptor desialylation by neuraminidase, a treatment which decreased the M(r) of both receptors by 2 kDa. Taken together, these results strongly suggest that the PRL-R from rat and mouse liver contain biantennary N-linked oligosaccharidic chains with distinct type of sialylation, which may account for their differential hormone-binding affinities.

  10. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.; Brion, C.E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemistry; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Chakravorty, S.J.; Davidson, E.R. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry; Sgamellotti, A. [Univ di Perugia (Italy). Dipartimento di Chimica; von Niessen, W. [Technische Univ. Braunschweig (Germany). Inst fuer Physikalische

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green`s function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs.

  11. Quantum confinement effect and exciton binding energy of layered perovskite nanoplatelets

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2018-02-01

    Full Text Available We report the preparation of monolayer (n = 1, few-layer (n = 2–5 and 3D (n = ∞ organic lead bromide perovskite nanoplatelets (NPLs by tuning the molar ratio of methylammonium bromide (MABr and hexadecammonium bromide (HABr. The absorption spectrum of the monolayer (HA2PbBr4 perovskite NPLs shows about 138 nm blue shift from that of 3D MAPbBr3 perovskites, which is attributed to strong quantum confinement effect. We further investigate the two-photon photoluminescence (PL of the NPLs and measure the exciton binding energy of monolayer perovskite NPLs using linear absorption and two-photon PL excitation spectroscopy. The exciton binding energy of monolayer perovskite NPLs is about 218 meV, which is far larger than tens of meV in 3D lead halide perovskites.

  12. Binding energies of double-Λ hypernuclei and ΛΛ G-matrix

    International Nuclear Information System (INIS)

    Himeno, Hiroyuki; Sakuda, Toshimi; Nagata, Sinobu; Yamamoto, Yasuo.

    1993-01-01

    Binding energies of double-Λ hypernuclei ΛΛ 10 Be, ΛΛ 13 B and ΛΛ 6 He are calculated on the basis of G-matrix theory in finite nuclei. The core + Λ + Λ three-body model is adopted and the G-matrix for ΛΛ interaction is treated consistently with the model space. As the bare interaction the Nijmegen model D and model F are used. It is discussed that the consistency of the interaction with the model space is very important to calculate reliably the binding energies. It is shown that if the new event of double-Λ hypernuclei is interpreted as ΛΛ 13 B, model D reproduces the experimental data very well, whereas model F does not. (author)

  13. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1 Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus

    Directory of Open Access Journals (Sweden)

    Christine Winter

    2013-07-01

    Full Text Available The spike proteins of a number of coronaviruses are able to bind to sialic acids present on the cell surface. The importance of this sialic acid binding ability during infection is, however, quite different. We compared the spike protein of transmissible gastroenteritis virus (TGEV and the spike protein of infectious bronchitis virus (IBV. Whereas sialic acid is the only receptor determinant known so far for IBV, TGEV requires interaction with its receptor aminopeptidase N to initiate infection of cells. Binding tests with soluble spike proteins carrying an IgG Fc-tag revealed pronounced differences between these two viral proteins. Binding of the IBV spike protein to host cells was in all experiments sialic acid dependent, whereas the soluble TGEV spike showed binding to APN but had no detectable sialic acid binding activity. Our results underline the different ways in which binding to sialoglycoconjugates is mediated by coronavirus spike proteins.

  14. Binding energies of sd-shell nuclei with a realistic effective Hamiltonian

    International Nuclear Information System (INIS)

    Dalton, B.J.; Vary, J.P.; Baldridge, W.J.

    1977-01-01

    The nuclear shell model with a second-order effective Hamiltonian derived within Brueckner theory from the free nucleon-nucleon interaction is shown to yield accurate binding energies of nuclei with 16 < A < 40. This agreement is obtained by choosing the spectrum of low-lying unoccupied orbitals in a justified manner and, when necessary, by employing a statistical method to approximate the lowest eigenvalue of very large shell-model diagonalizations

  15. Effect of the dielectric constant of mesoscopic particle on the exciton binding energy

    International Nuclear Information System (INIS)

    Lai Zuyou; Gu Shiwei

    1991-09-01

    For materials with big exciton reduced mass and big dielectric constant, such as TiO 2 , the variation of dielectric constant with the radius of an ultrafine particle (UFP) is important for determining the exciton binding energy. For the first time a phenomenological formula of the dielectric constant of a UFP with its radius in mesoscopic range is put forward in order to explain the optical properties of TiO 2 UFP. (author). 22 refs, 3 figs, 1 tab

  16. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  17. The Bi{sup 3+} 6s and 6p electron binding energies in relation to the chemical environment of inorganic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Awater, Roy H.P., E-mail: R.H.P.Awater@tudelft.nl; Dorenbos, Pieter

    2017-04-15

    This paper provides an overview and interpretation of the spectroscopic data of the Bi{sup 3+} activator ion in 117 different inorganic compounds. The energies of the metal-to-metal charge transfer and the interconfigurational transitions of Bi{sup 3+} were collected from the archival literature. Using these energies, in combination with the electron binding energies in the host conduction and valence band, the binding energies in the 6s ground state and 6p excited state were determined relative to the vacuum level. The locations of the Bi{sup 3+} energy levels within the forbidden gap of the host compound provides valuable insight in the physical properties of the Bi{sup 3+} activator ion in different compounds.

  18. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    Science.gov (United States)

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  19. Momentum distributions and binding energies for the valence orbitals of methanol

    International Nuclear Information System (INIS)

    Minchinton, A.; Brion, C.E.; Weigold, E.

    1981-06-01

    Methanol has been studied by binary (e,2e) coincidence spectroscopy at 1200 eV using symmetric non-coplanar geometry. The binding energy spectrum has been determined in the energy range up to 46eV at azimuthal angles of 0 deg. and 7 deg. Momentum distributions measured for the valence orbitals are compared with calculations using the wave functions (essentially double-zeta quality) reported by Snyder and Basch. Agreement is generally quite good except for the outermost orbitals and the 5a' orbital which all show somewhat larger low momentum components than predicted by the calculations. This is indicative of a more spatially extended orbital than is predicted

  20. The structure and binding energy of K+endash ether complexes: A comparison of MP2, RI-MP2, and density functional methods

    International Nuclear Information System (INIS)

    Feller, D.; Apra, E.; Nichols, J.A.; Bernholdt, D.E.

    1996-01-01

    The structures and binding energies of several cation:ether complexes (K + :dimethyl ether, K + :dimethoxyethane, K + :12-crown-4 and K + :18-crown-6) were determined with second and fourth order perturbation theory using correlation consistent basis sets. Several of these are the largest correlated calculations yet attempted on crown ethers. The observed systematic convergence to the complete basis set limit provides a standard by which the accuracy of previous studies can be measured and facilitates the calibration of density functional methods. Recent Fouier transform ion cyclotron resonance experiments predicted K + :18-crown-6 binding energies which were significantly smaller than ab initio calculations. None of the potential sources of error examined in the present study were large enough to explain this difference. Although the 6-31+G* basis set used in an earlier theoretical study was smaller than the smallest of the correlation consistent basis sets, with suitable correction for basis set superposition error, it appears capable of yielding binding energies within several kcal/mol of the basis set limit. Perturbation theory calculations exploiting the open-quote open-quote resolution of the identity close-quote close-quote approximation were found to faithfully reproduce binding energies and conformational differences. Although the cation endash ether interaction is dominated by classical electrostatics, the accuracy of density functional techniques was found to be quite sensitive to the choice of functionals. The local density SVWN procedure performed well for binding energies and conformational differences, while underestimating K + O distances by up to 0.08 A. The gradient-corrected Becke endash Lee endash Yang endash Parr functional underestimated the K + :12c4 binding energy by 4 endash 7 kcal/mol or 15%. copyright 1996 American Institute of Physics

  1. Is atomic energy different from a nucleus?

    International Nuclear Information System (INIS)

    Lee, Sun Young

    1995-07-01

    This book describes of two faces of nuclear energy : the secret of a nuclear, the history of nuclear energy : the scientists with a nuclear, the nuclear energy generation : the third disapprobation, a nuclear weapon : Choice of fear, the Korean peninsula and a nuclear and nuclear energy and utilization in peace. It consists of 31 questions and the answers of the questions about nuclear energy and nucleus.

  2. The convergence of the binding energy expansion in the Brueckner-Bethe-Goldstone theory of nuclear matter

    International Nuclear Information System (INIS)

    Grange, P.; Lejeune, A.

    1979-01-01

    Two, three- and four-body contributions to the binding energy of nuclear matter are evaluated in the framework of the Bethe-Brueckner expansion. Special attention is devoted to the choice of the auxillary single particle field and to the potential diagrams at the level of three- and four-hole lines present when such a field is different from zero. Two nucleon-nucleon interactions are used: a model interaction V 1 and the Reid soft-core interaction. For V 1 our results are compared with those obtained from variational calculations; this comparison supports the reliability of the perturbative expansion. (Auth.)

  3. The Duffy binding protein (PkDBPαII) of Plasmodium knowlesi from Peninsular Malaysia and Malaysian Borneo show different binding activity level to human erythrocytes.

    Science.gov (United States)

    Lim, Khai Lone; Amir, Amirah; Lau, Yee Ling; Fong, Mun Yik

    2017-08-11

    The zoonotic Plasmodium knowlesi is a major cause of human malaria in Malaysia. This parasite uses the Duffy binding protein (PkDBPαII) to interact with the Duffy antigen receptor for chemokines (DARC) receptor on human and macaque erythrocytes to initiate invasion. Previous studies on P. knowlesi have reported distinct Peninsular Malaysia and Malaysian Borneo PkDBPαII haplotypes. In the present study, the differential binding activity of these haplotypes with human and macaque (Macaca fascicularis) erythrocytes was investigated. The PkDBPαII of Peninsular Malaysia and Malaysian Borneo were expressed on the surface of COS-7 cells and tested with human and monkey erythrocytes, with and without anti-Fy6 (anti-Duffy) monoclonal antibody treatment. Binding activity level was determined by counting the number of rosettes formed between the transfected COS-7 cells and the erythrocytes. Anti-Fy6 treatment was shown to completely block the binding of human erythrocytes with the transfected COS-7 cells, thus verifying the specific binding of human DARC with PkDBPαII. Interestingly, the PkDBPαII of Peninsular Malaysia displayed a higher binding activity with human erythrocytes when compared with the Malaysian Borneo PkDBPαII haplotype (mean number of rosettes formed = 156.89 ± 6.62 and 46.00 ± 3.57, respectively; P < 0.0001). However, no difference in binding activity level was seen in the binding assay using M. fascicularis erythrocytes. This study is the first report of phenotypic difference between PkDBPαII haplotypes. The biological implication of this finding is yet to be determined. Therefore, further studies need to be carried out to determine whether this differential binding level can be associated with severity of knowlesi malaria in human.

  4. Phytoremediation of differents wastewaters using energy crops

    OpenAIRE

    Leigue Fernandez, Maria Alejandra

    2014-01-01

    The sources of renewable energy acquire considerable interest, if accompanied by a more rational use of energy, to facilitate the transaction by a high use of fossil fuels to a sustainable use of renewable energy. There are many alternative energy source such as wind, solar, geothermal and biomass that fulfil the criteria of sustainability and economic feasibility. Biomass refers to all the vegetable matter that can be obtained from photosynthesis. Biodiesel can be produced from a variety of ...

  5. Different papillomaviruses have different repertoires of transcription factor binding sites: convergence and divergence in the upstream regulatory region

    Directory of Open Access Journals (Sweden)

    Alonso Ángel

    2006-03-01

    Full Text Available Abstract Background Papillomaviruses (PVs infect stratified squamous epithelia in warm-blooded vertebrates and have undergone a complex evolutionary process. The control of the expression of the early ORFs in PVs depends on the binding of cellular and viral transcription factors to the upstream regulatory region (URR of the virus. It is believed that there is a core of transcription factor binding sites (TFBS common to all PVs, with additional individual differences, although most of the available information focuses only on a handful of viruses. Results We have studied the URR of sixty-one PVs, covering twenty different hosts. We have predicted the TFBS present in the URR and analysed these results by principal component analysis and genetic algorithms. The number and nature of TFBS in the URR might be much broader than thus far described, and different PVs have different repertoires of TFBS. Conclusion There are common fingerprints in the URR in PVs that infect primates, although the ancestors of these viruses diverged a long time ago. Additionally, there are obvious differences between the URR of alpha and beta PVs, despite these PVs infect similar histological cell types in the same host, i.e. human. A thorough analysis of the TFBS in the URR might provide crucial information about the differential biology of cancer-associated PVs.

  6. Differing lectin-binding patterns of malignant melanoma and nevocellular and Spitz nevi.

    Science.gov (United States)

    Kohchiyama, A; Oka, D; Ueki, H

    1987-01-01

    The lectin-binding patterns of primary malignant melanoma, nevocellular nevus, and Spitz nevus were studied on formalin-fixed, paraffin-embedded sections using a series of biotinylated lectins--concanavalin A (ConA), Ricinus communis agglutinin-1 (RCA1), dolichos biflorus agglutinin (DBA), soybean agglutinin (SBA), maclura pomifera agglutinin (MPA), peanut agglutinin (PNA), wheat germ agglutinin (WGA), and Ulex europeus agglutinin-1(UEA1)--and employing the avidin-biotin-peroxidase complex method. In nevocellular and Spitz nevi, all of the nevus cells were positively stained with ConA and RCA1. No positive staining was observed, however, with the other lectins and no change in binding patterns occurred following neuraminidase pretreatment. In malignant melanoma, all of the melanoma cells were positively stained with ConA and RCA1, and some were also stained with MPA, PNA, and WGA. In addition, DBA, SBA, MPA, PNA, and WGA labeled all of the melanoma cells after neuraminidase pretreatment. No positive staining was observed with UEA1 despite neuraminidase pretreatment. The present results showed that malignant melanoma and nevocellular and Spitz nevi have different lectin-binding patterns and different responses to neuraminidase pretreatment. We, therefore, believe that the lectin staining on paraffin-embedded sections can be a useful probe for the differentiation of these diseases.

  7. Constraining the gravitational binding energy of PSR J0737-3039B using terrestrial nuclear data

    International Nuclear Information System (INIS)

    Newton, W. G.; Li Baoan

    2009-01-01

    We show that the gravitational binding energy of a neutron star of a given mass is correlated with the slope of the nuclear symmetry energy at 1-2 times nuclear saturation density for equations of state without significant softening (i.e., those that predict maximum masses M max >1.44M · in line with the largest accurately measured neutron star mass). Applying recent laboratory constraints on the slope of the symmetry energy to this correlation we extract a constraint on the baryon mass of the lower mass member of the double pulsar binary system, PSR J0737-3039B. We compare with independent constraints derived from modeling the progenitor star of J0737-3039B up to and through its collapse under the assumption that it formed in an electron capture supernova. The two sets of constraints are consistent only if L < or approx. 70 MeV.

  8. On the binding energy of double Λ hypernuclei in the relativistic mean field theory

    International Nuclear Information System (INIS)

    Marcos, S.; Lombard, R.J.

    1997-01-01

    The binding energy of two Λ hyperons bound to a nuclear core is calculated within the relativistic mean field theory. The starting point is a two body relativistic equation of the Breit type suggested by the RMFT, and corrected for the two-particle interaction. The 2 Λ correlation energy is evaluated and the contribution of the δ and φ mesons, acting solely between hyperons, to the bond energy σB ΛΛ of ( ΛΛ ) 6 He, ( ΛΛ ) 10 Be and ( ΛΛ ) 13 B is calculated. Predictions of the ΔB ΛΛ A dependence are made for heavier Λ-hypernuclei. (K.A.)

  9. Differences in serotonin transporter binding affinity in patients with major depressive disorder and night eating syndrome.

    Science.gov (United States)

    Lundgren, J D; Amsterdam, J; Newberg, A; Allison, K C; Wintering, N; Stunkard, A J

    2009-03-01

    We examined serotonin transporter (SERT) binding affinity using single photon emission computed tomography (SPECT) in patients with major depressive disorder (MDD) and night eating syndrome (NES). There are similarities between MDD and NES in affective symptoms, appetite disturbance, nighttime awakenings, and, particularly, response to selective serotonin reuptake inhibitors (SSRIs). Six non-depressed patients with NES and seven patients with MDD underwent SPECT brain imaging with 123I-ADAM, a radiopharmaceutical agent selective for SERT sites. Uptake ratios of 123I-ADAM SERT binding were obtained for the midbrain, basal ganglia, and temporal lobe regions compared to the cerebellum reference region. Patients with NES had significantly greater SERT uptake ratios (effect size range 0.64-0.84) in the midbrain, right temporal lobe, and left temporal lobe regions than those with MDD whom we had previously studied. Pathophysiological differences in SERT uptake between patients with NES and MDD suggest these are distinct clinical syndromes.

  10. Different roles suggested by sex-biased expression and pheromone binding affinity among three pheromone binding proteins in the pink rice borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Jin, Jun-Yan; Li, Zhao-Qun; Zhang, Ya-Nan; Liu, Nai-Yong; Dong, Shuang-Lin

    2014-07-01

    Pheromone binding proteins (PBPs) are thought to bind and transport hydrophobic sex pheromone molecules across the aqueous sensillar lymph to specific pheromone receptors on the dendritic membrane of olfactory neurons. A maximum of 3 PBP genes have been consistently identified in noctuid species, and each of them shares high identity with its counterparts in other species within the family. The functionality differences of the 3 proteins are poorly understood. In the present study, 3 PBP cDNAs (SinfPBP1, 2, 3) were identified from the pink rice borer, Sesamia inferens, for the first time. The quantitative real-time PCR indicated that the 3 PBPs displayed similar temporal but very different sex related expression profiles. Expression of SinfPBP1 and SinfPBP2 were highly and moderately male biased, respectively, while SinfPBP3 was slightly female biased, as SinfPBPs were expressed at very different levels (PBP1>PBP2≫PBP3) in male antennae, but at similar levels in female antennae. Furthermore, the 3 SinfPBPs displayed different ligand binding profiles in fluorescence competitive binding assays. SinfPBP1 exhibited high and similar binding affinities to all 3 sex pheromone components (Ki=0.72-1.60 μM), while SinfPBP2 showed selective binding to the alcohol and aldehyde components (Ki=0.78-1.71 μM), and SinfPBP3 showed no obvious binding to the 3 sex pheromone components. The results suggest that SinfPBP1 plays a major role in the reception of female sex pheromones in S. inferens, while SinfPBP3 plays a least role (if any) and SinfPBP2 functions as a recognizer of alcohol and aldehyde components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Evolutionary Implications of Metal Binding Features in Different Species’ Prion Protein: An Inorganic Point of View

    Directory of Open Access Journals (Sweden)

    Diego La Mendola

    2014-05-01

    Full Text Available Prion disorders are a group of fatal neurodegenerative conditions of mammals. The key molecular event in the pathogenesis of such diseases is the conformational conversion of prion protein, PrPC, into a misfolded form rich in β-sheet structure, PrPSc, but the detailed mechanistic aspects of prion protein conversion remain enigmatic. There is uncertainty on the precise physiological function of PrPC in healthy individuals. Several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ mainly through a domain composed by four to five repeats of eight amino acids. In addition to mammals, PrP homologues have also been identified in birds, reptiles, amphibians and fish. The globular domain of protein is retained in the different species, suggesting that the protein carries out an essential common function. However, the comparison of amino acid sequences indicates that prion protein has evolved differently in each vertebrate class. The primary sequences are strongly conserved in each group, but these exhibit a low similarity with those of mammals. The N-terminal domain of different prions shows tandem amino acid repeats with an increasing amount of histidine residues going from amphibians to mammals. The difference in the sequence affects the number of copper binding sites, the affinity and the coordination environment of metal ions, suggesting that the involvement of prion in metal homeostasis may be a specific characteristic of mammalian prion protein. In this review, we describe the similarities and the differences in the metal binding of different species’ prion protein, as revealed by studies carried out on the entire protein and related peptide fragments.

  12. An extension of the fenske-hall LCAO method for approximate calculations of inner-shell binding energies of molecules

    Science.gov (United States)

    Zwanziger, Ch.; Reinhold, J.

    1980-02-01

    The approximate LCAO MO method of Fenske and Hall has been extended to an all-election method allowing the calculation of inner-shell binding energies of molecules and their chemical shifts. Preliminary results are given.

  13. Positive XPS binding energy shift of supported Cu{sub N}-clusters governed by initial state effects

    Energy Technology Data Exchange (ETDEWEB)

    Peters, S.; Peredkov, S. [Technische Universität Berlin, IOAP, Strasse des 17. Juni 135, 10623 Berlin (Germany); Al-Hada, M. [Department of Physics, College of Education and Linguistics, University of Amran (Yemen); Neeb, M., E-mail: matthias.neeb@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Wilhelm-Conrad-Röntgen-Campus Adlershof, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Eberhardt, W. [Technische Universität Berlin, IOAP, Strasse des 17. Juni 135, 10623 Berlin (Germany); DESY, Center for Free Electron Laser Science (CFEL), Notkestr. 85, 22607 Hamburg (Germany)

    2014-01-01

    Highlights: • Size dependent initial and final state effects of mass-selected deposited clusters. • Initial state effect dominates positive XPS shift in supported Cu-clusters. • Size dependent Coulomb correlation shift in the Auger final state of Cu cluster. • Size-dependent Auger parameter analysis. • Positive XPS shift differs from negative surface core level shift in crystalline copper. - Abstract: An initial state effect is established as origin for the positive 2p core electron binding energy shift found for Cu{sub N}-clusters supported by a thin silica layer of a p-doped Si(1 0 0) wafer. Using the concept of the Auger parameter and taking into account the usually neglected Coulomb correlation shift in the Auger final state (M{sub 4,5}M{sub 4,5}) it is shown that the initial state shift is comparable to the measured XPS shift while the final state relaxation shift contributes only marginally to the binding energy shift. The cluster results differ from the negative surface core-level shift of crystalline copper which has been explained in terms of a final state relaxation effect.

  14. Binding of plasma proteins to titanium dioxide nanotubes with different diameters

    Directory of Open Access Journals (Sweden)

    Kulkarni M

    2015-02-01

    Full Text Available Mukta Kulkarni,1,* Ajda Flašker,1,* Maruša Lokar,1 Katjuša Mrak-Poljšak,2 Anca Mazare,3 Andrej Artenjak,4 Saša Čučnik,2 Slavko Kralj,5 Aljaž Velikonja,1 Patrik Schmuki,3 Veronika Kralj-Iglič,6 Snezna Sodin-Semrl,2,7 Aleš Iglič11Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; 2Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia; 3Department of Materials Science and Engineering, University of Erlangen Nuremberg, Erlangen, Germany; 4Sandoz Biopharmaceuticals Mengeš, Lek Pharmaceuticals dd, Menges, Slovenia; 5Department for Materials Synthesis, Institute Jožef Stefan (IJS, Ljubljana, Slovenia; 6Faculty of Health Studies, University of Ljubljana, Ljubljana, Slovenia; 7Faculty of Mathematics, Natural Science and Information Technology, University of Primorska, Koper, Slovenia *These authors contributed equally to this workAbstract: Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2 nanotubes (NTs by electrochemical anodization. The zeta potential (ζ-potential of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm. We also showed a dose

  15. Ropizine concurrently enhances and inhibits [3H] dextromethorpan binding to different structures of the guinea pig brain: Autoradiographic evidence for multiple binding sites

    International Nuclear Information System (INIS)

    Canoll, P.D.; Smith, P.R.; and Musacchio, J.M.

    1990-01-01

    Ropizine produces a simultaneous enhancement and inhibition of [ 3 H] dextromethorphan (DM) high-affinity binding to different areas of the guinea pig brain. These results imply that there are two distinct types of high-affinity [ 3 H]DM binding sites, which are present in variable proportions in different brain structures. The ropizine-enhances [ 3 H]DM binding type was preferentially inhibited by (+)-pentazocine. This is consistent with the presumption that the (+)-pentazocine-sensitive site is identical with the common site for DM and 3-(-3-Hydroxphenyl)-N-(1-propyl)piperidine ((+)-3-PPP). The second binding type, which is inhibited by ropizine and is not so sensitive to (+)- pentazocine, has not been fully characterized. This study demonstrates that the biphasic effects to ropizine are due, at least in part, to the effects of ropizine on two different types of [ 3 H]DM binding sites. However, this study does not rule out that the common DM/(+)-3-PPP site also might be inhibited by higher concentrations of ropizine

  16. Evolution of Structure in Nuclei: Meditation by Sub-Shell Modifications and Relation to Binding Energies

    Science.gov (United States)

    Casten, R. F.; Cakirli, R. B.

    2009-03-01

    Understanding the development of configuration mixing, coherence, collectivity, and deformation in nuclei is one of the crucial challenges in nuclear structure physics, and one which has become all the more important with the advent of next generation facilities for the study of exotic nuclei. We will discuss recent work on phase/shape transitional behavior in nuclei, and the role of changes in sub-shell structure in mediating such transitional regions. We will also discuss a newly found, much deeper, link between nuclear structure and nuclear binding energies.

  17. Accurate core-electron binding energy shifts from density functional theory

    International Nuclear Information System (INIS)

    Takahata, Yuji; Marques, Alberto Dos Santos

    2010-01-01

    Current review covers description of density functional methods of calculation of accurate core-electron binding energy (CEBE) of second and third row atoms; applications of calculated CEBEs and CEBE shifts (ΔCEBEs) in elucidation of topics such as: hydrogen-bonding, peptide bond, polymers, DNA bases, Hammett substituent (σ) constants, inductive and resonance effects, quantitative structure activity relationship (QSAR), and solid state effect (WD). This review limits itself to works of mainly Chong and his coworkers for the period post-2002. It is not a fully comprehensive account of the current state of the art.

  18. Free energy calculations on Transthyretin dissociation and ligand binding from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Sørensen, Jesper; Hamelberg, Donald; McCammon, J. Andrew

    experimental results have helped to explain this aberrant behavior of TTR, however, structural insights of the amyloidgenic process are still lacking. Therefore, we have used all-atom molecular dynamics simulation and free energy calculations to study the initial phase of this process. We have calculated......Many questions about the nature of aggregation and the proteins that are involved in these events are still left unanswered. One of the proteins that is known to form amyloids is Transthyretine (TTR), the secondary transporter of thyroxine and transporter of retinol-binding-protein. Several...

  19. Folding model analysis of Λ binding energies and three-body ΛNN force

    International Nuclear Information System (INIS)

    Mian, M.; Rahman Khan, M.Z.

    1988-02-01

    Working within the framework of the folding model, we analyze the Λ binding energy data of light hypernuclei with effective two-body ΛN plus three-body ΛNN interaction. The two-body density for the core nucleus required for evaluating the three-body force contribution is obtained in terms of the centre of mass pair correlation. It is found that except for Λ 5 He the data are fairly well explained. The three-body force seems to account for the density dependence of the effective two-body ΛN interaction proposed earlier. (author). 13 refs, 2 tabs

  20. Reaction of hydrogen with Ag(111): binding states, minimum energy paths, and kinetics.

    Science.gov (United States)

    Montoya, Alejandro; Schlunke, Anna; Haynes, Brian S

    2006-08-31

    The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.

  1. RECOGNITION DYNAMICS OF ESCHERICHIA COLI THIOREDOXIN PROBED USING MOLECULAR DYNAMICS AND BINDING FREE ENERGY CALCULATIONS

    Directory of Open Access Journals (Sweden)

    M. S. Shahul Hameed

    2016-03-01

    Full Text Available E. coli thioredoxin has been regarded as a hub protein as it interacts with, and regulates, numerous target proteins involved in a wide variety of cellular processes. Thioredoxin can form complexes with a variety of target proteins with a wide range of affinity, using a consensus binding surface. In this study an attempt to deduce the molecular basis for the observed multispecificity of E. coli thioredoxin has been made. In this manuscript it has been shown that structural plasticity, adaptable and exposed hydrophobic binding surface, surface electrostatics, closely clustered multiple hot spot residues and conformational changes brought about by the redox status of the protein have been shown to account for the observed multispecificity and molecular recognition of thioredoxin. Dynamical differences between the two redox forms of the enzyme have also been studied to account for their differing interactions with some target proteins.

  2. Combined quantum mechanics/molecular mechanics (QM/MM) simulations for protein-ligand complexes: free energies of binding of water molecules in influenza neuraminidase.

    Science.gov (United States)

    Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J

    2015-01-22

    The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.

  3. Binding energy and optical properties of an off-center hydrogenic donor impurity in a spherical quantum dot placed at the center of a cylindrical nano-wire

    International Nuclear Information System (INIS)

    Safarpour, Gh.; Barati, M.; Zamani, A.; Niknam, E.

    2014-01-01

    The binding energy as well as the linear, third-order nonlinear and total optical absorption coefficient and refractive index changes of an off-center hydrogenic donor impurity in an InAs spherical quantum dot placed at the center of a GaAs cylindrical nano-wire have been investigated. In this regard, the effective-mass approximation approach is considered and eigenvalues and corresponding eigenfunctions are calculated via the finite element method. The binding energy is plotted as a function of the dot size and impurity position along with optical properties as a function of photon energy. In this study two different directions have been considered for impurity position, along the nano-wire axis and perpendicular to it. It has been found that the binding energy, absorption coefficient and refractive index changes are impressively affected not only by the dot radius but also by the position of the impurity and its direction. Additionally, the optical saturation can be tuned by the direction of the impurity and incident optical intensity. -- Highlights: • We consider spherical quantum dot located at the center of a cylindrical nano-wire. • An off-center hydrogenic donor impurity is considered in the system. • Binding energy is affected by orientation of impurity and its distance from center. • Saturation depends on the orientation of impurity position. • By shifting impurity position, orientation and dot radius blue- and red-shifts appear

  4. Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation.

    Directory of Open Access Journals (Sweden)

    Luigi Capoferri

    Full Text Available Prediction of human Cytochrome P450 (CYP binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding or inhibition based on traditional molecular descriptors can be limited, because of the lack of information on the structure and flexibility of the catalytic site of CYPs. Here we describe the application of a method that combines protein-ligand docking, Molecular Dynamics (MD simulations and Linear Interaction Energy (LIE theory, to allow for quantitative CYP affinity prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed and evaluated, based on a structurally diverse dataset for which the estimated experimental uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model showed a root mean square error (RMSE of 4.1 kJ mol-1 and a standard error in prediction (SDEP in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on both structural ligand description and protein-ligand interaction was developed for estimating the reliability of predictions, and was able to identify compounds from an external test set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units.

  5. Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species.

    Science.gov (United States)

    Smith, Kathrine J; Petit, Chantal M; Aubart, Kelly; Smyth, Martin; McManus, Edward; Jones, Jo; Fosberry, Andrew; Lewis, Ceri; Lonetto, Michael; Christensen, Siegfried B

    2003-02-01

    Polypeptide deformylase (PDF) catalyzes the deformylation of polypeptide chains in bacteria. It is essential for bacterial cell viability and is a potential antibacterial drug target. Here, we report the crystal structures of polypeptide deformylase from four different species of bacteria: Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. Comparison of these four structures reveals significant overall differences between the two Gram-negative species (E. coli and H. influenzae) and the two Gram-positive species (S. pneumoniae and S. aureus). Despite these differences and low overall sequence identity, the S1' pocket of PDF is well conserved among the four enzymes studied. We also describe the binding of nonpeptidic inhibitor molecules SB-485345, SB-543668, and SB-505684 to both S. pneumoniae and E. coli PDF. Comparison of these structures shows similar binding interactions with both Gram-negative and Gram-positive species. Understanding the similarities and subtle differences in active site structure between species will help to design broad-spectrum polypeptide deformylase inhibitor molecules.

  6. The Function of Thioredoxin-Binding Protein-2 (TBP-2 in Different Diseases

    Directory of Open Access Journals (Sweden)

    Jianghua Hu

    2018-01-01

    Full Text Available Thioredoxin-binding protein-2 (TBP-2 has an important role in the redox system, but it plays a different role in many different diseases (e.g., various cancers, diabetes mellitus (DM, cardiovascular disease, and cataracts by influencing cell proliferation, differentiation, apoptosis, autophagy, and metabolism. Distinct transcription factors (TFs stimulated by different factors combine with binding sites or proteins to upregulate or downregulate TBP-2 expression, in order to respond to the change in the internal environment. Most research disclosed that the main function of TBP-2 is associating with thioredoxin (Trx to inhibit the antioxidant capacity of Trx. Furthermore, the TBP-2 located in tissues, whether normal or abnormal, has the ability to cause the dysfunctioning of cells and even death through different pathways, such as shortening the cell cycle and inducing apoptosis or autophagy. Through these studies, we found that TBP-2 promoted the development of diseases which are involved in inflammatory and oxidative damage. To a certain extent, we believe that there is some hidden connection between the biological functions which TBP-2 participates in and some distinct diseases. This review presents only a summary of the roles that TBP-2 plays in cancer, DM, cataracts, and so on, as well as its universal mechanisms. Further investigations are needed for the cell signaling pathways of the effects caused by TBP-2. A greater understanding of the mechanisms of TBP-2 could produce potential new targets for the treatment of diseases, including cancer and diabetes, cardiovascular disease, and cataracts.

  7. Building energy efficiency in different climates

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Tsang, C.L.; Yang Liu

    2008-01-01

    Energy simulation was conducted for office buildings in the five major climate zones - severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter - in China using DOE-2.1E. The primary aim was to investigate the thermal and energy performance of office buildings with centralised heating, ventilation and air conditioning plants in the major climatic zones in China. The computed results were analysed in three aspects - heating load, cooling load and the corresponding building energy consumption. The building peak monthly heating load varied from 142 MW h (1033 MW h cooling) in Hong Kong to 447 MW h (832 MW h cooling) in Harbin. It was also found that passive solar designs could have large energy savings potential in the severe cold and cold climates. In Harbin, the window solar component helped lower the annual building heating load by 650 MW h. Internal loads (lighting and office equipment) and part load operations of fans and pumps also played a significant role in the overall building energy efficiency. This paper presents the work, its findings and energy efficiency implications

  8. Resonance energy transfer study on the proximity relationship between the GTP binding site and the rifampicin binding site of Escherichia coli RNA polymerase

    International Nuclear Information System (INIS)

    Kumar, K.P.; Chatterji, D.

    1990-01-01

    Terbium(III) upon complexation with guanosine 5'-triphosphate showed remarkable enhancement of fluorescence emission at 488 and 545 nm when excited at 295 nm. Analysis of the binding data yielded a value for the mean K d between Tb(III) and GTP of 0.2 μM, with three binding sites for TB(III) on GTP. 31 P and 1 H NMR measurements revealed that Tb(III) mainly binds the phosphate moiety of GTP. Fluorescence titration of the emission signals of the TbGTP complex with varying concentrations of Escherichia coli RNA polymerase resulted in a K d values of 4 μM between the TbGTP and the enzyme. It was observed that TbGTP can be incorporated in the place of GTP during E. coli RNA polymerase catalyzed abortive synthesis of dinucleotide tetraphosphate at T7A2 promoter. Both the substrate TbGTP and the inhibitor of the initiation of transcription rifampicin bind to the β-subunit of E. coli RNA polymerase. This allows the measurement of the fluorescence excited-state energy transfer from the donor TbGTP-RNA polymerase to the acceptor rifampicin. Both emission bands of Tb(III) overlap with the rifampicin absorption, and the distances at 50% efficiency of energy transfer were calculated to be 28 and 24 angstrom for the 488- and 545-nm emission bands, respectively. The distance between the substrate binding site and the rifampicin binding site on the β-subunit of E. coli RNA polymerase was measured to be around 30 angstrom. This suggest that the nature of inhibition of transcription by rifampicin is essentially noncompetitive with the substrate

  9. Energy spectrum of two-dimensional tight-binding electrons in a spatially varying magnetic field

    International Nuclear Information System (INIS)

    Oh, G.Y.; Lee, M.H.

    1996-01-01

    The electronic energy spectrum of a two-dimensional lattice in a spatially varying magnetic field is studied within the framework of the tight-binding model by using the scheme of the transfer matrix. It is found that, in comparison with the case of a uniform magnetic field, the energy spectrum exhibits more complicated behavior; band broadening (or gap closing) and band splitting (or gap opening) occur depending on characteristic parameters of the lattice. The origin of these phenomena lies in the existence of direct touching and indirect overlapping between neighboring subbands. Dependence of direct touching and indirect overlapping, and thus the electronic band structure together with the density of states, on characteristic parameters of the lattice is elucidated in detail. copyright 1996 The American Physical Society

  10. Effect of geometry on the pressure induced donor binding energy in semiconductor nanostructures

    Science.gov (United States)

    Kalpana, P.; Jayakumar, K.; Nithiananthi, P.

    2015-09-01

    The effect of geometry on an on-center hydrogenic donor impurity in a GaAs/(Ga,Al)As quantum wire (QWW) and quantum dot (QD) under the influence of Γ-X band mixing due to an applied hydrostatic pressure is theoretically studied. Numerical calculations are performed in an effective mass approximation. The ground state impurity energy is obtained by variational procedure. Both the effects of pressure and geometry are to exert an additional confinement on the impurity inside the wire as well as dot. We found that the donor binding energy is modified by the geometrical effects as well as by the confining potential when it is subjected to external pressure. The results are presented and discussed.

  11. Estimation of the Binding Free Energy of AC1NX476 to HIV-1 Protease Wild Type and Mutations Using Free Energy Perturbation Method.

    Science.gov (United States)

    Ngo, Son Tung; Mai, Binh Khanh; Hiep, Dinh Minh; Li, Mai Suan

    2015-10-01

    The binding mechanism of AC1NX476 to HIV-1 protease wild type and mutations was studied by the docking and molecular dynamics simulations. The binding free energy was calculated using the double-annihilation binding free energy method. It is shown that the binding affinity of AC1NX476 to wild type is higher than not only ritonavir but also darunavir, making AC1NX476 become attractive candidate for HIV treatment. Our theoretical results are in excellent agreement with the experimental data as the correlation coefficient between calculated and experimentally measured binding free energies R = 0.993. Residues Asp25-A, Asp29-A, Asp30-A, Ile47-A, Gly48-A, and Val50-A from chain A, and Asp25-B from chain B play a crucial role in the ligand binding. The mutations were found to reduce the receptor-ligand interaction by widening the binding cavity, and the binding propensity is mainly driven by the van der Waals interaction. Our finding may be useful for designing potential drugs to combat with HIV. © 2015 John Wiley & Sons A/S.

