WorldWideScience

Sample records for binding domain protein

  1. Pumilio Puf domain RNA-binding proteins in Arabidopsis

    OpenAIRE

    Abbasi, Nazia; Park, Youn-Il; Choi, Sang-Bong

    2011-01-01

    Pumilio proteins are a class of RNA-binding proteins harboring Puf domains (or PUM-HD; Pumilio-Homology Domain), named after the founding members, Pumilio (from Drosophila melanogaster) and FBF (Fem-3 mRNA-Binding Factor from Caenorhabditis elegans). The domains contain multiple tandem repeats each of which recognizes one RNA base and is comprised of 35–39 amino acids. Puf domain proteins have been reported in organisms ranging from single-celled yeast to higher multicellular eukaryotes, such...

  2. Pumilio Puf domain RNA-binding proteins in Arabidopsis.

    Science.gov (United States)

    Abbasi, Nazia; Park, Youn-Il; Choi, Sang-Bong

    2011-03-01

    Pumilio proteins are a class of RNA-binding proteins harboring Puf domains (or PUM-HD; Pumilio-Homology Domain), named after the founding members, Pumilio (from Drosophila melanogaster) and FBF (Fem-3 mRNA-Binding Factor from Caenorhabditis elegans). The domains contain multiple tandem repeats each of which recognizes one RNA base and is comprised of 35-39 amino acids. Puf domain proteins have been reported in organisms ranging from single-celled yeast to higher multicellular eukaryotes, such as humans and plants. In yeast and animals, they are involved in a variety of posttranscriptional RNA metabolism including RNA decay, RNA transport, rRNA processing and translational repression. However, their roles in plants are largely unknown. Recently, we have characterized the first member of the Puf family of RNA-binding proteins, APUM23, in Arabidopsis. Here, we discuss and summarize the diverse roles and targets of Puf proteins previously reported in other organisms and then highlight the potential regulatory roles of Puf proteins in Arabidopsis, using our recent study as an example. PMID:21350339

  3. Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein

    DEFF Research Database (Denmark)

    Jensen, P Y; Bonander, N; Møller, L B;

    1999-01-01

    We have optimised the overexpression and purification of the N-terminal end of the Menkes disease protein expressed in Escherichia coli, containing one, two and six metal binding domains (MBD), respectively. The domain(s) have been characterised using circular dichroism (CD) and fluorescence spec...

  4. Comparative study of methyl-CpG-binding domain proteins

    Directory of Open Access Journals (Sweden)

    Ropers H Hilger

    2003-01-01

    Full Text Available Abstract Background Methylation at CpG dinucleotides in genomic DNA is a fundamental epigenetic mechanism of gene expression control in vertebrates. Proteins with a methyl-CpG-binding domain (MBD can bind to single methylated CpGs and most of them are involved in transcription control. So far, five vertebrate MBD proteins have been described as MBD family members: MBD1, MBD2, MBD3, MBD4 and MECP2. Results We performed database searches for new proteins containing an MBD and identified six amino acid sequences which are different from the previously described ones. Here we present a comparison of their MBD sequences, additional protein motifs and the expression of the encoding genes. A calculated unrooted dendrogram indicates the existence of at least four different groups of MBDs within these proteins. Two of these polypeptides, KIAA1461 and KIAA1887, were only present as predicted amino acid sequences based on a partial human cDNA. We investigated their expression by Northern blot analysis and found transcripts of ~8 kb and ~5 kb respectively, in all eight normal tissues studied. Conclusions Eleven polypeptides with a MBD could be identified in mouse and man. The analysis of protein domains suggests a role in transcriptional regulation for most of them. The knowledge of additional existing MBD proteins and their expression pattern is important in the context of Rett syndrome.

  5. The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins.

    Science.gov (United States)

    Zamore, P D; Williamson, J R; Lehmann, R

    1997-01-01

    Translation of hunchback(mat) (hb[mat]) mRNA must be repressed in the posterior of the pre-blastoderm Drosophila embryo to permit formation of abdominal segments. This translational repression requires two copies of the Nanos Response Element (NRE), a 16-nt sequence in the hb[mat] 3' untranslated region. Translational repression also requires the action of two proteins: Pumilio (PUM), a sequence-specific RNA-binding protein; and Nanos, a protein that determines the location of repression. Binding of PUM to the NRE is thought to target hb(mat) mRNA for repression. Here, we show the RNA-binding domain of PUM to be an evolutionarily conserved, 334-amino acid region at the carboxy-terminus of the approximately 158-kDa PUM protein. This contiguous region of PUM retains the RNA-binding specificity of full-length PUM protein. Proteins with sequences homologous to the PUM RNA-binding domain are found in animals, plants, and fungi. The high degree of sequence conservation of the PUM RNA-binding domain in other far-flung species suggests that the domain is an ancient protein motif, and we show that conservation of sequence reflects conservation of function: that is, the homologous region from a human protein binds RNA with sequence specificity related to but distinct from Drosophila PUM. PMID:9404893

  6. The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation.

    Science.gov (United States)

    Weidmann, Chase A; Raynard, Nathan A; Blewett, Nathan H; Van Etten, Jamie; Goldstrohm, Aaron C

    2014-08-01

    PUF proteins are potent repressors that serve important roles in stem cell maintenance, neurological processes, and embryonic development. These functions are driven by PUF protein recognition of specific binding sites within the 3' untranslated regions of target mRNAs. In this study, we investigated mechanisms of repression by the founding PUF, Drosophila Pumilio, and its human orthologs. Here, we evaluated a previously proposed model wherein the Pumilio RNA binding domain (RBD) binds Argonaute, which in turn blocks the translational activity of the eukaryotic elongation factor 1A. Surprisingly, we found that Argonautes are not necessary for repression elicited by Drosophila and human PUFs in vivo. A second model proposed that the RBD of Pumilio represses by recruiting deadenylases to shorten the mRNA's polyadenosine tail. Indeed, the RBD binds to the Pop2 deadenylase and accelerates deadenylation; however, this activity is not crucial for regulation. Rather, we determined that the poly(A) is necessary for repression by the RBD. Our results reveal that poly(A)-dependent repression by the RBD requires the poly(A) binding protein, pAbp. Furthermore, we show that repression by the human PUM2 RBD requires the pAbp ortholog, PABPC1. Pumilio associates with pAbp but does not disrupt binding of pAbp to the mRNA. Taken together, our data support a model wherein the Pumilio RBD antagonizes the ability of pAbp to promote translation. Thus, the conserved function of the PUF RBD is to bind specific mRNAs, antagonize pAbp function, and promote deadenylation. PMID:24942623

  7. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.

    Science.gov (United States)

    Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa

    2016-04-01

    The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. PMID:27052731

  8. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains

    DEFF Research Database (Denmark)

    Wilkinson, C R; Seeger, M; Hartmann-Petersen, R; Stone, M; Wallace, M; Semple, C; Gordon, C

    2001-01-01

    The UBA domain is a motif found in a variety of proteins, some of which are associated with the ubiquitin-proteasome system. We describe the isolation of a fission-yeast gene, mud1+, which encodes a UBA domain containing protein that is able to bind multi-ubiquitin chains. We show that the UBA do...

  9. Identification of the Receptor Binding Domain of the Mouse Mammary Tumor Virus Envelope Protein

    OpenAIRE

    Zhang, Yuanming; Rassa, John C.; deObaldia, Maria Elena; Albritton, Lorraine M.; Susan R Ross

    2003-01-01

    Mouse mammary tumor virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse transferrin receptor 1 for cell entry. To characterize the interaction of MMTV with its receptor, we aligned the MMTV envelope surface (SU) protein with that of Friend murine leukemia virus (F-MLV) and identified a putative receptor-binding domain (RBD) that included a receptor binding sequence (RBS) of five amino acids and a heparin-binding domain (HBD). Mutation of the HBD reduced virus infectivity...

  10. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    International Nuclear Information System (INIS)

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions

  11. Comparison of Functional Protein Transduction Domains Using the NEMO Binding Domain Peptide

    Directory of Open Access Journals (Sweden)

    Paul Robbins

    2010-01-01

    Full Text Available Protein transduction domains (PTDs, both naturally occurring and synthetic, have been extensively utilized for intracellular delivery of biologically active molecules both in vitro and in vivo. However, most comparisons of transduction efficiency have been performed using fluorescent markers. To compare efficiency of functional protein transduction, a peptide derived from IkB kinase ß (IKKß that prevents formation of an active IKK complex was used as a biologically active cargo. This peptide, termed NEMO Binding Domain (NBD, is able to block activation of the transcriptional factor NF-κB by IKK, but not basal NF-κB activity. Our results demonstrate that Antp and Tat PTDs were most effective for delivery of NBD for inhibition of NF-kB activation compared to other PTD-NBD in both Hela and 293 cells, however, at higher concentrations (100 µM, the Antp-NBD as well as the FGF-NBD peptide caused significant cellular toxicity. In contrast to the cell culture results, delivery of NBD using 8K (octalysine and 6R (six arginine were the most effect in blocking inflammation following local, footpad delivery in a KLH-induced DTH murine model of inflammatory arthritis. These results demonstrate differences between PTDs for delivery of a functional cargo between cell types.

  12. SLIDE, the Protein Interacting Domain of Imitation Switch Remodelers, Binds DDT-Domain Proteins of Different Subfamilies in Chromatin Remodeling Complexes

    Institute of Scientific and Technical Information of China (English)

    Jiaqiang Dong; Zheng Gao; Shujing Liu; Guang Li; Zhongnan Yang; Hai Huang; Lin Xu

    2013-01-01

    The Imitation Switch (ISWI) type adenosine triphosphate (ATP)-dependent chromatin remodeling factors are conserved proteins in eukaryotes, and some of them are known to form stable remodeling complexes with members from a family of proteins, termed DDT-domain proteins. Although it is well documented that ISWIs play important roles in different biological processes in many eukaryotic species, the molecular basis for protein interactions in ISWI complexes has not been fully addressed. Here, we report the identification of interaction domains for both ISWI and DDT-domain proteins. By analyzing CHROMATIN REMODELING11 (CHR11) and RINGLET1 (RLT1), an Arabidopsis thaliana ISWI (AtISWI) and AtDDT-domain protein, respectively, we show that the SLIDE domain of CHR11 and the DDT domain together with an adjacent sequence of RLT1 are responsible for their binding. The Arabidopsis genome contains at least 12 genes that encode DDT-domain proteins, which could be grouped into five subfamilies based on the sequence similarity. The SLIDE domain of AtISWI is able to bind members from different AtDDT subfamilies. Moreover, a human ISWI protein SNF2H is capable of binding AtDDT-domain proteins through its SLIDE domain, suggesting that binding to DDT-domain proteins is a conserved biochemical function for the SLIDE domain of ISWIs in eukaryotes.

  13. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  14. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains.

    OpenAIRE

    Vallee, B L; Coleman, J E; Auld, D S

    1991-01-01

    We now recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have be...

  15. Calmodulin-binding domains in Alzheimer's disease proteins: extending the calcium hypothesis.

    Science.gov (United States)

    O'Day, Danton H; Myre, Michael A

    2004-08-01

    The calcium hypothesis of Alzheimer's disease (AD) invokes the disruption of calcium signaling as the underlying cause of neuronal dysfunction and ultimately apoptosis. As a primary calcium signal transducer, calmodulin (CaM) responds to cytosolic calcium fluxes by binding to and regulating the activity of target CaM-binding proteins (CaMBPs). Ca(2+)-dependent CaMBPs primarily contain domains (CaMBDs) that can be classified into motifs based upon variations on the basic amphiphilic alpha-helix domain involving conserved hydrophobic residues at positions 1-10, 1-14 or 1-16. In contrast, an IQ or IQ-like domain often mediates Ca(2+)-independent CaM-binding. Based on these attributes, a search for CaMBDs reveals that many of the proteins intimately linked to AD may be calmodulin-binding proteins, opening new avenues for research on this devastating disease. PMID:15249195

  16. The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.; Gomes Guimaraes, B.

    2008-01-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstroms resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.

  17. IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Miles J.; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R.; van Aalten, Daan M.F.; Downes, C. Peter; Batty, Ian H. (Toronto); (Dundee)

    2012-10-16

    Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.

  18. Ligand-Binding Properties of the Carboxyl-Terminal Repeat Domain of Streptococcus mutans Glucan-Binding Protein A

    OpenAIRE

    Haas, Wolfgang; Banas, Jeffrey A.

    2000-01-01

    Streptococcus mutans glucan-binding protein A (GbpA) has sequence similarity in its carboxyl-terminal domain with glucosyltransferases (GTFs), the enzymes responsible for catalyzing the synthesis of the glucans to which GbpA and GTFs can bind and which promote S. mutans attachment to and accumulation on the tooth surface. It was predicted that this C-terminal region, comprised of what have been termed YG repeats, represents the GbpA glucan-binding domain (GBD). In an effort to test this hypot...

  19. Characterisation of the DNA binding domain of the yeast RAP1 protein

    OpenAIRE

    Henry, Y A; Chambers, A.; Tsang, J S; Kingsman, A J; Kingsman, S M

    1990-01-01

    The 827 amino acid yeast RAP1 protein interacts with DNA to regulate gene expression at numerous unrelated loci in the yeast genome. By a combination of amino, carboxy and internal deletions, we have defined an internal 235 amino acid fragment of the yeast RAP1 protein that can bind efficiently to the RAP1 binding site of the PGK Upstream Activation Sequence (UAS). This domain spans residues 361 to 596 of the full length protein and lacks any homology to the DNA binding 'zinc finger' or 'heli...

  20. Inhibition of HIV derived lentiviral production by TAR RNA binding domain of TAT protein

    Directory of Open Access Journals (Sweden)

    He Yukai

    2005-11-01

    Full Text Available Abstract Background A critical step in the production of new HIV virions involves the TAT protein binding to the TAR element. The TAT protein contains in close proximity its TAR RNA binding domain and protein transduction domain (PTD. The PTD domain of TAT has been identified as being instrumental in the protein's ability to cross mammalian cell and nuclear membranes. All together, this information led us to form the hypothesis that a protein containing the TAR RNA binding domain could compete with the native full length TAT protein and effectively block the TAR RNA binding site in transduced HIV infected cells. Results We synthesized a short peptide named Tat-P, which contained the TAR RNA binding and PTD domains to examine whether the peptide has the potential of inhibiting TAT dependent HIV replication. We investigated the inhibiting effects of Tat-P in vitro using a HIV derived lentiviral vector model. We found that the TAT PTD domain not only efficiently transduced test cells, but also effectively inhibited the production of lentiviral particles in a TAT dependent manner. These results were also supported by data derived from the TAT activated LTR-luciferase expression model and RNA binding assays. Conclusion Tat-P may become part of a category of anti-HIV drugs that competes with full length TAT proteins to inhibit HIV replication. In addition, this study indicates that the HIV derived lentiviral vector system is a safe and reliable screening method for anti-HIV drugs, especially for those targeting the interaction of TAT and TAR RNAs.

  1. Insights from the crystal structure of the sixth BRCT domain of topoisomerase IIβ binding protein 1

    OpenAIRE

    Leung, Charles Chung Yun; Kellogg, Elizabeth; Kuhnert, Anja; Hänel, Frank; Baker, David; Glover, J N Mark

    2009-01-01

    Topoisomerase IIβ binding protein 1 (TopBP1) is a major player in the DNA damage response and interacts with a number of protein partners via its eight BRCA1 carboxy-terminal (BRCT) domains. In particular, the sixth BRCT domain of TopBP1 has been implicated in binding to the phosphorylated transcription factor, E2F1, and poly(ADP-ribose) polymerase 1 (PARP-1), where the latter interaction is responsible for the poly(ADP-ribosyl)ation of TopBP1. To gain a better understanding of the nature of ...

  2. Comparison of Functional Protein Transduction Domains Using the NEMO Binding Domain Peptide

    OpenAIRE

    Paul Robbins; Khaleel Khaja

    2010-01-01

    Protein transduction domains (PTDs), both naturally occurring and synthetic, have been extensively utilized for intracellular delivery of biologically active molecules both in vitro and in vivo. However, most comparisons of transduction efficiency have been performed using fluorescent markers. To compare efficiency of functional protein transduction, a peptide derived from IkB kinase ß (IKKß) that prevents formation of an active IKK complex was used as a biologically active cargo. This peptid...

  3. Structure of the caspase-recruitment domain from a zebrafish guanylate-binding protein

    International Nuclear Information System (INIS)

    The crystal structure of the first zebrafish caspase-recruitment domain at 1.47 Å resolution illustrates a six-helix bundle fold similar to that of the human NLRP1 CARD. The caspase-recruitment domain (CARD) mediates homotypic protein–protein interactions that assemble large oligomeric signaling complexes such as the inflammasomes during innate immune responses. Structural studies of the mammalian CARDs demonstrate that their six-helix bundle folds belong to the death-domain superfamily, whereas such studies have not been reported for other organisms. Here, the zebrafish interferon-induced guanylate-binding protein 1 (zIGBP1) was identified that contains an N-terminal GTPase domain and a helical domain typical of the mammalian guanylate-binding proteins, followed by a FIIND domain and a C-terminal CARD similar to the mammalian inflammasome proteins NLRP1 and CARD8. The structure of the zIGBP1 CARD as a fusion with maltose-binding protein was determined at 1.47 Å resolution. This revealed a six-helix bundle fold similar to the NLRP1 CARD structure with the bent α1 helix typical of all known CARD structures. The zIGBP1 CARD surface contains a positively charged patch near its α1 and α4 helices and a negatively charged patch near its α2, α3 and α5 helices, which may mediate its interaction with partner domains. Further studies using binding assays and other analyses will be required in order to address the physiological function(s) of this zebrafish protein

  4. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens

    Energy Technology Data Exchange (ETDEWEB)

    Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N. (UW)

    2012-03-15

    The thanatos (the Greek god of death)-associated protein (THAP) domain is a sequence-specific DNA-binding domain that contains a C2-CH (Cys-Xaa{sub 2-4}-Cys-Xaa{sub 35-50}-Cys-Xaa{sub 2}-His) zinc finger that is similar to the DNA domain of the P element transposase from Drosophila. THAP-containing proteins have been observed in the proteome of humans, pigs, cows, chickens, zebrafish, Drosophila, C. elegans, and Xenopus. To date, there are no known THAP domain proteins in plants, yeast, or bacteria. There are 12 identified human THAP domain-containing proteins (THAP0-11). In all human THAP protein, the THAP domain is located at the N-terminus and is {approx}90 residues in length. Although all of the human THAP-containing proteins have a homologous N-terminus, there is extensive variation in both the predicted structure and length of the remaining protein. Even though the exact function of these THAP proteins is not well defined, there is evidence that they play a role in cell proliferation, apoptosis, cell cycle modulation, chromatin modification, and transcriptional regulation. THAP-containing proteins have also been implicated in a number of human disease states including heart disease, neurological defects, and several types of cancers. Human THAP4 is a 577-residue protein of unknown function that is proposed to bind DNA in a sequence-specific manner similar to THAP1 and has been found to be upregulated in response to heat shock. THAP4 is expressed in a relatively uniform manner in a broad range of tissues and appears to be upregulated in lymphoma cells and highly expressed in heart cells. The C-terminal domain of THAP4 (residues 415-577), designated here as cTHAP4, is evolutionarily conserved and is observed in all known THAP4 orthologs. Several single-domain proteins lacking a THAP domain are found in plants and bacteria and show significant levels of homology to cTHAP4. It appears that cTHAP4 belongs to a large class of proteins that have yet to be fully

  5. Engineered staphylococcal protein A's IgG-binding domain with cathepsin L inhibitory activity

    International Nuclear Information System (INIS)

    Inhibitory peptide of papain-like cysteine proteases, affinity selected from a random disulfide constrained phage-displayed peptide library, was grafted to staphylococcal protein A's B domain. Scaffold protein was additionally modified in order to allow solvent exposed display of peptide loop. Correct folding of fusion proteins was confirmed by CD-spectroscopy and by the ability to bind the Fc-region of rabbit IgG, a characteristic of parent domain. The recombinant constructs inhibited cathepsin L with inhibitory constants in the low-micromolar range

  6. The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein

    Directory of Open Access Journals (Sweden)

    Coetzer Theresa L

    2006-11-01

    Full Text Available Abstract Background Erythrocyte invasion by Plasmodium falciparum parasites represents a key mechanism during malaria pathogenesis. Erythrocyte binding antigen-181 (EBA-181 is an important invasion protein, which mediates a unique host cell entry pathway. A novel interaction between EBA-181 and human erythrocyte membrane protein 4.1 (4.1R was recently demonstrated using phage display technology. In the current study, recombinant proteins were utilized to define and characterize the precise molecular interaction between the two proteins. Methods 4.1R structural domains (30, 16, 10 and 22 kDa domain and the 4.1R binding region in EBA-181 were synthesized in specific Escherichia coli strains as recombinant proteins and purified using magnetic bead technology. Recombinant proteins were subsequently used in blot-overlay and histidine pull-down assays to determine the binding domain in 4.1R. Results Blot overlay and histidine pull-down experiments revealed specific interaction between the 10 kDa domain of 4.1R and EBA-181. Binding was concentration dependent as well as saturable and was abolished by heat denaturation of 4.1R. Conclusion The interaction of EBA-181 with the highly conserved 10 kDa domain of 4.1R provides new insight into the molecular mechanisms utilized by P. falciparum during erythrocyte entry. The results highlight the potential multifunctional role of malaria invasion proteins, which may contribute to the success of the pathogenic stage of the parasite's life cycle.

  7. The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation

    OpenAIRE

    Weidmann, Chase A.; Raynard, Nathan A.; Blewett, Nathan H.; Van Etten, Jamie; Goldstrohm, Aaron C.

    2014-01-01

    This article analyzes the mechanism by which Pumilio represses the translation of its targets. The results show, rather surprisingly, that promotion of deadenylation is not required for expression. Instead, Pumilio interacts with poly(A) binding protein and somehow interferes with its activity.

  8. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module

    DEFF Research Database (Denmark)

    Salcini, A E; Confalonieri, S; Doria, M;

    1997-01-01

    EH is a recently identified protein-protein interaction domain found in the signal transducers Eps15 and Eps15R and several other proteins of yeast nematode. We show that EH domains from Eps15 and Eps15R bind in vitro to peptides containing an asparagine-proline-phenylalanine (NPF) motif. Direct...... screening of expression libraries with EH domains yielded a number of putative EH interactors, all of which possessed NPF motifs that were shown to be responsible for the interaction. Among these interactors were the human homolog of NUMB, a developmentally reguated gene of Drosophila, and RAB, the cellular...... cofactor of the HIV REV protein. We demonstrated coimmunoprecipitation of Eps15 with NUMB and RAB. Finally, in vitro binding of NPF-containing peptides to cellular proteins and EST database screening established the existence of a family of EH-containing proteins in mammals. Based on the characteristics of...

  9. A Novel Kinesin-Like Protein with a Calmodulin-Binding Domain

    Science.gov (United States)

    Wang, W.; Takezawa, D.; Narasimhulu, S. B.; Reddy, A. S. N.; Poovaiah, B. W.

    1996-01-01

    Calcium regulates diverse developmental processes in plants through the action of calmodulin. A cDNA expression library from developing anthers of tobacco was screened with S-35-labeled calmodulin to isolate cDNAs encoding calmodulin-binding proteins. Among several clones isolated, a kinesin-like gene (TCK1) that encodes a calmodulin-binding kinesin-like protein was obtained. The TCK1 cDNA encodes a protein with 1265 amino acid residues. Its structural features are very similar to those of known kinesin heavy chains and kinesin-like proteins from plants and animals, with one distinct exception. Unlike other known kinesin-like proteins, TCK1 contains a calmodulin-binding domain which distinguishes it from all other known kinesin genes. Escherichia coli-expressed TCK1 binds calmodulin in a Ca(2+)-dependent manner. In addition to the presence of a calmodulin-binding domain at the carboxyl terminal, it also has a leucine zipper motif in the stalk region. The amino acid sequence at the carboxyl terminal of TCK1 has striking homology with the mechanochemical motor domain of kinesins. The motor domain has ATPase activity that is stimulated by microtubules. Southern blot analysis revealed that TCK1 is coded by a single gene. Expression studies indicated that TCKI is expressed in all of the tissues tested. Its expression is highest in the stigma and anther, especially during the early stages of anther development. Our results suggest that Ca(2+)/calmodulin may play an important role in the function of this microtubule-associated motor protein and may be involved in the regulation of microtubule-based intracellular transport.

  10. Ligand-binding properties of the carboxyl-terminal repeat domain of Streptococcus mutans glucan-binding protein A.

    Science.gov (United States)

    Haas, W; Banas, J A

    2000-02-01

    Streptococcus mutans glucan-binding protein A (GbpA) has sequence similarity in its carboxyl-terminal domain with glucosyltransferases (GTFs), the enzymes responsible for catalyzing the synthesis of the glucans to which GbpA and GTFs can bind and which promote S. mutans attachment to and accumulation on the tooth surface. It was predicted that this C-terminal region, comprised of what have been termed YG repeats, represents the GbpA glucan-binding domain (GBD). In an effort to test this hypothesis and to quantitate the ligand-binding specificities of the GbpA GBD, several fusion proteins were generated and tested by affinity electrophoresis or by precipitation of protein-ligand complexes, allowing the determination of binding constants. It was determined that the 16 YG repeats in GbpA comprise its GBD and that GbpA has a greater affinity for dextran (a water-soluble form of glucan) than for mutan (a water-insoluble form of glucan). Placement of the GBD at the carboxyl terminus was necessary for maximum glucan binding, and deletion of as few as two YG repeats from either end of the GBD reduced the affinity for dextran by over 10-fold. Interestingly, the binding constant of GbpA for dextran was 34-fold higher than that calculated for the GBDs of two S. mutans GTFs, one of which catalyzes the synthesis of water-soluble glucan and the other of which catalyzes the synthesis of water-insoluble glucan. PMID:10633107

  11. Structure of Alzheimer’s disease amyloid precursor protein copper-binding domain at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Geoffrey Kwai-Wai; Adams, Julian J. [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Cappai, Roberto [Department of Pathology and Centre for Neuroscience, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia); Parker, Michael W., E-mail: mparker@svi.edu.au [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia)

    2007-10-01

    An atomic resolution structure of the copper-binding domain of the Alzheimer’s disease amyloid precursor protein is presented. Amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer’s disease, as its cleavage generates the Aβ peptide that is toxic to cells. APP is able to bind Cu{sup 2+} and reduce it to Cu{sup +} through its copper-binding domain (CuBD). The interaction between Cu{sup 2+} and APP leads to a decrease in Aβ production and to alleviation of the symptoms of the disease in mouse models. Structural studies of CuBD have been undertaken in order to better understand the mechanism behind the process. Here, the crystal structure of CuBD in the metal-free form determined to ultrahigh resolution (0.85 Å) is reported. The structure shows that the copper-binding residues of CuBD are rather rigid but that Met170, which is thought to be the electron source for Cu{sup 2+} reduction, adopts two different side-chain conformations. These observations shed light on the copper-binding and redox mechanisms of CuBD. The structure of CuBD at atomic resolution provides an accurate framework for structure-based design of molecules that will deplete Aβ production.

  12. Structure of Alzheimer’s disease amyloid precursor protein copper-binding domain at atomic resolution

    International Nuclear Information System (INIS)

    An atomic resolution structure of the copper-binding domain of the Alzheimer’s disease amyloid precursor protein is presented. Amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer’s disease, as its cleavage generates the Aβ peptide that is toxic to cells. APP is able to bind Cu2+ and reduce it to Cu+ through its copper-binding domain (CuBD). The interaction between Cu2+ and APP leads to a decrease in Aβ production and to alleviation of the symptoms of the disease in mouse models. Structural studies of CuBD have been undertaken in order to better understand the mechanism behind the process. Here, the crystal structure of CuBD in the metal-free form determined to ultrahigh resolution (0.85 Å) is reported. The structure shows that the copper-binding residues of CuBD are rather rigid but that Met170, which is thought to be the electron source for Cu2+ reduction, adopts two different side-chain conformations. These observations shed light on the copper-binding and redox mechanisms of CuBD. The structure of CuBD at atomic resolution provides an accurate framework for structure-based design of molecules that will deplete Aβ production

  13. Recognition of methylated DNA through methyl-CpG binding domain proteins

    DEFF Research Database (Denmark)

    Zou, Xueqing; Ma, Wen; Solov'yov, Ilia;

    2012-01-01

    DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although the...... function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD-mDNA interface by two MBD arginines...... through an interplay of hydrogen bonding and cation-p interaction. Through molecular dynamics and quantum-chemistry calculations we investigate the methyl-cytosine recognition process and demonstrate that methylation enhances MBD-mDNA binding by increasing the hydrophobic interfacial area and by...

  14. Cloning, expression, purification and preliminary crystallographic analysis of the RNase HI domain of the Mycobacterium tuberculosis protein Rv2228c as a maltose-binding protein fusion

    OpenAIRE

    Watkins, Harriet A.; Baker, Edward N.

    2008-01-01

    The ribonuclease HI domain of a bifunctional protein Rv2228c-CobC from M. tuberculosis has been crystallized as a fusion protein with maltose-binding protein in a form suitable for high-resolution crystallographic analysis.

  15. Identification of the Receptor Binding Domain of the Mouse Mammary Tumor Virus Envelope Protein

    Science.gov (United States)

    Zhang, Yuanming; Rassa, John C.; deObaldia, Maria Elena; Albritton, Lorraine M.; Ross, Susan R.

    2003-01-01

    Mouse mammary tumor virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse transferrin receptor 1 for cell entry. To characterize the interaction of MMTV with its receptor, we aligned the MMTV envelope surface (SU) protein with that of Friend murine leukemia virus (F-MLV) and identified a putative receptor-binding domain (RBD) that included a receptor binding sequence (RBS) of five amino acids and a heparin-binding domain (HBD). Mutation of the HBD reduced virus infectivity, and soluble heparan sulfate blocked infection of cells by wild-type pseudovirus. Interestingly, some but not all MMTV-like elements found in primary and cultured human breast cancer cell lines, termed h-MTVs, had sequence alterations in the putative RBS. Single substitution of one of the amino acids found in an h-MTV RBS variant in the RBD of MMTV, Phe40 to Ser, did not alter species tropism but abolished both virus binding to cells and infectivity. Neutralizing anti-SU monoclonal antibodies also recognized a glutathione S-transferase fusion protein that contained the five-amino-acid RBS region from MMTV. The critical Phe40 residue is located on a surface of the MMTV RBD model that is distant from and may be structurally more rigid than the region of F-MLV RBD that contains its critical binding site residues. This suggests that, in contrast to other murine retroviruses, binding to its receptor may result in few or no changes in MMTV envelope protein conformation. PMID:12970432

  16. Ultrafast differential flexibility of Cro-protein binding domains of two operator DNAs with different sequences.

    Science.gov (United States)

    Choudhury, Susobhan; Ghosh, Basusree; Singh, Priya; Ghosh, Raka; Roy, Siddhartha; Pal, Samir Kumar

    2016-07-21

    The nature of the interface of specific protein-DNA complexes has attracted immense interest in contemporary molecular biology. Although extensive studies on the role of flexibility of DNA in the specific interaction in the genetic regulatory activity of lambda Cro (Cro-protein) have been performed, the exploration of quantitative features remains deficient. In this study, we have mutated (site directed mutagenesis: SDM) Cro-protein at the 37th position with a cysteine residue (G37C) retaining the functional integrity of the protein and labelled the cysteine residue, which is close to the interface, with a fluorescent probe (AEDANS), for the investigation of its interface with operator DNAs (OR3 and OR2). We have employed picosecond resolved polarization gated fluorescence spectroscopy and the well known strategy of solvation dynamics for the exploration of physical motions of the fluorescent probes and associated environments, respectively. Even though this particular probe on the protein (AEDANS) shows marginal changes in its structural flexibility upon interaction with the DNAs, a non-covalent DNA bound probe (DAPI), which binds to the minor groove, shows a major differential alteration in the dynamical flexibility in the OR3-Cro complex when compared to that of the OR2 complex with the Cro-protein. We attempt to correlate the observed significant structural fluctuation of the Cro-protein binding domain of OR3 for the specificity of the protein to the operator DNA. PMID:27326896

  17. Theory on thermodynamic coupling of site-specific DNA–protein interactions with fluctuations in DNA-binding domains

    International Nuclear Information System (INIS)

    DNA-binding proteins recognize their cognate sites on the template DNA more efficiently when the thermally driven flipping of their DNA-binding domains between the fast- and slow-moving conformations is coupled to the search dynamics. We show that there exists an optimum barrier height (∼kBT ln2) that separates these fast- and slow-moving states of DNA-binding domains, at which the efficiency associated with the thermodynamic coupling of thermally driven flipping and the overall search dynamics is the maximum. Furthermore, the dynamics of DNA-binding domains resembles that of typical downhill folding proteins at their midpoint denaturation temperatures. We further show that the average one-dimensional scanning lengths of slow- and fast-moving states of DNA-binding domains of LacI repressor protein are tuned to minimize the overall search time that is required to locate its cognate sites on DNA. (paper)

  18. Theory on thermodynamic coupling of site-specific DNA-protein interactions with fluctuations in DNA-binding domains

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, R, E-mail: rmurugan@gmail.com [Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India)

    2011-12-16

    DNA-binding proteins recognize their cognate sites on the template DNA more efficiently when the thermally driven flipping of their DNA-binding domains between the fast- and slow-moving conformations is coupled to the search dynamics. We show that there exists an optimum barrier height ({approx}k{sub B}T ln2) that separates these fast- and slow-moving states of DNA-binding domains, at which the efficiency associated with the thermodynamic coupling of thermally driven flipping and the overall search dynamics is the maximum. Furthermore, the dynamics of DNA-binding domains resembles that of typical downhill folding proteins at their midpoint denaturation temperatures. We further show that the average one-dimensional scanning lengths of slow- and fast-moving states of DNA-binding domains of LacI repressor protein are tuned to minimize the overall search time that is required to locate its cognate sites on DNA. (paper)

  19. In vivo threonine phosphorylation of immunoglobulin binding protein (BiP) maps to its protein binding domain

    OpenAIRE

    Gaut, James R.

    1997-01-01

    lmmunoglobin binding protein (BiP) molecules exist as both monomers and oligomers and phosphorylated BiP is restricted to the oligomeric pool. Modified BiP is not bound to proteins such as immunoglobulin heavy chain and consequently, may constitute an inactive form. Unlike earlier analysis of mammalian BiP isolated by two-dimensional gel electrophoresis, results here demonstrated that immunoprecipitated BiP displayed predominantly threonine phosphorylation with only a trace of detectable phos...

  20. From keys to bulldozers: expanding roles for winged helix domains in nucleic-acid-binding proteins.

    Science.gov (United States)

    Harami, Gábor M; Gyimesi, Máté; Kovács, Mihály

    2013-07-01

    The winged helix domain (WHD) is a widespread nucleic-acid-binding protein structural element found in all kingdoms of life. Although the overall structure of the WHD is conserved, its functional properties and interaction profiles are extremely versatile. WHD-containing proteins can exploit nearly the full spectrum of nucleic acid structural features for recognition and even covalent modification or noncovalent rearrangement of target molecules. WHD functions range from sequence-recognizing keys in transcription factors and bulldozer-like strand-separating wedges in helicases to mediators of protein-protein interactions (PPIs). Further investigations are needed to understand the contribution of WHD structural dynamics to nucleic-acid-modifying enzymatic functions. PMID:23768997

  1. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family

    Directory of Open Access Journals (Sweden)

    Shchelkunov Sergei N

    2010-10-01

    Full Text Available Abstract Background Variola virus (VARV the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. Findings De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Conclusions Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  2. Mutations in the RNA Binding Domain of Stem-Loop Binding Protein Define Separable Requirements for RNA Binding and for Histone Pre-mRNA Processing

    OpenAIRE

    Dominski, Zbigniew; Erkmann, Judith A.; Greenland, John A.; Marzluff, William F

    2001-01-01

    Expression of replication-dependent histone genes at the posttranscriptional level is controlled by stem-loop binding protein (SLBP). One function of SLBP is to bind the stem-loop structure in the 3′ untranslated region of histone pre-mRNAs and facilitate 3′ end processing. Interaction of SLBP with the stem-loop is mediated by the centrally located RNA binding domain (RBD). Here we identify several highly conserved amino acids in the RBD mutation of which results in complete or substantial lo...

  3. The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins.

    OpenAIRE

    Zamore, P. D.; Williamson, J R; Lehmann, R.

    1997-01-01

    Translation of hunchback(mat) (hb[mat]) mRNA must be repressed in the posterior of the pre-blastoderm Drosophila embryo to permit formation of abdominal segments. This translational repression requires two copies of the Nanos Response Element (NRE), a 16-nt sequence in the hb[mat] 3' untranslated region. Translational repression also requires the action of two proteins: Pumilio (PUM), a sequence-specific RNA-binding protein; and Nanos, a protein that determines the location of repression. Bin...

  4. Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain

    DEFF Research Database (Denmark)

    Jensen, R B; Lykke-Andersen, K; Frandsen, G I;

    2000-01-01

    and plasma membrane marker proteins. ZAC membrane association was confirmed in assays by a fusion between ZAC and the green fluorescence protein and prompted an analysis of the in vitro phospholipid-binding ability of ZAC. Phospholipid dot-blot and liposome-binding assays indicated that fusion proteins......Arabidopsis proteins were predicted which share an 80 residue zinc finger domain known from ADP-ribosylation factor GTPase-activating proteins (ARF GAPs). One of these is a 37 kDa protein, designated ZAC, which has a novel domain structure in which the N-terminal ARF GAP domain and a C-terminal C2...... domain are separated by a region without homology to other known proteins. Zac promoter/beta-glucuronidase reporter assays revealed highest expression levels in flowering tissue, rosettes and roots. ZAC protein was immuno-detected mainly in association with membranes and fractionated with Golgi...

  5. Does 14-3-3 protein affect conformation FoxO4 DNA-binding domain?

    Czech Academy of Sciences Publication Activity Database

    Šilhán, Jan; Bouřa, Evžen; Vácha, Pavel; Herman, P.; Večeř, J.; Obšil, Tomáš

    2007-01-01

    Roč. 102, Suppl.1 (2007), s. 276-276. ISSN 0022-3042. [Biennial meeting of the International Society for Neurochemistry /21./ and Annual meeting of the American Society for Neurochemistry /38./. 19.08.2007-24.08.2007, Cancun] R&D Projects: GA ČR(CZ) GA204/06/0565; GA MŠk(CZ) LC554; GA AV ČR(CZ) KJB500110601 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * FoxO4 DNA-Binding-Domain * 14-3-3 protein * molecular anvil Subject RIV: BO - Biophysics

  6. A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution

    DEFF Research Database (Denmark)

    Wong, W T; Schumacher, C; Salcini, A E;

    1995-01-01

    In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several heteroge......In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several...... heterogeneous proteins of yeast and nematode. The EH domain spans about 70 amino acids and shows approximately 60% overall amino acid conservation. We demonstrated the ability of the EH domain to specifically bind cytosolic proteins in normal and malignant cells of mesenchymal, epithelial, and hematopoietic...... origin. These observations prompted our search for additional EH-containing proteins in mammalian cells. Using an EH domain-specific probe derived from the eps15 cDNA, we cloned and characterized a cDNA encoding an EH-containing protein with overall similarity to Eps15; we designated this protein Eps15r...

  7. RNA-binding Domain of the Key Structural Protein P7 for the Rice dwarf virus Particle Assembly

    Institute of Scientific and Technical Information of China (English)

    Bo-Xiong ZHONG; Yan-Wei SHEN; Toshihiro OMURA

    2005-01-01

    The Rice dwarf virus (RDV) P7 structural protein is the key protein in the RDV particle assembly. The P7 protein was digested partially or completely by Staphylococcus aureus V8 protease and/or Pseudomonas fragi Asp-N protease. The molecular mass and the N-terminal amino acid sequence of the polypeptide fragments of the P7 protein were determined by SDS-PAGE and the Edman degradation method,respectively. Then the polypeptides were located in the deduced amino acid sequence of the RDV P7 protein based on the nucleotide sequence information, with the knowledge of the specific cleavage sites of the Staphylococcus aureus V8 and Pseudomonasfragi Asp-N protease, and the two RNA-binding domains in the P7 protein were identified. Domain 1 was located in the residue 128-249 containing 122 amino acids and domain 2 was located in the residue 325-355 containing 31 amino acids. Thus, these two domains may play an important role in the virus particle assembly by contributing to the packaging of viral dsRNAs inside the particles. The two domains may be novel RNA-binding domains, because no amino acid sequences highly similar to the conservative sequences of known dsRNA-binding domains reported so far. The similarity between the motif of domain 1 and the motif of the DNA-binding protein suggests that the DNA-binding activity of the RDV P7 protein may be due to this sequence. The similarity between the motif of domain 1 and the motif of the RNA polymerase domain suggests that the P7 protein may also play a role in RNA synthesis,besides its function in the assembly and subsequent packaging of viral dsRNA into core particles.

  8. Deletion mutagenesis of the Escherichia coli UvrA protein localizes domains for DNA binding, damage recognition, and protein-protein interactions

    International Nuclear Information System (INIS)

    The UvrA protein is the DNA binding and damage recognition subunit of the damage-specific UvrABC endonuclease. In addition, it is an ATPase/GTPase, and the binding energy of ATP is linked to dimerization of the UvrA protein. Furthermore, the UvrA protein interacts with the UvrB protein to modulate its activities, both in solution and in association with DNA, where the UvrAB complex possesses a helicase activity. The domains of the UvrA protein that sponsor each of these activities were localized within the protein by studying the in vitro properties of a set of purified deletion mutants of the UvrA protein. A region located within the first 230 amino acids was found to contain the minimal region necessary for interactions with UvrB, the UvrA dimerization interface was localized to within the first 680 amino acids, and the DNA binding domain lies within the first 900 amino acids of the 940-amino acid UvrA protein. Two damage recognition domains were detected. The first domain, which coincides with the DNA binding region, is required to detect the damage. The second domain, located on or near the C-terminal 40 amino acids, stabilizes the protein-DNA complex when damage is encountered

  9. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    International Nuclear Information System (INIS)

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X4-Cys-X4-Cys-X28-Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two α-helicies.

  10. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    Energy Technology Data Exchange (ETDEWEB)

    Lemak, Alexander; Yee, Adelinda [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada); Bezsonova, Irina, E-mail: bezsonova@uchc.edu [University of Connecticut Health Center, Department of Molecular Microbial and Structural Biology (United States); Dhe-Paganon, Sirano, E-mail: sirano.dhepaganon@utoronto.ca [University of Toronto, Structural Genomics Consortium (Canada); Arrowsmith, Cheryl H., E-mail: carrow@uhnresearch.ca [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada)

    2011-09-15

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X{sub 4}-Cys-X{sub 4}-Cys-X{sub 28}-Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two {alpha}-helicies.

  11. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain

    International Nuclear Information System (INIS)

    The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization

  12. Dictyostelium calcium-binding protein 4a interacts with nucleomorphin, a BRCT-domain protein that regulates nuclear number

    International Nuclear Information System (INIS)

    Nucleomorphin from Dictyostelium discoideum is a nuclear calmodulin-binding protein that is a member of the BRCT-domain containing cell cycle checkpoint proteins. Two differentially expressed isoforms, NumA and NumB, share an extensive acidic domain (DEED) that when deleted produces highly multinucleated cells. We performed a yeast two-hybrid screen of a Dictyostelium cDNA library using NumA as bait. Here we show that nucleomorphin interacts with calcium-binding protein 4a (CBP4a) in a Ca2+-dependent manner. Further deletion analysis suggests this interaction requires residues found within the DEED domain. NumA and CBP4a mRNAs are expressed at the same stages of development. CBP4a belongs to a large family of Dictyostelium CBPs, for which no cellular or developmental functions had previously been determined. Since the interaction of CBP4a with nucleomorphin requires the DEED domain, this suggests that CBP4a may respond to Ca2+-signalling through modulating factors that might function in concert to regulate nuclear number

  13. Dictyostelium calcium-binding protein 4a interacts with nucleomorphin, a BRCT-domain protein that regulates nuclear number.

    Science.gov (United States)

    Myre, Michael A; O'Day, Danton H

    2004-09-17

    Nucleomorphin from Dictyostelium discoideum is a nuclear calmodulin-binding protein that is a member of the BRCT-domain containing cell cycle checkpoint proteins. Two differentially expressed isoforms, NumA and NumB, share an extensive acidic domain (DEED) that when deleted produces highly multinucleated cells. We performed a yeast two-hybrid screen of a Dictyostelium cDNA library using NumA as bait. Here we show that nucleomorphin interacts with calcium-binding protein 4a (CBP4a) in a Ca(2+)-dependent manner. Further deletion analysis suggests this interaction requires residues found within the DEED domain. NumA and CBP4a mRNAs are expressed at the same stages of development. CBP4a belongs to a large family of Dictyostelium CBPs, for which no cellular or developmental functions had previously been determined. Since the interaction of CBP4a with nucleomorphin requires the DEED domain, this suggests that CBP4a may respond to Ca(2+)-signalling through modulating factors that might function in concert to regulate nuclear number. PMID:15325281

  14. Chimeric Plant Calcium/Calmodulin-Dependent Protein Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain

    Science.gov (United States)

    Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.

    1995-01-01

    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.

  15. Solution structure and peptide binding of the PTB domain from the AIDA1 postsynaptic signaling scaffolding protein.

    Directory of Open Access Journals (Sweden)

    Ekaterina Smirnova

    Full Text Available AIDA1 links persistent chemical signaling events occurring at the neuronal synapse with global changes in gene expression. Consistent with its role as a scaffolding protein, AIDA1 is composed of several protein-protein interaction domains. Here we report the NMR structure of the carboxy terminally located phosphotyrosine binding domain (PTB that is common to all AIDA1 splice variants. A comprehensive survey of peptides identified a consensus sequence around an NxxY motif that is shared by a number of related neuronal signaling proteins. Using peptide arrays and fluorescence based assays, we determined that the AIDA1 PTB domain binds amyloid protein precursor (APP in a similar manner to the X11/Mint PTB domain, albeit at reduced affinity (∼10 µM that may allow AIDA1 to effectively sample APP, as well as other protein partners in a variety of cellular contexts.

  16. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site.

    Science.gov (United States)

    Kadamur, Ganesh; Ross, Elliott M

    2016-05-20

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. PMID:27002154

  17. Computational characterization of the mutation impact on domain C5 of Myosin Binding Protein C

    Science.gov (United States)

    Guardiani, Carlo; Cecconi, Fabio; Livi, Roberto

    2007-06-01

    Three mutations of domain C5 of Myosin Binding Protein C are involved in Familial Hypertrophic Cardiomyopathy. We assess their impact through Molecular Dynamics simulations within the framework of a native-centric coarse-grained model. We characterize the clinical relevance of a mutation by: the extent of temperature shift it induces in the unfolding transition, the increase of the kinetic unfolding rates with respect to the wild type, and by \\Fgr-value analysis. Further analysis of folding stages based on the evolution of native contact probabilities reveals an entropy-driven pathway originating in the protein region close to Res115 and ending up in the area of Res28. The mutation of the former residue thus appears to be responsible for an early interruption of the folding process, leaving the protein largely unstructured and yielding a serious impairment of cardiac function. Mut28, on the contrary, thwarts a late stage of folding when the protein is almost completely native-like, leading to a mild phenotype. A bio-informatic analisys of the long and destabilizing CD loop finally shows an excess of negative charge and a low hydrophobicity indicating a possible classification as a natively unfolded sequence. Accordingly, the folding mechanism is suggested to be coupled with binding with a specific ligand.

  18. Degradation of LIM domain-binding protein three during processing of Spanish dry-cured ham.

    Science.gov (United States)

    Gallego, Marta; Mora, Leticia; Fraser, Paul D; Aristoy, María-Concepción; Toldrá, Fidel

    2014-04-15

    Extensive proteolysis takes place during the processing of dry-cured ham due to the action of muscle peptidases. The aim of this work was to study the degradation of LIM domain binding protein 3 (LDB3), which is located at the Z-lines of the sarcomere, at different times during the Spanish dry-cured ham processing (2, 3.5, 5, 6.5, and 9 months). A total of 107 peptides have been identified by mass spectrometry, most of them generated from the first region of the protein sequence (position 1-90) providing evidence for the complexity and variability of proteolytic reactions throughout the whole process of dry-curing. Methionine oxidation has been observed in several peptides by the end of the process. The potential of some of the identified peptides to be used as biomarkers of dry-cured ham processing has also been considered. PMID:24295685

  19. DNA Bending is Induced in an Enhancer by the DNA-Binding Domain of the Bovine Papillomavirus E2 Protein

    Science.gov (United States)

    Moskaluk, Christopher; Bastia, Deepak

    1988-03-01

    The E2 gene of bovine papillomavirus type 1 has been shown to encode a DNA-binding protein and to trans-activate the viral enhancer. We have localized the DNA-binding domain of the E2 protein to the carboxyl-terminal 126 amino acids of the E2 open reading frame. The DNA-binding domain has been expressed in Escherichia coli and partially purified. Gel retardation and DNase I ``footprinting'' on the bovine papillomavirus type 1 enhancer identify the sequence motif ACCN6GGT (in which N = any nucleotide) as the E2 binding site. Using electrophoretic methods we have shown that the DNA-binding domain changes conformation of the enhancer by inducing significant DNA bending.

  20. Structural architecture and interplay of the nucleotide- and erythrocyte binding domain of the reticulocyte binding protein Py235 from Plasmodium yoelii.

    Science.gov (United States)

    Grüber, Ardina; Manimekalai, Malathy S S; Preiser, Peter R; Grüber, Gerhard

    2012-11-01

    Human malaria is caused by the cyclical invasion of the host's red blood cells (RBCs) by the invasive form of the parasite, the merozoite. The invasion of the RBC involves a range of parasite ligand receptor interactions, a process which is under intensive investigation. Two protein families are known to be important in the recognition and invasion of the human erythrocyte, the erythrocyte-binding like (EBL) proteins and the reticulocyte binding like proteins, of which the Py235 family in Plasmodium yoelii is a member. Recently the nucleotide binding domain (NBD94), that plays a role in ATP sensing, and the erythrocyte binding domain (EBD) of Py235, called EBD(1-194), have been identified. Binding of ATP leads to conformational changes within Py235 from P. yoelli and results in enhanced binding of the protein to the RBC. Structural features of these domains have been obtained, providing the platform to discuss how the structural architecture creates the basis for an interplay of the sensing NBD and the EBD domain in Py235. In analogy to the receptor-mediated ligand-dimerization model of the EBL proteins PvDBP and PfEBA-175 from Plasmodium vivax and Plasmodium falciparum, respectively, we hypothesise that Py235 of P. yoelii binds via its EBD(1-194) domain to the RBC receptor, thereby inducing dimerization of the Py235-receptor complex. PMID:22878128

  1. DNA bending is induced in an enhancer by the DNA-binding domain of the bovine papillomavirus E2 protein.

    OpenAIRE

    Moskaluk, C; Bastia, D

    1988-01-01

    The E2 gene of bovine papillomavirus type 1 has been shown to encode a DNA-binding protein and to trans-activate the viral enhancer. We have localized the DNA-binding domain of the E2 protein to the carboxyl-terminal 126 amino acids of the E2 open reading frame. The DNA-binding domain has been expressed in Escherichia coli and partially purified. Gel retardation and DNase I "footprinting" on the bovine papillomavirus type 1 enhancer identify the sequence motif ACCN6GGT (in which N = any nucle...

  2. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain.

    Directory of Open Access Journals (Sweden)

    Tingjun Hou

    2006-01-01

    Full Text Available Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3 domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well.

  3. Comprehensive comparative analysis and identification of RNA-binding protein domains: multi-class classification and feature selection.

    Science.gov (United States)

    Jahandideh, Samad; Srinivasasainagendra, Vinodh; Zhi, Degui

    2012-11-01

    RNA-protein interaction plays an important role in various cellular processes, such as protein synthesis, gene regulation, post-transcriptional gene regulation, alternative splicing, and infections by RNA viruses. In this study, using Gene Ontology Annotated (GOA) and Structural Classification of Proteins (SCOP) databases an automatic procedure was designed to capture structurally solved RNA-binding protein domains in different subclasses. Subsequently, we applied tuned multi-class SVM (TMCSVM), Random Forest (RF), and multi-class ℓ1/ℓq-regularized logistic regression (MCRLR) for analysis and classifying RNA-binding protein domains based on a comprehensive set of sequence and structural features. In this study, we compared prediction accuracy of three different state-of-the-art predictor methods. From our results, TMCSVM outperforms the other methods and suggests the potential of TMCSVM as a useful tool for facilitating the multi-class prediction of RNA-binding protein domains. On the other hand, MCRLR by elucidating importance of features for their contribution in predictive accuracy of RNA-binding protein domains subclasses, helps us to provide some biological insights into the roles of sequences and structures in protein-RNA interactions. PMID:22884576

  4. The Src Homology 3 Domain Is Required for Junctional Adhesion Molecule Binding to the Third PDZ Domain of the Scaffolding Protein ZO-1

    Energy Technology Data Exchange (ETDEWEB)

    Nomme, Julian; Fanning, Alan S.; Caffrey, Michael; Lye, Ming F.; Anderson, James M.; Lavie, Arnon (NIH); (UNC); (UIC)

    2012-01-20

    Tight junctions are cell-cell contacts that regulate the paracellular flux of solutes and prevent pathogen entry across cell layers. The assembly and permeability of this barrier are dependent on the zonula occludens (ZO) membrane-associated guanylate kinase (MAGUK) proteins ZO-1, -2, and -3. MAGUK proteins are characterized by a core motif of protein-binding domains that include a PDZ domain, a Src homology 3 (SH3) domain, and a region of homology to guanylate kinase (GUK); the structure of this core motif has never been determined for any MAGUK. To better understand how ZO proteins organize the assembly of protein complexes we have crystallized the entire PDZ3-SH3-GUK core motif of ZO-1. We have also crystallized this core motif in complex with the cytoplasmic tail of the ZO-1 PDZ3 ligand, junctional adhesion molecule A (JAM-A) to determine how the activity of different domains is coordinated. Our study shows a new feature for PDZ class II ligand binding that implicates the two highly conserved Phe{sup -2} and Ser{sup -3} residues of JAM. Our x-ray structures and NMR experiments also show for the first time a role for adjacent domains in the binding of ligands to PDZ domains in the MAGUK proteins family.