  12. Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA and IVA elemental surfaces

    International Nuclear Information System (INIS)

    Heide, P.A.W. van der

    2006-01-01

    An extensive re-evaluation of XPS binding energies (BE's) and binding energy shifts (ΔBE's) from metals, oxides and the carbonates of the group II, III and IVA elements (exceptions are Be, Mg and Hf) has been carried out using a substrate specific BE referencing approach. From this, O-1s BE's are found to fall into surface oxide, bulk oxide and carbonate groupings, with bulk oxides showing the lowest BE's followed by surface oxides (+∼1.5 eV) and then carbonates (+∼3.0 eV). The O-1s BE's from the bulk oxides also appear to scale with 1/d, where d is inter-atomic distance. The same is noted in the ΔBE's observed from the metallic counterparts during oxidation of the elemental surfaces. This, and the decreasing BE exhibited by Ca, Sr and Ba on oxidation is explained within the charge potential model as resulting from competing inter- and intra-atomic effects, and is shown to be consistent with partial covalency arguments utilizing Madulung potentials. The ΔBE's also fall into groups according to the elements location in the periodic table, i.e. s, p or d block. These trends open up the possibility of approximating ΔBE's arising from initial and final state effects, and bond distances

  13. The Antinociceptive Agent SBFI-26 Binds to Anandamide Transporters FABP5 and FABP7 at Two Different Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hao-Chi [Cryo-EM Structural; Tong, Simon [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States; Zhou, Yuchen [Department of Applied Mathematics; Elmes, Matthew W. [Department of Biochemistry and; Yan, Su [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States; Kaczocha, Martin [Department of Biochemistry and; Department of Anesthesiology, Stony Brook University, Stony; Deutsch, Dale G. [Department of Biochemistry and; Institute of Chemical Biology and; Rizzo, Robert C. [Department of Applied Mathematics; Institute of Chemical Biology and; Laufer; Ojima, Iwao [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States; Institute of Chemical Biology and; Li, Huilin [Cryo-EM Structural; Institute of Chemical Biology and

    2017-06-28

    Human FABP5 and FABP7 are intracellular endocannabinoid transporters. SBFI-26 is an α-truxillic acid 1-naphthyl monoester that competitively inhibits the activities of FABP5 and FABP7 and produces antinociceptive and anti-inflammatory effects in mice. The synthesis of SBFI-26 yields several stereoisomers, and it is not known how the inhibitor binds the transporters. Here we report co-crystal structures of SBFI-26 in complex with human FABP5 and FABP7 at 2.2 and 1.9 Å resolution, respectively. We found that only (S)-SBFI-26 was present in the crystal structures. The inhibitor largely mimics the fatty acid binding pattern, but it also has several unique interactions. Notably, the FABP7 complex corroborates key aspects of the ligand binding pose at the canonical site previously predicted by virtual screening. In FABP5, SBFI-26 was unexpectedly found to bind at the substrate entry portal region in addition to binding at the canonical ligand-binding pocket. Our structural and binding energy analyses indicate that both R and S forms appear to bind the transporter equally well. We suggest that the S enantiomer observed in the crystal structures may be a result of the crystallization process selectively incorporating the (S)-SBFI-26–FABP complexes into the growing lattice, or that the S enantiomer may bind to the portal site more rapidly than to the canonical site, leading to an increased local concentration of the S enantiomer for binding to the canonical site. Our work reveals two binding poses of SBFI-26 in its target transporters. This knowledge will guide the development of more potent FABP inhibitors based upon the SBFI-26 scaffold.

  14. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.

    Science.gov (United States)

    Deng, Nanjie; Flynn, William F; Xia, Junchao; Vijayan, R S K; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M

    2016-09-01

    We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate

  15. The effects of optical phonon on the binding energy of bound polaron in a wurtzite ZnO/MgxZn1−xO quantum well

    International Nuclear Information System (INIS)

    Zhao, Feng-Qi; Guo, Zi-Zheng; Zhu, Jun

    2014-01-01

    An improved Lee-Low-Pines intermediate coupling method is used to study the energies and binding energies of bound polarons in a wurtzite ZnO/Mg x Zn 1−x O quantum well. The contributions from different branches of long-wave optical phonons, i.e., confined optical phonons, interface optical phonons, and half-space optical phonons are considered. In addition to electron-phonon interaction, the impurity-phonon interaction, and the anisotropy of material parameters, such as phonon frequency, electron effective mass, and dielectric constant, are also included in our computation. Ground-state energies, binding energies and detailed phonon contributions from various phonons as functions of well width, impurity position and composition are presented. Our result suggests that total phonon contribution to ground state and binding energies in the studied wurtzite ZnO/Mg 0.3 Zn 0.7 O quantum wells varies between 28–23 meV and 62–45 meV, respectively, which are much larger than the corresponding values (about 3.2–1.8 meV and 1.6–0.3 meV) in GaAs/Al 0.3 Ga 0.7 As quantum wells. For a narrower quantum well, the phonon contribution mainly comes from interface and half-space phonons, for a wider quantum well, most of phonon contribution originates from confined phonons. The contribution from all the phonon modes to binding energies increases slowly either when impurity moves far away from the well center in the z direction or with the increase in magnesium composition (x). It is found that different phonons have different influences on the binding energies of bound polarons. Furthermore, the phonon contributions to binding energies as functions of well width, impurity position, and composition are very different from one another. In general, the electron-optical phonon interaction and the impurity center-optical phonon interaction play an important role in electronic states of ZnO-based quantum wells and cannot be neglected.

  16. Different methods for waste to energy transformation

    NARCIS (Netherlands)

    Koning, J. de

    1998-01-01

    In the past 25 years, many technological developments have taken place in the thermal treatment of Municipal Solid Waste (MSW). Apart from the initials goal of the technology (i.e., volume reduction and inertisation), flue gas emissions, solid residues, energy efficiency and economics became

  17. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.

    Science.gov (United States)

    Rodinger, Tomas; Howell, P Lynne; Pomès, Régis

    2008-10-21

    Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.

  18. Influence of Chirality of Crizotinib on Its MTH1 Protein Inhibitory Activity: Insight from Molecular Dynamics Simulations and Binding Free Energy Calculations.

    Directory of Open Access Journals (Sweden)

    Yuzhen Niu

    Full Text Available As a promising target for the treatment of lung cancer, the MutT Homolog 1 (MTH1 protein can be inhibited by crizotinib. A recent work shows that the inhibitory potency of (S-crizotinib against MTH1 is about 20 times over that of (R-crizotinib. But the detailed molecular mechanism remains unclear. In this study, molecular dynamics (MD simulations and free energy calculations were used to elucidate the mechanism about the effect of chirality of crizotinib on the inhibitory activity against MTH1. The binding free energy of (S-crizotinib predicted by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA and Adaptive biasing force (ABF methodologies is much lower than that of (R-crizotinib, which is consistent with the experimental data. The analysis of the individual energy terms suggests that the van der Waals interactions are important for distinguishing the binding of (S-crizotinib and (R-crizotinib. The binding free energy decomposition analysis illustrated that residues Tyr7, Phe27, Phe72 and Trp117 were important for the selective binding of (S-crizotinib to MTH1. The adaptive biasing force (ABF method was further employed to elucidate the unbinding process of (S-crizotinib and (R-crizotinib from the binding pocket of MTH1. ABF simulation results suggest that the reaction coordinates of the (S-crizotinib from the binding pocket is different from (R-crizotinib. The results from our study can reveal the details about the effect of chirality on the inhibition activity of crizotinib to MTH1 and provide valuable information for the design of more potent inhibitors.

  19. Binding energies and chemical shifts of least bound core electron excitations in cubic Asub(N)Bsub(8-N) semiconductors

    International Nuclear Information System (INIS)

    Bechstedt, F.; Enderlein, R.; Wischnewski, R.

    1981-01-01

    Core electron binding energies Esup(B) with respect to the vacuum level and their chemical shifts are calculated for the least bound core levels of cations and anions of cubic Asub(N)Bsub(8-N) semiconductors. Starting from the HF-binding energy of the free atom absolute values of Esup(B) are obtained by adding core level shifts and relaxation energies. Core level shifts are calculated by means of an electrostatic model with ionic and bond charges according to Phillips' bond charge model. For the calculation of relaxation energies the linear dielectric theory of electronic polarization is applied. Valence and core electrons, and diagonal and non-diagonal screening are taken into account. The theoretical results for chemical shifts of binding energies are compared with experimental values from XPS-measurements corrected by work function data. Good agreement is obtained in all cases within the error limit of about one eV. Chemical and atomic trends of core level shifts, relaxation energies, and binding energies are discussed in terms of changes of atomic and solid state parameters. Chemical shifts and relaxation energies are predicted for various ternary Asub(N)Bsub(8-N) compounds. (author)

  20. Relation between heat of vaporization, ion transport, molar volume, and cation-anion binding energy for ionic liquids.

    Science.gov (United States)

    Borodin, Oleg

    2009-09-10

    A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.

  1. Regulation of insulin-like growth factor binding proteins in young growing animals by alteration of energy status.

    Science.gov (United States)

    Dauncey, M J; Rudd, B T; White, D A; Shakespear, R A

    1993-09-01

    The regulation of plasma insulin-like growth factor binding proteins (IGFBPs) by energy status has been assessed in 2-month-old pigs. Energy balance was modified by altering thermoregulatory demand and energy intake, with litter-mates being kept for several weeks at either 35 or 10 degrees C on a high (H) or low (L) level of food intake (where H = 2L); plasma samples were taken 20-24 h after the last meal. The two major forms of circulating IGFBP, as estimated by Western blot analysis, were identified putatively as IGFBP-2 and IGFBP-3 (relative molecular weights of 34 and 40-45 kDa respectively). There were significant differences in IGFBP profiles between the four treatment groups of 35H, 35L, 10H and 10L: the 40-45 kDa IGFBP (putative IGFBP-3) was elevated both in the warm and on a high food intake (P < 0.001), and there was a marked reciprocal relation between the 40-45 and 34 kDa IGFBPs. The relative concentration of the 34 kDa IGFBP (putative IGFBP-2) was greatest in the 10L and least in the 35H group. It is concluded that long-term alterations in energy balance, induced by changes in either intake or thermoregulatory demand, can significantly affect the plasma profile of IGFBPs during the first two months of life.

  2. Species differences in [{sup 11}C]clorgyline binding in brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Joanna S. E-mail: fowler@bnl.gov; Ding, Yu-Shin; Logan, Jean; MacGregor, Robert R.; Shea, Colleen; Garza, Victor; Gimi, Raomond; Volkow, Nora D.; Wang, Gene-Jack; Schlyer, David; Ferrieri, Richard; Gatley, S. John; Alexoff, David; Carter, Pauline; King, Payton; Pappas, Naomi; Arnett, Carroll D

    2001-10-01

    [{sup 11}C]Clorgyline selectively binds to MAO A in the human brain. This contrasts with a recent report that [{sup 11}C]clorgyline (in contrast to other labeled MAO A inhibitors) is not retained in the rhesus monkey brain . To explore this difference, we compared [{sup 11}C]clorgyline in the baboon brain before and after clorgyline pretreatment and we also synthesized deuterium substituted [{sup 11}C]clorgyline (and its nor-precursor) for comparison. [{sup 11}C]Clorgyline was not retained in the baboon brain nor was it influenced by clorgyline pretreatment or by deuterium substitution, contrasting to results in humans. This suggests a species difference in the susceptibility of MAO A to inhibition by clorgyline and represents an unusual example of where the behavior of a radiotracer in the baboon brain does not predict its behavior in the human brain.

  3. Detection of the specific binding on protein microarrays by oblique-incidence reflectivity difference method

    International Nuclear Information System (INIS)

    Lu, Heng; Wen, Juan; Wang, Xu; Yuan, Kun; Lu, Huibin; Zhou, Yueliang; Jin, Kuijuan; Yang, Guozhen; Li, Wei; Ruan, Kangcheng

    2010-01-01

    The specific binding between Cy5-labeled goat anti-mouse Immunoglobulin G (IgG) and mouse IgG with a concentration range from 625 to 10 4 µg ml −1 has been detected successfully by the oblique-incidence reflectivity difference (OI-RD) method in each procedure of microarray fabrication. The experimental data prove that the OI-RD method can be employed not only to distinguish the different concentrations in label-free fashion but also to detect the antibody–antigen capture. In addition, the differential treatment of the OI-RD signals can decrease the negative influences of glass slide as the microarray upholder. Therefore the OI-RD technique has promising applications for the label-free and high-throughput detection of protein microarrays

  4. Numerical comparison of atomic binding energies calculated by Thomas-Fermi like formulas

    International Nuclear Information System (INIS)

    Donnamaria, M.C.; Castro, E.A.; Fernandez, F.M.

    1985-01-01

    We apply in an exhaustive way formulas of Thomas-Fermi nature to determine atomic ground state energies. Results are compared with Hartree-Fock SCF data and the different methods are analysed in a comparative fashion. (authors)

  5. Different Binding Properties and Function of CXXC Zinc Finger Domains in Dnmt1 and Tet1

    Science.gov (United States)

    Meilinger, Daniela; Bultmann, Sebastian; Fellinger, Karin; Hasenöder, Stefan; Wang, Mengxi; Qin, Weihua; Söding, Johannes; Spada, Fabio; Leonhardt, Heinrich

    2011-01-01

    Several mammalian proteins involved in chromatin and DNA modification contain CXXC zinc finger domains. We compared the structure and function of the CXXC domains in the DNA methyltransferase Dnmt1 and the methylcytosine dioxygenase Tet1. Sequence alignment showed that both CXXC domains have a very similar framework but differ in the central tip region. Based on the known structure of a similar MLL1 domain we developed homology models and designed expression constructs for the isolated CXXC domains of Dnmt1 and Tet1 accordingly. We show that the CXXC domain of Tet1 has no DNA binding activity and is dispensable for catalytic activity in vivo. In contrast, the CXXC domain of Dnmt1 selectively binds DNA substrates containing unmethylated CpG sites. Surprisingly, a Dnmt1 mutant construct lacking the CXXC domain formed covalent complexes with cytosine bases both in vitro and in vivo and rescued DNA methylation patterns in dnmt1−/− embryonic stem cells (ESCs) just as efficiently as wild type Dnmt1. Interestingly, neither wild type nor ΔCXXC Dnmt1 re-methylated imprinted CpG sites of the H19a promoter in dnmt1−/− ESCs, arguing against a role of the CXXC domain in restraining Dnmt1 methyltransferase activity on unmethylated CpG sites. PMID:21311766

  6. Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1.

    Directory of Open Access Journals (Sweden)

    Carina Frauer

    2011-02-01

    Full Text Available Several mammalian proteins involved in chromatin and DNA modification contain CXXC zinc finger domains. We compared the structure and function of the CXXC domains in the DNA methyltransferase Dnmt1 and the methylcytosine dioxygenase Tet1. Sequence alignment showed that both CXXC domains have a very similar framework but differ in the central tip region. Based on the known structure of a similar MLL1 domain we developed homology models and designed expression constructs for the isolated CXXC domains of Dnmt1 and Tet1 accordingly. We show that the CXXC domain of Tet1 has no DNA binding activity and is dispensable for catalytic activity in vivo. In contrast, the CXXC domain of Dnmt1 selectively binds DNA substrates containing unmethylated CpG sites. Surprisingly, a Dnmt1 mutant construct lacking the CXXC domain formed covalent complexes with cytosine bases both in vitro and in vivo and rescued DNA methylation patterns in dnmt1⁻/⁻ embryonic stem cells (ESCs just as efficiently as wild type Dnmt1. Interestingly, neither wild type nor ΔCXXC Dnmt1 re-methylated imprinted CpG sites of the H19a promoter in dnmt1⁻/⁻ ESCs, arguing against a role of the CXXC domain in restraining Dnmt1 methyltransferase activity on unmethylated CpG sites.

  7. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane

    Science.gov (United States)

    Tolokh, Igor S.; Vivcharuk, Victor; Tomberli, Bruno; Gray, C. G.

    2009-09-01

    Molecular dynamics (MD) simulations are used to study the interaction of an anionic palmitoyl-oleoyl-phosphatidylglycerol (POPG) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with a POPG bilayer is employed as a model system for studying the details of membrane adsorption selectivity of cationic antimicrobial peptides. Seventy eight 4 ns MD production run trajectories of the equilibrated system, with six restrained orientations of LFCinB at 13 different separations from the POPG membrane, are generated to determine the free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the profile for this relatively large system, a variant of constrained MD and thermodynamic integration is used. A simplified method for relating the free energy profile to the LFCinB-POPG membrane binding constant is employed to predict a free energy of adsorption of -5.4±1.3kcal/mol and a corresponding maximum adsorption binding force of about 58 pN. We analyze the results using Poisson-Boltzmann theory. We find the peptide-membrane attraction to be dominated by the entropy increase due to the release of counterions and polarized water from the region between the charged membrane and peptide, as the two approach each other. We contrast these results with those found earlier for adsorption of LFCinB on the mammalianlike palmitoyl-oleoyl-phosphatidylcholine membrane.

  8. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

    Directory of Open Access Journals (Sweden)

    Adrien Nicolaï

    Full Text Available ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD of Hsp70 propagates a signal to its substrate-binding domain (SBD. Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in

  9. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain.

    Science.gov (United States)

    Panel, Nicolas; Sun, Young Joo; Fuentes, Ernesto J; Simonson, Thomas

    2017-01-01

    PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or "PB/LIE" free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α 2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo . The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  10. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain

    Directory of Open Access Journals (Sweden)

    Nicolas Panel

    2017-09-01

    Full Text Available PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or “PB/LIE” free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo. The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  11. Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors

    Science.gov (United States)

    Jiang, Zeyu; Liu, Zhirong; Li, Yuanchang; Duan, Wenhui

    2017-06-01

    Using first-principles G W Bethe-Salpeter equation calculations and the k .p theory, we unambiguously show that for two-dimensional (2D) semiconductors, there exists a robust linear scaling law between the quasiparticle band gap (Eg) and the exciton binding energy (Eb), namely, Eb≈Eg/4 , regardless of their lattice configuration, bonding characteristic, as well as the topological property. Such a parameter-free universality is never observed in their three-dimensional counterparts. By deriving a simple expression for the 2D polarizability merely with respect to Eg, and adopting the screened hydrogen model for Eb, the linear scaling law can be deduced analytically. This work provides an opportunity to better understand the fantastic consequence of the 2D nature for materials, and thus offers valuable guidance for their property modulation and performance control.

  12. Improving density functional tight binding predictions of free energy surfaces for peptide condensation reactions in solution

    Science.gov (United States)

    Kroonblawd, Matthew; Goldman, Nir

    First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for chemistry that is fast relative to DFT simulation times (Contract DE-AC52-07NA27344.

  13. Improving Density Functional Tight Binding Predictions of Free Energy Surfaces for Slow Chemical Reactions in Solution

    Science.gov (United States)

    Kroonblawd, Matthew; Goldman, Nir

    2017-06-01

    First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for reactions that are fast relative to DFT simulation times (Contract DE-AC52-07NA27344.

  14. Spin assignments of nuclear levels above the neutron binding energy in $^{88}$Sr

    CERN Multimedia

    Neutron resonances reveal nuclear levels in the highly excited region of the nucleus around the neutron binding energy. Nuclear level density models are therefore usually calibrated to the number of observed levels in neutron-induced reactions. The gamma-ray cascade from the decay of the highly excited compound nucleus state to the ground state show dierences dependent on the initial spin. This results in a dierence in the multiplicity distribution which can be exploited. We propose to use the 4${\\pi}$ total absorption calorimeter (TAC) at the n TOF facility to determine the spins of resonances formed by neutrons incident on a metallic $^{87}$Sr sample by measuring the gamma multiplicity distributions for the resolved resonances. In addition we would like to use the available enriched $^{87}$Sr target for cross section measurements with the C$\\scriptscriptstyle{6}$D$\\scriptscriptstyle{6}$ detector setup.

  15. Comparison of experimental and theoretical binding and transition energies in the actinide region

    Energy Technology Data Exchange (ETDEWEB)

    Krause, M. O.; NESTOR, JR., C. W. [OAK RIDGE NATIONAL LAB., TENN. (USA)

    1977-11-15

    The present status of experimental and theoretical binding and transition energy determinations is reviewed. Experimental data and the most recent theoretical predictions are compared for the energies of K..cap alpha../sub 1/ X-rays, M series X-rays, K-LL Auger electrons, K, L/sub 3/, M and N levels, and the 4f spin-orbit splitting. In addition, the K..cap alpha../sub 1/ and L/sub 3/ data are fitted by Moseley-type diagrams, and data on the shallow levels and the valence bands of actinide oxides are discussed. Comparison shows that the single-particle Dirac-Fock theory and the inclusion of quantum-electrodynamic contributions predicts energies of the innermost levels generally within the accuracy of data, that is in the order of magnitude of 1 eV. However, in the N, O... shells large deviations do occur presumably due to strong many-electron interactions. The inclusion of many-electron effects in the relativistic theory remains a challenge, as do experimental investigations affording an accuracy of better than 1 eV for the various electronic levels.

  16. On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study

    International Nuclear Information System (INIS)

    Jia, Juanjuan; Kara, Abdelkader; Pasquali, Luca; Bendounan, Azzedine; Sirotti, Fausto; Esaulov, Vladimir A.

    2015-01-01

    Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S–C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments

  17. On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Juanjuan [Institut des Sciences Moléculaires d’Orsay, Université-Paris Sud, 91405 Orsay (France); CNRS, UMR 8214, Institut des Sciences Moléculaires d’Orsay, Orsay ISMO, Bâtiment 351, Université Paris Sud, 91405 Orsay (France); Kara, Abdelkader, E-mail: abdelkader.kara@ucf.edu, E-mail: vladimir.esaulov@u-psud.fr [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Pasquali, Luca [Dipartimento di Ingegneria “E. Ferrari,” Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, 34149 Basovizza, Trieste (Italy); Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Bendounan, Azzedine; Sirotti, Fausto [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Esaulov, Vladimir A., E-mail: abdelkader.kara@ucf.edu, E-mail: vladimir.esaulov@u-psud.fr [Institut des Sciences Moléculaires d’Orsay, Université-Paris Sud, 91405 Orsay (France); CNRS, UMR 8214, Institut des Sciences Moléculaires d’Orsay, Orsay ISMO, Bâtiment 351, Université Paris Sud, 91405 Orsay (France); IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, 34149 Basovizza, Trieste (Italy)

    2015-09-14

    Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S–C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments.

  18. Batteries for Efficient Energy Extraction from a Water Salinity Difference

    KAUST Repository

    La Mantia, Fabio; Pasta, Mauro; Deshazer, Heather D.; Logan, Bruce E.; Cui, Yi

    2011-01-01

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery

  19. Impurity binding energy of lowest-excited state in (In,Ga)N–GaN spherical QD under electric field effect

    International Nuclear Information System (INIS)

    Ghazi, Haddou El; Jorio, Anouar; Zorkani, Izeddine

    2013-01-01

    External electric field effect on the lowest-excited state in wurtzite (In,Ga)N–GaN spherical quantum dot is considered. By means of a traditional Ritz variational method within the effective-mass approximation and finite potential barrier, the lowest-excited state energy with and without the presence of the impurity is investigated. The normalized binding energy under electric field effect is also performed. Our numerical results are compared with the previous theoretical findings and show a good agreement with those concerning especially the ground-state for different semiconductors materials and different QDs-shapes

  20. Impurity binding energy of lowest-excited state in (In,Ga)N–GaN spherical QD under electric field effect

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Haddou El, E-mail: hadghazi@gmail.com [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P 1796 Atlas, Fez (Morocco); Special Mathematics, CPGE Kénitra (Morocco); Jorio, Anouar; Zorkani, Izeddine [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P 1796 Atlas, Fez (Morocco)

    2013-10-01

    External electric field effect on the lowest-excited state in wurtzite (In,Ga)N–GaN spherical quantum dot is considered. By means of a traditional Ritz variational method within the effective-mass approximation and finite potential barrier, the lowest-excited state energy with and without the presence of the impurity is investigated. The normalized binding energy under electric field effect is also performed. Our numerical results are compared with the previous theoretical findings and show a good agreement with those concerning especially the ground-state for different semiconductors materials and different QDs-shapes.

  1. Computational prediction of binding affinity for CYP1A2-ligand complexes using empirical free energy calculations

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Olsen, Lars; Jørgensen, Flemming Steen

    2010-01-01

    , and methods based on statistical mechanics. In the present investigation, we started from an LIE model to predict the binding free energy of structurally diverse compounds of cytochrome P450 1A2 ligands, one of the important human metabolizing isoforms of the cytochrome P450 family. The data set includes both...... substrates and inhibitors. It appears that the electrostatic contribution to the binding free energy becomes negligible in this particular protein and a simple empirical model was derived, based on a training set of eight compounds. The root mean square error for the training set was 3.7 kJ/mol. Subsequent......Predicting binding affinities for receptor-ligand complexes is still one of the challenging processes in computational structure-based ligand design. Many computational methods have been developed to achieve this goal, such as docking and scoring methods, the linear interaction energy (LIE) method...

  2. Theoretical investigation of stark effect on shallow donor binding energy in InGaN spherical QD-QW

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [Solid State Physics Laboratory, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco); Mathématiques spéciales, CPGE Kénitra, Chakib Arsalane Street (Morocco); Jorio, Anouar; Zorkani, Izeddine [Solid State Physics Laboratory, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco)

    2013-08-01

    In this paper, a simultaneous study of electric field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN spherical quantum dot-quantum well (SQD-QW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated using variational approach within the framework of the effective-mass approximation. The numerical results show that: (i) the binding energy is strongly affected by the external electric field and the SQD-QW dimension, (ii) a critical value of spherical system's radius is obtained constituting the limit of three dimension confinement and spherical thin layer confinement and (iii) the Stark shift increases with increasing electric field and it is more pronounced around the position of the impurity corresponding to the binding energy maxima than in the spherical layer extremities.

  3. Theoretical investigation of stark effect on shallow donor binding energy in InGaN spherical QD-QW

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine

    2013-01-01

    In this paper, a simultaneous study of electric field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN spherical quantum dot-quantum well (SQD-QW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated using variational approach within the framework of the effective-mass approximation. The numerical results show that: (i) the binding energy is strongly affected by the external electric field and the SQD-QW dimension, (ii) a critical value of spherical system's radius is obtained constituting the limit of three dimension confinement and spherical thin layer confinement and (iii) the Stark shift increases with increasing electric field and it is more pronounced around the position of the impurity corresponding to the binding energy maxima than in the spherical layer extremities

  4. Anion Binding Studies on Receptors Derived from the Indolo[2,3-a]carbazole Scaffold Having Different Binding Cavity Sizes

    Directory of Open Access Journals (Sweden)

    Guzmán Sánchez

    2014-07-01

    Full Text Available The indolo[2,3-a]carbazole scaffold is a fused polyheteroaromatic system bearing two NH groups which suitably converge as hydrogen bond donor sites for the recognition of anions. A simple derivatisation of the indolocarbazole system at positions 1 and 10 with different functional groups, namely alcohols and amides, has contributed to modulate the anion binding selectivity and sensibility. A particularly good response has been obtained for the benzoate anion.

  5. Selective binding of pyrene in subdomain IB of human serum albumin: Combining energy transfer spectroscopy and molecular modelling to understand protein binding flexibility

    Science.gov (United States)

    Ling, Irene; Taha, Mohamed; Al-Sharji, Nada A.; Abou-Zied, Osama K.

    2018-04-01

    The ability of human serum albumin (HSA) to bind medium-sized hydrophobic molecules is important for the distribution, metabolism, and efficacy of many drugs. Herein, the interaction between pyrene, a hydrophobic fluorescent probe, and HSA was thoroughly investigated using steady-state and time-resolved fluorescence techniques, ligand docking, and molecular dynamics (MD) simulations. A slight quenching of the fluorescence signal from Trp214 (the sole tryptophan residue in the protein) in the presence of pyrene was used to determine the ligand binding site in the protein, using Förster's resonance energy transfer (FRET) theory. The estimated FRET apparent distance between pyrene and Trp214 was 27 Å, which was closely reproduced by the docking analysis (29 Å) and MD simulation (32 Å). The highest affinity site for pyrene was found to be in subdomain IB from the docking results. The calculated equilibrium structure of the complex using MD simulation shows that the ligand is largely stabilized by hydrophobic interaction with Phe165, Phe127, and the nonpolar moieties of Tyr138 and Tyr161. The fluorescence vibronic peak ratio I1/I3 of bound pyrene inside HSA indicates the presence of polar effect in the local environment of pyrene which is less than that of free pyrene in buffer. This was clarified by the MD simulation results in which an average of 5.7 water molecules were found within 0.5 nm of pyrene in the binding site. Comparing the fluorescence signals and lifetimes of pyrene inside HSA to that free in buffer, the high tendency of pyrene to form dimer was almost completely suppressed inside HSA, indicating a high selectivity of the binding pocket toward pyrene monomer. The current results emphasize the ability of HSA, as a major carrier of several drugs and ligands in blood, to bind hydrophobic molecules in cavities other than subdomain IIA which is known to bind most hydrophobic drugs. This ability stems from the nature of the amino acids forming the binding

  6. Disturbance of binding of corticosteroids with blood plasma proteins during acute radiation sickness of different experimental animals

    International Nuclear Information System (INIS)

    Moroz, B.B.; Omel'chuk, N.N.

    1979-01-01

    In experiments on different animals a study was made of the effect of total-body γ-irradiation on binding of corticosteroids with blood plasma proteins. It was demonstrated that the increase in the number of physiologically active corticosteroids at the peak of radiation sickness is due to diminution of linking ability of corticosteroid-binding globulin of blood plasma and independent ot the total concentration of hormones in blood which is, evidently, a general radiobiological law

  7. Hydrostatic pressure and conduction band non-parabolicity effects on the impurity binding energy in a spherical quantum dot

    International Nuclear Information System (INIS)

    Sivakami, A.; Mahendran, M.

    2010-01-01

    The binding energy of a shallow hydrogenic impurity in a spherical quantum dot under hydrostatic pressure with square well potential is calculated using a variational approach within the effective mass approximation. The effect of conduction band non-parabolicity on these energies is also estimated. The binding energy is computed for GaAs spherical quantum dot as a function of dot size, hydrostatic pressure both in the presence and absence of the band non-parabolicity effect. Our results show that (i) the hydrostatic pressure increases the impurity binding energy when dot radius increases for a given pressure, (ii) the hydrostatic pressure with the band non-parabolicity effect effectively increases the binding energy such that the variation is large for smaller dots and (iii) the maximum contribution by the non-parabolicity effect is about 15% for narrow dots. Our results are in good agreement with Perez-Merchancano et al. [J. Phys. Condens. Matter 19 (2007) 026225] who have not considered the conduction band non-parabolicity effect.

  8. Rearrangements under confinement lead to increased binding energy of Synaptotagmin-1 with anionic membranes in Mg2+ and Ca2.

    Science.gov (United States)

    Gruget, Clémence; Coleman, Jeff; Bello, Oscar; Krishnakumar, Shyam S; Perez, Eric; Rothman, James E; Pincet, Frederic; Donaldson, Stephen H

    2018-05-01

    Synaptotagmin-1 (Syt1) is the primary calcium sensor (Ca 2+ ) that mediates neurotransmitter release at the synapse. The tandem C2 domains (C2A and C2B) of Syt1 exhibit functionally critical, Ca 2+ -dependent interactions with the plasma membrane. With the surface forces apparatus, we directly measure the binding energy of membrane-anchored Syt1 to an anionic membrane and find that Syt1 binds with ~6 k B T in EGTA, ~10 k B T in Mg 2+ and ~18 k B T in Ca 2+ . Molecular rearrangements measured during confinement are more prevalent in Ca 2+ and Mg 2+ and suggest that Syt1 initially binds through C2B, then reorients the C2 domains into the preferred binding configuration. These results provide energetic and mechanistic details of the Syt1 Ca 2+ -activation process in synaptic transmission. © 2018 Federation of European Biochemical Societies.

  9. Changes in cell surface structure by viral transformation studied by binding of lectins differing in sugar specificity.

    Science.gov (United States)

    Tsuda, M; Kurokawa, T; Takeuchi, M; Sugino, Y

    1975-10-01

    Changes in cell surface structure by viral transformation were studied by examining changes in the binding of various lectins differing in carbohydrate specificities. Binding of lectins was assayed directly using cells grown in coverslips. The following 125I-lectins were used: Concanavalin-A (specific for glucose and mannose), wheat germ agglutinin (specific for N-acetylglucosamine), castor bean agglutinin (specific for galactose), Wistaria floribunda agglutinin (specific for N-acetylgalactosamine), and soybean agglutinin (specific for N-acetyl-galactosamine). Cells for a clone, SS7, transformed by bovine adenovirus type-3, were found to bind 5 to 6 times more Wistaria floribunda agglutinin than the normal counterpart cells (clone C31, from C3H mouse kidney). In contrast, the binding of soybean agglutinin, which has a sugar specificity similar to Wistaria floribunda agglutinin, to normal and transformed cells was similar. The binding of wheat germ agglutinin and castor bean agglutinin, respectively, to normal and transformed cells was also similar. However, normal cells bound twice as much concanavalin-A as transformed cells. Only half as much Wistaria floribunda agglutinin was bound to transformed cells when they had been dispersed with EDTA. These changes in the number of lectin binding sites on transformation are thought to reflect alteration of the cell surface structure. The amount of lectins bound per cell decreased with increase in cell density, especially in the case of binding of Wistaria floribunda agglutinin to normal cells.

  10. Heterogeneity of [3H]phorbol 12,13-dibutyrate binding in primary mouse keratinocytes at different stages of maturation

    International Nuclear Information System (INIS)

    Dunn, J.A.; Jeng, A.Y.; Yuspa, S.H.; Blumberg, P.M.

    1985-01-01

    Mouse keratinocytes respond heterogeneously to phorbol esters with distinct subpopulations stimulated to proliferate or induced to differentiate. The maturation state of the epidermal cell at the time of exposure may determine its response. The binding of phorbol esters to primary mouse keratinocytes was studied under culture conditions selecting for proliferating cells or differentiating cells. [20- 3 H]-12-Deoxyphorbol 13-isobutyrate ([ 3 H]-DPB) bound to both types of cells at one class of binding sites. The dissociation constant (Kd) for [ 3 H]DPB in the proliferative cells was 69 nM and the binding at saturation (Bmax) was 1.3 pmol/mg of protein. The corresponding values in the differentiative cells were 96 nM and 1.5 pmol/mg of protein, respectively. In contrast to the results obtained with [ 3 H]DPB, [20- 3 H]phorbol 12,13-dibutyrate ([ 3 H]PDBU) bound to both cell types in a heterogeneous fashion. The site for [ 3 H]DPB binding seemed to correspond to the higher affinity [ 3 H]PDBU binding site. The major difference in the cells grown in the medium containing 1.2 mM CaCl 2 was an increase in the Bmax of the lower affinity binding site with the other three parameters remaining similar. The state of epidermal differentiation thus appears to modulate the amount of the lower affinity binding sites for phorbol esters

  11. Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method.

    Directory of Open Access Journals (Sweden)

    Marharyta Petukh

    2015-07-01

    Full Text Available A new methodology termed Single Amino Acid Mutation based change in Binding free Energy (SAAMBE was developed to predict the changes of the binding free energy caused by mutations. The method utilizes 3D structures of the corresponding protein-protein complexes and takes advantage of both approaches: sequence- and structure-based methods. The method has two components: a MM/PBSA-based component, and an additional set of statistical terms delivered from statistical investigation of physico-chemical properties of protein complexes. While the approach is rigid body approach and does not explicitly consider plausible conformational changes caused by the binding, the effect of conformational changes, including changes away from binding interface, on electrostatics are mimicked with amino acid specific dielectric constants. This provides significant improvement of SAAMBE predictions as indicated by better match against experimentally determined binding free energy changes over 1300 mutations in 43 proteins. The final benchmarking resulted in a very good agreement with experimental data (correlation coefficient 0.624 while the algorithm being fast enough to allow for large-scale calculations (the average time is less than a minute per mutation.

  12. Observation of core-level binding energy shifts between (100) surface and bulk atoms of epitaxial CuInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.J. [Colorado School of Mines, Golden, CO (United States); Berry, G.; Rockett, A. [Univ. of Illinois, Urbana-Champaign, IL (United States)] [and others

    1997-04-01

    Core-level and valence band photoemission from semiconductors has been shown to exhibit binding energy differences between surface atoms and bulk atoms, thus allowing one to unambiguously distinguish between the two atomic positions. Quite clearly, surface atoms experience a potential different from the bulk due to the lower coordination number - a characteristic feature of any surface is the incomplete atomic coordination. Theoretical accounts of this phenomena are well documented in the literature for III-V and II-VI semiconductors. However, surface state energies corresponding to the equilibrium geometry of (100) and (111) surfaces of Cu-based ternary chalcopyrite semiconductors have not been calculated or experimental determined. These compounds are generating great interest for optoelectronic and photovoltaic applications, and are an isoelectronic analog of the II-VI binary compound semiconductors. Surface core-level binding energy shifts depend on the surface cohesive energies, and surface cohesive energies are related to surface structure. For ternary compound semiconductor surfaces, such as CuInSe{sub 2}, one has the possibility of variations in surface stoichiometry. Applying standard thermodynamical calculations which consider the number of individual surface atoms and their respective chemical potentials should allow one to qualitatively determine the magnitude of surface core-level shifts and, consequently, surface state energies.

  13. Observation of core-level binding energy shifts between (100) surface and bulk atoms of epitaxial CuInSe2

    International Nuclear Information System (INIS)

    Nelson, A.J.; Berry, G.; Rockett, A.