  5. The DNA Binding Domain of a Papillomavirus E2 Protein Programs a Chimeric Nuclease To Cleave Integrated Human Papillomavirus DNA in HeLa Cervical Carcinoma Cells▿

    OpenAIRE

    Horner, Stacy M.; DiMaio, Daniel

    2007-01-01

    Viral DNA binding proteins that direct nucleases or other protein domains to viral DNA in lytically or latently infected cells may provide a novel approach to modulate viral gene expression or replication. Cervical carcinogenesis is initiated by high-risk human papillomavirus (HPV) infection, and viral DNA persists in the cancer cells. To test whether a DNA binding domain of a papillomavirus protein can direct a nuclease domain to cleave HPV DNA in cervical cancer cells, we fused the DNA bind...

  6. Correlated Conformational Motions of the KH Domains of Far Upstream Element Binding Protein Complexed with Single-Stranded DNA Oligomers.

    Science.gov (United States)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy

    2015-08-27

    Single-stranded DNA binding (SSB) proteins bind with single-stranded DNA (ss-DNA) segments that are generated as intermediates during DNA metabolic processes. The primary function of an SSB protein is to protect the ss-DNA from being degraded so that other enzymes can effectively act on it. We have performed atomistic molecular dynamics simulations of the two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element (FUSE) binding protein (FBP) complexed with two ss-DNA oligomers in aqueous solutions. Attempts have been made to study the effects of complexation on the internal motions of the protein domains and the correlated dynamics of the amino acid residue side chains. In agreement with experiments, KH3 domain has been found to be relatively more flexible in the complexed state. The calculations reveal increased long-range anticorrelated motions among several amino acid residues in the complexed forms. Compared to the KH4 domain, noticeable increase in N-H dipole ordering on complexation has been observed for the KH3 domain. Importantly, it is demonstrated that the effects of the DNA strands on the side chain orientations of the arginine and lysine residues and their ordering and dynamics play critical roles in forming the complexes and their structural stability. PMID:25830509

  7. Localization of the equine IgG-binding domain in the fibrinogen-binding protein (FgBP) of Streptococcus equi subsp. equi.

    Science.gov (United States)

    Meehan, Mary; Lewis, Melanie J; Byrne, Caroline; O'Hare, David; Woof, Jenny M; Owen, Peter

    2009-08-01

    Fibrinogen-binding protein (FgBP, also termed SeM) is a cell-wall-associated anti-phagocytic M-like protein of the equine pathogen Streptococcus equi subsp. equi, and binds fibrinogen (Fg) and IgG. FgBP binds Fg avidly through residues located at the extreme N terminus of the molecule, whereas the IgG-binding site is more centrally located between the A and B repeats. FgBP binds equine IgG4 and IgG7 subclasses through interaction with the CH2-CH3 interdomain region of IgG-Fc, and possesses overlapping Fc-binding sites with protein A and protein G. In this study, FgBP truncates containing defined internal deletions were used to identify a stretch of 14 aa (residues 335-348) critical for IgG binding. Protein chimeras consisting of the non-IgG-binding alpha-helical coiled-coil M5 protein fused to FgBP sequences were used to identify a minimal equine IgG-binding domain consisting of residues 329-360. Competition ELISA tests suggested that IgG does not compromise Fg binding and vice versa. PMID:19423628

  8. Ephemeral protein binding to DNA shapes stable nuclear bodies and chromatin domains

    CERN Document Server

    Brackley, C A; Michieletto, D; Mouvet, F; Cook, P R; Marenduzzo, D

    2016-01-01

    Fluorescence microscopy reveals that the contents of many (membrane-free) nuclear "bodies" exchange rapidly with the soluble pool whilst the underlying structure persists; such observations await a satisfactory biophysical explanation. To shed light on this, we perform large-scale Brownian dynamics simulations of a chromatin fiber interacting with an ensemble of (multivalent) DNA-binding proteins; these proteins switch between two states -- active (binding) and inactive (non-binding). This system provides a model for any DNA-binding protein that can be modified post-translationally to change its affinity for DNA (e.g., like the phosphorylation of a transcription factor). Due to this out-of-equilibrium process, proteins spontaneously assemble into clusters of self-limiting size, as individual proteins in a cluster exchange with the soluble pool with kinetics like those seen in photo-bleaching experiments. This behavior contrasts sharply with that exhibited by "equilibrium", or non-switching, proteins that exis...

  9. Solution structure of the THAP domain from Caenorhabditis elegans C-terminal binding protein (CtBP).

    Science.gov (United States)

    Liew, Chu Kong; Crossley, Merlin; Mackay, Joel P; Nicholas, Hannah R

    2007-02-16

    The THAP (Thanatos-associated protein) domain is a recently discovered zinc-binding domain found in proteins involved in transcriptional regulation, cell-cycle control, apoptosis and chromatin modification. It contains a single zinc atom ligated by cysteine and histidine residues within a Cys-X(2-4)-Cys-X(35-53)-Cys-X(2)-His consensus. We have determined the NMR solution structure of the THAP domain from Caenorhabditis elegans C-terminal binding protein (CtBP) and show that it adopts a fold containing a treble clef motif, bearing similarity to the zinc finger-associated domain (ZAD) from Drosophila Grauzone. The CtBP THAP domain contains a large, positively charged surface patch and we demonstrate that this domain can bind to double-stranded DNA in an electrophoretic mobility-shift assay. These data, together with existing reports, indicate that THAP domains might exhibit a functional diversity similar to that observed for classical and GATA-type zinc fingers. PMID:17174978

  10. The structure of the Ca{sup 2+}-binding , glycosylated F-spondin domain of F-spondin- A C2-domain variant in an extracellular matrix protein.

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.; Lawler, J. (Biosciences Division); (Beth Israel Deaconess Medical Center); (Harvard Medical School)

    2011-05-10

    F-spondin is a multi-domain extracellular matrix (ECM) protein and a contact-repellent molecule that directs axon outgrowth and cell migration during development. The reelin{_}N domain and the F-spondin domain (FS domain) comprise a proteolytic fragment that interacts with the cell membrane and guides the projection of commissural axons to floor plate. The FS domain is found in F-spondins, mindins, M-spondin and amphiF-spondin. We present the crystal structure of human F-spondin FS domain at 1.95{angstrom} resolution. The structure reveals a Ca{sup 2+}-binding C2 domain variant with an 8-stranded antiparallel {beta}-sandwich fold. Though the primary sequences of the FS domains of F-spondin and mindin are less than 36% identical, their overall structures are very similar. The unique feature of F-spondin FS domain is the presence of three disulfide bonds associated with the N- and C-termini of the domain and a highly conserved N-linked glycosylation site. The integrin-binding motif found in mindin is not conserved in the F-spondin FS domain. The structure of the F-spondin FS domain completes the structural studies of the multiple-domain ECM molecule. The homology of its core structure to a common Ca{sup 2+}- and lipid-binding C2 domain suggests that the F-spondin FS domain may be responsible for part of the membrane targeting of F-spondin in its regulation of axon development. The structural properties of the FS domain revealed in this study pave the way for further exploration into the functions of F-spondin.

  11. The structure of the Ca2+-binding, glycosylated F-spondin domain of F-spondin - A C2-domain variant in an extracellular matrix protein

    Directory of Open Access Journals (Sweden)

    Lawler Jack

    2011-05-01

    Full Text Available Abstract Background F-spondin is a multi-domain extracellular matrix (ECM protein and a contact-repellent molecule that directs axon outgrowth and cell migration during development. The reelin_N domain and the F-spondin domain (FS domain comprise a proteolytic fragment that interacts with the cell membrane and guides the projection of commissural axons to floor plate. The FS domain is found in F-spondins, mindins, M-spondin and amphiF-spondin. Results We present the crystal structure of human F-spondin FS domain at 1.95Å resolution. The structure reveals a Ca2+-binding C2 domain variant with an 8-stranded antiparallel β-sandwich fold. Though the primary sequences of the FS domains of F-spondin and mindin are less than 36% identical, their overall structures are very similar. The unique feature of F-spondin FS domain is the presence of three disulfide bonds associated with the N- and C-termini of the domain and a highly conserved N-linked glycosylation site. The integrin-binding motif found in mindin is not conserved in the F-spondin FS domain. Conclusion The structure of the F-spondin FS domain completes the structural studies of the multiple-domain ECM molecule. The homology of its core structure to a common Ca2+- and lipid-binding C2 domain suggests that the F-spondin FS domain may be responsible for part of the membrane targeting of F-spondin in its regulation of axon development. The structural properties of the FS domain revealed in this study pave the way for further exploration into the functions of F-spondin.

  12. Disorder and structure in the Rab11 binding domain of Rab11 family interacting protein 2.

    Science.gov (United States)

    Wei, Jie; Liu, Yuqi; Bose, Kakoli; Henry, Gillian D; Baleja, James D

    2009-01-27

    Rab11 plays a central role in plasma membrane recycling which returns cellular receptors for reuse at the cell surface. A recently identified family of Rab11 interacting proteins (FIP) includes FIP2. The C-terminal region of FIP2 is essential for colocalization with Rab11 on early endosomes and for enabling formation of higher-order oligomers. Rab11 binding and oligomerization of FIP2 are separable. Here we have determined the three-dimensional structure of the 40-residue coiled-coil oligomerization domain of FIP2 in the absence of Rab11 using NMR methods. The N-terminal half showed strong NOE cross-peaks and well-dispersed NMR resonances, whereas the C-terminal half had fewer NOE cross-peaks and less chemical shift dispersion. The 10 C-terminal residues were mostly disordered. The final structures of the dimer had favorable Ramachandran angles and a root-mean-square deviation of 0.59 +/- 0.13 A over superimposed backbone residues. The structure allows a comparison to a structure of FIP2 in complex with Rab11 that was determined crystallographically. In complex with Rab11, the C-terminal residues are not disordered but have a helical structure that predicts residual dipolar coupling constants that are incompatible with those measured on the unbound FIP2. In both structures, a histidine residue is found at the normally hydrophobic position of the heptad repeat of the coiled coil, and here we show its ionization destabilizes the coiled-coil structure. Together, these data allow us to build a model in which the binding of FIP family proteins to Rab11 can be described in terms of conformational changes and that suggests new modes of regulation. PMID:19119858

  13. Fasciola hepatica calcium-binding protein FhCaBP2: structure of the dynein light chain-like domain.

    Science.gov (United States)

    Nguyen, Thanh H; Thomas, Charlotte M; Timson, David J; van Raaij, Mark J

    2016-07-01

    The common liver fluke Fasciola hepatica causes an increasing burden on human and animal health, partly because of the spread of drug-resistant isolates. As a consequence, there is considerable interest in developing new drugs to combat liver fluke infections. A group of potential targets is a family of calcium-binding proteins which combine an N-terminal domain with two EF-hand motifs and a C-terminal domain with predicted similarity to dynein light chains (DLC-like domain). The function of these proteins is unknown, although in several species, they have been localised to the tegument, an important structure at the host-parasite interface. Here, we report the X-ray crystal structure of the DLC-like domain of F. hepatica calcium-binding protein 2 (FhCaBP2), solved using single-wavelength anomalous diffraction and refined at 2.3 Å resolution in two different crystal forms. The FhCaBP2 DLC-like domain has a structure similar to other DLC domains, with an anti-parallel β-sheet packed against an α-helical hairpin. Like other DLC domains, it dimerises through its β2-strand, which extends in an arch and forms the fifth strand in an extended β-sheet of the other monomer. The structure provides molecular details of the dimerisation of FhCaBP2, the first example from this family of parasite proteins. PMID:27083189

  14. Grb-IR: a SH2-domain-containing protein that binds to the insulin receptor and inhibits its function.

    OpenAIRE

    Liu, F; Roth, R A

    1995-01-01

    To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in...

  15. The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain

    International Nuclear Information System (INIS)

    The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3' extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3' end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.

  16. Characterization and directed evolution of a methyl-binding domain protein for high-sensitivity DNA methylation analysis.

    Science.gov (United States)

    Heimer, Brandon W; Tam, Brooke E; Sikes, Hadley D

    2015-12-01

    Methyl-binding domain (MBD) family proteins specifically bind double-stranded, methylated DNA which makes them useful for DNA methylation analysis. We displayed three of the core members MBD1, MBD2 and MBD4 on the surface of Saccharomyces cerevisiae cells. Using the yeast display platform, we determined the equilibrium dissociation constant of human MBD2 (hMBD2) to be 5.9 ± 1.3 nM for binding to singly methylated DNA. The measured affinity for DNA with two methylated sites varied with the distance between the sites. We further used the yeast display platform to evolve the hMBD2 protein for improved binding affinity. Affecting five amino acid substitutions doubled the affinity of the wild-type protein to 3.1 ± 1.0 nM. The most prevalent of these mutations, K161R, occurs away from the DNA-binding site and bridges the N- and C-termini of the protein by forming a new hydrogen bond. The F208Y and L170R mutations added new non-covalent interactions with the bound DNA strand. We finally concatenated the high-affinity MBD variant and expressed it in Escherichia coli as a green fluorescent protein fusion. Concatenating the protein from 1× to 3× improved binding 6-fold for an interfacial binding application. PMID:26384511

  17. The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains

    OpenAIRE

    Brueggeman, R.; Druka, A.; Nirmala, J.; Cavileer, T.; Drader, T.; Rostoks, N.; Mirlohi, A.; Bennypaul, H.; Gill, U; Kudrna, D.; Whitelaw, C.; Kilian, A.; Han, F.; Sun, Y; Gill, K.

    2008-01-01

    We isolated the barley stem rust resistance genes Rpg5 and rpg4 by map-based cloning. These genes are colocalized on a 70-kb genomic region that was delimited by recombination. The Rpg5 gene consists of an unusual structure encoding three typical plant disease resistance protein domains: nucleotide-binding site, leucine-rich repeat, and serine threonine protein kinase. The predicted RPG5 protein has two putative transmembrane sites possibly involved in membrane binding. The gene is expressed ...

  18. Conserved Cysteine Residue in the DNA-Binding Domain of the Bovine Papillomavirus Type 1 E2 Protein Confers Redox Regulation of the DNA- Binding Activity in Vitro

    Science.gov (United States)

    McBride, Alison A.; Klausner, Richard D.; Howley, Peter M.

    1992-08-01

    The bovine papillomavirus type 1 E2 open reading frame encodes three proteins involved in viral DNA replication and transcriptional regulation. These polypeptides share a carboxyl-terminal domain with a specific DNA-binding activity; through this domain the E2 polypeptides form dimers. In this study, we demonstrate the inhibition of E2 DNA binding in vitro by reagents that oxidize or otherwise chemically modify the free sulfydryl groups of reactive cysteine residues. However, these reagents had no effect on DNA-binding activity when the E2 polypeptide was first bound to DNA, suggesting that the free sulfydryl group(s) may be protected by DNA binding. Sensitivity to sulfydryl modification was mapped to a cysteine residue at position 340 in the E2 DNA-binding domain, an amino acid that is highly conserved among the E2 proteins of different papillomaviruses. Replacement of this residue with other amino acids abrogated the sensitivity to oxidation-reduction changes but did not affect the DNA-binding property of the E2 protein. These results suggest that papillomavirus DNA replication and transcriptional regulation could be modulated through the E2 proteins by changes in the intracellular redox environment. Furthermore, a motif consisting of a reactive cysteine residue carboxyl-terminal to a lysine residue in a basic region of the DNA-binding domain is a feature common to a number of transcriptional regulatory proteins that, like E2, are subject to redox regulation. Thus, posttranslational regulation of the activity of these proteins by the intracellular redox environment may be a general phenomenon.

  19. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    Directory of Open Access Journals (Sweden)

    Bolton Michael J

    2011-11-01

    Full Text Available Abstract Background The HIV surface glycoprotein gp120 (SU, gp120 and the Plasmodium vivax Duffy binding protein (PvDBP bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM. Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC. A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.

  20. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    Energy Technology Data Exchange (ETDEWEB)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Cotmore, Susan F. [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Tattersall, Peter [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Departments of Genetics, Yale University Medical School, New Haven, CT 06510 (United States); Zhao, Haiyan, E-mail: zhaohy@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Tang, Liang, E-mail: tangl@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States)

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  1. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    International Nuclear Information System (INIS)

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication

  2. Biosensor-based approach identifies four distinct calmodulin-binding domains in the G protein-coupled estrogen receptor 1.

    Directory of Open Access Journals (Sweden)

    Quang-Kim Tran

    Full Text Available The G protein-coupled estrogen receptor 1 (GPER has been demonstrated to participate in many cellular functions, but its regulatory inputs are not clearly understood. Here we describe a new approach that identifies GPER as a calmodulin-binding protein, locates interaction sites, and characterizes their binding properties. GPER coimmunoprecipitates with calmodulin in primary vascular smooth muscle cells under resting conditions, which is enhanced upon acute treatment with either specific ligands or a Ca(2+-elevating agent. To confirm direct interaction and locate the calmodulin-binding domain(s, we designed a series of FRET biosensors that consist of enhanced cyan and yellow fluorescent proteins flanking each of GPER's submembrane domains (SMDs. Responses of these biosensors showed that all four submembrane domains directly bind calmodulin. Modifications of biosensor linker identified domains that display the strongest calmodulin-binding affinities and largest biosensor dynamics, including a.a. 83-93, 150-175, 242-259, 330-351, corresponding respectively to SMDs 1, 2, 3, and the juxta-membranous section of SMD4. These biosensors bind calmodulin in a strictly Ca(2+-dependent fashion and with disparate affinities in the order SMD2>SMD4>SMD3>SMD1, apparent K d values being 0.44 ± 0.03, 1.40 ± 0.16, 8.01 ± 0.29, and 136.62 ± 6.56 µM, respectively. Interestingly, simultaneous determinations of biosensor responses and suitable Ca(2+ indicators identified separate Ca(2+ sensitivities for their interactions with calmodulin. SMD1-CaM complexes display a biphasic Ca(2+ response, representing two distinct species (SMD1 sp1 and SMD1 sp2 with drastically different Ca(2+ sensitivities. The Ca(2+ sensitivities of CaM-SMDs interactions follow the order SMD1sp1>SMD4>SMD2>SMD1sp2>SMD3, EC50(Ca(2+ values being 0.13 ± 0.02, 0.75 ± 0.05, 2.38 ± 0.13, 3.71 ± 0.13, and 5.15 ± 0.25 µM, respectively. These data indicate that calmodulin may regulate GPER

  3. NlpC/P60 domain-containing proteins of Mycobacterium avium subspecies paratuberculosis that differentially bind and hydrolyze peptidoglycan.

    Science.gov (United States)

    Bannantine, John P; Lingle, Cari K; Adam, Philip R; Ramyar, Kasra X; McWhorter, William J; Stabel, Judith R; Picking, William D; Geisbrecht, Brian V

    2016-04-01

    A subset of proteins containing NlpC/P60 domains are bacterial peptidoglycan hydrolases that cleave noncanonical peptide linkages and contribute to cell wall remodeling as well as cell separation during late stages of division. Some of these proteins have been shown to cleave peptidoglycan in Mycobacterium tuberculosis and play a role in Mycobacterium marinum virulence of zebra fish; however, there are still significant knowledge gaps concerning the molecular function of these proteins in Mycobacterium avium subspecies paratuberculosis (MAP). The MAP genome sequence encodes five NlpC/P60 domain-containing proteins. We describe atomic resolution crystal structures of two such MAP proteins, MAP_1272c and MAP_1204. These crystal structures, combined with functional assays to measure peptidoglycan cleavage activity, led to the observation that MAP_1272c does not have a functional catalytic core for peptidoglycan hydrolysis. Furthermore, the structure and sequence of MAP_1272c demonstrate that the catalytic residues normally required for hydrolysis are absent, and the protein does not bind peptidoglycan as efficiently as MAP_1204. While the NlpC/P60 catalytic triad is present in MAP_1204, changing the catalytic cysteine-155 residue to a serine significantly diminished catalytic activity, but did not affect binding to peptidoglycan. Collectively, these findings suggest a broader functional repertoire for NlpC/P60 domain-containing proteins than simply hydrolases. PMID:26799947

  4. Novel benzimidazole inhibitors bind to a unique site in the kinesin spindle protein motor domain.

    Science.gov (United States)

    Sheth, Payal R; Shipps, Gerald W; Seghezzi, Wolfgang; Smith, Catherine K; Chuang, Cheng-Chi; Sanden, David; Basso, Andrea D; Vilenchik, Lev; Gray, Kimberly; Annis, D Allen; Nickbarg, Elliott; Ma, Yao; Lahue, Brian; Herbst, Ronald; Le, Hung V

    2010-09-28

    Affinity selection-mass spectrometry (AS-MS) screening of kinesin spindle protein (KSP) followed by enzyme inhibition studies and temperature-dependent circular dichroism (TdCD) characterization was utilized to identify a series of benzimidazole compounds. This series also binds in the presence of Ispinesib, a known anticancer KSP inhibitor in phase I/II clinical trials for breast cancer. TdCD and AS-MS analyses support simultaneous binding implying existence of a novel non-Ispinesib binding pocket within KSP. Additional TdCD analyses demonstrate direct binding of these compounds to Ispinesib-resistant mutants (D130V, A133D, and A133D + D130V double mutant), further strengthening the hypothesis that the compounds bind to a distinct binding pocket. Also importantly, binding to this pocket causes uncompetitive inhibition of KSP ATPase activity. The uncompetitive inhibition with respect to ATP is also confirmed by the requirement of nucleotide for binding of the compounds. After preliminary affinity optimization, the benzimidazole series exhibited distinctive antimitotic activity as evidenced by blockade of bipolar spindle formation and appearance of monoasters. Cancer cell growth inhibition was also demonstrated either as a single agent or in combination with Ispinesib. The combination was additive as predicted by the binding studies using TdCD and AS-MS analyses. The available data support the existence of a KSP inhibitory site hitherto unknown in the literature. The data also suggest that targeting this novel site could be a productive strategy for eluding Ispinesib-resistant tumors. Finally, AS-MS and TdCD techniques are general in scope and may enable screening other targets in the presence of known drugs, clinical candidates, or tool compounds that bind to the protein of interest in an effort to identify potency-enhancing small molecules that increase efficacy and impede resistance in combination therapy. PMID:20718440

  5. Structural and functional studies of a large winged Z-DNA-binding domain of Danio rerio protein kinase PKZ.

    Science.gov (United States)

    Subramani, Vinod Kumar; Kim, Doyoun; Yun, Kyunghee; Kim, Kyeong Kyu

    2016-07-01

    The Z-DNA-binding domain of PKZ from zebrafish (Danio rerio; drZαPKZ ) contains the largest β-wing among known Z-DNA-binding domains. To elucidate the functional implication of the β-wing, we solved the crystal structure of apo-drZαPKZ . Structural comparison with its Z-DNA-bound form revealed a large conformational change within the β-wing during Z-DNA binding. Biochemical studies of protein mutants revealed that two basic residues in the β-wing are responsible for Z-DNA recognition as well as fast B-Z transition. Therefore, the extra basic residues in the β-wing of drZαPKZ are necessary for the fast B-Z transition activity. PMID:27265117

  6. Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions.

    OpenAIRE

    Meyers, S; Downing, J R; Hiebert, S W

    1993-01-01

    The AML1 gene on chromosome 21 is disrupted in the (8;21)(q22;q22) translocation associated with acute myelogenous leukemia and encodes a protein with a central 118-amino-acid domain with 69% homology to the Drosophila pair-rule gene, runt. We demonstrate that AML-1 is a DNA-binding protein which specifically interacts with a sequence belonging to the group of enhancer core motifs, TGT/cGGT. Electrophoretic mobility shift analysis of cell extracts identified two AML-1-containing protein-DNA c...

  7. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    International Nuclear Information System (INIS)

    Highlights: ► The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. ► The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. ► The MBP–Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the “ATP state” of the mechanochemical cycle. This site differs from the Kar3 neck–core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  8. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, Caroline; Joshi, Monika [Department of Biomedical and Molecular Sciences, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada); Allingham, John S., E-mail: allinghj@queensu.ca [Department of Biomedical and Molecular Sciences, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. Black-Right-Pointing-Pointer The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. Black-Right-Pointing-Pointer The MBP-Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the 'ATP state' of the mechanochemical cycle. This site differs from the Kar3 neck-core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  9. Activation of a Ca(2+)-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain

    Science.gov (United States)

    Huang, J. F.; Teyton, L.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Ca(2+)-dependent protein kinases (CDPKs) are regulated by a C-terminal calmodulin-like domain (CaM-LD). The CaM-LD is connected to the kinase by a short junction sequence which contains a pseudosubstrate autoinhibitor. To understand how the CaM-LD regulates a CDPK, a recombinant CDPK (isoform CPK-1 from Arabidopsis, accession no. L14771) was made as a fusion protein in Escherichia coli. We show here that a truncated CDPK lacking a CaM-LD (e.g. mutant delta NC-26H) can be activated by exogenous calmodulin or an isolated CaM-LD (Kact approximately 2 microM). We propose that Ca2+ activation of a CDPK normally occurs through intramolecular binding of the CaM-LD to the junction. When the junction and CaM-LD are made as two separate polypeptides, the CaM-LD can bind the junction in a Ca(2+)-dependent fashion with a dissociation constant (KD) of 6 x 10(-6) M, as determined by kinetic binding analyses. When the junction and CaM-LD are tethered in a single polypeptide (e.g. in protein JC-1), their ability to engage in bimolecular binding is suppressed (e.g. the tethered CaM-LD cannot bind a separate junction). A mutation which disrupts the putative CaM-LD binding sequence (e.g. substitution LRV-1444 to DLPG) appears to block intramolecular binding, as indicated by the restored ability of a tethered CaM-LD to engage in bimolecular binding. This mutation, in the context of a full-length enzyme (mutant KJM46H), appears to block Ca2+ activation. Thus, a disruption of intramolecular binding correlates with a disruption of the Ca2+ activation mechanism. CDPKs provide the first example of a member of the calmodulin superfamily where a target binding sequence is located within the same polypeptide.

  10. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein

    DEFF Research Database (Denmark)

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu; Nielsen, Maria E O; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J; Andersen, Jens S.; Yao, Gang

    2012-01-01

    previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense...

  11. Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKC alpha) increases focal adhesion localization of PKC alpha

    DEFF Research Database (Denmark)

    Lim, Ssang-Taek; Longley, Robert L; Couchman, John R; Woods, Anne

    2003-01-01

    Syndecan-4 is a transmembrane heparan sulfate proteoglycan that acts as a coreceptor with integrins in focal adhesion formation. The central region of syndecan-4 cytoplasmic domain (4V; LGKKPIYKK) binds phosphatidylinositol 4,5-bisphosphate, and together they regulate protein kinase C alpha (PKC......, overexpression of syndecan-4 in rat embryo fibroblast cells, but not expression of the YF mutant, increased PKC alpha localization to focal adhesions. The data support a mechanism where syndecan-4 binds PKC alpha and localizes it to focal adhesions, whose assembly may be regulated by the kinase....

  12. Poly(A)-binding proteins: structure, domain organization, and activity regulation.

    Science.gov (United States)

    Eliseeva, I A; Lyabin, D N; Ovchinnikov, L P

    2013-12-01

    RNA-binding proteins are of vital importance for mRNA functioning. Among these, poly(A)-binding proteins (PABPs) are of special interest due to their participation in virtually all mRNA-dependent events that is caused by their high affinity for A-rich mRNA sequences. Apart from mRNAs, PABPs interact with many proteins, thus promoting their involvement in cellular events. In the nucleus, PABPs play a role in polyadenylation, determine the length of the poly(A) tail, and may be involved in mRNA export. In the cytoplasm, they participate in regulation of translation initiation and either protect mRNAs from decay through binding to their poly(A) tails or stimulate this decay by promoting mRNA interactions with deadenylase complex proteins. This review presents modern notions of the role of PABPs in mRNA-dependent events; peculiarities of regulation of PABP amount in the cell and activities are also discussed. PMID:24490729

  13. Membrane binding of Escherichia coli RNase E catalytic domain stabilizes protein structure and increases RNA substrate affinity.

    Science.gov (United States)

    Murashko, Oleg N; Kaberdin, Vladimir R; Lin-Chao, Sue

    2012-05-01

    RNase E plays an essential role in RNA processing and decay and tethers to the cytoplasmic membrane in Escherichia coli; however, the function of this membrane-protein interaction has remained unclear. Here, we establish a mechanistic role for the RNase E-membrane interaction. The reconstituted highly conserved N-terminal fragment of RNase E (NRne, residues 1-499) binds specifically to anionic phospholipids through electrostatic interactions. The membrane-binding specificity of NRne was confirmed using circular dichroism difference spectroscopy; the dissociation constant (K(d)) for NRne binding to anionic liposomes was 298 nM. E. coli RNase G and RNase E/G homologs from phylogenetically distant Aquifex aeolicus, Haemophilus influenzae Rd, and Synechocystis sp. were found to be membrane-binding proteins. Electrostatic potentials of NRne and its homologs were found to be conserved, highly positive, and spread over a large surface area encompassing four putative membrane-binding regions identified in the "large" domain (amino acids 1-400, consisting of the RNase H, S1, 5'-sensor, and DNase I subdomains) of E. coli NRne. In vitro cleavage assay using liposome-free and liposome-bound NRne and RNA substrates BR13 and GGG-RNAI showed that NRne membrane binding altered its enzymatic activity. Circular dichroism spectroscopy showed no obvious thermotropic structural changes in membrane-bound NRne between 10 and 60 °C, and membrane-bound NRne retained its normal cleavage activity after cooling. Thus, NRne membrane binding induced changes in secondary protein structure and enzymatic activation by stabilizing the protein-folding state and increasing its binding affinity for its substrate. Our results demonstrate that RNase E-membrane interaction enhances the rate of RNA processing and decay. PMID:22509045

  14. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2011-01-01

    Full Text Available Abstract Background The surface glycoprotein (SU, gp120 of the human immunodeficiency virus (HIV must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP to bind the Duffy Antigen Receptor for Chemokines (DARC and invade reticulocytes. Results Variable loop 3 (V3 of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket.

  15. Binding Activity Difference of Anti-CD20 scFv-Fc Fusion Protein Derived from Variable Domain Exchange

    Institute of Scientific and Technical Information of China (English)

    Shusheng Geng; Beifen Shen; Jiannan Feng; Yan Li; Yingxun Sun; Xin Gu; Ying Huang; Yugang Wang; Xianjiang Kang; Hong Chang

    2006-01-01

    Two novel engineered antibody fragments binding to antigen CD20 were generated by fusing a murine IgM-type anti-CD20 single-chain Fv fragment (scFv) to the human IgG1 CH2 (I.e., Cγ2) and CH3 (I.e., Cγ3) domains with the human IgG1 hinge (I.e. Hγ). Given the relationship between structure and function of protein, the 3-D structures of the two engineered antibody fragments were modeled using computer-aided homology modeling method.Furthermore, the relationship between 3-D conformation and their binding activity was evaluated theoretically.Due to the change of active pocket formed by CDRs, the HL23 (VH-Linker-VL-Hγ-Cγ2-Cγ3) remained its activity because of its preserved conformation, while the binding activity of the LH23 (VL-Linker-VH-Hγ-Cγ2-Cγ3) was impaired severely. Experimental studies by flow cytometry and fluorescence microscopy showed that HL23 possessed significantly superior binding activity to CD20-expressing target cells than LH23. That is to say, the order of variable regions could influence the binding activity of the fusion protein to CD20+ cell lines, which was in accordance with the theoretical results. The study highlights the potential relationship between the antibody binding activity and their 3-D conformation, which appears to be worthwhile in providing direction for future antibody design of recombinant antibody.

  16. In silico studies on structure-function of DNA GCC- box binding domain of brassica napus DREB1 protein

    International Nuclear Information System (INIS)

    DREB1 is a transcriptional factor, which selectively binds with the promoters of the genes involved in stress response in the plants. Homology of DREB protein and its binding element have been detected in the genome of many plants. However, only a few reports exist that discusses the binding properties of this protein with the gene (s) promoter. In the present study, we have undertaken studies exploring the structure-function relationship of Brassica napus DREB1. Multiple sequence alignment, protein homology modeling and intermolecular docking of GCC-box binding domain (GBD) of the said protein was carried out using atomic coordinates of GBD from Arabdiopsis thaliana and GCC-box containing DNA respectively. Similarities and/or identities in multiple, sequence alignment, particularly at the functionally important amino acids, strongly suggested the binding specificity of B. napus DREB1 to GCC-box. Similarly, despite 56% sequence homology, tertiary structures of both template and modeled protein were found to be extremely similar as indicated by root mean square deviation of 0.34 A. More similarities were established between GBD of both A. thaliana and B. napus DREB1 by conducting protein docking with the DNA containing GCC-box. It appears that both proteins interact through their beta-sheet with the major DNA groove including both nitrogen bases and phosphate and sugar moieties. Additionally, in most cases the interacting residues were also found to be identical. Briefly, this study attempts to elucidate the molecular basis of DREB1 interaction with its target sequence in the promoter. (author)

  17. A Rab-GAP TBC Domain Protein Binds Hepatitis C Virus NS5A and Mediates Viral Replication▿

    Science.gov (United States)

    Sklan, Ella H.; Staschke, Kirk; Oakes, Tina M.; Elazar, Menashe; Winters, Mark; Aroeti, Benjamin; Danieli, Tsafi; Glenn, Jeffrey S.

    2007-01-01

    Hepatitis C virus (HCV) is an important cause of liver disease worldwide. Current therapies are inadequate for most patients. Using a two-hybrid screen, we isolated a novel cellular binding partner interacting with the N terminus of HCV nonstructural protein NS5A. This partner contains a TBC Rab-GAP (GTPase-activating protein) homology domain found in all known Rab-activating proteins. As the first described interaction between such a Rab-GAP and a viral protein, this finding suggests a new mechanism whereby viruses may subvert host cell machinery for mediating the endocytosis, trafficking, and sorting of their own proteins. Moreover, depleting the expression of this partner severely impairs HCV RNA replication with no obvious effect on cell viability. These results suggest that pharmacologic disruption of this NS5A-interacting partner can be contemplated as a potential new antiviral strategy against a pathogen affecting nearly 3% of the world's population. PMID:17686842

  18. Regulation of Active DNA Demethylation by a Methyl-CpG-Binding Domain Protein in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Qi Li

    2015-05-01

    Full Text Available Active DNA demethylation plays crucial roles in the regulation of gene expression in both plants and animals. In Arabidopsis thaliana, active DNA demethylation is initiated by the ROS1 subfamily of 5-methylcytosine-specific DNA glycosylases via a base excision repair mechanism. Recently, IDM1 and IDM2 were shown to be required for the recruitment of ROS1 to some of its target loci. However, the mechanism(s by which IDM1 is targeted to specific genomic loci remains to be determined. Affinity purification of IDM1- and IDM2- associating proteins demonstrated that IDM1 and IDM2 copurify together with two novel components, methyl-CpG-binding domain protein 7 (MBD7 and IDM2-like protein 1 (IDL1. IDL1 encodes an α-crystallin domain protein that shows high sequence similarity with IDM2. MBD7 interacts with IDM2 and IDL1 in vitro and in vivo and they form a protein complex associating with IDM1 in vivo. MBD7 directly binds to the target loci and is required for the H3K18 and H3K23 acetylation in planta. MBD7 dysfunction causes DNA hypermethylation and silencing of reporter genes and a subset of endogenous genes. Our results suggest that a histone acetyltransferase complex functions in active DNA demethylation and in suppression of gene silencing at some loci in Arabidopsis.

  19. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC and tilted domains

    Directory of Open Access Journals (Sweden)

    FranciscoJBarrantes

    2013-02-01

    Full Text Available The plasma membrane of eukaryotic cells contains several types of lipids displaying high biochemical variability in both their apolar moiety (e.g. the acyl chain of glycerolipids and their polar head (e.g. the sugar structure of glycosphingolipids. Among these lipids, cholesterol is unique because its biochemical variability is almost exclusively restricted to the oxidation of its polar -OH group. Although generally considered the most rigid membrane lipid, cholesterol can adopt a broad range of conformations due to the flexibility of its isooctyl chain linked to the polycyclic sterane backbone. Moreover, cholesterol is an asymmetric molecule displaying a planar face and a rough  face. Overall, these structural features open up a number of possible interactions between cholesterol and membrane lipids and proteins, consistent with the prominent regulatory functions that this unique lipid exerts on membrane components. The aim of this review is to describe how cholesterol interacts with membrane lipids and proteins at the molecular/atomic scale, with special emphasis on transmembrane domains of proteins containing either the consensus cholesterol-binding motifs CRAC and CARC or a tilted peptide. Despite their broad structural diversity, all these domains bind cholesterol through common molecular mechanisms, leading to the identification of a subset of amino acid residues that are overrepresented in both linear and three-dimensional membrane cholesterol-binding sites.

  20. Grb-IR: A SH2-Domain-Containing Protein that Binds to the Insulin Receptor and Inhibits Its Function

    Science.gov (United States)

    Liu, Feng; Roth, Richard A.

    1995-10-01

    To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

  1. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Sven O., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Mayer, Magnus C. [Freie Universität Berlin, Thielallee 63, 14195 Berlin (Germany); Miltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166 Teterow (Germany); Roeser, Dirk [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Multhaup, Gerd [McGill University Montreal, Montreal, Quebec H3G 1Y6 (Canada); Than, Manuel E., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany)

    2015-03-01

    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.

  2. Construction of a Functional S-Layer Fusion Protein Comprising an Immunoglobulin G-Binding Domain for Development of Specific Adsorbents for Extracorporeal Blood Purification

    OpenAIRE

    Völlenkle, Christine; Weigert, Stefan; Ilk, Nicola; Egelseer, Eva; Weber, Viktoria; Loth, Fritz; Falkenhagen, Dieter; Sleytr, Uwe B.; Sára, Margit

    2004-01-01

    The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA31-1068/ZZ retained the specific properties of the S-layer protein moiety to self-assemble i...

  3. The HTLV-1 Tax protein binding domain of cyclin-dependent kinase 4 (CDK4 includes the regulatory PSTAIRE helix

    Directory of Open Access Journals (Sweden)

    Grassmann Ralph

    2005-09-01

    Full Text Available Abstract Background The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1 is leukemogenic in transgenic mice and induces permanent T-cell growth in vitro. It is found in active CDK holoenzyme complexes from adult T-cell leukemia-derived cultures and stimulates the G1- to-S phase transition by activating the cyclin-dependent kinase (CDK CDK4. The Tax protein directly and specifically interacts with CDK4 and cyclin D2 and binding is required for enhanced CDK4 kinase activity. The protein-protein contact between Tax and the components of the cyclin D/CDK complexes increases the association of CDK4 and its positive regulatory subunit cyclin D and renders the complex resistant to p21CIP inhibition. Tax mutants affecting the N-terminus cannot bind cyclin D and CDK4. Results To analyze, whether the N-terminus of Tax is capable of CDK4-binding, in vitro binding -, pull down -, and mammalian two-hybrid analyses were performed. These experiments revealed that a segment of 40 amino acids is sufficient to interact with CDK4 and cyclin D2. To define a Tax-binding domain and analyze how Tax influences the kinase activity, a series of CDK4 deletion mutants was tested. Different assays revealed two regions which upon deletion consistently result in reduced binding activity. These were isolated and subjected to mammalian two-hybrid analysis to test their potential to interact with the Tax N-terminus. These experiments concurrently revealed binding at the N- and C-terminus of CDK4. The N-terminal segment contains the PSTAIRE helix, which is known to control the access of substrate to the active cleft of CDK4 and thus the kinase activity. Conclusion Since the N- and C-terminus of CDK4 are neighboring in the predicted three-dimensional protein structure, it is conceivable that they comprise a single binding domain, which interacts with the Tax N-terminus.

  4. Ligand binding by PDZ domains

    DEFF Research Database (Denmark)

    Chi, Celestine N.; Bach, Anders; Strømgaard, Kristian;

    2012-01-01

    The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins......, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well...

  5. Electrophoretic behavior of DNA-methyl-CpG-binding domain protein complexes revealed by capillary electrophoreses laser-induced fluorescence.

    Science.gov (United States)

    Zhong, Shangwei; Zou, Dandan; Zhao, Bailin; Zhang, Dapeng; Li, Xiangjun; Wang, Hailin

    2015-12-01

    The free solution electrophoretic behavior of DNA-protein complexes depends on their charge and mass in a certain experimental condition, which are two fundamental properties of DNA-protein complexes in free solution. Here, we used CE LIF to study the free solution behavior of DNA-methyl-CpG-binding domain protein (MBD2b) complexes through exploring the relationship between the mobilities, charge, and mass of DNA-protein complexes. This method is based on the effective separation of free DNA and DNA-protein complexes because of their different electrophoretic mobility in a certain electric field. In order to avoid protein adsorption, a polyacrylamide-coated capillary was used. Based on the evaluation of the electrophoretic behavior of formed DNA-MBD2b complexes, we found that the values of (μ0 /μ)-1 were directly proportional to the charge-to-mass ratios of formed complexes, where the μ0 and μ are the mobility of free DNA probe and DNA-protein complex, respectively. The models were further validated by the complex mobilities of protein with various lengths of DNA probes. The deviation of experimental and calculated charge-to-mass ratios of formed complexes from the theoretical data was less than 10%, suggesting that our models are useful to analyze the DNA-binding properties of the purified MBD2b protein and help to analyze other DNA-protein complexes. Additionally, this study enhances the understanding of the influence of the charge-to-mass ratios of formed DNA-protein complexes on their separation and electrophoretic behaviors. PMID:26377303

  6. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    International Nuclear Information System (INIS)

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. - Highlights: • Asymmetric and symmetric three-dimensional reconstructions of phage CUS-3 are presented. • CUS-3 major capsid protein has a conserved I-domain, which is found in all three categories of “P22-like phage”. • CUS-3 has very different tailspike receptor binding domain from those of P22 and Sf6. • The CUS-3 tailspike likely was acquired by horizontal gene transfer

  7. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Kristin N., E-mail: kparent@msu.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); Tang, Jinghua; Cardone, Giovanni [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); Gilcrease, Eddie B. [University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 84112 (United States); Janssen, Mandy E.; Olson, Norman H. [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); Casjens, Sherwood R., E-mail: sherwood.casjens@path.utah.edu [University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 84112 (United States); Baker, Timothy S., E-mail: tsb@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); University of California, San Diego, Division of Biological Sciences, La Jolla, CA, 92093 (United States)

    2014-09-15

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. - Highlights: • Asymmetric and symmetric three-dimensional reconstructions of phage CUS-3 are presented. • CUS-3 major capsid protein has a conserved I-domain, which is found in all three categories of “P22-like phage”. • CUS-3 has very different tailspike receptor binding domain from those of P22 and Sf6. • The CUS-3 tailspike likely was acquired by horizontal gene transfer.

  8. Crystallization and preliminary crystallographic analysis of the transpeptidase domain of penicillin-binding protein 2B from Streptococcus pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Mototsugu, E-mail: mototsugu-yamada@meiji.co.jp; Watanabe, Takashi; Baba, Nobuyoshi; Miyara, Takako; Saito, Jun; Takeuchi, Yasuo [Pharmaceutical Research Center, Meiji Seika Kaisha Ltd, 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567 (Japan)

    2008-04-01

    The selenomethionyl-substituted transpeptidase domain of penicillin-binding protein (PBP) 2B from S. pneumoniae was isolated from a limited proteolysis digest of the soluble form of recombinant PBP 2B and then crystallized. MAD data were collected to 2.4 Å resolution. Penicillin-binding protein (PBP) 2B from Streptococcus pneumoniae catalyzes the cross-linking of peptidoglycan precursors that occurs during bacterial cell-wall biosynthesis. A selenomethionyl (SeMet) substituted PBP 2B transpeptidase domain was isolated from a limited proteolysis digest of a soluble form of recombinant PBP 2B and then crystallized. The crystals belonged to space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 86.39, c = 143.27 Å. Diffraction data were collected to 2.4 Å resolution using the BL32B2 beamline at SPring-8. The asymmetric unit contains one protein molecule and 63.7% solvent.

  9. The immunosuppressive domain of the transmembrane envelope protein gp41 of HIV-1 binds to human monocytes and B cells.

    Science.gov (United States)

    Mühle, Michael; Kroniger, Tobias; Hoffmann, Kerstin; Denner, Joachim

    2016-06-01

    The induction of the acquired immunodeficiency syndrome by the human immunodeficiency virus-1 (HIV-1) is a complex process which is not yet understood in full detail. Still open is the question whether the highly conserved so-called immunosuppressive (Isu) domain in the transmembrane envelope (TM) protein gp41 of HIV-1 is actively participating in immunopathogenesis. Inactivated virus particles, recombinant gp41 and peptides corresponding to the Isu domain have been reported to inhibit lymphocyte proliferation, as well as to alter cytokine release and gene expression. Here we demonstrate, using fluorescence-activated cell sorting and competition experiments, that homopolymers of the Isu peptide of HIV-1 are binding specifically to human peripheral blood mononuclear cells, mainly to monocytes and B cells. These data suggest that a putative receptor might be involved in the immunomodulatory effects observed previously. PMID:26754765

  10. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction

    OpenAIRE

    Swagat Ray; Anderson, Emma C.

    2016-01-01

    The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eu...

  11. Protein domain prediction

    NARCIS (Netherlands)

    Ingolfsson, Helgi; Yona, Golan

    2008-01-01

    Domains are considered to be the building blocks of protein structures. A protein can contain a single domain or multiple domains, each one typically associated with a specific function. The combination of domains determines the function of the protein, its subcellular localization and the interacti

  12. Serine 77 in the PDZ domain of PICK1 is a protein kinase Cα phosphorylation site regulated by lipid membrane binding

    DEFF Research Database (Denmark)

    Ammendrup-Johnsen, Ina; Thorsen, Thor Seneca; Gether, Ulrik;

    2012-01-01

    PICK1 (protein interacting with C kinase 1) contains an N-terminal protein binding PDZ domain and a C-terminal lipid binding BAR domain. PICK1 plays a key role in several physiological processes, including synaptic plasticity. However, little is known about the cellular mechanisms governing the a...... lipid binding and/or polymerization capacity. We propose that PICK1 is phosphorylated at Ser77 by PKCα preferentially when bound to membrane vesicles and that this phosphorylation in turn modulates its cellular distribution....

  13. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  14. Common antigenic domains in transferrin-binding protein 2 of Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae type b.

    Science.gov (United States)

    Stevenson, P; Williams, P; Griffiths, E

    1992-06-01

    There is now considerable evidence to show that in the Neisseria and Haemophilus species, membrane receptors specific for either transferrin or lactoferrin are involved in the acquisition of iron from these glycoproteins. In Neisseria meningitidis, the transferrin receptor appears to consist of two proteins, one of which (TBP 1) has an M(r) of 95,000 and the other of which (TBP 2) has an M(r) ranging from 68,000 to 85,000, depending on the strain; TBP 2 binds transferrin after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotting, but TBP 1 does not do so. The relative contributions of these two proteins to the binding reaction observed with intact cells and to iron uptake are presently unknown. However, they are being considered as potential components of a group B meningococcal vaccine. Analogous higher- and lower-molecular-weight proteins associated with transferrin binding have been found in N. gonorrhoeae and Haemophilus influenzae. Previous work with polyclonal antibodies raised in mice with whole cells of iron-restricted N. meningitidis showed that the meningococcal TBP 2 exhibits considerable antigenic heterogeneity. Here, we report that antiserum against purified TBP 2 from one strain of N. meningitidis cross-reacts on immunoblotting with the TBP 2 of all meningococcal isolates examined, as well as with the TBP 2 of N. gonorrhoeae. This antiserum also cross-reacted with the TBP 2 of several strains of H. influenzae type b, thus showing the presence of common antigenic domains among these functionally equivalent proteins in different pathogens; no cross-reaction was detected with a purified sample of the human transferrin receptor. PMID:1587606

  15. Identification of a TAL1 Target Gene Reveals a Positive Role for the LIM Domain-Binding Protein Ldb1 in Erythroid Gene Expression and Differentiation

    OpenAIRE

    Xu, Zhixiong; Huang, Suming; Chang, Long-Sheng; Agulnick, Alan D.; Brandt, Stephen J.

    2003-01-01

    The TAL1 (or SCL) gene, originally identified from its involvement by a recurrent chromosomal translocation, encodes a basic helix-loop-helix transcription factor essential for erythropoiesis. Although presumed to regulate transcription, its target genes are largely unknown. We show here that a nuclear complex containing TAL1, its DNA-binding partner E47, zinc finger transcription factor GATA-1, LIM domain protein LMO2, and LIM domain-binding protein Ldb1 transactivates the protein 4.2 (P4.2)...

  16. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product

    NARCIS (Netherlands)

    Rustgi, A.K.; Dyson, N.; Bernards, R.A.

    1991-01-01

    The proteins encoded by the myc gene family are involved is the control of cell proliferation and differentiation, and aberrant expression of myc proteins has been implicated in the genesis of a variety of neoplasms. In the carboxyl terminus, myc proteins have two domains that encode a basic domain/

  17. Genetic variability and natural selection at the ligand domain of the Duffy binding protein in brazilian Plasmodium vivax populations

    Directory of Open Access Journals (Sweden)

    Gil Luiz HS

    2010-11-01

    Full Text Available Abstract Background Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP. The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBPII, which is the most variable segment of the protein. Methods To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBPII in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBPII, and T- and B-cell epitopes were localized on the 3-D structure. Results The results suggest that: (i recombination plays an important role in determining the haplotype structure of PvDBPII, and (ii PvDBPII appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions This study shows that some polymorphisms of PvDBPII are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion.

  18. Loss of sialic acid binding domain redirects protein σ1 to enhance M cell-directed vaccination.

    Directory of Open Access Journals (Sweden)

    Dagmara Zlotkowska

    Full Text Available Ovalbumin (OVA genetically fused to protein sigma 1 (pσ1 results in tolerance to both OVA and pσ1. Pσ1 binds in a multi-step fashion, involving both protein- and carbohydrate-based receptors. To assess the relative pσ1 components responsible for inducing tolerance and the importance of its sialic binding domain (SABD for immunization, modified OVA-pσ1, termed OVA-pσ1(short, was deleted of its SABD, but with its M cell targeting moiety intact, and was found to be immunostimulatory and enhanced CD4(+ and CD8(+ T cell proliferation. When used to nasally immunize mice given with and without cholera toxin (CT adjuvant, elevated SIgA and serum IgG responses were induced, and OVA-pσ1(s was more efficient for immunization than native OVA+CT. The immune antibodies (Abs were derived from elevated Ab-forming cells in the upper respiratory tissues and submaxillary glands and were supported by mixed Th cell responses. Thus, these studies show that pσ1(s can be fused to vaccines to effectively elicit improved SIgA responses.

  19. Characterization of the diversity and the transferrin-binding domain of gonococcal transferrin-binding protein 2.

    OpenAIRE

    Cornelissen, C N; Anderson, J E; Sparling, P F

    1997-01-01

    The molecular weight heterogeneities of Tbp1 and Tbp2 among a panel of 45 gonococcal isolates were assessed. The tbpB genes from four of these strains were sequenced to characterize the Tbp2 sequence diversity among gonococci. By expressing truncated versions of gonococcal Tbp2, we delimited the extent of Tbp2 necessary for transferrin binding in a Western blot.

  20. FhCaBP2: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains.

    Science.gov (United States)

    Thomas, Charlotte M; Timson, David J

    2015-09-01

    FhCaBP2 is a Fasciola hepatica protein which belongs to a family of helminth calcium-binding proteins which combine an N-terminal domain containing two EF-hand motifs and a C-terminal dynein light chain-like (DLC-like) domain. Its predicted structure showed two globular domains joined by a flexible linker. Recombinant FhCaBP2 interacted reversibly with calcium and manganese ions, but not with magnesium, barium, strontium, copper (II), colbalt (II), iron (II), nickel, lead or potassium ions. Cadmium (II) ions appeared to bind non-site-specifically and destabilize the protein. Interaction with either calcium or magnesium ions results in a conformational change in which the protein's surface becomes more hydrophobic. The EF-hand domain alone was able to interact with calcium and manganese ions; the DLC-like domain was not. Alteration of a residue (Asp-58 to Ala) in the second EF-hand motif in this domain abolished ion-binding activity. This suggests that the second EF-hand is the one responsible for ion-binding. FhCaBP2 homodimerizes and the extent of dimerization was not affected by calcium ions or by the aspartate to alanine substitution in the second EF-hand. The isolated EF-hand and DLC-like domains are both capable of homodimerization. FhCaBP2 interacted with the calmodulin antagonists trifluoperazine, chlorpromazine, thiamylal and W7. Interestingly, while chlorpromazine and thiamylal interacted with the EF-hand domain (as expected), trifluoperazine and W7 bound to the DLC-like domain. Overall, FhCaBP2 has distinct biochemical properties compared with other members of this protein family from Fasciola hepatica, a fact which supports the hypothesis that these proteins have different physiological roles. PMID:26152524

  1. The zinc fingers of the SR-like protein ZRANB2 are single-stranded RNA-binding domains that recognize 5′ splice site-like sequences

    Energy Technology Data Exchange (ETDEWEB)

    Loughlin, Fionna E.; Mansfield, Robyn E.; Vaz, Paula M.; McGrath, Aaron P.; Setiyaputra, Surya; Gamsjaeger, Roland; Chen, Eva S.; Morris, Brian J.; Guss, J. Mitchell; Mackay, Joel P.; (Sydney)

    2009-09-02

    The alternative splicing of mRNA is a critical process in higher eukaryotes that generates substantial proteomic diversity. Many of the proteins that are essential to this process contain arginine/serine-rich (RS) domains. ZRANB2 is a widely-expressed and highly-conserved RS-domain protein that can regulate alternative splicing but lacks canonical RNA-binding domains. Instead, it contains 2 RanBP2-type zinc finger (ZnF) domains. We demonstrate that these ZnFs recognize ssRNA with high affinity and specificity. Each ZnF binds to a single AGGUAA motif and the 2 domains combine to recognize AGGUAA(N{sub x})AGGUAA double sites, suggesting that ZRANB2 regulates alternative splicing via a direct interaction with pre-mRNA at sites that resemble the consensus 5{prime} splice site. We show using X-ray crystallography that recognition of an AGGUAA motif by a single ZnF is dominated by side-chain hydrogen bonds to the bases and formation of a guanine-tryptophan-guanine 'ladder.' A number of other human proteins that function in RNA processing also contain RanBP2 ZnFs in which the RNA-binding residues of ZRANB2 are conserved. The ZnFs of ZRANB2 therefore define another class of RNA-binding domain, advancing our understanding of RNA recognition and emphasizing the versatility of ZnF domains in molecular recognition.

  2. Crystal and solution studies of the "Plus-C" odorant-binding protein 48 from Anopheles gambiae: control of binding specificity through three-dimensional domain swapping.

    Science.gov (United States)

    Tsitsanou, Katerina E; Drakou, Christina E; Thireou, Trias; Vitlin Gruber, Anna; Kythreoti, Georgia; Azem, Abdussalam; Fessas, Dimitrios; Eliopoulos, Elias; Iatrou, Kostas; Zographos, Spyros E

    2013-11-15

    Much physiological and behavioral evidence has been provided suggesting that insect odorant-binding proteins (OBPs) are indispensable for odorant recognition and thus are appealing targets for structure-based discovery and design of novel host-seeking disruptors. Despite the fact that more than 60 putative OBP-encoding genes have been identified in the malaria vector Anopheles gambiae, the crystal structures of only six of them are known. It is therefore clear that OBP structure determination constitutes the bottleneck for structure-based approaches to mosquito repellent/attractant discovery. Here, we describe the three-dimensional structure of an A. gambiae "Plus-C" group OBP (AgamOBP48), which exhibits the second highest expression levels in female antennae. This structure represents the first example of a three-dimensional domain-swapped dimer in dipteran species. A combined binding site is formed at the dimer interface by equal contribution of each monomer. Structural comparisons with the monomeric AgamOBP47 revealed that the major structural difference between the two Plus-C proteins localizes in their N- and C-terminal regions, and their concerted conformational change may account for monomer-swapped dimer conversion and furthermore the formation of novel binding pockets. Using a combination of gel filtration chromatography, differential scanning calorimetry, and analytical ultracentrifugation, we demonstrate the AgamOBP48 dimerization in solution. Eventually, molecular modeling calculations were used to predict the binding mode of the most potent synthetic ligand of AgamOBP48 known so far, discovered by ligand- and structure-based virtual screening. The structure-aided identification of multiple OBP binders represents a powerful tool to be employed in the effort to control transmission of the vector-borne diseases. PMID:24097978

  3. Structure of the second RRM domain of Nrd1, a fission yeast MAPK target RNA binding protein, and implication for its RNA recognition and regulation

    International Nuclear Information System (INIS)

    Highlights: •Solution structure of the second RRM of Nrd1 was determined. •RNA binding site of the second RRM was estimated. •Regulatory mechanism of RNA binding by phosphorylation is discussed. -- Abstract: Negative regulator of differentiation 1 (Nrd1) is known as a negative regulator of sexual differentiation in fission yeast. Recently, it has been revealed that Nrd1 also regulates cytokinesis, in which physical separation of the cell is achieved by a contractile ring comprising many proteins including actin and myosin. Cdc4, a myosin II light chain, is known to be required for cytokinesis. Nrd1 binds and stabilizes Cdc4 mRNA, and thereby suppressing the cytokinesis defects of the cdc4 mutants. Interestingly, Pmk1 MAPK phosphorylates Nrd1, resulting in markedly reduced RNA binding activity. Furthermore, Nrd1 localizes to stress granules in response to various stresses, and Pmk1 phosphorylation enhances the localization. Nrd1 consists of four RRM domains, although the mechanism by which Pmk1 regulates the RNA binding activity of Nrd1 is unknown. In an effort to delineate the relationship between Nrd1 structure and function, we prepared each RNA binding domain of Nrd1 and examined RNA binding to chemically synthesized oligo RNA using NMR. The structure of the second RRM domain of Nrd1 was determined and the RNA binding site on the second RRM domain was mapped by NMR. A plausible mechanism pertaining to the regulation of RNA binding activity by phosphorylation is also discussed

  4. Structure of the second RRM domain of Nrd1, a fission yeast MAPK target RNA binding protein, and implication for its RNA recognition and regulation

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Ayaho; Kanaba, Teppei [Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji 192-0397 (Japan); Satoh, Ryosuke [Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku 141-0021, Tokyo (Japan); Fujiwara, Toshinobu [Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku 141-0021, Tokyo (Japan); Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku,Nagoya 467-8603 (Japan); Ito, Yutaka [Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji 192-0397 (Japan); Sugiura, Reiko [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Mishima, Masaki, E-mail: mishima-masaki@tmu.ac.jp [Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji 192-0397 (Japan)

    2013-07-19

    Highlights: •Solution structure of the second RRM of Nrd1 was determined. •RNA binding site of the second RRM was estimated. •Regulatory mechanism of RNA binding by phosphorylation is discussed. -- Abstract: Negative regulator of differentiation 1 (Nrd1) is known as a negative regulator of sexual differentiation in fission yeast. Recently, it has been revealed that Nrd1 also regulates cytokinesis, in which physical separation of the cell is achieved by a contractile ring comprising many proteins including actin and myosin. Cdc4, a myosin II light chain, is known to be required for cytokinesis. Nrd1 binds and stabilizes Cdc4 mRNA, and thereby suppressing the cytokinesis defects of the cdc4 mutants. Interestingly, Pmk1 MAPK phosphorylates Nrd1, resulting in markedly reduced RNA binding activity. Furthermore, Nrd1 localizes to stress granules in response to various stresses, and Pmk1 phosphorylation enhances the localization. Nrd1 consists of four RRM domains, although the mechanism by which Pmk1 regulates the RNA binding activity of Nrd1 is unknown. In an effort to delineate the relationship between Nrd1 structure and function, we prepared each RNA binding domain of Nrd1 and examined RNA binding to chemically synthesized oligo RNA using NMR. The structure of the second RRM domain of Nrd1 was determined and the RNA binding site on the second RRM domain was mapped by NMR. A plausible mechanism pertaining to the regulation of RNA binding activity by phosphorylation is also discussed.

  5. Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity.

    Science.gov (United States)

    Czikora, Agnes; Lundberg, Daniel J; Abramovitz, Adelle; Lewin, Nancy E; Kedei, Noemi; Peach, Megan L; Zhou, Xiaoling; Merritt, Raymond C; Craft, Elizabeth A; Braun, Derek C; Blumberg, Peter M

    2016-05-20

    The C1 domain represents the recognition module for diacylglycerol and phorbol esters in protein kinase C, Ras guanine nucleotide releasing protein (RasGRP), and related proteins. RasGRP2 is exceptional in that its C1 domain has very weak binding affinity (Kd = 2890 ± 240 nm for [(3)H]phorbol 12,13-dibutyrate. We have identified four amino acid residues responsible for this lack of sensitivity. Replacing Asn(7), Ser(8), Ala(19), and Ile(21) with the corresponding residues from RasGRP1/3 (Thr(7), Tyr(8), Gly(19), and Leu(21), respectively) conferred potent binding affinity (Kd = 1.47 ± 0.03 nm) in vitro and membrane translocation in response to phorbol 12-myristate 13-acetate in LNCaP cells. Mutant C1 domains incorporating one to three of the four residues showed intermediate behavior with S8Y making the greatest contribution. Binding activity for diacylglycerol was restored in parallel. The requirement for anionic phospholipid for [(3)H]phorbol 12,13-dibutyrate binding was determined; it decreased in going from the single S8Y mutant to the quadruple mutant. The full-length RasGRP2 protein with the mutated C1 domains also showed strong phorbol ester binding, albeit modestly weaker than that of the C1 domain alone (Kd = 8.2 ± 1.1 nm for the full-length protein containing all four mutations), and displayed translocation in response to phorbol ester. RasGRP2 is a guanyl exchange factor for Rap1. Consistent with the ability of phorbol ester to induce translocation of the full-length RasGRP2 with the mutated C1 domain, phorbol ester enhanced the ability of the mutated RasGRP2 to activate Rap1. Modeling confirmed that the four mutations helped the binding cleft maintain a stable conformation. PMID:27022025

  6. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA

    DEFF Research Database (Denmark)

    Nielsen, Morten S; Gustafsen, Camilla; Madsen, Peder;

    2007-01-01

    -formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Abeta-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport. Here we examined SorLA's trafficking using full-length and chimeric receptors and find that......-deficient cells established that the AP-1 adaptor complex is essential to SorLA's transport between Golgi membranes and endosomes. Our results further implicate the GGA proteins in SorLA trafficking and provide evidence that SNX1 and Vps35, as parts of the retromer complex or possibly in a separate context, are...

  7. Structural Studies of Soybean Calmodulin Isoform 4 Bound to the Calmodulin-binding Domain of Tobacco Mitogen-activated Protein Kinase Phosphatase-1 Provide Insights into a Sequential Target Binding Mode*

    OpenAIRE

    Ishida, Hiroaki; Rainaldi, Mario; Vogel, Hans J.

    2009-01-01

    The calcium regulatory protein calmodulin (CaM) binds in a calcium-dependent manner to numerous target proteins. The calmodulin-binding domain (CaMBD) region of Nicotiana tabacum MAPK phosphatase has an amino acid sequence that does not resemble the CaMBD of any other known Ca2+-CaM-binding proteins. Using a unique fusion protein strategy, we have been able to obtain a high resolution solution structure of the complex of soybean Ca2+-CaM4 (SCaM4) and this CaMBD. Complete isotope labeling of b...

  8. Conformational changes of FoxO4-DNA binding domain upon binding to 14-3-3 protein

    Czech Academy of Sciences Publication Activity Database

    Šilhán, Jan; Bouřa, Evžen; Obšil, Tomáš

    2007-01-01

    Roč. 14, č. 1 (2007), s. 46-46. ISSN 1211-5894. [Discussions in Structural Molecular Biology and Bioinformatics /6./. 29.03.2007-31.03.2007, Nové Hrady] R&D Projects: GA ČR(CZ) GA204/06/0565; GA AV ČR(CZ) KJB500110601; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * 14-3-3 protein * PKB phosphorylation of FoxO4 * anisotropy decays Subject RIV: BO - Biophysics

  9. The alpha-helical domain of liver fatty acid binding protein is responsible for the diffusion-mediated transfer of fatty acids to phospholipid membranes.

    Science.gov (United States)

    Córsico, Betina; Liou, Heng Ling; Storch, Judith

    2004-03-30

    Intestinal fatty acid binding protein (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms for the transfer of fatty acids (FAs) to acceptor membranes. Transfer from IFABP occurs during protein-membrane collisional interactions, while for LFABP, transfer occurs by diffusion through the aqueous phase. Earlier, we had shown that the helical domain of IFABP is critical in determining its collisional FA transfer mechanism. In the study presented here, we have engineered a pair of chimeric proteins, one with the "body" (ligand binding domain) of IFABP and the alpha-helical region of LFABP (alphaLbetaIFABP) and the other with the ligand binding pocket of LFABP and the helical domain of IFABP (alphaIbetaLFABP). The objective of this work was to determine whether the change in the alpha-helical domain of each FABP would alter the rate and mechanism of transfer of FA from the chimeric proteins in comparison with those of the wild-type proteins. The fatty acid transfer properties of the FABP chimeras were examined using a fluorescence resonance transfer assay. The results showed a significant modification of the absolute rate of FA transfer from the chimeric proteins compared to that of the wild type, indicating that the slower rate of FA transfer observed for wild-type LFABP relative to that of wild-type IFABP is, in part, determined by the helical domain of the proteins. In addition to these quantitative changes, it was of great interest to observe that the apparent mechanism of FA transfer also changed when the alpha-helical domain was exchanged, with transfer from alphaLbetaIFABP occurring by aqueous diffusion and transfer from alphaIbetaLFABP occurring via protein-membrane collisional interactions. These results demonstrate that the alpha-helical region of LFABP is responsible for its diffusional mechanism of fatty acid transfer to membranes. PMID:15035630

  10. Genetic and functional analyses of the oeX174 DNA binding protein: the effects of substitutions for amino acid residues that spatially organize the two DNA binding domains

    International Nuclear Information System (INIS)

    The oeX174 DNA binding protein contains two DNA binding domains, containing a series of DNA binding basic amino acids, separated by a proline-rich linker region. Within each DNA binding domain, there is a conserved glycine residue. Glycine and proline residues were mutated and the effects on virion structure were examined. Substitutions for glycine residues yield particles with similar properties to previously characterized mutants with substitutions for DNA binding residues. Both sets of mutations share a common extragenic second-site suppressor, suggesting that the defects caused by the mutant proteins are mechanistically similar. Hence, glycine residues may optimize DNA-protein contacts. The defects conferred by substitutions for proline residues appear to be fundamentally different. The properties of the mutant particles along with the atomic structure of the virion suggest that the proline residues may act to guide the packaged DNA to the adjacent fivefold related asymmetric unit, thus preventing a chaotic packaging arrangement

  11. Modeling Protein Domain Function

    Science.gov (United States)

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  12. Structure of the apo form of the catabolite control protein A (CcpA) from Bacillus megaterium with a DNA-binding domain

    International Nuclear Information System (INIS)

    Crystal structure analysis of the apo form of catabolite control protein A reveals the three-helix bundle of the DNA-binding domain. In the crystal packing, this domain interacts with the binding site for the corepressor protein. Crystal structure determination of catabolite control protein A (CcpA) at 2.6 Å resolution reveals for the first time the structure of a full-length apo-form LacI-GalR family repressor protein. In the crystal structures of these transcription regulators, the three-helix bundle of the DNA-binding domain has only been observed in cognate DNA complexes; it has not been observed in other crystal structures owing to its mobility. In the crystal packing of apo-CcpA, the protein–protein contacts between the N-terminal three-helix bundle and the core domain consisted of interactions between the homodimers that were similar to those between the corepressor protein HPr and the CcpA N-subdomain in the ternary DNA complex. In contrast to the DNA complex, the apo-CcpA structure reveals large subdomain movements in the core, resulting in a complete loss of contacts between the N-subdomains of the homodimer

  13. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong (Toronto); (Penn)

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  14. Biosensor-Based Approach Identifies Four Distinct Calmodulin-Binding Domains in the G Protein-Coupled Estrogen Receptor 1

    OpenAIRE

    Tran, Quang-Kim; VerMeer, Mark

    2014-01-01

    The G protein-coupled estrogen receptor 1 (GPER) has been demonstrated to participate in many cellular functions, but its regulatory inputs are not clearly understood. Here we describe a new approach that identifies GPER as a calmodulin-binding protein, locates interaction sites, and characterizes their binding properties. GPER coimmunoprecipitates with calmodulin in primary vascular smooth muscle cells under resting conditions, which is enhanced upon acute treatment with either specific liga...

  15. Molecular characterization and ligand binding specificity of the PDZ domain-containing protein GIPC3 from Schistosoma japonicum

    OpenAIRE

    Mu Yi; Huang Haiming; Liu Shuai; Cai Pengfei; Gao Youhe

    2012-01-01

    Abstract Background Schistosomiasis is a serious global health problem that afflicts more than 230 million people in 77 countries. Long-term mass treatments with the only available drug, praziquantel, have caused growing concerns about drug resistance. PSD-95/Dlg/ZO-1 (PDZ) domain-containing proteins are recognized as potential targets for the next generation of drug development. However, the PDZ domain-containing protein family in parasites has largely been unexplored. Methods We present the...

  16. The bovine papillomavirus 1 E2 protein contains two activation domains: one that interacts with TBP and another that functions after TBP binding.

    Science.gov (United States)

    Steger, G; Ham, J; Lefebvre, O; Yaniv, M

    1995-01-16

    The E2 transactivator of bovine papillomavirus type-1 is unable to activate minimal promoters in vivo that contain only E2 binding sites and a TATA box. This block can be overcome by over-expression of human TATA binding protein (TBP) or by the addition of either SP1 binding sites or an initiator element to the promoter, suggesting that the binding of TFIID may normally be a rate-limiting step for activation by E2. Surprisingly, purified E2 and TBP bind co-operatively to DNA in vitro when the sites are closely spaced. E2 does not affect the on rate of association but reduces the off rate. The E2 region responsible for this effect is located in the hinge region that links the classic transactivation and DNA binding domains. We demonstrate that the TBP stabilizing domain contributes in vivo to co-operativity with co-expressed TBP and to activation of the major late minimal promoter (MLP) containing E2 sites. In contrast, promoters with SP1 sites are activated to wild-type levels by such a mutant. This promoter specificity is also evident in vitro. A truncated E2 mutant, lacking the classic transactivation domain but containing the TBP stabilizing domain, stimulates transcription of the MLP in vitro, but does not activate promoters with SP1 sites. In conclusion, our results show that the E2 transactivation domain has a modular structure. We have identified one domain which probably acts at an early step in the assembly of the pre-initiation complex and which is involved in reducing the dissociation rate of bound TBP in vitro. The classic N-terminal activation domain of E2 might affect one or several step(s) in the assembly of the preinitiation complex occurring after the binding of TFIID. PMID:7835344

  17. Mutations in the TGFβ Binding-Protein-Like Domain 5 of FBN1 Are Responsible for Acromicric and Geleophysic Dysplasias

    Science.gov (United States)

    Le Goff, Carine; Mahaut, Clémentine; Wang, Lauren W.; Allali, Slimane; Abhyankar, Avinash; Jensen, Sacha; Zylberberg, Louise; Collod-Beroud, Gwenaelle; Bonnet, Damien; Alanay, Yasemin; Brady, Angela F.; Cordier, Marie-Pierre; Devriendt, Koen; Genevieve, David; Kiper, Pelin Özlem Simsek; Kitoh, Hiroshi; Krakow, Deborah; Lynch, Sally Ann; Le Merrer, Martine; Mégarbane, André; Mortier, Geert; Odent, Sylvie; Polak, Michel; Rohrbach, Marianne; Sillence, David; Stolte-Dijkstra, Irene; Superti-Furga, Andrea; Rimoin, David L.; Topouchian, Vicken; Unger, Sheila; Zabel, Bernhard; Bole-Feysot, Christine; Nitschke, Patrick; Handford, Penny; Casanova, Jean-Laurent; Boileau, Catherine; Apte, Suneel S.; Munnich, Arnold; Cormier-Daire, Valérie

    2011-01-01

    Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFβ-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFβ signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFβ signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes. PMID:21683322

  18. The binding sites for the chromatin insulator protein CTCF map to DNA methylation-free domains genome-wide.

    Science.gov (United States)

    Mukhopadhyay, Rituparna; Yu, WenQiang; Whitehead, Joanne; Xu, JunWang; Lezcano, Magda; Pack, Svetlana; Kanduri, Chandrasekhar; Kanduri, Meena; Ginjala, Vasudeva; Vostrov, Alexander; Quitschke, Wolfgang; Chernukhin, Igor; Klenova, Elena; Lobanenkov, Victor; Ohlsson, Rolf

    2004-08-01

    All known vertebrate chromatin insulators interact with the highly conserved, multivalent 11-zinc finger nuclear factor CTCF to demarcate expression domains by blocking enhancer or silencer signals in a position-dependent manner. Recent observations document that the properties of CTCF include reading and propagating the epigenetic state of the differentially methylated H19 imprinting control region. To assess whether these findings may reflect a universal role for CTCF targets, we identified more than 200 new CTCF target sites by generating DNA microarrays of clones derived from chromatin-immunopurified (ChIP) DNA followed by ChIP-on-chip hybridization analysis. Target sites include not only known loci involved in multiple cellular functions, such as metabolism, neurogenesis, growth, apoptosis, and signalling, but potentially also heterochromatic sequences. Using a novel insulator trapping assay, we also show that the majority of these targets manifest insulator functions with a continuous distribution of stringency. As these targets are generally DNA methylation-free as determined by antibodies against 5-methylcytidine and a methyl-binding protein (MBD2), a CTCF-based network correlates with genome-wide epigenetic states. PMID:15256511

  19. The Binding Sites for the Chromatin Insulator Protein CTCF Map to DNA Methylation-Free Domains Genome-Wide

    Science.gov (United States)

    Mukhopadhyay, Rituparna; Yu, WenQiang; Whitehead, Joanne; Xu, JunWang; Lezcano, Magda; Pack, Svetlana; Kanduri, Chandrasekhar; Kanduri, Meena; Ginjala, Vasudeva; Vostrov, Alexander; Quitschke, Wolfgang; Chernukhin, Igor; Klenova, Elena; Lobanenkov, Victor; Ohlsson, Rolf

    2004-01-01

    All known vertebrate chromatin insulators interact with the highly conserved, multivalent 11-zinc finger nuclear factor CTCF to demarcate expression domains by blocking enhancer or silencer signals in a position-dependent manner. Recent observations document that the properties of CTCF include reading and propagating the epigenetic state of the differentially methylated H19 imprinting control region. To assess whether these findings may reflect a universal role for CTCF targets, we identified more than 200 new CTCF target sites by generating DNA microarrays of clones derived from chromatin-immunopurified (ChIP) DNA followed by ChIP-on-chip hybridization analysis. Target sites include not only known loci involved in multiple cellular functions, such as metabolism, neurogenesis, growth, apoptosis, and signalling, but potentially also heterochromatic sequences. Using a novel insulator trapping assay, we also show that the majority of these targets manifest insulator functions with a continuous distribution of stringency. As these targets are generally DNA methylation-free as determined by antibodies against 5-methylcytidine and a methyl-binding protein (MBD2), a CTCF-based network correlates with genome-wide epigenetic states. PMID:15256511

  20. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Directory of Open Access Journals (Sweden)

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of

  1. Mapping the laminin-binding and adhesive domain of the cell surface-associated Hlp/LBP protein from Mycobacterium leprae.

    Science.gov (United States)

    Soares de Lima, Cristiana; Zulianello, Laurence; Marques, Maria Angela de Melo; Kim, Heejin; Portugal, Michelle Iespa; Antunes, Sérgio Luiz; Menozzi, Franco Dante; Ottenhoff, Tom Henricus Maria; Brennan, Patrick Joseph; Pessolani, Maria Cristina Vidal

    2005-07-01

    Binding of Mycobacterium leprae to and invasion of Schwann cells (SC) represent a crucial step that initiates nerve damage in leprosy. We and others have described that M. leprae colonization of the peripheral nerve system may be mediated in part by a surface-exposed histone-like protein (Hlp), characterized as a laminin-binding protein (LBP). Hlp/LBP has also been shown to play a role in the binding of mycobacteria to alveolar epithelial cells and macrophages. In the present study we report that M. leprae expresses Hlp/LBP protein during the course of human infection. Additionally, we analyzed the interaction of Hlp/LBP with the extracellular matrix and host cell surface. We show that Hlp/LBP, besides laminin, also binds heparin and heparan sulfate. Testing truncated recombinant Hlp molecules corresponding to the N-terminal (rHlp-N) and the C-terminal (rHlp-C) domains of the protein, we established that interaction of Hlp/LBP with laminin-2 and heparin is mainly mediated by the C-terminal domain of the protein. Moreover, the same domain was found to be involved in Hlp/LBP-mediating bacterial binding to human SC. Finally, evidence is shown suggesting that M. leprae produces a post-translationally modified Hlp/LBP containing methyllysine residues. Methylation of the lysine residues, however, seems not to affect the adhesive properties of Hlp/LBP. Taken together, our observations reinforce the involvement of Hlp/LBP as an adhesin in mycobacterial infections and define its highly positive C-terminal region as the major adhesive domain of this protein. PMID:15919224

  2. Crystallization and preliminary crystallographic studies of the copper-binding domain of the amyloid precursor protein of Alzheimer’s disease

    International Nuclear Information System (INIS)

    The binding of Cu2+ ions to the copper-binding domain of the amyloid precursor protein of Alzheimer’s disease reduces the production of the amyloid β peptide, which is centrally involved in Alzheimer’s disease. Structural studies of the copper-binding domain will provide a basis for structure-based drug design that might prove useful in treating this devastating disease. Alzheimer’s disease is thought to be triggered by production of the amyloid β (Aβ) peptide through proteolytic cleavage of the amyloid precursor protein (APP). The binding of Cu2+ to the copper-binding domain (CuBD) of APP reduces the production of Aβ in cell-culture and animal studies. It is expected that structural studies of the CuBD will lead to a better understanding of how copper binding causes Aβ depletion and will define a potential drug target. The crystallization of CuBD in two different forms suitable for structure determination is reported here

  3. Crystallization and preliminary crystallographic studies of the copper-binding domain of the amyloid precursor protein of Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Geoffrey K.-W. [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); Galatis, Denise; Barnham, Kevin J. [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Polekhina, Galina; Adams, Julian J. [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Masters, Colin L. [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Cappai, Roberto [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Centre for Neuroscience, The University of Melbourne, Victoria 3010 (Australia); Parker, Michael W.; McKinstry, William J., E-mail: wmckinstry@svi.edu.au [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia)

    2005-01-01

    The binding of Cu{sup 2+} ions to the copper-binding domain of the amyloid precursor protein of Alzheimer’s disease reduces the production of the amyloid β peptide, which is centrally involved in Alzheimer’s disease. Structural studies of the copper-binding domain will provide a basis for structure-based drug design that might prove useful in treating this devastating disease. Alzheimer’s disease is thought to be triggered by production of the amyloid β (Aβ) peptide through proteolytic cleavage of the amyloid precursor protein (APP). The binding of Cu{sup 2+} to the copper-binding domain (CuBD) of APP reduces the production of Aβ in cell-culture and animal studies. It is expected that structural studies of the CuBD will lead to a better understanding of how copper binding causes Aβ depletion and will define a potential drug target. The crystallization of CuBD in two different forms suitable for structure determination is reported here.

  4. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction

    Science.gov (United States)

    Ray, Swagat; Anderson, Emma C.

    2016-01-01

    The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression. PMID:26936655

  5. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction.

    Science.gov (United States)

    Ray, Swagat; Anderson, Emma C

    2016-01-01

    The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression. PMID:26936655

  6. Alternate carbohydrate and nontraditional inducer leads to increased productivity of a collagen binding domain fusion protein via fed-batch fermentation.

    Science.gov (United States)

    Fruchtl, McKinzie; Sakon, Joshua; Beitle, Robert

    2016-05-20

    The production of collagen binding domain fusion proteins is of significant importance because of their potential as therapeutic biomaterials. It was previously reported that the expression of collagen-binding domain fusion proteins in Escherichia coli was higher when expressed using lactose as an inducer and chemically defined growth media on a shake flask scale. In an effort to further investigate factors that affect expression levels on a fed-batch scale, alternative induction techniques were tested in conjunction with fed-batch fermentation. In this paper, we discuss ten fed-batch fermentation experiments utilizing either glucose or glycerol feed and using lactose or isopropyl-β-d-thiogalactopyranoside (IPTG) as an induction source. It was found that glycerol-fed fermentations induced with lactose allowed for greater expression of target protein, though lesser cell densities were achieved. PMID:26975843

  7. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    International Nuclear Information System (INIS)

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion

  8. Increased abundance of the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL1) in patients with obesity and type 2 diabetes: evidence for altered adiponectin signalling

    OpenAIRE

    Holmes, R.M.; Yi, Z; De Filippis, E.; Berria, R.; S. Shahani; P. Sathyanarayana; Sherman, V.; K. Fujiwara; Meyer, C.; Christ-Roberts, C.; Hwang, H; Finlayson, J.; Dong, L. Q.; Mandarino, L. J.; Bajaj, M.

    2011-01-01

    Aims/hypothesis The adiponectin signalling pathway is largely unknown, but recently the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL1), has been shown to interact directly with adiponectin receptor (ADIPOR)1. APPL1 is present in C2C12 myoblasts and mouse skeletal muscle, but its presence in human skeletal muscle has not been investigated. Methods Samples from type 2 diabetic, and lean and non-diabetic obese participants w...

  9. A triad of lys12, lys41, arg78 spatial domain, a novel identified heparin binding site on tat protein, facilitates tat-driven cell adhesion.

    Directory of Open Access Journals (Sweden)

    Jing Ai

    Full Text Available Tat protein, released by HIV-infected cells, has a battery of important biological effects leading to distinct AIDS-associated pathologies. Cell surface heparan sulfate protoglycans (HSPGs have been accepted as endogenous Tat receptors, and the Tat basic domain has been identified as the heparin binding site. However, findings that deletion or substitution of the basic domain inhibits but does not completely eliminate Tat-heparin interactions suggest that the basic domain is not the sole Tat heparin binding site. In the current study, an approach integrating computational modeling, mutagenesis, biophysical and cell-based assays was used to elucidate a novel, high affinity heparin-binding site: a Lys12, Lys41, Arg78 (KKR spatial domain. This domain was also found to facilitate Tat-driven β1 integrin activation, producing subsequent SLK cell adhesion in an HSPG-dependent manner, but was not involved in Tat internalization. The identification of this new heparin binding site may foster further insight into the nature of Tat-heparin interactions and subsequent biological functions, facilitating the rational design of new therapeutics against Tat-mediated pathological events.

  10. Modification of potato starch granule structure and morphology in planta by expression of starch binding domain fusion proteins

    OpenAIRE

    Huang, X.

    2010-01-01

    Producing starches with altered composition, structure and novel physico-chemical properties in planta by manipulating the enzymes which are involved in starch metabolism or (over)expressing heterologous enzymes has huge advantages such as broadening the range of starch applications and reducing the costs of the post-harvest starch modification. The starch binding domain (SBD) technology has been extensively explored in our lab for modifying starch in planta and producing so-called “tailored ...

  11. The domain architecture of large guanine nucleotide exchange factors for the small GTP-binding protein Arf

    Directory of Open Access Journals (Sweden)

    Geldner Niko

    2005-02-01

    Full Text Available Abstract Background Small G proteins, which are essential regulators of multiple cellular functions, are activated by guanine nucleotide exchange factors (GEFs that stimulate the exchange of the tightly bound GDP nucleotide by GTP. The catalytic domain responsible for nucleotide exchange is in general associated with non-catalytic domains that define the spatio-temporal conditions of activation. In the case of small G proteins of the Arf subfamily, which are major regulators of membrane trafficking, GEFs form a heterogeneous family whose only common characteristic is the well-characterized Sec7 catalytic domain. In contrast, the function of non-catalytic domains and how they regulate/cooperate with the catalytic domain is essentially unknown. Results Based on Sec7-containing sequences from fully-annotated eukaryotic genomes, including our annotation of these sequences from Paramecium, we have investigated the domain architecture of large ArfGEFs of the BIG and GBF subfamilies, which are involved in Golgi traffic. Multiple sequence alignments combined with the analysis of predicted secondary structures, non-structured regions and splicing patterns, identifies five novel non-catalytic structural domains which are common to both subfamilies, revealing that they share a conserved modular organization. We also report a novel ArfGEF subfamily with a domain organization so far unique to alveolates, which we name TBS (TBC-Sec7. Conclusion Our analysis unifies the BIG and GBF subfamilies into a higher order subfamily, which, together with their being the only subfamilies common to all eukaryotes, suggests that they descend from a common ancestor from which species-specific ArfGEFs have subsequently evolved. Our identification of a conserved modular architecture provides a background for future functional investigation of non-catalytic domains.

  12. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    International Nuclear Information System (INIS)

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations

  13. EndB, a Multidomain Family 44 Cellulase from Ruminococcus flavefaciens 17, Binds to Cellulose via a Novel Cellulose-Binding Module and to Another R. flavefaciens Protein via a Dockerin Domain

    Science.gov (United States)

    Rincón, Marco T.; McCrae, Sheila I.; Kirby, James; Scott, Karen P.; Flint, Harry J.

    2001-01-01

    The mechanisms by which cellulolytic enzymes and enzyme complexes in Ruminococcus spp. bind to cellulose are not fully understood. The product of the newly isolated cellulase gene endB from Ruminococcus flavefaciens 17 was purified as a His-tagged product after expression in Escherichia coli and found to be able to bind directly to crystalline cellulose. The ability to bind cellulose is shown to be associated with a novel cellulose-binding module (CBM) located within a region of 200 amino acids that is unrelated to known protein sequences. EndB (808 amino acids) also contains a catalytic domain belonging to glycoside hydrolase family 44 and a C-terminal dockerin-like domain. Purified EndB is also shown to bind specifically via its dockerin domain to a polypeptide of ca. 130 kDa present among supernatant proteins from Avicel-grown R. flavefaciens that attach to cellulose. The protein to which EndB attaches is a strong candidate for the scaffolding component of a cellulosome-like multienzyme complex recently identified in this species (S.-Y. Ding et al., J. Bacteriol. 183:1945–1953, 2001). It is concluded that binding of EndB to cellulose may occur both through its own CBM and potentially also through its involvement in a cellulosome complex. PMID:11571138

  14. Overproduction, purification and crystallization of a chondroitin sulfate A-binding DBL domain from a Plasmodium falciparum var2csa-encoded PfEMP1 protein

    International Nuclear Information System (INIS)

    A chondroitin sulfate A-binding DBL important in placental malaria has been overproduced, purified and crystallized. Diffraction data were collected to 1.9 Å resolution. The PfEMP1 proteins of the malaria parasite Plasmodium falciparum are inserted into the membrane of infected red blood cells, where they mediate adhesion to a variety of human receptors. The DBL domains of the var2csa-encoded PfEMP1 protein play a critical role in malaria of pregnancy, tethering infected cells to the surface of the placenta through interactions with the glycosaminoglycan carbohydrate chondroitin sulfate A (CSA). A CSA-binding DBL domain has been overproduced in a bacterial expression system, purified and crystallized. Native data sets extending to 1.9 Å resolution have been collected and phasing is under way

  15. Acyl CoA Binding Domain Containing 3 (ACBD3) Protein in Huntington’s Disease 
Human Skin Fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, H.; Rodinová, M.; Sládková, J.; Klempíř, J.; Lišková, Irena; Motlík, Jan; Zeman, J.; Hansíková, H.; Tesařová, M.

    2015-01-01

    Roč. 78, Suppl. 2 (2015), s. 34-38. ISSN 1210-7859. [Conference on Animal Models for neurodegenerative Diseases /3./. Liblice, 08.11.2015-10.11.2015] R&D Projects: GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : Huntington’s disease * Acyl-CoA binding domain containing 3 protein * human skin fibroblasts Subject RIV: FH - Neurology Impact factor: 0.165, year: 2014

  16. G-patch domain and KOW motifs-containing protein, GPKOW; a nuclear RNA-binding protein regulated by protein kinase A

    OpenAIRE

    2011-01-01

    Background: Post-transcriptional processing of pre-mRNA takes place in several steps and requires involvement of a number of RNA-binding proteins. How pre-mRNA processing is regulated is in large enigmatic. The catalytic (C) subunit of protein kinase A (PKA) is a serine/threonine kinase, which regulates numerous cellular processes including pre-mRNA splicing. Despite that a significant fraction of the C subunit is found in splicing factor compartments in the nucleus, there are no indications ...

  17. UBA domain containing proteins in fission yeast

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Semple, Colin A M; Ponting, Chris P;

    2003-01-01

    and transcription. Considering this variety of cell biological processes, it is puzzling that until recently only very few proteins were known to possess the ability to interact specifically with ubiquitin chains. However, several ubiquitin binding proteins have now been identified and the binding domains have been...... characterised on both the functional and structural levels. One example of a widespread ubiquitin binding module is the ubiquitin associated (UBA) domain. Here, we discuss the approximately 15 UBA domain containing proteins encoded in the relatively small genome of the fission yeast Schizosaccharomyces pombe...

  18. Conservation of an ATP-binding domain among recA proteins from Proteus vulgaris, erwinia carotovora, Shigella flexneri, and Escherichia coli K-12 and B/r

    International Nuclear Information System (INIS)

    The purified RecA proteins encoded by the cloned genes from Proteus vulgaris, Erwinia carotovora, Shigella flexneri, and Escherichia coli B/r were compared with the RecA protein from E. coli K-12. Each of the proteins hydrolyzed ATP in the presence of single-stranded DNA, and each was covalently modified with the photoaffinity ATP analog 8-azidoadenosine 5'-triphosphate (8N3ATP). Two-dimensional tryptic maps of the four heterologous RecA proteins demonstrated considerable structural conservation among these bacterial genera. Moreover, when the [α-32P]8N3ATP-modified proteins were digested with trypsin and analyzed by high-performance liquid chromatography, a single peak of radioactivity was detected in each of the digests and these peptides eluted identically with the tryptic peptide T31 of the E. coli K-12 RecA protein, which was the unique site of 8N3ATP photolabeling. Each of the heterologous recA genes hybridized to oligonucleotide probes derived from the ATP-binding domain sequence of the E. coli K-12 gene. These last results demonstrate that the ATP-binding domain of the RecA protein has been strongly conserved for greater than 107 years

  19. Functional Dissection of Toxoplasma gondii Perforin-like Protein 1 Reveals a Dual Domain Mode of Membrane Binding for Cytolysis and Parasite Egress*

    Science.gov (United States)

    Roiko, Marijo S.; Carruthers, Vern B.

    2013-01-01

    The recently discovered role of a perforin-like protein (PLP1) for rapid host cell egress by the protozoan parasite Toxoplasma gondii expanded the functional diversity of pore-forming proteins. Whereas PLP1 was found to be necessary for rapid egress and pathogenesis, the sufficiency for and mechanism of membrane attack were yet unknown. Here we further dissected the PLP1 knock-out phenotype, the mechanism of PLP1 pore formation, and the role of each domain by genetic complementation. We found that PLP1 is sufficient for membrane disruption and has a conserved mechanism of pore formation through target membrane binding and oligomerization to form large, multimeric membrane-embedded complexes. The highly conserved, central MACPF domain and the β-sheet-rich C-terminal domain were required for activity. Loss of the unique N-terminal extension reduced lytic activity and led to a delay in rapid egress, but did not significantly decrease virulence, suggesting that small amounts of lytic activity are sufficient for pathogenesis. We found that both N- and C-terminal domains have membrane binding activity, with the C-terminal domain being critical for function. This dual mode of membrane association may promote PLP1 activity and parasite egress in the diverse cell types in which this parasite replicates. PMID:23376275

  20. Functional dissection of Toxoplasma gondii perforin-like protein 1 reveals a dual domain mode of membrane binding for cytolysis and parasite egress.

    Science.gov (United States)

    Roiko, Marijo S; Carruthers, Vern B

    2013-03-22

    The recently discovered role of a perforin-like protein (PLP1) for rapid host cell egress by the protozoan parasite Toxoplasma gondii expanded the functional diversity of pore-forming proteins. Whereas PLP1 was found to be necessary for rapid egress and pathogenesis, the sufficiency for and mechanism of membrane attack were yet unknown. Here we further dissected the PLP1 knock-out phenotype, the mechanism of PLP1 pore formation, and the role of each domain by genetic complementation. We found that PLP1 is sufficient for membrane disruption and has a conserved mechanism of pore formation through target membrane binding and oligomerization to form large, multimeric membrane-embedded complexes. The highly conserved, central MACPF domain and the β-sheet-rich C-terminal domain were required for activity. Loss of the unique N-terminal extension reduced lytic activity and led to a delay in rapid egress, but did not significantly decrease virulence, suggesting that small amounts of lytic activity are sufficient for pathogenesis. We found that both N- and C-terminal domains have membrane binding activity, with the C-terminal domain being critical for function. This dual mode of membrane association may promote PLP1 activity and parasite egress in the diverse cell types in which this parasite replicates. PMID:23376275

  1. ArhGAP9, a novel MAP kinase docking protein, inhibits Erk and p38 activation through WW domain binding

    OpenAIRE

    2007-01-01

    We have identified human ArhGAP9 as a novel MAP kinase docking protein that interacts with Erk2 and p38α through complementarily charged residues in the WW domain of ArhGAP9 and the CD domains of Erk2 and p38α. This interaction sequesters the MAP kinases in their inactive states through displacement of MAP kinase kinases targeting the same sites. While over-expression of wild type ArhGAP9 caused MAP kinase activation by the epidermal growth factor receptor (EGFR) to be suppressed and preserve...

  2. Strategy for Treating Motor Neuron Diseases Using a Fusion Protein of Botulinum Toxin Binding Domain and Streptavidin for Viral Vector Access: Work in Progress

    Directory of Open Access Journals (Sweden)

    Uma Balasubramanian

    2010-12-01

    Full Text Available Although advances in understanding of the pathogenesis of amyotrophic lateral sclerosis (ALS and spinal muscular atrophy (SMA have suggested attractive treatment strategies, delivery of agents to motor neurons embedded within the spinal cord is problematic. We have designed a strategy based on the specificity of botulinum toxin, to direct entry of viral vectors carrying candidate therapeutic genes into motor neurons. We have engineered and expressed fusion proteins consisting of the binding domain of botulinum toxin type A fused to streptavidin (SAv. This fusion protein will direct biotinylated viral vectors carrying therapeutic genes into motor nerve terminals where they can enter the acidified endosomal compartments, be released and undergo retrograde transport, to deliver the genes to motor neurons. Both ends of the fusion proteins are shown to be functionally intact. The binding domain end binds to mammalian nerve terminals at neuromuscular junctions, ganglioside GT1b (a target of botulinum toxin, and a variety of neuronal cells including primary chick embryo motor neurons, N2A neuroblastoma cells, NG108-15 cells, but not to NG CR72 cells, which lack complex gangliosides. The streptavidin end binds to biotin, and to a biotinylated Alexa 488 fluorescent tag. Further studies are in progress to evaluate the delivery of genes to motor neurons in vivo, by the use of biotinylated viral vectors.

  3. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels.

    Science.gov (United States)

    Wei, Shipeng; Roessler, Bryan C; Icyuz, Mert; Chauvet, Sylvain; Tao, Binli; Hartman, John L; Kirk, Kevin L

    2016-03-01

    The ABCC transporter subfamily includes pumps, the long and short multidrug resistance proteins (MRPs), and an ATP-gated anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). We show that despite their thermodynamic differences, these ABCC transporter subtypes use broadly similar mechanisms to couple their extracellular gates to the ATP occupancies of their cytosolic nucleotide binding domains. A conserved extracellular phenylalanine at this gate was a prime location for producing gain of function (GOF) mutants of a long MRP in yeast (Ycf1p cadmium transporter), a short yeast MRP (Yor1p oligomycin exporter), and human CFTR channels. Extracellular gate mutations rescued ATP binding mutants of the yeast MRPs and CFTR by increasing ATP sensitivity. Control ATPase-defective MRP mutants could not be rescued by this mechanism. A CFTR double mutant with an extracellular gate mutation plus a cytosolic GOF mutation was highly active (single-channel open probability >0.3) in the absence of ATP and protein kinase A, each normally required for CFTR activity. We conclude that all 3 ABCC transporter subtypes use similar mechanisms to couple their extracellular gates to ATP occupancy, and highly active CFTR channels that bypass defects in ATP binding or phosphorylation can be produced.-Wei, S., Roessler, B. C., Icyuz, M., Chauvet, S., Tao, B., Hartman IV, J. L., Kirk, K. L. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. PMID:26606940

  4. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium.

    Science.gov (United States)

    Myre, Michael A; O'Day, Danton H

    2005-06-24

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD (171EDVSRFIKGKLLQKQQKIYKDLERF195) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48KKSYQDPEIIAHSRPRK64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48EF49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48EF49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium. PMID:15896312

  5. Role of protein domains and DNA topology in binding of hotspot mutant p53 to DNA in context of chromatin

    Czech Academy of Sciences Publication Activity Database

    Brázdová, Marie; Němcová, Kateřina; Tichý, Vlastimil; Lexa, M.; Jurča, J.; Tolstonong, G.; Fojta, Miroslav; Paleček, Emil; Deppert, W.

    Shanghai, 2008. s. 149. [14th International p53 Workshop. 27.10.2008-31.10.2008, Shanghai] R&D Projects: GA ČR(CZ) GP204/06/P369; GA ČR(CZ) GA204/08/1560; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : protein domain * gene regulation * DNA topology Subject RIV: BO - Biophysics

  6. Mapping of a Microbial Protein Domain Involved in Binding and Activation of the TLR2/TLR1 Heterodimer 1

    OpenAIRE

    Liang, Shuang; Hosur, Kavita B.; Lu, Shanyun; Nawar, Hesham F.; Weber, Benjamin R.; Tapping, Richard I.; Terry D Connell; Hajishengallis, George

    2009-01-01

    LT-IIb-B5, a doughnut-shaped oligomeric protein from enterotoxigenic Escherichia coli, is known to activate the TLR2/TLR1 heterodimer (TLR2/1). We investigated the molecular basis of the LT-IIb-B5 interaction with TLR2/1 in order to define the structure-function relationship of LT-IIb-B5 and, moreover, to gain an insight into how TLR2/1 recognizes large, non-acylated protein ligands that cannot fit within its lipid-binding pockets, as previously shown for the Pam3CSK4 lipopeptide. We first id...

  7. Fusion proteins comprising the catalytic domain of mutansucrase and a starch-binding domain can after the morphology of amylose-free potato starch granules during biosynthesis

    OpenAIRE

    Nazarian, F.; Kok-Jacon, G.A.; Vincken, J.P.; Q. JI; Suurs, L.C.J.M.; Visser, R.G.F.

    2007-01-01

    It has been shown previously that mutan can be co-synthesized with starch when a truncated mutansucrase (GtfICAT) is directed to potato tuber amyloplasts. The mutan seemed to adhere to the isolated starch granules, but it was not incorporated in the starch granules. In this study, GtfICAT was fused to the N- or C-terminus of a starch-binding domain (SBD). These constructs were introduced into two genetically different potato backgrounds (cv. Kardal and amf), in order to bring GtfICAT in more ...

  8. Conserved Distal Loop Residues in the Hsp104 and ClpB Middle Domain Contact Nucleotide-binding Domain 2 and Enable Hsp70-dependent Protein Disaggregation*

    OpenAIRE

    DeSantis, Morgan E.; Sweeny, Elizabeth A.; Snead, David; Leung, Eunice H.; Go, Michelle S.; Gupta, Kushol; Wendler, Petra; Shorter, James

    2013-01-01

    The homologous hexameric AAA+ proteins, Hsp104 from yeast and ClpB from bacteria, collaborate with Hsp70 to dissolve disordered protein aggregates but employ distinct mechanisms of intersubunit collaboration. How Hsp104 and ClpB coordinate polypeptide handover with Hsp70 is not understood. Here, we define conserved distal loop residues between middle domain (MD) helix 1 and 2 that are unexpectedly critical for Hsp104 and ClpB collaboration with Hsp70. Surprisingly, the Hsp104 and ClpB MD dist...

  9. Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals

    DEFF Research Database (Denmark)

    Janeček, Štefan; Svensson, Birte; MacGregor, E. Ann

    2011-01-01

    kinase SNF1 complex, and an adaptor–regulator related to the SNF1/AMPK family, AKINβγ. CBM20s and CBM48s of amylolytic enzymes occur predominantly in the microbial world, whereas the non-amylolytic proteins containing these modules are mostly of plant and animal origin. Comparison of amino acid sequences......Starch-binding domains (SBDs) comprise distinct protein modules that bind starch, glycogen or related carbohydrates and have been classified into different families of carbohydrate-binding modules (CBMs). The present review focuses on SBDs of CBM20 and CBM48 found in amylolytic enzymes from several...... glycoside hydrolase (GH) families GH13, GH14, GH15, GH31, GH57 and GH77, as well as in a number of regulatory enzymes, e.g., phosphoglucan, water dikinase-3, genethonin-1, laforin, starch-excess protein-4, the β-subunit of AMP-activated protein kinase and its homologues from sucrose non-fermenting-1 protein...

  10. AHM1, a novel type of nuclear matrix-localized, MAR binding protein with a single AT hook and a J domain-homologous region.

    Science.gov (United States)

    Morisawa, G; Han-Yama, A; Moda, I; Tamai, A; Iwabuchi, M; Meshi, T

    2000-10-01

    Interactions between the nuclear matrix and special regions of chromosomal DNA called matrix attachment regions (MARs) have been implicated in various nuclear functions. We have identified a novel protein from wheat, AT hook-containing MAR binding protein1 (AHM1), that binds preferentially to MARs. A multidomain protein, AHM1 has the special combination of a J domain-homologous region and a Zn finger-like motif (a J-Z array) and an AT hook. For MAR binding, the AT hook at the C terminus was essential, and an internal portion containing the Zn finger-like motif was additionally required in vivo. AHM1 was found in the nuclear matrix fraction and was localized in the nucleoplasm. AHM1 fused to green fluorescent protein had a speckled distribution pattern inside the nucleus. AHM1 is most likely a nuclear matrix component that functions between intranuclear framework and MARs. J-Z arrays can be found in a group of (hypothetical) proteins in plants, which may share some functions, presumably to recruit specific Hsp70 partners as co-chaperones. PMID:11041885

  11. Nuclear Trafficking of the Rabies Virus Interferon Antagonist P-Protein Is Regulated by an Importin-Binding Nuclear Localization Sequence in the C-Terminal Domain

    Science.gov (United States)

    Rowe, Caitlin L.; Wagstaff, Kylie M.; Oksayan, Sibil; Glover, Dominic J.

    2016-01-01

    Rabies virus P-protein is expressed as five isoforms (P1-P5) which undergo nucleocytoplasmic trafficking important to roles in immune evasion. Although nuclear import of P3 is known to be mediated by an importin (IMP)-recognised nuclear localization sequence in the N-terminal region (N-NLS), the mechanisms underlying nuclear import of other P isoforms in which the N-NLS is inactive or has been deleted have remained unresolved. Based on the previous observation that mutation of basic residues K214/R260 of the P-protein C-terminal domain (P-CTD) can result in nuclear exclusion of P3, we used live cell imaging, protein interaction analysis and in vitro nuclear transport assays to examine in detail the nuclear trafficking properties of this domain. We find that the effect of mutation of K214/R260 on P3 is largely dependent on nuclear export, suggesting that nuclear exclusion of mutated P3 involves the P-CTD-localized nuclear export sequence (C-NES). However, assays using cells in which nuclear export is pharmacologically inhibited indicate that these mutations significantly inhibit P3 nuclear accumulation and, importantly, prevent nuclear accumulation of P1, suggestive of effects on NLS-mediated import activity in these isoforms. Consistent with this, molecular binding and transport assays indicate that the P-CTD mediates IMPα2/IMPβ1-dependent nuclear import by conferring direct binding to the IMPα2/IMPβ1 heterodimer, as well as to a truncated form of IMPα2 lacking the IMPβ-binding autoinhibitory domain (ΔIBB-IMPα2), and IMPβ1 alone. These properties are all dependent on K214 and R260. This provides the first evidence that P-CTD contains a genuine IMP-binding NLS, and establishes the mechanism by which P-protein isoforms other than P3 can be imported to the nucleus. These data underpin a refined model for P-protein trafficking that involves the concerted action of multiple NESs and IMP-binding NLSs, and highlight the intricate regulation of P-protein

  12. Nuclear Trafficking of the Rabies Virus Interferon Antagonist P-Protein Is Regulated by an Importin-Binding Nuclear Localization Sequence in the C-Terminal Domain.

    Science.gov (United States)

    Rowe, Caitlin L; Wagstaff, Kylie M; Oksayan, Sibil; Glover, Dominic J; Jans, David A; Moseley, Gregory W

    2016-01-01

    Rabies virus P-protein is expressed as five isoforms (P1-P5) which undergo nucleocytoplasmic trafficking important to roles in immune evasion. Although nuclear import of P3 is known to be mediated by an importin (IMP)-recognised nuclear localization sequence in the N-terminal region (N-NLS), the mechanisms underlying nuclear import of other P isoforms in which the N-NLS is inactive or has been deleted have remained unresolved. Based on the previous observation that mutation of basic residues K214/R260 of the P-protein C-terminal domain (P-CTD) can result in nuclear exclusion of P3, we used live cell imaging, protein interaction analysis and in vitro nuclear transport assays to examine in detail the nuclear trafficking properties of this domain. We find that the effect of mutation of K214/R260 on P3 is largely dependent on nuclear export, suggesting that nuclear exclusion of mutated P3 involves the P-CTD-localized nuclear export sequence (C-NES). However, assays using cells in which nuclear export is pharmacologically inhibited indicate that these mutations significantly inhibit P3 nuclear accumulation and, importantly, prevent nuclear accumulation of P1, suggestive of effects on NLS-mediated import activity in these isoforms. Consistent with this, molecular binding and transport assays indicate that the P-CTD mediates IMPα2/IMPβ1-dependent nuclear import by conferring direct binding to the IMPα2/IMPβ1 heterodimer, as well as to a truncated form of IMPα2 lacking the IMPβ-binding autoinhibitory domain (ΔIBB-IMPα2), and IMPβ1 alone. These properties are all dependent on K214 and R260. This provides the first evidence that P-CTD contains a genuine IMP-binding NLS, and establishes the mechanism by which P-protein isoforms other than P3 can be imported to the nucleus. These data underpin a refined model for P-protein trafficking that involves the concerted action of multiple NESs and IMP-binding NLSs, and highlight the intricate regulation of P-protein

  13. The Ability to Associate with Activation Domains in vitro is not Required for the TATA Box-Binding Protein to Support Activated Transcription in vivo

    Science.gov (United States)

    Tansey, William P.; Herr, Winship

    1995-11-01

    The TATA box-binding protein (TBP) interacts in vitro with the activation domains of many viral and cellular transcription factors and has been proposed to be a direct target for transcriptional activators. We have examined the functional relevance of activator-TBP association in vitro to transcriptional activation in vivo. We show that alanine substitution mutations in a single loop of TBP can disrupt its association in vitro with the activation domains of the herpes simplex virus activator VP16 and of the human tumor suppressor protein p53; these mutations do not, however, disrupt the transcriptional response of TBP to either activation domain in vivo. Moreover, we show that a region of VP16 distinct from its activation domain can also tightly associate with TBP in vitro, but fails to activate transcription in vivo. These data suggest that the ability of TBP to interact with activation domains in vitro is not directly relevant to its ability to support activated transcription in vivo.