    1997-01-01

    Core-level and valence band photoemission from semiconductors has been shown to exhibit binding energy differences between surface atoms and bulk atoms, thus allowing one to unambiguously distinguish between the two atomic positions. Quite clearly, surface atoms experience a potential different from the bulk due to the lower coordination number - a characteristic feature of any surface is the incomplete atomic coordination. Theoretical accounts of this phenomena are well documented in the literature for III-V and II-VI semiconductors. However, surface state energies corresponding to the equilibrium geometry of (100) and (111) surfaces of Cu-based ternary chalcopyrite semiconductors have not been calculated or experimental determined. These compounds are generating great interest for optoelectronic and photovoltaic applications, and are an isoelectronic analog of the II-VI binary compound semiconductors. Surface core-level binding energy shifts depend on the surface cohesive energies, and surface cohesive energies are related to surface structure. For ternary compound semiconductor surfaces, such as CuInSe 2 , one has the possibility of variations in surface stoichiometry. Applying standard thermodynamical calculations which consider the number of individual surface atoms and their respective chemical potentials should allow one to qualitatively determine the magnitude of surface core-level shifts and, consequently, surface state energies

  14. Species Differences in the Carbohydrate Binding Preferences of Surfactant Protein D

    DEFF Research Database (Denmark)

    Crouch, Erika C.; Smith, Kelly; McDonald, Barbara

    2006-01-01

    Interactions of surfactant protein D (SP-D) with micro-organisms and organic antigens involve binding to the trimeric neck plus carbohydrate recognition domain (neck+CRD). In these studies, we compared the ligand binding of homologous human, rat, and mouse trimeric neck+CRD fusion proteins, each ...

  15. Circular dichroism study of the interaction between mutagens and bilirubin bound to different binding sites of serum albumins

    Science.gov (United States)

    Orlov, Sergey; Goncharova, Iryna; Urbanová, Marie

    Although recent investigations have shown that bilirubin not only has a negative role in the organism but also exhibits significant antimutagenic properties, the mechanisms of interactions between bilirubin and mutagens are not clear. In this study, interaction between bilirubin bound to different binding sites of mammalian serum albumins with structural analogues of the mutagens 2-aminofluorene, 2,7-diaminofluorene and mutagen 2,4,7-trinitrofluorenone were investigated by circular dichroism and absorption spectroscopy. Homological human and bovine serum albumins were used as chiral matrices, which preferentially bind different conformers of bilirubin in the primary binding sites and make it observable by circular dichroism. These molecular systems approximated a real system for the study of mutagens in blood serum. Differences between the interaction of bilirubin bound to primary and to secondary binding sites of serum albumins with mutagens were shown. For bilirubin bound to secondary binding sites with low affinity, partial displacement and the formation of self-associates were observed in all studied mutagens. The associates of bilirubin bound to primary binding sites of serum albumins are formed with 2-aminofluorene and 2,4,7-trinitrofluorenone. It was proposed that 2,7-diaminofluorene does not interact with bilirubin bound to primary sites of human and bovine serum albumins due to the spatial hindrance of the albumins binding domains. The spatial arrangement of the bilirubin bound to serum albumin along with the studied mutagens was modelled using ligand docking, which revealed a possibility of an arrangement of the both bilirubin and 2-aminofluorene and 2,4,7-trinitrofluorenone in the primary binding site of human serum albumin.

  16. Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria.

    Directory of Open Access Journals (Sweden)

    M Olivia Kim

    2015-10-01

    Full Text Available BACE-1 is the β-secretase responsible for the initial amyloidogenesis in Alzheimer's disease, catalyzing hydrolytic cleavage of substrate in a pH-sensitive manner. The catalytic mechanism of BACE-1 requires water-mediated proton transfer from aspartyl dyad to the substrate, as well as structural flexibility in the flap region. Thus, the coupling of protonation and conformational equilibria is essential to a full in silico characterization of BACE-1. In this work, we perform constant pH replica exchange molecular dynamics simulations on both apo BACE-1 and five BACE-1-inhibitor complexes to examine the effect of pH on dynamics and inhibitor binding properties of BACE-1. In our simulations, we find that solution pH controls the conformational flexibility of apo BACE-1, whereas bound inhibitors largely limit the motions of the holo enzyme at all levels of pH. The microscopic pKa values of titratable residues in BACE-1 including its aspartyl dyad are computed and compared between apo and inhibitor-bound states. Changes in protonation between the apo and holo forms suggest a thermodynamic linkage between binding of inhibitors and protons localized at the dyad. Utilizing our recently developed computational protocol applying the binding polynomial formalism to the constant pH molecular dynamics (CpHMD framework, we are able to obtain the pH-dependent binding free energy profiles for various BACE-1-inhibitor complexes. Our results highlight the importance of correctly addressing the binding-induced protonation changes in protein-ligand systems where binding accompanies a net proton transfer. This work comprises the first application of our CpHMD-based free energy computational method to protein-ligand complexes and illustrates the value of CpHMD as an all-purpose tool for obtaining pH-dependent dynamics and binding free energies of biological systems.

  17. Different types of working memory binding in epilepsy patients with unilateral anterior temporal lobectomy.

    Science.gov (United States)

    van Geldorp, Bonnie; Bouman, Zita; Hendriks, Marc P H; Kessels, Roy P C

    2014-03-01

    The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks containing spatial features. The present study contrasted three binding conditions and one single-item condition in patients with unilateral anterior temporal lobectomy. A group of 43 patients with temporal lobectomy (23 left; 20 right) and 20 matched controls were examined with a working memory task assessing spatial relational binding (object-location), non-spatial relational binding (object-object), conjunctive binding (object-colour) and working memory for single items. We varied the delay period (3 or 6s), as there is evidence showing that delay length may modulate working memory performance. The results indicate that performance was worse for patients than for controls in both relational binding conditions, whereas patients were unimpaired in conjunctive binding. Single-item memory was found to be marginally impaired, due to a deficit on long-delay trials only. In conclusion, working memory binding deficits are found in patients with unilateral anterior temporal lobectomy. The role of the medial temporal lobe in working memory is not limited to tasks containing spatial features. Rather, it seems to be involved in relational binding, but not in conjunctive binding. The medial temporal lobe gets involved when working memory capacity does not suffice, for example when relations have to be maintained or when the delay period is long. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Sensory Attribute Identification Time Cannot Explain the Common Temporal Limit of Binding Different Attributes and Modalities

    Directory of Open Access Journals (Sweden)

    Waka Fujisaki

    2011-10-01

    Full Text Available An informative performance measure of the brain's integration across different sensory attributes/modalities is the critical temporal rate of feature alternation (between, eg, red and green beyond which observers could not identify the feature value specified by a timing signal from another attribute (eg, a pitch change. Interestingly, this limit, which we called the critical crowding frequency (CCF, is fairly low and nearly constant (∼2.5 Hz regardless of the combination of attributes and modalities (Fujisaki & Nishida, 2010, IMRF. One may consider that the CCF reflects the processing time required for the brain to identify the specified feature value on the fly. According to this idea, the similarity in CCF could be ascribed to the similarity in identification time for the attributes we used (luminance, color, orientation, pitch, vibration. To test this idea, we estimated the identification time of each attribute from [Go/ No-Go choice reaction time – simple reaction time]. In disagreement with the prediction, we found significant differences among attributes (eg, ∼160 ms for orientation, ∼70 ms for pitch. The results are more consistent with our proposal (Fujisaki & Nishida, Proc Roy Soc B that the CCF reflects the common rate limit of specifying what happens when (timing-content binding by a central, presumably postdictive, mechanism.

  19. Improved harmonization of eosin-5-maleimide binding test across different instruments and age groups.

    Science.gov (United States)

    Agarwal, Archana M; Liew, Michael A; Nussenzveig, Roberto H; Sangle, Nikhil; Heikal, Nahla; Yaish, Hassan; Christensen, Robert

    2016-11-01

    The eosin-5'maleimide (EMA) binding test has been studied extensively for the detection of hereditary spherocytosis (HS). Its performance characteristics have been compared to NaCl-based or glycerol lysis-based red cell osmotic fragility tests and cryohemolysis. HS samples are also better identified when both mean channel fluorescence (MCF) of EMA relative to controls and the coefficient of variation (CV) are analyzed. We looked at 65 normal controls including 30 adults 25-65 years old and 35 newborns and 12 HS cases. In addition to the MCF and the CV, we used a side scatter (SSC) vs. EMA fluorescence gate or "footprint" to depict where normal erythrocytes should appear. Erythrocytes that have reduced band 3 protein appear outside of the footprint. In our study, newborn data did not cluster with the samples from working age individuals. The MCF and the CVs of normal newborns were higher than normal adult group. However, the footprint data of normal samples relative to their controls was around 99.5% for each group, because the footprint was moved to fit the pattern of the normal. The inclusion of footprint parameter will help in better standardization as well as implementation of this test across different age groups as well as different instruments. © 2015 International Clinical Cytometry Society. © 2015 International Clinical Cytometry Society.

  20. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    International Nuclear Information System (INIS)

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von

    2007-01-01

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand (α/β-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available

  1. Perception of the energy question in different regions of France

    International Nuclear Information System (INIS)

    Fouque, B.; Villaret, J.M.

    1982-01-01

    The authors first outline the main variables which account for regional differences in the perception of the energy question, and go on to discuss these differences and the factors underlying them [fr

  2. Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot

    Science.gov (United States)

    Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.

    2017-02-01

    In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.

  3. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    International Nuclear Information System (INIS)

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-01-01

    Forskolin labelled with [ 3 H] bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg 2+ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no further increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins

  4. A Critical Review of Validation, Blind Testing, and Real- World Use of Alchemical Protein-Ligand Binding Free Energy Calculations.

    Science.gov (United States)

    Abel, Robert; Wang, Lingle; Mobley, David L; Friesner, Richard A

    2017-01-01

    Protein-ligand binding is among the most fundamental phenomena underlying all molecular biology, and a greater ability to more accurately and robustly predict the binding free energy of a small molecule ligand for its cognate protein is expected to have vast consequences for improving the efficiency of pharmaceutical drug discovery. We briefly reviewed a number of scientific and technical advances that have enabled alchemical free energy calculations to recently emerge as a preferred approach, and critically considered proper validation and effective use of these techniques. In particular, we characterized a selection bias effect which may be important in prospective free energy calculations, and introduced a strategy to improve the accuracy of the free energy predictions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Competitive cation binding computations of proton balance for reactions of the phosphagen and glycolytic energy systems within skeletal muscle

    Science.gov (United States)

    2017-01-01

    Limited research and data has been published for the H+ coefficients for the metabolites and reactions involved in non-mitochondrial energy metabolism. The purpose of this investigation was to compute the fractional binding of H+, K+, Na+ and Mg2+ to 21 metabolites of skeletal muscle non-mitochondrial energy metabolism, resulting in 104 different metabolite-cation complexes. Fractional binding of H+ to these metabolite-cation complexes were applied to 17 reactions of skeletal muscle non-mitochondrial energy metabolism, and 8 conditions of the glycolytic pathway based on the source of substrate (glycogen vs. glucose), completeness of glycolytic flux, and the end-point of pyruvate vs. lactate. For pH conditions of 6.0 and 7.0, respectively, H+ coefficients (-‘ve values = H+ release) for the creatine kinase, adenylate kinase, AMP deaminase and ATPase reactions were 0.8 and 0.97, -0.13 and -0.02, 1.2 and 1.09, and -0.01 and -0.66, respectively. The glycolytic pathway is net H+ releasing, regardless of lactate production, which consumes 1 H+. For glycolysis fueled by glycogen and ending in either pyruvate or lactate, H+ coefficients for pH 6.0 and 7.0 were -3.97 and -2.01 (pyruvate), and -1.96 and -0.01 (lactate), respectively. When starting with glucose, the same conditions result in H+ coefficients of -3.98 and -2.67, and -1.97 and –0.67, respectively. The most H+ releasing reaction of glycolysis is the glyceraldehyde-3-phosphate dehydrogenase reaction, with H+ coefficients for pH 6.0 and 7.0 of -1.58 and -0.76, respectively. Incomplete flux of substrate through glycolysis would increase net H+ release due to the absence of the pyruvate kinase and lactate dehydrogenase reactions, which collectively result in H+ coefficients for pH 6.0 and 7.0 of 1.35 and 1.88, respectively. The data presented provide an extensive reference source for academics and researchers to accurately profile the balance of protons for all metabolites and reactions of non-mitochondrial energy

  6. Competitive cation binding computations of proton balance for reactions of the phosphagen and glycolytic energy systems within skeletal muscle.

    Science.gov (United States)

    Robergs, Robert Andrew

    2017-01-01

    Limited research and data has been published for the H+ coefficients for the metabolites and reactions involved in non-mitochondrial energy metabolism. The purpose of this investigation was to compute the fractional binding of H+, K+, Na+ and Mg2+ to 21 metabolites of skeletal muscle non-mitochondrial energy metabolism, resulting in 104 different metabolite-cation complexes. Fractional binding of H+ to these metabolite-cation complexes were applied to 17 reactions of skeletal muscle non-mitochondrial energy metabolism, and 8 conditions of the glycolytic pathway based on the source of substrate (glycogen vs. glucose), completeness of glycolytic flux, and the end-point of pyruvate vs. lactate. For pH conditions of 6.0 and 7.0, respectively, H+ coefficients (-'ve values = H+ release) for the creatine kinase, adenylate kinase, AMP deaminase and ATPase reactions were 0.8 and 0.97, -0.13 and -0.02, 1.2 and 1.09, and -0.01 and -0.66, respectively. The glycolytic pathway is net H+ releasing, regardless of lactate production, which consumes 1 H+. For glycolysis fueled by glycogen and ending in either pyruvate or lactate, H+ coefficients for pH 6.0 and 7.0 were -3.97 and -2.01 (pyruvate), and -1.96 and -0.01 (lactate), respectively. When starting with glucose, the same conditions result in H+ coefficients of -3.98 and -2.67, and -1.97 and -0.67, respectively. The most H+ releasing reaction of glycolysis is the glyceraldehyde-3-phosphate dehydrogenase reaction, with H+ coefficients for pH 6.0 and 7.0 of -1.58 and -0.76, respectively. Incomplete flux of substrate through glycolysis would increase net H+ release due to the absence of the pyruvate kinase and lactate dehydrogenase reactions, which collectively result in H+ coefficients for pH 6.0 and 7.0 of 1.35 and 1.88, respectively. The data presented provide an extensive reference source for academics and researchers to accurately profile the balance of protons for all metabolites and reactions of non-mitochondrial energy

  7. Competitive cation binding computations of proton balance for reactions of the phosphagen and glycolytic energy systems within skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Robert Andrew Robergs

    Full Text Available Limited research and data has been published for the H+ coefficients for the metabolites and reactions involved in non-mitochondrial energy metabolism. The purpose of this investigation was to compute the fractional binding of H+, K+, Na+ and Mg2+ to 21 metabolites of skeletal muscle non-mitochondrial energy metabolism, resulting in 104 different metabolite-cation complexes. Fractional binding of H+ to these metabolite-cation complexes were applied to 17 reactions of skeletal muscle non-mitochondrial energy metabolism, and 8 conditions of the glycolytic pathway based on the source of substrate (glycogen vs. glucose, completeness of glycolytic flux, and the end-point of pyruvate vs. lactate. For pH conditions of 6.0 and 7.0, respectively, H+ coefficients (-'ve values = H+ release for the creatine kinase, adenylate kinase, AMP deaminase and ATPase reactions were 0.8 and 0.97, -0.13 and -0.02, 1.2 and 1.09, and -0.01 and -0.66, respectively. The glycolytic pathway is net H+ releasing, regardless of lactate production, which consumes 1 H+. For glycolysis fueled by glycogen and ending in either pyruvate or lactate, H+ coefficients for pH 6.0 and 7.0 were -3.97 and -2.01 (pyruvate, and -1.96 and -0.01 (lactate, respectively. When starting with glucose, the same conditions result in H+ coefficients of -3.98 and -2.67, and -1.97 and -0.67, respectively. The most H+ releasing reaction of glycolysis is the glyceraldehyde-3-phosphate dehydrogenase reaction, with H+ coefficients for pH 6.0 and 7.0 of -1.58 and -0.76, respectively. Incomplete flux of substrate through glycolysis would increase net H+ release due to the absence of the pyruvate kinase and lactate dehydrogenase reactions, which collectively result in H+ coefficients for pH 6.0 and 7.0 of 1.35 and 1.88, respectively. The data presented provide an extensive reference source for academics and researchers to accurately profile the balance of protons for all metabolites and reactions of non

  8. Coordination-resolved local bond relaxation, electron binding-energy shift, and Debye temperature of Ir solid skins

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Wang, Yan [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Yang, Xuexian [Department of Physics, Jishou University, Jishou, Hunan 416000 (China); Yang, Yezi [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-11-30

    Highlights: • Cohesive energy of the representative bond determines the core-level shift. • XPS derives the energy level of an isolated atom and its bulk shift. • XPS derives the local bond length, bond energy, binding energy density. • Thermal XPS resolves the Debye temperature and atomic cohesive energy. - Abstract: Numerical reproduction of the measured 4f{sub 7/2} energy shift of Ir(1 0 0), (1 1 1), and (2 1 0) solid skins turns out the following: (i) the 4f{sub 7/2} level of an isolated Ir atom shifts from 56.367 eV to 60.332 eV by 3.965 eV upon bulk formation; (ii) the local energy density increases by up to 130% and the atomic cohesive energy decreases by 70% in the skin region compared with the bulk values. Numerical match to observation of the temperature dependent energy shift derives the Debye temperature that varies from 285.2 K (Surface) to 315.2 K (Bulk). We clarified that the shorter and stronger bonds between under-coordinated atoms cause local densification and quantum entrapment of electron binding energy, which perturbs the Hamiltonian and the core shifts in the skin region.

  9. Extended fenske-hall calculation of inner-shell binding energies using ( Z + 1)-bazis sets: Sulfur-containing molecules

    Science.gov (United States)

    Zwanziger, Ch.; Zwanziger, H.; Szargan, R.; Reinhold, J.

    1981-08-01

    It is shown that the S1s and S2p binding energies and their chemical shifts in the molecules H 2S, SO 2, SF 6 and COS obtained with hole-state calculations using an extended Fenske-Hall method are in good agreement with experimental values if mixed ( Z + 1)-basis sets are applied.

  10. Investigating the relative influences of molecular dimensions and binding energies on diffusivities of guest species inside nanoporous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2012-01-01

    The primary objective of this article is to investigate the relative influences of molecular dimensions and adsorption binding energies on unary diffusivities of guest species inside nanoporous crystalline materials such as zeolites and metal-organic frameworks (MOFs). The investigations are based

  11. Effect of structural modulation and thickness of a graphene overlayer on the binding energy of the Rashba-type surface state of Ir(111)

    International Nuclear Information System (INIS)

    Sánchez-Barriga, J; Marchenko, D; Rader, O; Varykhalov, A; Bihlmayer, G; Wortmann, D

    2013-01-01

    The Ir(111) surface is known to host a surface state with a giant spin–orbit splitting due to the Rashba effect. This surface state is stable even in air when Ir is protected with an epitaxial graphene overlayer. In the present paper, we reveal an effect allowing one to tune the binding energy of this spin-split surface state up and down and demonstrate the practical application of this effect by two different approaches. The first approach is related to a decoration of the moiré pattern of single-layer graphene on Ir(111) by self-assembled nanoclusters of different compositions. The clusters locally pin graphene to the Ir substrate and enhance the amplitude of its structural corrugation, which, in turn, leads to an increase in the surface state binding energy. The second approach is related to the synthesis of few-layer graphene on Ir(111) by segregation of carbon. Additional graphene layers induce a shift of the Ir surface state towards lower binding energies and bring it almost to the Fermi level. Based on density functional calculations performed for the graphene/Ir(111) system, we show that in both cases the effect causing the binding energy shifts is intimately related to the distance between graphene and the Ir surface, which is subject to change due to deposition of clusters or by increasing the amount of graphene overlayers. In contrast, the observed spin–orbit splitting of the Ir(111) surface state remains remarkably robust and constant in all cases. Our theoretical analysis reveals that such stability can be explained by the localization properties of the Ir surface state that is a deep surface resonance. (paper)

  12. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses.

    Science.gov (United States)

    Wu, Kailang; Chen, Lang; Peng, Guiqing; Zhou, Wenbo; Pennell, Christopher A; Mansky, Louis M; Geraghty, Robert J; Li, Fang

    2011-06-01

    How viruses evolve to select their receptor proteins for host cell entry is puzzling. We recently determined the crystal structures of NL63 coronavirus (NL63-CoV) and SARS coronavirus (SARS-CoV) receptor-binding domains (RBDs), each complexed with their common receptor, human angiotensin-converting enzyme 2 (hACE2), and proposed the existence of a virus-binding hot spot on hACE2. Here we investigated the function of this hypothetical hot spot using structure-guided biochemical and functional assays. The hot spot consists of a salt bridge surrounded by hydrophobic tunnel walls. Mutations that disturb the hot spot structure have significant effects on virus/receptor interactions, revealing critical energy contributions from the hot spot structure. The tunnel structure at the NL63-CoV/hACE2 interface is more compact than that at the SARS-CoV/hACE2 interface, and hence RBD/hACE2 binding affinities are decreased either by NL63-CoV mutations decreasing the tunnel space or by SARS-CoV mutations increasing the tunnel space. Furthermore, NL63-CoV RBD inhibits hACE2-dependent transduction by SARS-CoV spike protein, a successful application of the hot spot theory that has the potential to become a new antiviral strategy against SARS-CoV infections. These results suggest that the structural features of the hot spot on hACE2 were among the driving forces for the convergent evolution of NL63-CoV and SARS-CoV.

  13. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates

    KAUST Repository

    Park, Soohyung; Mutz, Niklas; Schultz, Thorsten; Blumstengel, Sylke; Han, Ali; Aljarb, Areej; Li, Lain-Jong; List-Kratochvil, Emil J W; Amsalem, Patrick; Koch, Norbert

    2018-01-01

    Understanding the excitonic nature of excited states in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is of key importance to make use of their optical and charge transport properties in optoelectronic applications. We contribute to this by the direct experimental determination of the exciton binding energy (E b,exc) of monolayer MoS2 and WSe2 on two fundamentally different substrates, i.e. the insulator sapphire and the metal gold. By combining angle-resolved direct and inverse photoelectron spectroscopy we measure the electronic band gap (E g), and by reflectance measurements the optical excitonic band gap (E exc). The difference of these two energies is E b,exc. The values of E g and E b,exc are 2.11 eV and 240 meV for MoS2 on sapphire, and 1.89 eV and 240 meV for WSe2 on sapphire. On Au E b,exc is decreased to 90 meV and 140 meV for MoS2 and WSe2, respectively. The significant E b,exc reduction is primarily due to a reduction of E g resulting from enhanced screening by the metal, while E exc is barely decreased for the metal support. Energy level diagrams determined at the K-point of the 2D TMDCs Brillouin zone show that MoS2 has more p-type character on Au as compared to sapphire, while WSe2 appears close to intrinsic on both. These results demonstrate that the impact of the dielectric environment of 2D TMDCs is more pronounced for individual charge carriers than for a correlated electron–hole pair, i.e. the exciton. A proper dielectric surrounding design for such 2D semiconductors can therefore be used to facilitate superior optoelectronic device function.

  14. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates

    KAUST Repository

    Park, Soohyung

    2018-01-03

    Understanding the excitonic nature of excited states in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is of key importance to make use of their optical and charge transport properties in optoelectronic applications. We contribute to this by the direct experimental determination of the exciton binding energy (E b,exc) of monolayer MoS2 and WSe2 on two fundamentally different substrates, i.e. the insulator sapphire and the metal gold. By combining angle-resolved direct and inverse photoelectron spectroscopy we measure the electronic band gap (E g), and by reflectance measurements the optical excitonic band gap (E exc). The difference of these two energies is E b,exc. The values of E g and E b,exc are 2.11 eV and 240 meV for MoS2 on sapphire, and 1.89 eV and 240 meV for WSe2 on sapphire. On Au E b,exc is decreased to 90 meV and 140 meV for MoS2 and WSe2, respectively. The significant E b,exc reduction is primarily due to a reduction of E g resulting from enhanced screening by the metal, while E exc is barely decreased for the metal support. Energy level diagrams determined at the K-point of the 2D TMDCs Brillouin zone show that MoS2 has more p-type character on Au as compared to sapphire, while WSe2 appears close to intrinsic on both. These results demonstrate that the impact of the dielectric environment of 2D TMDCs is more pronounced for individual charge carriers than for a correlated electron–hole pair, i.e. the exciton. A proper dielectric surrounding design for such 2D semiconductors can therefore be used to facilitate superior optoelectronic device function.

  15. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates

    Science.gov (United States)

    Park, Soohyung; Mutz, Niklas; Schultz, Thorsten; Blumstengel, Sylke; Han, Ali; Aljarb, Areej; Li, Lain-Jong; List-Kratochvil, Emil J. W.; Amsalem, Patrick; Koch, Norbert

    2018-04-01

    Understanding the excitonic nature of excited states in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is of key importance to make use of their optical and charge transport properties in optoelectronic applications. We contribute to this by the direct experimental determination of the exciton binding energy (E b,exc) of monolayer MoS2 and WSe2 on two fundamentally different substrates, i.e. the insulator sapphire and the metal gold. By combining angle-resolved direct and inverse photoelectron spectroscopy we measure the electronic band gap (E g), and by reflectance measurements the optical excitonic band gap (E exc). The difference of these two energies is E b,exc. The values of E g and E b,exc are 2.11 eV and 240 meV for MoS2 on sapphire, and 1.89 eV and 240 meV for WSe2 on sapphire. On Au E b,exc is decreased to 90 meV and 140 meV for MoS2 and WSe2, respectively. The significant E b,exc reduction is primarily due to a reduction of E g resulting from enhanced screening by the metal, while E exc is barely decreased for the metal support. Energy level diagrams determined at the K-point of the 2D TMDCs Brillouin zone show that MoS2 has more p-type character on Au as compared to sapphire, while WSe2 appears close to intrinsic on both. These results demonstrate that the impact of the dielectric environment of 2D TMDCs is more pronounced for individual charge carriers than for a correlated electron-hole pair, i.e. the exciton. A proper dielectric surrounding design for such 2D semiconductors can therefore be used to facilitate superior optoelectronic device function.

  16. Diabat Interpolation for Polymorph Free-Energy Differences.

    Science.gov (United States)

    Kamat, Kartik; Peters, Baron

    2017-02-02

    Existing methods to compute free-energy differences between polymorphs use harmonic approximations, advanced non-Boltzmann bias sampling techniques, and/or multistage free-energy perturbations. This work demonstrates how Bennett's diabat interpolation method ( J. Comput. Phys. 1976, 22, 245 ) can be combined with energy gaps from lattice-switch Monte Carlo techniques ( Phys. Rev. E 2000, 61, 906 ) to swiftly estimate polymorph free-energy differences. The new method requires only two unbiased molecular dynamics simulations, one for each polymorph. To illustrate the new method, we compute the free-energy difference between face-centered cubic and body-centered cubic polymorphs for a Gaussian core solid. We discuss the justification for parabolic models of the free-energy diabats and similarities to methods that have been used in studies of electron transfer.

  17. Batteries for efficient energy extraction from a water salinity difference.

    Science.gov (United States)

    La Mantia, Fabio; Pasta, Mauro; Deshazer, Heather D; Logan, Bruce E; Cui, Yi

    2011-04-13

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery", which can extract and store it as useful electrochemical energy. The battery, containing a Na(2-x)Mn(5)O(10) nanorod electrode, was shown to extract energy from real seawater and river water and can be applied to a variety of salt waters. We demonstrated energy extraction efficiencies of up to 74%. Considering the flow rate of river water into oceans as the limiting factor, the renewable energy production could potentially reach 2 TW, or ∼13% of the current world energy consumption. The mixing entropy battery is simple to fabricate and could contribute significantly to renewable energy in the future.

  18. Batteries for Efficient Energy Extraction from a Water Salinity Difference

    KAUST Repository

    La Mantia, Fabio

    2011-04-13

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery", which can extract and store it as useful electrochemical energy. The battery, containing a Na2-xMn 5O10 nanorod electrode, was shown to extract energy from real seawater and river water and can be applied to a variety of salt waters. We demonstrated energy extraction efficiencies of up to 74%. Considering the flow rate of river water into oceans as the limiting factor, the renewable energy production could potentially reach 2 TW, or ∼13% of the current world energy consumption. The mixing entropy battery is simple to fabricate and could contribute significantly to renewable energy in the future. © 2011 American Chemical Society.

  19. Relation of cigarette smoking in males of different ages to sex hormone binding globulin and testosterone

    International Nuclear Information System (INIS)

    El-Nabarawy, F.S.

    2002-01-01

    The relationship of cigarette smoking, age, total testosterone free testosterone and sex hormone binding globulin (SHBG) were examined by solid phase radioimmunoassay in 90 randomly chosen healthy males of different ages. The serum levels of these hormones were investigated for smokers compared with non-smokers, of the same ages in 3 groups (adolescent males, middle aged males, and old aged males). Results indicated that cigarette smokers showed increased serum levels of testosterone (60.0% higher, P> 0.05), free testosterone (51.0 higher, P > 0.005) in young adolescent males group, testosterone (27.8% higher, P > 0.001), free testosterone (21.3% higher, P > 0.001) in middle aged males group, and testosterone (21.0% higher, P > 0.001), free testosterone (16.8% higher, P > 0.4) in old ages males group. SHBG was calculated as a mean of free and total testosterone in each group. smokers showed higher mean values of SHBG than non-smokers. Age was positively associated with serum SHBG, it was found that SHBG increased by 17.2% from the youngest (> 18 years) to the oldest age (> 65 years)

  20. Asymptotic theory of charge exchange for relativistic velocities and binding energies

    International Nuclear Information System (INIS)

    Demkov, Yu.N.; Ostrovskij, V.N.; Shevchenko, S.I.

    1983-01-01

    The asymptotic theory of charge exchange (ATCE) at a large shock parameter rho is applied to the case of relativistic velocities and binding energies. The charge exchange reaction (1+e)+2 → 1+(e+2), when an electron from the bound 1Ssub(1/2) state on one particle transforms to the 1Ssub(1/2) state on the other, is considered. Oasic features of the method are as follows: 1) the representation of the transition amplitude in the form of multidimensional integral over some hypersurface; 2) the use of the saddle-point method for calculating necessary multidimensional integrals; 3) the refinement of wave functions as compared with the case of the absence of the interaction. The ATCE (at rho → infinity) makes it possible to obtain analytical results whose accuracy is determined solely with the shock parameter rho. A basic term of charge exchange amplitude asymptotics for 1Ssub(1/2) → 1Ssub(1/2) transitions has been calculated. It is possible to consider the ATCE as a peculiar reference with which theoretical and experimental results can be compared as well as to use the ATCE as boundary conditions during numerical calculations

  1. Electron momentum distributions and binding energies for the valence orbitals of hydrogen bromide and hydrogen iodide

    International Nuclear Information System (INIS)

    Brion, C.E.; McCarthy, I.E.; Suzuki, I.H.; Weigold, E.; Williams, G.R.J.; Bedford, K.L.; Kunz, A.B.; Weidman, R.

    1981-12-01

    The electron binding energy spectra and momentum distributions have been obtained for the valence orbitals of HBr and HI using noncoplanar symmetric electron coincidence spectroscopy at 1200eV. The weakly bonding inner valence ns orbitals, which have not been previously observed, have their spectroscopic (pole) strength severely split among a number of ion states. For HBr the strength of the main inner valence (ns) transition is 0.42 0.03 whereas for HI it is 0.37 0.04, in close agreement with that observed for the valence s orbitals of the corresponding isoelectronic inert gas atoms. The spectroscopic strength for the two outermost orbitals is found to be close to unity, in agreement with many body Green's function calculations. The measured momentum distributions are compared with several spherically averaged MO momentum distributions, as well as (for HBr) with a Green's function calculation of the generalized overlap amplitude (GOA). The GOA momentum distributions are in excellent agreement with the HBr data, both in shape and relative magnitude. Not all of the MO momentum distributions are in reasonable agreement with the data. Comparison is also made with the calculated momentum distributions for Kr, Br, Xe and I

  2. Binding energy and momentum distribution of nuclear matter using Green's function methods

    International Nuclear Information System (INIS)

    Ramos, A.; Dickhoff, W.H.; Polls, A.

    1991-01-01

    The influence of hole-hole (h-h) propagation in addition to the conventional particle-particle (p-p) propagation, on the energy per particle and the momentum distribution is investigated for the v 2 central interaction which is derived from Reid's soft-core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (SP) spectrum. Calculation of the energy from a self-consistently determined SP spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function, which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution, based on a Goldstone diagram expansion, is introduced that allows the inclusion of h-h contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing p-p and h-h propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including p-p and h-h terms on the same footing) to the kinetic and potential energy in which the SP energy is given by the quasiparticle energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the p-p and h-h ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a nonrelativistic level that is consistent with the observed depletion of SP orbitals in finite nuclei

  3. Binding energy and momentum distribution of nuclear matter using Green's function methods

    International Nuclear Information System (INIS)

    Ramos, A.; Dickhoff, W.H.; Polls, A.

    1990-07-01

    The influence of hole-hole (hh) propagation in addition to the conventional particle-particle (pp) propagation on the energy per particle and the momentum distribution is investigated for two central interactions (v 2 and v 2 l=0 ) which are derived from Reid's soft core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (sp) spectrum. Calculation of the energy from a self-consistently determined sp spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution based on a Goldstone diagram expansion is introduced which allows the inclusion of hh contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing pp and hh propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including pp and hh terms on the same footing) to the kinetic and potential energy in which the sp energy is given by the quasi-article energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the pp and hh ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a non-relativistic level which is consistent with the observed depletion of sp orbitals in finite nuclei. (Author) (51 refs., 3 tabs., 15 figs)

  4. The monoclonal S9.6 antibody exhibits highly variable binding affinities towards different R-loop sequences.

    Directory of Open Access Journals (Sweden)

    Fabian König

    Full Text Available The monoclonal antibody S9.6 is a widely-used tool to purify, analyse and quantify R-loop structures in cells. A previous study using the surface plasmon resonance technology and a single-chain variable fragment (scFv of S9.6 showed high affinity (0.6 nM for DNA-RNA and also a high affinity (2.7 nM for RNA-RNA hybrids. We used the microscale thermophoresis method allowing surface independent interaction studies and electromobility shift assays to evaluate additional RNA-DNA hybrid sequences and to quantify the binding affinities of the S9.6 antibody with respect to distinct sequences and their GC-content. Our results confirm high affinity binding to previously analysed sequences, but reveals that binding affinities are highly sequence specific. Our study presents R-loop sequences that independent of GC-content and in different sequence variations exhibit either no binding, binding affinities in the micromolar range and as well high affinity binding in the nanomolar range. Our study questions the usefulness of the S9.6 antibody in the quantitative analysis of R-loop sequences in vivo.

  5. Longitudinal investigation of source memory reveals different developmental trajectories for item memory and binding

    OpenAIRE

    Riggins, Tracy

    2013-01-01

    The present study used a cohort-sequential design to examine developmental changes in children's ability to bind items in memory during early and middle childhood. Three cohorts of children (aged 4, 6, or 8 years) were followed longitudinally for three years. Each year, children completed a source memory paradigm assessing memory for items and binding. Results suggest linear increases in memory for individual items (facts or sources) between 4 and 10 years of age, but that memory for correct ...

  6. Binding mechanism and dynamic conformational change of C subunit of PKA with different pathways.

    Science.gov (United States)

    Chu, Wen-Ting; Chu, Xiakun; Wang, Jin

    2017-09-19

    The catalytic subunit of PKA (PKAc) exhibits three major conformational states (open, intermediate, and closed) during the biocatalysis process. Both ATP and substrate/inhibitor can effectively induce the conformational changes of PKAc from open to closed states. Aiming to explore the mechanism of this allosteric regulation, we developed a coarse-grained model and analyzed the dynamics of conformational changes of PKAc during binding by performing molecular dynamics simulations for apo PKAc, binary PKAc (PKAc with ATP, PKAc with PKI), and ternary PKAc (PKAc with ATP and PKI). Our results suggest a mixed binding mechanism of induced fit and conformational selection, with the induced fit dominant. The ligands can drive the movements of Gly-rich loop as well as some regions distal to the active site in PKAc and stabilize them at complex state. In addition, there are two parallel pathways (pathway with PKAc-ATP as an intermediate and pathway PKAc-PKI as an intermediate) during the transition from open to closed states. By molecular dynamics simulations and rate constant analyses, we find that the pathway through PKAc-ATP intermediate is the main binding route from open to closed state because of the fact that the bound PKI will hamper ATP from successful binding and significantly increase the barrier for the second binding subprocess. These findings will provide fundamental insights of the mechanisms of PKAc conformational change upon binding.

  7. Changes in the Zero-Point Energy of the Protons as the Source of the Binding Energy of Water to A-Phase DNA

    International Nuclear Information System (INIS)

    Reiter, G. F.; Senesi, R.; Mayers, J.

    2010-01-01

    The measured changes in the zero-point kinetic energy of the protons are entirely responsible for the binding energy of water molecules to A phase DNA at the concentration of 6 water molecules/base pair. The changes in kinetic energy can be expected to be a significant contribution to the energy balance in intracellular biological processes and the properties of nano-confined water. The shape of the momentum distribution in the dehydrated A phase is consistent with coherent delocalization of some of the protons in a double well potential, with a separation of the wells of 0.2 Angst .

  8. Changes in the zero-point energy of the protons as the source of the binding energy of water to A-phase DNA.

    Science.gov (United States)

    Reiter, G F; Senesi, R; Mayers, J

    2010-10-01

    The measured changes in the zero-point kinetic energy of the protons are entirely responsible for the binding energy of water molecules to A phase DNA at the concentration of 6  water molecules/base pair. The changes in kinetic energy can be expected to be a significant contribution to the energy balance in intracellular biological processes and the properties of nano-confined water. The shape of the momentum distribution in the dehydrated A phase is consistent with coherent delocalization of some of the protons in a double well potential, with a separation of the wells of 0.2 Å.