  14. Loss of Expression of Human Spectrin Src Homology Domain Binding Protein 1 is Associated with 10p Loss in Human Prostatic Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Jill A. Macoska

    2001-01-01

    Full Text Available The gene encoding human spectrin Src homology domain binding protein 1, or Hssh3bpl, which is a marker of macropinocytic vesicles and a potential regulator of macropinocytosis, co-localizes to a YAC containing chromosome 10p sequences at loci D10S89 and D10S111 that are frequently deleted in prostate tumors. Expression of Hssh3bp1 was evaluated at the protein level in 17 paired normal and malignant prostate tumor samples using the monoclonal antibody 2G8 to Hssh3bpl. These experiments demonstrated that 4/6 tumors (67% with 10p deletion failed to express Hssh3bp1 protein compared to 5/11 (46% tumors with intact 10p. Thus, loss of Hssh3bp1 expression is concordant with allelic loss of adjacent 10p sequences in human prostate tumors. In addition, two prostate tumor cell lines contain an exon skipping mutation in the Hssh3bp1 gene that leads to the abnormal splicing of the mRNA and loss of a portion of Abl tyrosine kinase SH3 domain binding site in the protein. These data are consistent with a role for Hssh3bp1 as a candidate tumor suppressor gene inactivated during prostate tumorigenesis.

  15. PP2A1 binding, cell transducing and apoptotic properties of Vpr(77-92: a new functional domain of HIV-1 Vpr proteins.

    Directory of Open Access Journals (Sweden)

    Angélique N Godet

    Full Text Available BACKGROUND: The hallmark of HIV-1 pathogenesis is the progressive CD4(+ T cell depletion and high propensity of CD4(+ T cells to apoptosis. HIV-1 viral protein R (Vpr is a major pro-apoptotic gene product. A first Vpr-mediated apoptotic mechanism that requires a physical interaction of HIV-1 Vpr(71-82 mitochondriotoxic domain containing the conserved sequence (71-HFRIGCRHSRIG(-82 with the Adenine Nucleotide Translocator (ANT has been characterized. The family of Ser/Thr protein phosphatase PP2A interacts with several viral proteins to regulate cell growth and apoptotic pathways. Previous studies based on yeast two hybrid assays and mutational experiments indicated that PP2A(1 is involved in the induction of G2 arrest by HIV-1 Vpr. PRINCIPAL FINDINGS: Experiments combining pull-down, cell penetration and apoptosis analyses in distinct human cells indicate that the PP2A(1 binding sequence from Vpr(77-92 is a new cell penetrating apoptotic sequence. We also found that the I84P mutation or the IIQ/VTR(83-85 and T89A substitutions in the Vpr(77-92 sequence prevent PP2A(1 binding, cell penetration and apoptosis. In addition the double R77A and R80A mutation known to inactivate the mitochondriotoxic Vpr(71-82 domain, has no effect on the biological properties of the Vpr(77-92 domain. CONCLUSION: Together our data provide evidence for the first time that the Vpr(77-92 sequence delineates a biological active domain of Vpr with PP2A(1 binding and pro-apoptotic capacities and, it is conceivable that this cell penetrating sequence may account for the Vpr internalization in uninfected cells. Finally, our data also implicate the existence of two partially overlapping pro-apoptotic domains in the Vpr C-terminal part, a redundancy that represents a new approach to address the question of biological relevance of HIV-1 Vpr. In this context, future studies will be required to determine the functional relevance of the Vpr(77-92 domain in full length Vpr protein and

  16. The E1 copper binding domain of full-length amyloid precursor protein mitigates copper-induced growth inhibition in brain metastatic prostate cancer DU145 cells

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Mallory, E-mail: m.gough1@lancaster.ac.uk; Blanthorn-Hazell, Sophee, E-mail: s.blanthorn-hazell@lancaster.ac.uk; Delury, Craig, E-mail: c.delury@lancaster.ac.uk; Parkin, Edward, E-mail: e.parkin@lancaster.ac.uk

    2014-10-31

    Highlights: • Copper levels are elevated in the tumour microenvironment. • APP mitigates copper-induced growth inhibition of DU145 prostate cancer (PCa) cells. • The APP intracellular domain is a prerequisite; soluble forms have no effect. • The E1 CuBD of APP is also a prerequisite. • APP copper binding potentially mitigates copper-induced PCa cell growth inhibition. - Abstract: Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.

  17. The E1 copper binding domain of full-length amyloid precursor protein mitigates copper-induced growth inhibition in brain metastatic prostate cancer DU145 cells

    International Nuclear Information System (INIS)

    Highlights: • Copper levels are elevated in the tumour microenvironment. • APP mitigates copper-induced growth inhibition of DU145 prostate cancer (PCa) cells. • The APP intracellular domain is a prerequisite; soluble forms have no effect. • The E1 CuBD of APP is also a prerequisite. • APP copper binding potentially mitigates copper-induced PCa cell growth inhibition. - Abstract: Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers

  18. The haloarchaeal MCM proteins: bioinformatic analysis and targeted mutagenesis of the β7-β8 and β9-β10 hairpin loops and conserved zinc binding domain cysteines

    Directory of Open Access Journals (Sweden)

    Tatjana P Kristensen

    2014-03-01

    Full Text Available The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural

  19. Structural dynamics and ssDNA binding activity of the three N-terminal domains of the large subunit of Replication Protein A from small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pretto, Dalyir I.; Tsutakawa, Susan; Brosey, Chris A.; Castillo, Amalchi; Chagot, Marie-Eve; Smith, Jarrod A.; Tainer, John A.; Chazin, Walter J.

    2010-03-11

    Replication Protein A (RPA) is the primary eukaryotic ssDNA binding protein utilized in diverse DNA transactions in the cell. RPA is a heterotrimeric protein with seven globular domains connected by flexible linkers, which enable substantial inter-domain motion that is essential to its function. Small angle X-ray scattering (SAXS) experiments on two multi-domain constructs from the N-terminus of the large subunit (RPA70) were used to examine the structural dynamics of these domains and their response to the binding of ssDNA. The SAXS data combined with molecular dynamics simulations reveal substantial interdomain flexibility for both RPA70AB (the tandem high affinity ssDNA binding domains A and B connected by a 10-residue linker) and RPA70NAB (RPA70AB extended by a 70-residue linker to the RPA70N protein interaction domain). Binding of ssDNA to RPA70NAB reduces the interdomain flexibility between the A and B domains, but has no effect on RPA70N. These studies provide the first direct measurements of changes in orientation of these three RPA domains upon binding ssDNA. The results support a model in which RPA70N remains structurally independent of RPA70AB in the DNA bound state and therefore freely available to serve as a protein recruitment module.

  20. Characterization of a gene family encoding SEA (sea-urchin sperm protein, enterokinase and agrin-domain proteins with lectin-like and heme-binding properties from Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    Evaristus Chibunna Mbanefo

    Full Text Available BACKGROUND: We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. METHODOLOGY/PRINCIPAL FINDINGS: Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10(-6 M and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. CONCLUSIONS: The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation, and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted.

  1. Structural analysis of the DNA-binding domain of the Erwinia amylovora RcsB protein and its interaction with the RcsAB box.

    Science.gov (United States)

    Pristovsek, Primoz; Sengupta, Kaushik; Löhr, Frank; Schäfer, Birgit; von Trebra, Markus Wehland; Rüterjans, Heinz; Bernhard, Frank

    2003-05-16

    The transcriptional regulator RcsB interacts with other coactivators to control the expression of biosynthetic operons in enterobacteria. While in a heterodimer complex with the regulator RcsA the RcsAB box consensus is recognized, DNA binding sites for RcsB without RcsA have also been identified. The conformation of RcsB might therefore be modulated upon interaction with various coactivators, resulting in the recognition of different DNA targets. We report the solution structure of the C-terminal DNA-binding domain of the RcsB protein from Erwinia amylovora spanning amino acid residues 129-215 solved by heteronuclear magnetic resonance (NMR) spectroscopy. The C-terminal domain is composed of four alpha-helices where two central helices form a helix-turn-helix motif similar to the structures of the regulatory proteins GerE, NarL, and TraR. Amino acid residues involved in the RcsA independent DNA binding of RcsB were identified by titration studies with a RcsAB box consensus fragment. Data obtained from NMR spectroscopy together with surface plasmon resonance measurements demonstrate that the RcsAB box is specifically recognized by the RcsAB heterodimer as well as by RcsB alone. However, the binding constant of RcsB alone at target promoters from Escherichia coli, E. amylovora, and Pantoea stewartii was approximately 1 order of magnitude higher compared with that of the RcsAB heterodimer. We present evidence that the obvious role of RcsA is not to alter the DNA binding specificity of RcsB but to stabilize RcsB-DNA complexes. PMID:12740396

  2. The conserved core domain of the human TATA binding protein is sufficient to assemble the multisubunit RNA polymerase I-specific transcription factor SL1.

    OpenAIRE

    Rudloff, U; Eberhard, D; Grummt, I

    1994-01-01

    The human ribosomal RNA polymerase (Pol) I promoter selectivity factor SL1 is a complex consisting of the TATA binding protein (TBP) and three TBP-associated factors (TAFs). We have investigated which elements of TBP are involved in the assembly of Pol I-specific TBP-TAF complexes by comparing SL1 isolated from two human cell lines, one expressing epitope-tagged full-length TBP and another expressing a deletion of nearly the entire N-terminal domain (e delta NTBP). We have immunopurified epit...

  3. A KH Domain-Containing Putative RNA-Binding Protein Is Critical for Heat Stress-Responsive Gene Regulation and Thermotolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Qingmei Guan; Changlong Wen; Haitao Zeng; Jianhua Zhu

    2013-01-01

    Heat stress is a severe environmental factor that significantly reduces plant growth and delays development.Heat stress factors (HSFs) are a class of transcription factors that are synthesized rapidly in response to elevations in temperature and are responsible for the transcription of many heat stress-responsive genes including those encoding heat shock proteins (HSPs).There are 21 HSFs in Arabidopsis,and recent studies have established that the HSFA1 family members are master regulators for the remaining HSFs.However,very little is known about upstream molecular factors that control the expression of HSFA1 genes and other HSF genes under heat stress.Through a forward genetic analysis,we identified RCF3,a K homology (KH) domain-containing nuclear-localized putative RNA-binding protein.RCF3 is a negative regulator of most HSFs,including HSFAla,HSFAlb,and HSFAld.In contrast,RCF3 positively controls the expression of HSFAle,HSFA3,HSFA9,HSFB3,and DREB2C.Consistently with the overall increased accumulation of heat-responsive genes,the rcf3 mutant plants are more tolerant than the wild-type to heat stress.Together,our results suggest that a KH domain-containing putative RNA-binding protein RCF3 is an important upstream regulator for heat stress-responsive gene expression and thermotolerance in Arabidopsis.

  4. The gene therapy of collagen-induced arthritis in rats by intramuscular administration of the plasmid encoding TNF-binding domain of variola virus CrmB protein.

    Science.gov (United States)

    Shchelkunov, S N; Taranov, O S; Tregubchak, T V; Maksyutov, R A; Silkov, A N; Nesterov, A E; Sennikov, S V

    2016-07-01

    Wistar rats with collagen-induced arthritis were intramuscularly injected with the recombinant plasmid pcDNA/sTNF-BD encoding the sequence of the TNF-binding protein domain of variola virus CrmB protein (VARV sTNF-BD) or the pcDNA3.1 vector. Quantitative analysis showed that the histopathological changes in the hind-limb joints of rats were most severe in the animals injected with pcDNA3.1 and much less severe in the group of rats injected with pcDNA/sTNF-BD, which indicates that gene therapy of rheumatoid arthritis is promising in the case of local administration of plasmids governing the synthesis of VARV immunomodulatory proteins. PMID:27599513

  5. Starch Binding Domain-containing Protein 1 Plays a Dominant Role in Glycogen Transport to Lysosomes in Liver.

    Science.gov (United States)

    Sun, Tao; Yi, Haiqing; Yang, Chunyu; Kishnani, Priya S; Sun, Baodong

    2016-08-01

    A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function. PMID:27358407

  6. Cardiac myosin binding protein C and MAP-kinase activating death domain-containing gene polymorphisms and diastolic heart failure.

    Directory of Open Access Journals (Sweden)

    Cho-Kai Wu

    Full Text Available OBJECTIVE: Myosin binding protein C (MYBPC3 plays a role in ventricular relaxation. The aim of the study was to investigate the association between cardiac myosin binding protein C (MYBPC3 gene polymorphisms and diastolic heart failure (DHF in a human case-control study. METHODS: A total of 352 participants of 1752 consecutive patients from the National Taiwan University Hospital and its affiliated hospital were enrolled. 176 patients diagnosed with DHF confirmed by echocardiography were recruited. Controls were matched 1-to-1 by age, sex, hypertension, diabetes, renal function and medication use. We genotyped 12 single nucleotide polymorphisms (SNPs according to HapMap Han Chinese Beijing databank across a 40 kb genetic region containing the MYBPC3 gene and the neighboring DNA sequences to capture 100% of haplotype variance in all SNPs with minor allele frequencies ≥ 5%. We also analyzed associations of these tagging SNPs and haplotypes with DHF and linkage disequilibrium (LD structure of the MYBPC3 gene. RESULTS: In a single locus analysis, SNP rs2290149 was associated with DHF (allele-specific p = 0.004; permuted p = 0.031. The SNP with a minor allele frequency of 9.4%, had an odds ratio 2.14 (95% CI 1.25-3.66; p = 0.004 for the additive model and 2.06 for the autosomal dominant model (GG+GA : AA, 95% CI 1.17-3.63; p = 0.013, corresponding to a population attributable risk fraction of 12.02%. The haplotypes in a LD block of rs2290149 (C-C-G-C was also significantly associated with DHF (odds ratio 2.10 (1.53-2.89; permuted p = 0.029. CONCLUSIONS: We identified a SNP (rs2290149 among the tagging SNP set that was significantly associated with early DHF in a Chinese population.

  7. Mutation and crystallization of the first KH domain of human polycytosine-binding protein 1 (PCBP1) in complex with DNA

    International Nuclear Information System (INIS)

    The successful preparation of a mutant KH domain representing the first KH domain of PCBP1 and its crystallization in complex with a C-rich DNA are reported. This structure is anticipated to provide high-resolution information that will allow better understanding of the basis of cytosine specificity by PCBPs. Polycytosine-binding proteins (PCBPs) are triple KH-domain proteins that play an important role in the regulation of translation of eukaryotic mRNA. They are also utilized by viral RNA and have been shown to interact with ssDNA. Underlying their function is the specific recognition of C-rich nucleotides by their KH domains. However, the structural basis of this recognition is only partially understood. Here, the preparation of a His-tagged KH domain is described, representing the first domain of PCBP1 that incorporates a C54S mutation as well as the addition of a C-terminal tryptophan. This construct has facilitated the preparation of highly diffracting crystals in complex with C-rich DNA (sequence ACCCCA). Crystals of the KH1–DNA complex were grown using the hanging-drop vapour-diffusion method in 0.1 M phosphate–citrate pH 4.2, 40%(v/v) PEG 300. X-ray diffraction data were collected to 1.77 Å resolution and the diffraction was consistent with space group P21, with unit-cell parameters a = 38.59, b = 111.88, c = 43.42 Å, α = γ = 90.0, β = 93.37°. The structure of the KH1–DNA complex will further our insight into the basis of cytosine specificity by PCBPs

  8. Biophysical Characterization of a Vaccine Candidate against HIV-1: The Transmembrane and Membrane Proximal Domains of HIV-1 gp41 as a Maltose Binding Protein Fusion.

    Directory of Open Access Journals (Sweden)

    Zhen Gong

    Full Text Available The membrane proximal region (MPR, residues 649-683 and transmembrane domain (TMD, residues 684-705 of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683 of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705, in Escherichia coli as a fusion protein with maltose binding protein (MBP. MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM. Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.

  9. Thermodynamics of complex structures formed between single-stranded DNA oligomers and the KH domains of the far upstream element binding protein

    Science.gov (United States)

    Chakraborty, Kaushik; Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy

    2016-05-01

    The noncovalent interaction between protein and DNA is responsible for regulating the genetic activities in living organisms. The most critical issue in this problem is to understand the underlying driving force for the formation and stability of the complex. To address this issue, we have performed atomistic molecular dynamics simulations of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein (FBP) complexed with two single-stranded DNA (ss-DNA) oligomers in aqueous media. Attempts have been made to calculate the individual components of the net entropy change for the complexation process by adopting suitable statistical mechanical approaches. Our calculations reveal that translational, rotational, and configurational entropy changes of the protein and the DNA components have unfavourable contributions for this protein-DNA association process and such entropy lost is compensated by the entropy gained due to the release of hydration layer water molecules. The free energy change corresponding to the association process has also been calculated using the Free Energy Perturbation (FEP) method. The free energy gain associated with the KH4-DNA complex formation has been found to be noticeably higher than that involving the formation of the KH3-DNA complex.

  10. The integrity of the alpha-helical domain of intestinal fatty acid binding protein is essential for the collision-mediated transfer of fatty acids to phospholipid membranes.

    Science.gov (United States)

    Franchini, G R; Storch, J; Corsico, B

    2008-04-01

    Intestinal FABP (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms of fatty acid transfer to acceptor model membranes. Transfer from IFABP occurs during protein-membrane collisional interactions, while for LFABP transfer occurs by diffusion through the aqueous phase. In addition, transfer from IFABP is markedly faster than from LFABP. The overall goal of this study was to further explore the structural differences between IFABP and LFABP which underlie their large functional differences in ligand transport. In particular, we addressed the role of the alphaI-helix domain in the unique transport properties of intestinal FABP. A chimeric protein was engineered with the 'body' (ligand binding domain) of IFABP and the alphaI-helix of LFABP (alpha(I)LbetaIFABP), and the fatty acid transfer properties of the chimeric FABP were examined using a fluorescence resonance energy transfer assay. The results showed a significant decrease in the absolute rate of FA transfer from alpha(I)LbetaIFABP compared to IFABP. The results indicate that the alphaI-helix is crucial for IFABP collisional FA transfer, and further indicate the participation of the alphaII-helix in the formation of a protein-membrane "collisional complex". Photo-crosslinking experiments with a photoactivable reagent demonstrated the direct interaction of IFABP with membranes and further support the importance of the alphaI helix of IFABP in its physical interaction with membranes. PMID:18284926

  11. Chondroitin sulphate A (CSA)-binding of single recombinant Duffy-binding-like domains is not restricted to Plasmodium falciparum Erythrocyte Membrane Protein 1 expressed by CSA-binding parasites

    DEFF Research Database (Denmark)

    Resende, Mafalda; Ditlev, Sisse B; Nielsen, Morten A;

    2009-01-01

    Individuals living in areas with high Plasmodium falciparum transmission acquire immunity to malaria over time and adults have a markedly reduced risk of contracting severe disease. However, pregnant women constitute an important exception. Pregnancy-associated malaria is a major cause of mother...... heparan sulphate. These data explain a number of publications describing CSA-binding domains derived from PfEMP1 antigens not involved in placental adhesion. The data suggest that the ability of single domains to bind CSA does not predict the functional capacity of the whole PfEMP1 and raises doubt...

  12. Soluble FasR ligand-binding domain: high-yield production of active fusion and non-fusion recombinant proteins using the baculovirus/insect cell system.

    Science.gov (United States)

    Mahiou, J; Abastado, J P; Cabanie, L; Godeau, F

    1998-03-01

    We used the recombinant baculovirus/insect cell system to express two soluble forms of the mouse Fas receptor (mFasR) extracellular domain (ECD): a monomer comprising the entire ligand-binding portion of mFasR followed by a carboxy-terminal hexa-histidine extension aiding purification by immobilized metal affinity chromatography and an immunoadhesin in which the same 148 residues were fused to the Fc portion of a truncated human IgG1 immunoglobulin heavy chain. Both constructs harboured a 24 base pairs insertion placed upstream of the initiating ATG [Peakman, Charles, Sydenham, Gewert, Page, and Makoff (1992) Nucleic Acids Res. 20, 6111-6112]. Despite its hexa-histidine extension, the monovalent recombinant protein from crude culture media failed to bind immobilized Ni2+ unless proteins were first precipitated twice by ammonium sulphate. The overall procedure then yielded approximately 10mg/l of protein which could be purified to near homogeneity using two additional chromatographic steps. The glycosylated polypeptide migrated as a band of Mr=(21-31) x 10(3) in SDS/PAGE and was monomeric in physiological buffers. Under non-reducing conditions, denaturation in 6 M guanidinium chloride was reversible after slow removal of the denaturing agent. The mFasR immunoadhesin was secreted (approximately 5-10 mg/l) as a disulphide-linked homodimer, and endowed with ligand-binding activity since it could bind FasL on the surface of D11S, FasL-expressing cells. When tested for their ability to inhibit FasR-dependent cell lysis, the soluble dimeric immunoadhesin markedly inhibited FasL-mediated cytotoxicity (IC50 approximately 30 nM), and was approximately 6 times as effective as its monomeric counterpart. PMID:9480929

  13. Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains.

    Science.gov (United States)

    Guillén, D; Santiago, M; Linares, L; Pérez, R; Morlon, J; Ruiz, B; Sánchez, S; Rodríguez-Sanoja, R

    2007-06-01

    The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch. PMID:17468268

  14. A sequential binding mechanism in a PDZ domain

    DEFF Research Database (Denmark)

    Chi, Celestine N; Bach, Anders; Engström, Åke; Wang, Huiqun; Strømgaard, Kristian; Gianni, Stefano; Jemth, Per

    2009-01-01

    Conformational selection and induced fit are two well-known mechanisms of allosteric protein-ligand interaction. Some proteins, like ubiquitin, have recently been found to exist in multiple conformations at equilibrium, suggesting that the conformational selection may be a general mechanism of...... interaction, in particular for single-domain proteins. Here, we found that the PDZ2 domain of SAP97 binds its ligand via a sequential (induced fit) mechanism. We performed binding experiments using SAP97 PDZ2 and peptide ligands and observed biphasic kinetics with the stopped-flow technique, indicating that...... ligand binding involves at least a two-step process. By using an ultrarapid continuous-flow mixer, we then detected a hyperbolic dependence of binding rate constants on peptide concentration, corroborating the two-step binding mechanism. Furthermore, we found a similar dependence of the rate constants on...

  15. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact with......-domain proteins catalyse the formation of ubiquitin-protein conjugates, whereas others appear to target ubiquitinated proteins for degradation and interact with chaperones. Hence, by binding to the 26S proteasome the UBL-domain proteins seem to tailor and direct the basic proteolytic functions of the particle to...... 26S proteasomes. The 26S proteasome is a multisubunit protease which is responsible for the majority of intracellular proteolysis in eukaryotic cells. Before degradation commences most proteins are first marked for destruction by being coupled to a chain of ubiquitin molecules. Some UBL...

  16. High Affinity Binding of the Receptor-associated Protein D1D2 Domains with the Low Density Lipoprotein Receptor-related Protein (LRP1) Involves Bivalent Complex Formation: CRITICAL ROLES OF LYSINES 60 AND 191.

    Science.gov (United States)

    Prasad, Joni M; Young, Patricia A; Strickland, Dudley K

    2016-08-26

    The LDL receptor-related protein 1 (LRP1) is a large endocytic receptor that binds and mediates the endocytosis of numerous structurally diverse ligands. Currently, the basis for ligand recognition by LRP1 is not well understood. LRP1 requires a molecular chaperone, termed the receptor-associated protein (RAP), to escort the newly synthesized receptor from the endoplasmic reticulum to the Golgi. RAP is a three-domain protein that contains the following two high affinity binding sites for LRP1: one is located within domains 1 and 2, and one is located in its third domain. Studies on the interaction of the RAP third domain with LRP1 reveal critical contributions by lysine 256 and lysine 270 for this interaction. From these studies, a model for ligand recognition by this class of receptors has been proposed. Here, we employed surface plasmon resonance to investigate the binding of RAP D1D2 to LRP1. Our results reveal that the high affinity of D1D2 for LRP1 results from avidity effects mediated by the simultaneous interactions of lysine 60 in D1 and lysine 191 in D2 with sites on LRP1 to form a bivalent D1D2-LRP1 complex. When lysine 60 and 191 are both mutated to alanine, the binding of D1D2 to LRP1 is ablated. Our data also reveal that D1D2 is able to bind to a second distinct site on LRP1 to form a monovalent complex. The studies confirm the canonical model for ligand recognition by this class of receptors, which is initiated by pairs of lysine residues that dock into acidic pockets on the receptor. PMID:27402839

  17. An MHC-I cytoplasmic domain/HIV-1 Nef fusion protein binds directly to the mu subunit of the AP-1 endosomal coat complex.

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar Singh

    Full Text Available BACKGROUND: The down-regulation of the major histocompatibility complex class I (MHC-I from the surface of infected cells by the Nef proteins of primate immunodeficiency viruses likely contributes to pathogenesis by providing evasion of cell-mediated immunity. HIV-1 Nef-induced down-regulation involves endosomal trafficking and a cooperative interaction between the cytoplasmic domain (CD of MHC-I, Nef, and the clathrin adaptor protein complex-1 (AP-1. The CD of MHC-I contains a key tyrosine within the sequence YSQA that is required for down-regulation by Nef, but this sequence does not conform to the canonical AP-binding tyrosine-based motif Yxxphi, which mediates binding to the medium (micro subunits of AP complexes. We previously proposed that Nef allows the MHC-I CD to bind the mu subunit of AP-1 (micro1 as if it contained a Yxxphimotif. METHODS AND FINDINGS: Here, we show that a direct interaction between the MHC-I CD/Nef and micro1 plays a primary role in the down-regulation of MHC-I: GST pulldown assays using recombinant proteins indicated that most of the MHC-I CD and Nef residues that are required for the down-regulation in human cells contribute to direct interactions with a truncated version of micro1. Specifically, the tyrosine residue of the YSQA sequence in the MHC-I CD as well as Nef residues E62-65 and P78 each contributed to the interaction between MHC-I CD/Nef and micro1 in vitro, whereas Nef M20 had little to no role. Conversely, residues F172/D174 and V392/L395 of the binding pocket on micro1 for Yxxphi motifs were required for a robust interaction. CONCLUSIONS: These data indicate that the MHC-I cytoplasmic domain, Nef, and the C-terminal two thirds of the mu subunit of AP-1 are sufficient to constitute a biologically relevant interaction. The data also reveal an unexpected role for a hydrophobic pocket in micro1 for interaction with MHC-I CD/Nef.

  18. A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter

    Directory of Open Access Journals (Sweden)

    Gao Chen

    2012-02-01

    Full Text Available Abstract Background The human papillomavirus (HPV E2 protein is a multifunctional DNA-binding protein. The transcriptional activity of HPV E2 is mediated by binding to its specific binding sites in the upstream regulatory region of the HPV genomes. Previously we reported a HPV-2 variant from a verrucae vulgaris patient with huge extensive clustered cutaneous, which have five point mutations in its E2 ORF, L118S, S235P, Y287H, S293R and A338V. Under the control of HPV-2 LCR, co-expression of the mutated HPV E2 induced an increased activity on the viral early promoter. In the present study, a series of mammalian expression plasmids encoding E2 proteins with one to five amino acid (aa substitutions for these mutations were constructed and transfected into HeLa, C33A and SiHa cells. Results CAT expression assays indicated that the enhanced promoter activity was due to the co-expressions of the E2 constructs containing A338V mutation within the DNA-binding domain. Western blots analysis demonstrated that the transiently transfected E2 expressing plasmids, regardless of prototype or the A338V mutant, were continuously expressed in the cells. To study the effect of E2 mutations on its DNA-binding activity, a serial of recombinant E2 proteins with various lengths were expressed and purified. Electrophoresis mobility shift assays (EMSA showed that the binding affinity of E2 protein with A338V mutation to both an artificial probe with two E2 binding sites or HPV-2 and HPV-16 promoter-proximal LCR sequences were significantly stronger than that of the HPV-2 prototype E2. Furthermore, co-expression of the construct containing A338V mutant exhibited increased activities on heterologous HPV-16 early promoter P97 than that of prototype E2. Conclusions These results suggest that the mutation from Ala to Val at aa 338 is critical for E2 DNA-binding and its transcriptional regulation.

  19. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  20. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    International Nuclear Information System (INIS)

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed

  1. Calmodulin Binding Proteins and Alzheimer's Disease.

    Science.gov (United States)

    O'Day, Danton H; Eshak, Kristeen; Myre, Michael A

    2015-01-01

    The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer's disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer's disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer's disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  2. Enhancer-binding proteins with a forkhead-associated domain and the sigma(54) regulon in Myxococcus xanthus fruiting body development

    DEFF Research Database (Denmark)

    Jelsbak, Lars; Givskov, Michael Christian; Kaiser, D.

    2005-01-01

    In response to starvation, Myxococcus xanthus initiates a developmental program that results in the formation of spore-filled, multicellular fruiting bodies. Many developmentally regulated genes in M. xanthus are transcribed from sigma(54) promoters, and these genes require enhancer-binding prote......In response to starvation, Myxococcus xanthus initiates a developmental program that results in the formation of spore-filled, multicellular fruiting bodies. Many developmentally regulated genes in M. xanthus are transcribed from sigma(54) promoters, and these genes require enhancer...... these genes, Mx4885, caused a cell autonomous aggregation and sporulation defect. In-frame deletion mutants showed that the FHA domain is necessary for proper Mx4885 function. The altered pattern of developmental gene expression in the mutant implied that Mx4885 is on the pathway of response to the...

  3. Methyl-binding domain protein-based DNA isolation from human blood serum combines DNA analyses and serum-autoantibody testing

    Directory of Open Access Journals (Sweden)

    Jungbauer Christof

    2011-09-01

    Full Text Available Abstract Background Circulating cell free DNA in serum as well as serum-autoantibodies and the serum proteome have great potential to contribute to early cancer diagnostics via non invasive blood tests. However, most DNA preparation protocols destroy the protein fraction and therefore do not allow subsequent protein analyses. In this study a novel approach based on methyl binding domain protein (MBD is described to overcome the technical difficulties of combining DNA and protein analysis out of one single serum sample. Methods Serum or plasma samples from 98 control individuals and 54 breast cancer patients were evaluated upon silica membrane- or MBD affinity-based DNA isolation via qPCR targeting potential DNA methylation markers as well as by protein-microarrays for tumor-autoantibody testing. Results In control individuals, an average DNA level of 22.8 ± 25.7 ng/ml was detected applying the silica membrane based protocol and 8.5 ± 7.5 ng/ml using the MBD-approach, both values strongly dependent on the serum sample preparation methods used. In contrast to malignant and benign tumor serum samples, cell free DNA concentrations were significantly elevated in sera of metastasizing breast cancer patients. Technical evaluation revealed that serum upon MBD-based DNA isolation is suitable for protein-array analyses when data are consistent to untreated serum samples. Conclusion MBD affinity purification allows DNA isolations under native conditions retaining the protein function, thus for example enabling combined analyses of DNA methylation and autoantigene-profiles from the same serum sample and thereby improving minimal invasive diagnostics.

  4. Abnormal SDS-PAGE migration of cytosolic proteins can identify domains and mechanisms that control surfactant binding

    OpenAIRE

    Shi, Yunhua; Mowery, Richard A; Ashley, Jonathan; Hentz, Michelle; Ramirez, Alejandro J; Bilgicer, Basar; Slunt-Brown, Hilda; David R Borchelt; Bryan F Shaw

    2012-01-01

    The amino acid substitution or post-translational modification of a cytosolic protein can cause unpredictable changes to its electrophoretic mobility during SDS-PAGE. This type of “gel shifting” has perplexed biochemists and biologists for decades. We identify a mechanism for “gel shifting” that predominates among a set of ALS (amyotrophic lateral sclerosis) mutant hSOD1 (superoxide dismutase) proteins, post-translationally modified hSOD1 proteins, and homologous SOD1 proteins from different ...

  5. S-Layer-Mediated Display of the Immunoglobulin G-Binding Domain of Streptococcal Protein G on the Surface of Caulobacter crescentus: Development of an Immunoactive Reagent▿

    OpenAIRE

    Nomellini, John F.; Duncan, Gillian; Dorocicz, Irene R.; Smit, John

    2007-01-01

    The immunoglobulin G (IgG)-binding streptococcal protein G is often used for immunoprecipitation or immunoadsorption-based assays, as it exhibits binding to a broader spectrum of host species IgG and IgG subclasses than the alternative, Staphylococcus aureus protein A. Caulobacter crescentus produces a hexagonally arranged paracrystalline protein surface layer (S-layer) composed of a single secreted protein, RsaA, that is notably tolerant of heterologous peptide insertions while maintaining t...

  6. The TamA protein fused to a DNA-binding domain can recruit AreA, the major nitrogen regulatory protein, to activate gene expression in Aspergillus nidulans.

    OpenAIRE

    Small, A J; Hynes, M J; Davis, M A

    1999-01-01

    The areA gene of Aspergillus nidulans encodes a GATA zinc finger transcription factor that activates the expression of a large number of genes subject to nitrogen metabolite repression. The amount and activity of the AreA protein under different nitrogen conditions is modulated by transcriptional, post-transcriptional, and post-translational controls. One of these controls of AreA activity has been proposed to involve the NmrA protein interacting with the DNA-binding domain and the extreme C ...

  7. WW domains of the yes-kinase-associated-protein (YAP) transcriptional regulator behave as independent units with different binding preferences for PPxY motif-containing ligands.

    Science.gov (United States)

    Iglesias-Bexiga, Manuel; Castillo, Francisco; Cobos, Eva S; Oka, Tsutomu; Sudol, Marius; Luque, Irene

    2015-01-01

    YAP is a WW domain-containing effector of the Hippo tumor suppressor pathway, and the object of heightened interest as a potent oncogene and stemness factor. YAP has two major isoforms that differ in the number of WW domains they harbor. Elucidating the degree of co-operation between these WW domains is important for a full understanding of the molecular function of YAP. We present here a detailed biophysical study of the structural stability and binding properties of the two YAP WW domains aimed at investigating the relationship between both domains in terms of structural stability and partner recognition. We have carried out a calorimetric study of the structural stability of the two YAP WW domains, both isolated and in a tandem configuration, and their interaction with a set of functionally relevant ligands derived from PTCH1 and LATS kinases. We find that the two YAP WW domains behave as independent units with different binding preferences, suggesting that the presence of the second WW domain might contribute to modulate target recognition between the two YAP isoforms. Analysis of structural models and phage-display studies indicate that electrostatic interactions play a critical role in binding specificity. Together, these results are relevant to understand of YAP function and open the door to the design of highly specific ligands of interest to delineate the functional role of each WW domain in YAP signaling. PMID:25607641

  8. WW domains of the yes-kinase-associated-protein (YAP transcriptional regulator behave as independent units with different binding preferences for PPxY motif-containing ligands.

    Directory of Open Access Journals (Sweden)

    Manuel Iglesias-Bexiga

    Full Text Available YAP is a WW domain-containing effector of the Hippo tumor suppressor pathway, and the object of heightened interest as a potent oncogene and stemness factor. YAP has two major isoforms that differ in the number of WW domains they harbor. Elucidating the degree of co-operation between these WW domains is important for a full understanding of the molecular function of YAP. We present here a detailed biophysical study of the structural stability and binding properties of the two YAP WW domains aimed at investigating the relationship between both domains in terms of structural stability and partner recognition. We have carried out a calorimetric study of the structural stability of the two YAP WW domains, both isolated and in a tandem configuration, and their interaction with a set of functionally relevant ligands derived from PTCH1 and LATS kinases. We find that the two YAP WW domains behave as independent units with different binding preferences, suggesting that the presence of the second WW domain might contribute to modulate target recognition between the two YAP isoforms. Analysis of structural models and phage-display studies indicate that electrostatic interactions play a critical role in binding specificity. Together, these results are relevant to understand of YAP function and open the door to the design of highly specific ligands of interest to delineate the functional role of each WW domain in YAP signaling.

  9. Protein domain organisation: adding order

    Directory of Open Access Journals (Sweden)

    Kummerfeld Sarah K

    2009-01-01

    Full Text Available Abstract Background Domains are the building blocks of proteins. During evolution, they have been duplicated, fused and recombined, to produce proteins with novel structures and functions. Structural and genome-scale studies have shown that pairs or groups of domains observed together in a protein are almost always found in only one N to C terminal order and are the result of a single recombination event that has been propagated by duplication of the multi-domain unit. Previous studies of domain organisation have used graph theory to represent the co-occurrence of domains within proteins. We build on this approach by adding directionality to the graphs and connecting nodes based on their relative order in the protein. Most of the time, the linear order of domains is conserved. However, using the directed graph representation we have identified non-linear features of domain organization that are over-represented in genomes. Recognising these patterns and unravelling how they have arisen may allow us to understand the functional relationships between domains and understand how the protein repertoire has evolved. Results We identify groups of domains that are not linearly conserved, but instead have been shuffled during evolution so that they occur in multiple different orders. We consider 192 genomes across all three kingdoms of life and use domain and protein annotation to understand their functional significance. To identify these features and assess their statistical significance, we represent the linear order of domains in proteins as a directed graph and apply graph theoretical methods. We describe two higher-order patterns of domain organisation: clusters and bi-directionally associated domain pairs and explore their functional importance and phylogenetic conservation. Conclusion Taking into account the order of domains, we have derived a novel picture of global protein organization. We found that all genomes have a higher than expected

  10. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain.

    Directory of Open Access Journals (Sweden)

    Claudia Alvarez-Carreño

    Full Text Available The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes.Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role.Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the

  11. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  12. The Binding Sites for the Chromatin Insulator Protein CTCF Map to DNA Methylation-Free Domains Genome-Wide

    OpenAIRE

    Mukhopadhyay, Rituparna; Yu, Wenqiang; Whitehead, Joanne; Xu, Junwang; Lezcano, Magda; Pack, Svetlana; Kanduri, Chandrasekhar; Kanduri, Meena; Ginjala, Vasudeva; Vostrov, Alexander; Quitschke, Wolfgang; Chernukhin, Igor; Klenova, Elena; Lobanenkov, Victor; Ohlsson, Rolf

    2004-01-01

    All known vertebrate chromatin insulators interact with the highly conserved, multivalent 11-zinc finger nuclear factor CTCF to demarcate expression domains by blocking enhancer or silencer signals in a position-dependent manner. Recent observations document that the properties of CTCF include reading and propagating the epigenetic state of the differentially methylated H19 imprinting control region. To assess whether these findings may reflect a universal role for CTCF targets, we identified...

  13. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family

    OpenAIRE

    Di Sole, Francesca; Vadnagara, Komal; MOE, ORSON W.; Babich, Victor

    2012-01-01

    The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca2+-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca2+-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, a...

  14. Ubiquitin domain proteins in disease

    DEFF Research Database (Denmark)

    Klausen, Louise Kjær; Schulze, Andrea; Seeger, Michael;

    2007-01-01

    The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite their...... and cancer. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com)....

  15. Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein G

    Czech Academy of Sciences Publication Activity Database

    Ahmad, Jawid; Li, J.; Biedermannová, Lada; Kuchař, Milan; Šípová, Hana; Semerádtová, A.; Černý, Jiří; Petroková, Hana; Mikulecký, Pavel; Polínek, Jiří; Staněk, Ondřej; Vondrášek, Jiří; Homola, Jiří; Malý, J.; Osička, Radim; Šebo, Peter; Malý, Petr

    2012-01-01

    Roč. 80, č. 3 (2012), s. 774-789. ISSN 0887-3585 R&D Projects: GA AV ČR KAN200520702; GA ČR GAP305/10/2184 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50520701; CEZ:AV0Z20670512 Keywords : recombinant ligand * protein scaffold * computational design Subject RIV: CE - Biochemistry Impact factor: 3.337, year: 2012

  16. Role of SUMO in RNF4-mediated Promyelocytic Leukemia Protein (PML) Degradation: Sumoylation of pml and phospho-switch control of its sumo binding domain dissected in living cells*

    OpenAIRE

    Percherancier, Yann; Germain-Desprez, Delphine; Galisson, Frédéric; Mascle, Xavier H.; Dianoux, Laurent; Estephan, Patricia; Chelbi-Alix, Mounira K.; Aubry, Muriel

    2009-01-01

    Promyelocytic leukemia protein (PML) is a tumor suppressor acting as the organizer of subnuclear structures called PML nuclear bodies (NBs). Both covalent modification of PML by the small ubiquitin-like modifier (SUMO) and non-covalent binding of SUMO to the PML SUMO binding domain (SBD) are necessary for PML NB formation and maturation. PML sumoylation and proteasome-dependent degradation induced by the E3 ubiquitin ligase, RNF4, are enhanced by the acute promyelocytic leukemia therapeutic a...

  17. Bioinformatic analysis and molecular modelling of human ameloblastin suggest a two-domain intrinsically unstructured calcium-binding protein

    Czech Academy of Sciences Publication Activity Database

    Vymětal, Jiří; Slabý, I.; Spahr, A.; Vondrášek, Jiří; Lyngstadaas, S. P.

    2008-01-01

    Roč. 116, č. 2 (2008), s. 124-134. ISSN 0909-8836 R&D Projects: GA ČR GA203/05/0009; GA ČR GA203/06/1727; GA MŠk LC512 Grant ostatní: EU(XE) QLK3-CT-2001-00090 Institutional research plan: CEZ:AV0Z40550506 Keywords : ameloblastin * bioinformatic modelling * calcium * intrinsically unstructured protein Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.957, year: 2008

  18. Assessing protein stability of the dimeric DNA-binding domain of E2 human papillomavirus 18 with molecular dynamics

    OpenAIRE

    Raúl Isea; José Luis Ramírez; Johan Hoebeke

    2010-01-01

    The objective of this study is to understand the structural flexibility and curvature of the E2 protein of human papillomavirus type 18 using molecular dynamics (6 ns). E2 is required for viral DNA replication and its disruption could be an anti-viral strategy. E2 is a dimer, with each monomer folding into a stable open-faced β-sandwich. We calculated the mobility of the E2 dimer and found that it was asymmetric. These different mobilities of E2 monomers suggest that drugs or vaccines co...

  19. Assessing protein stability of the dimeric DNA-binding domain of E2 human papillomavirus 18 with molecular dynamics

    Directory of Open Access Journals (Sweden)

    Raúl Isea

    2010-03-01

    Full Text Available The objective of this study is to understand the structural flexibility and curvature of the E2 protein of human papillomavirus type 18 using molecular dynamics (6 ns. E2 is required for viral DNA replication and its disruption could be an anti-viral strategy. E2 is a dimer, with each monomer folding into a stable open-faced β-sandwich. We calculated the mobility of the E2 dimer and found that it was asymmetric. These different mobilities of E2 monomers suggest that drugs or vaccines could be targeted to the interface between the two monomers.

  20. Assessing protein stability of the dimeric DNA-binding domain of E2 human papillomavirus 18 with molecular dynamics.

    Science.gov (United States)

    Isea, Raúl; Ramírez, José Luis; Hoebeke, Johan

    2010-03-01

    The objective of this study is to understand the structural flexibility and curvature of the E2 protein of human papillomavirus type 18 using molecular dynamics (6 ns). E2 is required for viral DNA replication and its disruption could be an anti-viral strategy. E2 is a dimer, with each monomer folding into a stable open-faced beta-sandwich. We calculated the mobility of the E2 dimer and found that it was asymmetric. These different mobilities of E2 monomers suggest that drugs or vaccines could be targeted to the interface between the two monomers. PMID:20428668

  1. Molecular cloning and functional analysis of nucleotide-binding oligomerization domain-containing protein 1 in rainbow trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Jang, Ju Hye; Kim, Hyun; Kim, Yu Jin; Cho, Ju Hyun

    2016-04-01

    NOD1 has important roles in innate immunity as sensor of microbial components derived from bacterial peptidoglycan. In this study, we identified genes encoding components of the NOD1 signaling pathway, including NOD1 (OmNOD1) and RIP2 (OmRIP2) from rainbow trout, Oncorhynchus mykiss, and investigated whether OmNOD1 has immunomodulating activity in a rainbow trout hepatoma cell line RTH-149 treated with NOD1-specific ligand (iE-DAP). The deduced amino acid sequence of OmNOD1 contained conserved CARD, NOD and LRR domains. Loss-of-function and gain-of-function experiments indicated that OmNOD1 is involved in the expression of pro-inflammatory cytokines. Silencing of OmNOD1 in RTH-149 cells treated with iE-DAP decreased the expression of IL-1β, IL-6, IL-8 and TNF-α. Conversely, overexpression of OmNOD1 resulted in up-regulation of IL-1β, IL-6, IL-8 and TNF-α expression. In addition, RIP2 inhibitor (gefitinib) significantly decreased the expression of these pro-inflammatory cytokines induced by iE-DAP in RTH-149 cells. These findings highlight the important role of NOD1 signaling pathway in fish in eliciting innate immune response. PMID:26876355

  2. The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides.

    Science.gov (United States)

    Zhang, Yanfeng; Varnum, Susan M

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD(50) of ∼1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a "dual receptor" mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro domain. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides in both assays. Interactions with phosphoinositides may facilitate tighter binding between neuronal membranes and BoNT/C. PMID:22120109

  3. Crystallization and preliminary X-ray analysis of the ligand-binding domain of cAMP receptor protein

    International Nuclear Information System (INIS)

    N-terminal fragments of the cyclic AMP receptor protein from E. coli created by two different proteases, subtilisin and chymotrypsin, have been crystallized and diffracted to 2.0 and 2.8 Å resolution, respectively. The cyclic AMP receptor protein (CRP) from Escherichia coli regulates the expression of a large number of genes. In this work, CRP has been overexpressed, purified and digested by subtilisin and chymotrypsin. The fragments S-CRP (digested by subtilisin) and CH-CRP (digested by chymotrypsin) have been purified and crystallized. Crystals of S-CRP diffracted to 2.0 Å resolution and belonged to space group P21, with unit-cell parameters a = 59.7, b = 75.1, c = 128.3 Å, β = 91.5°. Crystals of CH-CRP diffracted to 2.8 Å resolution and belonged to space group P222, with unit-cell parameters a = 45.8, b = 60.9, c = 205.6 Å

  4. Recombinant expression of two bacteriophage proteins that lyse clostridium perfringens and share identical sequences in the C-terminal cell wall binding domain of the molecules but are dissimilar in their N-terminal active domains.

    Science.gov (United States)

    Simmons, Mustafa; Donovan, David M; Siragusa, Gregory R; Seal, Bruce S

    2010-10-13

    Clostridium perfringens is a Gram-positive anaerobic spore-forming bacterium capable of producing four major toxins that are responsible for disease symptoms and pathogenesis in a variety of animals, humans, and poultry. The organism is the third leading cause of human foodborne bacterial disease, and C. perfringens is the presumptive etiologic agent of necrotic enteritis among chickens, which in the acute form can cause increased mortality among broiler flocks. Countries that have complied with the ban on antimicrobial growth promoters (AGP) in feeds have had increased incidences of C. perfringens-associated necrotic enteritis in poultry. To address this issue, new antimicrobial agents, putative lysins from the genomes of bacteriophages, are identified. Two putative phage lysin genes (ply) from the clostridial phages phiCP39O and phiCP26F were cloned and expressed in Escherichia coli , and the resultant proteins were purified to near homogeneity. Gene and protein sequencing revealed that the predicted and chemically determined amino acid sequences of the two recombinant proteins were homologous to N-acetylmuramoyl-l-alanine amidases. The proteins were identical in the C-terminal putative cell-wall binding domain, but only 55% identical to each other in the presumptive N-terminal catalytic domain. Both recombinant lysins were capable of lysing both parental phage host strains of C. perfringens as well as other strains of the bacterium in spot and turbidity reduction assays. The observed reduction in turbidity was correlated with up to a 3 log cfu/mL reduction in viable C. perfringens on brain-heart infusion agar plates. However, other member species of the clostridia were resistant to the lytic activity by both assays. PMID:20825156

  5. Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. Part IV. Implication for the mechanism of folding of the parent protein

    OpenAIRE

    Lewandowska, Agnieszka; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.

    2010-01-01

    A 34-residue α/β peptide, [IG(28-61)], derived from the C-terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus was studied using CD and NMR spectroscopy at various temperatures, and by differential scanning calorimetry. It was found that the C-terminal part (a 16-residue-long fragment) of this peptide, which corresponds to the sequence of the β-hairpin in the native structure, forms structure similar to the β-hairpin only at T = 313 K, and the structure is...

  6. A novel p53-binding domain in CUL7.

    Science.gov (United States)

    Kasper, Jocelyn S; Arai, Takehiro; DeCaprio, James A

    2006-09-15

    CUL7 is a member of the cullin RING ligase family and forms an SCF-like complex with SKP1 and FBXW8. CUL7 is required for normal mouse embryonic development and cellular proliferation, and is highly homologous to PARC, a p53-associated, parkin-like cytoplasmic protein. We determined that CUL7, in a manner similar to PARC, can bind directly to p53 but does not affect p53 expression. We identified a discrete, co-linear domain in CUL7 that is conserved in PARC and HERC2, and is necessary and sufficient for p53-binding. The presence of p53 stabilized expression of this domain and we demonstrate that this p53-binding domain of CUL7 contributes to the cytoplasmic localization of CUL7. The results support the model that p53 plays a role in regulation of CUL7 activity. PMID:16875676

  7. Interaction of the bovine papillomavirus type 1 E2 transcriptional control protein with the viral enhancer: purification of the DNA-binding domain and analysis of its contact points with DNA.

    OpenAIRE

    Moskaluk, C A; Bastia, D

    1988-01-01

    The E2 gene of bovine papillomavirus type 1 positively and negatively regulates the transcriptional enhancer located in the long control region of the viral genome. The DNA-binding domain of the E2 gene product was suspected to interact with the DNA sequence motif ACCN6GGT. We have shown that the carboxy-terminal 126 amino acids of the E2 protein constitute the DNA-binding domain. In this paper we described the expression of the E2 carboxy terminus in Escherichia coli and its subsequent purif...

  8. Comparative structural analysis of lipid binding START domains.

    Directory of Open Access Journals (Sweden)

    Ann-Gerd Thorsell

    Full Text Available BACKGROUND: Steroidogenic acute regulatory (StAR protein related lipid transfer (START domains are small globular modules that form a cavity where lipids and lipid hormones bind. These domains can transport ligands to facilitate lipid exchange between biological membranes, and they have been postulated to modulate the activity of other domains of the protein in response to ligand binding. More than a dozen human genes encode START domains, and several of them are implicated in a disease. PRINCIPAL FINDINGS: We report crystal structures of the human STARD1, STARD5, STARD13 and STARD14 lipid transfer domains. These represent four of the six functional classes of START domains. SIGNIFICANCE: Sequence alignments based on these and previously reported crystal structures define the structural determinants of human START domains, both those related to structural framework and those involved in ligand specificity. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  9. The interaction domain of the redox protein adrenodoxin is mandatory for binding of the electron acceptor CYP11A1, but is not required for binding of the electron donor adrenodoxin reductase

    International Nuclear Information System (INIS)

    Adrenodoxin (Adx) is a [2Fe-2S] ferredoxin involved in electron transfer reactions in the steroid hormone biosynthesis of mammals. In this study, we deleted the sequence coding for the complete interaction domain in the Adx cDNA. The expressed recombinant protein consists of the amino acids 1-60, followed by the residues 89-128, and represents only the core domain of Adx (Adx-cd) but still incorporates the [2Fe-2S] cluster. Adx-cd accepts electrons from its natural redox partner, adrenodoxin reductase (AdR), and forms an individual complex with this NADPH-dependent flavoprotein. In contrast, formation of a complex with the natural electron acceptor, CYP11A1, as well as electron transfer to this steroid hydroxylase is prevented. By an electrostatic and van der Waals energy minimization procedure, complexes between AdR and Adx-cd have been proposed which have binding areas different from the native complex. Electron transport remains possible, despite longer electron transfer pathways

  10. The structure of the Ca2+-binding, glycosylated F-spondin domain of F-spondin - A C2-domain variant in an extracellular matrix protein

    OpenAIRE

    Lawler Jack; Tan Kemin

    2011-01-01

    Abstract Background F-spondin is a multi-domain extracellular matrix (ECM) protein and a contact-repellent molecule that directs axon outgrowth and cell migration during development. The reelin_N domain and the F-spondin domain (FS domain) comprise a proteolytic fragment that interacts with the cell membrane and guides the projection of commissural axons to floor plate. The FS domain is found in F-spondins, mindins, M-spondin and amphiF-spondin. Results We present the crystal structure of hum...

  11. Production, purification, and characterization of a fusion protein of carbonic anhydrase from Neisseria gonorrhoeae and cellulose binding domain from Clostridium thermocellum.

    Science.gov (United States)

    Liu, Zhu; Bartlow, Patrick; Dilmore, Robert M; Soong, Yee; Pan, Zhiwei; Koepsel, Richard; Ataai, Mohammad

    2009-01-01

    Carbon dioxide capture technologies have the potential to become an important climate change mitigation option through sequestration of gaseous CO2. A new concept for CO2 capture involves use of immobilized carbonic anhydrase (CA) that catalyzes the reversible hydration of CO2 to HCO3(-) and H+. Cost-efficient production of the enzyme and an inexpensive immobilization system are critical for development of economically feasible CA-based CO2 capture processes. An artificial, bifunctional enzyme containing CA from Neisseria gonorrhoeae and a cellulose binding domain (CBD) from Clostridium thermocellum was constructed with a His6 tag. The chimeric enzyme exhibited both CA activity and CBD binding affinity. This fusion enzyme is of particular interest due to its binding affinity for cellulose and retained CA activity, which could serve as the basis for improved technology to capture CO2 from flue gasses. PMID:19224556

  12. A conserved KIN17 curved DNA-binding domain protein assembles with SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 to adapt Arabidopsis growth and development to limiting copper availability.

    Science.gov (United States)

    Garcia-Molina, Antoni; Xing, Shuping; Huijser, Peter

    2014-02-01

    Proper copper (Cu) homeostasis is required by living organisms to maintain essential cellular functions. In the model plant Arabidopsis (Arabidopsis thaliana), the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 (SPL7) transcription factor participates in reprogramming global gene expression during Cu insufficiency in order to improve the metal uptake and prioritize its distribution to Cu proteins of major importance. As a consequence, spl7 null mutants show morphological and physiological disorders during Cu-limited growth, resulting in lower fresh weight, reduced root elongation, and chlorosis. On the other hand, the Arabidopsis KIN17 homolog belongs to a well-conserved family of essential eukaryotic nuclear proteins known to be stress activated and involved in DNA and possibly RNA metabolism in mammals. In the study presented here, we uncovered that Arabidopsis KIN17 participates in promoting the Cu deficiency response by means of a direct interaction with SPL7. Moreover, the double mutant kin17-1 spl7-2 displays an enhanced Cu-dependent phenotype involving growth arrest, oxidative stress, floral bud abortion, and pollen inviability. Taken together, the data presented here provide evidence for SPL7 and KIN17 protein interaction as a point of convergence in response to both Cu deficiency and oxidative stress. PMID:24335506

  13. A structural basis for Staphylococcal complement subversion: X-ray structure of the complement-binding domain of Staphylococcus aureus protein Sbi in complex with ligand C3d

    OpenAIRE

    Clark, E. A.; Crennell, S.; Upadhyay, A.; Zozulya, A. V.; Mackay, J. D.; Svergun, D.I.; Bagby, S; van den Elsen, J. M.

    2011-01-01

    The structure of the complement-binding domain of Staphylococcus aureus protein Sbi (Sbi-IV) in complex with ligand C3d is presented. The 1.7 Å resolution structure reveals the molecular details of the recognition of thioester-containing fragment C3d of the central complement component C3, involving interactions between residues of Sbi-IV helix α2 and the acidic concave surface of C3d. The complex provides a structural basis for the binding preference of Sbi for native C3 over C3b and explain...

  14. A specific interdomain interaction preserves the structural and binding properties of the ModA protein from the phytopathogen Xanthomonas citri domain interaction and transport in ModA.

    Science.gov (United States)

    Santacruz-Perez, Carolina; Pegos, Vanessa Rodrigues; Honorato, Rodrigo V; Verli, Hugo; Lindahl, Erik; Barbosa, João Alexandre Ribeiro Gonçalves; Balan, Andrea

    2013-11-01

    The periplasmic-binding proteins in ATP-binding cassette systems (ABC Transporters) are responsible for the capture and delivery of ligands to their specific transporters, triggering a series of ATP-driven conformational changes that leads to the transport of the ligand. Structurally consisting of two lobes, the proteins change conformation after interaction with the ligand. The structure of the molybdate-binding protein (ModA) from Xanthomonas citri, bound to molybdate, was previously solved by our group and an interdomain interaction, mediated by a salt bridge between K127 and D59, apparently supports the binding properties and keeps the domains closed. To determinate the importance of this interaction, we built two ModA mutants, K127S and D59A, and analysed their functional and structural properties. Based on a set of spectroscopic experiments, crystallisation trials, structure determination and molecular dynamics (MD) simulations, we showed that the salt bridge is essential to maintain the structure and binding properties. Additionally, the MD simulations revealed that this mutant adopted a more compact structure that packed down the ligand-binding pocket. From the closed bound to open structure, the positioning of the helices forming the dipole and the salt bridge are essential to induce an intermediate state. PMID:24035743

  15. BINDING ISOTHERMS SURFACTANT-PROTEINS

    OpenAIRE

    Elena Irina Moater; Cristiana Radulescu; Ionica Ionita

    2011-01-01

    The interactions between surfactants and proteins shows some similarities with interactions between surfactants and polymers, but the hydrophobic amphoteric nature of proteins and their secondary and tertiary structure components make them different from conventional polymer systems. Many studies from the past about surfactant - proteins bonding used the dialysis techniques. Other techniques used to determine the binding isotherm, included ultrafiltration, ultracentrifugation, potentiometry, ...

  16. Activation of Hormone-sensitive Lipase Requires Two Steps, Protein Phosphorylation and Binding to the PAT-1 Domain of Lipid Droplet Coat Proteins*

    OpenAIRE

    Wang, Hong; Hu, Liping; Dalen, Knut; Dorward, Heidi; Marcinkiewicz, Amy; Russell, Deanna; Gong, Dawei; Londos, Constantine; Yamaguchi, Tomohiro; Holm, Cecilia; Rizzo, Mark A.; Brasaemle, Dawn; Sztalryd, Carole

    2009-01-01

    Lipolysis is an important metabolic pathway controlling energy homeostasis through degradation of triglycerides stored in lipid droplets and release of fatty acids. Lipid droplets of mammalian cells are coated with one or more members of the PAT protein family, which serve important functions in regulating lipolysis. In this study, we investigate the mechanisms by which PAT family members, perilipin A, adipose differentiation-related protein (ADFP), and LSDP5, control lipolysis catalyzed by h...

  17. Protein Dynamics in an RNA Binding Protein

    Science.gov (United States)

    Hall, Kathleen

    2006-03-01

    Using ^15N NMR relaxation measurements, analyzed with the Lipari-Szabo formalism, we have found that the human U1A RNA binding protein has ps-ns motions in those loops that make contact with RNA. Specific mutations can alter the extent and pattern of motions, and those proteins inevitably lose RNA binding affinity. Proteins with enhanced mobility of loops and termini presumably lose affinity due to increased conformational sampling by those parts of the protein that interact directly with RNA. There is an entropic penalty associated with locking down those elements upon RNA binding, in addition to a loss of binding efficiency caused by the increased number of conformations adopted by the protein. However, in addition to local conformational heterogeneity, analysis of molecular dynamics trajectories by Reorientational Eigenmode Dynamics reveals that loops of the wild type protein undergo correlated motions that link distal sites across the binding surface. Mutations that disrupt correlated motions result in weaker RNA binding, implying that there is a network of interactions across the surface of the protein. (KBH was a Postdoctoral Fellow with Al Redfield from 1985-1990). This work was supported by the NIH (to KBH) and NSF (SAS).

  18. A new method for measuring scouring efficiency of natural fibers based on the cellulose-binding domain-beta-glucuronidase fused protein.

    Science.gov (United States)

    Degani, Ofir; Gepstein, Shimon; Dosoretz, Carlos G

    2004-02-01

    Cellulose-binding domains (CBDs) are characterized by their ability to strongly bind to different forms of cellulose. This study examined the use of a recombinant CBD fused to the reporter enzyme beta-glucuronidase (CBD-GUS) to determine the extent of removal of the water-repellent waxy component of cotton fiber cuticles following hydrolytic treatment, i.e., scouring. The CBD-GUS test displayed higher sensitivity and repeatability than conventional water absorb techniques applied in the textile industry. Increases in the levels of CBD-GUS bound to the exposed cellulose correlated to increases in the fabric's hydrophilicity as a function of the severity of the scouring treatment applied, clearly indicating that the amount of bound enzyme increases proportionally with the amount of available binding sites. The binding of CBD-GUS also gave measurable and repeatable results when used on untreated or raw fabrics in comparison with conventional water drop techniques. The quantitative response of the reaction as bound enzyme activity was optimized for fully wettable fabrics. A minimal free enzyme concentration-to-swatch weight ratio of 75:1 was found to be necessary to ensure enzyme saturation (i.e., a linear response), corresponding to a free enzyme-to-bound enzyme ratio of at least 3:5. PMID:14736462

  19. Use of chimeric proteins to investigate the role of transporter associated with antigen processing (TAP) structural domains in peptide binding and translocation

    OpenAIRE

    Arora, Shikha; Lapinski, Philip Edward; Raghavan, Malini

    2001-01-01

    The transporter associated with antigen processing (TAP) comprises two subunits, TAP1 and TAP2, each containing a hydrophobic membrane-spanning region (MSR) and a nucleotide binding domain (NBD). The TAP1/TAP2 complex is required for peptide translocation across the endoplasmic reticulum membrane. To understand the role of each structural unit of the TAP1/TAP2 complex, we generated two chimeras containing TAP1 MSR and TAP2 NBD (T1MT2C) or TAP2 MSR and TAP1 NBD (T2MT1C). We show that TAP1/T2MT...

  20. Structures of the spectrin-ankyrin interaction binding domains

    Energy Technology Data Exchange (ETDEWEB)

    Ipsaro, Jonathan J.; Huang, Lei; Mondragón, Alfonso; (NWU)

    2010-01-07

    As key components of the erythrocyte membrane skeleton, spectrin and ankyrin specifically interact to tether the spectrin cytoskeleton to the cell membrane. The structure of the spectrin binding domain of ankyrin and the ankyrin binding domain of spectrin have been solved to elucidate the structural basis for ankyrin-spectrin recognition. The structure of repeats 14 and 15 of spectrin shows that these repeats are similar to all other spectrin repeats. One feature that could account for the preference of ankyrin for these repeats is the presence of a conserved, negatively charged patch on one side of repeat 14. The structure of the ankyrin ZU5 domain shows a novel structure containing a {beta} core. The structure reveals that the canonical ZU5 consensus sequence is likely to be missing an important region that codes for a {beta} strand that forms part of the core of the domain. In addition, a positively charged region is suggestive of a binding surface for the negatively charged spectrin repeat 14. Previously reported mutants of ankyrin that map to this region lie mostly on the surface of the protein, although at least one is likely to be part of the core.

  1. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    Energy Technology Data Exchange (ETDEWEB)

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C. (Scripps); (UW)

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  2. Grafting of protein-protein binding sites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A strategy for grafting protein-protein binding sites is described. Firstly, key interaction residues at the interface of ligand protein to be grafted are identified and suitable positions in scaffold protein for grafting these key residues are sought. Secondly, the scaffold proteins are superposed onto the ligand protein based on the corresponding Ca and Cb atoms. The complementarity between the scaffold protein and the receptor protein is evaluated and only matches with high score are accepted. The relative position between scaffold and receptor proteins is adjusted so that the interface has a reasonable packing density. Then the scaffold protein is mutated to corresponding residues in ligand protein at each candidate position. And the residues having bad steric contacts with the receptor proteins, or buried charged residues not involved in the formation of any salt bridge are mutated. Finally, the mutated scaffold protein in complex with receptor protein is co-minimized by Charmm. In addition, we deduce a scoring function to evaluate the affinity between mutated scaffold protein and receptor protein by statistical analysis of rigid binding data sets.

  3. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Science.gov (United States)

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  4. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    Directory of Open Access Journals (Sweden)

    Marc Lenoir

    2015-10-01

    Full Text Available The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH and Tec homology (TH domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  5. Protein phosphatase 2a (PP2A binds within the oligomerization domain of striatin and regulates the phosphorylation and activation of the mammalian Ste20-Like kinase Mst3

    Directory of Open Access Journals (Sweden)

    Jones Candace A

    2011-10-01

    Full Text Available Abstract Background Striatin, a putative protein phosphatase 2A (PP2A B-type regulatory subunit, is a multi-domain scaffolding protein that has recently been linked to several diseases including cerebral cavernous malformation (CCM, which causes symptoms ranging from headaches to stroke. Striatin association with the PP2A A/C (structural subunit/catalytic subunit heterodimer alters PP2A substrate specificity, but targets and roles of striatin-associated PP2A are not known. In addition to binding the PP2A A/C heterodimer to form a PP2A holoenzyme, striatin associates with cerebral cavernous malformation 3 (CCM3 protein, the mammalian Mps one binder (MOB homolog, Mob3/phocein, the mammalian sterile 20-like (Mst kinases, Mst3, Mst4 and STK25, and several other proteins to form a large signaling complex. Little is known about the molecular architecture of the striatin complex and the regulation of these sterile 20-like kinases. Results To help define the molecular organization of striatin complexes and to determine whether Mst3 might be negatively regulated by striatin-associated PP2A, a structure-function analysis of striatin was performed. Two distinct regions of striatin are capable of stably binding directly or indirectly to Mob3--one N-terminal, including the coiled-coil domain, and another more C-terminal, including the WD-repeat domain. In addition, striatin residues 191-344 contain determinants necessary for efficient association of Mst3, Mst4, and CCM3. PP2A associates with the coiled-coil domain of striatin, but unlike Mob3 and Mst3, its binding appears to require striatin oligomerization. Deletion of the caveolin-binding domain on striatin abolishes striatin family oligomerization and PP2A binding. Point mutations in striatin that disrupt PP2A association cause hyperphosphorylation and activation of striatin-associated Mst3. Conclusions Striatin orchestrates the regulation of Mst3 by PP2A. It binds Mst3 likely as a dimer with CCM3 via

  6. Bacterial expression, purification, and model membrane reconstitution of the transmembrane and cytoplasmic domains of the human APP binding protein LR11/SorLA for NMR studies.

    Science.gov (United States)

    Wang, Xingsheng; Gill, Richard L; Zhu, Qin; Tian, Fang

    2011-06-01

    LR11 (SorLA) is a recently identified neuronal protein that interacts with amyloid precursor protein (APP), a central player in the pathology of the Alzheimer's disease (AD). AD is a neurodegenerative disease and the most common cause of dementia in the elderly. Current estimates suggest that as many as 5.3 million Americans are living with AD. Recent investigations have uncovered the pathophysiological relevance of APP intracellular trafficking in AD. LR11 is of particular importance due to its role in regulating APP transport and processing. LR11 is a type I transmembrane protein and belongs to a novel family of Vps10p receptors. Using a new expression vector, pMTTH (MBP-MCS1 (multiple cloning site)-Thrombin protease cleavage site-MCS2-TEV protease cleavage site-MCS3-His(6)), we successfully expressed, purified and reconstituted the LR11 transmembrane (TM) and cytoplasmic (CT) domains into bicelles and detergent micelles for NMR structural studies. This new construct allowed us to overcome several obstacles during sample preparation. MBP fused LR11TM and LR11TMCT proteins are preferably expressed at high levels in Escherichia coli membrane, making a refolding of the protein unnecessary. The C-terminal His-tag allows for easy separation of the target protein from the truncated products from the C-terminus, and provides a convenient route for screening detergents to produce high quality 2D (1)H-(15)N TROSY spectra. Thrombin protease cleavage is compatible with most of the commonly used detergents, including a direct cleavage at the E. coli membrane surface. This new MBP construct may provide an effective route for the preparation of small proteins with TM domains. PMID:21320603

  7. Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga.

    Science.gov (United States)

    Li, Shi-Sheng; Gullbo, Joachim; Lindholm, Petra; Larsson, Rolf; Thunberg, Eva; Samuelsson, Gunnar; Bohlin, Lars; Claeson, Per

    2002-09-01

    A new basic protein, designated ligatoxin B, containing 46 amino acid residues has been isolated from the mistletoe Phoradendron liga (Gill.) Eichl. (Viscaceae). The protein's primary structure, determined unambiguously using a combination of automated Edman degradation, trypsin enzymic digestion, and tandem MS analysis, was 1-KSCCPSTTAR-NIYNTCRLTG-ASRSVCASLS-GCKIISGSTC-DSGWNH-46. Ligatoxin B exhibited in vitro cytotoxic activities on the human lymphoma cell line U-937-GTB and the primary multidrug-resistant renal adenocarcinoma cell line ACHN, with IC50 values of 1.8 microM and 3.2 microM respectively. Sequence alignment with other thionins identified a new member of the class 3 thionins, ligatoxin B, which is similar to the earlier described ligatoxin A. As predicted by the method of homology modelling, ligatoxin B shares a three-dimensional structure with the viscotoxins and purothionins and so may have the same mode of cytotoxic action. The novel similarities observed by structural comparison of the helix-turn-helix (HTH) motifs of the thionins, including ligatoxin B, and the HTH DNA-binding proteins, led us to propose the working hypothesis that thionins represent a new group of DNA-binding proteins. This working hypothesis could be useful in further dissecting the molecular mechanisms of thionin cytotoxicity and of thionin opposition to multidrug resistance, and useful in clarifying the physiological function of thionins in plants. PMID:12049612

  8. Production, purification, and characterization of a fusion protein of carbonic anhydrase from Neisseria gonorrhoeae and cellulose binding domain from Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhu [Univ. of Pittsburgh, PA (United States); Bartlow, Patrick [Univ. of Pittsburgh, PA (United States); Dilmore, Robert M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Pan, Zhiwei [Univ. of Pittsburgh, PA (United States); Koepsel, Richard [Univ. of Pittsburgh, PA (United States); Ataai, Mohammad [Univ. of Pittsburgh, PA (United States)

    2009-01-01

    Carbon dioxide capture technologies have the potential to become an important climate change mitigation option through sequestration of gaseous CO2, A new concept for CO2 capture involves use of immobilized carbonic anhydrase (CA) that catalyzes the reversible hydration of CO2 to HCO3- and H+. Cost-efficient production of the enzyme and an inexpensive immobilization system are critical for development of economically feasible CA-based CO2 capture processes. An artificial, bifunctional enzyme containing CA from Neisseria gonorrhoeae and a cellulose binding domain (CBD) from Clostridium thermocellum was constructed with a His6 tag. The chimeric enzyme exhibited both CA activity and CBD binding affinity. This fusion enzyme is of particular interest due to its binding affinity for cellulose and retained CA activity, which could serve as the basis for improved technology to capture CO2 from flue gasses.

  9. A KH-Domain RNA-Binding Protein Interacts with FIERY2/CTD Phosphatase-Like 1 and Splicing Factors and Is Important for Pre-mRNA Splicing in Arabidopsis

    KAUST Repository

    Chen, Tao

    2013-10-17

    Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges. © 2013 Chen et al.

  10. Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. Part IV. Implication for the mechanism of folding of the parent protein

    Science.gov (United States)

    Lewandowska, Agnieszka; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.

    2010-01-01

    A 34-residue α/β peptide, [IG(28-61)], derived from the C-terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus was studied using CD and NMR spectroscopy at various temperatures, and by differential scanning calorimetry. It was found that the C-terminal part (a 16-residue-long fragment) of this peptide, which corresponds to the sequence of the β-hairpin in the native structure, forms structure similar to the β-hairpin only at T = 313 K, and the structure is stabilized by non-native long-range hydrophobic interactions (Val47 – Val59). On the other hand, the N-terminal part of IG(28-61), which corresponds to the middle α-helix in the native structure, is unstructured at low temperature (283 K), and forms an α-helix-like structure at 305 K and only one helical turn is observed at 313 K. At all temperatures at which NMR experiments were performed (283, 305 and 313 K), we do not observe any long-range connectivities which would have supported packing between the C-terminal (β-hairpin) and the N-terminal (α-helix) parts of the sequence. Such interactions are absent, in contrast to the folding pathway of the B domain of protein G, proposed recently by Kmiecik and Koliński [Kmiecik, S.; Kolinski, A. Biophys J 2008, 94, 726-736], based on Monte Carlo dynamics studies. Alternative folding mechanisms are proposed and discussed. PMID:20049918

  11. Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin-binding protein G from Streptococcus. IV. Implication for the mechanism of folding of the parent protein.

    Science.gov (United States)

    Lewandowska, Agnieszka; Ołdziej, Stanislaw; Liwo, Adam; Scheraga, Harold A

    2010-05-01

    A 34-residue alpha/beta peptide [IG(28-61)], derived from the C-terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, was studied using CD and NMR spectroscopy at various temperatures and by differential scanning calorimetry. It was found that the C-terminal part (a 16-residue-long fragment) of this peptide, which corresponds to the sequence of the beta-hairpin in the native structure, forms structure similar to the beta-hairpin only at T = 313 K, and the structure is stabilized by non-native long-range hydrophobic interactions (Val47-Val59). On the other hand, the N-terminal part of IG(28-61), which corresponds to the middle alpha-helix in the native structure, is unstructured at low temperature (283 K) and forms an alpha-helix-like structure at 305 K, and only one helical turn is observed at 313 K. At all temperatures at which NMR experiments were performed (283, 305, and 313 K), we do not observe any long-range connectivities which would have supported packing between the C-terminal (beta-hairpin) and the N-terminal (alpha-helix) parts of the sequence. Such interactions are absent, in contrast to the folding pathway of the B domain of protein G, proposed recently by Kmiecik and Kolinski (Biophys J 2008, 94, 726-736), based on Monte-Carlo dynamics studies. Alternative folding mechanisms are proposed and discussed. PMID:20049918

  12. Binding of hot spot mutant p53 proteins to supercoiled DNA, roles of p53 core domain and C-terminus

    Czech Academy of Sciences Publication Activity Database

    Němcová, Kateřina; Brázdová, Marie; Činčárová, Lenka; Fojta, Miroslav; Paleček, Emil

    Brno, 2008. s. 45-46. ISBN 978-80-210-4526-2. [Pracovní setkání biochemiků a molekulárních biologů /12./. 05.02.2008-06.02.2008, Brno] R&D Projects: GA ČR(CZ) GP204/06/P369; GA AV ČR(CZ) IAA500040701; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : hot spot mutant p53 proteins * SCS DNA-binding * effect of oxidation agent and monoclonal antibodies Subject RIV: BO - Biophysics

  13. Inferring PDZ domain multi-mutant binding preferences from single-mutant data.

    Directory of Open Access Journals (Sweden)

    Elena Zaslavsky

    Full Text Available Many important cellular protein interactions are mediated by peptide recognition domains. The ability to predict a domain's binding specificity directly from its primary sequence is essential to understanding the complexity of protein-protein interaction networks. One such recognition domain is the PDZ domain, functioning in scaffold proteins that facilitate formation of signaling networks. Predicting the PDZ domain's binding specificity was a part of the DREAM4 Peptide Recognition Domain challenge, the goal of which was to describe, as position weight matrices, the specificity profiles of five multi-mutant ERBB2IP-1 domains. We developed a method that derives multi-mutant binding preferences by generalizing the effects of single point mutations on the wild type domain's binding specificities. Our approach, trained on publicly available ERBB2IP-1 single-mutant phage display data, combined linear regression-based prediction for ligand positions whose specificity is determined by few PDZ positions, and single-mutant position weight matrix averaging for all other ligand columns. The success of our method as the winning entry of the DREAM4 competition, as well as its superior performance over a general PDZ-ligand binding model, demonstrates the advantages of training a model on a well-selected domain-specific data set.

  14. In vitro and in vivo Analysis of the Binding of the C Terminus of the HDL Receptor Scavenger Receptor Class B type I (SR-BI) to the PDZ1 Domain of its Cytoplasmic Adaptor Protein PDZK1

    Energy Technology Data Exchange (ETDEWEB)

    O Kocher; G Birrane; K Tsukamoto; S Fenske; A Yesilaltay; R Pal; K Daniels; J Ladias; M Krieger

    2011-12-31

    The PDZ1 domain of the four PDZ domain-containing protein PDZK1 has been reported to bind the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), and to control hepatic SR-BI expression and function. We generated wild-type (WT) and mutant murine PDZ1 domains, the mutants bearing single amino acid substitutions in their carboxylate binding loop (Lys(14)-Xaa(4)-Asn(19)-Tyr-Gly-Phe-Phe-Leu(24)), and measured their binding affinity for a 7-residue peptide corresponding to the C terminus of SR-BI ((503)VLQEAKL(509)). The Y20A and G21Y substitutions abrogated all binding activity. Surprisingly, binding affinities (K(d)) of the K14A and F22A mutants were 3.2 and 4.0 ?M, respectively, similar to 2.6 ?M measured for the WT PDZ1. To understand these findings, we determined the high resolution structure of WT PDZ1 bound to a 5-residue sequence from the C-terminal SR-BI ((505)QEAKL(509)) using x-ray crystallography. In addition, we incorporated the K14A and Y20A substitutions into full-length PDZK1 liver-specific transgenes and expressed them in WT and PDZK1 knock-out mice. In WT mice, the transgenes did not alter endogenous hepatic SR-BI protein expression (intracellular distribution or amount) or lipoprotein metabolism (total plasma cholesterol, lipoprotein size distribution). In PDZK1 knock-out mice, as expected, the K14A mutant behaved like wild-type PDZK1 and completely corrected their hepatic SR-BI and plasma lipoprotein abnormalities. Unexpectedly, the 10-20-fold overexpressed Y20A mutant also substantially, but not completely, corrected these abnormalities. The results suggest that there may be an additional site(s) within PDZK1 that bind(s) SR-BI and mediate(s) productive SR-BI-PDZK1 interaction previously attributed exclusively to the canonical binding of the C-terminal SR-BI to PDZ1.

  15. Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ji-Hye [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Won Kyung [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Heeyoun [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Eunhee; Cheong, Chaejoon [Magnetic Resonance Team, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 363-883 (Korea, Republic of); Cho, Myeon Haeng [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-09-26

    Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2{sub 1–64}) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2{sub 1–64} and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.

  16. Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB21–64) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB21–64 and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences

  17. Multiple graph regularized protein domain ranking

    OpenAIRE

    Wang Jim; Bensmail Halima; Gao Xin

    2012-01-01

    Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph m...

  18. A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines.

    Directory of Open Access Journals (Sweden)

    Lanying Du

    Full Text Available An emerging respiratory infectious disease with high mortality, Middle East respiratory syndrome (MERS, is caused by a novel coronavirus (MERS-CoV. It was first reported in 2012 in Saudi Arabia and has now spread to eight countries. Development of effective therapeutics and vaccines is crucial to save lives and halt the spread of MERS-CoV. Here, we show that a recombinant protein containing a 212-amino acid fragment (residues 377-588 in the truncated receptor-binding domain (RBD: residues 367-606 of MERS-CoV spike (S protein fused with human IgG Fc fragment (S377-588-Fc is highly expressed in the culture supernatant of transfected 293T cells. The purified S377-588-Fc protein efficiently binds to dipeptidyl peptidase 4 (DPP4, the receptor of MERS-CoV, and potently inhibited MERS-CoV infection, suggesting its potential to be further developed as a therapeutic modality for treating MERS-CoV infection and saving the patients' lives. The recombinant S377-588-Fc is able to induce in the vaccinated mice strong MERS-CoV S-specific antibodies, which blocks the binding of RBD to DPP4 receptor and effectively neutralizes MERS-CoV infection. These findings indicate that this truncated RBD protein shows promise for further development as an effective and safe vaccine for the prevention of MERS-CoV infection.

  19. IgG antibodies to endothelial protein C receptor-binding Cysteine-rich interdomain region domains of Plasmodium falciparum erythrocyte membrane protein 1 are acquired early in life in individuals exposed to malaria

    DEFF Research Database (Denmark)

    Turner, Louise; Lavstsen, Thomas; Mmbando, Bruno P;

    2015-01-01

    Severe malaria syndromes are precipitated by Plasmodium falciparum parasites binding to endothelial receptors on the vascular lining. This binding is mediated by members of the highly variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. We have previously identified a subset of Pf...

  20. The C-terminal 20 Amino Acids of Drosophila Topoisomerase 2 Are Required for Binding to a BRCA1 C Terminus (BRCT) Domain-containing Protein, Mus101, and Fidelity of DNA Segregation.

    Science.gov (United States)

    Chen, Yu-Tsung Shane; Wu, Jianhong; Modrich, Paul; Hsieh, Tao-Shih

    2016-06-17

    Eukaryotic topoisomerase 2 (Top2) and one of its interacting partners, topoisomerase IIβ binding protein 1 (TopBP1) are two proteins performing essential cellular functions. We mapped the interacting domains of these two proteins using co-immunoprecipitation and pulldown experiments with truncated or mutant Drosophila Top2 with various Ser-to-Ala substitutions. We discovered that the last 20 amino acids of Top2 represent the key region for binding with Mus101 (the Drosophila homolog of TopBP1) and that phosphorylation of Ser-1428 and Ser-1443 is important for Top2 to interact with the N terminus of Mus101, which contains the BRCT1/2 domains. The interaction between Mus101 and the Top2 C-terminal regulatory domain is phosphorylation-dependent because treatment with phosphatase abolishes their association in pulldown assays. The binding affinity of N-terminal Mus101 with a synthetic phosphorylated peptide spanning the last 25 amino acids of Top2 (with Ser(P)-1428 and Ser(P)-1443) was determined by surface plasmon resonance with a Kd of 0.57 μm In an in vitro decatenation assay, Mus101 can specifically reduce the decatenation activity of Top2, and dephosphorylation of Top2 attenuates this response. Next, we endeavored to establish a cellular system for testing the biological function of Top2-Mus101 interaction. Top2-silenced S2 cells rescued by Top2Δ20, Top2 with 20 amino acids truncated from the C terminus, developed abnormally high chromosome numbers, which implies that Top2-Mus101 interaction is important for maintaining the fidelity of chromosome segregation during mitosis. PMID:27129233

  1. Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. Part I. Importance of hydrophobic interactions in stabilization of β-hairpin structure

    OpenAIRE

    Skwierawska, Agnieszka; Makowska, Joanna; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.

    2009-01-01

    We previously studied a 16-amino acid-residue fragment of the C-terminal β-hairpin (residues 46–61), [IG(46–61)], of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, and found that hydrophobic interactions and the turn region play an important role in stabilizing the structure. Based on these results, we carried out systematic structural studies of peptides derived from the sequence of IG(46–61) by systematically shortening the peptide by one residue at a time from bo...

  2. Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. Part III. Dynamics of long-range hydrophobic interactions

    OpenAIRE

    Lewandowska, Agnieszka; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.

    2010-01-01

    A 20-residue peptide, IG(42–61), derived from the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptoccocus was studied using CD, NMR spectroscopy at various temperatures and by differential scanning calorimetry. Unlike other related peptides studied so far, this peptide displays two heat capacity peaks in DSC measurements (at a scanning rate of 1.5 deg/min at a peptide concentration of 0.07mM) which suggests a three-state folding/unfolding process. The ...

  3. The lipopolysaccharide-binding protein participating in hemocyte nodule formation in the silkworm Bombyx mori is a novel member of the C-type lectin superfamily with two different tandem carbohydrate-recognition domains.

    Science.gov (United States)

    Koizumi, N; Imamura, M; Kadotani, T; Yaoi, K; Iwahana, H; Sato, R

    1999-01-25

    We recently isolated and characterized the lipopolysaccharide (LPS)-binding protein, BmLBP, from the larval hemolymph of the silkworm Bombyx mori. BmLBP is a pattern recognition molecule that recognizes the lipid A portion of LPS and participates in a cellular defense reaction. This paper describes the cDNA cloning of BmLBP. The deduced amino acid sequence of BmLBP revealed that BmLBP is a novel member of the C-type lectin superfamily with a unique structural feature that consists of two different carbohydrate-recognition domains in tandem, a short and a long form. PMID:9989592

  4. Sequential coagulation factor VIIa domain binding to tissue factor

    International Nuclear Information System (INIS)

    Vessel wall tissue factor (TF) is exposed to blood upon vascular damage which enables association with factor VIIa (FVIIa). This leads to initiation of the blood coagulation cascade through localization and allosteric induction of FVIIa procoagulant activity. To examine the docking pathway of the FVIIa-TF complex, various residues in the extracellular part of TF (sTF) that are known to interact with FVIIa were replaced with cysteines labelled with a fluorescent probe. By using stopped-flow fluorescence kinetic measurements in combination with surface plasmon resonance analysis, we studied the association of the resulting sTF variants with FVIIa. We found the docking trajectory to be a sequence of events in which the protease domain of FVIIa initiates contact with sTF. Thereafter, the two proteins are tethered via the first epidermal growth factor-like and finally the γ-carboxyglutamic acid (Gla) domain. The two labelled sTF residues interacting with the protease domain of FVIIa bind or become eventually ordered at different rates, revealing kinetic details pertinent to the allosteric activation of FVIIa by sTF. Moreover, when the Gla domain of FVIIa is removed the difference in the rate of association for the remaining domains is much more pronounced

  5. Protein complex prediction via verifying and reconstructing the topology of domain-domain interactions

    Directory of Open Access Journals (Sweden)

    Kashima Hisashi

    2010-06-01

    Full Text Available Abstract Background High-throughput methods for detecting protein-protein interactions enable us to obtain large interaction networks, and also allow us to computationally identify the associations of proteins as protein complexes. Although there are methods to extract protein complexes as sets of proteins from interaction networks, the extracted complexes may include false positives because they do not account for the structural limitations of the proteins and thus do not check that the proteins in the extracted complex can simultaneously bind to each other. In addition, there have been few searches for deeper insights into the protein complexes, such as of the topology of the protein-protein interactions or into the domain-domain interactions that mediate the protein interactions. Results Here, we introduce a combinatorial approach for prediction of protein complexes focusing not only on determining member proteins in complexes but also on the DDI/PPI organization of the complexes. Our method analyzes complex candidates predicted by the existing methods. It searches for optimal combinations of domain-domain interactions in the candidates based on an assumption that the proteins in a candidate can form a true protein complex if each of the domains is used by a single protein interaction. This optimization problem was mathematically formulated and solved using binary integer linear programming. By using publicly available sets of yeast protein-protein interactions and domain-domain interactions, we succeeded in extracting protein complex candidates with an accuracy that is twice the average accuracy of the existing methods, MCL, MCODE, or clustering coefficient. Although the configuring parameters for each algorithm resulted in slightly improved precisions, our method always showed better precision for most values of the parameters. Conclusions Our combinatorial approach can provide better accuracy for prediction of protein complexes and also

  6. Comparative Analysis of SWIRM Domain-Containing Proteins in Plants

    Directory of Open Access Journals (Sweden)

    Yan Gao

    2012-01-01

    Full Text Available Chromatin-remodeling complexes affect gene expression by using the energy of ATP hydrolysis to locally disrupt or alter the association of histones with DNA. SWIRM (Swi3p, Rsc8p, and Moira domain is an alpha-helical domain of about 85 residues in chromosomal proteins. SWIRM domain-containing proteins make up large multisubunit complexes by interacting with other chromatin modification factors and may have an important function in plants. However, little is known about SWIRM domain-containing proteins in plants. In this study, 67 SWIRM domain-containing proteins from 6 plant species were identified and analyzed. Plant SWIRM domain proteins can be divided into three distinct types: Swi-type, LSD1-type, and Ada2-type. Generally, the SWIRM domain forms a helix-turn-helix motif commonly found in DNA-binding proteins. The genes encoding SWIRM domain proteins in Oryza sativa are widely expressed, especially in pistils. In addition, OsCHB701 and OsHDMA701 were downregulated by cold stress, whereas OsHDMA701 and OsHDMA702 were significantly induced by heat stress. These observations indicate that SWIRM domain proteins may play an essential role in plant development and plant responses to environmental stress.

  7. DENN Domain Proteins: Regulators of Rab GTPases*

    OpenAIRE

    Marat, Andrea L.; Dokainish, Hatem; McPherson, Peter S

    2011-01-01

    The DENN domain is a common, evolutionarily ancient, and conserved protein module, yet it has gone largely unstudied; until recently, little was known regarding its functional roles. New studies reveal that various DENN domains interact directly with members of the Rab family of small GTPases and that DENN domains function enzymatically as Rab-specific guanine nucleotide exchange factors. Thus, DENN domain proteins appear to be generalized regulators of Rab function. Study of these proteins w...

  8. Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain

    Directory of Open Access Journals (Sweden)

    Spaan Willy JM

    2009-05-01

    Full Text Available Abstract Background Hepatitis C virus (HCV induces membrane rearrangements during replication. All HCV proteins are associated to membranes, pointing out the importance of membranes for HCV. Non structural protein 4B (NS4B has been reported to induce cellular membrane alterations like the membranous web. Four transmembrane segments in the middle of the protein anchor NS4B to membranes. An amphipatic helix at the amino-terminus attaches to membranes as well. The carboxy-terminal domain (CTD of NS4B is highly conserved in Hepaciviruses, though its function remains unknown. Results A cytosolic localization is predicted for the NS4B-CTD. However, using membrane floatation assays and immunofluorescence, we now show targeting of the NS4B-CTD to membranes. Furthermore, a profile-profile search, with an HCV NS4B-CTD multiple sequence alignment, indicates sequence similarity to the membrane binding domain of prokaryotic D-lactate dehydrogenase (d-LDH. The crystal structure of E. coli d-LDH suggests that the region similar to NS4B-CTD is located in the membrane binding domain (MBD of d-LDH, implying analogy in membrane association. Targeting of d-LDH to membranes occurs via electrostatic interactions of positive residues on the outside of the protein with negative head groups of lipids. To verify that anchorage of d-LDH MBD and NS4B-CTD is analogous, NS4B-CTD mutants were designed to disrupt these electrostatic interactions. Membrane association was confirmed by swopping the membrane contacting helix of d-LDH with the corresponding domain of the 4B-CTD. Furthermore, the functionality of these residues was tested in the HCV replicon system. Conclusion Together these data show that NS4B-CTD is associated to membranes, similar to the prokaryotic d-LDH MBD, and is important for replication.

  9. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    International Nuclear Information System (INIS)

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants

  10. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Roehrig, John T., E-mail: jtr1@cdc.gov [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Butrapet, Siritorn; Liss, Nathan M. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Bennett, Susan L. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Luy, Betty E.; Childers, Thomas; Boroughs, Karen L.; Stovall, Janae L.; Calvert, Amanda E. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Blair, Carol D. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Huang, Claire Y.-H. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States)

    2013-07-05

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants.

  11. Autoinhibition of Mint1 adaptor protein regulates amyloid precursor protein binding and processing

    OpenAIRE

    Matos, Maria F.; Xu, Yibin; Dulubova, Irina; Otwinowski, Zbyszek; Richardson, John M.; Tomchick, Diana R.; Rizo, Josep; Ho, Angela

    2012-01-01

    Mint adaptor proteins bind to the amyloid precursor protein (APP) and regulate APP processing associated with Alzheimer’s disease; however, the molecular mechanisms underlying Mint regulation in APP binding and processing remain unclear. Biochemical, biophysical, and cellular experiments now show that the Mint1 phosphotyrosine binding (PTB) domain that binds to APP is intramolecularly inhibited by the adjacent C-terminal linker region. The crystal structure of a C-terminally extended Mint1 PT...

  12. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen; Gammeltoft, Steen

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides......, without the need for phosphopeptide mimics or phosphatase inhibitors. As no proven ILKAP substrates were available, we selected phosphopeptide substrates among known PP2Cδ substrates including the protein kinases: p38, ATM, Chk1, Chk2 and RSK2 and synthesized directly on PEGA solid supports through a BAL...

  13. Calmodulin Binding Proteins and Alzheimer’s Disease

    Science.gov (United States)

    O’Day, Danton H.; Eshak, Kristeen; Myre, Michael A.

    2015-01-01

    Abstract The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer’s disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer’s disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer’s disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  14. Protein structural domains: definition and prediction.

    Science.gov (United States)

    Ezkurdia, Iakes; Tress, Michael L

    2011-11-01

    Recognition and prediction of structural domains in proteins is an important part of structure and function prediction. This unit lists the range of tools available for domain prediction, and describes sequence and structural analysis tools that complement domain prediction methods. Also detailed are the basic domain prediction steps, along with suggested strategies for different protein sequences and potential pitfalls in domain boundary prediction. The difficult problem of domain orientation prediction is also discussed. All the resources necessary for domain boundary prediction are accessible via publicly available Web servers and databases and do not require computational expertise. PMID:22045561

  15. A new and unexpected domain-domain interaction in the AraC protein.

    Science.gov (United States)

    Cole, Stephanie Dirla; Schleif, Robert

    2012-05-01

    An interaction between the dimerization domains and DNA binding domains of the dimeric AraC protein has previously been shown to facilitate repression of the Escherichia coli araBAD operon by AraC in the absence of arabinose. A new interaction between the domains of AraC in the presence of arabinose is reported here, the regulatory consequences of which are unknown. Evidence for the interaction is the following: the dissociation rate of arabinose-bound AraC from half-site DNA is considerably faster than that of free DNA binding domain, and the affinity of the dimerization domains for arabinose is increased when half-site DNA is bound. In addition, an increase in the fluorescence intensity of tryptophan residues located in the arabinose-bound dimerization domain is observed upon binding of half-site DNA to the DNA binding domains. Direct physical evidence of the new domain-domain interaction is demonstrated by chemical crosslinking and NMR experiments. PMID:22383259

  16. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  17. A Novel Approach to Predict Core Residues on Cancer-Related DNA-Binding Domains

    OpenAIRE

    Ka-Chun Wong

    2016-01-01

    Protein–DNA interactions are involved in different cancer pathways. In particular, the DNA-binding domains of proteins can determine where and how gene regulatory regions are bound in different cell lines at different stages. Therefore, it is essential to develop a method to predict and locate the core residues on cancer-related DNA-binding domains. In this study, we propose a computational method to predict and locate core residues on DNA-binding domains. In particular, we have selected the ...

  18. Crystallization and preliminary X-ray diffraction of the ZO-binding domain of human occludin

    International Nuclear Information System (INIS)

    Crystallization and preliminary X-ray diffraction of the ZO-binding domain of human occludin. Occludin is a tight-junction protein controlling the integrity of endothelial and epithelial cell layers. It forms complexes with the cytoplasmic proteins ZO-1, ZO-2 and ZO-3. The ZO-binding domain in the C-terminal cytoplasmic region of human occludin has previously been isolated and identified. This domain, as expressed in a bacterial system or isolated from native cellular occludin, maintains its ability to bind ZO-1 and ZO-2. The crystallization conditions of the human ZO-binding domain are reported here. The crystals diffract to 2.3 Å resolution and were shown to belong to the orthorhombic space group P212121, with unit-cell parameters a = 33.3, b = 35.4, c = 107.3 Å

  19. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain.

    Directory of Open Access Journals (Sweden)

    Wei Sheng Chia

    Full Text Available p97/Valosin-containing protein (VCP is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD. It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.

  20. Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure

    Directory of Open Access Journals (Sweden)

    Serrano Luis

    2008-10-01

    Full Text Available Abstract Background Efficient communication between distant sites within a protein is essential for cooperative biological response. Although often associated with large allosteric movements, more subtle changes in protein dynamics can also induce long-range correlations. However, an appropriate formalism that directly relates protein structural dynamics to information exchange between functional sites is still lacking. Results Here we introduce a method to analyze protein dynamics within the framework of information theory and show that signal transduction within proteins can be considered as a particular instance of communication over a noisy channel. In particular, we analyze the conformational correlations between protein residues and apply the concept of mutual information to quantify information exchange. Mapping out changes of mutual information on the protein structure then allows visualizing how distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located in the phosphopeptide and specificity binding sites and a number of residues at the other side of the domain near the linkers that connect the SH2 domain to the SH3 and kinase domains. We find that for this particular domain, communication is affected by a series of contiguous residues that connect distal sites by crossing the core of the SH2 domain. Conclusion As a result, our method provides a means to directly map the exchange of biological information on the structure of protein domains, making it clear how binding triggers conformational changes in the protein structure. As such it provides a structural road, next to the existing attempts at sequence level, to predict long-range interactions within protein structures.

  1. Structure and RNA binding of the mouse Pumilio-2 Puf domain.

    Science.gov (United States)

    Jenkins, Huw T; Baker-Wilding, Rosanna; Edwards, Thomas A

    2009-09-01

    Puf proteins control translation through the interaction of a C-terminal Puf domain with specific sequences present in the 3' untranslated region of messenger RNAs. In Drosophila, binding of the protein Pumilio to mRNA leads to translational repression which is required for anterior/posterior patterning during embryogenesis. The vertebrate Pumilio homologue 2 (Pum2) has been implicated in controlling germ cell development through interactions with the RNA binding proteins deleted in azoospermia (DAZ), DAZ-like (DAZL) and BOULE. We present the 1.6A resolution X-ray crystal structure of the Puf domain from murine Pum2 and demonstrate that this domain is capable of binding with nanomolar affinity to RNA sequences from the hunchback Nanos response element (NRE) and a previously identified Pum2 binding element (PBE). PMID:19540345

  2. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Directory of Open Access Journals (Sweden)

    Anders Gerd

    2008-01-01

    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  3. Structure of the RNA-Binding Domain of Telomerase: Implications For RNA Recognition and Binding

    Energy Technology Data Exchange (ETDEWEB)

    Rouda,S.; Skordalakes, E.

    2007-01-01

    Telomerase, a ribonucleoprotein complex, replicates the linear ends of eukaryotic chromosomes, thus taking care of the 'end of replication problem.' TERT contains an essential and universally conserved domain (TRBD) that makes extensive contacts with the RNA (TER) component of the holoenzyme, and this interaction is thought to facilitate TERT/TER assembly and repeat-addition processivity. Here, we present a high-resolution structure of TRBD from Tetrahymena thermophila. The nearly all-helical structure comprises a nucleic acid-binding fold suitable for TER binding. An extended pocket on the surface of the protein, formed by two conserved motifs (CP and T motifs) comprises TRBD's RNA-binding pocket. The width and the chemical nature of this pocket suggest that it binds both single- and double-stranded RNA, possibly stem I, and the template boundary element (TBE). Moreover, the structure provides clues into the role of this domain in TERT/TER stabilization and telomerase repeat-addition processivity.

  4. Interacting domains of the HN and F Proteins of paramyxovirus

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaojia; ZHANG Guozhong; ZHAO Jixun; WANG Ming

    2005-01-01

    Binding sialates to hemagglutinin-neuramini- dase (HN) activates (triggers) the fusion protein (F) to start the membrane fusion process of paramyxovirus, but the mechanism by which the HN and F associate with each other to induce membrane fusion is still unclear. It is noteworthy to study the interaction domains of HN and F of paramyxovirus. To screen interacting domains of the HN and F proteins of Avian parainfluenza virus-2 (APIV-2) and identify the structure of binding proteins, the GST pull-down assay and mass spectroscopy (MS) and circular dichroism (CD) experiments were performed in this study. The study revealed that the globular head region of HN protein tends to form a complex with either the heptad repeat 1 (HR1) or the heptad repeat 2 (HR2) of F protein respectively. This paper discusses the novel fusion mechanism induced by paramyxovirus HN and F proteins.

  5. Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. I. Importance of hydrophobic interactions in stabilization of beta-hairpin structure.

    Science.gov (United States)

    Skwierawska, Agnieszka; Makowska, Joanna; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A

    2009-06-01

    We previously studied a 16-amino acid-residue fragment of the C-terminal beta-hairpin of the B3 domain (residues 46-61), [IG(46-61)] of the immunoglobulin binding protein G from Streptoccocus, and found that hydrophobic interactions and the turn region play an important role in stabilizing the structure. Based on these results, we carried out systematic structural studies of peptides derived from the sequence of IG (46-61) by systematically shortening the peptide by one residue at a time from both the C- and the N-terminus. To determine the structure and stability of two resulting 12- and 14-amino acid-residue peptides, IG(48-59) and IG(47-60), respectively, we carried out circular dichroism, NMR, and calorimetric studies of these peptides in pure water. Our results show that IG(48-59) possesses organized three-dimensional structure stabilized by hydrophobic interactions (Tyr50-Phe57 and Trp48-Val59) at T = 283 and 305 K. At T = 313 K, the structure breaks down because of increased chain entropy, but the turn region is preserved in the same position observed for the structure of the whole protein. The breakdown of structure occurs near the melting temperature of this peptide (T(m) = 310 K) measured by differential scanning calorimetry (DSC). The melting temperature of IG(47-60) determined by DSC is T(m) = 330 K and its structure is similar to that of the native beta-hairpin at all (lower) temperatures examined (283-313 K). Both of these truncated sequences are conserved in all known amino acid sequences of the B domains of the immunoglobulin binding protein G from bacteria. Thus, this study contributes to an understanding of the mechanism of folding of this whole family of proteins, and provides information about the mechanism of formation and stabilization of a beta-hairpin structural element. PMID:19089955

  6. Evaluation of Selected Binding Domains for the Analysis of Ubiquitinated Proteomes

    Science.gov (United States)

    Nakayasu, Ernesto S.; Ansong, Charles; Brown, Joseph N.; Yang, Feng; Lopez-Ferrer, Daniel; Qian, Wei-Jun; Smith, Richard D.; Adkins, Joshua N.

    2013-08-01

    Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono- and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified ~200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle.

  7. Starch‐binding domains in the CBM45 family – low‐affinity domains from glucan, water dikinase and α‐amylase involved in plastidial starch metabolism

    DEFF Research Database (Denmark)

    Glaring, Mikkel Andreas; Baumann, Martin; Abou Hachem, Maher;

    2011-01-01

    organisms. Isolated domains from representatives of each of the two classes of enzyme carrying CBM45‐type domains, the Solanum tuberosumα‐glucan, water dikinase and the Arabidopsis thaliana plastidial α‐amylase 3, were expressed as recombinant proteins and characterized. Differential scanning calorimetry......Starch‐binding domains are noncatalytic carbohydrate‐binding modules that mediate binding to granular starch. The starch‐binding domains from the carbohydrate‐binding module family 45 (CBM45, ) are found as N‐terminal tandem repeats in a small number of enzymes, primarily from photosynthesizing...... extracellular microbial amylolytic enzymes. This suggests that low‐affinity starch‐binding domains are a recurring feature in plastidial starch metabolism, and supports the hypothesis that reversible binding, effectuated through low‐affinity interaction with starch granules, facilitates dynamic regulation of...

  8. Structural domains of vault proteins: a role for the coiled coil domain in vault assembly.

    Science.gov (United States)

    van Zon, Arend; Mossink, Marieke H; Schoester, Martijn; Scheffer, George L; Scheper, Rik J; Sonneveld, Pieter; Wiemer, Erik A C

    2002-03-01

    Vaults consist of multiple copies of three proteins (MVP, VPARP, and TEP1) and several untranslated RNAs. The function of vaults is unknown but the typical and evolutionary conserved structure indicates a role in intracellular transport. Although all vault components have been identified and characterized, not much is known about vault protein assembly. In this study we identified and analyzed structural domains involved in vault assembly with emphasis on protein-protein interactions. Using a yeast two-hybrid system, we demonstrate within MVP an intramolecular binding site and show that MVP molecules interact with each other via their coiled coil domain. We show that purified MVP is able to bind calcium, most likely at calcium-binding EF-hands. No interactions could be detected between TEP1 and other vault proteins. However, the N-terminal half of MVP binds to a specific domain in the C-terminus of VPARP. Furthermore, VPARP contains amino acid stretches mediating intramolecular binding. PMID:11855821

  9. Clinical relevance of drug binding to plasma proteins

    Science.gov (United States)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  10. Erythropoietin binding protein from mammalian serum

    Energy Technology Data Exchange (ETDEWEB)

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  11. Erythropoietin binding protein from mammalian serum

    Energy Technology Data Exchange (ETDEWEB)

    Clemons, Gisela K. (Berkeley, CA)

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  12. Multiple graph regularized protein domain ranking

    Directory of Open Access Journals (Sweden)

    Wang Jim

    2012-11-01

    Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  13. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-11-19

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  14. Electrochemistry of heparin binding to tau protein on Au surfaces

    International Nuclear Information System (INIS)

    Highlights: • Anionic heparin binds tau protein film on Au • N-terminal of tau protein is critical for heparin binding • Negatively charged heparin binds positively charged tau domains • Heparin binding to tau increases charge transfer resistance - ABSTRACT: The tau protein is a neurodegenerative disease biomarker. The in vitro aggregation of tau is triggered by electrostatic charge imbalance induced by an anionic inducing agent, such as heparin. The binding of the tau-heparin complex is based on electrostatic interactions, but the exact binding mode of heparin to the tau protein has not been fully identified. In this work, the effects of the tau protein orientation on gold (Au) electrode to heparin were explored by the cyclic voltammetry and electrochemical impedance spectroscopy. To modulate the accessibility of N-terminal of the tau to heparin, the tau films on Au surfaces were fabricated in two ways: immobilization of tau via the N-terminal of tau protein (N-tau-Au) or by the Cys291/Cys322 residues, located in the R-repeat domains of the tau protein (Cys-tau-Au). The sulfur-Au bonding was characterized by X-ray photoelectron spectroscopy. The charge transfer resistance was measured for N-tau-Au and Cys-tau-Au as a function of heparin concentration. The heparin concentration range was varied from 0.2 pM to 216 μM with the optimal binding concentration at 21 nM (the highest charge transfer resistance value). The heparin binding to tau films was investigated in the presence of [Fe(CN)6]3−/4− or benzoquinone redox probes. The tau-heparin binding was greater for the Cys-tau-Au surface over N-tau-Au, indicating specific tau domains may be required for optimal heparin binding

  15. Pleiotropic Roles of Cold Shock Domain Proteins in Plants

    OpenAIRE

    Sasaki, Kentaro; Imai, Ryozo

    2012-01-01

    The cold shock domain (CSD) is a nucleic acid binding domain that is widely conserved from bacteria to higher plants and animals. In Escherichia coli, cold shock proteins (CSPs) are composed solely of a CSD and function as RNA chaperones that destabilize RNA secondary structures. Cellular RNAs tend to be folded into unfavorable structures under low temperature conditions, and RNA chaperones resolve these structures, recovering functionality of the RNAs. CSP functions are associated mainly wit...

  16. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang (Cornell); (UMM-MED); (Colorado)

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  17. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  18. Domain-Domain Interactions Underlying Herpesvirus-Human Protein-Protein Interaction Networks

    OpenAIRE

    Zohar Itzhaki

    2011-01-01

    Protein-domains play an important role in mediating protein-protein interactions. Furthermore, the same domain-pairs mediate different interactions in different contexts and in various organisms, and therefore domain-pairs are considered as the building blocks of interactome networks. Here we extend these principles to the host-virus interface and find the domain-pairs that potentially mediate human-herpesvirus interactions. Notably, we find that the same domain-pairs used by other organisms ...

  19. The Mr 70,000 protein of the U1 small nuclear ribonucleoprotein particle binds to the 5' stem-loop of U1 RNA and interacts with Sm domain proteins.