  9. Are automated molecular dynamics simulations and binding free energy calculations realistic tools in lead optimization? An evaluation of the linear interaction energy (LIE) method

    NARCIS (Netherlands)

    Stjernschantz, E.M.; Marelius, J.; Medina, C.; Jacobsson, M.; Vermeulen, N.P.E.; Oostenbrink, C.

    2006-01-01

    An extensive evaluation of the linear interaction energy (LIE) method for the prediction of binding affinity of docked compounds has been performed, with an emphasis on its applicability in lead optimization. An automated setup is presented, which allows for the use of the method in an industrial

  10. Methodological differences behind energy statistics for steel production – Implications when monitoring energy efficiency

    International Nuclear Information System (INIS)

    Morfeldt, Johannes; Silveira, Semida

    2014-01-01

    Energy efficiency indicators used for evaluating industrial activities at the national level are often based on statistics reported in international databases. In the case of the Swedish iron and steel sector, energy consumption statistics published by Odyssee, Eurostat, the IEA (International Energy Agency), and the United Nations differ, resulting in diverging energy efficiency indicators. For certain years, the specific energy consumption for steel is twice as high if based on Odyssee statistics instead of statistics from the IEA. The analysis revealed that the assumptions behind the allocation of coal and coke used in blast furnaces as energy consumption or energy transformation are the major cause for these differences. Furthermore, the differences are also related to errors in the statistical data resulting from two different surveys that support the data. The allocation of coal and coke has implications when promoting resource as well as energy efficiency at the systems level. Eurostat's definition of energy consumption is more robust compared to the definitions proposed by other organisations. Nevertheless, additional data and improved energy efficiency indicators are needed to fully monitor the iron and steel sector's energy system and promote improvements towards a greener economy at large. - Highlights: • Energy statistics for the iron and steel sector diverge in international databases. • Varying methods have implications when monitoring energy and resource efficiency. • Allocation of blast furnaces as transformation activities is behind the differences. • Different statistical surveys and human error also contribute to diverging results

  11. Two distinctive β subunits are separately involved in two binding sites of imidacloprid with different affinities in Locusta migratoria manilensis.

    Science.gov (United States)

    Bao, Haibo; Liu, Yang; Zhang, Yixi; Liu, Zewen

    2017-08-01

    Due to great diversity of nicotinic acetylcholine receptor (nAChR) subtypes in insects, one β subunit may be contained in numerous nAChR subtypes. In the locust Locusta migratoria, a model insect species with agricultural importance, the third β subunits (Locβ3) was identified in this study, which reveals at least three β subunits in this insect species. Imidacloprid was found to bind nAChRs in L. migratoria central nervous system at two sites with different affinities, with K d values of 0.16 and 10.31nM. The specific antisera (L1-1, L2-1 and L3-1) were raised against fusion proteins at the large cytoplasmic loop of Locβ1, Locβ2 and Locβ3 respectively. Specific immunodepletion of Locβ1 with antiserum L1-1 resulted in the selective loss of the low affinity binding site for imidacloprid, whereas the immunodepletion of Locβ3 with L3-1 caused the selective loss of the high affinity site. Dual immunodepletion with L1-1 and L3-1 could completely abolish imidacloprid binding. In contrast, the immunodepletion of Locβ2 had no significant effect on the specific [ 3 H]imidacloprid binding. Taken together, these data indicated that Locβ1 and Locβ3 were respectively contained in the low- and high-affinity binding sites for imidacloprid in L. migratoria, which is different to the previous finding in Nilaparvata lugens that Nlβ1 was in two binding sites for imidacloprid. The involvement of two β subunits separately in two binding sites may decrease the risk of imidacloprid resistance due to putative point mutations in β subunits in L. migratoria. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Subsite binding energies of an exo-polygalacturonase using isothermal titration calorimetry

    Science.gov (United States)

    Thermodynamic parameters for binding of a series of galacturonic acid oligomers to an exo-polygalacturonase, RPG16 from Rhizopus oryzae, were determined by isothermal titration calorimetry. Binding of oligomers varying in chain length from two to five galacturonic acid residues is an exothermic proc...

  13. Thermodynamics for proton binding of phytate in KNO3(aq) at different temperatures and ionic strengths

    International Nuclear Information System (INIS)

    Bretti, Clemente; De Stefano, Concetta; Lando, Gabriele; Sammartano, Silvio

    2013-01-01

    Highlights: • Protonation data were modeled in a wide range of temperatures and ionic strengths. • Protonation values decrease with increasing ionic strength and temperature. • In KNO 3 proton binding process is slightly exothermic, but less than in NaCl. • The major contribution for the proton association is entropic in nature. • Results are in agreement with previous findings for KCl and NaCl. - Abstract: Potentiometric measurements were performed in KNO 3(aq) , to determine the apparent protonation constants of phytate at different temperatures (278.15 ≤ T (K) ≤ 323.15) and ionic strengths (0.25 ≤ I (mol) dm −3 ≤ 3.0) values. In general, the protonation constants decrease with increasing both temperature and ionic strength. The data reported were critically compared with previous results obtained in KCl and the values are in a good agreement, considering the experimental errors and slight differences between the activity coefficients of the various species in KCl and KNO 3 . Experimental data were then modeled as a function of temperature and ionic strength using, with comparable results, two approaches: the extended Debye–Hückel equation and the specific ion interaction theory (SIT). The single specific ion interaction coefficients, ε, were also determined. The corresponding values are higher than those in Na + media. The protonation constants were also analyzed considering a simplified weak interaction model using an empirical equation that contains an additional term which takes into account the formation of weak complexes. The results obtained for the modeling of the protonation constants are in agreement with the literature findings. Thermodynamic protonation parameters were also obtained at different temperatures and ionic strengths. The proton association process is slightly exothermic and the enthalpic contribution is less negative than that in NaCl solution. As observed in other cases for phytate anion, the major contribution for

  14. Regional energy consumption and income differences in Denmark

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    2003-01-01

    income of households grouped in income deciles and by other characteristics. The impact of environmental taxes depends on income levels in rural areas compared to income in urban areas. In Denmark, the income difference is found to be quite small, but energy consumption and, therefore, also the burden......Internationally a debate on the distributional impact of energy taxation has focused on the tax burden relative to income. The general conclusion is that taxes are regressive, but at a varying degree for different countries. This study examines the relationship between location, income, heating...... technology characteristics and the energy tax that households pay. The article aims at identifying general implications of energy taxes with respect to different impacts on population groups depending on location and income. Tax payments associated with energy use are considered relative to total disposable...

  15. Quasiparticle Lagrangian for the binding energies and self-consistent fields of nuclei in the Fermi-liquid approach

    International Nuclear Information System (INIS)

    Sapershtein, E.E.; Khodel', V.A.

    1981-01-01

    The problem of calculating the binding energy and self-consistent field of a nucleus in terms of the effective interaction of quasiparticles at the Fermi surface is solved. It is shown that for this one can go over from the system of N Fermi particles to a system of N interacting quasiparticles described by an effective quasiparticle Lagrangian L/sub q/. It is shown that the corresponding quasiparticle energy is equal to the ground-state energy of the system. The connection between the parameters of the effective Lagrangian and the constants of the quasiparticle interaction introduced in the theory of finite Fermi systems is established

  16. Analysis of angiotensin II binding to human platelets: Differences in young and old subjects

    International Nuclear Information System (INIS)

    Siebers, M.J.; Goodfriend, T.L.; Ball, D.; Elliott, M.E.

    1990-01-01

    We examined the binding of radiolabeled angiotensin II (AII) to human platelets to characterize the apparent increase in AII receptors observed in older subjects. At 22 degrees C, the amount of radioactivity associated with platelets from older subjects increased continuously for more than 2 hours. The same amount of radioactivity was displaced by addition of unlabeled AII at 30 min and 60 min. In the presence of phenylarsine oxide, in the cold, or when labeled antagonist was the ligand, binding came to equilibrium by 30 min. High pressure liquid chromatography demonstrated that 125 I-AII was the major radioactive compound in the supernatant and platelets after incubation, but the platelets also contained radiolabeled AII fragments. Thus, some degradation accompanied interaction of AII and platelets. Phenylarsine oxide did not prevent degradation of bound AII, suggesting that degradation precedes internalization. On average, maximum binding was greater in older subjects whether platelets were incubated with 125 I-AII alone, with 125 I-AII and phenylarsine oxide to prevent internalization, or when the competitive inhibitor 125 I-sar1,ile8-AII was the radioligand. Variability of binding among subjects also increased with age. Thus, platelets bind, degrade, and internalize AII, and the three processes occur to a greater extent in platelets from some, but not all older subjects

  17. Total binding energy of heavy positive ions including density treatment of Darwin and Breit corrections

    International Nuclear Information System (INIS)

    Hill, S.H.; Grout, P.J.; March, N.H.

    1987-01-01

    Previous work on the relativistic Thomas-Fermi treatment of total energies of neutral atoms is first generalised to heavy positive ions. To facilitate quantitative contact with the numerical predictions of Dirac-Fock theory, Darwin and Breit corrections are expressed in terms of electron density, and computed using input again from relativistic Thomas-Fermi theory. These corrections significantly improve the agreement between the two seemingly very different theories. (author)

  18. Energy consumption in buildings for different sport activities

    Energy Technology Data Exchange (ETDEWEB)

    Norrfors, M; Werner, G; Oertenstrand, G

    1978-01-01

    Some buildings for different kinds of sport activities have a great energy demand. The actions which could be taken in order to decrease the energy demand and at the same time decrease the operating costs for these buildings are summarized. References are given to literature of current interest in this field.

  19. Rtt107/Esc4 binds silent chromatin and DNA repair proteins using different BRCT motifs

    Directory of Open Access Journals (Sweden)

    Jockusch Rebecca A

    2006-11-01

    Full Text Available Abstract Background By screening a plasmid library for proteins that could cause silencing when targeted to the HMR locus in Saccharomyces cerevisiae, we previously reported the identification of Rtt107/Esc4 based on its ability to establish silent chromatin. In this study we aimed to determine the mechanism of Rtt107/Esc4 targeted silencing and also learn more about its biological functions. Results Targeted silencing by Rtt107/Esc4 was dependent on the SIR genes, which encode obligatory structural and enzymatic components of yeast silent chromatin. Based on its sequence, Rtt107/Esc4 was predicted to contain six BRCT motifs. This motif, originally identified in the human breast tumor suppressor gene BRCA1, is a protein interaction domain. The targeted silencing activity of Rtt107/Esc4 resided within the C-terminal two BRCT motifs, and this region of the protein bound to Sir3 in two-hybrid tests. Deletion of RTT107/ESC4 caused sensitivity to the DNA damaging agent MMS as well as to hydroxyurea. A two-hybrid screen showed that the N-terminal BRCT motifs of Rtt107/Esc4 bound to Slx4, a protein previously shown to be involved in DNA repair and required for viability in a strain lacking the DNA helicase Sgs1. Like SLX genes, RTT107ESC4 interacted genetically with SGS1; esc4Δ sgs1Δ mutants were viable, but exhibited a slow-growth phenotype and also a synergistic DNA repair defect. Conclusion Rtt107/Esc4 binds to the silencing protein Sir3 and the DNA repair protein Slx4 via different BRCT motifs, thus providing a bridge linking silent chromatin to DNA repair enzymes.

  20. A self-interaction-free local hybrid functional: Accurate binding energies vis-à-vis accurate ionization potentials from Kohn-Sham eigenvalues

    International Nuclear Information System (INIS)

    Schmidt, Tobias; Kümmel, Stephan; Kraisler, Eli; Makmal, Adi; Kronik, Leeor

    2014-01-01

    We present and test a new approximation for the exchange-correlation (xc) energy of Kohn-Sham density functional theory. It combines exact exchange with a compatible non-local correlation functional. The functional is by construction free of one-electron self-interaction, respects constraints derived from uniform coordinate scaling, and has the correct asymptotic behavior of the xc energy density. It contains one parameter that is not determined ab initio. We investigate whether it is possible to construct a functional that yields accurate binding energies and affords other advantages, specifically Kohn-Sham eigenvalues that reliably reflect ionization potentials. Tests for a set of atoms and small molecules show that within our local-hybrid form accurate binding energies can be achieved by proper optimization of the free parameter in our functional, along with an improvement in dissociation energy curves and in Kohn-Sham eigenvalues. However, the correspondence of the latter to experimental ionization potentials is not yet satisfactory, and if we choose to optimize their prediction, a rather different value of the functional's parameter is obtained. We put this finding in a larger context by discussing similar observations for other functionals and possible directions for further functional development that our findings suggest

  1. Hydrogenic-Donor Impurity Binding Energy Dependence of the Electric Field in GaAs/AlxGa1−xAs Quantum Rings

    Directory of Open Access Journals (Sweden)

    Guangxin Wang

    2013-01-01

    Full Text Available Using a variational method with two-parameter trial wave function and the effective mass approximation, the binding energy of a donor impurity in GaAs/AlxGa1−xAs cylindrical quantum ring (QR subjected to an external field is calculated. It is shown that the donor impurity binding energy is highly dependent on the QR structure parameters (radial thickness and height, impurity position, and external electric field. The binding energy increases inchmeal as the QR parameters (radial thickness and height decrease until a maximum value for a central impurity and then begins to drop quickly. The applied electric field can significantly modify the spread of electronic wave function in the QR and shift electronic wave function from the donor position and then leads to binding energy changes. In addition, results for the binding energies of a hydrogenic donor impurity as functions of the impurity position and applied electric field are also presented.

  2. Phase Partitioning of GM1 and Its Bodipy-Labeled Analog Determine Their Different Binding to Cholera Toxin

    Directory of Open Access Journals (Sweden)

    Sami Rissanen

    2017-05-01

    Full Text Available Driven by interactions between lipids and proteins, biological membranes display lateral heterogeneity that manifests itself in a mosaic of liquid-ordered (Lo or raft, and liquid-disordered (Ld or non-raft domains with a wide range of different properties and compositions. In giant plasma membrane vesicles and giant unilamellar vesicles, specific binding of Cholera Toxin (CTxB to GM1 glycolipids is a commonly used strategy to label raft domains or Lo membrane environments. However, these studies often use acyl-chain labeled bodipy-GM1 (bdGM1, whose headgroup accessibility and membrane order or phase partitioning may differ from those of GM1, rendering the interpretation of CTxB binding data quite problematic. To unravel the molecular basis of CTxB binding to GM1 and bdGM1, we explored the partitioning and the headgroup presentation of these gangliosides in the Lo and Ld phases using atomistic molecular dynamics simulations complemented by CTxB binding experiments. The conformation of both GM1 and bdGM1 was shown to be largely similar in the Lo and Ld phases. However, bdGM1 showed reduction in receptor availability when reconstituted into synthetic bilayer mixtures, highlighting that membrane phase partitioning of the gangliosides plays a considerable role in CTxB binding. Our results suggest that the CTxB binding is predominately modulated by the partitioning of the receptor to an appropriate membrane phase. Further, given that the Lo and Ld partitioning of bdGM1 differs from those of GM1, usage of bdGM1 for studying GM1 behavior in cells can lead to invalid interpretation of experimental data.

  3. Effect of different glucose supply conditions on neuronal energy metabolism

    OpenAIRE

    Zheng, Hongwen; Wang, Rubin; Qu, Jingyi

    2016-01-01

    The glucose-excited neurons in brain can sense blood glucose levels and reflect different firing states, which are mainly associated with regulation of blood glucose and energy demand in the brain. In this paper, a new model of glucose-excited neuron in hypothalamus is proposed. The firing properties and energy consumption of this type of neuron under conditions of different glucose levels are simulated and analyzed. The results show that the firing rate and firing duration of the neuron both...

  4. Cultural energy analyses of dairy cattle receiving different concentrate levels

    International Nuclear Information System (INIS)

    Koknaroglu, Hayati

    2010-01-01

    Purpose of this study was to conduct cultural energy analyses of dairy cows receiving different levels of concentrate. Data were acquired by conducting a survey on 132 dairy farms selected by the stratified random sampling method. Dairy cattle farms were divided into three groups according to concentrate level and were analyzed. Accordingly concentrate levels were assigned as low (LLC) ( 50%, 44 farms). Cultural energy used for feed for cows was calculated by multiplying each ingredient with corresponding values of ingredients from literature. Transportation energy was also included in the analysis. Total cultural energy expended was highest for LLC (P < 0.05). Cultural energy expended for feed constituted more than half of the total cultural energy and was highest for LLC (P < 0.05). Cultural energy expended per kg milk and per Mcal protein energy was higher for LLC (P < 0.05). Efficiency defined as Mcal input/Mcal output was better for ILC and was worse for LLC (P < 0.05) and HLC was intermediate thus not differing from other groups. Results show that cultural energy use efficiency does not linearly increases as concentrate level increases and increasing concentrate level does not necessarily mean better efficiency. Thus optimum concentrate level not interfering cows performance should be sought for sustainable dairy production.

  5. Net energy analysis of different electricity generation systems

    International Nuclear Information System (INIS)

    1994-07-01

    This document is a report on the net energy analysis of nuclear power and other electricity generation systems. The main objectives of this document are: To provide a comprehensive review of the state of knowledge on net energy analysis of nuclear and other energy systems for electricity generation; to address traditional questions such as whether nuclear power is a net energy producer or not. In addition, the work in progress on a renewed application of the net energy analysis method to environmental issues is also discussed. It is expected that this work could contribute to the overall comparative assessment of different energy systems which is an ongoing activity at the IAEA. 167 refs, 9 figs, 5 tabs

  6. Dark energy as consequence of release of cosmological nuclear binding-energy, and its further extension towards a new theory of inflation

    International Nuclear Information System (INIS)

    Gupta, R.C.; Pradhan, Anirudh; Gupta, Sushant

    2012-01-01

    Comparatively recent observations on Type-Ia supernovae and low density (Um = 0.3) measurement of matter including dark matter suggest that the present day universe consists mainly of repulsive-gravity type 'exotic matter' with negative-pressure often said 'dark energy' (Ux = O7). But the nature of dark energy is mysterious and its puzzling questions, such as why, how, where and when about the dark energy, are intriguing. In the present paper the authors attempt to answer these questions while making an effort to reveal the genesis of dark energy, and suggest that the cosmological nuclear binding energy liberated during primordial nucleo-synthesis remains trapped dormant for a long time and then is released free which manifests itself as dark energy in the universe. It is also explained why for dark energy the parameter w = -2/3. Noting that w = 1 for stiff matter and w = 1/3 for radiation; w = -2/3 is for dark energy because '- 1' is due to 'deficiency of stiff- nuclear-matter' and that this binding energy is ultimately released as 'radiation' contributing '+ 1/3', making w = -1+ 1/3 = -2/3. When dark energy is released free at Z = 80, w = -2/3. But as on present day at Z = 0 when radiation strength has diminished to ä ? 0, the parameter w = -1 + ä 1/3 = -1. This, thus almost solves the dark- energy mystery of negative pressure and repulsive-gravity. The proposed theory makes several estimates/predictions which agree reasonably well with the astrophysical constraints and observations. Though there are many candidate-theories, the proposed model of this paper presents an entirely new approach (cosmological nuclear energy) as a possible candidate for dark energy. The secret of acceleration of big-universe is hidden in the small-nucleus. (author)

  7. Computing conformational free energy differences in explicit solvent: An efficient thermodynamic cycle using an auxiliary potential and a free energy functional constructed from the end points.

    Science.gov (United States)

    Harris, Robert C; Deng, Nanjie; Levy, Ronald M; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2017-06-05

    Many biomolecules undergo conformational changes associated with allostery or ligand binding. Observing these changes in computer simulations is difficult if their timescales are long. These calculations can be accelerated by observing the transition on an auxiliary free energy surface with a simpler Hamiltonian and connecting this free energy surface to the target free energy surface with free energy calculations. Here, we show that the free energy legs of the cycle can be replaced with energy representation (ER) density functional approximations. We compute: (1) The conformational free energy changes for alanine dipeptide transitioning from the right-handed free energy basin to the left-handed basin and (2) the free energy difference between the open and closed conformations of β-cyclodextrin, a "host" molecule that serves as a model for molecular recognition in host-guest binding. β-cyclodextrin contains 147 atoms compared to 22 atoms for alanine dipeptide, making β-cyclodextrin a large molecule for which to compute solvation free energies by free energy perturbation or integration methods and the largest system for which the ER method has been compared to exact free energy methods. The ER method replaced the 28 simulations to compute each coupling free energy with two endpoint simulations, reducing the computational time for the alanine dipeptide calculation by about 70% and for the β-cyclodextrin by > 95%. The method works even when the distribution of conformations on the auxiliary free energy surface differs substantially from that on the target free energy surface, although some degree of overlap between the two surfaces is required. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    The influence of ligand binding and conformation state on the thermostability of hexameric zinc-insulin was studied by differential scanning calorimetry (DSC). The insulin hexamer exists in equilibrium between the forms T6, T3R3, and R6. Phenolic ligands induce and stabilize the T3R3- and R6-stat...

  9. Longitudinal Investigation of Source Memory Reveals Different Developmental Trajectories for Item Memory and Binding

    Science.gov (United States)

    Riggins, Tracy

    2014-01-01

    The present study used a cohort-sequential design to examine developmental changes in children's ability to bind items in memory during early and middle childhood. Three cohorts of children (aged 4, 6, or 8 years) were followed longitudinally for 3 years. Each year, children completed a source memory paradigm assessing memory for items and…

  10. New insights into structure and function of the different types of fatty acid-binding protein

    NARCIS (Netherlands)

    Zimmerman, Augusta Wilhelmina

    2002-01-01

    Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. They may also modulate the effect of fatty acids on various metabolic enzymes and receptors and on cellular

  11. Cloning of a GH5 endoglucanase from genus Penicillium and its binding to different lignins

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Kastberg, H.; Jørgensen, C. I.

    2009-01-01

    The cel5C gene, coding for an endoglucanase (Cel5C) of Penicillium brasilianum was cloned and heterologously expressed in Aspergillus oryzae. This is only the second GH5 EG from the genus penicillium reported in the CAZy database. The promoter region of the gene has I)putative binding sites...

  12. Comparison of the kinetics of different Markov models for ligand binding under varying conditions

    International Nuclear Information System (INIS)

    Martini, Johannes W. R.; Habeck, Michael

    2015-01-01

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest

  13. Comparison of the kinetics of different Markov models for ligand binding under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Johannes W. R., E-mail: jmartin2@gwdg.de [Max Planck Institute for Developmental Biology, Tübingen (Germany); Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen (Germany); Habeck, Michael, E-mail: mhabeck@gwdg.de [Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen (Germany); Max Planck Institute for Biophysical Chemistry, Göttingen (Germany)

    2015-03-07

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.

  14. Different types of working memory binding in epilepsy patients with unilateral anterior temporal lobectomy

    NARCIS (Netherlands)

    Geldorp, B. van; Bouman, Z.; Hendriks, M.P.H.; Kessels, R.P.C.

    2014-01-01

    The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks

  15. Molecular dynamics and MM/GBSA-integrated protocol probing the correlation between biological activities and binding free energies of HIV-1 TAR RNA inhibitors.

    Science.gov (United States)

    Peddi, Saikiran Reddy; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    The interaction of HIV-1 transactivator protein Tat with its cognate transactivation response (TAR) RNA has emerged as a promising target for developing antiviral compounds and treating HIV infection, since it is a crucial step for efficient transcription and replication. In the present study, molecular dynamics (MD) simulations and MM/GBSA calculations have been performed on a series of neamine derivatives in order to estimate appropriate MD simulation time for acceptable correlation between ΔG bind and experimental pIC 50 values. Initially, all inhibitors were docked into the active site of HIV-1 TAR RNA. Later to explore various conformations and examine the docking results, MD simulations were carried out. Finally, binding free energies were calculated using MM/GBSA method and were correlated with experimental pIC 50 values at different time scales (0-1 to 0-10 ns). From this study, it is clear that in case of neamine derivatives as simulation time increased the correlation between binding free energy and experimental pIC 50 values increased correspondingly. Therefore, the binding energies which can be interpreted at longer simulation times can be used to predict the bioactivity of new neamine derivatives. Moreover, in this work, we have identified some plausible critical nucleotide interactions with neamine derivatives that are responsible for potent inhibitory activity. Furthermore, we also provide some insights into a new class of oxadiazole-based back bone cyclic peptides designed by incorporating the structural features of neamine derivatives. On the whole, this approach can provide a valuable guidance for designing new potent inhibitors and modify the existing compounds targeting HIV-1 TAR RNA.

  16. Methods for comparative risk assessment of different energy sources

    International Nuclear Information System (INIS)

    1992-10-01

    The environmental and health aspects of different energy systems, particularly those associated with the generation of electricity, are emerging as significant issues for policy formulation and implementation. This, together with the growing need of many countries to define their energy programmes for the next century, has provided the basis for a renewed interest in the comparative risk assessment of different energy sources (fossil, nuclear, renewables). This document is the outcome of a Specialists Meeting on the procedural and methodological issues associated with comparative health and environmental risks of different energy sources. After an introductory chapter outlining the issues under consideration the papers presented at the Meeting, which have been indexed separately, are given. Refs, figs and tabs

  17. Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters

    OpenAIRE

    Bryantsev, Vyacheslav S.; Diallo, Mamadou S.; van Duin, Adri C. T.; Goddard, William A., III

    2009-01-01

    In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged water clusters including (H_2O)_n, n = 2−8, 20), H_3O+(H_2O_)n, n = 1−6, and OH−(H_2O)_n, n = 1−6. We also compare the predicted energies of two ion hydration and neutralization reactions on the basis of the calculated binding energies. In all cases, we use as benchmarks calculated binding energies of water clusters extrapolate...

  18. Magnetic field-dependent of binding energy in GaN/InGaN/GaN spherical QDQW nanoparticles

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine

    2013-01-01

    Simultaneous study of magnetic field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN (core|well|shell) spherical quantum dot–quantum well (SQDQW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated within the framework of the effective-mass approximation and an infinite deep potential describing the quantum confinement effect. A Ritz variational approach is used taking into account of the electron-impurity correlation and the magnetic field effect in the trial wave-function. It appears that the binding energy depends strongly on the external magnetic field, the impurity's position and the structure radius. It has been found that: (i) the magnetic field effect is more marked in large layer than in thin layer and (ii) it is more pronounced in the spherical layer center than in its extremities

  19. Absence of a Scott correction for the total binding energy of noninteracting fermions in a smooth potential well

    International Nuclear Information System (INIS)

    Huxtable, B.D.

    1988-01-01

    It is shown, for V in a particular class of smooth functions, that the total binding energy, E(Z), of Z noninteracting Fermions in the potential well Z 4/3 V(Z 1/3 X) obeys E(Z) = c TF (V)Z 7/3 + O(Z 5/3 ) as Z → ∞. Here c TF (V) is the coefficient predicted by Thomas-Fermi theory. This result is consistent with the conjectured Scott correction, which occurs at order Z 2 , to the total binding energy of an atomic number Z. This correction is thought to arise only because V(x)∼ - |x| -1 near x = 0 in the atomic problem, and so V is not a smooth function

  20. The effect of including tensor forces in nucleon-nucleon interaction on three-nucleon binding energy

    International Nuclear Information System (INIS)

    Osman, A.; Ramadan, S.

    1986-01-01

    Separable two-body interactions are used in considering the three-nucleon problem. The nucleon-nucleon potentials are taken to include attraction and repulsion as well as tensor forces. The separable approximation is used in order to investigate the effect of the tensor forces. The separable expansion is introduced in the three-nucleon problem, by which the Faddeev equations are reduced to a well-behaved set of coupled integral equations. Numerical calculations are carried out for the obtained integral equations using potential functions of the Yamaguchi, Gaussian, Takabin, Mongan and Reid forms. The present calculated values of the binding energies of the 3 H and 3 He nuclei are in good agreement with the experimental values. The effect of including the tensor forces in the nucleon-nucleon interactions is found to improve the three-nucleon binding energy by about 4.490% to 8.324%. 37 refs., 2 tabs. (author)

  1. Application of the step-wise regression procedure to the semi-empirical formulae of the nuclear binding energy

    International Nuclear Information System (INIS)

    Eissa, E.A.; Ayad, M.; Gashier, F.A.B.

    1984-01-01

    Most of the binding energy semi-empirical terms without the deformation corrections used by P.A. Seeger are arranged in a multiple linear regression form. The stepwise regression procedure with 95% confidence levels for acceptance and rejection of variables is applied for seeking a model for calculating binding energies of even-even (E-E) nuclei through a significance testing of each basic term. Partial F-values are taken as estimates for the significance of each term. The residual standard deviation and the overall F-value are used for selecting the best linear regression model. (E-E) nuclei are taken into sets lying between two successive proton and neutron magic numbers. The present work is in favour of the magic number 126 followed by 164 for the neutrons and indecisive in supporting the recently predicted proton magic number 114 rather than the previous one, 126. (author)

  2. Total-energy Assisted Tight-binding Method Based on Local Density Approximation of Density Functional Theory

    Science.gov (United States)

    Fujiwara, Takeo; Nishino, Shinya; Yamamoto, Susumu; Suzuki, Takashi; Ikeda, Minoru; Ohtani, Yasuaki

    2018-06-01

    A novel tight-binding method is developed, based on the extended Hückel approximation and charge self-consistency, with referring the band structure and the total energy of the local density approximation of the density functional theory. The parameters are so adjusted by computer that the result reproduces the band structure and the total energy, and the algorithm for determining parameters is established. The set of determined parameters is applicable to a variety of crystalline compounds and change of lattice constants, and, in other words, it is transferable. Examples are demonstrated for Si crystals of several crystalline structures varying lattice constants. Since the set of parameters is transferable, the present tight-binding method may be applicable also to molecular dynamics simulations of large-scale systems and long-time dynamical processes.

  3. Energy Efficiency of Biogas Produced from Different Biomass Sources

    International Nuclear Information System (INIS)

    Begum, Shahida; Nazri, A H

    2013-01-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  4. Two amino acid residues confer different binding affinities of Abelson family kinase SRC homology 2 domains for phosphorylated cortactin.

    Science.gov (United States)

    Gifford, Stacey M; Liu, Weizhi; Mader, Christopher C; Halo, Tiffany L; Machida, Kazuya; Boggon, Titus J; Koleske, Anthony J

    2014-07-11

    The closely related Abl family kinases, Arg and Abl, play important non-redundant roles in the regulation of cell morphogenesis and motility. Despite similar N-terminal sequences, Arg and Abl interact with different substrates and binding partners with varying affinities. This selectivity may be due to slight differences in amino acid sequence leading to differential interactions with target proteins. We report that the Arg Src homology (SH) 2 domain binds two specific phosphotyrosines on cortactin, a known Abl/Arg substrate, with over 10-fold higher affinity than the Abl SH2 domain. We show that this significant affinity difference is due to the substitution of arginine 161 and serine 187 in Abl to leucine 207 and threonine 233 in Arg, respectively. We constructed Abl SH2 domains with R161L and S187T mutations alone and in combination and find that these substitutions are sufficient to convert the low affinity Abl SH2 domain to a higher affinity "Arg-like" SH2 domain in binding to a phospho-cortactin peptide. We crystallized the Arg SH2 domain for structural comparison to existing crystal structures of the Abl SH2 domain. We show that these two residues are important determinants of Arg and Abl SH2 domain binding specificity. Finally, we expressed Arg containing an "Abl-like" low affinity mutant Arg SH2 domain (L207R/T233S) and find that this mutant, although properly localized to the cell periphery, does not support wild type levels of cell edge protrusion. Together, these observations indicate that these two amino acid positions confer different binding affinities and cellular functions on the distinct Abl family kinases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Binding energy and photoionization cross-section of hydrogen-like impurity in a Poschl-Teller quantum well

    International Nuclear Information System (INIS)

    Hakimifard, A.

    2010-01-01

    The effect of the donor impurity position and the form of confining potential on the binding energy and the photoionization cross-section if a semiconductor quantum well with Poschl-Teller potential is investigated. An analytical expression for the photoionization cross-section is obtained for the case when the polarization vector of light wave is directed along the direction of size quantization. It is shown that the photoionization cross-section has a threshold behavior

  6. Optimal selection among different domestic energy consumption patterns based on energy and exergy analysis

    International Nuclear Information System (INIS)

    Lu, S.; Wu, J.Y.

    2010-01-01

    In China market, people have many choices for air conditioning of their apartments, including heat-pump systems or gas-fired boilers for heating and air conditioners for cooling. Domestic hot water is usually provided by domestic water heaters making use of electricity or natural gas, which are known for their great energy costs. These systems consume much energy and increase the total cost of required domestic energy. A novel system combining heat pump with water heater is proposed in this paper, and it is named domestic energy system. The system can realize the provision of space heating, cooling and domestic hot water throughout a year. Based on different types of air conditioners, space heating equipments and water heaters, domestic energy consumption patterns are concluded to be eight categories. This study describes and compares the eight domestic energy consumption patterns by economic analysis and prime energy analysis method. Results show that the domestic energy system can provide good economy and save energy significantly. Furthermore, exergy analysis method is employed to compare the exergy efficiencies of different energy consumption systems. The results show that the domestic energy system has the highest energy conversion efficiency and can make remarkable contribution to social energy saving.

  7. Polarizability and binding energy of a shallow donor in spherical quantum dot-quantum well (QD-QW)

    Science.gov (United States)

    Rahmani, K.; Chrafih, Y.; M’Zred, S.; Janati, S.; Zorkani, I.; Jorio, A.; Mmadi, A.

    2018-03-01

    The polarizability and the binding energy is estimated for a shallow donor confined to move in inhomogeneous quantum dots (CdS/HgS/CdS). In this work, the Hass variational method within the effective mass approximation in used in the case of an infinitely deep well. The polarizability and the binding energy depend on the inner and the outer radius of the QDQW, also it depends strongly on the donor position. It’s found that the stark effect is more important when the impurity is located at the center of the (QDQW) and becomes less important when the donor moves toward the extremities of the spherical layer. When the electric field increases, the binding energy and the polarizability decreases. Its effects is more pronounced when the impurity is placed on the center of the spherical layer and decrease when the donor move toward extremities of this spherical layer. We have demonstrated the existence of a critical value {≤ft( {{{{R_1}} \\over {{R_2}}}} \\right)cri} which can be used to distinguish the tree dimension confinement from the spherical surface confinement and it’s may be important for the nanofabrication techniques.

  8. Effect of dietary dilution of energy and nutrients during different ...

    African Journals Online (AJOL)

    A completely randomized design was conducted to evaluate the effect of dietary dilution of energy and nutrients during different growing periods on compensatory growth of Ross broilers. Four replicant pens were assigned per seven treatments. Chicks in each treatment received concentrated and diluted diets in different ...

  9. Sex differences of human cortical blood flow and energy metabolism.

    Science.gov (United States)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders; Jónsdottir, Kristjana Y; Gjedde, Albert

    2017-07-01

    Brain energy metabolism is held to reflect energy demanding processes in neuropil related to the density and activity of synapses. There is recent evidence that men have higher density of synapses in temporal cortex than women. One consequence of these differences would be different rates of cortical energy turnover and blood flow in men and women. To test the hypotheses that rates of oxygen consumption (CMRO 2 ) and cerebral blood flow are higher in men than in women in regions of cerebral cortex, and that the differences persist with aging, we used positron emission tomography to determine cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity.

  10. A review of different strategies for HVAC energy saving

    International Nuclear Information System (INIS)

    Vakiloroaya, Vahid; Samali, Bijan; Fakhar, Ahmad; Pishghadam, Kambiz

    2014-01-01

    Highlights: • Various strategies for HVAC energy saving are described and reviewed. • The influence of each strategy on the HVAC energy saving is investigated. • Combination of existing air conditioning technologies appears to be effective for the energy conservation and comfort. • A comparison study between these approaches is carried out. • Changing the HVAC configuration has the potential to increase or reduce energy savings, depending on several factors. - Abstract: Decreasing the energy consumption of heating, ventilation and air conditioning (HVAC) systems is becoming increasingly important due to rising cost of fossil fuels and environmental concerns. Therefore, finding novel ways to reduce energy consumption in buildings without compromising comfort and indoor air quality is an ongoing research challenge. One proven way of achieving energy efficiency in HVAC systems is to design systems that use novel configurations of existing system components. Each HVAC discipline has specific design requirements and each presents opportunities for energy savings. Energy efficient HVAC systems can be created by re-configuring traditional systems to make more strategic use of existing system parts. Recent research has demonstrated that a combination of existing air conditioning technologies can offer effective solutions for energy conservation and thermal comfort. This paper investigates and reviews the different technologies and approaches, and demonstrates their ability to improve the performance of HVAC systems in order to reduce energy consumption. For each strategy, a brief description is first presented and then by reviewing the previous studies, the influence of that method on the HVAC energy saving is investigated. Finally, a comparison study between these approaches is carried out

  11. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    International Nuclear Information System (INIS)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-01-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the [ 3 H]-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mg protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the [ 3 H]DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the β-adrenergic receptor in rat heart

  12. Utilization of ICP/OES for the determination of trace metal binding to different humic fractions.

    Science.gov (United States)

    de la Rosa, G; Peralta-Videa, J R; Gardea-Torresdey, J L

    2003-02-28

    In this study, the use of inductively coupled plasma/optical emission spectrometry (ICP/OES) to determine multi-metal binding to three biomasses, Sphagnum peat moss, humin and humic acids is reported. All the investigations were performed under part per billion (ppb) concentrations. Batch pH profile experiments were performed using multi-metal solutions of Cd(II), Cu(II), Pb(II), Ni(II), Cr(III) and Cr(VI). The results showed that at pH 2 and 3, the metal affinity of the three biomasses exposed to the multi-metal solution that included Cr(III) presented the following order: Cu(II), Pb(II)>Ni(II)>Cr(III)>Cd(II). On the other hand, when Cr(VI) was in the heavy metal mixture, Sphagnum peat moss and humin showed the following affinity: Cu(II), Pb(II)>Ni(II)>Cr(VI)>Cd(II); however, the affinity of the humic acids was: Cu(II)>Pb(II), Cr(VI)>Ni(II)>Cd(II). The results demonstrated that pH values of 4 and 5 were the most favorable for the heavy metal binding process. At pH 5, all the metals, except for Cr(VI), were bound between 90 and 100% to the three biomasses. However, the binding capacity of humic acids decreased at pH 6 in the presence of Cr(VI). The results showed that the ICP/OES permits the determination of heavy metal binding to organic matter at ppb concentration. These results will be very useful in understanding the role of humic substances in the fate and transport of heavy metals, and thus could provide information to develop new methodologies for the removal of low concentrations of toxic heavy metals from contaminated waters.