    OpenAIRE

    Patton, J R; Pederson, T

    1988-01-01

    The U1 small nuclear ribonucleoprotein (snRNP) particle, a cofactor in mRNA splicing, contains nine proteins, six of which are also present in other U snRNPs and three of which are specific to the U1 snRNP. Here we have used a reconstituted human U1 snRNP together with snRNP monoclonal antibodies to define the RNA binding sites of one of the U1 snRNP-specific proteins. When Sm monoclonal antibody (specific for the B', B, and D proteins of U snRNPs) was bound to U1 snRNPs prior to micrococcal ...

  20. Binding of CCAAT displacement protein CDP to adenovirus packaging sequences.

    Science.gov (United States)

    Erturk, Ece; Ostapchuk, Philomena; Wells, Susanne I; Yang, Jihong; Gregg, Keqin; Nepveu, Alain; Dudley, Jaquelin P; Hearing, Patrick

    2003-06-01

    Adenovirus (Ad) type 5 DNA packaging is initiated in a polar fashion from the left end of the genome. The packaging process is dependent upon the cis-acting packaging domain located between nucleotides 194 and 380. Seven A/T-rich repeats have been identified within this domain that direct packaging. A1, A2, A5, and A6 are the most important repeats functionally and share a bipartite sequence motif. Several lines of evidence suggest that there is a limiting trans-acting factor(s) that plays a role in packaging. Two cellular activities that bind to minimal packaging domains in vitro have been previously identified. These binding activities are P complex, an uncharacterized protein(s), and chicken ovalbumin upstream promoter transcription factor (COUP-TF). In this work, we report that a third cellular protein, octamer-1 protein (Oct-1), binds to minimal packaging domains. In vitro binding analyses and in vivo packaging assays were used to examine the relevance of these DNA binding activities to Ad DNA packaging. The results of these experiments reveal that COUP-TF and Oct-1 binding does not play a functional role in Ad packaging, whereas P-complex binding directly correlates with packaging function. We demonstrate that P complex contains the cellular protein CCAAT displacement protein (CDP) and that full-length CDP is found in purified virus particles. In addition to cellular factors, previous evidence indicates that viral factors play a role in the initiation of viral DNA packaging. We propose that CDP, in conjunction with one or more viral proteins, binds to the packaging sequences of Ad to initiate the encapsidation process. PMID:12743282

  1. Allosteric switching by mutually exclusive folding of protein domains.

    Science.gov (United States)

    Radley, Tracy L; Markowska, Anna I; Bettinger, Blaine T; Ha, Jeung-Hoi; Loh, Stewart N

    2003-09-19

    Many proteins are built from structurally and functionally distinct domains. A major goal is to understand how conformational change transmits information between domains in order to achieve biological activity. A two-domain, bi-functional fusion protein has been designed so that the mechanical stress imposed by the folded structure of one subunit causes the other subunit to unfold, and vice versa. The construct consists of ubiquitin inserted into a surface loop of barnase. The distance between the amino and carboxyl ends of ubiquitin is much greater than the distance between the termini of the barnase loop. This topological constraint causes the two domains to engage in a thermodynamic tug-of-war in which only one can exist in its folded state at any given time. This conformational equilibrium, which is cooperative, reversible, and controllable by ligand binding, serves as a model for the coupled binding and folding mechanism widely used to mediate protein-protein interactions and cellular signaling processes. The position of the equilibrium can be adjusted by temperature or ligand binding and is monitored in vivo by cell death. This design forms the basis for a new class of cytotoxic proteins that can be activated by cell-specific effector molecules, and can thus target particular cell types for destruction. PMID:12963365

  2. Chemically synthesized 58-mer LysM domain binds lipochitin oligosaccharide

    DEFF Research Database (Denmark)

    Sørensen, Kasper K; Simonsen, Jens B; Maolanon, Nicolai N; Stougaard, Jens; Jensen, Knud J

    2014-01-01

    Recognition of carbohydrates by proteins is a ubiquitous biochemical process. In legume-rhizobium symbiosis, lipochitin oligosaccharides, also referred to as nodulation (nod) factors, function as primary rhizobial signal molecules to trigger root nodule development. Perception of these signal...... molecules is receptor mediated, and nod factor receptor 5 (NFR5) from the model legume Lotus japonicus is predicted to contain three LysM domain binding sites. Here we studied the interactions between nod factor and each of the three NFR5 LysM domains, which were chemically synthesized. LysM domain variants...... change in the LysM2 domain. The preferential affinity for nod factors over chitin oligosaccharides was demonstrated by a newly developed glycan microarray. Besides the biological implications, our approach shows that carbohydrate binding to a small protein domain can be detected by CD spectroscopy....

  3. MARs Wars: heterogeneity and clustering of DNA-binding domains in the nuclear matrix

    Directory of Open Access Journals (Sweden)

    Ioudinkova E. S.

    2009-12-01

    Full Text Available Aim. CO326 is a chicken nuclear scaffold/matrix attachment region (MAR associated with the nuclear matrix in several types of chicken cells. It contains a binding site for a sequence-specific DNA-binding protein, F326. We have studied its interaction with the nuclear matrix. Methods. We have used an in vitro MAR assay with isolated matrices from chicken HD3 cells. Results. We have found that an oligonucleotide binding site for the F326 inhibits binding of the CO326 to the nuclear matrix. At the same time, the binding of heterologous MARs is enhanced. Conclusions. Taken together, these data suggest that there exist several classes of MARs and MAR-binding domains and that the MAR-binding proteins may be clustered in the nuclear matrix.

  4. Allosteric role of the large-scale domain opening in biological catch-binding

    Science.gov (United States)

    Pereverzev, Yuriy V.; Prezhdo, Oleg V.; Sokurenko, Evgeni V.

    2009-05-01

    The proposed model demonstrates the allosteric role of the two-domain region of the receptor protein in the increased lifetimes of biological receptor/ligand bonds subjected to an external force. The interaction between the domains is represented by a bounded potential, containing two minima corresponding to the attached and separated conformations of the two protein domains. The dissociative potential with a single minimum describing receptor/ligand binding fluctuates between deep and shallow states, depending on whether the domains are attached or separated. A number of valuable analytic expressions are derived and are used to interpret experimental data for two catch bonds. The P-selectin/P-selectin-glycoprotein-ligand-1 (PSGL-1) bond is controlled by the interface between the epidermal growth factor (EGF) and lectin domains of P-selectin, and the type 1 fimbrial adhesive protein (FimH)/mannose bond is governed by the interface between the lectin and pilin domains of FimH. Catch-binding occurs in these systems when the external force stretches the receptor proteins and increases the interdomain distance. The allosteric effect is supported by independent measurements, in which the domains are kept separated by attachment of another ligand. The proposed model accurately describes the experimentally observed anomalous behavior of the lifetimes of the P-selectin/PSGL-1 and FimH/mannose complexes as a function of applied force and provides valuable insights into the mechanism of catch-binding.

  5. Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.; Andersen, John F.; (NIH)

    2009-04-07

    The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describe the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.

  6. Starch-binding domains in the CBM45 family--low-affinity domains from glucan, water dikinase and α-amylase involved in plastidial starch metabolism.

    Science.gov (United States)

    Glaring, Mikkel A; Baumann, Martin J; Abou Hachem, Maher; Nakai, Hiroyuki; Nakai, Natsuko; Santelia, Diana; Sigurskjold, Bent W; Zeeman, Samuel C; Blennow, Andreas; Svensson, Birte

    2011-04-01

    Starch-binding domains are noncatalytic carbohydrate-binding modules that mediate binding to granular starch. The starch-binding domains from the carbohydrate-binding module family 45 (CBM45, http://www.cazy.org) are found as N-terminal tandem repeats in a small number of enzymes, primarily from photosynthesizing organisms. Isolated domains from representatives of each of the two classes of enzyme carrying CBM45-type domains, the Solanum tuberosumα-glucan, water dikinase and the Arabidopsis thaliana plastidial α-amylase 3, were expressed as recombinant proteins and characterized. Differential scanning calorimetry was used to verify the conformational integrity of an isolated CBM45 domain, revealing a surprisingly high thermal stability (T(m) of 84.8 °C). The functionality of CBM45 was demonstrated in planta by yellow/green fluorescent protein fusions and transient expression in tobacco leaves. Affinities for starch and soluble cyclodextrin starch mimics were measured by adsorption assays, surface plasmon resonance and isothermal titration calorimetry analyses. The data indicate that CBM45 binds with an affinity of about two orders of magnitude lower than the classical starch-binding domains from extracellular microbial amylolytic enzymes. This suggests that low-affinity starch-binding domains are a recurring feature in plastidial starch metabolism, and supports the hypothesis that reversible binding, effectuated through low-affinity interaction with starch granules, facilitates dynamic regulation of enzyme activities and, hence, of starch metabolism. PMID:21294843

  7. Molecular modeling of the heterodimer of human CFTR’s nucleotide-binding domains using a protein–protein docking approach

    OpenAIRE

    Huang, Sheng-You; Bolser, Diana; Liu, Hao-Yang; Hwang, Tzyh-Chang; Zou, Xiaoqin

    2008-01-01

    We have presented a new protein–protein docking approach to model heterodimeric structures based on the conformations of the monomeric units. The conventional modeling method relies on superimposing two monomeric structures onto the crystal structure of a homologous protein dimer. The resulting structure may exhibit severe backbone clashes at the dimeric interface depending on the backbone dissimilarity between the target and template proteins. Our method overcomes the backbone clashing probl...

  8. The Role Stress Granules and RNA Binding Proteins in Neurodegeneration

    OpenAIRE

    Vanderweyde, Tara; Youmans, Katie; Liu-Yesucevitz, Liqun; Wolozin, Benjamin

    2013-01-01

    The eukaryotic stress response involves translational suppression of non-housekeeping proteins and the sequestration of unnecessary mRNA transcripts into stress granules (SGs). This process is dependent on mRNA binding proteins (RBPs) that interact with capped mRNA transcripts through RNA recognition motifs, and exhibit reversible aggregation through hydrophobic poly-glycine domains, some of which are homologous to yeast prion proteins. The activity and aggregation of RBPs appears to be impor...

  9. Pentatricopeptide repeats: Modular blocks for building RNA-binding proteins

    OpenAIRE

    Filipovska, Aleksandra; Rackham, Oliver

    2013-01-01

    Pentatricopeptide repeat (PPR) proteins control diverse aspects of RNA metabolism across the eukaryotic domain. Recent computational and structural studies have provided new insights into how they recognize RNA, and show that the recognition is sequence-specific and modular. The modular code for RNA-binding by PPR proteins holds great promise for the engineering of new tools to target RNA and identifying RNAs bound by natural PPR proteins.

  10. PDZ Binding Domains, Structural Disorder and Phosphorylation: A Menage-a-trois Tailing Dcp2 mRNA Decapping Enzymes.

    Science.gov (United States)

    Gunawardana, Dilantha

    2016-01-01

    Diverse cellular activities are mediated through the interaction of protein domains and their binding partners. One such protein domain widely distributed in the higher metazoan world is the PDZ domain, which facilitates abundant protein-protein interactions. The PDZ domain-PDZ binding domain interaction has been implicated in several pathologies including Alzheimer's disease, Parkinson's disease and Down syndrome. PDZ domains bind to C-terminal peptides/proteins which have either of the following combinations: S/T-X-hydrophobic-COOH for type I, hydrophobic-Xhydrophobic- COOH for type II, and D/E-X-hydrophobic-COOH for type III, although hydrophobicity in the termini form the key characteristic of the PDZ-binding domains. We identified and characterized a Dcp2 type mRNA decapping enzyme from Arabidopsis thaliana, a protein containing a putative PDZ-binding domain using mutagenesis and protein biochemistry. Now we are using bioinformatics to study the Cterminal end of mRNA decapping enzymes from complex metazoans with the aim of (1) identifying putative PDZ-binding domains (2) Correlating structural disorder with PDZ binding domains and (3) Demonstrating the presence of phosphorylation sites in C-terminal extremities of Dcp2 type mRNA decapping enzymes. It is proposed here that the trinity of PDZbinding domains, structural disorder and phosphorylation-susceptible sites are a feature of the Dcp2 family of decapping enzymes and perhaps is a wider trick in protein evolution where scaffolding/tethering is a requirement for localization and function. It is critical though laboratory-based supporting evidence is sought to back-up this bioinformatics exploration into tail regions of mRNA decapping enzymes. PMID:27151193

  11. Enhancer-binding proteins with a forkhead-associated domain and the sigma(54) regulon in Myxococcus xanthus fruiting body development

    DEFF Research Database (Denmark)

    Jelsbak, Lars; Givskov, Michael Christian; Kaiser, D.

    2005-01-01

    these genes, Mx4885, caused a cell autonomous aggregation and sporulation defect. In-frame deletion mutants showed that the FHA domain is necessary for proper Mx4885 function. The altered pattern of developmental gene expression in the mutant implied that Mx4885 is on the pathway of response to the...

  12. Biophysical and Structural Characterization of the Thioredoxin-binding Domain of Protein Kinase ASK1 and Its Interaction with Reduced Thioredoxin

    Czech Academy of Sciences Publication Activity Database

    Košek, Dalibor; Kylarová, Salome; Pšenáková, Katarína; Řežábková, L.; Herman, P.; Večeř, J.; Obšilová, Veronika; Obšil, T.

    2014-01-01

    Roč. 289, č. 35 (2014), s. 24463-24474. ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA14-10061S Institutional support: RVO:67985823 Keywords : ASK1 * thioredoxin * AUC * SAXS * coiled-coiled domain Subject RIV: CE - Biochemistry Impact factor: 4.573, year: 2014

  13. Stability and Sugar Recognition Ability of Ricin-Like Carbohydrate Binding Domains

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianzhuang [ORNL; Nellas, Ricky B [ORNL; Glover, Mary M [ORNL; Shen, Tongye [ORNL

    2011-01-01

    Lectins are a class of proteins known for their novel binding to saccharides. Understanding this sugar recognition process can be crucial in creating structure-based designs of proteins with various biological roles. We focus on the sugar binding of a particular lectin, ricin, which has two -trefoil carbohydrate-binding domains (CRDs) found in several plant protein toxins. The binding ability of possible sites of ricin-like CRD has been puzzling. The apo and various (multiple) ligand-bound forms of the sugar-binding domains of ricin were studied by molecular dynamics simulations. By evaluating structural stability, hydrogen bond dynamics, flexibility, and binding energy, we obtained a detailed picture of the sugar recognition of the ricin-like CRD. Unlike what was previously believed, we found that the binding abilities of the two known sites are not independent of each other. The binding ability of one site is positively affected by the other site. While the mean positions of different binding scenarios are not altered significantly, the flexibility of the binding pockets visibly decreases upon multiple ligand binding. This change in flexibility seems to be the origin of the binding cooperativity. All the hydrogen bonds that are strong in the monoligand state are also strong in the double-ligand complex, although the stability is much higher in the latter form due to cooperativity. These strong hydrogen bonds in a monoligand state are deemed to be the essential hydrogen bonds. Furthermore, by examining the structural correlation matrix, the two domains are structurally one entity. Galactose hydroxyl groups, OH4 and OH3, are the most critical parts in both site 1 and site 2 recognition.

  14. EHD3 Protein Is Required for Tubular Recycling Endosome Stabilization, and an Asparagine-Glutamic Acid Residue Pair within Its Eps15 Homology (EH) Domain Dictates Its Selective Binding to NPF Peptides.

    Science.gov (United States)

    Bahl, Kriti; Xie, Shuwei; Spagnol, Gaelle; Sorgen, Paul; Naslavsky, Naava; Caplan, Steve

    2016-06-24

    An elaborate network of dynamic lipid membranes, termed tubular recycling endosomes (TRE), coordinates the process of endocytic recycling in mammalian cells. The C-terminal Eps15 homology domain (EHD)-containing proteins have been implicated in the bending and fission of TRE, thus regulating endocytic recycling. EHD proteins have an EH domain that interacts with proteins containing an NPF motif. We found that NPF-containing EHD1 interaction partners such as molecules interacting with CasL-like1 (MICAL-L1) and Syndapin2 are essential for TRE biogenesis. Also crucial for TRE biogenesis is the generation of phosphatidic acid, an essential lipid component of TRE that serves as a docking point for MICAL-L1 and Syndapin2. EHD1 and EHD3 have 86% amino acid identity; they homo- and heterodimerize and partially co-localize to TRE. Despite their remarkable identity, they have distinct mechanistic functions. EHD1 induces membrane vesiculation, whereas EHD3 supports TRE biogenesis and/or stabilization by an unknown mechanism. While using phospholipase D inhibitors (which block the conversion of glycerophospholipids to phosphatidic acid) to deplete cellular TRE, we observed that, upon inhibitor washout, there was a rapid and dramatic regeneration of MICAL-L1-marked TRE. Using this "synchronized" TRE biogenesis system, we determined that EHD3 is involved in the stabilization of TRE rather than in their biogenesis. Moreover, we identify the residues Ala-519/Asp-520 of EHD1 and Asn-519/Glu-520 of EHD3 as defining the selectivity of these two paralogs for NPF-containing binding partners, and we present a model to explain the atomic mechanism and provide new insight for their differential roles in vesiculation and tubulation, respectively. PMID:27189942

  15. Structural fold, conservation and Fe(II) binding of the intracellular domain of prokaryote FeoB

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Kuo-Wei; Chang, Yi-Wei; Eng, Edward T.; Chen, Jai-Hui; Chen, Yi-Chung; Sun, Yuh-Ju; Hsiao, Chwan-Deng; Dong, Gang; Spasov, Krasimir A.; Unger, Vinzenz M.; Huang, Tai-huang (Yale-MED); (Perutz Lab); (AS); (NTHU-Taiwan)

    2010-09-17

    FeoB is a G-protein coupled membrane protein essential for Fe(II) uptake in prokaryotes. Here, we report the crystal structures of the intracellular domain of FeoB (NFeoB) from Klebsiella pneumoniae (KpNFeoB) and Pyrococcus furiosus (PfNFeoB) with and without bound ligands. In the structures, a canonical G-protein domain (G domain) is followed by a helical bundle domain (S-domain), which despite its lack of sequence similarity between species is structurally conserved. In the nucleotide-free state, the G-domain's two switch regions point away from the binding site. This gives rise to an open binding pocket whose shallowness is likely to be responsible for the low nucleotide-binding affinity. Nucleotide binding induced significant conformational changes in the G5 motif which in the case of GMPPNP binding was accompanied by destabilization of the switch I region. In addition to the structural data, we demonstrate that Fe(II)-induced foot printing cleaves the protein close to a putative Fe(II)-binding site at the tip of switch I, and we identify functionally important regions within the S-domain. Moreover, we show that NFeoB exists as a monomer in solution, and that its two constituent domains can undergo large conformational changes. The data show that the S-domain plays important roles in FeoB function.

  16. Identification of Residues in the C-terminal Domain of HIV-1 Integrase That Mediate Binding to the Transportin-SR2 Protein*

    Science.gov (United States)

    De Houwer, Stephanie; Demeulemeester, Jonas; Thys, Wannes; Taltynov, Oliver; Zmajkovicova, Katarina; Christ, Frauke; Debyser, Zeger

    2012-01-01

    Transportin-SR2 (TRN-SR2 and TNPO3) is a cellular cofactor of HIV replication that has been implicated in the nuclear import of HIV. TRN-SR2 was originally identified in a yeast two-hybrid screen as an interaction partner of HIV integrase (IN) and in two independent siRNA screens as a cofactor of viral replication. We have now studied the interaction of TRN-SR2 and HIV IN in molecular detail and identified the TRN-SR2 interacting regions of IN. A weak interaction with the catalytic core domain (CCD) and a strong interaction with the C-terminal domain (CTD) of IN were detected. By dissecting the catalytic core domain (CCD) of IN into short structural fragments, we identified a peptide (INIP1, amino acids 170EHLKTAVQMAVFIHNFKRKGGI191) retaining the ability to interact with TRN-SR2. By dissecting the C-terminal domain (CTD) of IN, we could identify two interacting peptides (amino acids 214QKQITKIQNFRVYYR228 and 262RRKVKIIRDYGK273) that come together in the CTD tertiary structure to form an exposed antiparallel β-sheet. Through site-specific mutagenesis, we defined the following sets of amino acids in IN as important for the interaction with TRN-SR2: Phe-185/Lys-186/Arg-187/Lys-188 in the CCD and Arg-262/Arg-263/Lys-264 and Lys-266/Arg-269 in the CTD. An HIV-1 strain carrying K266A/R269A in IN was replication-defective due to a block in reverse transcription, confounding the study of nuclear import. Insight into the IN/TRN-SR2 interaction interface is necessary to guide drug discovery efforts targeting the nuclear entry step of replication. PMID:22872638

  17. Characterization of Novel Calmodulin Binding Domains within IQ Motifs of IQGAP1

    OpenAIRE

    Jang, Deok-Jin; Ban, Byungkwan; Lee, Jin-A

    2011-01-01

    IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM bind...

  18. Identification of the Receptor-Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1

    Science.gov (United States)

    Ou, Xiuyuan; Góes, Luiz Gustavo Bentim; Osborne, Christina; Castano, Anna; Holmes, Kathryn V.

    2015-01-01

    ABSTRACT Coronavirus spike (S) glycoproteins mediate receptor binding, membrane fusion, and virus entry and determine host range. Murine betacoronavirus (β-CoV) in group A uses the N-terminal domain (NTD) of S protein to bind to its receptor, whereas the β-CoVs severe acute respiratory syndrome CoV in group B and Middle East respiratory syndrome CoV in group C and several α-CoVs use the downstream C domain in their S proteins to recognize their receptor proteins. To identify the receptor-binding domain in the spike of human β-CoV HKU1 in group A, we generated and mapped a panel of monoclonal antibodies (MAbs) to the ectodomain of HKU1 spike protein. They did not cross-react with S proteins of any other CoV tested. Most of the HKU1 spike MAbs recognized epitopes in the C domain between amino acids 535 and 673, indicating that this region is immunodominant. Two of the MAbs blocked HKU1 virus infection of primary human tracheal-bronchial epithelial (HTBE) cells. Preincubation of HTBE cells with a truncated HKU1 S protein that includes the C domain blocked infection with HKU1 virus, but preincubation of cells with truncated S protein containing only the NTD did not block infection. These data suggest that the receptor-binding domain (RBD) of HKU1 spike protein is located in the C domain, where the spike proteins of α-CoVs and β-CoVs in groups B and C bind to their specific receptor proteins. Thus, two β-CoVs in group A, HKU1 and murine CoV, have evolved to use different regions of their spike glycoproteins to recognize their respective receptor proteins. IMPORTANCE Mouse hepatitis virus, a β-CoV in group A, uses the galectin-like NTD in its spike protein to bind its receptor protein, while HCoV-OC43, another β-CoV in group A, uses the NTD to bind to its sialic-acid containing receptor. In marked contrast, the NTD of the spike glycoprotein of human respiratory β-CoV HKU1, which is also in group A, does not bind sugar. In this study, we showed that for the

  19. Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly

    Science.gov (United States)

    AhYoung, Andrew P.; Jiang, Jiansen; Zhang, Jiang; Khoi Dang, Xuan; Loo, Joseph A.; Zhou, Z. Hong; Egea, Pascal F.

    2015-01-01

    Membrane contact sites (MCS) between organelles are proposed as nexuses for the exchange of lipids, small molecules, and other signals crucial to cellular function and homeostasis. Various protein complexes, such as the endoplasmic reticulum-mitochondrial encounter structure (ERMES), function as dynamic molecular tethers between organelles. Here, we report the reconstitution and characterization of subcomplexes formed by the cytoplasm-exposed synaptotagmin-like mitochondrial lipid-binding protein (SMP) domains present in three of the five ERMES subunits—the soluble protein Mdm12, the endoplasmic reticulum (ER)-resident membrane protein Mmm1, and the mitochondrial membrane protein Mdm34. SMP domains are conserved lipid-binding domains found exclusively in proteins at MCS. We show that the SMP domains of Mdm12 and Mmm1 associate into a tight heterotetramer with equimolecular stoichiometry. Our 17-Å-resolution EM structure of the complex reveals an elongated crescent-shaped particle in which two Mdm12 subunits occupy symmetric but distal positions at the opposite ends of a central ER-anchored Mmm1 homodimer. Rigid body fitting of homology models of these SMP domains in the density maps reveals a distinctive extended tubular structure likely traversed by a hydrophobic tunnel. Furthermore, these two SMP domains bind phospholipids and display a strong preference for phosphatidylcholines, a class of phospholipids whose exchange between the ER and mitochondria is essential. Last, we show that the three SMP-containing ERMES subunits form a ternary complex in which Mdm12 bridges Mmm1 to Mdm34. Our findings highlight roles for SMP domains in ERMES assembly and phospholipid binding and suggest a structure-based mechanism for the facilitated transport of phospholipids between organelles. PMID:26056272

  20. Bacterial expression, purification, and model membrane reconstitution of the transmembrane and cytoplasmic domains of the human APP binding protein LR11/SorLA for NMR studies

    OpenAIRE

    Wang, Xingsheng; Gill, Richard L; Zhu, Qin; Tian, Fang

    2011-01-01

    LR11 (SorLA) is a recently identified neuronal protein that interacts with amyloid precursor protein (APP), a central player in the pathology of the Alzheimer’s disease (AD). AD is a neurodegenerative disease and the most common cause of dementia in the elderly. Current estimates suggest that as many as 5.3 million Americans are living with AD. Recent investigations have uncovered the pathophysiological relevance of APP intracellular trafficking in AD. LR11 is of particular importance due to ...

  1. THE INTEGRITY OF THE α-HELICAL DOMAIN OF INTESTINAL FATTY ACID BINDING PROTEIN IS ESSENTIAL FOR THE COLLISION-MEDIATED TRANSFER OF FATTY ACIDS TO PHOSPHOLIPID MEMBRANES

    OpenAIRE

    Franchini, G. R.; Storch, J.; Corsico, B.

    2008-01-01

    Intestinal FABP (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms of fatty acid transfer to acceptor model membranes. Transfer from IFABP occurs during protein-membrane-collisional interactions, while for LFABP transfer occurs by diffusion through the aqueous phase. In addition, transfer from IFABP is markedly faster than from LFABP. The overall goal of this study was to further explore the structu...

  2. Advances on Plant Pathogenic Mycotoxin Binding Proteins

    Institute of Scientific and Technical Information of China (English)

    WANG Chao-hua; DONG Jin-gao

    2002-01-01

    Toxin-binding protein is one of the key subjects in plant pathogenic mycotoxin research. In this paper, new advances in toxin-binding proteins of 10 kinds of plant pathogenic mycotoxins belonging to Helminthosporium ,Alternaria ,Fusicoccum ,Verticillium were reviewed, especially the techniques and methods of toxin-binding proteins of HS-toxin, HV-toxin, HMT-toxin, HC-toxin. It was proposed that the isotope-labeling technique and immunological chemistry technique should be combined together in research of toxin-binding protein, which will be significant to study the molecular recognition mechanism between host and pathogenic fungus.

  3. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  4. RNA Binding Domain of Telomerase Reverse Transcriptase

    OpenAIRE

    Lai, Cary K.; Mitchell, James R.; Collins, Kathleen

    2001-01-01

    Telomerase is a ribonucleoprotein reverse transcriptase that extends the ends of chromosomes. The two telomerase subunits essential for catalysis in vitro are the telomerase reverse transcriptase (TERT) and the telomerase RNA. Using truncations and site-specific mutations, we identified sequence elements of TERT and telomerase RNA required for catalytic activity and protein-RNA interaction for Tetrahymena thermophila telomerase. We found that the TERT amino and carboxyl termini, although evol...

  5. Membrane shape instabilities induced by BAR domain proteins

    Science.gov (United States)

    Baumgart, Tobias

    2014-03-01

    Membrane curvature has developed into a forefront of membrane biophysics. Numerous proteins involved in membrane curvature sensing and membrane curvature generation have recently been discovered, including proteins containing the crescent-shaped BAR domain as membrane binding and shaping module. Accordingly, the structure determination of these proteins and their multimeric complexes is increasingly well-understood. Substantially less understood, however, are thermodynamic and kinetic aspects and the detailed mechanisms of how these proteins interact with membranes in a curvature-dependent manner. New experimental approaches need to be combined with established techniques to be able to fill in these missing details. Here we use model membrane systems in combination with a variety of biophysical techniques to characterize mechanistic aspects of BAR domain protein function. This includes a characterization of membrane curvature sensing and membrane generation. We also establish kinetic and thermodynamic aspects of BAR protein dimerization in solution, and investigate kinetic aspects of membrane binding. We present two new approaches to investigate membrane shape instabilities and demonstrate that membrane shape instabilities can be controlled by protein binding and lateral membrane tension. This work is supported through NIH grant GM-097552 and NSF grant CBET-1053857.

  6. The Cucumber leaf spot virus p25 auxiliary replicase protein binds and modifies the endoplasmic reticulum via N-terminal transmembrane domains

    International Nuclear Information System (INIS)

    Cucumber leaf spot virus (CLSV) is a member of the Aureusvirus genus, family Tombusviridae. The auxiliary replicase of Tombusvirids has been found to localize to endoplasmic reticulum (ER), peroxisomes or mitochondria; however, localization of the auxiliary replicase of aureusviruses has not been determined. We have found that the auxiliary replicase of CLSV (p25) fused to GFP colocalizes with ER and that three predicted transmembrane domains (TMDs) at the N-terminus of p25 are sufficient for targeting, although the second and third TMDs play the most prominent roles. Confocal analysis of CLSV infected 16C plants shows that the ER becomes modified including the formation of punctae at connections between ER tubules and in association with the nucleus. Ultrastructural analysis shows that the cytoplasm contains numerous vesicles which are also found between the perinuclear ER and nuclear membrane. It is proposed that these vesicles correspond to modified ER used as sites for CLSV replication. - Highlights: • The CLSV p25 auxiliary replicase targets the endoplasmic reticulum (ER). • Targeting of CLSV p25 is associated with ER restructuring. • Restructuring of the ER occurs during CLSV infection. • CLSV p25 contains 3 predicted transmembrane domains 2 of which are required for ER targeting. • Vesicles derived from the ER may be sites of CLSV replication

  7. The Cucumber leaf spot virus p25 auxiliary replicase protein binds and modifies the endoplasmic reticulum via N-terminal transmembrane domains

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, Kankana [University of British Columbia, Faculty of Land and Food Systems, Vancouver, British Columbia, Canada V6T 1Z4 (Canada); Theilmann, Jane; Reade, Ron; Sanfacon, Helene [Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0 (Canada); Rochon, D’Ann, E-mail: dann.rochon@agr.gc.ca [University of British Columbia, Faculty of Land and Food Systems, Vancouver, British Columbia, Canada V6T 1Z4 (Canada); Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0 (Canada)

    2014-11-15

    Cucumber leaf spot virus (CLSV) is a member of the Aureusvirus genus, family Tombusviridae. The auxiliary replicase of Tombusvirids has been found to localize to endoplasmic reticulum (ER), peroxisomes or mitochondria; however, localization of the auxiliary replicase of aureusviruses has not been determined. We have found that the auxiliary replicase of CLSV (p25) fused to GFP colocalizes with ER and that three predicted transmembrane domains (TMDs) at the N-terminus of p25 are sufficient for targeting, although the second and third TMDs play the most prominent roles. Confocal analysis of CLSV infected 16C plants shows that the ER becomes modified including the formation of punctae at connections between ER tubules and in association with the nucleus. Ultrastructural analysis shows that the cytoplasm contains numerous vesicles which are also found between the perinuclear ER and nuclear membrane. It is proposed that these vesicles correspond to modified ER used as sites for CLSV replication. - Highlights: • The CLSV p25 auxiliary replicase targets the endoplasmic reticulum (ER). • Targeting of CLSV p25 is associated with ER restructuring. • Restructuring of the ER occurs during CLSV infection. • CLSV p25 contains 3 predicted transmembrane domains 2 of which are required for ER targeting. • Vesicles derived from the ER may be sites of CLSV replication.

  8. Tenascin C promiscuously binds growth factors via its fifth fibronectin type III-like domain.

    Directory of Open Access Journals (Sweden)

    Laura De Laporte

    Full Text Available Tenascin C (TNC is an extracellular matrix protein that is upregulated during development as well as tissue remodeling. TNC is comprised of multiple independent folding domains, including 15 fibronectin type III-like (TNCIII domains. The fifth TNCIII domain (TNCIII5 has previously been shown to bind heparin. Our group has shown that the heparin-binding fibronectin type III domains of fibronectin (FNIII, specifically FNIII12-14, possess affinity towards a large number of growth factors. Here, we show that TNCIII5 binds growth factors promiscuously and with high affinity. We produced recombinant fragments of TNC representing the first five TNCIII repeats (TNCIII1-5, as well as subdomains, including TNCIII5, to study interactions with various growth factors. Multiple growth factors of the platelet-derived growth factor (PDGF family, the fibroblast growth factor (FGF family, the transforming growth factor beta (TGF-β superfamily, the insulin-like growth factor binding proteins (IGF-BPs, and neurotrophins were found to bind with high affinity to this region of TNC, specifically to TNCIII5. Surface plasmon resonance was performed to analyze the kinetics of binding of TNCIII1-5 with TGF-β1, PDGF-BB, NT-3, and FGF-2. The promiscuous yet high affinity of TNC for a wide array of growth factors, mediated mainly by TNCIII5, may play a role in multiple physiological and pathological processes involving TNC.

  9. The glucocorticoid receptor hormone binding domain mediates transcriptional activation in vitro in the absence of ligand.

    OpenAIRE

    Schmitt, J.; Stunnenberg, H G

    1993-01-01

    We show that recombinant rat glucocorticoid receptor (vvGR) expressed using vaccinia virus is indistinguishable from authentic GR with respect to DNA and hormone binding. In the absence of hormone, vvGR is mainly found in the cytoplasm in a complex with heat shock protein 90. Upon incubation with ligand, vvGR is released from this complex and translocated to the nucleus. Thus, the ligand binding domain displays the known biochemical properties. However, in vitro, transcription from a syntheti...

  10. Streptococcal IgA-binding proteins bind in the Calpha 2-Calpha 3 interdomain region and inhibit binding of IgA to human CD89.

    Science.gov (United States)

    Pleass, R J; Areschoug, T; Lindahl, G; Woof, J M

    2001-03-16

    Certain pathogenic bacteria express surface proteins that bind to the Fc part of human IgA or IgG. These bacterial proteins are important as immunochemical tools and model systems, but their biological function is still unclear. Here, we describe studies of three streptococcal proteins that bind IgA: the Sir22 and Arp4 proteins of Streptococcus pyogenes and the unrelated beta protein of group B streptococcus. Analysis of IgA domain swap and point mutants indicated that two loops at the Calpha2/Calpha3 domain interface are critical for binding of the streptococcal proteins. This region is also used in binding the human IgA receptor CD89, an important mediator of IgA effector function. In agreement with this finding, the three IgA-binding proteins and a 50-residue IgA-binding peptide derived from Sir22 blocked the ability of IgA to bind CD89. Further, the Arp4 protein inhibited the ability of IgA to trigger a neutrophil respiratory burst via CD89. Thus, we have identified residues on IgA-Fc that play a key role in binding of different streptococcal IgA-binding proteins, and we have identified a mechanism by which a bacterial IgA-binding protein may interfere with IgA effector function. PMID:11096107

  11. Role of SUMO in RNF4-mediated promyelocytic leukemia protein (PML) degradation: sumoylation of PML and phospho-switch control of its SUMO binding domain dissected in living cells.

    Science.gov (United States)

    Percherancier, Yann; Germain-Desprez, Delphine; Galisson, Frédéric; Mascle, Xavier H; Dianoux, Laurent; Estephan, Patricia; Chelbi-Alix, Mounira K; Aubry, Muriel

    2009-06-12

    Promyelocytic leukemia protein (PML) is a tumor suppressor acting as the organizer of subnuclear structures called PML nuclear bodies (NBs). Both covalent modification of PML by the small ubiquitin-like modifier (SUMO) and non-covalent binding of SUMO to the PML SUMO binding domain (SBD) are necessary for PML NB formation and maturation. PML sumoylation and proteasome-dependent degradation induced by the E3 ubiquitin ligase, RNF4, are enhanced by the acute promyelocytic leukemia therapeutic agent, arsenic trioxide (As2O3). Here, we established a novel bioluminescence resonance energy transfer (BRET) assay to dissect and monitor PML/SUMO interactions dynamically in living cells upon addition of therapeutic agents. Using this sensitive and quantitative SUMO BRET assay that distinguishes PML sumoylation from SBD-mediated PML/SUMO non-covalent interactions, we probed the respective roles of covalent and non-covalent PML/SUMO interactions in PML degradation and interaction with RNF4. We found that, although dispensable for As2O3-enhanced PML sumoylation and RNF4 interaction, PML SBD core sequence was required for As2O3- and RNF4-induced PML degradation. As confirmed with a phosphomimetic mutant, phosphorylation of a stretch of serine residues, contained within PML SBD was needed for PML interaction with SUMO-modified protein partners and thus for NB maturation. However, mutation of these serine residues did not impair As2O3- and RNF4-induced PML degradation, contrasting with the known role of these phosphoserine residues for casein kinase 2-promoted PML degradation. Altogether, these data suggest a model whereby sumoylation- and SBD-dependent PML oligomerization within NBs is sufficient for RNF4-mediated PML degradation and does not require the phosphorylation-dependent association of PML with other sumoylated partners. PMID:19380586

  12. Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts

    DEFF Research Database (Denmark)

    Woods, A; Longley, R L; Tumova, S;

    2000-01-01

    fibroblasts attach and spread following integrin ligation, but do not form focal adhesions unless treated with a heparin-binding fragment of fibronectin (HepII), a peptide from this domain, or phorbol esters to activate protein kinase C. Syndecan-4 heparan sulfate proteoglycan is a transmembrane component......Cell adhesion to extracellular matrix involves signaling mechanisms which control attachment, spreading and the formation of focal adhesions and stress fibers. Fibronectin can provide sufficient signals for all three processes, even when protein synthesis is prevented by cycloheximide. Primary...... present together with integrins in focal adhesions. Syndecan-4 binds and activates protein kinase Calpha, whose activity is needed for focal adhesion formation. We now report that the glycosaminoglycan chains of syndecan-4 bind recombinant HepII and it is incorporated into forming focal adhesions....

  13. Description of a cellulose-binding domain and a linker sequence from Aspergillus fungi

    NARCIS (Netherlands)

    Quentin, M; Ebbelaar, M; Derksen, J; Mariani, C; van der Valk, H

    2002-01-01

    A family I cellulose-binding domain (CBD) and a serine- and threonine-rich linker peptide were cloned from the fungi Aspergillus japonicus and Aspergillus aculeatus. A glutathione S-transferase (GST) fusion protein comprising GST and a peptide linker with the CBD fused to its C-terminus, was express

  14. Penicillin-Binding Protein Imaging Probes

    OpenAIRE

    Kocaoglu, Ozden; Carlson, Erin E.

    2013-01-01

    Penicillin-binding proteins (PBPs) are membrane-associated proteins involved in the biosynthesis of peptidoglycan (PG), the main component of bacterial cell walls. These proteins were discovered and named for their affinity to bind the β-lactam antibiotic penicillin. The importance of the PBPs has long been appreciated; however, the apparent functional redundancy of the ~5–15 proteins that most bacteria possess makes determination of their individual roles difficult. Existing techniques to st...

  15. EndB, a Multidomain Family 44 Cellulase from Ruminococcus flavefaciens 17, Binds to Cellulose via a Novel Cellulose-Binding Module and to Another R. flavefaciens Protein via a Dockerin Domain

    OpenAIRE

    Rincón, Marco T.; McCrae, Sheila I.; Kirby, James; Scott, Karen P.; Flint, Harry J.

    2001-01-01

    The mechanisms by which cellulolytic enzymes and enzyme complexes in Ruminococcus spp. bind to cellulose are not fully understood. The product of the newly isolated cellulase gene endB from Ruminococcus flavefaciens 17 was purified as a His-tagged product after expression in Escherichia coli and found to be able to bind directly to crystalline cellulose. The ability to bind cellulose is shown to be associated with a novel cellulose-binding module (CBM) located within a region of 200 amino aci...

  16. The Crystal Structure of the Heparin-Binding Reelin-N Domain of F-Spondin

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Kemin; Duquette, Mark; Liu, Jin-huan; Lawler, Jack; Wang, Jia-huai (BIDMC); (DFCI)

    2008-09-23

    The extracellular matrix protein F-spondin mediates axon guidance during neuronal development. Its N-terminal domain, termed the reelin-N domain, is conserved in F-spondins, reelins, and other extracellular matrix proteins. In this study, a recombinant human reelin-N domain has been expressed, purified, and shown to bind heparin. The crystal structure of the reelin-N domain resolved to 2.0 {angstrom} reveals a variant immunoglobulin-like fold and potential heparin-binding sites. Substantial conformational variations even in secondary structure are observed between the two chemically identical reelin-N domains in one crystallographic asymmetric unit. The variations may result from extensive, highly specific interactions across the interface of the two reelin-N domains. The calculated values of buried surface area and the interface's shape complementarity are consistent with the formation of a weak dimer. The homophilic asymmetric dimer can potentially offer advantages in binding to ligands such as glycosaminoglycans, which may, in turn, bridge the two reelin-N domains and stabilize the dimer.

  17. The N-terminal repeat and the ligand binding domain A of SdrI protein is involved in hydrophobicity of S. saprophyticus.

    Science.gov (United States)

    Kleine, Britta; Ali, Liaqat; Wobser, Dominique; Sakιnç, Türkân

    2015-03-01

    Staphylococcus saprophyticus is an important cause of urinary tract infection, and its cell surface hydrophobicity may contribute to virulence by facilitating adherence of the organism to uroepithelia. S. saprophyticus expresses the surface protein SdrI, a member of the serine-aspartate repeat (SD) protein family, which has multifunctional properties. The SdrI knock out mutant has a reduced hydrophobicity index (HPI) of 25%, and expressed in the non-hydrophobic Staphylococcus carnosus strain TM300 causes hydrophobicity. Using hydrophobic interaction chromatography (HIC), we confined the hydrophobic site of SdrI to the N-terminal repeat region. S. saprophyticus strains carrying different plasmid constructs lacking either the N-terminal repeats, both B or SD-repeats were less hydrophobic than wild type and fully complemented SdrI mutant (HPI: 51%). The surface hydrophobicity and HPI of both wild type and the complemented strain were also influenced by calcium (Ca(2+)) and were reduced from 81.3% and 82.4% to 10.9% and 12.3%, respectively. This study confirms that the SdrI protein of S. saprophyticus is a crucial factor for surface hydrophobicity and also gives a first significant functional description of the N-terminal repeats, which in conjunction with the B-repeats form an optimal hydrophobic conformation. PMID:25497915

  18. A computational method for the analysis and prediction of protein:phosphopeptide-binding sites

    OpenAIRE

    Joughin, Brian A.; Tidor, Bruce; Yaffe, Michael B.

    2005-01-01

    Phosphopeptide-binding domains, including the FHA, SH2, WW, WD40, MH2, and Polo-box domains, as well as the 14-3-3 proteins, exert control functions in important processes such as cell growth, division, differentiation, and apoptosis. Structures and mechanisms of phosphopeptide binding are generally diverse, revealing few general principles. A computational method for analysis of phosphopeptide-binding domains was therefore developed to elucidate the physical and chemical nature of phosphopep...

  19. Regulation of ryanodine receptor RyR2 by protein-protein interactions: prediction of a PKA binding site on the N-terminal domain of RyR2 and its relation to disease causing mutations [v1; ref status: indexed, http://f1000r.es/4tw

    Directory of Open Access Journals (Sweden)

    Belinda Nazan Walpoth

    2015-01-01

    Full Text Available Protein-protein interactions are the key processes responsible for signaling and function in complex networks. Determining the correct binding partners and predicting the ligand binding sites in the absence of experimental data require predictive models. Hybrid models that combine quantitative atomistic calculations with statistical thermodynamics formulations are valuable tools for bioinformatics predictions. We present a hybrid prediction and analysis model for determining putative binding partners and interpreting the resulting correlations in the yet functionally uncharacterized interactions of the ryanodine RyR2 N-terminal domain. Using extensive docking calculations and libraries of hexameric peptides generated from regulator proteins of the RyR2 channel, we show that the residues 318-323 of protein kinase A, PKA, have a very high affinity for the N-terminal of RyR2. Using a coarse grained Elastic Net Model, we show that the binding site lies at the end of a pathway of evolutionarily conserved residues in RyR2. The two disease causing mutations are also on this path. The program for the prediction of the energetically responsive residues by the Elastic Net Model is freely available on request from the corresponding author.

  20. SARS Coronavirus-unique Domain (SUD): Three-domain Molecular Architecture in Solution and RNA Binding

    OpenAIRE

    Johnson, Margaret A.; Chatterjee, Amarnath; Neuman, Benjamin W.; Wüthrich, Kurt

    2010-01-01

    The nonstructural protein 3 (nsp3) of the severe acute respiratory syndrome coronavirus (SARS-CoV) includes a “SARS-unique region” (SUD) consisting of three globular domains separated by short linker peptide segments. This paper reports NMR structure determinations of the C-terminal domain (SUD-C) and of a two-domain construct (SUD-MC) containing the middle domain (SUD-M) and the C-terminal domain, and NMR data on the conformational states of the N-terminal domain (SUD-N) and the SUD-NM two-d...

  1. Molecular dynamics simulations of p53 DNA-binding domain.

    Science.gov (United States)

    Lu, Qiang; Tan, Yu-Hong; Luo, Ray

    2007-10-01

    We have studied room-temperature structural and dynamic properties of the p53 DNA-binding domain in both DNA-bound and DNA-free states. A cumulative 55 ns of explicit solvent molecular dynamics simulations with the particle mesh Ewald treatment of electrostatics was performed. It was found that the mean structures in the production portions of the trajectories agree well with the crystal structure: backbone root-mean-square deviations are in the range of 1.6 and 2.0 A. In both simulations, noticeable backbone deviations from the crystal structure are observed only in loop L6, due to the lack of crystal packing in the simulations. More deviations are observed in the DNA-free simulation, apparently due to the absence of DNA. Computed backbone B-factor is also in qualitative agreement with the crystal structure. Interestingly, little backbone structural change is observed between the mean simulated DNA-bound and DNA-free structures. A notable difference is observed only at the DNA-binding interface. The correlation between native contacts and inactivation mechanisms of tumor mutations is also discussed. In the H2 region, tumor mutations at sites D281, R282, E285, and E286 may weaken five key interactions that stabilize H2, indicating that their inactivation mechanisms may be related to the loss of local structure around H2, which in turn may reduce the overall stability to a measurable amount. In the L2 region, tumor mutations at sites Y163, K164, E171, V173, L194, R249, I251, and E271 are likely to be responsible for the loss of stability in the protein. In addition to apparent DNA contacts that are related to DNA binding, interactions R175/S183, S183/R196, and E198/N235 are highly occupied only in the DNA-bound form, indicating that they are more likely to be responsible for DNA binding. PMID:17824689

  2. Novel RNA-binding properties of the MTG chromatin regulatory proteins

    Directory of Open Access Journals (Sweden)

    Sacchi Nicoletta

    2008-10-01

    Full Text Available Abstract Background The myeloid translocation gene (MTG proteins are non-DNA-binding transcriptional regulators capable of interacting with chromatin modifying proteins. As a consequence of leukemia-associated chromosomal translocations, two of the MTG proteins, MTG8 and MTG16, are fused to the DNA-binding domain of AML1, a transcriptional activator crucial for hematopoiesis. The AML1-MTG fusion proteins, as the wild type MTGs, display four conserved homology regions (NHR1-4 related to the Drosophila nervy protein. Structural protein analyses led us to test the hypothesis that specific MTG domains may mediate RNA binding. Results By using an RNA-binding assay based on synthetic RNA homopolymers and a panel of MTG deletion mutants, here we show that all the MTG proteins can bind RNA. The RNA-binding properties can be traced to two regions: the Zinc finger domains in the NHR4, which mediate Zinc-dependent RNA binding, and a novel short basic region (SBR upstream of the NHR2, which mediates Zinc-independent RNA binding. The two AML1-MTG fusion proteins, retaining both the Zinc fingers domains and the SBR, also display RNA-binding properties. Conclusion Evidence has been accumulating that RNA plays a role in transcriptional control. Both wild type MTGs and chimeric AML1-MTG proteins display in vitro RNA-binding properties, thus opening new perspectives on the possible involvement of an RNA component in MTG-mediated chromatin regulation.

  3. Characterization of the binding sites of protein L11 and the L10.(L12)4 pentameric complex in the GTPase domain of 23 S ribosomal RNA from Escherichia coli

    DEFF Research Database (Denmark)

    Egebjerg, J; Douthwaite, S R; Liljas, A; Garrett, R A

    1990-01-01

    data, were used in a computer graphics approach to build a partial RNA tertiary structural model. The model provides insight into the topography of the L11 binding site. It also provides a structural rationale for the mutually co-operative binding of protein L11 with the antibiotics thiostrepton and...

  4. Cholesterol-binding viral proteins in virus entry and morphogenesis.

    Science.gov (United States)

    Schroeder, Cornelia

    2010-01-01

    Up to now less than a handful of viral cholesterol-binding proteins have been characterized, in HIV, influenza virus and Semliki Forest virus. These are proteins with roles in virus entry or morphogenesis. In the case of the HIV fusion protein gp41 cholesterol binding is attributed to a cholesterol recognition consensus (CRAC) motif in a flexible domain of the ectodomain preceding the trans-membrane segment. This specific CRAC sequence mediates gp41 binding to a cholesterol affinity column. Mutations in this motif arrest virus fusion at the hemifusion stage and modify the ability of the isolated CRAC peptide to induce segregation of cholesterol in artificial membranes.Influenza A virus M2 protein co-purifies with cholesterol. Its proton translocation activity, responsible for virus uncoating, is not cholesterol-dependent, and the transmembrane channel appears too short for integral raft insertion. Cholesterol binding may be mediated by CRAC motifs in the flexible post-TM domain, which harbours three determinants of binding to membrane rafts. Mutation of the CRAC motif of the WSN strain attenuates virulence for mice. Its affinity to the raft-non-raft interface is predicted to target M2 protein to the periphery of lipid raft microdomains, the sites of virus assembly. Its influence on the morphology of budding virus implicates M2 as factor in virus fission at the raft boundary. Moreover, M2 is an essential factor in sorting the segmented genome into virus particles, indicating that M2 also has a role in priming the outgrowth of virus buds.SFV E1 protein is the first viral type-II fusion protein demonstrated to directly bind cholesterol when the fusion peptide loop locks into the target membrane. Cholesterol binding is modulated by another, proximal loop, which is also important during virus budding and as a host range determinant, as shown by mutational studies. PMID:20213541

  5. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

    International Nuclear Information System (INIS)

    The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBDKZ), originating from Pseudomonas aeruginosa bacteriophage φKZ, has been examined using a fusion protein of PBDKZ and green fluorescent protein (PBDKZ-GFP). A fluorescence recovery after photobleaching analysis of bound PBDKZ-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 107 M-1 for the PBDKZ-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBDKZ-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.

  6. Structural analysis of the receptor binding domain of botulinum neurotoxin serotype D

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Lin; Robinson, Howard; Varnum, Susan M.

    2010-10-28

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65 Å resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10 Å relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  7. Structural Analysis of the Receptor Binding Domain of Botulinum Neurotoxin Serotype D

    Energy Technology Data Exchange (ETDEWEB)

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65{angstrom} resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10{angstrom} relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  8. Critical Role of Heparin Binding Domains of Ameloblastin for Dental Epithelium Cell Adhesion and Ameloblastoma Proliferation*

    OpenAIRE

    Sonoda, Akira; Iwamoto, Tsutomu; Nakamura, Takashi; Fukumoto, Emiko; Yoshizaki, Keigo; Yamada, Aya; Arakaki, Makiko; Harada, Hidemitsu; Nonaka, Kazuaki; Nakamura, Seiji; Yamada, Yoshihiko; Fukumoto, Satoshi

    2009-01-01

    AMBN (ameloblastin) is an enamel matrix protein that regulates cell adhesion, proliferation, and differentiation of ameloblasts. In AMBN-deficient mice, ameloblasts are detached from the enamel matrix, continue to proliferate, and form a multiple cell layer; often, odontogenic tumors develop in the maxilla with age. However, the mechanism of AMBN functions in these biological processes remains unclear. By using recombinant AMBN proteins, we found that AMBN had heparin binding domains at the C...

  9. Mercury-binding proteins of Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, G.; Morris, J. E.; Calabrese, A.

    1981-11-01

    Mytilus edulis possesses low molecular weight, mercury-binding proteins. The predominant protein isolated from gill tissue is enriched in cysteinyl residues (8%) and possesses an amino acid composition similar to cadmium-binding proteins of mussels and oysters. Continuous exposure of mussels to 5 ..mu..g/l mercury results in spillover of mercury from these proteins to high molecular weight proteins. Antibodies to these proteins have been isolated, and development of immunoassays is presently underway. Preliminary studies to determine whether exposure of adult mussels to mercury will result in induction of mercury-binding proteins in offspring suggest that such proteins occur in larvae although additional studies are indicated for a conclusive demonstration.

  10. Computational Prediction of RNA-Binding Proteins and Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-11-01

    Full Text Available Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs. Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  11. Functional innovation from changes in protein domains and their combinations.

    Science.gov (United States)

    Lees, Jonathan G; Dawson, Natalie L; Sillitoe, Ian; Orengo, Christine A

    2016-06-01

    Domains are the functional building blocks of proteins. In this work we discuss how domains can contribute to the evolution of new functions. Domains themselves can evolve through various mechanisms, altering their intrinsic function. Domains can also facilitate functional innovations by combining with other domains to make novel proteins. We discuss the mechanisms by which domain and domain combinations support functional innovations. We highlight interesting examples where changes in domain combination promote changes at the domain level. PMID:27309309

  12. LFA-1 and Mac-1 integrins bind to the serine/threonine-rich domain of thrombomodulin.

    Science.gov (United States)

    Kawamoto, Eiji; Okamoto, Takayuki; Takagi, Yoshimi; Honda, Goichi; Suzuki, Koji; Imai, Hiroshi; Shimaoka, Motomu

    2016-05-13

    LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins regulate leukocyte trafficking in health and disease by binding primarily to IgSF ligand ICAM-1 and ICAM-2 on endothelial cells. Here we have shown that the anti-coagulant molecule thrombomodulin (TM), found on the surface of endothelial cells, functions as a potentially new ligand for leukocyte integrins. We generated a recombinant extracellular domain of human TM and Fc fusion protein (TM-domains 123-Fc), and showed that pheripheral blood mononuclear cells (PBMCs) bind to TM-domains 123-Fc dependent upon integrin activation. We then demonstrated that αL integrin-blocking mAb, αM integrin-blocking mAb, and β2 integrin-blocking mAb inhibited the binding of PBMCs to TM-domains 123-Fc. Furthermore, we show that the serine/threonine-rich domain (domain 3) of TM is required for the interaction with the LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins to occur on PBMCs. These results demonstrate that the LFA-1 and Mac-1 integrins on leukocytes bind to TM, thereby establishing the molecular and structural basis underlying LFA-1 and Mac-1 integrin interaction with TM on endothelial cells. In fact, integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells. PMID:27055590

  13. Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding

    Energy Technology Data Exchange (ETDEWEB)

    De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K. (VCU); (Mount Sinai Hospital)

    2013-11-20

    Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures of IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.

  14. Protein-protein binding affinities calculated using the LIE method

    OpenAIRE

    Andberg, Tor Arne Heim

    2011-01-01

    Absolute binding free energies for the third domain of the turkey ovomucoid inhibitor in complex with Streptomyces griseus proteinase B and porcine pancreatic elastase has been calculated using the linear interaction energy method.

  15. Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. Part III. Dynamics of long-range hydrophobic interactions

    Science.gov (United States)

    Lewandowska, Agnieszka; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.

    2010-01-01

    A 20-residue peptide, IG(42–61), derived from the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptoccocus was studied using CD, NMR spectroscopy at various temperatures and by differential scanning calorimetry. Unlike other related peptides studied so far, this peptide displays two heat capacity peaks in DSC measurements (at a scanning rate of 1.5 deg/min at a peptide concentration of 0.07mM) which suggests a three-state folding/unfolding process. The results from DSC and NMR measurements suggest the formation of a dynamic network of hydrophobic interactions stabilizing the structure, which resembles a β-hairpin shape over a wide range of temperatures (283 – 313 K). Our results show that IG(42–61) possesses a well-organized three-dimensional structure stabilized by long-range hydrophobic interactions (Tyr50 ··· Phe57 and Trp48 ··· Val59) at T = 283 K and (Trp48 ··· Val59) at 305 and 313 K. The mechanism of β-hairpin folding and unfolding, as well as the influence of peptide length on its conformational properties, are also discussed. PMID:19847914

  16. Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. III. Dynamics of long-range hydrophobic interactions.

    Science.gov (United States)

    Lewandowska, Agnieszka; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A

    2010-02-15

    A 20-residue peptide, IG(42-61), derived from the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptoccocus was studied using circular dichroism, nuclear magnetic resonance (NMR) spectroscopy at various temperatures and by differential scanning calorimetry (DSC). Unlike other related peptides studied so far, this peptide displays two heat capacity peaks in DSC measurements (at a scanning rate of 1.5 deg/min at a peptide concentration of 0.07 mM), which suggests a three-state folding/unfolding process. The results from DSC and NMR measurements suggest the formation of a dynamic network of hydrophobic interactions stabilizing the structure, which resembles a beta-hairpin shape over a wide range of temperatures (283-313 K). Our results show that IG (42-61) possesses a well-organized three-dimensional structure stabilized by long-range hydrophobic interactions (Tyr50 ... Phe57 and Trp48 ... Val59) at T = 283 K and (Trp48 ... Val59) at 305 and 313 K. The mechanism of beta-hairpin folding and unfolding, as well as the influence of peptide length on its conformational properties, are also discussed. PMID:19847914

  17. Solution structure of the ubiquitin-binding domain in Swa2p from Saccharomyces cerevisiae.

    Science.gov (United States)

    Chim, Nicholas; Gall, Walter E; Xiao, Jing; Harris, Mark P; Graham, Todd R; Krezel, Andrzej M

    2004-03-01

    The SWA2/AUX1 gene has been proposed to encode the Saccharomyces cerevisiae ortholog of mammalian auxilin. Swa2p is required for clathrin assembly/dissassembly in vivo, thereby implicating it in intracellular protein and lipid trafficking. While investigating the 287-residue N-terminal region of Swa2p, we found a single stably folded domain between residues 140 and 180. Using binding assays and structural analysis, we established this to be a ubiquitin-associated (UBA) domain, unidentified by bioinformatics of the yeast genome. We determined the solution structure of this Swa2p domain and found a characteristic three-helix UBA fold. Comparisons of structures of known UBA folds reveal that the position of the third helix is quite variable. This helix in Swa2p UBA contains a bulkier tyrosine in place of smaller residues found in other UBAs and cannot pack as close to the second helix. The molecular surface of Swa2p UBA has a mostly negative potential, with a single hydrophobic surface patch found also in the UBA domains of human protein, HHR23A. The presence of a UBA domain implicates Swa2p in novel roles involving ubiquitin and ubiquitinated substrates. We propose that Swa2p is a multifunctional protein capable of recognizing several proteins through its protein-protein recognition domains. PMID:14997574

  18. Isolation and characterizations of oxalate-binding proteins in the kidney

    International Nuclear Information System (INIS)

    Highlights: ► The first large-scale characterizations of oxalate-binding kidney proteins. ► The recently developed oxalate-conjugated EAH Sepharose 4B beads were applied. ► 38 forms of 26 unique oxalate-binding kidney proteins were identified. ► 25/26 (96%) of identified proteins had “L-x(3,5)-R-x(2)-[AGILPV]” domain. -- Abstract: Oxalate-binding proteins are thought to serve as potential modulators of kidney stone formation. However, only few oxalate-binding proteins have been identified from previous studies. Our present study, therefore, aimed for large-scale identification of oxalate-binding proteins in porcine kidney using an oxalate-affinity column containing oxalate-conjugated EAH Sepharose 4B beads for purification followed by two-dimensional gel electrophoresis (2-DE) to resolve the recovered proteins. Comparing with those obtained from the controlled column containing uncoupled EAH-Sepharose 4B (to subtract the background of non-specific bindings), a total of 38 protein spots were defined as oxalate-binding proteins. These protein spots were successfully identified by quadrupole time-of-flight mass spectrometry (MS) and/or tandem MS (MS/MS) as 26 unique proteins, including several nuclear proteins, mitochondrial proteins, oxidative stress regulatory proteins, metabolic enzymes and others. Identification of oxalate-binding domain using the PRATT tool revealed “L-x(3,5)-R-x(2)-[AGILPV]” as a functional domain responsible for oxalate-binding in 25 of 26 (96%) unique identified proteins. We report herein, for the first time, large-scale identification and characterizations of oxalate-binding proteins in the kidney. The presence of positively charged arginine residue in the middle of this functional domain suggested its significance for binding to the negatively charged oxalate. These data will enhance future stone research, particularly on stone modulators.

  19. Radiation damage to DNA-binding proteins

    International Nuclear Information System (INIS)

    The DNA-binding properties of proteins are strongly affected upon irradiation. The tetrameric lactose repressor (a dimer of dimers) losses its ability to bind operator DNA as soon as at least two damages per protomer of each dimer occur. The monomeric MC1 protein losses its ability to bind DNA in two steps : i) at low doses only the specific binding is abolished, whereas the non-specific one is still possible; ii) at high doses all binding vanishes. Moreover, the DNA bending induced by MC1 binding is less pronounced for a protein that underwent the low dose irradiation. When the entire DNA-protein complexes are irradiated, the observed disruption of the complexes is mainly due to the damage of the proteins and not to that of DNA. The doses necessary for complex disruption are higher than those inactivating the free protein. This difference, larger for MC1 than for lactose repressor, is due to the protection of the protein by the bound DNA. The oxidation of the protein side chains that are accessible to the radiation-induced hydroxyl radicals seems to represent the inactivating damage

  20. A lipid binding domain in sphingosine kinase 2

    International Nuclear Information System (INIS)

    The lipid second messenger sphingosine 1-phosphate (S1P) is a critical mediator of cellular proliferation and survival signals, and is essential for vasculogenesis and neurogenesis. S1P formation is catalysed by sphingosine kinases 1 and 2 (Sphk1 and Sphk2). We have found that the endogenous glycolipid sulfatide (3-O-sulfogalactosylceramide) binds to and inhibits the activity of Sphk2 and the closely related ceramide kinase (Cerk), but not Sphk1. Using sulfatide as a probe, we mapped the lipid binding domain to the N-terminus of Sphk2 (residues 1-175), a region of sequence that is absent in Sphk1, but aligns with a pleckstrin homology domain in Cerk. Accordingly, Sphk2 bound to phosphatidylinositol monophosphates but not to abundant cellular phospholipids. Deleting the N-terminal domain reduced Sphk2 membrane localisation in cells. We have therefore identified a lipid binding domain in Sphk2 that is important for the enzyme's sub-cellular localisation.

  1. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  2. Alcohol Binding to the Odorant Binding Protein LUSH: Multiple Factors Affecting Binding Affinities

    OpenAIRE

    Ader, Lauren; Jones, David N. M.; Lin, Hai

    2010-01-01

    Density function theory (DFT) calculations have been carried out to investigate the binding of alcohols to the odorant binding protein LUSH from Drosophila melanogaster. LUSH is one of the few proteins known to bind to ethanol at physiologically relevant concentrations and where high-resolution structural information is available for the protein bound to alcohol at these concentrations. The structures of the LUSH–alcohol complexes identify a set of specific hydrogen-bonding interactions as cr...

  3. C2 Domains as Protein-Protein Interaction Modules in the Ciliary Transition Zone

    Directory of Open Access Journals (Sweden)

    Kim Remans

    2014-07-01

    Full Text Available RPGR-interacting protein 1 (RPGRIP1 is mutated in the eye disease Leber congenital amaurosis (LCA and its structural homolog, RPGRIP1-like (RPGRIP1L, is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR. RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical β sandwich structure that does not bind Ca2+ and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.

  4. Expression and Purification of the Bacillus anthracis Protective Antigen Receptor-binding Domain

    Institute of Scientific and Technical Information of China (English)

    葛猛; 徐俊杰; 李冰; 董大勇; 宋小红; 郭强; 赵剑; 陈薇

    2004-01-01

    The aim of this study is to express the receptor-binding domain of Bacillus anthracis protective antigen in E. coli. Signal sequence of the outer membrane protein A (OmpA) of E. coli was attached to the 5' end of the gene encoding protective antigen receptor-binding domain (the 4th domain of PA, PALM). The plasmid carrying the fusion gene was then transformed into E. coli and induced to express recombinant PAlM by IFFG. The recombinant protein was purified by chromatography and then identified by N-terrainal sequencing and Western blot. The recombinant protein, about 10% of the total bacterial protein in volume, was secreted to the periplasmic space of the cell. After a purification procedure including ionexchange chromatography and gel filtration, about 10 mg of homogenous recombinant PAD4 was obtained from 1 L culture. Data from N-terminal sequencing suggested that the amino acid sequence of recombinant PAD4 was identical with its natural counterpart. And the result of Western blot showed the recombinant protein could bind with anti-PA serum from rabbit. High level secreted expression of PAD4 was obtained in E. coli. The results reported here are parts of a continuing research to evaluate PAD4 as a potential drug for anthrax therapy or a candidate of new vaccine.

  5. Identification of the lipid droplet targeting domain of the Cidea protein[S

    OpenAIRE

    Christianson, Jennifer L.; Boutet, Emilie; Puri, Vishwajeet; Chawla, Anil; Czech, Michael P.

    2010-01-01

    Cidea, the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) domain-containing protein, is targeted to lipid droplets in mouse adipocytes, where it inhibits triglyceride hydrolysis and promotes lipid storage. In mice, Cidea may prevent lipolysis by binding and shielding lipid droplets from lipase association. Here we demonstrate that human Cidea localizes with lipid droplets in both adipocyte and nonadipocyte cell lines, and we ascribe specific functions to its protein domai...

  6. Recombinant preparation and functional studies of EspI ATP binding domain from Mycobacterium tuberculosis.

    Science.gov (United States)

    Chen, Hanyu; Wang, Huilin; Sun, Tao; Tian, Shuangliang; Lin, Donghai; Guo, Chenyun

    2016-07-01

    The ESX-1 secretion system of Mycobacterium tuberculosis is required for the virulence of tubercle bacillus. EspI, the ESX-1 secretion-associated protein in Mycobacterium tuberculosis (MtEspI), is involved in repressing the activity of ESX-1-mediated secretion when the cellular ATP level is low. The ATP binding domain of MtEspI plays a crucial role in this regulatory process. However, further structural and functional studies of MtEspI are hindered due to the bottleneck of obtaining stable and pure recombinant protein. In this study, we systematically analyzed the structure and function of MtEspI using bioinformatics tools and tried various expression constructs to recombinantly express full-length and truncated MtEspI ATP binding domain. Finally, we prepared pure and stable MtEspI ATP binding domain, MtEspI415-493, in Escherichia coli by fusion expression and purification with dual tag, Glutathione S-transferase (GST) tag and (His)6 tag. (31)P NMR titration assay indicated that MtEspI415-493 possessed a moderate affinity (∼μM) for ATP and the residue K425 was located at the binding site. The protocol described here may provide a train of thought for recombinant preparation of other ESX-1 secretion-associated proteins. PMID:27017992

  7. Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose.

    Directory of Open Access Journals (Sweden)

    Ting-Ying Jiang

    Full Text Available The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21 members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs.

  8. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan;

    2005-01-01

    to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is...

  9. Myb-domain protein Teb1 controls histone levels and centromere assembly in fission yeast

    OpenAIRE

    Valente, Luis P.; Dehé, Pierre-Marie; Klutstein, Michael; Aligianni, Sofia; Watt, Stephen; Bähler, Jürg; Promisel Cooper, Julia

    2013-01-01

    The TTAGGG motif is common to two seemingly unrelated dimensions of chromatin function—the vertebrate telomere repeat and the promoter regions of many Schizosaccharomyces pombe genes, including all of those encoding canonical histones. The essential S. pombe protein Teb1 contains two Myb-like DNA binding domains related to those found in telomere proteins and binds the human telomere repeat sequence TTAGGG. Here, we analyse Teb1 binding throughout the genome and the consequences of reduced Te...

  10. Reversible Conformational Change in the Plasmodium falciparum Circumsporozoite Protein Masks Its Adhesion Domains

    OpenAIRE

    Herrera, Raul; Anderson, Charles; Kumar, Krishan; Molina-Cruz, Alvaro; Nguyen, Vu; Burkhardt, Martin; Reiter, Karine; Shimp, Richard; Howard, Randall F.; Srinivasan, Prakash; Nold, Michael J.; Ragheb, Daniel; Shi, Lirong; DeCotiis, Mark; Aebig, Joan

    2015-01-01

    The extended rod-like Plasmodium falciparum circumsporozoite protein (CSP) is comprised of three primary domains: a charged N terminus that binds heparan sulfate proteoglycans, a central NANP repeat domain, and a C terminus containing a thrombospondin-like type I repeat (TSR) domain. Only the last two domains are incorporated in RTS,S, the leading malaria vaccine in phase 3 trials that, to date, protects about 50% of vaccinated children against clinical disease. A seroepidemiological study in...

  11. Two distinct domains of protein 4.1 critical for assembly offunctional nuclei in Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Sharon Wald; Heald, Rebecca; Lee, Gloria; Nunomura, Wataru; Gimm,J. Aura; Mohandas, Narla; Chasis, Joel AnneJ. Aura; Mohandas, Narla; Chasis, Joel Anne

    2002-11-15

    Protein 4.1R, a multifunctional structural protein, acts asan adaptor in mature red cell membrane skeletons linking spectrin-actincomplexes to plasma membrane-associated proteins. In nucleated cellsprotein 4.1 is not associated exclusively with plasma membrane but isalso detected at several important subcellular locations crucial for celldivision. To identify 4.1 domains having critical functions in nuclearassembly, 4.1 domain peptides were added to Xenopus egg extract nuclearreconstitution reactions. Morphologically disorganized, replicationdeficient nuclei assembled when spectrin-actin binding domain orNuMA-binding C-terminal domain peptides were present. However, controlvariant spectrin-actin binding domain peptides incapable of bindingactin, or mutant C-terminal domain peptides with reduced NuMA binding,had no deleterious effects on nuclear reconstitution. To test if 4.1 isrequired for proper nuclear assembly, 4.1 isoforms were depleted withspectrin-actin binding or C-terminal domain-specific antibodies. Nucleiassembled in depleted extracts ha d deranged phenotypes. However, nuclearassembly could be rescued by addition of recombinant 4.1R. Our dataestablishes that protein 4.1 is essential for nuclear assembly andidentifies two distinct 4.1 domains, initially characterized incytoskeletal interactions, that have crucial and versatile functions innuclear assembly.

  12. Affinity purification of proteins binding to GST fusion proteins.

    Science.gov (United States)

    Swaffield, J C; Johnston, S A

    2001-05-01

    This unit describes the use of proteins fused to glutathione-S-transferase (GST fusion proteins) to affinity purify other proteins, a technique also known as GST pulldown purification. The describes a strategy in which a GST fusion protein is bound to agarose affinity beads and the complex is then used to assay the binding of a specific test protein that has been labeled with [35S]methionine by in vitro translation. However, this method can be adapted for use with other types of fusion proteins; for example, His6, biotin tags, or maltose-binding protein fusions (MBP), and these may offer particular advantages. A describes preparation of an E. coli extract that is added to the reaction mixture with purified test protein to reduce nonspecific binding. PMID:18265191

  13. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  14. Lune/eye gone, a Pax-like protein, uses a partial paired domain and a homeodomain for DNA recognition.

    Science.gov (United States)

    Jun, S; Wallen, R V; Goriely, A; Kalionis, B; Desplan, C

    1998-11-10

    Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix-turn-helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes. PMID:9811867

  15. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    International Nuclear Information System (INIS)

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins

  16. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu [Pathology and Microbiology Department, 986495 Nebraska Medical Center, Omaha, NE 68198-6495 (United States)

    2011-05-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.

  17. Species Differences in the Carbohydrate Binding Preferences of Surfactant Protein D

    DEFF Research Database (Denmark)

    Crouch, Erika C.; Smith, Kelly; McDonald, Barbara; Briner, David; Linders, Bruce; McDonald, Joseph; Holmskov, Uffe; Head, James; Hartshorn, Kevan

    2006-01-01

    Interactions of surfactant protein D (SP-D) with micro-organisms and organic antigens involve binding to the trimeric neck plus carbohydrate recognition domain (neck+CRD). In these studies, we compared the ligand binding of homologous human, rat, and mouse trimeric neck+CRD fusion proteins, each...

  18. Predicting protein ligand binding motions with the conformation explorer

    Directory of Open Access Journals (Sweden)

    Flores Samuel C

    2011-10-01

    Full Text Available Abstract Background Knowledge of the structure of proteins bound to known or potential ligands is crucial for biological understanding and drug design. Often the 3D structure of the protein is available in some conformation, but binding the ligand of interest may involve a large scale conformational change which is difficult to predict with existing methods. Results We describe how to generate ligand binding conformations of proteins that move by hinge bending, the largest class of motions. First, we predict the location of the hinge between domains. Second, we apply an Euler rotation to one of the domains about the hinge point. Third, we compute a short-time dynamical trajectory using Molecular Dynamics to equilibrate the protein and ligand and correct unnatural atomic positions. Fourth, we score the generated structures using a novel fitness function which favors closed or holo structures. By iterating the second through fourth steps we systematically minimize the fitness function, thus predicting the conformational change required for small ligand binding for five well studied proteins. Conclusions We demonstrate that the method in most cases successfully predicts the holo conformation given only an apo structure.

  19. Treponema pallidum Fibronectin-Binding Proteins

    OpenAIRE

    Cameron, Caroline E.; Brown, Elizabeth L.; Kuroiwa, Janelle M. Y.; Schnapp, Lynn M.; Brouwer, Nathan L.

    2004-01-01

    Putative adhesins were predicted by computer analysis of the Treponema pallidum genome. Two treponemal proteins, Tp0155 and Tp0483, demonstrated specific attachment to fibronectin, blocked bacterial adherence to fibronectin-coated slides, and supported attachment of fibronectin-producing mammalian cells. These results suggest Tp0155 and Tp0483 are fibronectin-binding proteins mediating T. pallidum-host interactions.

  20. Ubiquitin-binding proteins: similar, but different

    DEFF Research Database (Denmark)

    Andersen, Katrine M; Hofmann, Kay; Hartmann-Petersen, Rasmus

    2005-01-01

    ubiquitin conjugation to endoplasmic reticulum degradation), UEV [ubiquitin E2 (ubiquitin-conjugating enzyme) variant] and NZF (nuclear protein localization gene 4 zinc finger) domain-containing proteins appear to have more specialized functions. Here we discuss functional and structural properties of...

  1. Natural history of S-adenosylmethionine-binding proteins

    Directory of Open Access Journals (Sweden)

    Mushegian Arcady R

    2005-10-01

    Full Text Available Abstract Background S-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S-adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S-adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S-adenosylmethionine-binding proteins. Results Two widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion. There were also cases of recruitment of other relatively common folds for S-adenosylmethionine binding. Several classes of proteins have unique unrelated folds, specialized for just one type of chemistry and unified by the theme of internal domain duplications. In several cases, functional divergence is evident, when evolutionarily related enzymes have changed the mode of binding and the type of chemical transformation of S-adenosylmethionine. There are also instances of functional convergence, when biochemically similar processes are performed by drastically different classes of S-adenosylmethionine-binding proteins. Comparison of remote sequence similarities and analysis of phyletic patterns suggests that the last universal common ancestor of cellular life had between 10 and 20 S-adenosylmethionine-binding proteins from at least 5 fold classes, providing for S-adenosylmethionine formation, polyamine biosynthesis, and methylation of several substrates, including nucleic acids and peptide chain release factor. Conclusion We have observed several novel relationships between families that were not known to be

  2. A C-terminal PDZ domain binding sequence is required for striatal distribution of the dopamine transporter

    OpenAIRE

    Rickhag, Mattias; Hansen, Freja Herborg; Sørensen, Gunnar; Strandfelt, Kristine Nørgaard; Andresen, Bjørn; Gotfryd, Kamil; Madsen, Kenneth L; Vestergaard-Klewe, Ib; Ammendrup-Johnsen, Ina; Eriksen, Jacob; Füchtbauer, Ernst-Martin; Gomeza, Jesus; Woldbye, David P.D.; Wörtwein, Gitta; Gether, Ulrik

    2013-01-01

    The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling DAT levels in striatal nerve terminals remain poorly understood. DAT contains a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain binding sequence believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different DAT knock-in mice with disrupted PDZ-binding motifs (DAT-AAA and DAT+Ala) are characterized by dr...

  3. A structurally conserved water molecule in Rossmann dinucleotide-binding domains

    OpenAIRE

    Bottoms, Christopher A; Smith, Paul E.; Tanner, John J.

    2002-01-01

    A computational comparison of 102 high-resolution (≤1.90 Å) enzyme-dinucleotide (NAD, NADP, FAD) complexes was performed to investigate the role of solvent in dinucleotide recognition by Rossmann fold domains. The typical binding site contains about 9–12 water molecules, and about 30% of the hydrogen bonds between the protein and the dinucleotide are water mediated. Detailed inspection of the structures reveals a structurally conserved water molecule bridging dinucleotides with the well-known...

  4. The Anabaena sensory rhodopsin transducer defines a novel superfamily of prokaryotic small-molecule binding domains

    Directory of Open Access Journals (Sweden)

    De Souza Robson F

    2009-08-01

    Full Text Available Abstract The Anabaena sensory rhodopsin transducer (ASRT is a small protein that has been claimed to function as a signaling molecule downstream of the cyanobacterial sensory rhodopsin. However, orthologs of ASRT have been detected in several bacteria that lack rhodopsin, raising questions about the generality of this function. Using sequence profile searches we show that ASRT defines a novel superfamily of β-sandwich fold domains. Through contextual inference based on domain architectures and predicted operons and structural analysis we present strong evidence that these domains bind small molecules, most probably sugars. We propose that the intracellular versions like ASRT probably participate as sensors that regulate a diverse range of sugar metabolism operons or even the light sensory behavior in Anabaena by binding sugars or related metabolites. We also show that one of the extracellular versions define a predicted sugar-binding structure in a novel cell-surface lipoprotein found across actinobacteria, including several pathogens such as Tropheryma, Actinomyces and Thermobifida. The analysis of this superfamily also provides new data to investigate the evolution of carbohydrate binding modes in β-sandwich domains with very different topologies. Reviewers: This article was reviewed by M. Madan Babu and Mark A. Ragan.

  5. Interference of peptides and specific antibodies with the function of the Actinobacillus pleuropneumoniae transferrin-binding protein.

    OpenAIRE

    Strutzberg, K; Franz, B.; Gerlach, G F

    1997-01-01

    Multiple-antigenic peptides (MAPs) containing transferrin-binding domains of the Actinobacillus pleuropneumoniae serotype 7-derived transferrin-binding protein (TfbA) (K. Strutzberg, L. von Olleschik, B. Franz, C. Pyne, M. A. Schmidt, and G.-F. Gerlach, Infect. Immun. 63:3846-3850, 1995) were constructed. It was found that the MAPs inhibited transferrin binding of the recombinant TfbA protein, whereas antibodies directed against transferrin-binding domains failed to do so.

  6. DIFFERENT REQUIREMENTS OF THE KINASE AND UHM DOMAINS OF KIS FOR ITS NUCLEAR LOCALIZATION AND BINDING TO SPLICING FACTORS

    OpenAIRE

    Manceau, Valérie; Kielkopf, Clara L.; Sobel, André; Maucuer, Alexandre

    2008-01-01

    The protein kinase KIS is made by the juxtaposition of a unique kinase domain and a C-terminal domain with a U2AF Homology Motif (UHM), a sequence motif for protein interaction initially identified in the heterodimeric pre-mRNA splicing factor U2AF. This domain of KIS is closely related to the C-terminal UHM domain of the U2AF large subunit, U2AF65. KIS phosphorylates the splicing factor SF1, which in turn enhances SF1 binding to U2AF65 and the 3′ splice site, an event known to take place at ...

  7. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    International Nuclear Information System (INIS)

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids

  8. Side-chain interactions form late and cooperatively in the binding reaction between disordered peptides and PDZ domains

    DEFF Research Database (Denmark)

    Haq, S Raza; Chi, Celestine N; Bach, Anders;

    2012-01-01

    used short peptides as a model system for intrinsically disordered proteins. Linear free-energy relationships based on rate and equilibrium constants for the binding of these peptides to ordered target proteins, PDZ domains, demonstrate that native side-chain interactions form mainly after the rate-limiting...

  9. Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain.

    OpenAIRE

    Tomme, P; Driver, D P; Amandoron, E A; Miller, R. C.; Antony, R.; Warren, J.; Kilburn, D G

    1995-01-01

    A family II cellulose-binding domain (CBD) of an exoglucanase/xylanase (Cex) from the bacterium Cellulomonas fimi was replaced with the family I CBD of cellobiohydrolase I (CbhI) from the fungus Trichoderma reesei. Expression of the hybrid gene in Escherichia coli yielded up to 50 mg of the hybrid protein, CexCBDCbhI, per liter of culture supernatant. The hybrid was purified to homogeneity by affinity chromatography on cellulose. The relative association constants (Kr) for the binding of Cex,...

  10. Use of Fluorescence Spectroscopy for Quantitative Investigations of Ubiquitin Interactions with the Ubiquitin-Binding Domains of NEMO

    OpenAIRE

    Dubosclard, Virginie; Fontan, Elisabeth; Agou, Fabrice

    2015-01-01

    Ubiquitin serves as a signal for a variety of cellular processes and its specifi c interaction with ubiquitin-binding domain (UBD) regulates key cellular events including protein degradation, cell-cycle control, DNA repair, and kinase activation. Several binding mechanisms for isolated UBDs have been reported in recent years. However, little is known about the mechanism through which proteins containing multiple-UBDs achieve specifi city for a particular oligomer of polyUb. The NF-κB essentia...

  11. Characterization of the Receptor-binding Domain of Ebola Glycoprotein in Viral Entry

    Institute of Scientific and Technical Information of China (English)

    Jizhen Wang; Balaji Manicassamy; Michael Caffrey; Lijun Rong

    2011-01-01

    Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality.Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells,followed by fusion of virus-cell membrane also mediated by GP.Using an human immunodeficiency virus (HIV)-based pseudotyping system,the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions.We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry.An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry.It was found that R64 and K95 are involved in receptor binding.In contrast,some residues such as I170 are important for viral entry,but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data,suggesting that these residues are involved in post-binding steps of viral entry.Furthermore,our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.

  12. Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains.

    Science.gov (United States)

    Nango, Eriko; Akiyama, Shuji; Maki-Yonekura, Saori; Ashikawa, Yuji; Kusakabe, Yuko; Krayukhina, Elena; Maruno, Takahiro; Uchiyama, Susumu; Nuemket, Nipawan; Yonekura, Koji; Shimizu, Madoka; Atsumi, Nanako; Yasui, Norihisa; Hikima, Takaaki; Yamamoto, Masaki; Kobayashi, Yuji; Yamashita, Atsuko

    2016-01-01

    Sweet and umami tastes are perceived by T1r taste receptors in oral cavity. T1rs are class C G-protein coupled receptors (GPCRs), and the extracellular ligand binding domains (LBDs) of T1r1/T1r3 and T1r2/T1r3 heterodimers are responsible for binding of chemical substances eliciting umami or sweet taste. However, molecular analyses of T1r have been hampered due to the difficulties in recombinant expression and protein purification, and thus little is known about mechanisms for taste perception. Here we show the first molecular view of reception of a taste substance by a taste receptor, where the binding of the taste substance elicits a different conformational state of T1r2/T1r3 LBD heterodimer. Electron microscopy has showed a characteristic dimeric structure. Förster resonance energy transfer and X-ray solution scattering have revealed the transition of the dimerization manner of the ligand binding domains, from a widely spread to compactly organized state upon taste substance binding, which may correspond to distinct receptor functional states. PMID:27160511

  13. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure

    International Nuclear Information System (INIS)

    The C-terminal domain of a bacteriophage P2 tail-spike protein, gpV, was crystallized and its structure was solved at 1.27 Å resolution. The refined model showed a triple β-helix structure and the presence of iron, calcium and chloride ions. The adsorption and infection of bacteriophage P2 is mediated by tail fibres and tail spikes. The tail spikes on the tail baseplate are used to irreversibly adsorb to the host cells. Recently, a P2 phage tail-spike protein, gpV, was purified and it was shown that a C-terminal domain, Ser87–Leu211, is sufficient for the binding of gpV to host Escherichia coli membranes [Kageyama et al. (2009 ▶), Biochemistry, 48, 10129–10135]. In this paper, the crystal structure of the C-terminal domain of P2 gpV is reported. The structure is a triangular pyramid and looks like a spearhead composed of an intertwined β-sheet, a triple β-helix and a metal-binding region containing iron, calcium and chloride ions

  14. Secretory Vesicle Priming by CAPS Is Independent of Its SNARE-Binding MUN Domain

    Directory of Open Access Journals (Sweden)

    Cuc Quynh Nguyen Truong

    2014-11-01

    Full Text Available Priming of secretory vesicles is a prerequisite for their Ca2+-dependent fusion with the plasma membrane. The key vesicle priming proteins, Munc13s and CAPSs, are thought to mediate vesicle priming by regulating the conformation of the t-SNARE syntaxin, thereby facilitating SNARE complex assembly. Munc13s execute their priming function through their MUN domain. Given that the MUN domain of Ca2+-dependent activator protein for secretion (CAPS also binds syntaxin, it was assumed that CAPSs prime vesicles through the same mechanism as Munc13s. We studied naturally occurring splice variants of CAPS2 in CAPS1/CAPS2-deficient cells and found that CAPS2 primes vesicles independently of its MUN domain. Instead, the pleckstrin homology domain of CAPS2 seemingly is essential for its priming function. Our findings indicate a priming mode for secretory vesicles. This process apparently requires membrane phospholipids, does not involve the binding or direct conformational regulation of syntaxin by MUN domains of CAPSs, and is therefore not redundant with Munc13 action.

  15. The Trypanosome Pumilio Domain Protein PUF5

    OpenAIRE

    Jha, Bhaskar Anand; Archer, Stuart K.; Clayton, Christine E.

    2013-01-01

    PUF proteins are a conserved family of RNA binding proteins found in all eukaryotes examined so far. This study focussed on PUF5, one of 11 PUF family members encoded in the Trypanosoma brucei genome. Native PUF5 is present at less than 50000 molecules per cell in both bloodstream and procyclic form trypanosomes. C-terminally myc-tagged PUF5 was mainly found in the cytoplasm and could be cross-linked to RNA. PUF5 knockdown by RNA interference had no effect on the growth of bloodstream forms. ...

  16. Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates.

    Directory of Open Access Journals (Sweden)

    Maggie P Wear

    Full Text Available Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12 cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID domains (≥ 100 amino acids and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.

  17. Site-directed mutants of human RECQ1 reveal functional importance of the zinc binding domain.

    Science.gov (United States)

    Sami, Furqan; Gary, Ronald K; Fang, Yayin; Sharma, Sudha

    2016-08-01

    RecQ helicases are a highly conserved family of ATP-dependent DNA-unwinding enzymes with key roles in DNA replication and repair in all kingdoms of life. The RECQ1 gene encodes the most abundant RecQ homolog in humans. We engineered full-length RECQ1 harboring point mutations in the zinc-binding motif (amino acids 419-480) within the conserved RecQ-specific-C-terminal (RQC) domain known to be critical for diverse biochemical and cellular functions of RecQ helicases. Wild-type RECQ1 contains a zinc ion. Substitution of three of the four conserved cysteine residues that coordinate zinc severely impaired the ATPase and DNA unwinding activities but retained DNA binding and single strand DNA annealing activities. Furthermore, alteration of these residues attenuated zinc binding and significantly changed the overall conformation of full-length RECQ1 protein. In contrast, substitution of cysteine residue at position 471 resulted in a wild-type like RECQ1 protein. Differential contribution of the conserved cysteine residues to the structure and functions of the RECQ1 protein is also inferred by homology modeling. Overall, our results indicate that the zinc binding motif in the RQC domain of RECQ1 is a key structural element that is essential for the structure-functions of RECQ1. Given the recent association of RECQ1 mutations with breast cancer, these results will contribute to understanding the molecular basis of RECQ1 functions in cancer etiology. PMID:27248010

  18. Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. Part II. Interplay of local backbone conformational dynamics and long-range hydrophobic interactions in hairpin formation

    OpenAIRE

    Skwierawska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.

    2009-01-01

    Two peptides, corresponding to the turn region of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, consisting of residues 51–56 [IG(51–56)] and 50–57 [IG(50–57)], respectively, were studied by CD and NMR spectroscopy at various temperatures and by differential scanning calorimetry. Our results show that the part of the sequence corresponding to the β-turn in the native structure (DDATKT) of the B3 domain forms bent conformations similar to ...

  19. Liver Fatty Acid Binding Protein and Obesity

    OpenAIRE

    Atshaves, B.P.; Martin, G G; Hostetler, H.A.; McIntosh, A.L.; Kier, A B; Schroeder, F.

    2010-01-01

    While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes, and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity, and metabolic syndrome. Consequently, mammals evolved fatty acid binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them f...

  20. Alpha-Amylase Starch Binding Domains: Cooperative Effects of Binding to Starch Granules of Multiple Tandemly Arranged Domains▿

    OpenAIRE

    Guillén, D.; Santiago, M.; Linares, L; Pérez, R; Morlon, J.; Ruiz, B; Sánchez, S.; Rodríguez-Sanoja, R.

    2007-01-01

    The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five mo...

  1. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  2. LOV Domain-Containing F-Box Proteins:Light-Dependent Protein Degradation Modules in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Shogo Ito; Young Hun Song; Takato Imaizumi

    2012-01-01

    Plants constantly survey the surrounding environment using several sets of photoreceptors.They can sense changes in the quantity (=intensity) and quality (=wavelength) of light and use this information to adjust their physiological responses,growth,and developmental patterns.In addition to the classical photoreceptors,such as phytochromes,cryptochromes,and phototropins,ZEITLUPE (ZTL),FLAVIN-BINDING,KELCH REPEAT,F-BOX 1 (FKF1),and LOV KELCH PROTEIN 2 (LKP2) proteins have been recently identified as blue-light photoreceptors that are important for regulation of the circadian clock and photoperiodic flowering.The ZTL/FKF1/LKP2 protein family possesses a unique combination of domains:a blue-light-absorbing LOV (Light,Oxygen,or Voltage) domain along with domains involved in protein degradation.Here,we summarize recent advances in our understanding of the function of the Arabidopsis ZTL/FKF1/LKP2 proteins.We summarize the distinct photochemical properties of their LOV domains and discuss the molecular mechanisms by which the ZTL/FKF1/LKP2 proteins regulate the circadian clock and photoperiodic flowering by controlling blue-light-dependent protein degradation.

  3. GIT1 Paxillin-binding Domain Is a Four-helix Bundle, and It Binds to Both Paxillin LD2 and LD4 Motifs*S⃞

    OpenAIRE

    Zhang, Ziwei M.; Simmerman, Joseph A.; Guibao, Cristina D.; Zheng, Jie J.

    2008-01-01

    The G protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein that plays an important role in cell adhesion, motility, cytoskeletal remodeling, and membrane trafficking. GIT1 mediates the localization of the p21-activated kinase (PAK) and PAK-interactive exchange factor to focal adhesions, and its activation is regulated by the interaction between its C-terminal paxillin-binding domain (PBD) and the LD motifs of paxillin. In this study, we...

  4. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    Energy Technology Data Exchange (ETDEWEB)

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.; Wang, Yu-Hsiu; Slochower, David; Janmey, Paul A.; Lemmon, Mark A. (UPENN-MED)

    2011-09-28

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importance of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.

  5. Periplasmic Binding Proteins in Thermophiles: Characterization and Potential Application of an Arginine-Binding Protein from Thermotoga maritima: A Brief Thermo-Story

    Directory of Open Access Journals (Sweden)

    Sabato D'Auria

    2013-02-01

    Full Text Available Arginine-binding protein from the extremophile Thermotoga maritima is a 27.7 kDa protein possessing the typical two-domain structure of the periplasmic binding proteins family. The protein is characterized by a very high specificity and affinity to bind to arginine, also at high temperatures. Due to its features, this protein could be taken into account as a potential candidate for the design of a biosensor for arginine. It is important to investigate the stability of proteins when they are used for biotechnological applications. In this article, we review the structural and functional features of an arginine-binding protein from the extremophile Thermotoga maritima with a particular eye on its potential biotechnological applications.

  6. Proteolytic dissection of Zab, the Z-DNA-binding domain of human ADAR1

    Science.gov (United States)

    Schwartz, T.; Lowenhaupt, K.; Kim, Y. G.; Li, L.; Brown, B. A. 2nd; Herbert, A.; Rich, A.

    1999-01-01

    Zalpha is a peptide motif that binds to Z-DNA with high affinity. This motif binds to alternating dC-dG sequences stabilized in the Z-conformation by means of bromination or supercoiling, but not to B-DNA. Zalpha is part of the N-terminal region of double-stranded RNA adenosine deaminase (ADAR1), a candidate enzyme for nuclear pre-mRNA editing in mammals. Zalpha is conserved in ADAR1 from many species; in each case, there is a second similar motif, Zbeta, separated from Zalpha by a more divergent linker. To investigate the structure-function relationship of Zalpha, its domain structure was studied by limited proteolysis. Proteolytic profiles indicated that Zalpha is part of a domain, Zab, of 229 amino acids (residues 133-361 in human ADAR1). This domain contains both Zalpha and Zbeta as well as a tandem repeat of a 49-amino acid linker module. Prolonged proteolysis revealed a minimal core domain of 77 amino acids (positions 133-209), containing only Zalpha, which is sufficient to bind left-handed Z-DNA; however, the substrate binding is strikingly different from that of Zab. The second motif, Zbeta, retains its structural integrity only in the context of Zab and does not bind Z-DNA as a separate entity. These results suggest that Zalpha and Zbeta act as a single bipartite domain. In the presence of substrate DNA, Zab becomes more resistant to proteases, suggesting that it adopts a more rigid structure when bound to its substrate, possibly with conformational changes in parts of the protein.

  7. Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins.

    Science.gov (United States)

    Coelho, Miguel B; Ascher, David B; Gooding, Clare; Lang, Emma; Maude, Hannah; Turner, David; Llorian, Miriam; Pires, Douglas E V; Attig, Jan; Smith, Christopher W J

    2016-08-15

    Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands. PMID:27528752

  8. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

    Science.gov (United States)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-12-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  9. Nickel binding sites in histone proteins

    OpenAIRE

    Zoroddu, Maria Antonietta; Peana, Massimiliano Francesco; Solinas, Costantino; Medici, Serenella

    2012-01-01

    Nickel compounds are well known as human carcinogens, though the molecular events that are responsible for this are not well understood. It has been proposed that a crucial element in the mechanism of carcinogenesis is the binding of Ni(II) ions within the cell nucleus. It is known that DNA polymer binds Ni(II) only weakly, leaving the proteins of the cell nucleus as the likely Ni(II) targets. Being histone proteins the most abundant among them, they can be considered the primary sites fo...

  10. Ice-Binding Proteins and Their Function.

    Science.gov (United States)

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-01

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities. PMID:27145844

  11. Insulin-like growth factor binding proteins: a structural perspective

    Directory of Open Access Journals (Sweden)

    Briony eForbes

    2012-03-01

    Full Text Available Insulin-like growth factor binding proteins (IGFBP-1 to -6 bind insulin-like growth factors-I and -II (IGF-I and IGF-II with high affinity. These binding proteins maintain IGFs in the circulation and direct them to target tissues, where they promote cell growth, proliferation, differentiation and survival via the type 1 IGF receptor (IGF-1R. IGFBPs also interact with many other molecules, which not only influence their modulation of IGF action but also mediate IGF-independent activities that influence processes such as cell migration and apoptosis by influencing gene transcription.IGFBPs-1 to -6 are structurally similar proteins consisting of three distinct domains, N-terminal, Linker and C-terminal. There have been major advances in our understanding of IGFBP structure in the last decade and a half. While there is still no structure of an intact IGFBP to date, several structures of individual N- and C-domains have been solved. The structure of a complex of N-BP-4:IGF-I:C-BP-4 has also been solved, providing a detailed picture of the structural features of the IGF binding site and the mechanism of binding. Structural studies have also identified features important for interaction with extracellular matrix components and integrins. This review summarises structural studies reported so far and highlights features important for binding not only IGF but also other partners. It also highlights future directions in which structural studies will add to our knowledge of the role played by the IGFBP family in normal growth and development, as well as in disease.

  12. How Similar Are Protein Folding and Protein Binding Nuclei? Examination of Vibrational Motions of Energy Hot Spots and Conserved Residues

    OpenAIRE

    Haliloglu, Turkan; Keskin, Ozlem; Ma, Buyong; Nussinov, Ruth

    2004-01-01

    The underlying physico-chemical principles of the interactions between domains in protein folding are similar to those between protein molecules in binding. Here we show that conserved residues and experimental hot spots at intermolecular binding interfaces overlap residues that vibrate with high frequencies. Similarly, conserved residues and hot spots are found in protein cores and are also observed to vibrate with high frequencies. In both cases, these residues contribute significantly to t...

  13. The role of apolipoprotein AI domains in lipid binding

    OpenAIRE

    Davidson, W. Sean; Hazlett, Theodore; Mantulin, William W.; Jonas, Ana

    1996-01-01

    Apolipoprotein AI (apoAI) is the principal protein constituent of high density lipoproteins and it plays a key role in human cholesterol homeostasis; however, the structure of apoAI is not clearly understood. To test the hypothesis that apoAI is organized into domains, three deletion mutants of human apoAI expressed in Escherichia coli were studied in solution and in reconstituted high density lipoprotein particles. Each mutant lacked one of three specific regions ...

  14. Crystal Structure of the Bovine lactadherin C2 Domain, a Membrane Binding Motif, Shows Similarity of the C2 Domains of Factor V and Factor VIII

    Energy Technology Data Exchange (ETDEWEB)

    Lin,L.; Huai, Q.; Huang, M.; Furie, B.; Furie, B.

    2007-01-01

    Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 Angstroms. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C? atoms of 0.9 Angstroms and 1.2 Angstroms, and sequence identities of 43% and 38%, respectively). The lactadherin C2 domain has a discoidin-like fold containing two ?-sheets of five and three antiparallel ?-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One ?-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain ?-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.

  15. Crystal Structure of the Bovine lactadherin C2 Domain, a Membrane Binding Motif, Shows Similarity to the C2 Domains of Factor V and Factor VIII

    Energy Technology Data Exchange (ETDEWEB)

    Lin,L.

    2007-01-01

    Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 {angstrom}. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C{sub {alpha}} atoms of 0.9 {angstrom} and 1.2 {angstrom}, and sequence identities of 43% and 38%, respectively). The lactadherin C2 domain has a discoidin-like fold containing two {beta}-sheets of five and three antiparallel {beta}-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One {beta}-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain {beta}-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.

  16. Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index

    Directory of Open Access Journals (Sweden)

    Zomaya Albert Y

    2006-12-01

    Full Text Available Abstract Background Knowledge of protein domain boundaries is critical for the characterisation and understanding of protein function. The ability to identify domains without the knowledge of the structure – by using sequence information only – is an essential step in many types of protein analyses. In this present study, we demonstrate that the performance of DomainDiscovery is improved significantly by including the inter-domain linker index value for domain identification from sequence-based information. Improved DomainDiscovery uses a Support Vector Machine (SVM approach and a unique training dataset built on the principle of consensus among experts in defining domains in protein structure. The SVM was trained using a PSSM (Position Specific Scoring Matrix, secondary structure, solvent accessibility information and inter-domain linker index to detect possible domain boundaries for a target sequence. Results Improved DomainDiscovery is compared with other methods by benchmarking against a structurally non-redundant dataset and also CASP5 targets. Improved DomainDiscovery achieves 70% accuracy for domain boundary identification in multi-domains proteins. Conclusion Improved DomainDiscovery compares favourably to the performance of other methods and excels in the identification of domain boundaries for multi-domain proteins as a result of introducing support vector machine with benchmark_2 dataset.

  17. A recombinant triblock protein polymer with dispersant and binding properties for digital printing.

    Science.gov (United States)

    Qi, Min; O'Brien, John P; Yang, Jianjun

    2008-01-01

    A structured triblock protein was designed to explore the potential of engineered peptides to function as high-performance ink dispersants and binders. The protein consists of three functional elements, including a pigment binding domain, a hydrophilic linker, and a printing surface binding domain. To construct such a chimeric protein, a carbon black binding peptide, FHENWPS, and a cellulose binding peptide, THKTSTQRLLAA, were identified from phage display libraries through biopanning, based on their strong and specific binding affinities to carbon black and cellulose. They were used as carbon black and cellulose binding domains, respectively, in a recombinant triblock protein. A linker sequence, PTPTPTPTPTPTPTPTPTPTPTP, was adapted from endoglucanase A of the bacterium Cellulomonas fimi, as a small, rigid, and hydrophilic interdomain linker. When incorporated into the triblock structure between the carbon black and cellulose binding sequences, the linker sufficiently isolates these two elements and allows dual binding activity. The structured triblock protein was shown to disperse carbon black particles and attach it to paper surfaces. Thus, the utility of structured proteins having useful dispersant and binding properties for digital printing inks was demonstrated. PMID:17972282

  18. Antibodies against the calcium-binding protein

    International Nuclear Information System (INIS)

    Plant microsomes contain a protein clearly related to a calcium-binding protein, calsequestrin, originally found in the sarcoplasmic reticulum of muscle cells, responsible for the rapid release and uptake of Ca2+ within the cells. The location and role of calsequestrin in plant cells is unknown. To generate monoclonal antibodies specific to plant calsequestrin, mice were immunized with a microsomal fraction from cultured cells of Streptanthus tortuosus (Brassicaceae). Two clones cross-reacted with one protein band with a molecular weight equal to that of calsequestrin (57 kilodaltons) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. This band is able to bind 45Ca2+ and can be recognized by a polyclonal antibody against the canine cardiac muscle calsequestrin. Rabbit skeletal muscle calsequestrin cross-reacted with the plant monoclonal antibodies. The plant monoclonal antibodies generated here are specific to calsequestrin protein

  19. Structural analyses of the Slm1-PH domain demonstrate ligand binding in the non-canonical site.

    Directory of Open Access Journals (Sweden)

    Kanchan Anand

    Full Text Available BACKGROUND: Pleckstrin homology (PH domains are common membrane-targeting modules and their best characterized ligands are a set of important signaling lipids that include phosphatidylinositol phosphates (PtdInsPs. PH domains recognize PtdInsPs through two distinct mechanisms that use different binding pockets on opposite sides of the β-strands 1 and 2: i a canonical binding site delimited by the β1-β2 and β3-β4loops and ii a non-canonical binding site bordered by the β1-β2 and β5-β6loops. The PH domain-containing protein Slm1 from budding yeast Saccharomyces cerevisiae is required for actin cytoskeleton polarization and cell growth. We recently reported that this PH domain binds PtdInsPs and phosphorylated sphingolipids in a cooperative manner. PRINCIPAL FINDINGS: To study the structural basis for the Slm1-PH domain (Slm1-PH specificity, we co-crystallized this domain with different soluble compounds that have structures analogous to anionic lipid head groups of reported Slm1 ligands: inositol 4-phosphate, which mimics phosphatidylinositol-4-phosphate (PtdIns(4P, and phosphoserine as a surrogate for dihydrosphingosine 1-phosphate (DHS1-P. We found electron densities for the ligands within the so-called non-canonical binding site. An additional positively charged surface that contacts a phosphate group was identified next to the canonical binding site. CONCLUSIONS: Our results suggest that Slm1-PH utilizes a non-canonical binding site to bind PtdInsPs, similar to that described for the PH domains of β-spectrin, Tiam1 and ArhGAP9. Additionally, Slm1-PH may have retained an active canonical site. We propose that the presence of both a canonical and a non-canonical binding pocket in Slm1-PH may account for the cooperative binding to PtdInsPs and DHS-1P.

  20. Specific and modular binding code for cytosine recognition in Pumilio/FBF (PUF) RNA-binding domains.

    Science.gov (United States)

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb; Lu, Gang; Bigler, Rebecca; Jezyk, Mark R; Li, Chunhua; Hall, Traci M Tanaka; Wang, Zefeng

    2011-07-29

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence. PMID:21653694

  1. Specific and Modular Binding Code for Cytosine Recognition in Pumilio/FBF (PUF) RNA-binding Domains

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb; Lu, Gang; Bigler, Rebecca; Jezyk, Mark R.; Li, Chunhua; Tanaka Hall, Traci M.; Wang, Zefeng (NIH); (Beijing U); (UNC)

    2011-10-28

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.

  2. Specific and Modular Binding Code for Cytosine Recognition in Pumilio/FBF (PUF) RNA-binding Domains*♦

    Science.gov (United States)

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb; Lu, Gang; Bigler, Rebecca; Jezyk, Mark R.; Li, Chunhua; Hall, Traci M. Tanaka; Wang, Zefeng

    2011-01-01

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence. PMID:21653694

  3. Recovering protein-protein and domain-domain interactions from aggregation of IP-MS proteomics of coregulator complexes.

    Directory of Open Access Journals (Sweden)

    Amin R Mazloom

    2011-12-01

    Full Text Available Coregulator proteins (CoRegs are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP followed by mass spectrometry (MS applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.

  4. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity.

    Science.gov (United States)

    Nguyen, Duy P; Miyaoka, Yuichiro; Gilbert, Luke A; Mayerl, Steven J; Lee, Brian H; Weissman, Jonathan S; Conklin, Bruce R; Wells, James A

    2016-01-01

    Cas9-based RNA-guided nuclease (RGN) has emerged to be a versatile method for genome editing due to the ease of construction of RGN reagents to target specific genomic sequences. The ability to control the activity of Cas9 with a high temporal resolution will facilitate tight regulation of genome editing processes for studying the dynamics of transcriptional regulation or epigenetic modifications in complex biological systems. Here we show that fusing ligand-binding domains of nuclear receptors to split Cas9 protein fragments can provide chemical control over split Cas9 activity. The method has allowed us to control Cas9 activity in a tunable manner with no significant background, which has been challenging for other inducible Cas9 constructs. We anticipate that our design will provide opportunities through the use of different ligand-binding domains to enable multiplexed genome regulation of endogenous genes in distinct loci through simultaneous chemical regulation of orthogonal Cas9 variants. PMID:27363581

  5. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity

    Science.gov (United States)

    Nguyen, Duy P.; Miyaoka, Yuichiro; Gilbert, Luke A.; Mayerl, Steven J.; Lee, Brian H.; Weissman, Jonathan S.; Conklin, Bruce R.; Wells, James A.