  13. Charge transfer, lattice distortion, and quantum confinement effects in Pd, Cu, and Pd-Cu nanoparticles; size and alloying induced modifications in binding energy

    International Nuclear Information System (INIS)

    Sengar, Saurabh K.; Mehta, B. R.; Gupta, Govind

    2011-01-01

    In this letter, effect of size and alloying on the core and valence band shifts of Pd, Cu, and Pd-Cu alloy nanoparticles has been studied. It has been shown that the sign and magnitude of the binding energy shifts is determined by the contributions of different effects; with quantum confinement and lattice distortion effects overlapping for size induced shifts in case of core levels and lattice distortion and charge transfer effects overlapping for alloying induced shifts at smaller sizes. These results are important for understanding gas molecule-solid surface interaction in metal and alloy nanoparticles in terms of valance band positions.

  14. External electric field effect on the binding energy of a hydrogenic donor impurity in InGaAsP/InP concentric double quantum rings

    Science.gov (United States)

    Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin

    2018-04-01

    Within the framework of effective-mass envelope-function theory, the ground state binding energy of a hydrogenic donor impurity is calculated in the InGaAsP/InP concentric double quantum rings (CDQRs) using the plane wave method. The effects of geometry, impurity position, external electric field and alloy composition on binding energy are considered. It is shown that the peak value of the binding energy appears in two rings with large gap as the donor impurity moves along the radial direction. The binding energy reaches the peak value at the center of ring height when the donor impurity moves along the axial direction. The binding energy shows nonlinear variation with the increase of ring height. With the external electric field applied along the z-axis, the binding energy of the donor impurity located at zi ≥ 0 decreases while that located at zi < 0 increases. In addition, the binding energy decreases with increasing Ga composition, but increases with the increasing As composition.

  15. Environmental evaluation of different forms of electric energy generation

    International Nuclear Information System (INIS)

    Guena, Ana Maria de Oliveira; Aquino, Afonso Rodrigues de

    2007-01-01

    The development and implementation of other forms of energy generation caused local changes, where they were installed, giving rise to environmental impacts. This work presents an evaluation about different forms of electrical energy generation and the environmental impacts relative to each one of them. Five forms of electric energy generation were considered: thermoelectric, nuclear, hydroelectric, wind and solar energy. The implementation and the development of the petroleum industry in the world and in Brazil are presented. The geology of the oil, its extraction and quality improvement, besides details of the functioning of three types of thermoelectric power plants - coal, gas and oil - are also discussed. The specific as well as the environmental impacts they have in common are highlighted. The impacts originated from the deactivation of each one of them are also pointed out. Once outlined the environmental impacts from each form of electric energy generation, they were correlated and compared considering the area of the power plant implantation, the generation capacity, the efficiency, the power and the cost per kW. There is no totally clean form of electric energy generation. There is, however, generation without emission of gases responsible for the green house effect. Therefore, all forms of energy generation are important for a country; in other words, the best situation is the diversity of the energy matrix. (author)

  16. Efficiency calibration of x-ray HPGe detectors for photons with energies above the Ge K binding energy

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Nora L., E-mail: nmaidana@if.usp.br [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Vanin, Vito R.; Jahnke, Viktor [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Fernández-Varea, José M. [Facultat de Física (ECM and ICC), Universitat de Barcelona, Diagonal 645, E-08028 Barcelona (Spain); Martins, Marcos N. [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Brualla, Lorenzo [NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, D-45122 Essen (Germany)

    2013-11-21

    We report on the efficiency calibration of a HPGe x-ray detector using radioactive sources and an analytical expression taken from the literature, in two different arrangements, with and without a broad-angle collimator. The frontal surface of the Ge crystal was scanned with pencil beams of photons. The Ge dead layer was found to be nonuniform, with central and intermediate regions that have thin (μm range) and thick (mm range) dead layers, respectively, surrounded by an insensitive ring. We discuss how this fact explains the observed efficiency curves and generalize the adopted model. We show that changes in the thickness of the Ge-crystal dead layer affect the efficiency of x-ray detectors, but the use of an appropriate broad-beam external collimator limiting the photon flux to the thin dead layer in the central region leads to the expected efficiency dependence with energy and renders the calibration simpler.

  17. Photoelectron spectroscopy and spectro-microscopy of Pb(Zr,Ti)O{sub 3} (1 1 1) thin layers: Imaging ferroelectric domains with binding energy contrast

    Energy Technology Data Exchange (ETDEWEB)

    Huşanu, Marius A.; Popescu, Dana G.; Tache, Cristian A. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele-Ilfov (Romania); Apostol, Nicoleta G. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele-Ilfov (Romania); Elettra Sincrotrone Trieste, S.S. 14 – km 163,5, Area Science Park, 34169 Basovizza-Trieste (Italy); Barinov, Alexei; Lizzit, Silvano; Lacovig, Paolo [Elettra Sincrotrone Trieste, S.S. 14 – km 163,5, Area Science Park, 34169 Basovizza-Trieste (Italy); Teodorescu, Cristian M., E-mail: teodorescu@infim.ro [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele-Ilfov (Romania)

    2015-10-15

    Graphical abstract: - Highlights: • Achievement of well ordered PZT(1 1 1) surfaces with reasonable low energy electron diffraction patterns and good stoichiometry. • Ability of photoelectron spectromicroscopy to visualize ferroelectric domains with contrast of binding energy. • Model taking into account the influence of photogenerated carriers on the depolarization field and its torque on the polarization vector. • Evidence of domain wall migration induced by photogenerated carriers. • Segregation of metal Pb only on areas with out-of-plane component of the polarization pointing outwards. - Abstract: The ability of photoelectron spectro-microscopy with sub-micrometer lateral resolution to identify ferroelectric domains by analysis of surface band bendings is demonstrated on lead zirco-titanate PZT(1 1 1) thin films grown by pulsed laser deposition. Conventional synchrotron radiation X-ray photoelectron spectroscopy allowed one to derive the surface composition of the sample and evidenced shifts toward higher binding energy when the sample is subject to intense soft X-ray beam. A basic model is developed which supposes that photogenerated carriers reduce the depolarization field, yielding a lower torque applied to the ferroelectric polarization. As a consequence, the out-of-plane component of the polarization increases. Domain migration during irradiation with soft X-ray is inferred from the relative amplitude of the components with different binding energy. When the flux density of soft X-ray is on the order of 10{sup 11} photons/(s μm{sup 2}), metal Pb clusters are formed at the surface on areas with the out-of-plane component of the polarization pointing outwards only.

  18. Extracting renewable energy from a salinity difference using a capacitor.

    Science.gov (United States)

    Brogioli, Doriano

    2009-07-31

    Completely renewable energy can be produced by using water solutions of different salinity, like river water and sea water. Many different methods are already known, but development is still at prototype stage. Here I report a novel method, based on electric double-layer capacitor technology. Two porous electrodes, immersed in the salt solution, constitute a capacitor. It is first charged, then the salt solution is brought into contact with fresh water. The electrostatic energy increases as the salt concentration of the solution is reduced due to diffusion. This device can be used to turn sources of salinity difference into completely renewable sources of energy. An experimental demonstration is given, and performances and possible improvements are discussed.

  19. Comparing the health and environmental hazards of different energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.

    1982-01-01

    Energy and environment can pose difficult challenges for policy makers and scientists. Assessing health impacts of different energy sources requires synthesis of research results from many different disciplines into a rational framework. Information is often scanty; qualitatively different risks, or energy systems with quite different end uses, must be put on a common footing. Risk-assessment methods reviewed include examples drawn from work of the Biomedical and Environmental Assessment Division at Brookhaven National Laboratory and elsewhere. Coal and nuclear fuel cycles are compared in respect to morbidity and mortality. Other cycles (oil, gas and renewables) are also examined. In broadening comparisons to include new technologies, one must include the impact of manufacturing the energy-producing devices as part of an expanded fuel cycle, via input-output methods. Input-output analysis allows comparisons of direct and system-wide impacts. Throughout the analysis, uncertainties must be explicitly recognized in the results, including uncertainty in validity of data and uncertainty in choice of appropriate models. No single method of comparative risk assessment is fully satisfactory; each has its limitations. By use of several methods progress has been made in understanding the relative impact of energy technologies.

  20. Comparing the health and environmental hazards of different energy systems

    International Nuclear Information System (INIS)

    Hamilton, L.D.

    1982-01-01

    Energy and environment can pose difficult challenges for policy makers and scientists. Assessing health impacts of different energy sources requires synthesis of research results from many different disciplines into a rational framework. Information is often scanty; qualitatively different risks, or energy systems with quite different end uses, must be put on a common footing. Risk-assessment methods reviewed include examples drawn from work of the Biomedical and Environmental Assessment Division at Brookhaven National Laboratory and elsewhere. Coal and nuclear fuel cycles are compared in respect to morbidity and mortality. Other cycles (oil, gas and renewables) are also examined. In broadening comparisons to include new technologies, one must include the impact of manufacturing the energy-producing devices as part of an expanded fuel cycle, via input-output methods. Input-output analysis allows comparisons of direct and system-wide impacts. Throughout the analysis, uncertainties must be explicitly recognized in the results, including uncertainty in validity of data and uncertainty in choice of appropriate models. No single method of comparative risk assessment is fully satisfactory; each has its limitations. By use of several methods progress has been made in understanding the relative impact of energy technologies

  1. Comparing the health impacts of different energy sources

    International Nuclear Information System (INIS)

    Hamilton, L.D.

    1982-01-01

    Assessing health impacts of different energy sources requires synthesis of research results from many different disciplines into a rational framework. Information is often scanty; qualitatively different risks, or energy systems with substantially different end uses, must be put on a common footing. Historically institutional constraints have inhibited agencies from making incisive intercomparisons necessary for formulating energy policy; this has exacerbated public controversy over appropriate energy sources. Risk assessment methods reviewed include examples drawn from work of the Biomedical and Environmental Assessment Division at Brookhaven National Laboratory and elsewhere. Uncertainty over the mechanism and size of air pollution health damage is addressed through a probabilistic health-damage function, using sulphate-particle exposure as an indicator. This facilitates intercomparison through analysis of each step in the whole fuel cycle between a typical coal and nuclear power plant. Occupational health impacts, a significant fraction of overall damage, are illustrated by accident trends in coal-mining. In broadening comparisons to include new technologies, one must include the impact of manufacturing the energy-producing device as part of an expanded fuel cycle, via input/output methods. Throughout the analysis, uncertainties must be made explicit in the results, including uncertainty of data and uncertainty in choice of appropriate models and methods. No single method of comparative risk assessment is fully satisfactory; each has its limitations. Several methods must be compared if decision-making is to be realistic. (author)

  2. Binding energy and dephasing of biexcitons in In0.18Ga0.82As/GaAs single quantum wells

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1999-01-01

    Biexciton binding energies and biexciton dephasing in In0.18Ga0.82As/GaAs single quantum wells have been measured by time-integrated and spectrally resolved four-wave mixing. The biexciton binding energy increases from 1.5 to 2.6 meV for well widths increasing from 1 to 4 nm. The ratio between...... exciton and biexciton binding energy changes from 0.23 to 0.3 with increasing inhomogeneous broadening, corresponding to increasing well width. From the temperature dependence of the exciton and biexciton four-wave mixing signal decay, we have deduced the acoustic-phonon scattering of the exciton...

  3. On the atomic-number similarity of the binding energies of electrons in filled shells of elements of the periodic table

    Science.gov (United States)

    Karpov, V. Ya.; Shpatakovskaya, G. V.

    2017-03-01

    An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr-Sommerfeld quantization rule within the Thomas-Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.

  4. On the atomic-number similarity of the binding energies of electrons in filled shells of elements of the periodic table

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, V. Ya. [Bruk Institute of Electronic Control Machines (Russian Federation); Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation)

    2017-03-15

    An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.

  5. Rebound effect of improved energy efficiency for different energy types: A general equilibrium analysis for China

    International Nuclear Information System (INIS)

    Lu, Yingying; Liu, Yu; Zhou, Meifang

    2017-01-01

    This paper explores the rebound effect of different energy types in China based on a static computable general equilibrium model. A one-off 5% energy efficiency improvement is imposed on five different types of energy, respectively, in all the 135 production sectors in China. The rebound effect is measured both on the production level and on the economy-wide level for each type of energy. The results show that improving energy efficiency of using electricity has the largest positive impact on GDP among the five energy types. Inter-fuel substitutability does not affect the macroeconomic results significantly, but long-run impact is usually greater than the short-run impact. For the exports-oriented sectors, those that are capital-intensive get big negative shock in the short run while those that are labour-intensive get hurt in the long run. There is no “backfire” effect; however, improving efficiency of using electricity can cause negative rebound, which implies that improving the energy efficiency of using electricity might be a good policy choice under China's current energy structure. In general, macro-level rebound is larger than production-level rebound. Primary energy goods show larger rebound effect than secondary energy goods. In addition, the paper points out that the policy makers in China should look at the rebound effect in the long term rather than in the short term. The energy efficiency policy would be a good and effective policy choice for energy conservation in China when it still has small inter-fuel substitution. - Highlights: • Primary energy goods show larger rebound effect than secondary energy goods. • Improving efficiency of using electricity can cause negative rebound. • The energy efficiency policy would be an effective policy choice for China. • Policy-makers should consider the rebound effect in the longer term.

  6. Binding mode prediction and MD/MMPBSA-based free energy ranking for agonists of REV-ERBα/NCoR.

    Science.gov (United States)

    Westermaier, Yvonne; Ruiz-Carmona, Sergio; Theret, Isabelle; Perron-Sierra, Françoise; Poissonnet, Guillaume; Dacquet, Catherine; Boutin, Jean A; Ducrot, Pierre; Barril, Xavier

    2017-08-01

    The knowledge of the free energy of binding of small molecules to a macromolecular target is crucial in drug design as is the ability to predict the functional consequences of binding. We highlight how a molecular dynamics (MD)-based approach can be used to predict the free energy of small molecules, and to provide priorities for the synthesis and the validation via in vitro tests. Here, we study the dynamics and energetics of the nuclear receptor REV-ERBα with its co-repressor NCoR and 35 novel agonists. Our in silico approach combines molecular docking, molecular dynamics (MD), solvent-accessible surface area (SASA) and molecular mechanics poisson boltzmann surface area (MMPBSA) calculations. While docking yielded initial hints on the binding modes, their stability was assessed by MD. The SASA calculations revealed that the presence of the ligand led to a higher exposure of hydrophobic REV-ERB residues for NCoR recruitment. MMPBSA was very successful in ranking ligands by potency in a retrospective and prospective manner. Particularly, the prospective MMPBSA ranking-based validations for four compounds, three predicted to be active and one weakly active, were confirmed experimentally.

  7. Computation of Hemagglutinin Free Energy Difference by the Confinement Method

    Science.gov (United States)

    2017-01-01

    Hemagglutinin (HA) mediates membrane fusion, a crucial step during influenza virus cell entry. How many HAs are needed for this process is still subject to debate. To aid in this discussion, the confinement free energy method was used to calculate the conformational free energy difference between the extended intermediate and postfusion state of HA. Special care was taken to comply with the general guidelines for free energy calculations, thereby obtaining convergence and demonstrating reliability of the results. The energy that one HA trimer contributes to fusion was found to be 34.2 ± 3.4kBT, similar to the known contributions from other fusion proteins. Although computationally expensive, the technique used is a promising tool for the further energetic characterization of fusion protein mechanisms. Knowledge of the energetic contributions per protein, and of conserved residues that are crucial for fusion, aids in the development of fusion inhibitors for antiviral drugs. PMID:29151344

  8. Derivation of binding energies on the basis of fundamental nuclear theory

    International Nuclear Information System (INIS)

    Kouki, Tuomo.

    1975-10-01

    An attempt to assess the degree of consistency between the underlying ideas of two different approaches to nuclear energy relations is described. The fundamental approach in the form of density dependent Hartree-Fock theory, as well as the method of renormalizing shell model energies have both met with fair success. Whereas the former method is based on nuclear matter theory, the latter's central idea is to combine shell structure with an average liquid drop behaviour. The shell smoothing procedure employed there has been subject to intense theoretical study. Only little attention has been paid to the liquid drop aspect of the method. It is purposed to derive the liquid drop mass formula by means of a model force fitted to results of some nuclear matter calculations. Moreover, the force is tested by applying it to finite nuclei. Because of this, the present work could also be regarded as an attempt to find a very direct way of relating nuclear matter properties to those of finite nuclei. As the results in this respect are worse than expected, we conclude with a discussion of possible directions of improvement. (author)

  9. Prediction of core level binding energies in density functional theory: Rigorous definition of initial and final state contributions and implications on the physical meaning of Kohn-Sham energies.

    Science.gov (United States)

    Pueyo Bellafont, Noèlia; Bagus, Paul S; Illas, Francesc

    2015-06-07

    A systematic study of the N(1s) core level binding energies (BE's) in a broad series of molecules is presented employing Hartree-Fock (HF) and the B3LYP, PBE0, and LC-BPBE density functional theory (DFT) based methods with a near HF basis set. The results show that all these methods give reasonably accurate BE's with B3LYP being slightly better than HF but with both PBE0 and LCBPBE being poorer than HF. A rigorous and general decomposition of core level binding energy values into initial and final state contributions to the BE's is proposed that can be used within either HF or DFT methods. The results show that Koopmans' theorem does not hold for the Kohn-Sham eigenvalues. Consequently, Kohn-Sham orbital energies of core orbitals do not provide estimates of the initial state contribution to core level BE's; hence, they cannot be used to decompose initial and final state contributions to BE's. However, when the initial state contribution to DFT BE's is properly defined, the decompositions of initial and final state contributions given by DFT, with several different functionals, are very similar to those obtained with HF. Furthermore, it is shown that the differences of Kohn-Sham orbital energies taken with respect to a common reference do follow the trend of the properly calculated initial state contributions. These conclusions are especially important for condensed phase systems where our results validate the use of band structure calculations to determine initial state contributions to BE shifts.

  10. Blinded evaluation of farnesoid X receptor (FXR) ligands binding using molecular docking and free energy calculations

    Science.gov (United States)

    Selwa, Edithe; Elisée, Eddy; Zavala, Agustin; Iorga, Bogdan I.

    2018-01-01

    Our participation to the D3R Grand Challenge 2 involved a protocol in two steps, with an initial analysis of the available structural data from the PDB allowing the selection of the most appropriate combination of docking software and scoring function. Subsequent docking calculations showed that the pose prediction can be carried out with a certain precision, but this is dependent on the specific nature of the ligands. The correct ranking of docking poses is still a problem and cannot be successful in the absence of good pose predictions. Our free energy calculations on two different subsets provided contrasted results, which might have the origin in non-optimal force field parameters associated with the sulfonamide chemical moiety.

  11. Plasminogen fragments K 1-3 and K 5 bind to different sites in fibrin fragment DD.

    Science.gov (United States)

    Grinenko, T V; Kapustianenko, L G; Yatsenko, T A; Yusova, O I; Rybachuk, V N

    2016-01-01

    Specific plasminogen-binding sites of fibrin molecule are located in Аα148-160 regions of C-terminal domains. Plasminogen interaction with these sites initiates the activation process of proenzyme and subsequent fibrin lysis. In this study we investigated the binding of plasminogen fragments K 1-3 and K 5 with fibrin fragment DD and their effect on Glu-plasminogen interaction with DD. It was shown that the level of Glu-plasminogen binding to fibrin fragment DD is decreased by 50-60% in the presence of K 1-3 and K 5. Fragments K 1-3 and K 5 have high affinity to fibrin fragment DD (Kd is 0.02 for K 1-3 and 0.054 μМ for K 5). K 5 interaction is independent and K 1-3 is partly dependent on C-terminal lysine residues. K 1-3 interacts with complex of fragment DD-immobilized K 5 as well as K 5 with complex of fragment DD-immobilized K 1-3. The plasminogen fragments do not displace each other from binding sites located in fibrin fragment DD, but can compete for the interaction. The results indicate that fibrin fragment DD contains different binding sites for plasminogen kringle fragments K 1-3 and K 5, which can be located close to each other. The role of amino acid residues of fibrin molecule Аα148-160 region in interaction with fragments K 1-3 and K 5 is discussed.

  12. Coordination-resolved local bond contraction and electron binding-energy entrapment of Si atomic clusters and solid skins

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin; Huang, Yongli; Zhang, Ting [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Zhang, Xi [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China)

    2014-04-14

    Consistency between x-ray photoelectron spectroscopy measurements and density-function theory calculations confirms our bond order-length-strength notation-incorporated tight-binding theory predictions on the quantum entrapment of Si solid skin and atomic clusters. It has been revealed that bond-order deficiency shortens and strengthens the Si-Si bond, which results in the local densification and quantum entrapment of the core and valence electrons. Unifying Si clusters and Si(001) and (111) skins, this mechanism has led to quantification of the 2p binding energy of 96.089 eV for an isolated Si atom, and their bulk shifts of 2.461 eV. Findings evidence the significance of atomic undercoordination that is of great importance to device performance.

  13. Quantum mechanics capacitance molecular mechanics modeling of core-electron binding energies of methanol and methyl nitrite on Ag(111) surface.

    Science.gov (United States)

    Löytynoja, T; Li, X; Jänkälä, K; Rinkevicius, Z; Ågren, H

    2016-07-14

    We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.

  14. Binding affinities of the farnesoid X receptor in the D3R Grand Challenge 2 estimated by free-energy perturbation and docking

    Science.gov (United States)

    Olsson, Martin A.; García-Sosa, Alfonso T.; Ryde, Ulf

    2018-01-01

    We have studied the binding of 102 ligands to the farnesoid X receptor within the D3R Grand Challenge 2016 blind-prediction competition. First, we employed docking with five different docking software and scoring functions. The selected docked poses gave an average root-mean-squared deviation of 4.2 Å. Consensus scoring gave decent results with a Kendall's τ of 0.26 ± 0.06 and a Spearman's ρ of 0.41 ± 0.08. For a subset of 33 ligands, we calculated relative binding free energies with free-energy perturbation. Five transformations between the ligands involved a change of the net charge and we implemented and benchmarked a semi-analytic correction (Rocklin et al., J Chem Phys 139:184103, 2013) for artifacts caused by the periodic boundary conditions and Ewald summation. The results gave a mean absolute deviation of 7.5 kJ/mol compared to the experimental estimates and a correlation coefficient of R 2 = 0.1. These results were among the four best in this competition out of 22 submissions. The charge corrections were significant (7-8 kJ/mol) and always improved the results. By employing 23 intermediate states in the free-energy perturbation, there was a proper overlap between all states and the precision was 0.1-0.7 kJ/mol. However, thermodynamic cycles indicate that the sampling was insufficient in some of the perturbations.

  15. Differences in Energy Capacities between Tennis Players and Runners

    OpenAIRE

    Novak, Dario; Vučetić, Vlatko; Žugaj, Sanja

    2013-01-01

    The primary purpose of this study was to determine differences between elite athletes and tennis players in order to provide a clearer picture regarding the energy demands in modern tennis. Forty-eight (48) athletes and 24 tennis players from Croatian national leagues were compared in morphological and physiological parameters of an all-out incremental treadmill test with gas exchange measurements. Tennis players’ HRmax (192.96±7.75 bpm) shows values that are most different to 400-meters spri...

  16. Energy and Environmental Performance of Bioethanol from Different Lignocelluloses

    Directory of Open Access Journals (Sweden)

    Lin Luo

    2010-01-01

    Full Text Available Climate change and the wish to reduce the dependence on oil are the incentives for the development of alternative energy sources. The use of lignocellulosic biomass together with cellulosic processing technology provides opportunities to produce fuel ethanol with less competition with food and nature. Many studies on energy analysis and life cycle assessment of second-generation bioethanol have been conducted. However, due to the different methodology used and different system boundary definition, it is difficult to compare their results. To permit a direct comparison of fuel ethanol from different lignocelluloses in terms of energy use and environmental impact, seven studies conducted in our group were summarized in this paper, where the same technologies were used to convert biomass to ethanol, the same system boundaries were defined, and the same allocation procedures were followed. A complete set of environmental impacts ranging from global warming potential to toxicity aspects is used. The results provide an overview on the energy efficiency and environmental performance of using fuel ethanol derived from different feedstocks in comparison with gasoline.

  17. Different Reliability Assessment Approaches for Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten Mejlhede; Sørensen, John Dalsgaard

    2015-01-01

    Reliability assessments are of importance for wave energy converters (WECs) due to the fact that accessibility might be limited in case of failure and maintenance. These failure rates can be adapted by reliability considerations. There are two different approaches to how reliability can...

  18. Renewable Energy in the Baltic States. Different Situations

    International Nuclear Information System (INIS)

    Streimikiene, Dalia

    2007-01-01

    In many ways, the Baltic nations seem to be good students with ambitious objectives for applying European directives and the Kyoto Protocol. For example, in 2006, renewable energies already accounted for 9 % in Lithuania, 10 % in Estonia and 43 % in Latvia (5.2 % in the EU-15) of primary energy output. This should increase to 12 %, 15 % and 50 % in 2010 (12 % in the EU-15) respectively. While all are dependent on oil imports, their own resources vary: nuclear power in Lithuania (at least until 2009 when the last reactor of the Ignalina power station will close, with EU compensation), oil shale feeds Estonian power stations, wood in Latvia. The latter must import electricity while the two other countries produce double their domestic demand. All three are linked to the Russian power grid built up during the Soviet era rather than the European. Nevertheless, the share of renewable energy produced electricity is very small in these two producer countries, unlike Latvia which has hydraulic resources. The three countries have very different taxation on energy and electrical products, including renewable energy price support. All were granted transitional periods of differing lengths to apply European standard. The Baltic nations produce low greenhouse gas emissions and only Estonia has organized an emission rights trading market

  19. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    Science.gov (United States)

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Nature differences of humic acids fractions induced by extracted sequence as explanatory factors for binding characteristics of heavy metals.

    Science.gov (United States)

    Shi, Wenjing; Lü, Changwei; He, Jiang; En, He; Gao, Manshu; Zhao, Boyi; Zhou, Bin; Zhou, Haijun; Liu, Hualin; Zhang, Yu

    2018-06-15

    The composition and structure of Humic acid (HA) is so heterogeneous that it brings significant barriers to investigate the interaction between HA and heavy metal ions. The isolation of HA with relatively homogeneity is a key to reveal the binding mechanisms between HA and heavy metals. In this work, ten HA fractions (HAs) were obtained by sequential alkali extraction procedure and nature differences of the extracted HAs were considered as explanatory factors for binding characteristics of Cu 2+ , Pb 2+ and Cd 2+ . The results indicate that more large molecular weight (MW) HA subunits, less carboxyl and phenolic group contents, weaker aromaticity and polarity were measured with increasing extractions, inducing weaker binding capacity of HAs. Ligand binding and bi-Langmuir models indicated that the sorption capacity and binding affinity of earlier extracted HAs were higher than the latter ones. The peak area changes at 3427, 1599, and 619 cm -1 pre- and post-adsorption in FTIR spectra suggested carboxyl, phenolic and nitrogen-containing groups were involved in the adsorption process. At the same time, the peak area difference between HAs and HAs-metal (ΔS) of phenolic groups were 8.22-20.50, 6.81-21.11 and 10.66-19.80% for Cu 2+ , Pb 2+ and Cd 2+ , respectively, ΔS of carboxyl groups 6.64-17.03, 8.96-16.82 and 9.45-17.85% for Cu 2+ , Pb 2+ and Cd 2+ , respectively, ΔS of nitrogen-containing groups 0.33-0.48, 0.20-1.38 and 0.31-0.59% for Cu 2+ , Pb 2+ and Cd 2+ , respectively. ΔS of phenolic and carboxyl groups were larger than those of nitrogen-containing groups, implying that these two groups were the predominant binding sites suppliers for metal ions, which were also supported by the results of correlation analysis. This work is helpful to insight the environmental impacts of natural organic matter and the fate of heavy metals in natural environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Core-electron binding energies from self-consistent field molecular orbital theory using a mixture of all-electron real atoms and valence-electron model atoms

    International Nuclear Information System (INIS)

    Quinn, C.M.; Schwartz, M.E.

    1981-01-01

    The chemistry of large systems such as clusters may be readily investigated by valence-electron theories based on model potentials, but such an approach does not allow for the examination of core-electron binding energies which are commonly measured experimentally for such systems. Here we merge our previously developed Gaussian based valence-electron model potential theory with all-electron ab initio theory to allow for the calculation of core orbital binding energies when desired. For the atoms whose cores are to be examined, we use the real nuclear changes, all of the electrons, and the appropriate many-electron basis sets. For the rest of the system we use reduced nuclear charges, the Gaussian based model potentials, only the valence electrons, and appropriate valence-electron basis sets. Detailed results for neutral Al 2 are presented for the cases of all-electron, mixed real--model, and model--model SCF--MO calculations. Several different all-electron and valence electron calculations have been done to test the use of the model potential per se, as well as the effect of basis set choice. The results are in all cases in excellent agreement with one another. Based on these studies, a set of ''double-zeta'' valence and all-electron basis functions have been used for further SCF--MO studies on Al 3 , Al 4 , AlNO, and OAl 3 . For a variety of difference combinations of real and model atoms we find excellent agreement for relative total energies, orbital energies (both core and valence), and Mulliken atomic populations. Finally, direct core-hole-state ionic calculations are reported in detail for Al 2 and AlNO, and noted for Al 3 and Al 4 . Results for corresponding frozen-orbital energy differences, relaxed SCF--MO energy differences, and relaxation energies are in all cases in excellent agreement (never differing by more than 0.07 eV, usually by somewhat less). The study clearly demonstrates the accuracy of the mixed real--model theory

  2. Positron emission tomography with (18F)methylspiperone demonstrates D2 dopamine receptor binding differences of clozapine and haloperidol

    International Nuclear Information System (INIS)

    Karbe, H.; Wienhard, K.; Huber, M.; Herholz, K.; Heiss, W.D.; Hamacher, K.; Coenen, H.H.; Stoecklin, G.; Loevenich, A.

    1991-01-01

    Four schizophrenic patients were investigated with dynamic positron emission tomography (PET) using ( 18 F)fluorodeoxyglucose (FDG) and ( 18 F)methylspiperone (MSP) as tracers. Two schizophrenics were on haloperidol therapy at the time of MSP PET. The other two schizophrenics were treated with clozapine, in one of them MSP PET was carried out twice with different daily doses (100 mg and 450mg respectively). Neuroleptic serum levels were measured in all patients. Results were compared with MSP PET of two drugfree male control subjects and with a previous fluoroethylspiperone (FESP) study of normals. Three hours after tracer injection specific binding of MSP was observed in the striatum in all cases. The striatum to cerebellum ratio was used to estimate the degree of neuroleptic-caused striatal D 2 dopamine receptor occupancy. In the haloperidol treated patients MSP binding was significantly decreased, whereas in the clozapine treated patients striatum to cerebellum ratio was normal. Even the increase of clozapine dose in the same patient had no influence on this ratio. Despite the smaller number of patients the study shows for the first time in humans that striatal MSP binding reflects the different D 2 dopamine receptor affinities of clozapine and haloperidol. (authors)

  3. A cation-π interaction at a phenylalanine residue in the glycine receptor binding site is conserved for different agonists

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Hanek, Ariele P; Price, Kerry L

    2011-01-01

    . In the current study, we investigated whether the lower efficacy agonists of the human GlyR β-alanine and taurine also form cation-π interactions with Phe159. By incorporating a series of unnatural amino acids, we found cation-π interactions between Phe159 and the amino groups of β-alanine and taurine....... The strengths of these interactions were significantly weaker than for glycine. Modeling studies suggest that β-alanine and taurine are orientated subtly differently in the binding pocket, with their amino groups further from Phe159 than that of glycine. These data therefore show that similar agonists can have...... similar but not identical orientations and interactions in the binding pocket and provide a possible explanation for the lower potencies of β-alanine and taurine....

  4. Optimal portfolio selection between different kinds of Renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Zakerinia, MohammadSaleh; Piltan, Mehdi; Ghaderi, Farid

    2010-09-15

    In this paper, selection of the optimal energy supply system in an industrial unit is taken into consideration. This study takes environmental, economical and social parameters into consideration in modeling along with technical factors. Several alternatives which include renewable energy sources, micro-CHP systems and conventional system has been compared by means of an integrated model of linear programming and three multi-criteria approaches (AHP, TOPSIS and ELECTRE III). New parameters like availability of sources, fuels' price volatility, besides traditional factors are considered in different scenarios. Results show with environmental preferences, renewable sources and micro-CHP are good alternatives for conventional systems.

  5. Applications of SOECs in different types of energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Ridjan, Iva; Hansen, Kenneth

    Different aspects of electrolyser integration in energy systems was investigated in order to determine the potential of using this technology in the future. The first analysis examined the influence of the use of co-electrolysis for the fuel production process in comparison with using steam....... The analysis shows that different system designs influence the feasible utilisation capacity of electrolysers differently and this is mainly connected with the system flexibility....... for using combined capacities of SOEC and SOFC was investigated as this can potentially improve the profitability of the investment, but also improve the stability of the energy system by offering grid-balancing capacity when intermittent resources cannot meet the demand for electricity. Finally, five...

  6. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    International Nuclear Information System (INIS)

    Narayan, Monishka Rita; Singh, Jai

    2012-01-01

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be ≤ 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Monishka Rita [Centre for Renewable Energy and Low Emission Technology, Charles Darwin University, Darwin, NT 0909 (Australia); Singh, Jai [School of Engineering and IT, Charles Darwin University, Darwin, NT 0909 (Australia)

    2012-12-15

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be {<=} 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. VP24-Karyopherin Alpha Binding Affinities Differ between Ebolavirus Species, Influencing Interferon Inhibition and VP24 Stability.

    Science.gov (United States)

    Schwarz, Toni M; Edwards, Megan R; Diederichs, Audrey; Alinger, Joshua B; Leung, Daisy W; Amarasinghe, Gaya K; Basler, Christopher F

    2017-02-15

    Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Reston ebolavirus (RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability. The interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the interactions of VP24 proteins from EBOV and two members of the Ebolavirus genus, Bundibugyo virus (BDBV) and Reston virus (RESTV). The data reveal lower binding affinity of the BDBV VP24 (bVP24) for KPNAs and demonstrate that the interaction with KPNA modulates inhibition

  9. Comparison of calculated and experimental isotope edited FTIR difference spectra for purple bacterial photosynthetic reaction centers with different quinones incorporated into the QA binding site.

    Directory of Open Access Journals (Sweden)

    Nan eZhao

    2013-08-01

    Full Text Available Previously we have shown that ONIOM type (QM/MM calculations can be used to simulate isotope edited FTIR difference spectra for neutral ubiquinone in the QA binding site in Rhodobacter sphaeroides photosynthetic reaction centers. Here we considerably extend upon this previous work by calculating isotope edited FTIR difference spectra for reaction centers with a variety of unlabeled and 18O labeled foreign quinones incorporated into the QA binding site. Isotope edited spectra were calculated for reaction centers with 2,3-dimethoxy-5,6-dimethyl-1,4-benzoquinone (MQ0, 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ, and 2,3-dimethyl-l,4-naphthoquinone (DMNQ incorporated, and compared to corresponding experimental spectra. The calculated and experimental spectra agree well, further demonstrating the utility and applicability of our ONIOM approach for calculating the vibrational properties of pigments in protein binding sites.The normal modes that contribute to the bands in the calculated spectra, their composition, frequency and intensity, and how these quantities are modified upon 18O labeling, are presented. This computed information leads to a new and more detailed understanding/interpretation of the experimental FTIR difference spectra. Hydrogen bonding to the carbonyl groups of the incorporated quinones is shown to be relatively weak. It is also shown that there is some asymmetry in hydrogen bonding, accounting for 10-13 cm-1 separation in the frequencies of the carbonyl vibrational modes of the incorporated quinones. The extent of asymmetry H-bonding could only be established by considering the spectra for various types of quinones incorporated into the QA binding site. The quinones listed above are tail-less. Spectra were also calculated for reaction centers with corresponding tail containing quinones incorporated, and it is found that replacement of the quinone methyl group by a phytyl or prenyl chain does not alter ONIOM calculated s

  10. Energy behavior of solar hot water systems under different conditions

    International Nuclear Information System (INIS)

    Fuentes Lombá, Osmanys; Torres Ten, Alonso; Arzuaga Machado, Yusnel; Hernández, Massipe J. Raúl; Cueva Gonzales, Wagner

    2017-01-01

    By means of numerical simulations in TRNSYS v14 the influence of the solar absorption area of a system for heating water with solar energy, composed by a flat solar collector and a tank thermo-accumulator, on its energy efficiency. For the study, the solar collectors EDWARDS, ISOFOTÓN 1, ISOFOTÓN 2, MADE, ROLDAN and IBERSOLAR of absorption area 2, 1,9, 1,88, 2, 1,9 and 2,3 m2 respectively were chosen. For each collector, the energy performance was simulated for one year, setting 200 L for the accumulation volume and 50 °C for the intake temperature. Despite the different characteristics of each collector, their behavior is quite similar showing a very mature technology. (author)

  11. A study of core electron binding energies in technetium-99m complexes by internal conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Burke, J.F.; Archer, C.M.; Wei Chiu, K.; Latham, I.A.; Egdell, R.G.

    1991-01-01

    Core electron binding energies in a series of 99m Tc complexes have been studied by internal conversion electron spectroscopy (ICES) in a conventional x-ray photoelectron spectrometer. In both 3d and 3p regions, a chemical shift of about 1 eV is observed per unit increase in oxidation state. The role of ICES in characterizing radiopharmaceutical agents is illustrated with studies of some novel 99m Tc-phosphine complexes that have been developed for myocardial perfusion imaging. (author)

  12. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    Science.gov (United States)

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  13. Effects of mutants in bHLH region on structure stability and protein-DNA binding energy in DECs.