    2016-01-01

    Cas9-based RNA-guided nuclease (RGN) has emerged to be a versatile method for genome editing due to the ease of construction of RGN reagents to target specific genomic sequences. The ability to control the activity of Cas9 with a high temporal resolution will facilitate tight regulation of genome editing processes for studying the dynamics of transcriptional regulation or epigenetic modifications in complex biological systems. Here we show that fusing ligand-binding domains of nuclear receptors to split Cas9 protein fragments can provide chemical control over split Cas9 activity. The method has allowed us to control Cas9 activity in a tunable manner with no significant background, which has been challenging for other inducible Cas9 constructs. We anticipate that our design will provide opportunities through the use of different ligand-binding domains to enable multiplexed genome regulation of endogenous genes in distinct loci through simultaneous chemical regulation of orthogonal Cas9 variants. PMID:27363581

  6. Identification of binding peptides of the ADAM15 disintegrin domain using phage display

    Indian Academy of Sciences (India)

    Jing Wu; Min-Chen Wu; Lian-Fen Zhang; Jian-Yong Lei; Lei Feng; Jian Jin

    2009-06-01

    ADAM15 plays an important role in tumour development by interacting with integrins. In this study, we investigated the target peptides of the ADAM15 disintegrin domain. First, we successfully produced the recombinant human ADAM15 disintegrin domain (RADD) that could inhibit melanoma cell adhesion by using Escherichia coli. Second, four specific binding peptides (peptides A, B, C, and D) were selected using a phage display 12-mer peptide library. The screening protocol involved 4 rounds of positive panning on RADD and 2 rounds of subtractive selection with streptavidin. By using the BLAST software and a relevant protein database, integrin v3 was found to be homologous to peptide A. Synthetic peptide A had a highly inhibitory effect on RADD–integrin v3 binding. The results demonstrate the potential application of short peptides for disrupting high-affinity ADAM–integrin interactions.

  7. Copper transport and its defect in Wilson disease: characterization of the copper-binding domain of Wilson disease ATPase.

    Science.gov (United States)

    Sarkar, B

    2000-04-01

    Copper is an essential trace element which forms an integral component of many enzymes. While trace amounts of copper are needed to sustain life, excess copper is extremely toxic. An attempt is made here to present the current understanding of the normal transport of copper in relation to the absorption, intracellular transport and toxicity. Wilson disease is a genetic disorder of copper transport resulting in the accumulation of copper in organs such as liver and brain which leads to progressive hepatic and neurological damage. The gene responsible for Wilson disease (ATP7B) is predicted to encode a putative copper-transporting P-type ATPase. An important feature of this ATPase is the presence of a large N-terminal domain that contains six repeats of a copper-binding motif which is thought to be responsible for binding this metal prior to its transport across the membrane. We have cloned, expressed and purified the N-terminal domain (approximately 70 kD) of Wilson disease ATPase. Metal-binding properties of the domain showed the protein to bind several metals besides copper; however, copper has a higher affinity for the domain. The copper is bound to the domain in Cu(I) form with a copper: protein ratio of 6.5:1. X-ray absorption studies strongly suggest Cu(I) atoms are ligated to cysteine residues. Circular dichroism spectral analyses suggest both secondary and tertiary structural changes upon copper binding to the domain. Copper-binding studies suggest some degree of cooperativity in binding of copper. These studies as well as detailed structural information of the copper-binding domain will be crucial in determining the specific role played by the copper-transporting ATPase in the homeostatic control of copper in the body and how the transport of copper is interrupted by mutations in the ATPase gene. PMID:10830865

  8. Signal transduction by guanine nucleotide binding proteins.

    Science.gov (United States)

    Spiegel, A M

    1987-01-01

    High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Subsets of this family include cytosolic initiation and elongation factors involved in protein synthesis, and cytoskeletal proteins such as tubulin (Hughes, S.M. (1983) FEBS Lett. 164, 1-8). A distinct subset of guanine nucleotide binding proteins is membrane-associated; members of this subset include the ras gene products (Ellis, R.W. et al. (1981) Nature 292, 506-511) and the heterotrimeric G-proteins (also termed N-proteins) (Gilman, A.G. (1984) Cell 36, 577-579). Substantial evidence indicates that G-proteins act as signal transducers by coupling receptors (R) to effectors (E). A similar function has been suggested but not proven for the ras gene products. Known G-proteins include Gs and Gi, the G-proteins associated with stimulation and inhibition, respectively, of adenylate cyclase; transducin (TD), the G-protein coupling rhodopsin to cGMP phosphodiesterase in rod photoreceptors (Bitensky, M.W. et al. (1981) Curr. Top. Membr. Transp. 15, 237-271; Stryer, L. (1986) Annu. Rev. Neurosci. 9, 87-119), and Go, a G-protein of unknown function that is highly abundant in brain (Sternweis, P.C. and Robishaw, J.D. (1984) J. Biol. Chem. 259, 13806-13813; Neer, E.J. et al. (1984) J. Biol. Chem. 259, 14222-14229). G-proteins also participate in other signal transduction pathways, notably that involving phosphoinositide breakdown. In this review, I highlight recent progress in our understanding of the structure, function, and diversity of G-proteins. PMID:2435586

  9. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2

    Directory of Open Access Journals (Sweden)

    Kabir Hassan Biswas

    2015-04-01

    Full Text Available GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain. In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.

  10. Putative hAPN receptor binding sites in SARS_CoV spike protein

    Institute of Scientific and Technical Information of China (English)

    YUXiao-Jing; LUOCheng; LinJian-Cheng; HAOPei; HEYou-Yu; GUOZong-Ming; QINLei; SUJiong; LIUBo-Shu; HUANGYin; NANPeng; LIChuan-Song; XIONGBin; LUOXiao-Min; ZHAOGuo-Ping; PEIGang; CHENKai-Xian; SHENXu; SHENJian-Hua; ZOUJian-Ping; HEWei-Zhong; SHITie-Liu; ZHONGYang; JIANGHua-Liang; LIYi-Xue

    2003-01-01

    AIM:To obtain the information of ligand-receptor binding between thd S protein of SARS_CoV and CD13, identify the possible interacting domains or motifs related to binding sites, and provide clues for studying the functions of SARS proteins and designing anti-SARS drugs and vaccines. METHODS: On the basis of comparative genomics, the homology search, phylogenetic analyses, and multi-sequence alignment were used to predict CD13 related interacting domains and binding sites sites in the S protein of SARS_CoV. Molecular modeling and docking simulation methods were employed to address the interaction feature between CD13 and S protein of SARS_CoV in validating the bioinformatics predictions. RESULTS:Possible binding sites in the SARS_CoV S protein to CD13 have been mapped out by using bioinformatics analysis tools. The binding for one protein-protein interaction pair (D757-R761 motif of the SARS_CoV S protein to P585-A653 domain of CD13) has been simulated by molecular modeling and docking simulation methods. CONCLUSION:CD13 may be a possible receptor of the SARS_CoV S protein which may be associated with the SARS infection. This study also provides a possible strategy for mapping the possible binding receptors of the proteins in a genome.

  11. ALG-2, a multifunctional calcium binding protein?

    DEFF Research Database (Denmark)

    Tarabykina, Svetlana; Mollerup, Jens; Winding Gojkovic, P.;

    2004-01-01

    ALG-2 was originally discovered as a pro-apoptotic protein in a genetic screen. Due to its ability to bind calcium with high affinity it was postulated to provide a link between the known effect of calcium in programmed cell death and the molecular death execution machinery. This review article...

  12. NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein.

    Science.gov (United States)

    Chang, Szu-Wei; Tsao, Yeou-Ping; Lin, Chia-Yi; Chen, Show-Li

    2011-07-01

    Previously, we found a gene named nuclear receptor interaction protein (NRIP) (or DCAF6 or IQWD1). We demonstrate that NRIP is a novel binding protein for human papillomavirus 16 (HPV-16) E2 protein. HPV-16 E2 and NRIP can directly associate into a complex in vivo and in vitro, and the N-terminal domain of NRIP interacts with the transactivation domain of HPV-16 E2. Only full-length NRIP can stabilize E2 protein and induce HPV gene expression, and NRIP silenced by two designed small interfering RNAs (siRNAs) decreases E2 protein levels and E2-driven gene expression. We found that NRIP can directly bind with calmodulin in the presence of calcium through its IQ domain, resulting in decreased E2 ubiquitination and increased E2 protein stability. Complex formation between NRIP and calcium/calmodulin activates the phosphatase calcineurin to dephosphorylate E2 and increase E2 protein stability. We present evidences for E2 phosphorylation in vivo and show that NRIP acts as a scaffold to recruit E2 and calcium/calmodulin to prevent polyubiquitination and degradation of E2, enhancing E2 stability and E2-driven gene expression. PMID:21543494

  13. Cold shock domain proteins repress transcription from the GM-CSF promoter.

    OpenAIRE

    Coles, L S; P. Diamond; Occhiodoro, F; Vadas, M A; Shannon, M F

    1996-01-01

    The human granulocyte-macrophage colony stimulating factor (GM-CSF) gene promoter binds a sequence-specific single-strand DNA binding protein termed NF-GMb. We previously demonstrated that the NF-GMb binding sites were required for repression of tumor necrosis factor-alpha (TNF-alpha) induction of the proximal GM-CSF promoter sequences in fibroblasts. We now describe the isolation of two different cDNA clones that encode cold shock domain (CSD) proteins with NF-GMb binding characteristics. On...

  14. Identification of essential cannabinoid-binding domains: structural insights into early dynamic events in receptor activation.

    Science.gov (United States)

    Shim, Joong-Youn; Bertalovitz, Alexander C; Kendall, Debra A

    2011-09-23

    The classical cannabinoid agonist HU210, a structural analog of (-)-Δ(9)-tetrahydrocannabinol, binds to brain cannabinoid (CB1) receptors and activates signal transduction pathways. To date, an exact molecular description of the CB1 receptor is not yet available. Utilizing the minor binding pocket of the CB1 receptor as the primary ligand interaction site, we explored HU210 binding using lipid bilayer molecular dynamics (MD) simulations. Among the potential ligand contact residues, we identified residues Phe-174(2.61), Phe-177(2.64), Leu-193(3.29), and Met-363(6.55) as being critical for HU210 binding by mutational analysis. Using these residues to guide the simulations, we determined essential cannabinoid-binding domains in the CB1 receptor, including the highly sought after hydrophobic pocket important for the binding of the C3 alkyl chain of classical and nonclassical cannabinoids. Analyzing the simulations of the HU210-CB1 receptor complex, the CP55940-CB1 receptor complex, and the (-)-Δ(9)-tetrahydrocannabinol-CB1 receptor complex, we found that the positioning of the C3 alkyl chain and the aromatic stacking between Trp-356(6.48) and Trp-279(5.43) is crucial for the Trp-356(6.48) rotamer change toward receptor activation through the rigid-body movement of H6. The functional data for the mutant receptors demonstrated reductions in potency for G protein activation similar to the reductions seen in ligand binding affinity for HU210. PMID:21795705

  15. Proteomic Screening Method for Phosphopeptide Motif Binding Proteins Using Peptide Libraries

    OpenAIRE

    Christofk, Heather R.; Wu, Ning; Cantley, Lewis C.; John M. Asara

    2011-01-01

    Phosphopeptide binding domains mediate the directed and localized assembly of protein complexes essential to intracellular kinase signaling. To identify phosphopeptide binding proteins, we developed a proteomic screening method using immobilized partially-degenerate phosphopeptide mixtures combined with SILAC and microcapillary LC/MS/MS. The method was used to identify proteins that specifically bound to phosphorylated peptide library affinity matrices, including pTyr, and the motifs pSer/pTh...

  16. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  17. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin.

    Science.gov (United States)

    Zhu, Yu; Ye, Xin-Hai; Liu, Yang; Yan, Zhi-Chao; Stanley, David; Ye, Gong-Yin; Fang, Qi

    2015-12-01

    Chitin-binding proteins (CBPs) are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP) from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs) of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton. PMID:26633500

  18. Support vector machine for predicting protein interactions using domain scores

    Institute of Scientific and Technical Information of China (English)

    PENG Xin-jun; WANG Yi-fei

    2009-01-01

    Protein-protein interactions play a crucial role in the cellular process such as metabolic pathways and immunological recognition. This paper presents a new domain score-based support vector machine (SVM) to infer protein interactions, which can be used not only to explore all possible domain interactions by the kernel method, but also to reflect the evolutionary conservation of domains in proteins by using the domain scores of proteins. The experimental result on the Saccharomyces cerevisiae dataset demonstrates that this approach can predict protein-protein interactions with higher performances compared to the existing approaches.

  19. DOMAC: an accurate, hybrid protein domain prediction server

    OpenAIRE

    Cheng, Jianlin

    2007-01-01

    Protein domain prediction is important for protein structure prediction, structure determination, function annotation, mutagenesis analysis and protein engineering. Here we describe an accurate protein domain prediction server (DOMAC) combining both template-based and ab initio methods. The preliminary version of the server was ranked among the top domain prediction servers in the seventh edition of Critical Assessment of Techniques for Protein Structure Prediction (CASP7), 2006. DOMAC server...

  20. Rat embryo fibroblasts require both the cell-binding and the heparin-binding domains of fibronectin for survival

    DEFF Research Database (Denmark)

    Jeong, J; Han, I; Lim, Y;

    2001-01-01

    of the cell-binding domain of FN with integrin is sufficient to rescue rat embryo fibroblasts (REFs) from detachment-induced apoptosis. REFs attached and spread normally after plating on substrates coated with either intact FN or a FN fragment, FN120, that contains the cell-binding domain but lacks the C-terminal...

  1. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    Energy Technology Data Exchange (ETDEWEB)

    Bagaria, A.; Swaminathan, S.; Kumaran, D.; Burley, S. K.

    2011-04-01

    The ATP-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and non-transport related processes such as translation of RNA and DNA repair. Typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP) and Ribose binding protein (RBP). Each of these proteins consists of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations have been reported and so for MBP. The closed/active form of the protein interacts with the integral membrane component of the system in both transport and chemotaxis. Herein, we report 1.9{angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound to

  2. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    Energy Technology Data Exchange (ETDEWEB)

    A Bagaria; D Kumaran; S Burley; S Swaminathan

    2011-12-31

    The APT-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and nontransport related processes such as translation of RNA and DNA repair. typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport, and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP), and Ribose binding protein (RBP). Each of these proteins consits of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations hafve been reported and so for MBP. The closed/active form of the protein interacts with the ingral membrane component of the system in both transport and chemotaxis. Herein, they report 1.9 {angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound

  3. Odorant-binding proteins in insects.

    Science.gov (United States)

    Zhou, Jing-Jiang

    2010-01-01

    Our understanding of the molecular and biochemical mechanisms that mediate chemoreception in insects has been greatly improved after the discovery of olfactory and taste receptor proteins. However, after 50 years of the discovery of first insect sex pheromone from the silkmoth Bombyx mori, it is still unclear how hydrophobic compounds reach the dendrites of sensory neurons in vivo across aqueous space and interact with the sensory receptors. The presence of soluble polypeptides in high concentration in the lymph of chemosensilla still poses unanswered questions. More than two decades after their discovery and despite the wealth of structural and biochemical information available, the physiological function of odorant-binding proteins (OBPs) is not well understood. Here, I review the structural properties of different subclasses of insect OBPs and their binding to pheromones and other small ligands. Finally, I discuss current ideas and models on the role of such proteins in insect chemoreception. PMID:20831949

  4. Quantifying drug-protein binding in vivo

    International Nuclear Information System (INIS)

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS

  5. The trypanosome Pumilio domain protein PUF5.

    Science.gov (United States)

    Jha, Bhaskar Anand; Archer, Stuart K; Clayton, Christine E

    2013-01-01

    PUF proteins are a conserved family of RNA binding proteins found in all eukaryotes examined so far. This study focussed on PUF5, one of 11 PUF family members encoded in the Trypanosoma brucei genome. Native PUF5 is present at less than 50000 molecules per cell in both bloodstream and procyclic form trypanosomes. C-terminally myc-tagged PUF5 was mainly found in the cytoplasm and could be cross-linked to RNA. PUF5 knockdown by RNA interference had no effect on the growth of bloodstream forms. Procyclic forms lacking PUF5 grew normally, but expression of PUF5 bearing a 21 kDa tandem affinity purification tag inhibited growth. Knockdown of PUF5 did not have any effect on the ability of trypanosomes to differentiate from the mammalian to the insect form of the parasite. PMID:24167571

  6. MBPpred: Proteome-wide detection of membrane lipid-binding proteins using profile Hidden Markov Models.

    Science.gov (United States)

    Nastou, Katerina C; Tsaousis, Georgios N; Papandreou, Nikos C; Hamodrakas, Stavros J

    2016-07-01

    A large number of modular domains that exhibit specific lipid binding properties are present in many membrane proteins involved in trafficking and signal transduction. These domains are present in either eukaryotic peripheral membrane or transmembrane proteins and are responsible for the non-covalent interactions of these proteins with membrane lipids. Here we report a profile Hidden Markov Model based method capable of detecting Membrane Binding Proteins (MBPs) from information encoded in their amino acid sequence, called MBPpred. The method identifies MBPs that contain one or more of the Membrane Binding Domains (MBDs) that have been described to date, and further classifies these proteins based on their position in respect to the membrane, either as peripheral or transmembrane. MBPpred is available online at http://bioinformatics.biol.uoa.gr/MBPpred. This method was applied in selected eukaryotic proteomes, in order to examine the characteristics they exhibit in various eukaryotic kingdoms and phyla. PMID:27048983

  7. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  8. The J Domain of Simian Virus 40 Large T Antigen Is Required To Functionally Inactivate RB Family Proteins

    OpenAIRE

    Zalvide, Juan; Stubdal, Hilde; DeCaprio, James A.

    1998-01-01

    Transformation by simian virus 40 large T antigen (TAg) is dependent on the inactivation of cellular tumor suppressors. Transformation minimally requires the following three domains: (i) a C-terminal domain that mediates binding to p53; (ii) the LXCXE domain (residues 103 to 107), necessary for binding to the retinoblastoma tumor suppressor protein, pRB, and the related p107 and p130; and (iii) an N-terminal domain that is homologous to the J domain of DnaJ molecular chaperone proteins. We ha...

  9. Conserved C-terminal nascent peptide binding domain of HYPK facilitates its chaperone-like activity

    Indian Academy of Sciences (India)

    Swasti Raychaudhuri; Rachana Banerjee; Subhasish Mukhopadhyay; Nitai P Bhattacharyya

    2014-09-01

    Human HYPK (Huntingtin Yeast-two-hybrid Protein K) is an intrinsically unstructured chaperone-like protein with no sequence homology to known chaperones. HYPK is also known to be a part of ribosome-associated protein complex and present in polysomes. The objective of the present study was to investigate the evolutionary influence on HYPK primary structure and its impact on the protein’s function. Amino acid sequence analysis revealed 105 orthologs of human HYPK from plants, lower invertebrates to mammals. C-terminal part of HYPK was found to be particularly conserved and to contain nascent polypeptide-associated alpha subunit (NPAA) domain. This region experiences highest selection pressure, signifying its importance in the structural and functional evolution. NPAA domain of human HYPK has unique amino acid composition preferring glutamic acid and happens to be more stable from a conformational point of view having higher content of -helices than the rest. Cell biology studies indicate that overexpressed C-terminal human HYPK can interact with nascent proteins, co-localizes with huntingtin, increases cell viability and decreases caspase activities in Huntington’s disease (HD) cell culture model. This domain is found to be required for the chaperone-like activity of HYPK in vivo. Our study suggested that by virtue of its flexibility and nascent peptide binding activity, HYPK may play an important role in assisting protein (re)folding.

  10. Monoclonal Antibody 16D10 to the C-Terminal Domain of the Feto-Acinar Pancreatic Protein Binds to Membrane of Human Pancreatic Tumoral SOJ-6 Cells and Inhibits the Growth of Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Laurence Panicot-Dubois

    2004-11-01

    Full Text Available Feto-acinar pancreatic protein (FAPP characterized by mAbJ28 reactivity is a specific component associated with ontogenesis and behaves as an oncodevelopment-associated antigen. We attempted to determine whether pancreatic tumoral SOJ-6 cells are expressed at their surface FAPP antigens and to examine if specific antibodies directed against these FAPP epitopes could decrease the growth of pancreatic tumors in a mice model. For this purpose, we used specific antibodies against either the whole FAPP, the O-glycosylated C-terminal domain, or the N-terminal domain of the protein. Our results indicate that SOJ-6 cells expressed at their surface a 32-kDa peptide corresponding to the C-terminal domain of the FAPP. Furthermore, we show, by using endoproteinase Lys-C or geldanamycin, a drug able to impair the FAPP secretion, that this 32-kDa peptide expressed on the SOJ-6 cell surface comes from the degradation of the FAPP. Finally, an in vivo prospective study using a preventative tumor model in nude mice indicates that targeting this peptide by the use of mAb16D10 inhibits the growth of SOJ-6 xenografts. The specificity of mAb16D10 for pancreatic tumors and the possibility to obtain recombinant structures of mucin-like peptides recognized by mAb16D10 and mAbJ28 are promising tools in immunologic approaches to cure pancreatic cancers.

  11. Reuse of structural domain–domain interactions in protein networks

    OpenAIRE

    Bateman Alex; Schuster-Böckler Benjamin

    2007-01-01

    Abstract Background Protein interactions are thought to be largely mediated by interactions between structural domains. Databases such as iPfam relate interactions in protein structures to known domain families. Here, we investigate how the domain interactions from the iPfam database are distributed in protein interactions taken from the HPRD, MPact, BioGRID, DIP and IntAct databases. Results We find that known structural domain interactions can only explain a subset of 4–19% of the available...

  12. Carbohydrate-binding module 74 is a novel starch-binding domain associated with large and multidomain α-amylase enzymes.

    Science.gov (United States)

    Valk, Vincent; Lammerts van Bueren, Alicia; van der Kaaij, Rachel M; Dijkhuizen, Lubbert

    2016-06-01

    Microbacterium aurum B8.A is a bacterium that originates from a potato starch-processing plant and employs a GH13 α-amylase (MaAmyA) enzyme that forms pores in potato starch granules. MaAmyA is a large and multi-modular protein that contains a novel domain at its C terminus (Domain 2). Deletion of Domain 2 from MaAmyA did not affect its ability to degrade starch granules but resulted in a strong reduction in granular pore size. Here, we separately expressed and purified this Domain 2 in Escherichia coli and determined its likely function in starch pore formation. Domain 2 independently binds amylose, amylopectin, and granular starch but does not have any detectable catalytic (hydrolytic or oxidizing) activity on α-glucan substrates. Therefore, we propose that this novel starch-binding domain is a new carbohydrate-binding module (CBM), the first representative of family CBM74 that assists MaAmyA in efficient pore formation in starch granules. Protein sequence-based BLAST searches revealed that CBM74 occurs widespread, but in bacteria only, and is often associated with large and multi-domain α-amylases containing family CBM25 or CBM26 domains. CBM74 may specifically function in binding to granular starches to enhance the capability of α-amylase enzymes to degrade resistant starches (RSs). Interestingly, the majority of family CBM74 representatives are found in α-amylases originating from human gut-associated Bifidobacteria, where they may assist in resistant starch degradation. The CBM74 domain thus may have a strong impact on the efficiency of RS digestion in the mammalian gastrointestinal tract. PMID:27101946

  13. A urokinase receptor-associated protein with specific collagen binding properties

    DEFF Research Database (Denmark)

    Behrendt, N; Jensen, Ole Nørregaard; Engelholm, L H;

    2000-01-01

    membrane-bound lectin with hitherto unknown function. The human cDNA was cloned and sequenced. The protein, designated uPARAP, is a member of the macrophage mannose receptor protein family and contains a putative collagen-binding (fibronectin type II) domain in addition to 8 C-type carbohydrate recognition...... domains. It proved capable of binding strongly to a single type of collagen, collagen V. This collagen binding reaction at the exact site of plasminogen activation on the cell may lead to adhesive functions as well as a contribution to cellular degradation of collagen matrices....

  14. PROSITE, a protein domain database for functional characterization and annotation.

    Science.gov (United States)

    Sigrist, Christian J A; Cerutti, Lorenzo; de Castro, Edouard; Langendijk-Genevaux, Petra S; Bulliard, Virginie; Bairoch, Amos; Hulo, Nicolas

    2010-01-01

    PROSITE consists of documentation entries describing protein domains, families and functional sites, as well as associated patterns and profiles to identify them. It is complemented by ProRule, a collection of rules based on profiles and patterns, which increases the discriminatory power of these profiles and patterns by providing additional information about functionally and/or structurally critical amino acids. PROSITE is largely used for the annotation of domain features of UniProtKB/Swiss-Prot entries. Among the 983 (DNA-binding) domains, repeats and zinc fingers present in Swiss-Prot (release 57.8 of 22 September 2009), 696 ( approximately 70%) are annotated with PROSITE descriptors using information from ProRule. In order to allow better functional characterization of domains, PROSITE developments focus on subfamily specific profiles and a new profile building method giving more weight to functionally important residues. Here, we describe AMSA, an annotated multiple sequence alignment format used to build a new generation of generalized profiles, the migration of ScanProsite to Vital-IT, a cluster of 633 CPUs, and the adoption of the Distributed Annotation System (DAS) to facilitate PROSITE data integration and interchange with other sources. The latest version of PROSITE (release 20.54, of 22 September 2009) contains 1308 patterns, 863 profiles and 869 ProRules. PROSITE is accessible at: http://www.expasy.org/prosite/. PMID:19858104

  15. Crystal Structure of Human Retinoblastoma Binding Protein 9

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, S.; Su, M; Seetharaman, J; Huang, Y; Chen, C; Maglaqui, M; Janjua, H; Montelione, G; Tong, L; et. al.

    2009-01-01

    As a step towards better integrating protein three-dimensional (3D) structural information in cancer systems biology, the Northeast Structural Genomics Consortium (NESG) (www.nesg.org) has constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well-known cancer-associated proteins play central roles as hubs or bottlenecks in the HCPIN (http://nmr.cabm.rutgers.edu/hcpin). NESG has selected more than 1000 human proteins and protein domains from the HCPIN for sample production and 3D structure determination. The long-range goal of this effort is to provide a comprehensive 3D structure-function database for human cancer-associated proteins and protein complexes, in the context of their interaction networks. Human retinoblastoma binding protein 9 (RBBP9) is one of the HCPIN proteins targeted by NESG. RBBP9 was initially identified as the product of a new gene, Bog (for B5T over-expressed gene), in several transformed rat liver epithelial cell lines resistant to the growth-inhibitory effect of TGF-1 as well as in primary human liver tumors. RBBP9 contains the retinoblastoma (Rb) binding motif LxCxE in its sequence, and was shown to interact with Rb by yeast two-hybrid and coimmunoprecipitation experiments. Mutation of the Leu residue in this motif to Gln blocked the binding to Rb. RBBP9 can displace E2F1 from E2F1-Rb complexes, and over expression of RBBP9 overcomes TGF-1 induced growth arrest and results in transformation of rat liver epithelial cells leading to hepatoblastoma-like tumors in nude mice. RBBP9 may also play a role in cellular responses to chronic low dose radiation. A close homolog of RBBP9, sharing 93% amino acid sequence identity and also known as RBBP10, interacts with a protein with sua5-yciO-yrdC domains.

  16. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert; Rydström, Jan

    2010-01-01

    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  17. The trypanosome Pumilio-domain protein PUF7 associates with a nuclear cyclophilin and is involved in ribosomal RNA maturation

    OpenAIRE

    Droll, Dorothea; Archer, Stuart; Fenn, Katelyn; Delhi, Praveen; Matthews, Keith; Clayton, Christine

    2010-01-01

    Proteins with Pumilio RNA binding domains (Puf proteins) are ubiquitous in eukaryotes. Some Puf proteins bind to the 3′-untranslated regions of mRNAs, acting to repress translation and promote degradation; others are involved in ribosomal RNA maturation. The genome of Trypanosoma brucei encodes eleven Puf proteins whose function cannot be predicted by sequence analysis. We show here that epitope-tagged TbPUF7 is located in the nucleolus, and associated with a nuclear cyclophilin-like protein,...

  18. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    Science.gov (United States)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-03-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp (Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  19. The DNA binding domain of c-Myb: over-expression and NMR characterization

    International Nuclear Information System (INIS)

    The DNA-binding domain of the Drosophila melanogaster c-Myb protein, 160 residues long, containing three conserved imperfect repeats of nearly 50 residues each has been over expressed in E. coli strain BL21(DE3). The protein is expressed to the extent of at least 20% of the total cellular protein. It has been purified by a four-step protocol developed in the laboratory. The protein has been characterized by various 2D NMR experiments. Several specific amino acids have been identified. A three-dimensional NMR spectrum has been recorded to achieve dispersion of cross-peaks into different 2D planes. (author). 19 refs., 6 figs., 1 tab

  20. Conformational entropy changes upon lactose binding to the carbohydrate recognition domain of galectin-3

    International Nuclear Information System (INIS)

    The conformational entropy of proteins can make significant contributions to the free energy of ligand binding. NMR spin relaxation enables site-specific investigation of conformational entropy, via order parameters that parameterize local reorientational fluctuations of rank-2 tensors. Here we have probed the conformational entropy of lactose binding to the carbohydrate recognition domain of galectin-3 (Gal3), a protein that plays an important role in cell growth, cell differentiation, cell cycle regulation, and apoptosis, making it a potential target for therapeutic intervention in inflammation and cancer. We used 15N spin relaxation experiments and molecular dynamics simulations to monitor the backbone amides and secondary amines of the tryptophan and arginine side chains in the ligand-free and lactose-bound states of Gal3. Overall, we observe good agreement between the experimental and computed order parameters of the ligand-free and lactose-bound states. Thus, the 15N spin relaxation data indicate that the molecular dynamics simulations provide reliable information on the conformational entropy of the binding process. The molecular dynamics simulations reveal a correlation between the simulated order parameters and residue-specific backbone entropy, re-emphasizing that order parameters provide useful estimates of local conformational entropy. The present results show that the protein backbone exhibits an increase in conformational entropy upon binding lactose, without any accompanying structural changes

  1. Interfacial binding and aggregation of lamin A tail domains associated with Hutchinson-Gilford progeria syndrome

    Science.gov (United States)

    Kalinowski, Agnieszka; Yaron, Peter N.; Qin, Zhao; Shenoy, Siddharth; Buehler, Markus J.; Lösche, Mathias; Dahl, Kris Noel

    2014-01-01

    Hutchinson-Gilford progeria syndrome is a premature aging disorder associated with the expression of Δ50 lamin A (Δ50LA), a mutant form of the nuclear structural protein lamin A (LA). Δ50LA is missing 50 amino acids from the tail domain and retains a C-terminal farnesyl group that is cleaved from the wild-type LA. Many of the cellular pathologies of HGPS are thought to be a consequence of protein-membrane association mediated by the retained farnesyl group. To better characterize the protein-membrane interface, we quantified binding of purified recombinant Δ50LA tail domain (Δ50LA-TD) to tethered bilayer membranes composed of phosphatidylserine and phosphocholine using surface plasmon resonance. Farnesylated Δ50LATD binds to the membrane interface only in the presence of Ca2+ or Mg2+ at physiological ionic strength. At extremely low ionic strength, both the farnesylated and non-farnesylated forms of Δ50LA-TD bind to the membrane surface in amounts that exceed those expected for a densely packed protein monolayer. Interestingly, the wild-type LA-TD with no farnesylation also associates with membranes at low ionic strength but forms only a single layer. We suggest that electrostatic interactions are mediated by charge clusters with a net positive charge that we calculate on the surface of the LA-TDs. These studies suggest that the accumulation of Δ50LA at the inner nuclear membrane observed in cells is due to a combination of aggregation and membrane association rather than simple membrane binding; electrostatics plays an important role in mediating this association. PMID:25194277

  2. Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures

    Energy Technology Data Exchange (ETDEWEB)

    Pykäläinen, Anette; Boczkowska, Malgorzata; Zhao, Hongxia; Saarikangas, Juha; Rebowski, Grzegorz; Jansen, Maurice; Hakanen, Janne; Koskela, Essi V.; Peränen, Johan; Vihinen, Helena; Jokitalo, Eija; Salminen, Marjo; Ikonen, Elina; Dominguez, Roberto; Lappalainen, Pekka (Helsinki); (Penn)

    2013-05-29

    Bin/amphipysin/Rvs (BAR)-domain proteins sculpt cellular membranes and have key roles in processes such as endocytosis, cell motility and morphogenesis. BAR domains are divided into three subfamilies: BAR- and F-BAR-domain proteins generate positive membrane curvature and stabilize cellular invaginations, whereas I-BAR-domain proteins induce negative curvature and stabilize protrusions. We show that a previously uncharacterized member of the I-BAR subfamily, Pinkbar, is specifically expressed in intestinal epithelial cells, where it localizes to Rab13-positive vesicles and to the plasma membrane at intercellular junctions. Notably, the BAR domain of Pinkbar does not induce membrane tubulation but promotes the formation of planar membrane sheets. Structural and mutagenesis analyses reveal that the BAR domain of Pinkbar has a relatively flat lipid-binding interface and that it assembles into sheet-like oligomers in crystals and in solution, which may explain its unique membrane-deforming activity.

  3. Identification of steroid-sensitive gene-1/Ccdc80 as a JAK2-binding protein.

    Science.gov (United States)

    O'Leary, Erin E; Mazurkiewicz-Muñoz, Anna M; Argetsinger, Lawrence S; Maures, Travis J; Huynh, Hung T; Carter-Su, Christin

    2013-04-01

    The tyrosine kinase Janus kinase 2 (JAK2) is activated by many cytokine receptors, including receptors for GH, leptin, and erythropoietin. However, very few proteins have been identified as binding partners for JAK2. Using a yeast 2-hybrid screen, we identified steroid-sensitive gene-1 (SSG1)/coiled-coil domain-containing protein 80 (Ccdc80) as a JAK2-binding partner. We demonstrate that Ccdc80 preferentially binds activated, tyrosyl-phosphorylated JAK2 but not kinase-inactive JAK2 (K882E) in both yeast and mammalian systems. Ccdc80 is tyrosyl phosphorylated in the presence of JAK2. The binding of Ccdc80 to JAK2 occurs via 1 or more of the 3 DUDES/SRPX (DRO1-URB-DRS-Equarin-SRPUL/sushi repeat containing protein, x-linked) domain 5 domains of Ccdc80. Mutagenesis of the second DUDES domain suggests that the N-terminal third of the DUDES domain is sufficient for JAK2 binding. Ccdc80 does not alter the kinase activity of JAK2. However, Ccdc80 increases GH-dependent phosphorylation of Stat (signal transducer and activator of transcription) 5b on Tyr699 and substantially enhances both basal and GH-dependent phosphorylation/activation of Stat3 on Tyr705. Furthermore, Ccdc80 belongs to the group of proteins that function both in the intracellular compartment and are secreted. Secreted Ccdc80 associates with the extracellular matrix and is also found in the medium. A substantial portion of the Ccdc80 detected in the medium is cleaved. Finally, consistent with the DUDES domain serving as a JAK2-binding domain, we also demonstrate that another protein that contains a DUDES domain, SRPX2, binds preferentially to the activated tyrosyl-phosphorylated form of JAK2. PMID:23449887

  4. The thalidomide-binding domain of cereblon defines the CULT domain family and is a new member of the β-tent fold.

    OpenAIRE

    Lupas, Andrei N.; Hongbo Zhu; Mateusz Korycinski

    2015-01-01

    Despite having caused one of the greatest medical catastrophies of the last century through its teratogenic side-effects, thalidomide continues to be an important agent in the treatment of leprosy and cancer. The protein cereblon, which forms an E3 ubiquitin ligase compex together with damaged DNA-binding protein 1 (DDB1) and cullin 4A, has been recently indentified as a primary target of thalidomide and its C-terminal part as responsible for binding thalidomide within a domain carrying sever...

  5. Binding of a proline-independent hydrophobic motif by the Candida albicans Rvs167-3 SH3 domain.

    Science.gov (United States)

    Gkourtsa, Areti; van den Burg, Janny; Avula, Teja; Hochstenbach, Frans; Distel, Ben

    2016-09-01

    Src-homology 3 (SH3) domains are small protein-protein interaction modules. While most SH3 domains bind to proline-x-x-proline (PxxP) containing motifs in their binding partners, some SH3 domains recognize motifs other than proline-based sequences. Recently, we showed that the SH3 domain of Candida albicans Rvs167-3 binds peptides enriched in hydrophobic residues and containing a single proline residue (RΦxΦxΦP, where x is any amino acid and Φ is a hydrophobic residue). Here, we demonstrate that the proline in this motif is not required for Rvs167-3 SH3 recognition. Through mutagenesis studies we show that binding of the peptide ligand involves the conserved tryptophan in the canonical PxxP binding pocket as well as residues in the extended n-Src loop of Rvs167-3 SH3. Our studies establish a novel, proline-independent, binding sequence for Rvs167-3 SH3 (RΦxΦxΦ) that is comprised of a positively charged residue (arginine) and three hydrophobic residues. PMID:27393996

  6. Mutational Analysis of Intracellular Loops Identify Cross Talk with Nucleotide Binding Domains of Yeast ABC Transporter Cdr1p

    OpenAIRE

    Shah, Abdul Haseeb; Rawal, Manpreet Kaur; Dhamgaye, Sanjiveeni; Komath, Sneha Sudha; Saxena, Ajay Kumar; Prasad, Rajendra

    2015-01-01

    The ABC transporter Cdr1 protein (Cdr1p) of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) that are interconnected by extracellular (ECLs) and intracellular (ICLs) loops. To examine the communication interface between the NBDs and ICLs of Cdr1p, we subjected all four ICLs to alanine scanning mutagenesis, replacing each of the 85 residues with an alanine. The resulting ICL mutant library was an...

  7. Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling

    Science.gov (United States)

    Egea-Jimenez, Antonio Luis; Gallardo, Rodrigo; Garcia-Pino, Abel; Ivarsson, Ylva; Wawrzyniak, Anna Maria; Kashyap, Rudra; Loris, Remy; Schymkowitz, Joost; Rousseau, Frederic; Zimmermann, Pascale

    2016-07-01

    PDZ domain-containing proteins work as intracellular scaffolds to control spatio-temporal aspects of cell signalling. This function is supported by the ability of their PDZ domains to bind other proteins such as receptors, but also phosphoinositide lipids important for membrane trafficking. Here we report a crystal structure of the syntenin PDZ tandem in complex with the carboxy-terminal fragment of Frizzled 7 and phosphatidylinositol 4,5-bisphosphate (PIP2). The crystal structure reveals a tripartite interaction formed via the second PDZ domain of syntenin. Biophysical and biochemical experiments establish co-operative binding of the tripartite complex and identify residues crucial for membrane PIP2-specific recognition. Experiments with cells support the importance of the syntenin-PIP2 interaction for plasma membrane targeting of Frizzled 7 and c-jun phosphorylation. This study contributes to our understanding of the biology of PDZ proteins as key players in membrane compartmentalization and dynamics.

  8. Novel interactions of ankyrins-G at the costameres: The muscle-specific Obscurin/Titin-Binding-related Domain (OTBD) binds plectin and filamin C

    Energy Technology Data Exchange (ETDEWEB)

    Maiweilidan, Yimingjiang; Klauza, Izabela; Kordeli, Ekaterini, E-mail: ekaterini.kordeli@inserm.fr

    2011-04-01

    Ankyrins, the adapters of the spectrin skeleton, are involved in local accumulation and stabilization of integral proteins to the appropriate membrane domains. In striated muscle, tissue-dependent alternative splicing generates unique Ank3 gene products (ankyrins-G); they share the Obscurin/Titin-Binding-related Domain (OTBD), a muscle-specific insert of the C-terminal domain which is highly conserved among ankyrin genes, and binds obscurin and titin to Ank1 gene products. We previously proposed that OTBD sequences constitute a novel domain of protein-protein interactions which confers ankyrins with specific cellular functions in muscle. Here we searched for muscle proteins binding to ankyrin-G OTBD by yeast two hybrid assay, and we found plectin and filamin C, two organizing elements of the cytoskeleton with essential roles in myogenesis, muscle cell cytoarchitecture, and muscle disease. The three proteins coimmunoprecipitate from skeletal muscle extracts and colocalize at costameres in adult muscle fibers. During in vitro myogenesis, muscle ankyrins-G are first expressed in postmitotic myocytes undergoing fusion to myotubes. In western blots of subcellular fractions from C2C12 cells, the majority of muscle ankyrins-G appear associated with membrane compartments. Occasional but not extensive co-localization at nascent costameres suggested that ankyrin-G interactions with plectin and filamin C are not involved in costamere assembly; they would rather reinforce stability and/or modulate molecular interactions in sarcolemma microdomains by establishing novel links between muscle-specific ankyrins-G and the two costameric dystrophin-associated glycoprotein and integrin-based protein complexes. These results report the first protein-protein interactions involving the ankyrin-G OTBD domain and support the hypothesis that OTBD sequences confer ankyrins with a gain of function in vertebrates, bringing further consolidation and resilience of the linkage between sarcomeres

  9. The RNA recognition motif domains of RBM5 are required for RNA binding and cancer cell proliferation inhibition

    International Nuclear Information System (INIS)

    Highlights: • RNA recognition motif domains of RBM5 are essential for cell proliferation inhibition. • RNA recognition motif domains of RBM5 are essential for apoptosis induction. • RNA recognition motif domains of RBM5 are essential for RNA binding. • RNA recognition motif domains of RBM5 are essential for caspase-2 alternative splicing. - Abstract: RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required for RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition

  10. The RNA recognition motif domains of RBM5 are required for RNA binding and cancer cell proliferation inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu (China); Zhang, Qing [Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002 (China); Yang, Yu [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu (China); Wu, Chuanfang, E-mail: wuchuanfangsichuan@gmail.com [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu (China)

    2014-02-14

    Highlights: • RNA recognition motif domains of RBM5 are essential for cell proliferation inhibition. • RNA recognition motif domains of RBM5 are essential for apoptosis induction. • RNA recognition motif domains of RBM5 are essential for RNA binding. • RNA recognition motif domains of RBM5 are essential for caspase-2 alternative splicing. - Abstract: RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required for RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.

  11. delta-Opioid receptors exhibit high efficiency when activating trimeric G proteins in membrane domains.

    Science.gov (United States)

    Bourova, Lenka; Kostrnova, Alexandra; Hejnova, Lucie; Moravcova, Zuzana; Moon, Hyo-Eun; Novotny, Jiri; Milligan, Graeme; Svoboda, Petr

    2003-04-01

    Low-density membrane fragments (domains) were separated from the bulk of plasma membranes of human embryonic kidney (HEK)293 cells expressing a delta-opioid (DOP) receptor-Gi1alpha fusion protein by drastic homogenization and flotation on equilibrium sucrose density gradients. The functional activity of trimeric G proteins and capacity of the DOP receptor to stimulate both the fusion protein-linked Gi1alpha and endogenous pertussis-toxin sensitive G proteins was measured as d-Ala2, d-Leu5-enkephalin stimulated high-affinity GTPase or guanosine-5'-[gamma-35S]triphosphate ([35S]GTPgammaS) binding. The maximum d-Ala2-d-Leu5 enkephalin (DADLE)-stimulated GTPase was two times higher in low-density membrane fragments than in bulk of plasma membranes; 58 and 27 pmol/mg/min, respectively. The same difference was obtained for [35S]GTPgammaS binding. Contrarily, the low-density domains contained no more than half the DOP receptor binding sites (Bmax = 6.6 pmol/mg versus 13.6 pmol/mg). Thus, when corrected for expression levels of the receptor, low-density domains exhibited four times higher agonist-stimulated GTPase and [35S]GTPgammaS binding than the bulk plasma membranes. The regulator of G protein signaling RGS1, enhanced further the G protein functional activity but did not remove the difference between domain-bound and plasma membrane pools of G protein. The potency of the agonist in functional studies and the affinity of specific [3H]DADLE binding to the receptor were, however, the same in both types of membranes - EC50 = 4.5 +/- 0.1 x 10(-8) and 3.2 +/- 1.4 x 10(-8) m for GTPase; Kd = 1.2 +/- 0.1 and 1.3 +/- 0.1 nm for [3H]DADLE radioligand binding assay. Similar results were obtained when sodium bicarbonate was used for alkaline isolation of membrane domains. By contrast, detergent-insensitive membrane domains isolated following treatment of cells with Triton X100 exhibited no DADLE-stimulated GTPase or GTPgammaS binding. Functional coupling between the DOP receptor

  12. Streptococcus pneumoniae Genome-wide Identification and Characterization of BOX Element-binding Domains.

    Science.gov (United States)

    Zhang, Qiao; Wang, Changzheng; Wan, Min; Wu, Yin; Ma, Qianli

    2015-11-01

    The BOX elements are short repetitive DNA sequences that distribute randomly in intergenic regions of the Streptococcus pneumoniae genome. The function and origin of such elements are still unknown, but they were found to modulate expression of neighboring genes. Evidences suggested that the modulation's mechanism can be fulfilled by sequence-specific interaction of BOX elements with transcription factor family proteins. However, the type and function of these BOX-binding proteins still remain largely unexplored to date. In the current study we described a synthetic protocol to investigate the recognition and interaction between a highly conserved site of BOX elements and the DNA-binding domains of a variety of putative transcription factors in the pneumococcal genome. With the protocol we were able to predict those high-affinity domain binders of the conserved BOX DNA site (BOX DNA) in a high-throughput manner, and analyzed sequence-specific interaction in the domainDNA recognition at molecular level. Consequently, a number of putative transcription factor domains with both high affinity and specificity for the BOX DNA were identified, from which the helix-turn-helix (HTH) motif of a small heat shock factor was selected as a case study and tested for its binding capability toward the double-stranded BOX DNA using fluorescence anisotropy analysis. As might be expected, a relatively high affinity was detected for the interaction of HTH motif with BOX DNA with dissociation constant at nanomolar level. Molecular dynamics simulation, atomic structure examination and binding energy analysis revealed a complicated network of intensive nonbonded interactions across the complex interface, which confers both stability and specificity for the complex architecture. PMID:27491035

  13. Towards the classification of DYT6 dystonia mutants in the DNA-binding domain of THAP1.

    Science.gov (United States)

    Campagne, Sébastien; Muller, Isabelle; Milon, Alain; Gervais, Virginie

    2012-10-01

    The transcription factor THAP1 (THanatos Associated Protein 1) has emerged recently as the cause of DYT6 primary dystonia, a type of rare, familial and mostly early-onset syndrome that leads to involuntary muscle contractions. Many of the mutations described in the DYT6 patients fall within the sequence-specific DNA-binding domain (THAP domain) of THAP1 and are believed to negatively affect DNA binding. Here, we have used an integrated approach combining spectroscopic (NMR, fluorescence, DSF) and calorimetric (ITC) methods to evaluate the effect of missense mutations, within the THAP domain, on the structure, stability and DNA binding. Our study demonstrates that none of the mutations investigated failed to bind DNA and some of them even bind DNA stronger than the wild-type protein. However, some mutations could alter DNA-binding specificity. Furthermore, the most striking effect is the decrease of stability observed for mutations at positions affecting the zinc coordination, the hydrophobic core or the C-terminal AVPTIF motif, with unfolding temperatures ranging from 46°C for the wild-type to below 37°C for two mutations. These findings suggest that reduction in population of folded protein under physiological conditions could also account for the disease. PMID:22844099

  14. The Actin Binding Protein Adseverin Regulates Osteoclastogenesis

    OpenAIRE

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W. P.; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesi...

  15. Where metal ions bind in proteins.

    OpenAIRE

    Yamashita, M M; Wesson, L.; Eisenman, G.; Eisenberg, D.

    1990-01-01

    The environments of metal ions (Li+, Na+, K+, Ag+, Cs+, Mg2+, Ca2+, Mn2+, Cu2+, Zn2+) in proteins and other metal-host molecules have been examined. Regardless of the metal and its precise pattern of ligation to the protein, there is a common qualitative feature to the binding site: the metal is ligated by a shell of hydrophilic atomic groups (containing oxygen, nitrogen, or sulfur atoms) and this hydrophilic shell is embedded within a larger shell of hydrophobic atomic groups (containing car...

  16. The MTA family proteins as novel histone H3 binding proteins

    Directory of Open Access Journals (Sweden)

    Wu Meng

    2013-01-01

    Full Text Available Abstract Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.

  17. Binding of Protein Factor CTCF within Chicken Genome Alpha-Globin Locus

    Science.gov (United States)

    Kotova, E. S.; Akopov, S. B.; Didych, D. A.; Petrova, N. V.; Iarovaia, O. V.; Razin, S. V.; Nikolaev, L. G.

    2016-01-01

    A systematic search for DNA fragments containing potential CTCF transcription factor binding sites in the chicken alpha-globin domain and its flanking regions was performed by means of the two-dimension electrophoretic mobility shift assay. For the alpha-globin domain fragments selected, the occupancy by the CTCF in erythroid and lymphoid chicken cells was tested by chromatin immunoprecipitation. Only one of 13 DNA fragments capable of CTCF binding in vitro was efficiently bound to this protein in vivo in erythroid cells, and somewhat less efficiently – in lymphoid cells. So, binding of CTCF to the DNA fragment in vitro in most cases does not mean that this fragment will be occupied by CTCF in the cell nucleus. Yet, CTCF binding in vivo, as a rule, is accompanied by the binding of the protein to this DNA region in vitro. During the erythroid differentiation, no significant changes in CTCF binding to the DNA fragments studied were detected. PMID:27099788

  18. Binding of Protein Factor CTCF within Chicken Genome Alpha-Globin Locus.

    Science.gov (United States)

    Kotova, E S; Akopov, S B; Didych, D A; Petrova, N V; Iarovaia, O V; Razin, S V; Nikolaev, L G

    2016-01-01

    A systematic search for DNA fragments containing potential CTCF transcription factor binding sites in the chicken alpha-globin domain and its flanking regions was performed by means of the two-dimension electrophoretic mobility shift assay. For the alpha-globin domain fragments selected, the occupancy by the CTCF in erythroid and lymphoid chicken cells was tested by chromatin immunoprecipitation. Only one of 13 DNA fragments capable of CTCF binding in vitro was efficiently bound to this protein in vivo in erythroid cells, and somewhat less efficiently - in lymphoid cells. So, binding of CTCF to the DNA fragment in vitro in most cases does not mean that this fragment will be occupied by CTCF in the cell nucleus. Yet, CTCF binding in vivo, as a rule, is accompanied by the binding of the protein to this DNA region in vitro. During the erythroid differentiation, no significant changes in CTCF binding to the DNA fragments studied were detected. PMID:27099788

  19. Structure, function, and tethering of DNA-binding domains in σ⁵⁴ transcriptional activators.

    Science.gov (United States)

    Vidangos, Natasha; Maris, Ann E; Young, Anisa; Hong, Eunmi; Pelton, Jeffrey G; Batchelor, Joseph D; Wemmer, David E

    2013-12-01

    We compare the structure, activity, and linkage of DNA-binding domains (DBDs) from σ(54) transcriptional activators and discuss how the properties of the DBDs and the linker to the neighboring domain are affected by the overall properties and requirements of the full proteins. These transcriptional activators bind upstream of specific promoters that utilize σ(54)-polymerase. Upon receiving a signal the activators assemble into hexamers, which then, through adenosine triphosphate (ATP) hydrolysis, drive a conformational change in polymerase that enables transcription initiation. We present structures of the DBDs of activators nitrogen regulatory protein C 1 (NtrC1) and Nif-like homolog 2 (Nlh2) from the thermophile Aquifex aeolicus. The structures of these domains and their relationship to other parts of the activators are discussed. These structures are compared with previously determined structures of the DBDs of NtrC4, NtrC, ZraR, and factor for inversion stimulation. The N-terminal linkers that connect the DBDs to the central domains in NtrC1 and Nlh2 were studied and found to be unstructured. Additionally, a crystal structure of full-length NtrC1 was solved, but density of the DBDs was extremely weak, further indicating that the linker between ATPase and DBDs functions as a flexible tether. Flexible linking of ATPase and DBDs is likely necessary to allow assembly of the active hexameric ATPase ring. The comparison of this set of activators also shows clearly that strong dimerization of the DBD only occurs when other domains do not dimerize strongly. PMID:23818155

  20. Developing novel single molecule analyses of the single-stranded DNA binding protein from Sulfolobus solfataricus

    OpenAIRE

    Morten, Michael J.

    2015-01-01

    Single-stranded DNA binding proteins (SSB) bind to single-stranded DNA (ssDNA) that is generated by molecular machines such as helicases and polymerases. SSBs play crucial roles in DNA translation, replication and repair and their importance is demonstrated by their inclusion across all domains of life. The homotetrameric E. coli SSB and the heterotrimeric human RPA demonstrate how SSBs can vary structurally, but all fulfil their roles by employing oligonucleotide/oligosaccharide binding (OB)...

  1. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues

    OpenAIRE

    Schulz, Timothy A.; Choi, Mal-Gi; Raychaudhuri, Sumana; Mears, Jason A.; Ghirlando, Rodolfo; Hinshaw, Jenny E.; Prinz, William A.

    2009-01-01

    Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein–related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Usin...

  2. Selective coactivation of estrogen-dependent transcription by CITED1 CBP/p300-binding protein

    OpenAIRE

    Yahata, Tetsuro; Shao, Wenlin; Endoh, Hideaki; Hur, Jingyung; Coser, Kathryn R.; Sun, Huiping; Ueda, Yoshitaka; Kato, Shigeaki; Isselbacher, Kurt J.; Brown, Myles; Shioda, Toshi

    2001-01-01

    CITED1, a CBP/p300-binding nuclear protein that does not bind directly to DNA, is a transcriptional coregulator. Here, we show evidence that CITED1 functions as a selective coactivator for estrogen-dependent transcription. When transfected, CITED1 enhanced transcriptional activation by the ligand-binding/AF2 domain of both estrogen receptor-α (ERα) and ERβ in an estrogen-dependent manner, but it affected transcriptional activities of other nuclear receptors only marginally. CITED1 bound direc...

  3. Mutational Analysis of the Streptococcus pneumoniae Bimodular Class A Penicillin-Binding Proteins

    OpenAIRE

    Paik, Johanna; Kern, Iza; Lurz, Rudi; Hakenbeck, Regine

    1999-01-01

    One group of penicillin target enzymes, the class A high-molecular-weight penicillin-binding proteins (PBPs), are bimodular enzymes. In addition to a central penicillin-binding–transpeptidase domain, they contain an N-terminal putative glycosyltransferase domain. Mutations in the genes for each of the three Streptococcus pneumoniae class A PBPs, PBP1a, PBP1b, and PBP2a, were isolated by insertion duplication mutagenesis within the glycosyltransferase domain, documentin...