    Science.gov (United States)

    Kong, Yi; Wang, Zhen; Jia, Yanfei; Li, Ping; Hao, Shuhua; Wang, Yunshan

    2017-07-01

    The human DEC subfamily contains two highly conserved members belonging to basic helix-loop-helix (bHLH) transcription factors. This conserved family is spread widely among various species with the function of regulating various crucial molecular signaling pathways. Due to the significance of DECs for important biological processes, their relationship with diseases and the lack of experimentally proven structures, we have implemented a comparative modeling for the bHLH region of DECs as homodimers with themselves and heterodimers with HES-1. Three mutants with predicted roles in reducing intramolecular binding (H57A, R65A, and LL7879AA in DEC1 and LL7071AA in DEC2) were investigated on DEC monomers. Molecular dynamics (MD) simulations were also employed to evaluate the behavior of the mutant molecules in aqueous solution. The monomer was divided into subregions for accurate investigation. The fluctuation in the basic region of mutants was higher than that of wild-type molecules. The binding energy value between protein and DNA obviously increased in the homodimer harboring R65A mutants, which led to more unstable status between protein and DNA. Thus, the mutant R65A interfered DNA-binding affinity. A study on the spatial structures of wild-type and mutant DECs may facilitate functional prediction for mutation effects and dynamic behavior under various conditions and may ultimately help in targeted drug design.

  14. Determining photon energy absorption parameters for different soil samples

    International Nuclear Information System (INIS)

    Kucuk, Nil; Cakir, Merve; Tumsavas, Zeynal

    2013-01-01

    The mass attenuation coefficients (μ s ) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137 Cs and 60 Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ x 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137 Cs. The effective atomic numbers (Z eff ) and the effective electron densities (N eff ) were determined experimentally and theoretically using the obtained μ s values for the soil samples. Furthermore, the Z eff and N eff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. (author)

  15. Colloquium on the risks of different energy sources

    International Nuclear Information System (INIS)

    1980-01-01

    Four subjects, each taking up one session, were dealt with in this Colloquium. The first is the definition of the health risk concept which is only obvious on the surface. It was shown how within the medical world itself, apparently the most competent to discover and evaluate these risks, this definition is still approximate both in theory and in practice. The second theme dealt with concerns the way in which risks are viewed by the general public. By a psychological and sociological approach it is possible to form an idea of how differently opinion reacts to risks of similar gravity and probability. The apprehension of risks and the opposition to nuclear energy were analysed in detail in this session. The third subject, more analytical and probably one of the most topical is concerned with the inventory of risks due to each industrial energy sector. This session was in two parts, the first devoted to problems specific to each source of energy including nuclear, the second to common problems (pollution of air, fresh water and sea water, and long-term effects (nuclear wastes for example). The fourth and last session dealt with a fundamental problem, methods of studying these risks. The conclusions of different enquiries are always very similar: the energy source hierarchy, in order of diminishing risks, is as follows: coal, liquid hydrocarbons, nuclear and gaseous hydrocarbons [fr

  16. Sex differences of human cortical blood flow and energy metabolism

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders

    2017-01-01

    cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral...... cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy...... turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity....

  17. Genome-Wide Mapping of Collier In Vivo Binding Sites Highlights Its Hierarchical Position in Different Transcription Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Mathilde de Taffin

    Full Text Available Collier, the single Drosophila COE (Collier/EBF/Olf-1 transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles.

  18. Genome-Wide Mapping of Collier In Vivo Binding Sites Highlights Its Hierarchical Position in Different Transcription Regulatory Networks

    Science.gov (United States)

    Dubois, Laurence; Bataillé, Laetitia; Painset, Anaïs; Le Gras, Stéphanie; Jost, Bernard; Crozatier, Michèle; Vincent, Alain

    2015-01-01

    Collier, the single Drosophila COE (Collier/EBF/Olf-1) transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col) targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya) is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles. PMID:26204530

  19. Differences in energy capacities between tennis players and runners.

    Science.gov (United States)

    Novak, Dario; Vucetić, Vlatko; Zugaj, Sanja

    2013-05-01

    The primary purpose of this study was to determine differences between elite athletes and tennis players in order to provide a clearer picture regarding the energy demands in modern tennis. Forty-eight (48) athletes and 24 tennis players from Croatian national leagues were compared in morphological and physiological parameters of an all-out incremental treadmill test with gas exchange measurements. Tennis players' HRmax (192.96+/-7.75 bpm) shows values that are most different to 400-meters sprinters (200.13+/-6.95 bpm). Maximum running speed of tennis players on the treadmill (vmax) is no different with the speed achieved by sprinters, while there are significant differences among other athletes. Values in running speed at anaerobic threshold (vAnT) show no statistically significant difference with the values for athlete sprinters and 400-m sprinters. Values of RvO2max for tennis players indicate significant similarities with athlete sprinters and 400-m sprinters while the values of RvO2AnT are nearly identical with the values for sprinters and show no statistically significant differences (psprint endurance in tennis players. Knowing these characteristics is the basis for planning and implementing training systems that will enable the increase and optimal usage of energy capacities of tennis players in possibly improving sports results.

  20. Energy and environmental consciousness. Differences between advanced and developing countries

    International Nuclear Information System (INIS)

    Takeshita, Takashi

    1999-01-01

    The purpose of the present study is to understand how much differences there are between advanced countries and developing countries in terms of environmental and energy consciousness. We are experiencing now a big dilemma of the human desire to continue to exist and, at the same time, to develop the economy against the worsening of the Earth's environmental conditions. Understanding international differences of environmental and energy consciousness is a short way to solve this dilemma. The results of the present study were that peoples from advanced countries feel that science and technology are sometimes unreliable, while those from developing countries, are willing to rely upon them. However regardless of the country, people share the same consciousness about Earth's environment. In both, advanced and developing countries, people are reluctant to give up living comforts, unless this leads to a higher standard of living. Based on this result, the author would like to conduct another survey concerning the consciousness of future lifestyle. (author)

  1. Differential stability of TATA box binding proteins from archaea with different optimal growth temperatures

    Science.gov (United States)

    Kopitz, Annette; Soppa, Jörg; Krejtschi, Carsten; Hauser, Karin

    2009-09-01

    The TATA box binding protein (TBP) is involved in promoter recognition, the first step of transcription initiation. TBP is universally conserved and essential in archaea and eukaryotes. In archaea, TBPs have to be stable and to function in species that cover an extremely wide range of optimal growth temperatures (OGTs), from below 0 °C to more than 100 °C. Thus, the archaeal TBP family is ideally suited to study the evolutionary adaptation of proteins to an extremely wide range of temperatures. We characterized the thermostability of one mesophilic and one thermophilic TBP by infrared spectroscopy. Transition temperatures ( Tms) of thermal unfolding have been determined using TBPs from Methanosarcina mazei (OGT 37 °C) and from Methanothermobacter thermautotrophicus (OGT 65 °C). Furthermore, the influence of protein and salt concentration on thermostability has been characterized. Together with previous studies, our results reveal that the Tms of archaeal TBPs are closely correlated with the OGTs of the respective species. Noteworthy, this is also true for the TBP from M. mazei representing the first characterized TBP from a mesophilic archaeon. In contrast, the only characterized eukaryotic TBP of the mesophilic plant Arabidopsis thaliana has a Tm more than 40 °C above the OGT.

  2. Environmental evaluation of different forms of electric energy generation

    International Nuclear Information System (INIS)

    Guena, Ana Maria de Oliveira

    2007-01-01

    Electric energy has an important function in the modem world; it is fundamental for progress and development. The electricity discovery allowed improvements in several areas: health, water and food supply, quality of life and sanitary conditions, and contributed also to the establishment of the capitalist and consumption society. The use of oil as an energy generation source was the impulse for the industrial revolution and machines, motors and generators were developed contributing to the progress This also brought the pollutant gases emission (CO 2 , CO, SO x and NO x ) and other substances that had contributed to the greenhouse effect, the ozone hole and the acid rain, modifying the balance of the planet. The development and implementation of other forms of energy generation caused local changes, where they were installed, giving rise to environmental impacts. This work presents an evaluation about different forms of electrical energy generation and the environmental impacts relative to each one of them. Five forms of electric energy generation were considered: thermoelectric, nuclear, hydroelectric, wind and solar energy. The implementation and the development of the petroleum industry in the world and in Brazil are presented. The geology of the oil, its extraction and quality improvement, besides details of the functioning of three types of thermoelectric power plants - coal, gas and oil - are also discussed. The specific as well as the environmental impacts they have in common are highlighted. The impacts originated from the deactivation of each one of them are also pointed out. The discovery and the development of nuclear energy in Brazil and in the world as well as the functioning of a nuclear power plant, the impacts generated by its operation and decommissioning are presented. The history, functioning and development of hydroelectric energy generation in Brazil, characterized by the great plants, are related to environmental aspects The environmental

  3. Calculating the Na⁺ translocating V-ATPase catalytic site affinity for substrate binding by homology modeled NtpA monomer using molecular dynamics/free energy calculation.

    Science.gov (United States)

    Muhammed, Zahed; Arai, Satoshi; Saijo, Shinya; Yamato, Ichiro; Murata, Takeshi; Suenaga, Atsushi

    2012-07-01

    Vacuolar ATPase (V-ATPase) of Enterococcus hirae is composed of a soluble catalytic domain (V₁; NtpA₃-B₃-D-G) and an integral membrane domain (V₀; NtpI-K₁₀) connected by a central and two peripheral stalks (NtpC, NtpD-G and NtpE-F). Recently nucleotide binding of catalytic NtpA monomer has been reported (Arai et al.). In the present study, we calculated the nucleotide binding affinity of NtpA by molecular dynamics (MD) simulation/free energy calculation using MM-GBSA approach based on homology modeled structure of NtpA monomer docked with ATP analogue, adenosine 5'-[β, γ-imido] triphosphate (AMP-PNP). The calculated binding free energies showed qualitatively good agreement with experimental data. The calculation was cross-validated further by the rigorous method, thermodynamic integration (TI) simulation. Finally, the interaction between NtpA and nucleotides at the atomic level was investigated by the analyses of components of free energy and the optimized model structures obtained from MD simulations, suggesting that electrostatic contribution is responsible for the difference in nucleotide binding to NtpA monomer. This is the first observation and suggestion to explain the difference of nucleotide binding properties in V-ATPase NtpA subunit, and our method can be a valuable primary step to predict nucleotide binding affinity to other subunits (NtpAB, NtpA₃B₃) and to explore subunit interactions and eventually may help to understand energy transduction mechanism of E. hirae V-ATPase. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Energy expenditure and sex differences of golf playing.

    Science.gov (United States)

    Zunzer, Stefan C; von Duvillard, Serge P; Tschakert, Gerhard; Mangus, Brent; Hofmann, Peter

    2013-01-01

    The purpose of the study was to assess the average physical intensity and energy expenditure during a single round of golf on hilly and flat courses in a heterogeneous group of healthy men and women of varying age and golf handicap. Forty-two males and 24 females completed an incremental cycle-ergometer exercise test to determine exercise performance markers. The heart rate (HR), duration, distance, walking speed, ascent and descent were measured via a global positioning system (GPS)/HR monitor during the game and energy expenditure was calculated. Playing 9 or 18-holes of golf, independent of the golf course design, the average HR was not significantly different between sexes or the subgroups. The intensities were light with respect to the percentage of maximal HR and metabolic equivalents of task (METs). Total energy expenditure of all participants was not significantly different for hilly (834 ± 344 kcal) vs. flat courses (833 ± 295 kcal) whereas male players expended significantly greater energy than female players (926 ± 292 vs. 556 ± 180 kcal), but did not have significantly greater relative energy expenditure (2.8 ± 0.8 vs. 2.2 ± 0.7 METs). As a high volume physical activity, playing golf is suggested to yield health benefits. Since the intensity was well below recommended limits, golf may have health related benefits unrelated to the intensity level of the activity.

  5. Atomistic modeling determination of placeholder binding energy of Ti, C, and N atoms on a-Fe (100) surfaces

    International Nuclear Information System (INIS)

    Wei, X J; Liu, Y P; Han, S P

    2015-01-01

    A Fe(100) surface containing Ti, C, and N was constructed and optimized to study the placeholder binding energy of the Ti, C, and N surface atoms; this was achieved by searching the transition state with the LST (linear synchronous transit) method of the CASTEP (Cambridge Serial Total Energy Package) module. Also, the authors analyzed electron structures to determine how Ti, C, and N atoms strengthen the Fe(100) surface. The results show that when Ti, C, or N atoms take placeholder alone, or simultaneously at the Fe(100) surface, the structure stability is at its best. When including Ti, C, and N as solid solutions on the Fe(100) surface, orbital electrons of Fe3d, Ti3d, C2p, and N2p hybridize near the Fermi level; the number of electronic bonding peaks increase and bonding capacity enhances. Also, a large amount of covalent bonds formed. Covalent bonds and metallic bond coexisted. (paper)

  6. Communication: Towards the binding energy and vibrational red shift of the simplest organic hydrogen bond: Harmonic constraints for methanol dimer

    International Nuclear Information System (INIS)

    Heger, Matthias; Suhm, Martin A.; Mata, Ricardo A.

    2014-01-01

    The discrepancy between experimental and harmonically predicted shifts of the OH stretching fundamental of methanol upon hydrogen bonding to a second methanol unit is too large to be blamed mostly on diagonal and off-diagonal anharmonicity corrections. It is shown that a decisive contribution comes from post-MP2 electron correlation effects, which appear not to be captured by any of the popular density functionals. We also identify that the major deficiency is in the description of the donor OH bond. Together with estimates for the electronic and harmonically zero-point corrected dimer binding energies, this work provides essential constraints for a quantitative description of this simple hydrogen bond. The spectroscopic dissociation energy is predicted to be larger than 18 kJ/mol and the harmonic OH-stretching fundamental shifts by about −121 cm −1 upon dimerization, somewhat more than in the anharmonic experiment (−111 cm −1 )

  7. Pomegranate ( Punica granatum L.) expresses several nsLTP isoforms characterized by different immunoglobulin E-binding properties.

    Science.gov (United States)

    Bolla, Michela; Zenoni, Sara; Scheurer, Stephan; Vieths, Stefan; San Miguel Moncin, Maria Del Mar; Olivieri, Mario; Antico, Andrea; Ferrer, Marta; Berroa, Felicia; Enrique, Ernesto; Avesani, Linda; Marsano, Francesco; Zoccatelli, Gianni

    2014-01-01

    Pomegranate allergy is associated with sensitization to non-specific lipid transfer proteins (nsLTPs). Our aim was to identify and characterize the non-specific nsLTPs expressed in pomegranate at the molecular level and to study their allergenic properties in terms of immunoglobulin E (IgE)-binding and cross-reactivity with peach nsLTP (Pru p 3). A non-equilibrium two-dimensional (2-D) electrophoretic approach based on acid-urea PAGE and sodium dodecyl sulfate PAGE was set up to separate pomegranate nsLTPs. Their immunoreactivity was tested by immunoblotting carried out with anti-Pru p 3 polyclonal antibodies and sera from pomegranate-allergic patients. For final identification, pomegranate nsLTPs were purified by chromatography and subjected to trypsin digestion and mass spectrometry (MS) analysis. For this purpose, the sequences obtained by cDNA cloning of three pomegranate nsLTPs were integrated in the database that was subsequently searched for MS data interpretation. Four nsLTPs were identified by 2-D immunoblotting. The detected proteins showed different IgE-binding capacity and partial cross-reactivity with Pru p 3. cDNA cloning and MS analyses led to the identification of three nsLTP isoforms with 66-68% amino acid sequence identity named Pun g 1.0101, Pun g 1.0201 and Pun g 1.0301. By 2-D electrophoresis, we could separate different nsLTP isoforms possessing different IgE-binding properties, which might reflect peculiar allergenic potencies. The contribution of Pru p 3 to prime sensitization is not central as in other plant nsLTPs. © 2014 S. Karger AG, Basel.

  8. In silico analysis of different generation β lactams antibiotics with penicillin binding protein-2 of Neisseria meningitidis for curing meningococcal disease.

    Science.gov (United States)

    Tripathi, Vijay; Tripathi, Pooja; Srivastava, Navita; Gupta, Dwijendra

    2014-12-01

    Neisseria meningitidis is a gram negative, diplococcic pathogen responsible for the meningococcal disease and fulminant septicemia. Penicillin-binding proteins-2 (PBPs) is crucial for the cell wall biosynthesis during cell proliferation of N. meningitidis and these are the target for β-lactam antibiotics. For many years penicillin has been recognized as the antibiotic for meningococcal disease but the meningococcus has seemed to be antibiotic resistance. In the present work we have verified the molecular interaction of Penicillin binding protein-2 N. meningitidis to different generation of β-lactam antibiotics and concluded that the third generation of β-lactam antibiotics shows efficient binding with Penicillin binding protein-2 of N. meningitidis. On the basis of binding efficiency and inhibition constant, ceftazidime emerged as the most efficient antibiotic amongst the other advanced β-lactam antibiotics against Penicillin-binding protein-2 of N. meningitidis.

  9. Magnetic field-dependent of binding energy in GaN/InGaN/GaN spherical QDQW nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [Solid State Laboratory, Faculty of science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco); Special mathematics, CPGE Kénitra, Chakib Arsalane Street (Morocco); Jorio, Anouar; Zorkani, Izeddine [Solid State Laboratory, Faculty of science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco)

    2013-10-15

    Simultaneous study of magnetic field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN (core|well|shell) spherical quantum dot–quantum well (SQDQW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated within the framework of the effective-mass approximation and an infinite deep potential describing the quantum confinement effect. A Ritz variational approach is used taking into account of the electron-impurity correlation and the magnetic field effect in the trial wave-function. It appears that the binding energy depends strongly on the external magnetic field, the impurity's position and the structure radius. It has been found that: (i) the magnetic field effect is more marked in large layer than in thin layer and (ii) it is more pronounced in the spherical layer center than in its extremities.

  10. Investigations into the binding affinities of different human 5-HT4 receptor splice variants.

    Science.gov (United States)

    Irving, Helen R; Tochon-Danguy, Nathalie; Chinkwo, Kenneth A; Li, Jian G; Grabbe, Carmen; Shapiro, Marina; Pouton, Colin W; Coupar, Ian M

    2010-01-01

    This study examined whether the drug-receptor-binding sites of 5 selected human 5-HT(4) receptor splice variants [h5-HT4(a), h5-HT4(b), h5-HT4(c), h5-HT4(d) and h5-HT4(g)] display preferential affinities towards agonists. The agonists selected on the basis of chemical diversity and clinical relevance were: 5-HT4 benzamides, renzapride, zacopride and prucalopride; the benzimidazolones, DAU 6236 and BIMU 1; the aromatic ketone, RS67333, and the indole carbazimidamide tegaserod. The rank order of affinities ranging across the splice variants was: tegaserod (pKi: 7.38-7.91) > or = Y-36912 (pKi: 7.03-7.85) = BIMU 1 (pKi: 6.92-7.78) > or = DAU 6236 (pKi: 6.79-7.99) > or = 5-HT (pKi: 5.82-7.29) > or = 5-MeOT (pKi: 5.64-6.83) > or = renzapride (pKi: 4.85-5.56). We obtained affinity values for the 5-HT4(b), (d) and (g) variants for RS67333 (pKi: 7:48-8.29), prucalopride (pKi: 6.86-7.37) and zacopride (pKi: 5.88-7.0). These results indicate that the ligands interact with the same conserved site in each splice variant. Some splice variants have a higher affinity for certain agonists and the direction of selectivity followed a common trend of lowest affinity at the (d) variant. However, this trend was not evident in functional experiments. Our findings suggest that it may be possible to design splice variant selective ligands, which may be of relevance for experimental drugs but may be difficult to develop clinically. 2010 S. Karger AG, Basel.

  11. Binding Energy of Quantum Bound States in X-shaped Nanowire Intersection

    Science.gov (United States)

    2014-01-01

    α0)〉 = 3~2 mb2 ( 2α0 + 2 11 ) = 6~2 mb2 ( α0 + 1 11 ) = 1.058 ~2 ma2 ∆2 (111) The threshold energy is found to be Et = π2~2 2mw2 (112) Since the...energy (Eb) of the electron taking the threshold energy as zero level is given by Eb = −Emin = −1.058 ~2 ma2 ∆2 = −4.232 ~ 2 mw2 cos2(θ1 − θ2

  12. Medical risks presented by different types of energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This article reports on discussions held during the conference which took place in Paris from 24th to 28th January 1980 and covered the following topics:- The risk concept from the point of view of the epidemiologist and the engineer - perception of the risk. The gulf which exists between the objective risk and that perceived by the public. The need to realize this phenomenon. The particular problems of each type of energy: coal (industrial diseases) - oil - gas - nuclear power (irradiation). Long-term effects and problems: air pollution and effects on health, the growth effect on stocks of atmospheric carbon, water pollution. The methodology of comparative studies of the risks presented by different types of energy. (In French)

  13. Developing a Novel Hydrogen Sponge with Ideal Binding Energy and High Surface Area for Practical Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Chung, T. C. Mike

    2018-04-19

    This Phase I (5 quarters) research project was to examine the validity of a new class of boron-containing polymer (B-polymer) frameworks, serving as the adsorbents for the practical onboard H2 storage applications. Three B-polymer frameworks were synthesized and investigated, which include B-poly(butyenylstyrene) (B-PBS) framework (A), B-poly(phenyldiacetyene) (B-PPDA) framework (B), and B-poly(phenyltriacetylene) (B-PPTA) framework (C). They are 2-D polymer structures with the repeating cyclic units that spontaneously form open morphology and the B-doped (p-type) π-electrons delocalized surfaces. The ideal B-polymer framework shall exhibit open micropores (pore size in the range of 1-1.5nm) with high surface area (>3000 m2/g), and the B-dopants in the conjugated framework shall provide high surface energy for interacting with H2 molecules (an ideal H2 binding energy in the range of 15-25 kJ/mol). The pore size distribution and H2 binding energy were investigated at both Penn State and NREL laboratories. So far, the experimental results show the successful synthesis of B-polymer frameworks with the relatively well-defined planar (2-D) structures. The intrinsically formed porous morphology exhibits a broad pore size distribution (in the range of 0.5-10 nm) with specific surface area (~1000 m2/g). The miss-alignment between 2-D layers may block some micropore channels and limit gas diffusion throughout the entire matrix. In addition, the 2-D planar conjugated structure may also allow free π-electrons delocalization throughout the framework, which significantly reduces the acidity of B-moieties (electron-deficiency).The resulting 2-D B-polymer frameworks only exhibit a small increase of H2 binding energy in the range of 8-9 KJ/mole (quite constant over the whole sorption range).

  14. Analysis of Energy Demand for Low-Energy Multi-Dwelling Buildings of Different Configuration

    Directory of Open Access Journals (Sweden)

    Giedrė Streckienė

    2014-10-01

    Full Text Available To meet the goals established by Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings, the topics of energy efficiency in new and old buildings must be solved. Research and development of new energy solutions and technology are necessary for increasing energy performance of buildings. Three low-energy multi-dwelling buildings have been modelled and analyzed in the presented study. All multi-dwelling houses are made of similar single-family house cells. However, multi-dwelling buildings are of different geometry, flat number and height. DesignBuilder software was used for simulating and determining heating, cooling and electricity demand for buildings. Three different materials (silicate, ceramic and clay concrete blocks as bearing constructions of external walls have been analyzed. To decrease cooling demand for buildings, the possibility of mounting internal or external louvers has been considered. Primary energy savings for multi-dwelling buildings using passive solar measures have been determined.

  15. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping

    International Nuclear Information System (INIS)

    Henke, Paul S.; Mak, Chi H.

    2014-01-01

    The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg 2+ that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure

  16. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping

    Energy Technology Data Exchange (ETDEWEB)

    Henke, Paul S. [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Mak, Chi H., E-mail: cmak@usc.edu [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089 (United States)

    2014-08-14

    The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg{sup 2+} that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure.

  17. Full energy chain analysis of greenhouse gas emissions from different energy sources

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    The field of work of the Advisory Group Meeting/Workshop, i.e. full-energy chain emissions of greenhouse gases, is defined, and its environment, i.e. the Earth Summit -the 1992 UN Conference on Environment and Development in Rio-, is discussed. It is inferred that countries that ratified the Earth Summit's Convention on Climate Change have committed themselves to lower the greenhouse gas emissions from their energy use, and that this can be done most effectively by accounting in energy planning for the full-energy chain emissions of all greenhouse gases. The scatter in literature values of greenhouse gas emission factors of the full energy chain of individual energy sources is discussed. The scatter among others is due to different analytical methods, data bases and system boundaries, and due to neglect of the non-CO 2 greenhouse gases and professional biases. Generic values for greenhouse gas emission factors of energy and materials use are proposed. (author). 10 refs, 2 tabs

  18. Structure of production costs of different energy sources (fossile fuels and nuclear energy) (group 11)

    International Nuclear Information System (INIS)

    Girard, Ph.

    2002-01-01

    This article is the work of a group of students from the ''Ecole Nationale d'Administration'', they had to study the structure of the costs of the different energy sources. This analysis shows some common features between the energy sources. The cost is very dependent on the partial costs of technological constraints due to exploration, production, transport and distribution. For primary energies the market appears to be not very competitive, the price depends strongly on the market power of the operator and benefits are generally important. In France, taxes play a role to assure competitiveness of gas and coal against oil. Uranium fuel presents the lowest production and transformation costs at the same energy content. Transport costs are important for natural gas which implies a strong mutual dependence between gas producers and consumers. The irreplaceable use of oil in transport assures regular high revenues for oil companies. (A.C.)

  19. Energy savings due to building insulation of different thickness

    Directory of Open Access Journals (Sweden)

    Orzechowski Tadeusz

    2017-01-01

    Full Text Available In the plans of thermo-modernisation of historic buildings, strict requirements on energy performance are often relaxed. Detailed analyses are performed to select thermal upgrading technology that would ensure maximum environmental benefits while preserving the historic value of the building. The analysis of the costs of thermal upgrading with the use of heat-preserving plasters having different insulation properties is made for a coal-fired boiler plant. Optimal and advantageous ranges of insulation materials application are shown in reference to coal savings in boilers with variable and constant efficiency. Climatic conditions and environmental benefits are indicated.

  20. The Minimum Binding Energy and Size of Doubly Muonic D3 Molecule

    Science.gov (United States)

    Eskandari, M. R.; Faghihi, F.; Mahdavi, M.

    The minimum energy and size of doubly muonic D3 molecule, which two of the electrons are replaced by the much heavier muons, are calculated by the well-known variational method. The calculations show that the system possesses two minimum positions, one at typically muonic distance and the second at the atomic distance. It is shown that at the muonic distance, the effective charge, zeff is 2.9. We assumed a symmetric planar vibrational model between two minima and an oscillation potential energy is approximated in this region.

  1. Measurement of serum FT/sub 4/ in pregnancy and binding protein abnormalities by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, H; Wenzel, K W

    1985-11-01

    In serum of pregnant women in the 3rd trimester, the majority of FT/sub 4/ methods compared in the present study yielded FT/sub 4/ concentrations in the lower parts of normal ranges or beyond the lower normal border lines. In TBG deficiency, serum FT/sub 4/ as measured by six FT/sub 4/ kits was found to be in the manufacturer-specified normal ranges and did not show clearly recognizable systematic differences between single kits or kit groups with different methodological principles. considerable kit-dependent differences of measured FT/sub 4/ were found in euthyroid patients with TBG excess; all values were, however, in the respective normal ranges. In dysalbuminemic hyperthyroxinemia, labelled analogue kits yielded falsely elevated FT/sub 4/ concentrations, while FT/sub 4/ measured by non-analogue methods was normal in agreement with the euthyroid status of the patient.

  2. Binding of sodium dodecyl sulfate with linear and branched polyethyleneimines in aqueous solution at different pH values.

    Science.gov (United States)

    Wang, Hao; Wang, Yilin; Yan, Haike; Zhang, Jin; Thomas, Robert K

    2006-02-14

    Isothermal titration microcalorimetry (ITC), conductivity, and turbidity measurements have been carried out to study the interaction of sodium dodecyl sulfate (SDS) with polyethyleneimines (PEI) including linear PEI and branched PEI at different pH values of 3, 7, and 10. In all cases, the polymers show a remarkable affinity toward SDS. At pH 3, the polymer PEI is a strong polycation, and the binding is dominated by electrostatic 1:1 charge neutralization with the anionic surfactant. At pH 7, the electrostatic attraction between SDS and PEI is weak, and the hydrophobic interaction becomes stronger. At the natural pH of 10, PEI is essentially nonionic and binds SDS in the form of polymer-bound surfactant aggregates. The charge neutralization concentration (C1) of SDS for the PEI-SDS complex can be derived from the curves of variation of the enthalpy, conductivity, and turbidity with SDS concentration. There is good agreement between the results from the three methods and all show a decrease with increasing pH. The total interaction enthalpies (deltaH(total)) of PEI with SDS are obtained from the observed enthalpy curves and the difference enthalpy (deltaH*) between the total enthalpy of branched PEI with SDS, and the total enthalpy of linear PEI with SDS can be derived from the obtained deltaH(total). The difference deltaH* increases dramatically as pH increases, which indicates that the interactions are different for linear PEI and branched PEI at high pH values. A schematic map of the different states of aggregation is presented.

  3. Sequestration of maize crop straw C in different soils: role of oxyhydrates in chemical binding and stabilization as recalcitrance.

    Science.gov (United States)

    Song, Xiangyun; Li, Lianqing; Zheng, Jufeng; Pan, Genxing; Zhang, Xuhui; Zheng, Jinwei; Hussain, Qaiser; Han, Xiaojun; Yu, Xinyan

    2012-05-01

    While biophysical controls on the sequestration capacity of soils have been well addressed with physical protection, chemical binding and stabilization processes as well as microbial community changes, the role of chemical binding and stabilization has not yet well characterized for soil organic carbon (SOC) sequestration in rice paddies. In this study, a 6-month laboratory incubation with and without maize straw amendment (MSA) was conducted using topsoil samples from soils with different clay mineralogy and free oxy-hydrate contents collected across Southern China. The increase in SOC under MSA was found coincident with that in Fe- and Al-bound OC (Fe/Al-OC) after incubation for 30 d (R(2)=0.90, P=0.05), and with sodium dithionate-citrate-bicarbonate (DCB) extractable Fe after incubation for 180 d (R(2)=0.99, Psoils rich in DCB extractable Fe than those poor in DCB extractable Fe. The greater SOC sequestration in soils rich in DCB extractable Fe was further supported by the higher abundance of (13)C which was a natural signature of MSA. Moreover, a weak positive correlation of the increased SOC under MSA with the increased humin (R(2)=0.87, P=0.06) observed after incubation for 180 d may indicate a chemical stabilization of sequestered SOC as humin in the long run. These results improved our understanding of SOC sequestration in China's rice paddies that involves an initial chemical binding of amended C and a final stabilization as recalcitrant C of humin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Energy difference and energy of mixing for crystalline structures of Ni-Ti-Mo alloys

    International Nuclear Information System (INIS)

    Skorentsev, L.F.; Demidenko, V.S.

    1995-01-01

    Using the locator variant of the coherent potential method combined with the canonical d band approximation, we have obtained the energy characteristics of molybdenum-containing titanium nickelide alloys for real and virtual high-symmetry crystalline phases. We have analyzed the reasons implied by the calculation results for the difference in the properties of molybdenum- and iron-containing alloys

  5. VP24-Karyopherin Alpha Binding Affinities Differ between Ebolavirus Species, Influencing Interferon Inhibition and VP24 Stability

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Toni M.; Edwards, Megan R.; Diederichs, Audrey; Alinger, Joshua B.; Leung, Daisy W.; Amarasinghe, Gaya K.; Basler, Christopher F.; Lyles, Douglas S.

    2016-12-14

    ABSTRACT

    Zaire ebolavirus(EBOV),Bundibugyo ebolavirus(BDBV), andReston ebolavirus(RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability.

    IMPORTANCEThe interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the

  6. Hypernuclear interactions and the binding energies of Λ and ΛΛ hypernuclei

    International Nuclear Information System (INIS)

    Bodmer, A.R.; Usmani, Q.N.

    1988-01-01

    By use of variational calculations a reasonable hadronic description is obtained of the s-shell hypernuclei, of /sub Λ/ 9 Be, and of the well depth, with ΛN forces which are consistent with Λp scattering and which are quite strongly spin-dependent, with reasonable TPE ΛNN forces with strongly repulsive dispersive-type ΛNN forces. For the latter we also consider a spin-dependent version which is somewhat favored by our analysis. /sub Λ/ 9 Be is treated as a 2α + Λ system and is significantly overbound, ≅1 MeV, if only αα and αΛ potentials are used. An ααΛ potential obtained from the ΛNN forces nicely accounts for this overbinding. The ΛΛ hypernuclei /sub ΛΛ/ 6 He and /sub ΛΛ/ 10 Be are treated as α + 2Λ and 2α + 2Λ systems. Use of the /sub ΛΛ/ 10 Be event gives ≅1.5 MeV too little binding for /sub ΛΛ/ 6 He. The 1 S 0 ΛΛ potential obtained from /sub ΛΛ/ 10 Be is quite strongly attractive, comparable to the ΛN and also to the NN potential without OPE. 18 refs

  7. Role of particle-hole symmetry in mirror energy difference

    International Nuclear Information System (INIS)

    Kumar, V.; Kumar, S.; Hasan, Z.; Kumar, D.; Koranga, B.S.; Rohitash; Singh, D.; Negi, D.; Angus, L.

    2011-01-01

    Charge symmetry between protons and neutrons means that they can be viewed as two states of the same particle, the nucleon, characterized by different projections of the isospin quantum number. In the hypothesis of charge symmetry expected identical behaviour of excited states of two nuclei with the same total number of nucleons (isobaric nuclei). The nuclei with magic number are considered to be spherical. When the number of particles/holes increase, the nucleus try towards more deformed upto mid-shell. It shows symmetry between particles and holes towards the deformation. The hypothesis of Particle-hole symmetry expected identical behaviour of excited states of two nuclei close to magic number. It is worthwhile to examine the shape of mirror energy difference (MED) close to magic number nuclei, which will also an example of particle-hole symmetry

  8. A test of Wigner's spin-isospin symmetry from double binding energy differences

    International Nuclear Information System (INIS)

    Van Isacker, P.; Warner, D.D.; Brenner, D.S.

    1996-01-01

    The spin-isospin or SU(4) symmetry is investigated. It is shown that the N = Z enhancements of |δV np | are an unavoidable consequence of Wigner's SU(4) symmetry and that the degree of the enhancement provides a sensitive test of the quality of the symmetry itself. (K.A.)

  9. Donor impurity binding energies of coaxial GaAs / Alx Ga1 - x As cylindrical quantum wires in a parallel applied magnetic field

    Science.gov (United States)

    Tshipa, M.; Winkoun, D. P.; Nijegorodov, N.; Masale, M.

    2018-04-01

    Theoretical investigations are carried out of binding energies of a donor charge assumed to be located exactly at the center of symmetry of two concentric cylindrical quantum wires. The intrinsic confinement potential in the region of the inner cylinder is modeled in any one of the three profiles: simple parabolic, shifted parabolic or the polynomial potential. The potential inside the shell is taken to be a potential step or potential barrier of a finite height. Additional confinement of the charge carriers is due to the vector potential of the axial applied magnetic field. It is found that the binding energies attain maxima in their variations with the radius of the inner cylinder irrespective of the particular intrinsic confinement of the inner cylinder. As the radius of the inner cylinder is increased further, the binding energies corresponding to either the parabolic or the polynomial potentials attain minima at some critical core-radius. Finally, as anticipated, the binding energies increase with the increase of the parallel applied magnetic field. This behaviour of the binding energies is irrespective of the particular electric potential of the nanostructure or its specific dimensions.

  10. Species differences in mGluR5 binding sites in mammalian central nervous system determined using in vitro binding with [{sup 18}F]F-PEB

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Shil [Department of Research Imaging, Merck Research Laboratories, West Point, PA 19486 (United States)], E-mail: shailendra_patel@merck.com; Hamill, Terence G.; Connolly, Brett; Jagoda, Elaine; Li Wenping; Gibson, Raymond E. [Department of Research Imaging, Merck Research Laboratories, West Point, PA 19486 (United States)

    2007-11-15

    Binding of [{sup 18}F]3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile ([{sup 18}F]F-PEB) was evaluated in membranes and tissue sections prepared from rat, rhesus and human brain. Saturation equilibrium binding experiments with frozen brain cortex and caudate-putamen membranes of young adult rhesus and human and with cortex and striatum from rat yielded data indicative of specific high-affinity binding (K{sub D}=0.1-0.15 nM, n{>=}3) to a saturable site previously shown to be metabotropic glutamate receptor 5 (mGluR5; Patel S, Ndubizu O, Hamill T, Chaudhary A, Burns HD, Hargreaves RJ, Gibson RE. Screening cascade and development of potential positron emission tomography radiotracers for mGluR5: in vitro and in vivo characterization. Mol Imaging Biol 2005;7:314-323). High-affinity binding of [{sup 18}F]F-PEB was also detected in cerebellum membranes from rat, rhesus and human. The density of binding sites (B{sub max}) measured using [{sup 18}F]F-PEB followed the rank order cortex{approx}caudate-putamen/striatum>cerebellum for all three species, with the cerebellum B{sub max} being significantly lower than that observed in the other regions. Receptor autoradiography studies in tissue sections confirmed that the regional distribution of [{sup 18}F]F-PEB in mammalian central nervous system is consistent with that of mGluR5 and that a small but specific mGluR5 signal is observed in rhesus and human cerebellum. A small and quantifiable specific signal could also be observed in rat cerebellum using this radiotracer. Immunohistochemical analysis in brain sections revealed a rank order of staining in rhesus and human brain of cortex{approx}caudate-putamen>cerebellum. Rat brain immunohistochemistry followed the same rank order, although the staining in the cerebellum was significantly lower. Using a 'no-wash' wipe assay, the development of a specific signal within 20 min of incubation of tissue brain sections (>60% in the cortex and striatum; 36-49% in the cerebellum

  11. Species differences in mGluR5 binding sites in mammalian central nervous system determined using in vitro binding with [18F]F-PEB

    International Nuclear Information System (INIS)

    Patel, Shil; Hamill, Terence G.; Connolly, Brett; Jagoda, Elaine; Li Wenping; Gibson, Raymond E.

    2007-01-01

    Binding of [ 18 F]3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile ([ 18 F]F-PEB) was evaluated in membranes and tissue sections prepared from rat, rhesus and human brain. Saturation equilibrium binding experiments with frozen brain cortex and caudate-putamen membranes of young adult rhesus and human and with cortex and striatum from rat yielded data indicative of specific high-affinity binding (K D =0.1-0.15 nM, n≥3) to a saturable site previously shown to be metabotropic glutamate receptor 5 (mGluR5; Patel S, Ndubizu O, Hamill T, Chaudhary A, Burns HD, Hargreaves RJ, Gibson RE. Screening cascade and development of potential positron emission tomography radiotracers for mGluR5: in vitro and in vivo characterization. Mol Imaging Biol 2005;7:314-323). High-affinity binding of [ 18 F]F-PEB was also detected in cerebellum membranes from rat, rhesus and human. The density of binding sites (B max ) measured using [ 18 F]F-PEB followed the rank order cortex∼caudate-putamen/striatum>cerebellum for all three species, with the cerebellum B max being significantly lower than that observed in the other regions. Receptor autoradiography studies in tissue sections confirmed that the regional distribution of [ 18 F]F-PEB in mammalian central nervous system is consistent with that of mGluR5 and that a small but specific mGluR5 signal is observed in rhesus and human cerebellum. A small and quantifiable specific signal could also be observed in rat cerebellum using this radiotracer. Immunohistochemical analysis in brain sections revealed a rank order of staining in rhesus and human brain of cortex∼caudate-putamen>cerebellum. Rat brain immunohistochemistry followed the same rank order, although the staining in the cerebellum was significantly lower. Using a 'no-wash' wipe assay, the development of a specific signal within 20 min of incubation of tissue brain sections (>60% in the cortex and striatum; 36-49% in the cerebellum) from all three species confirmed previous in vivo

  12. Testing and evaluation of different energy storage devices for piezoelectric energy harvesting under road conditions

    Science.gov (United States)

    Gopalakrishnan, Pratheek

    The increasing needs in green technology have propelled the rapid development in energy conversion and the advancement of electric energy storage systems. A viable storage technology is needed to store intermittent electrical energy in different electronic applications. In this thesis, recent progress on the chemistry and design of batteries is summarized with their challenges and improvements. Along with that, electrolytic capacitors are also reviewed with their types, advantages and disadvantages of each in short. Super capacitors having higher surface area and thinner dielectrics than conventional capacitors along with hybrid capacitors, are discussed in detail. The potential of a hybrid capacitor, Ni(OH)2/ Active Carbon, compared with Ni-Cd batteries and electrolytic capacitors in the application of energy storage for high way energy harvesting has been explored in this work. Both the battery and the hybrid capacitor has been tested under various experimental conditions and their properties in relation to their chemical compositions are compared. The results obtained from the experiments have been analyzed and the most suitable energy storage devices have been selected with their application potential evaluated before drawing conclusion reported in this thesis.

  13. Physical adsorption vs. chemical binding of undecylenic acid on porous silicon surface: a comparative study of differently functionalized materials

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, J.; Lehto, V.P. [University of Turku (Finland). Department of Physics; Chirvony, V.; Matveeva, E. [Nanophotonics Technology Center, Technical University of Valencia (Spain); Pastor, E.

    2009-07-15

    To imply miscibility to porous silicon (PSi) used for biomedical purposes a number of functionalization methods are employed. In order to distinguish between a non-specific surfactant-like interaction (physical sorption) and chemical binding of unsaturated chemicals (undecylenic acid, UD) to H-terminated PSi surface we studied the two differently treated materials. Differential scanning calorimetry (DSC) and thermogravimetry (TGA), BET and FTIR measurements were performed with the PSi powder samples (n+ doped). Changes in surface area, weight loss, calorific effect and chemical composition that accompanied the thermal treatment have shown that the physisorbed UD molecules undergo a chemical process (binding) with the Si-H{sub x} surface groups at about 150 C in both, N{sub 2} inert atmosphere and in a synthetic air, oxidative atmosphere. Controlled conversion of physically sorbed molecules to the chemically attached ones is discussed with respect to methods of surface modification of PSi materials for increasing their biocompatibility. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. THE INDIVIDUAL DIFFERENCE OF ABILITY BINDING BRAIN TUMOR CELLS WITH IMMUNOGLOBULIN G

    OpenAIRE

    O. V. Ostreiko; S. V. Mozhaev; V. E. Olushin; R. A. Pantina; M. V. Filatov

    2008-01-01

    Abstract. Were researched IgG on the surface cells of different histological types tumors of cerebrum, using fluorescing staphylococcus A-protein. The study of target IgG shows divers intensive of microscopic fluorescent illumination. This results associate related with level amount IgG. The maximum concentrate of surface’s IgG was on the cells of malignant tumors and there was direct correlate with aggressive manner and quickly recurrence of tumor’s growth, and shot survival. The fraction of...

  15. Effects of the atomic environment on the electron binding energies in samarium

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Kovalík, Alojz; Filosofov, D. V.; Ryšavý, Miloš; Vénos, Drahoslav; Yushkevich, Y. V.; Perevoshchikov, L. L.; Zhdanov, V. S.

    2016-01-01

    Roč. 207, FEB (2016), s. 38-49 ISSN 0368-2048 R&D Projects: GA ČR(CZ) GAP203/12/1896; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : Sm-149 * atomic environment * electron ginding energy * intermediate-valence state * chemical shift * natural atomic level width Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.661, year: 2016

  16. Binding energy of large icosahedral and cuboctahedral Lennard-Jones clusters

    International Nuclear Information System (INIS)

    Northby, J.A.; Xie, J.

    1989-01-01

    It is widely believed that the lowest energy configurations for small rare gas clusters have icosahedral symmetry. This contrasts with the bulk crystal structures which have cuboctahedral fcc symmetry. It is of interest to understand the transition between this finite and bulk behavior. To model this transition in rare gas clusters we have undertaken optimization studies within the Lennard-Jones pair potential model. Using a combination of Monte Carlo and Partan Search optimization methods, the lowest energy relaxed structures of Lennard-Jones clusters having icosahedral and cuboctahedral symmetry were found. Studies were performed for complete shell clusters ranging in size from one shell having 13 atoms to 14 shells having 10,179 atoms. It was found that the icosahedral structures are lower in energy than the cuboctahedral structures for cluster sizes having 13 shells or fewer. Additional studies were performed using the more accurate Aziz-Chen [HFD-C] pair potential parameterized for argon. The conclusions appear to be relatively insensitive to the form of the potential. (orig.)

  17. Orbital momentum distribution and binding energies for the complete valence shell of molecular chlorine by electron momentum spectroscopy

    International Nuclear Information System (INIS)

    Frost, L.; Grisogono, A.M.; McCarthy, I.E.

    1986-10-01

    The complete valence shell binding energy spectrum (10-50 eV) of Cl 2 has been determined using electron momentum (binary (e,2e)) spectroscopy. The inner valence region, corresponding to 4σ u and 4σ g ionization, has been measured for the first time and shows extensive splitting of the ionization strength due to electron correlation effects. These measurements are compared with the results of many-body calculations using Green's function and CI methods employing unpolarised as well as polarised wave functions. Momentum distributions, measured in both the outer and inner valence regions, are compared with calculations using a range of unpolarised and polarised wave functions. Computed orbital density maps in momentum and position space for oriented Cl 2 molecules are discussed in comparison with the measured and calculated spherically averaged momentum distributions

  18. The health cost of energy. The health impacts of the different energy sources

    International Nuclear Information System (INIS)

    Masse, Roland

    2017-01-01

    This publication proposes an assessment of impacts of the different energy sources on public health. After a discussion of general aspects regarding this issue, the author addresses the identification and assessment of risks. While referring to different statistical data, he discusses the impacts of accidents in terms of dead, injured or evacuated people. He also addresses health impacts during a normal operation of power plants, i.e. in the case of nuclear plants (issue of exposure to various levels of radiation at the different steps of fuel cycle), of carbon-based plants (health risks and impacts during coal extraction, due to CO 2 emissions and to other toxic emissions, due to atmospheric pollution, identified risks, modelling attempts, assessment of a loss in life expectancy), and of other energies. While acknowledging that there are still many unknowns to assess these health impacts, the author compares these assessments. A summarized version of this article is proposed, in which the author briefly comments data regarding severe accidents related to energy production, discusses health consequences of electric power production and use, and makes a distinction between the most and less hazardous energies as far as public health is concerned

  19. Characterization of Protein and Peptide Binding to Nanogels Formed by Differently Charged Chitosan Derivatives

    Directory of Open Access Journals (Sweden)

    Anastasia Zubareva

    2013-07-01

    Full Text Available Chitosan (Chi is a natural biodegradable cationic polymer with remarkable potency as a vehicle for drug or vaccine delivery. Chi possesses multiple groups, which can be used both for Chi derivatization and for particle formation. The aim of this work was to produce stable nanosized range Chi gels (nanogels, NGs with different charge and to study the driving forces of complex formation between Chi NGs and proteins or peptides. Positively charged NGs of 150 nm in diameter were prepared from hexanoyl chitosan (HC by the ionotropic gelation method while negatively charged NGs of 190 nm were obtained from succinoyl Chi (SC by a Ca2+ coacervation approach. NGs were loaded with a panel of proteins or peptides with different weights and charges. We show that NGs preferentially formed complexes with oppositely charged molecules, especially peptides, as was demonstrated by gel-electrophoresis, confocal microscopy and HPLC. Complex formation was accompanied by a change in zeta-potential and decrease in size. We concluded that complex formation between Chi NGs and peptide/proteins is mediated mostly by electrostatic interactions.

  20. Technological learning in offshore wind energy: Different roles of the government

    International Nuclear Information System (INIS)

    Smit, Thijs; Junginger, Martin; Smits, Ruud

    2007-01-01

    Offshore wind energy is a promising source of renewable electricity, even though its current costs prevent large-scale implementation. Technological learning has improved the technology and its economic performance already, and could result in significant further improvements. This study investigates how technological learning takes place in offshore wind energy and how technological learning is related to different policy regimes. Offshore wind energy developments in Denmark and the United Kingdom have been analysed with a technology-specific innovation systems approach. The results reveal that the dominant forms of learning are learning by doing and learning by using. At the same time, learning by interacting is crucial to achieve the necessary binding elements in the technology-specific innovation system. Generally, most learning processes were performed by self-organizing entities. However, sometimes cultural and technical barriers occurred, excluding component suppliers and knowledge institutes from the innovation system. Danish policies successfully anticipated these barriers and removed them; therefore, the Danish policies can be characterized as pro-active. British policies shaped stable conditions for learning only; therefore, they can be characterized as active. In the future, barriers could hinder learning by interacting between the oil and gas industry, the offshore wind industry and academia. Based on this study, we suggest national and international policy makers to design long-term policies to anticipate these barriers, in order to contribute to technological learning

  1. THE INDIVIDUAL DIFFERENCE OF ABILITY BINDING BRAIN TUMOR CELLS WITH IMMUNOGLOBULIN G

    Directory of Open Access Journals (Sweden)

    O. V. Ostreiko

    2008-01-01

    Full Text Available Abstract. Were researched IgG on the surface cells of different histological types tumors of cerebrum, using fluorescing staphylococcus A-protein. The study of target IgG shows divers intensive of microscopic fluorescent illumination. This results associate related with level amount IgG. The maximum concentrate of surface’s IgG was on the cells of malignant tumors and there was direct correlate with aggressive manner and quickly recurrence of tumor’s growth, and shot survival. The fraction of IgG with specific antitumor’s antibody covers tumor’s antigens has been block this antigens for receptors of T-lymphocytes. Linked with immunological anticell’s deficit phenomenon may be one from famous reasons of malignant clinical type tumor disease. (Med. Immunol., vol. 10, N 6, pp 593-596.

  2. Evaluation of B3LYP, X3LYP, and M06-Class Density Functionals for Predicting the Binding Energies of Neutral, Protonated, and Deprotonated Water Clusters.

    Science.gov (United States)

    Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A

    2009-04-14

    In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged water clusters including (H2O)n, n = 2-8, 20), H3O(+)(H2O)n, n = 1-6, and OH(-)(H2O)n, n = 1-6. We also compare the predicted energies of two ion hydration and neutralization reactions on the basis of the calculated binding energies. In all cases, we use as benchmarks calculated binding energies of water clusters extrapolated to the complete basis set limit of the second-order Møller-Plesset perturbation theory with the effects of higher order correlation estimated at the coupled-cluster theory with single, double, and perturbative triple excitations in the aug-cc-pVDZ basis set. We rank the accuracy of the functionals on the basis of the mean unsigned error (MUE) between calculated benchmark and density functional theory energies. The corresponding MUE (kcal/mol) for each functional is listed in parentheses. We find that M06-L (0.73) and M06 (0.84) give the most accurate binding energies using very extended basis sets such as aug-cc-pV5Z. For more affordable basis sets, the best methods for predicting the binding energies of water clusters are M06-L/aug-cc-pVTZ (1.24), B3LYP/6-311++G(2d,2p) (1.29), and M06/aug-cc-PVTZ (1.33). M06-L/aug-cc-pVTZ also gives more accurate energies for the neutralization reactions (1.38), whereas B3LYP/6-311++G(2d,2p) gives more accurate energies for the ion hydration reactions (1.69).

  3. Hartree-Fock calculation of nuclear binding energy of sodium isotopes

    International Nuclear Information System (INIS)

    Campi, X.; Flocard, H.

    1975-01-01

    Mass spectrometer measurements of the neutron rich sodium isotopes show a sudden increase at 31 Na in the values of the two neutron separation energies. The spherical shell model naturally predicts a sudden decrease at 32 Na after the N=20 shell closure. It is proposed that the explanation for this disagreement lies in the fact that sodium isotopes in this mass region are strongly deformed due to the filling of negative parity orbitals from the 1f(7/2) shell. Hartree-Fock calculations are presented in support of this conjecture [fr

  4. Binding Energy calculation of GSK-3 protein of Human against some anti-diabetic compounds of Momordica charantia linn (Bitter melon).

    Science.gov (United States)

    Hazarika, Ridip; Parida, Pratap; Neog, Bijoy; Yadav, Raj Narain Singh

    2012-01-01

    Diabetes is one of the major life threatening diseases worldwide. It creates major health problems in urban India. Glycogen Synthase Kinase-3 (GSK-3) protein of human is known for phosphorylating and inactivating glycogen synthase which also acts as a negative regulator in the hormonal control of glucose homeostasis. In traditional medicine, Momordica charantia is used as antidiabetic plant because of its hypoglycemic effect. Hence to block the active site of the GSK-3 protein three anti-diabetic compounds namely, charantin, momordenol & momordicilin were taken from Momordica charantia for docking study and calculation of binding energy. The aim of present investigation is to find the binding energy of three major insulin-like active compounds against glycogen synthase kinase-3 (GSK-3), one of the key proteins involved in carbohydrate metabolism, with the help of molecular docking using ExomeTM Horizon suite. The study recorded minimum binding energy by momordicilin in comparison to the others.

  5. Binding of ouabain and marinobufagenin leads to different structural changes in Na,K-ATPase and depends on the enzyme conformation.

    Science.gov (United States)

    Klimanova, Elizaveta A; Petrushanko, Irina Yu; Mitkevich, Vladimir A; Anashkina, Anastasia A; Orlov, Sergey N; Makarov, Alexander A; Lopina, Olga D

    2015-09-14

    Ion pump, Na,K-ATPase specifically binds cardiotonic steroids (CTS), which leads to inhibition of the enzyme activity and activation of signaling network in the cell. We have studied interaction of Na,K-ATPase with CTS of two different types - marinobufagenin and ouabain. We have shown that both CTS inhibit activity of Na,K-ATPase with the same Ki values, but binding of ouabain is sensitive to the conformation of Na,K-ATPase while binding of marinobufagenin is not. Furthermore, binding of ouabain and marinobufagenin results in different structural changes in Na,K-ATPase. Our data allow to explain the diversity of effects on the receptor function of Na,K-ATPase caused by different types of CTS. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Nonstochastic effects of different energy beta emitters on pig skin

    International Nuclear Information System (INIS)

    Peel, D.M.; Hopewell, J.W.; Wells, J.; Charles, M.W.

    1984-01-01

    Circular areas of pig skin from 1- to 40-mm diameter were irradiated with β emitters of high, medium, and low energies, 90 Sr, 170 Tm, and 147 Pm, respectively. The study provides information for radiological protection problems of localized skin exposures. During the first 16 weeks after irradiation 90 Sr produced a first reaction due to epithelial cell death followed by a second reaction attributable to damage to the dermal blood vessels. 170 Tm and 147 Pm produced the epithelial reaction only. The epithelial dose response varied as a function of β energy. The doses required to produce moist desquamation in 50% of 15- to 22.5-mm fields (ED 50 ) were 30-45 Gy from 90 Sr, approx.80 Gy from 170 Tm, and approx.500 Gy from 147 Pm. An area effect was observed in the epithelial response to 90 Sr irradiation. The ED 50 for moist desquamation ranged from approx.25 Gy for a 40-mm source to approx.450 Gy for a 1-mm source. It is also suggested that the area effects could be explained by different modes of epithelial repopulation after irradiation

  7. Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)

    International Nuclear Information System (INIS)

    Hackl, Roman; Andersson, Eva; Harvey, Simon

    2011-01-01

    Rising fuel prices, increasing costs associated with emissions of green house gases and the threat of global warming make efficient use of energy more and more important. Industrial clusters have the potential to significantly increase energy efficiency by energy collaboration. In this paper Sweden's largest chemical cluster is analysed using the total site analysis (TSA) method. TSA delivers targets for the amount of utility consumed and generated through excess energy recovery by the different processes. The method enables investigation of opportunities to deliver waste heat from one process to another using a common utility system. The cluster consists of 5 chemical companies producing a variety of products, including polyethylene (PE), polyvinyl chloride (PVC), amines, ethylene, oxygen/nitrogen and plasticisers. The companies already work together by exchanging material streams. In this study the potential for energy collaboration is analysed in order to reach an industrial symbiosis. The overall heating and cooling demands of the site are around 442 MW and 953 MW, respectively. 122 MW of heat is produced in boilers and delivered to the processes. TSA is used to stepwise design a site-wide utility system which improves energy efficiency. It is shown that heat recovery in the cluster can be increased by 129 MW, i.e. the current utility demand could be completely eliminated and further 7 MW excess steam can be made available. The proposed retrofitted utility system involves the introduction of a site-wide hot water circuit, increased recovery of low pressure steam and shifting of heating steam pressure to lower levels in a number heat exchangers when possible. Qualitative evaluation of the suggested measures shows that 60 MW of the savings potential could to be achieved with moderate changes to the process utility system corresponding to 50% of the heat produced from purchased fuel in the boilers of the cluster. Further analysis showed that after implementation

  8. A method for predicting individual residue contributions to enzyme specificity and binding-site energies, and its application to MTH1.

    Science.gov (United States)

    Stewart, James J P

    2016-11-01

    A new method for predicting the energy contributions to substrate binding and to specificity has been developed. Conventional global optimization methods do not permit the subtle effects responsible for these properties to be modeled with sufficient precision to allow confidence to be placed in the results, but by making simple alterations to the model, the precisions of the various energies involved can be improved from about ±2 kcal mol -1 to ±0.1 kcal mol -1 . This technique was applied to the oxidized nucleotide pyrophosphohydrolase enzyme MTH1. MTH1 is unusual in that the binding and reaction sites are well separated-an advantage from a computational chemistry perspective, as it allows the energetics involved in docking to be modeled without the need to consider any issues relating to reaction mechanisms. In this study, two types of energy terms were investigated: the noncovalent interactions between the binding site and the substrate, and those responsible for discriminating between the oxidized nucleotide 8-oxo-dGTP and the normal dGTP. Both of these were investigated using the semiempirical method PM7 in the program MOPAC. The contributions of the individual residues to both the binding energy and the specificity of MTH1 were calculated by simulating the effect of mutations. Where comparisons were possible, all calculated results were in agreement with experimental observations. This technique provides fresh insight into the binding mechanism that enzymes use for discriminating between possible substrates.

  9. Ignition in net for different energy confinement time scalings

    International Nuclear Information System (INIS)

    Johner, J.; Prevot, F.

    1988-06-01

    A zero-dimensional profile dependent model is used to assess the feasibility of ignition in the extended version of NET. Five recent scalings for the energy confinement time (Goldston, Kaye All, Kaye Big, Shimomura-Odajima, Rebut-Lallia) are compared in the frame of two different scenarii, i.e., H-mode with a flat density profile or L-mode with a peaked density profile. For the flat density H-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the peaked density L-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the two Kaye's scalings, ignition is forbidden in H-mode even with the peaked density profile. For the Rebut-Lallia scaling, ignition is allowed in L-mode even with the flat density profile

  10. Binding energy and preferred adsorption sites of CO on gold and silver-gold cluster cations: adsorption kinetics and quantum chemical calculations.

    Science.gov (United States)

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M

    2008-01-01

    We revisit the reactivity of trapped pure gold (Au(n)+, n cations (Ag(m)Au(n)+, m + n carbon monoxide as studied in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The experimental results are discussed in terms of ab initio computations which provide a comprehensive picture of the chemical binding behaviour (like binding energy, adsorption sites, associated vibrational frequencies) of CO to the noble metal as a function of cluster size and composition. Starting from results for pure gold cluster cations for which an overall decrease of CO binding energy with increasing cluster size was experimentally observed--from about 1.09 +/- 0.1 eV (for n = 6) to below 0.65 +/- 0.1 eV (for n > 26) we demonstrate that metal--CO bond energies correlate with the total electron density and with the energy of the lowest unoccupied molecular orbital (LUMO) on the bare metal cluster cation as obtained by density functional theory (DFT) computations. This is a consequence of the predominantly sigma-donating character of the CO-M bond. Further support for this concept is found by contrasting the predictions of binding energies to the experimental results for small alloy cluster cations (Ag(m)Au(n)+, 4 < m + n < 7) as a function of composition. Here, binding energy drops with increasing silver content, while CO still binds always in a head-on fashion to a gold atom. Finally we show how the CO stretch frequency of Ag(m)Au(n)CO+ may be used to identify possible adsorption sites and pre-screen favorable isomers.

  11. Photodetachment of Isolated Bicarbonate Anion: Electron Binding Energy of HCO3-

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Xantheas, Sotiris S.

    2011-04-29

    We report the first direct photodetachment photoelectron spectroscopy of HCO3 in the gas phase under low temperature conditions. The observed photoelectron spectra are complicated due to excitations of manifolds in both vibrational and electronic states. A long and single vibrational progression with a frequency of 530 ± 20 cm-1 is partially resolved in the threshold of the T=20 K, 266 nm spectrum. The adiabatic electron detachment energy (ADE) of HCO3, or in other words the electron affinity (EA) of neutral HCO3, is experimentally determined from the (0-0) transition to be 3.680 ± 0.015 eV. High-level ab initio calculations at the CCSD(T) level of theory produce an anharmonic frequency of 546 cm-1 for HCO3 and a value of 3.62 eV for the (0,0) transition, both in excellent agreement with the experimentally determined values.

  12. Effect of Γ-X band mixing on the donor binding energy in a Quantum Wire

    Science.gov (United States)

    Vijaya Shanthi, R.; Jayakumar, K.; Nithiananthi, P.

    2015-02-01

    To invoke the technological applications of heterostructure semiconductors like Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD), it is important to understand the property of impurity energy which is responsible for the peculiar electronic & optical behavior of the Low Dimensional Semiconductor Systems (LDSS). Application of hydrostatic pressure P>35kbar drastically alters the band offsets leading to the crossover of Γ band of the well & X band of the barrier resulting in an indirect transition of the carrier and this effect has been studied experimentally and theoretically in a QW structure. In this paper, we have investigated the effect of Γ-X band mixing due to the application of hydrostatic pressure in a GaAs/AlxGa1-xAs QWW system. The results are presented and discussed for various widths of the wire.

  13. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2

    Science.gov (United States)

    Athanasiou, Christina; Vasilakaki, Sofia; Dellis, Dimitris; Cournia, Zoe

    2018-01-01

    Computer-aided drug design has become an integral part of drug discovery and development in the pharmaceutical and biotechnology industry, and is nowadays extensively used in the lead identification and lead optimization phases. The drug design data resource (D3R) organizes challenges against blinded experimental data to prospectively test computational methodologies as an opportunity for improved methods and algorithms to emerge. We participated in Grand Challenge 2 to predict the crystallographic poses of 36 Farnesoid X Receptor (FXR)-bound ligands and the relative binding affinities for two designated subsets of 18 and 15 FXR-bound ligands. Here, we present our methodology for pose and affinity predictions and its evaluation after the release of the experimental data. For predicting the crystallographic poses, we used docking and physics-based pose prediction methods guided by the binding poses of native ligands. For FXR ligands with known chemotypes in the PDB, we accurately predicted their binding modes, while for those with unknown chemotypes the predictions were more challenging. Our group ranked #1st (based on the median RMSD) out of 46 groups, which submitted complete entries for the binding pose prediction challenge. For the relative binding affinity prediction challenge, we performed free energy perturbation (FEP) calculations coupled with molecular dynamics (MD) simulations. FEP/MD calculations displayed a high success rate in identifying compounds with better or worse binding affinity than the reference (parent) compound. Our studies suggest that when ligands with chemical precedent are available in the literature, binding pose predictions using docking and physics-based methods are reliable; however, predictions are challenging for ligands with completely unknown chemotypes. We also show that FEP/MD calculations hold predictive value and can nowadays be used in a high throughput mode in a lead optimization project provided that crystal structures of

  14. Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions

    Science.gov (United States)

    Kong, Fanna; Zhou, Yang; Sun, Peipei; Cao, Min; Li, Hong; Mao, Yunxiang

    2016-02-01

    Photosynthesis includes the collection of light and the transfer of solar energy using light-harvesting chlorophyll a/b-binding (LHC) proteins. In high plants, the LHC gene family includes LHCA and LHCB sub-families, which encode proteins constituting the light-harvesting complex of photosystems I and II. Zostera marina L. is a monocotyledonous angiosperm and inhabits submerged marine environments rather than land environments. We characterized the Lhca and Lhcb gene families of Z. marina from the expressed sequence tags (EST) database. In total, 13 unigenes were annotated as ZmLhc, 6 in Lhca family and 7 in ZmLhcb family. ZmLHCA and ZmLHCB contained the conservative LHC motifs and amino acid residues binding chlorophyll. The average similarity among mature ZmLHCA and ZmLHCB was 48.91% and 48.66%, respectively, which indicated a high degree of divergence within ZmLHChc gene family. The reconstructed phylogenetic tree showed that the tree topology and phylogenetic relationship were similar to those reported in other high plants, suggesting that the Lhc genes were highly conservative and the classification of ZmLhc genes was consistent with the evolutionary position of Z. marina. Real-time reverse transcription (RT) PCR analysis showed that different members of ZmLhca and ZmLhcb responded to a stress in different expression patterns. Salinity, temperature, light intensity and light quality may affect the expression of most ZmLhca and ZmLhcb genes. Inorganic carbon concentration and acidity had no obvious effect on ZmLhca and ZmLhcb gene expression, except for ZmLhca6.

  15. The analysis of security cost for different energy sources

    International Nuclear Information System (INIS)

    Jun, Eunju; Kim, Wonjoon; Chang, Soon Heung

    2009-01-01

    Global concerns for the security of energy have steadily been on the increase and are expected to become a major issue over the next few decades. Urgent policy response is thus essential. However, little attempt has been made at defining both energy security and energy metrics. In this study, we provide such metrics and apply them to four major energy sources in the Korean electricity market: coal, oil, liquefied natural gas, and nuclear. In our approach, we measure the cost of energy security in terms of supply disruption and price volatility, and we consider the degree of concentration in energy supply and demand using the Hirschman-Herfindahl index (HHI). Due to its balanced fuel supply and demand, relatively stable price, and high abundance, we find nuclear energy to be the most competitive energy source in terms of energy security in the Korean electricity market. LNG, on the other hand, was found to have the highest cost in term of energy security due to its high concentration in supply and demand, and its high price volatility. In addition, in terms of cost, we find that economic security dominates supply security, and as such, it is the main factor in the total security cost. Within the confines of concern for global energy security, our study both broadens our understanding of energy security and enables a strategic approach in the portfolio management of energy consumption.

  16. Radioiodinated ligands for the estrogen receptor: Effect of different 7-cyanoalkyl chains on the binding affinity of novel iodovinyl-6-dehydroestradiols

    International Nuclear Information System (INIS)

    Neto, Carina; Oliveira, Maria Cristina; Gano, Lurdes; Marques, Fernanda; Santos, Isabel; Morais, Goreti Ribeiro; Yasuda, Takumi; Thiemann, Thies; Botelho, Filomena; Oliveira, Carlos F.

    2009-01-01

    Three novel 17α-ethynyl-Δ 6,7 -estra-3,17β-diols and their 17α-[ 125 I]-iodovinyl derivatives, containing different C7-cyanoalkyl chains, were studied as potential radioligands for the estrogen receptor. The influence of the chain length on the biological behaviour of the compounds was assessed through in vitro ER binding assays of the ethynyl derivatives and breast cancer cell uptake studies of the 17α-[ 125 I]-iodovinyl-Δ 6,7 -estra-3,17β-diols. A difference in alkyl chain induced a decrease in ER binding affinities of substances, however, the receptor-binding affinities (RBA) of all compounds were lower than that of estradiol itself. In addition, a non-specific cell binding was observed which is in accordance with the encountered ethynyl RBA values suggesting that the uptake is not ER mediated

  17. Evaluation of energy spectral information in nuclear imaging and investigation of protein binding of cationic radionuclides by lactoferrin. Comprehensive progress report, October 1, 1977-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hoffer, P. B.

    1980-06-10

    Construction of an Anger camera-computer system which allows collection of both the position and energy signals from events detected by the scintillation camera has been completed. The system allows correction of energy response non-uniformity of the detector and facilitates research related to effects of energy discrimination in radionuclide scintigraphy. The system consists of electronic hardware to transmit and digitize the energy signal, software to record and process that signal in conjunction with spatial positioning signals, and additional hardware for recording the processed images so that they can be evaluated by observers. Preliminary results indicate that the system is useful in evaluating clinical images. Assymetric (eccentric) energy windows do improve image quality and are of value in improving detection of lesions on liver scintigraphs. The mechanisms by which Ga-67 is taken up in infection and tumor has been elucidated, and the uptake of radiogallium in microorganisms as a function of its interaction with siderophores was also studied. The primary function of these low molecular weight compounds is to trap ferric ion. However, gallium may be substituted for ferric ion and becomes trapped within the microorganism. The uptake of radiogallium by neutrophils and the role that lactoferrin plays in both intracellular localization of radiogallium and subsequent deposition of the radionuclide at sites of infection were also studied. Investigation of ferric ion analogs reveals definate differences in the affinity of these metals for binding molecules which helps explain their biologic activity. While ferric ion has the strongest affinity for such molecules, gallium has very high affinity for siderophores, moderate affinity for lactoferrin, and lower affinity for transferrin. The relative affinity of indium for these molecules is in approximately the reverse order.

  18. The influence of different dietary energy concentrations on the ...

    African Journals Online (AJOL)

    Energy is essential for the continuous survival of any living organism. In ostrich diets, energy is usually derived from maize, which is often subject to fluctuations in yield as a result of drought conditions. Therefore, the optimal utilization of energy in the diets of ostriches becomes of paramount importance, but without affecting ...

  19. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions.

    Science.gov (United States)

    Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P; Burgoyne, Robert D; Mayans, Olga; Derrick, Jeremy P; Lian, Lu-Yun

    2015-07-24

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca(2+)/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178-Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca(2+)/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178-Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Revisiting interaction specificity reveals neuronal and adipocyte Munc18 membrane fusion regulatory proteins differ in their binding interactions with partner SNARE Syntaxins.

    Directory of Open Access Journals (Sweden)

    Michelle P Christie

    Full Text Available The efficient delivery of cellular cargo relies on the fusion of cargo-carrying vesicles with the correct membrane at the correct time. These spatiotemporal fusion events occur when SNARE proteins on the vesicle interact with cognate SNARE proteins on the target membrane. Regulatory Munc18 proteins are thought to contribute to SNARE interaction specificity through interaction with the SNARE protein Syntaxin. Neuronal Munc18a interacts with Syntaxin1 but not Syntaxin4, and adipocyte Munc18c interacts with Syntaxin4 but not Syntaxin1. Here we show that this accepted view of specificity needs revision. We find that Munc18c interacts with both Syntaxin4 and Syntaxin1, and appears to bind "non-cognate" Syntaxin1 a little more tightly than Syntaxin4. Munc18a binds Syntaxin1 and Syntaxin4, though it interacts with its cognate Syntaxin1 much more tightly. We also observed that when bound to non-cognate Munc18c, Syntaxin1 captures its neuronal SNARE partners SNAP25 and VAMP2, and Munc18c can bind to pre-formed neuronal SNARE ternary complex. These findings reveal that Munc18a and Munc18c bind Syntaxins differently. Munc18c relies principally on the Syntaxin N-peptide interaction for binding Syntaxin4 or Syntaxin1, whereas Munc18a can bind Syntaxin1 tightly whether or not the Syntaxin1 N-peptide is present. We conclude that Munc18a and Munc18c differ in their binding interactions with Syntaxins: Munc18a has two tight binding modes/sites for Syntaxins as defined previously but Munc18c has just one that requires the N-peptide. These results indicate that the interactions between Munc18 and Syntaxin proteins, and the consequences for in vivo function, are more complex than can be accounted for by binding specificity alone.

  1. Field use of D218O to measure energy expenditure of soldiers at different energy intakes

    International Nuclear Information System (INIS)

    DeLany, J.P.; Schoeller, D.A.; Hoyt, R.W.; Askew, E.W.; Sharp, M.A.

    1989-01-01

    To test the application of doubly labeled water under adverse field conditions, energy expenditures of 16 special operations soldiers were measured during a 28-day field training exercise. Subjects were matched by fat-free mass and divided equally between an ad libitum ready-to-eat meal diet and a 2,000 kcal/day lightweight ration. Subjects recorded intakes daily, and body composition was measured before and after the exercise. At the beginning of the study, subjects moved to a new northerly location and, therefore, a new water supply. To compensate for this, a group of soldiers who did not receive heavy water was followed to measure isotopic base-line changes. Energy expenditure by doubly labeled water was in agreement with intake/balance (3,400 ± 260 vs. 3,230 ± 520 kcal/day). The overall coefficient of variation of energy expenditure by doubly labeled water was half that of intake/balance (7.6 vs. 16.1%). The coefficient of variation of repeat measures with doubly labeled water was 7.3%. Energy expenditure of the ready-to-eat meal group, 3,540 ± 180 kcal/day, was not significantly different from the lightweight ration group, 3,330 ± 301 kcal/day. Doubly labeled water was valid under field conditions

  2. Identifying the Interaction of Vancomycin With Novel pH-Responsive Lipids as Antibacterial Biomaterials Via Accelerated Molecular Dynamics and Binding Free Energy Calculations.

    Science.gov (United States)

    Ahmed, Shaimaa; Vepuri, Suresh B; Jadhav, Mahantesh; Kalhapure, Rahul S; Govender, Thirumala

    2018-06-01

    Nano-drug delivery systems have proven to be an efficient formulation tool to overcome the challenges with current antibiotics therapy and resistance. A series of pH-responsive lipid molecules were designed and synthesized for future liposomal formulation as a nano-drug delivery system for vancomycin at the infection site. The structures of these lipids differ from each other in respect of hydrocarbon tails: Lipid1, 2, 3 and 4 have stearic, oleic, linoleic, and linolenic acid hydrocarbon chains, respectively. The impact of variation in the hydrocarbon chain in the lipid structure on drug encapsulation and release profile, as well as mode of drug interaction, was investigated using molecular modeling analyses. A wide range of computational tools, including accelerated molecular dynamics, normal molecular dynamics, binding free energy calculations and principle component analysis, were applied to provide comprehensive insight into the interaction landscape between vancomycin and the designed lipid molecules. Interestingly, both MM-GBSA and MM-PBSA binding affinity calculations using normal molecular dynamics and accelerated molecular dynamics trajectories showed a very consistent trend, where the order of binding affinity towards vancomycin was lipid4 > lipid1 > lipid2 > lipid3. From both normal molecular dynamics and accelerated molecular dynamics, the interaction of lipid3 with vancomycin is demonstrated to be the weakest (∆G binding  = -2.17 and -11.57, for normal molecular dynamics and accelerated molecular dynamics, respectively) when compared to other complexes. We believe that the degree of unsaturation of the hydrocarbon chain in the lipid molecules may impact on the overall conformational behavior, interaction mode and encapsulation (wrapping) of the lipid molecules around the vancomycin molecule. This thorough computational analysis prior to the experimental investigation is a valuable approach to guide for predicting the encapsulation

  3. Age and sex differences in oxytocin and vasopressin V1a receptor binding densities in the rat brain: focus on the social decision-making network.

    Science.gov (United States)

    Smith, Caroline J W; Poehlmann, Max L; Li, Sara; Ratnaseelan, Aarane M; Bredewold, Remco; Veenema, Alexa H

    2017-03-01

    Oxytocin (OT) and vasopressin (AVP) regulate various social behaviors via activation of the OT receptor (OTR) and the AVP V1a receptor (V1aR) in the brain. Social behavior often differs across development and between the sexes, yet our understanding of age and sex differences in brain OTR and V1aR binding remains incomplete. Here, we provide an extensive analysis of OTR and V1aR binding density throughout the brain in juvenile and adult male and female rats, with a focus on regions within the social decision-making network. OTR and V1aR binding density were higher in juveniles than in adults in regions associated with reward and socio-spatial memory and higher in adults than in juveniles in key regions of the social decision-making network and in cortical regions. We discuss possible implications of these shifts in OTR and V1aR binding density for the age-specific regulation of social behavior. Furthermore, sex differences in OTR and V1aR binding density were less numerous than age differences. The direction of these sex differences was region-specific for OTR but consistently higher in females than in males for V1aR. Finally, almost all sex differences in OTR and V1aR binding density were already present in juveniles and occurred in regions with denser binding in adults compared to juveniles. Possible implications of these sex differences for the sex-specific regulation of behavior, as well potential underlying mechanisms, are discussed. Overall, these findings provide an important framework for testing age- and sex-specific roles of OTR and V1aR in the regulation of social behavior.

  4. Toxic metals (Ni2+, Pb2+, Hg2+) binding affinity of dissolved organic matter (DOM) derived from different ages municipal landfill leachate

    Science.gov (United States)

    Rikta, S. Y.; Tareq, Shafi M.; Uddin, M. Khabir

    2018-03-01

    Solid waste production is rapidly increasing in Bangladesh and landfill leachate is the consequence of the decomposition of this waste. These leachates contain heavy metals and significant amount of dissolved organic matter (DOM). DOM is known to have considerable role in heavy metals speciation. Hence, it is important to characterize DOM/leachate and evaluate toxic metals binding affinity of DOM. The objectives of this study were to characterize the DOM in landfill leachate through physico-chemical and optical analyses and to investigate the toxic metals (Ni2+, Pb2+ and Hg2+) binding affinity of three different ages (fresh sample L-1, young sample L-2 and mature sample L-3) DOM samples. Results suggested that leachate is a potential pollutant which contained very high organic pollutant load. Conditional stability constant (Log K) and percentages of fluorophores that correspond to metal binding (% f) values indicated that young DOM sample (L-2) had the highest binding affinity to all the three metals ions. In general, DOM samples showed the following order affinity to the metal ions; Ni2+ binding affinity: L-2 > L-3 > L-1, Pb2+ binding affinity: L-2 > L-3 > L-1 and Hg2+ binding affinity: L-2 > L-1 > L-3.

  5. ENERGY EFFICIENCY OF DIFFERENT WAYS OF CENTRAL HEATING

    Directory of Open Access Journals (Sweden)

    A. E. Piir

    2015-01-01

    Full Text Available  The article shows the calculation comparison of fuel for producing of heat-line water with a help of different technological installations, transforming (converting high-grade heat from burning process of fuel or in the process of non-reversible heat exchange with coolant (heating agent, or with a help of heat engines, which allow to decrease losses of working efficiency and thus to reduce the use of fuel. There were considered five types of plants beginning from the  simplest  one  up  to  the  most  complex  in  two  variants,  when  the  heat  exchangers and machines are perfect (ideal and when equipment has the known degree of efficiency (perfection:1 water-heat boiler station, working on organic fuel;2 electrical boiler station, obtaining energy on power transmission lines from condensing power station;3 line heater of TPP, obtaining steam from heating turbine;4 line heater CPP, powered by steam from pressure reducing unit;5 heat pump, producing energy on power supply lines from TPP.In this article were investigated three ideal reversible ways of transformation of   high- grade heat into low-grade heat with a help of decreasing and increasing and combined (suggested by the authors heat transformers and their thermodynamic equivalence was shown in this article. And there were suggested universal installation for electric energy generation, cold and heat of two grades for heat-water supply and the heating process on the base of gascompressors   gas turbines. These results are so important (actual for power engineers of the countries with  increasing consumption  of organic  fuel and  its enhancement in  value and realizing programs of energy saving .The analysis shows, that the quality of produced low-grade heat per unit of used high-grade heat for ideal plants (installations is: electrical boiler unit – 0.7;  water boiler unit – 1.0; for heat pump, heating turbine, combined heat transformers   – 4

  6. Hyper-Binding across Time: Age Differences in the Effect of Temporal Proximity on Paired-Associate Learning

    Science.gov (United States)

    Campbell, Karen L.; Trelle, Alexandra; Hasher, Lynn

    2014-01-01

    Older adults show hyper- (or excessive) binding effects for simultaneously and sequentially presented distraction. Here, we addressed the potential role of hyper-binding in paired-associate learning. Older and younger adults learned a list of word pairs and then received an associative recognition task in which rearranged pairs were formed from…

  7. Computational Studies of Difference in Binding Modes of Peptide and Non-Peptide Inhibitors to MDM2/MDMX Based on Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Yuxin Zhang

    2012-02-01

    Full Text Available Inhibition of p53-MDM2/MDMX interaction is considered to be a promising strategy for anticancer drug design to activate wild-type p53 in tumors. We carry out molecular dynamics (MD simulations to study the binding mechanisms of peptide and non-peptide inhibitors to MDM2/MDMX. The rank of binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA method agrees with one of the experimental values. The results suggest that van der Waals energy drives two kinds of inhibitors to MDM2/MDMX. We also find that the peptide inhibitors can produce more interaction contacts with MDM2/MDMX than the non-peptide inhibitors. Binding mode predictions based on the inhibitor-residue interactions show that the π–π, CH–π and CH–CH interactions dominated by shape complimentarity, govern the binding of the inhibitors in the hydrophobic cleft of MDM2/MDMX. Our studies confirm the residue Tyr99 in MDMX can generate a steric clash with the inhibitors due to energy and structure. This finding may theoretically provide help to develop potent dual-specific or MDMX inhibitors.

  8. Comparative study of different waste biomass for energy application.

    Science.gov (United States)

    Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K

    2016-01-01

    Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and

  9. A strategy different from France's: German energy policy

    International Nuclear Information System (INIS)

    Linkohr, R.

    2013-01-01

    Shortly after the Fukushima accident, the German chancellor, Angela Merkel, announced a new course for the country's energy policy: nuclear power is to be fully abandoned by 2022, owing to a massive recourse to renewable sources of energy. The proclaimed goal is for renewable energy to make up 35% of the country's energy mix by 2035 and even 80% by 2050. This energy transition, though benefiting from a consensus, has run up against several difficulties: an unadapted electric power grid, the excessively high costs of investment, and exorbitant electricity rates for consumers.... Till now, this energy policy's basis principles have not come under question, but questioning are arising about the pace and cost of this transformation. (author)

  10. International environment, enterprise environment and energy environment giving different look

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Shunsuke

    1987-04-01

    0he international environment, enterprise environment and energy environment surrounding Japan are changing their looks. In such situation, what Japan should do for the development of the world was discussed. Internationally, in the Western Pacific economical block including Japan and Asian NICs, Japan promotes the international exchange of materials, capital, technology, information and people, and creates various international public properties. Enterprisers should have global mind, and cope with the internationalization, technical innovation and information orientation which are in progress at present through international exchange, interindustrial exchange, industry-university-government exchange and so on. In the aspect of energy environment, Japan carries out the technical development of energy conservation, energy, creation and the exploration of energy resources, in this way, contributes to the stabilization of energy in the world. (3 figs, 1 tab)

  11. Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis

    International Nuclear Information System (INIS)

    Chen, Shaoqing; Chen, Bin

    2015-01-01

    Highlights: • Urban energy consumption was assessed from three different perspectives. • A new concept called controlled energy was developed from network analysis. • Embodied energy and controlled energy consumption of Beijing were compared. • The integration of all three perspectives will elucidate sustainable energy use. - Abstract: Energy consumption has always been a central issue for sustainable urban assessment and planning. Different forms of energy analysis can provide various insights for energy policy making. This paper brought together three approaches for energy consumption accounting, i.e., energy flow analysis (EFA), input–output analysis (IOA) and ecological network analysis (ENA), and compared their different perspectives and the policy implications for urban energy use. Beijing was used to exemplify the different energy analysis processes, and the 42 economic sectors of the city were aggregated into seven components. It was determined that EFA quantifies both the primary and final energy consumption of the urban components by tracking the different types of fuel used by the urban economy. IOA accounts for the embodied energy consumption (direct and indirect) used to produce goods and services in the city, whereas the control analysis of ENA quantifies the specific embodied energy that is regulated by the activities within the city’s boundary. The network control analysis can also be applied to determining which economic sectors drive the energy consumption and to what extent these sectors are dependent on each other for energy. So-called “controlled energy” is a new concept that adds to the analysis of urban energy consumption, indicating the adjustable energy consumed by sectors. The integration of insights from all three accounting perspectives further our understanding of sustainable energy use in cities

  12. Differences between culture & non-culture confirmed invasive meningococci with a focus on factor H-binding protein distribution.

    Science.gov (United States)

    Clark, Stephen A; Lekshmi, Aiswarya; Lucidarme, Jay; Hao, Li; Tsao, How; Lee-Jones, Lisa; Jansen, Kathrin U; Newbold, Lynne S; Anderson, Annaliesa S; Borrow, Ray

    2016-07-01

    To compare the distribution of capsular groups and factor H-binding protein (fHBP) variants among meningococcal isolates and non-culture clinical specimens and to assess the representativeness of group B isolates amongst group B cases as a whole. A PCR sequencing assay was used to characterise fHBP from non-culture cases confirmed from January 2011 to December 2013. These were compared to genotypic data derived from whole genome analysis of isolates received during the same period. Group W and Y strains were more common among isolates than non-culture strains. The distribution of fHBP variants among group B non-culture cases generally reflected that seen in the corresponding isolates. Nonetheless, the non-culture subset contained a greater proportion of fHBP variant 15/B44, associated with the ST-269 cluster sublineage. Differences in capsular group and fHBP distribution among culture and non-culture cases may be indicative of variation in strain viability, diagnostic practice, disease severity and/or clinical presentation. Future analyses combining clinical case information with laboratory data may help to further explore these differences. Group B isolates provide a good representation of group B disease in E&W and, therefore, can reliably be used in fHBP strain coverage predictions of recently-licensed vaccines. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. Does willingness to pay for green energy differ by source?

    International Nuclear Information System (INIS)

    Borchers, Allison M.; Duke, Joshua M.; Parsons, George R.

    2007-01-01

    We present the findings of a choice experiment designed to estimate consumer preferences and willingness-to-pay (WTP) for voluntary participation in green energy electricity programs. Our model estimates WTP for a generic 'green energy' source and compares it to WTP for green energy from specific sources, including wind, solar, farm methane, and biomass. Our results show that there exists a positive WTP for green energy electricity. Further, individuals have a preference for solar over a generic green and wind. Biomass and farm methane are found to be the least preferred sources

  14. Hydrogenic impurity binding energy in vertically coupled Ga1-xAlxAs quantum-dots under hydrostatic pressure and applied electric field

    International Nuclear Information System (INIS)

    Duque, C.M.; Barseghyan, M.G.; Duque, C.A.

    2009-01-01

    This work deals with a theoretical study, using a variational method and the effective mass approximation, of the ground state binding energy of a hydrogenic donor impurity in a vertically coupled multiple quantum dot structure under the effects of hydrostatic pressure and in-growth direction applied electric field. The low dimensional structure consists of three cylindrical shaped GaAs quantum dots coupled by Ga 1-x Al x As barriers. For the hydrostatic pressure has been considered the Γ-X crossover in the Ga 1-x Al x As material. As a general, the results show that: (1) the binding energy as a function of the impurity position has a similar shape to that shown by the electron wave function without the Coulomb interaction, (2) the presence of the electric field changes dramatically the binding energy profile destroying (favoring) the symmetry in the structures, and (3) depending on the impurity position the binding energy can increase or decrease with the hydrostatic pressure mainly due to increases or decreases of the carrier-wave function symmetry by changing the height of the potential barrier.

  15. Energy poor or fuel poor: What are the differences?

    International Nuclear Information System (INIS)

    Li, Kang; Lloyd, Bob; Liang, Xiao-Jie; Wei, Yi-Ming

    2014-01-01

    Energy poverty and fuel poverty are descriptors of problems of households' energy consumption, they are both distinct problems and have been addressed by many researchers, organizations and governments. Cross use of the terms of energy poverty and fuel poverty in published papers is common. As an accurate descriptor is the presupposition of research and policy development, especially for those who just started to pay attention to this issue, this paper compares the definitions, research priorities, status quo, and problems of these two concepts, and summarizes the relationship between them. The paper suggests that only when the research targets are households who are living in a cold climate and have difficulty in getting access to electricity or modern cooking facilities, and in supplying indoor heating with appropriate cost, the concepts of energy poverty and fuel poverty have the chance to be broadened and mutually integrated. - Highlights: • Address energy poverty and fuel poverty simultaneously. • Compare energy poverty and fuel poverty from 4 perspectives. • Summarize the relationship between energy poverty and fuel poverty. • Divide energy poor and fuel poor into three categories

  16. Energy subsidies reform in Jordan : welfare implications of different scenarios

    OpenAIRE

    Atamanov,Aziz; Jellema,Jon Robbert; Serajuddin,Umar

    2015-01-01

    As the Arab Spring unfolded and political unrest spread across the Arab world, Jordan faced an adverse economy as well. Fundamental to the economic challenge was high and rising energy prices, already heavily subsidized for consumers. With the government intent on staving off emerging political unrest through a series of measures, buffering consumers from increased energy prices being a ke...

  17. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions

    Energy Technology Data Exchange (ETDEWEB)

    MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi; Brown, James B.; Chu, Hou Cheng; Zeng, Lucy; Grondona, Brandi P.; Hechmer, Aaron; Simirenko, Lisa; Keranen, Soile V.E.; Knowles, David W.; Stapleton, Mark; Bickel, Peter; Biggin, Mark D.; Eisen, Michael B.

    2009-05-15

    BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of function and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.

  18. Inferring Parametric Energy Consumption Functions at Different Software Levels

    DEFF Research Database (Denmark)

    Liqat, Umer; Georgiou, Kyriakos; Kerrison, Steve

    2016-01-01

    The static estimation of the energy consumed by program executions is an important challenge, which has applications in program optimization and verification, and is instrumental in energy-aware software development. Our objective is to estimate such energy consumption in the form of functions...... on the input data sizes of programs. We have developed a tool for experimentation with static analysis which infers such energy functions at two levels, the instruction set architecture (ISA) and the intermediate code (LLVM IR) levels, and reflects it upwards to the higher source code level. This required...... the development of a translation from LLVM IR to an intermediate representation and its integration with existing components, a translation from ISA to the same representation, a resource analyzer, an ISA-level energy model, and a mapping from this model to LLVM IR. The approach has been applied to programs...

  19. Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress.

    Science.gov (United States)

    Tamarkin-Ben-Harush, Ana; Vasseur, Jean-Jacques; Debart, Françoise; Ulitsky, Igor; Dikstein, Rivka

    2017-02-08

    Transcription start-site (TSS) selection and alternative promoter (AP) usage contribute to gene expression complexity but little is known about their impact on translation. Here we performed TSS mapping of the translatome following energy stress. Assessing the contribution of cap-proximal TSS nucleotides, we found dramatic effect on translation only upon stress. As eIF4E levels were reduced, we determined its binding to capped-RNAs with different initiating nucleotides and found the lowest affinity to 5'cytidine in correlation with the translational stress-response. In addition, the number of differentially translated APs was elevated following stress. These include novel glucose starvation-induced downstream transcripts for the translation regulators eIF4A and Pabp, which are also translationally-induced despite general translational inhibition. The resultant eIF4A protein is N-terminally truncated and acts as eIF4A inhibitor. The induced Pabp isoform has shorter 5'UTR removing an auto-inhibitory element. Our findings uncovered several levels of coordination of transcription and translation responses to energy stress.

  20. The differences in heparin binding for the C-terminal basic-sequence-rich peptides of HPV-16 and HPV-18 capsid protein L1

    International Nuclear Information System (INIS)

    Sun Jian; Yu Jisheng; Yu Zhiwu; Zha Xiao; Wu Yuqing

    2012-01-01

    Graphial abstract: The differences in heparin binding for the C-terminal basic-sequence-rich peptides of HPV-16 and HPV-18 capsid protein L1. Highlights: ► Several driving forces contribute to the interaction between heparin and peptides. ► C-terminal of HPV L1 is a potential candidate for the attachment to host cells. ► The C-terminal peptides of HPV-16 and -18 L1 have different heparin-binding. ► The different heparin-binding provides an explanation for the distinct prevalences. - Abstract: The high-risk types of human papillomaviruses (HPV) HPV-16 and -18 are the predominant types associated with cervical cancer. HPV-16 and -18 account for about 50% and 20%, respectively, of cervical cancers worldwide. While the reason and molecular mechanism of the distinct prevalence and distributions between them remain poorly understood, the binding affinity of cell surface receptor with capsid proteins, especially L1, may be involved. We examined heparin binding with two synthetic peptides corresponding to the 14 amino acid C-terminal peptides of HPV-16 and -18 L1 with the goal of comparing the equivalent residues in different HPV types. Using isothermal titration calorimetry (ITC) and static right-angle light scattering (SLS), we determined the binding constant K, reaction enthalpy ΔH, and other thermodynamic parameters in the interaction. Especially, we assessed the role of specific residues in binding with heparin by comparing the NMR spectra of free and heparin-bound peptides.

  1. Validation of tautomeric and protomeric binding modes by free energy calculations. A case study for the structure based optimization of d-amino acid oxidase inhibitors

    Science.gov (United States)

    Orgován, Zoltán; Ferenczy, György G.; Steinbrecher, Thomas; Szilágyi, Bence; Bajusz, Dávid; Keserű, György M.

    2018-02-01

    Optimization of fragment size d-amino acid oxidase (DAAO) inhibitors was investigated using a combination of computational and experimental methods. Retrospective free energy perturbation (FEP) calculations were performed for benzo[d]isoxazole derivatives, a series of known inhibitors with two potential binding modes derived from X-ray structures of other DAAO inhibitors. The good agreement between experimental and computed binding free energies in only one of the hypothesized binding modes strongly support this bioactive conformation. Then, a series of 1-H-indazol-3-ol derivatives formerly not described as DAAO inhibitors was investigated. Binding geometries could be reliably identified by structural similarity to benzo[d]isoxazole and other well characterized series and FEP calculations were performed for several tautomers of the deprotonated and protonated compounds since all these forms are potentially present owing to the experimental pKa values of representative compounds in the series. Deprotonated compounds are proposed to be the most important bound species owing to the significantly better agreement between their calculated and measured affinities compared to the protonated forms. FEP calculations were also used for the prediction of the affinities of compounds not previously tested as DAAO inhibitors and for a comparative structure-activity relationship study of the benzo[d]isoxazole and indazole series. Selected indazole derivatives were synthesized and their measured binding affinity towards DAAO was in good agreement with FEP predictions.

  2. Comparison of molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics-three-dimensional reference interaction site model (MM-3D-RISM) method to calculate the binding free energy of protein-ligand complexes: Effect of metal ion and advance statistical test

    Science.gov (United States)

    Pandey, Preeti; Srivastava, Rakesh; Bandyopadhyay, Pradipta

    2018-03-01

    The relative performance of MM-PBSA and MM-3D-RISM methods to estimate the binding free energy of protein-ligand complexes is investigated by applying these to three proteins (Dihydrofolate Reductase, Catechol-O-methyltransferase, and Stromelysin-1) differing in the number of metal ions they contain. None of the computational methods could distinguish all the ligands based on their calculated binding free energies (as compared to experimental values). The difference between the two comes from both polar and non-polar part of solvation. For charged ligand case, MM-PBSA and MM-3D-RISM give a qualitatively different result for the polar part of solvation.

  3. An experimental and theoretical investigation of the valence orbital momentum distributions and binding energy spectra of nitrogen

    International Nuclear Information System (INIS)

    Cook, J.P.D.; Pascual, R.; Weigold, E.

    1989-05-01

    A detailed electron momentum spectrosocpy (EMS) and a manybody theoretical study of the complete valence region of N 2 was carried out. The 1500eV EMS momentum distributions show that they provide a sensitive test for orbital wavefunctions of SCF calculations, and of correlation effects. The outermost 3σ g orbital is more sharply peaked at the origin than predicted by the orbital wavefunction. The inner valence 2σ g orbital is severely split, with spectroscopic strength ranging from 34eV to over 60eV in binding energy. The results of the present extended basis 1p Green's function calculations, as well as those of several previous manybody calculations, are only in semiquantitative agreement with this. There is a 2σ u pole at 25eV with a pole strength of approximately 0.067 in agreement with the results of manybody calculations. There is significant 2σ u and or 1π u strength and little 2σ g strength in the region 26-34eV. Poles observed at 29 and 32eV, previously attributed to the 2σ g orbital, are shown to be largely 2σ u in character. The manybody calculations predict too much 2σ g strength in the region 26-34eV. 29 refs., 1 tab., 16 figs

  4. Quantification of the health hazards associated with different energy sources

    International Nuclear Information System (INIS)

    Reissland, J.A.; Kendall, G.M.; Greenhalgh, J.R.

    1982-01-01

    Comparisons of health hazards which may result from the operation of different types of electrical power-producing systems are a necessary input to the decision-making process of planning future supplies. Although other factors have played a dominant role in the past and will continue to be a major influence, much greater attention is now devoted to a consideration of detriment to health associated with large-scale industrial development. The paper considers only this health aspect of the comparison and concentrates on one aspect of that, namely on how the impact on health of workers and public can be expressed to represent the detriment. Two measures are discussed: the number of deaths and the effective loss of life, both evaluated per GW(e).a. The latter is extended along the same lines as in the ICRP publication 'Problems Involved in Developing an Index of Harm'. The index of harm is a measure of hazard to a worker in a particular industry; the analogous quantity here is a measure of hazard of operating a 1-GW(e) power plant. For illustration, the hazards of coal-fired and nuclear power stations are compared although certain factors are omitted from both cycles which it will be essential to include if the method is extended to bring wind, wave and solar energy sources into the comparison. Inevitably some contributions are very difficult to quantify and it may be more realistic to consider these qualitatively rather than attempt to fold them in with artificial numerical values. The procedure described for the inclusion of quantifiable factors seems to be a reasonable basis for comparison but it is not suggested that any such procedure is adequate by itself. Clearly comparisons should be made on several distinct bases. (author)

  5. Different aspects of nuclear physics from low energies up to intermediate energies

    International Nuclear Information System (INIS)

    Lallouet, Y.

    2011-12-01

    This study focuses on different aspects of nuclear physics from low energies to intermediate ones. For the low energies, the nuclear matter is essentially constituted from interacting nucleons. Part I is on the fusion-fission of super-heavy elements, while Part II is on the Skyrme interactions associated sum rules. In the case of the intermediate energies, where the nuclear matter is considered as being an hadronic phase mainly constituted from pions, Part III is focused on nuclear matter relativistic hydrodynamics with spontaneous chiral symmetry breaking. In Part I, the formation and the deexcitation of super-heavy nuclei are being studied. The memory effect must be taken into consideration within the super-heavy nuclei formation dynamics. Therefore we analyzed the formation of compound nuclei including the memory effects. As for the intermediate memory effects some oscillations appear, which is very different from the Markovian dynamics. For super-heavy nuclei deexcitation, the existence of isomeric state within the potential barrier cannot explain the results of experiments performed at GANIL with the crystal blocking technique, and this despite of the fact that it modifies the deexcitation dynamics and increases the fission time. However, this latter study could be useful for the study of the actinides fission. In Part II, the phenomenological Skyrme effective interactions-associated M 1 and M 3 sum rules are being calculated based on their intrinsic definitions. We identify then M 1 up to the tensorial level and M 3 with central potential. In Part III, as for the hadronic matter hydrodynamics being applied to heavy ions collisions, and as a first approach only, we can neglect spontaneous chiral symmetry but certainly not the dissipative impact. (author)

  6. Energy Expenditure of Trotting Gait Under Different Gait Parameters

    Science.gov (United States)

    Chen, Xian-Bao; Gao, Feng

    2017-07-01

    Robots driven by batteries are clean, quiet, and can work indoors or in space. However, the battery endurance is a great problem. A new gait parameter design energy saving strategy to extend the working hours of the quadruped robot is proposed. A dynamic model of the robot is established to estimate and analyze the energy expenditures during trotting. Given a trotting speed, optimal stride frequency and stride length can minimize the energy expenditure. However, the relationship between the speed and the optimal gait parameters is nonlinear, which is difficult for practical application. Therefore, a simplified gait parameter design method for energy saving is proposed. A critical trotting speed of the quadruped robot is found and can be used to decide the gait parameters. When the robot is travelling lower than this speed, it is better to keep a constant stride length and change the cycle period. When the robot is travelling higher than this speed, it is better to keep a constant cycle period and change the stride length. Simulations and experiments on the quadruped robot show that by using the proposed gait parameter design approach, the energy expenditure can be reduced by about 54% compared with the 100 mm stride length under 500 mm/s speed. In general, an energy expenditure model based on the gait parameter of the quadruped robot is built and the trotting gait parameters design approach for energy saving is proposed.

  7. Aging and individual differences in binding during sentence understanding: evidence from temporary and global syntactic attachment ambiguities.

    Science.gov (United States)

    Payne, Brennan R; Grison, Sarah; Gao, Xuefei; Christianson, Kiel; Morrow, Daniel G; Stine-Morrow, Elizabeth A L

    2014-02-01

    We report an investigation of aging and individual differences in binding information during sentence understanding. An age-continuous sample of adults (N=91), ranging from 18 to 81 years of age, read sentences in which a relative clause could be attached high to a head noun NP1, attached low to its modifying prepositional phrase NP2 (e.g., The son of the princess who scratched himself/herself in public was humiliated), or in which the attachment site of the relative clause was ultimately indeterminate (e.g., The maid of the princess who scratched herself in public was humiliated). Word-by-word reading times and comprehension (e.g., who scratched?) were measured. A series of mixed-effects models were fit to the data, revealing: (1) that, on average, NP1-attached sentences were harder to process and comprehend than NP2-attached sentences; (2) that these average effects were independently moderated by verbal working memory capacity and reading experience, with effects that were most pronounced in the oldest participants and; (3) that readers on average did not allocate extra time to resolve global ambiguities, though older adults with higher working memory span did. Findings are discussed in relation to current models of lifespan cognitive development, working memory, language experience, and the role of prosodic segmentation strategies in reading. Collectively, these data suggest that aging brings differences in sentence understanding, and these differences may depend on independent influences of verbal working memory capacity and reading experience. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Alternatives - talk about energy differently. Radioactive waste a societal issue

    International Nuclear Information System (INIS)

    2004-01-01

    ''Alternatives'' is an information magazine proposed by the Areva Group, a world nuclear energy leader. It is devoted to the public information on topics of the Group activities. This issue deals with the fusion technology, the strengths and weaknesses of interconnected networks, the undersea tidal power farms, the danish paradox which has the highest levels of CO 2 emissions despite the use of wind energy, the international community renewed commitment to renewable energy, the hydrogen, the low speed wind turbines and the future miniature fuel cells. A special interest is given to the radioactive wastes management. (A.L.B.)

  9. Glycoprotein profiles of macrophages at different stages of activation as revealed by lectin binding after electrophoretic separation.

    Science.gov (United States)

    Irimura, T; North, S M; Nicolson, G L

    1987-01-01

    Glycoprotein profiles of rat macrophages (M phi) at different stages of activation were studied by examining the reactivity of various lectins to the glycoproteins separated by polyacrylamide gel electrophoresis. Ricinus communis agglutinin 1 (RCA1) revealed several components including glycoproteins of Mr 160 kDa and 65 kDa prominent in resident M phi. A pokeweed mitogen (PWM) isolectin, Pa-4, recognizes branched poly(N-acetyllactosamine)-type carbohydrate chains, and revealed a significant increase in glycoproteins of Mr ranging from 70 kDa to 150 kDa on thioglycolate-elicited M phi. Increased reactivity of PWM to thioglycolate-elicited M phi was observed by direct binding of 125I-labeled Pa-4 to intact or glutaraldehyde-fixed M phi. Histochemical staining of formaldehyde-fixed M phi in vitro with biotinylated Pa-4 was consistent with the gel analysis, that is, resident M phi had no reactivity while thioglycolate-elicited M phi showed slight reactivity. Alveolar and intratumoral M phi bound more Pa-4 than resident or thioglycolate-elicited M phi. The PWM isolectin may therefore serve as a marker for an early stage of M phi activation.

  10. Energy Inputs Uncertainty: Total Amount, Distribution and Correlation Between Different Forms of Energy

    Science.gov (United States)

    Deng, Yue

    2014-01-01

    Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.

  11. Different sensitivities to competitive inhibition of benzodiazepine receptor binding of {sup 11}C-iomazenil and {sup 11}C-flumazenil in rhesus monkey brain

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Osamu; Hosoi, Rie; Kobayashi, Kaoru [Osaka Univ., Suita (Japan). Medical School; Itoh, Takashi; Gee, A.; Suzuki, Kazutoshi

    2001-04-01

    The in vivo binding kinetics of {sup 11}C-iomazenil were compared with those of {sup 11}C-flumazenil binding in rhesus monkey brain. The monkey was anesthetized with ketamine and intravenously injected with either {sup 11}C-iomazenil or {sup 11}C-flumazenil in combination with the coadministration of different doses of non-radioactive flumazenil (0, 5 and 20 {mu}g/kg). The regional distribution of {sup 11}C-iomazenil in the brain was similar to that of {sup 11}C-flumazenil, but the sensitivity of {sup 11}C-iomazenil binding to competitive inhibition by non-radioactive flumazenil was much less than that of {sup 11}C-flumazenil binding. A significant reduction in {sup 11}C-flumazenil binding in the cerebral cortex was observed with 20 {mu}g/kg of flumazenil, whereas a relatively smaller inhibition of {sup 11}C-iomazenil binding in the same region was observed with the same dose of flumazenil. These results suggest that {sup 11}C-flumazenil may be a superior radiotracer for estimating benzodiazepine receptor occupancy in the intact brain. (author)

  12. Evaluation of several two-step scoring functions based on linear interaction energy, effective ligand size, and empirical pair potentials for prediction of protein-ligand binding geometry and free energy.

    Science.gov (United States)

    Rahaman, Obaidur; Estrada, Trilce P; Doren, Douglas J; Taufer, Michela; Brooks, Charles L; Armen, Roger S

    2011-09-26

    The performances of several two-step scoring approaches for molecular docking were assessed for their ability to predict binding geometries and free energies. Two new scoring functions designed for "step 2 discrimination" were proposed and compared to our CHARMM implementation of the linear interaction energy (LIE) approach using the Generalized-Born with Molecular Volume (GBMV) implicit solvation model. A scoring function S1 was proposed by considering only "interacting" ligand atoms as the "effective size" of the ligand and extended to an empirical regression-based pair potential S2. The S1 and S2 scoring schemes were trained and 5-fold cross-validated on a diverse set of 259 protein-ligand complexes from the Ligand Protein Database (LPDB). The regression-based parameters for S1 and S2 also demonstrated reasonable transferability in the CSARdock 2010 benchmark using a new data set (NRC HiQ) of diverse protein-ligand complexes. The ability of the scoring functions to accurately predict ligand geometry was evaluated by calculating the discriminative power (DP) of the scoring functions to identify native poses. The parameters for the LIE scoring function with the optimal discriminative power (DP) for geometry (step 1 discrimination) were found to be very similar to the best-fit parameters for binding free energy over a large number of protein-ligand complexes (step 2 discrimination). Reasonable performance of the scoring functions in enrichment of active compounds in four different protein target classes established that the parameters for S1 and S2 provided reasonable accuracy and transferability. Additional analysis was performed to definitively separate scoring function performance from molecular weight effects. This analysis included the prediction of ligand binding efficiencies for a subset of the CSARdock NRC HiQ data set where the number of ligand heavy atoms ranged from 17 to 35. This range of ligand heavy atoms is where improved accuracy of predicted ligand

  13. Distinct expression profiles and different functions of odorant binding proteins in Nilaparvata lugens Stål.

    Directory of Open Access Journals (Sweden)

    Peng He

    Full Text Available BACKGROUND: Odorant binding proteins (OBPs play important roles in insect olfaction. The brown planthopper (BPH, Nilaparvata lugens Stål (Delphacidae, Auchenorrhyncha, Hemiptera is one of the most important rice pests. Its monophagy (only feeding on rice, wing form (long and short wing variation, and annual long distance migration (seeking for rice plants of high nutrition imply that the olfaction would play a central role in BPH behavior. However, the olfaction related proteins have not been characterized in this insect. METHODOLOGY/PRINCIPAL FINDINGS: Full length cDNA of three OBPs were obtained and distinct expression profiles were revealed regarding to tissue, developmental stage, wing form and gender for the first time for the species. The results provide important clues in functional differentiation of these genes. Binding assays with 41 compounds demonstrated that NlugOBP3 had markedly higher binding ability and wider binding spectrum than the other two OBPs. Terpenes and Ketones displayed higher binding while Alkanes showed no binding to the three OBPs. Focused on NlugOBP3, RNA interference experiments showed that NlugOBP3 not only involved in nymph olfaction on rice seedlings, but also had non-olfactory functions, as it was closely related to nymph survival. CONCLUSIONS: NlugOBP3 plays important roles in both olfaction and survival of BPH. It may serve as a potential target for developing behavioral disruptant and/or lethal agent in N. lugens.

  14. Investigation of the binding free energies of FDA approved drugs against subtype B and C-SA HIV PR: ONIOM approach.

    Science.gov (United States)

    Sanusi, Z K; Govender, T; Maguire, G E M; Maseko, S B; Lin, J; Kruger, H G; Honarparvar, B

    2017-09-01

    Human immune virus subtype C is the most widely spread HIV subtype in Sub-Sahara Africa and South Africa. A profound structural insight on finding potential lead compounds is therefore necessary for drug discovery. The focus of this study is to rationalize the nine Food and Drugs Administration (FDA) HIV antiviral drugs complexed to subtype B and C-SA PR using ONIOM approach. To achieve this, an integrated two-layered ONIOM model was used to optimize the geometrics of the FDA approved HIV-1 PR inhibitors for subtype B. In our hybrid ONIOM model, the HIV-1 PR inhibitors as well as the ASP 25/25' catalytic active residues were treated at high level quantum mechanics (QM) theory using B3LYP/6-31G(d), and the remaining HIV PR residues were considered using the AMBER force field. The experimental binding energies of the PR inhibitors were compared to the ONIOM calculated results. The theoretical binding free energies (?G bind ) for subtype B follow a similar trend to the experimental results, with one exemption. The computational model was less suitable for C-SA PR. Analysis of the results provided valuable information about the shortcomings of this approach. Future studies will focus on the improvement of the computational model by considering explicit water molecules in the active pocket. We believe that this approach has the potential to provide much improved binding energies for complex enzyme drug interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. First-principles investigation on the electronic efficiency and binding energy of the contacts formed by graphene and poly-aromatic hydrocarbon anchoring groups

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang; Tu, Xingchen; Wang, Hao; Hou, Shimin, E-mail: smhou@pku.edu.cn [Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Sanvito, Stefano [School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2 (Ireland)

    2015-04-28

    The electronic efficiency and binding energy of contacts formed between graphene electrodes and poly-aromatic hydrocarbon (PAH) anchoring groups have been investigated by the non-equilibrium Green’s function formalism combined with density functional theory. Our calculations show that PAH molecules always bind in the interior and at the edge of graphene in the AB stacking manner, and that the binding energy increases following the increase of the number of carbon and hydrogen atoms constituting the PAH molecule. When we move to analyzing the electronic transport properties of molecular junctions with a six-carbon alkyne chain as the central molecule, the electronic efficiency of the graphene-PAH contacts is found to depend on the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the corresponding PAH anchoring group, rather than its size. To be specific, the smaller is the HOMO-LUMO gap of the PAH anchoring group, the higher is the electronic efficiency of the graphene-PAH contact. Although the HOMO-LUMO gap of a PAH molecule depends on its specific configuration, PAH molecules with similar atomic structures show a decreasing trend for their HOMO-LUMO gap as the number of fused benzene rings increases. Therefore, graphene-conjugated molecule-graphene junctions with high-binding and high-conducting graphene-PAH contacts can be realized by choosing appropriate PAH anchor groups with a large area and a small HOMO-LUMO gap.

  16. First-principles investigation on the electronic efficiency and binding energy of the contacts formed by graphene and poly-aromatic hydrocarbon anchoring groups

    KAUST Repository

    Li, Yang; Tu, Xingchen; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2015-01-01

    © 2015 AIP Publishing LLC. The electronic efficiency and binding energy of contacts formed between graphene electrodes and poly-aromatic hydrocarbon (PAH) anchoring groups have been investigated by the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that PAH molecules always bind in the interior and at the edge of graphene in the AB stacking manner, and that the binding energy increases following the increase of the number of carbon and hydrogen atoms constituting the PAH molecule. When we move to analyzing the electronic transport properties of molecular junctions with a six-carbon alkyne chain as the central molecule, the electronic efficiency of the graphene-PAH contacts is found to depend on the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the corresponding PAH anchoring group, rather than its size. To be specific, the smaller is the HOMO-LUMO gap of the PAH anchoring group, the higher is the electronic efficiency of the graphene-PAH contact. Although the HOMO-LUMO gap of a PAH molecule depends on its specific configuration, PAH molecules with similar atomic structures show a decreasing trend for their HOMO-LUMO gap as the number of fused benzene rings increases. Therefore, graphene-conjugated molecule-graphene junctions with high-binding and high-conducting graphene-PAH contacts can be realized by choosing appropriate PAH anchor groups with a large area and a small HOMO-LUMO gap.

  17. Effects of an Intense Laser Field and Hydrostatic Pressure on the Intersubband Transitions and Binding Energy of Shallow Donor Impurities in a Quantum Well

    International Nuclear Information System (INIS)

    Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sökmen, I.

    2011-01-01

    We have calculated the intersubband transitions and the ground-state binding energies of a hydrogenic donor impurity in a quantum well in the presence of a high-frequency laser field and hydrostatic pressure. The calculations are performed within the effective mass approximation, using a variational method. We conclude that the laser field amplitude and the hydrostatic pressure provide an important effect on the electronic and optical properties of the quantum wells. According to the results obtained from the present work, it is deduced that (i) the binding energies of donor impurity decrease as the laser field increase, (ii) the binding energies of donor impurity increase as the hydrostatic pressure increase, (iii) the intersubband absorption coefficients shift toward lower energies as the hydrostatic pressure increases, (iv) the magnitude of absorption coefficients decrease and also shift toward higher energies as the laser field increase. It is hopeful that the obtained results will provide important improvements in device applications. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Energy

    International Nuclear Information System (INIS)

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)