WorldWideScience

Sample records for binders materials science

  1. Biodegradable materials as foundry moulding sands binders

    OpenAIRE

    K. Major-Gabryś

    2015-01-01

    The aim of this article is to show the possibility of using biodegradable materials as part of the composition of foundry moulding and core sand binders. Research shows that moulding sands with biodegradable materials selected as binders are not only less toxic but are also better suited to mechanical reclamation than moulding sands with phenol-furfuryl resin. The use of biodegradable materials as additives to typical synthetic resins can result in their decreased toxicity and improved abilit...

  2. Biodegradable materials as foundry moulding sands binders

    Directory of Open Access Journals (Sweden)

    K. Major - Gabryś

    2015-07-01

    Full Text Available The aim of this article is to show the possibility of using biodegradable materials as part of the composition of foundry moulding and core sand binders. Research shows that moulding sands with biodegradable materials selected as binders are not only less toxic but are also better suited to mechanical reclamation than moulding sands with phenol-furfuryl resin. The use of biodegradable materials as additives to typical synthetic resins can result in their decreased toxicity and improved ability to reclamation as well as in accelerated biodegradation of binding material leftovers of mechanical reclamation.

  3. Alkali-activated binders : a review : part 2. about materials and binders manufacture

    OpenAIRE

    Torgal, Fernando Pacheco; Gomes, J. P. Castro; Jalali, Said

    2008-01-01

    This paper summarizes current knowledge about alkali-activated binders, by reviewing previously published work. As it is shown in Part 1, alkali-activated binders have emerged as an alternative to (ordinary Portland cement) OPC binders, which seem to have superior durability and environmental impact. The subjects of Part 2 of this paper are prime materials, alkaline activators, additives, curing type and constituents mixing order. Practical problems and theoretical questions are discussed. To...

  4. Biodegradable materials as binders for IVth generation moulding sands

    Directory of Open Access Journals (Sweden)

    K. Major-Gabry

    2015-09-01

    Full Text Available This paper focuses on the possibility of using the biodegradable materials as binders (or parts of binders?compositions for foundry moulding and core sands. Results showed that there is a great possibility of using available biodegradable materials as foundry moulding sand binders. Using biodegradable materials as partial content of new binders, or additives to moulding sands may not only decrease the toxicity and increase reclamation ability of tested moulding sands, but also accelerate the biodegradation rate of used binders, and the new biodegradable additive (PCL did not decrease the strength and thermal properties. In addition, using polycaprolactone (PCL as a biodegradable material may improve the flexibility of moulding sands with polymeric binder and reduce toxicity.

  5. Binder

    Energy Technology Data Exchange (ETDEWEB)

    Tarnavskiy, A.P.; Bayda, Yu.V.; Danyushevskiy, V.S.; Ignat' yev, N.I.

    1979-01-30

    A binder is proposed which includes a slag component and alkaline metal silicate. In order to improve stability to hydrosulfide aggression the binder contains ferromolybdenum slag as the slag component and it also contains sodium fluorosilicate. In order to estimate the hydrogen sulfide resistance of the hardened samples made from the proposed binder the stability factor is determined, which is the ratio of strength during compression of samples, which are stored in an industrial gas pipeline with hydrogen sulfide-containing gas to the strength limit of tested control samples. The binder is corrosion proof, if the stability factor is greater than 0.85. The stability factor of the proposed binder if 1.00--1.03, and for existing ones it is 0.71--0.05.

  6. Volatile binders for nuclear fuel materials

    International Nuclear Information System (INIS)

    A method is described to form and sinter nuclear fuel particles made of uranium dioxide (or other uranium compounds) to which a volatile binder (about 0.5 to 7 wt.%) is added for better processing. Ammonium bicarbonate, ammonium carbonate, and other ammonium compounds are mentioned as binders. The components are mixed, pressed, preheated, then further heated and sintered, and cooling takes place in a controlled atmosphere. 3 examples illustrate the method. (UA)

  7. Method of producing fugitive binder-containing nuclear fuel material

    International Nuclear Information System (INIS)

    A nuclear fuel material green body of density from about 30 to 70% of theoretical density having tensile strength and plasticity adequate to maintain the integrity of the body during processing leading to ultimate sintered condition is produced by adding an amine carbonate or carbamate or mixture thereof to a particulate mass of the nuclear fuel material under conditions resulting in reaction with the amine compound to form a water-soluble compound effective as a binder for the particulate material

  8. Realizing of Optimization of Binder Backfill Material Under Certain Strength with Fuzzy Sets

    Institute of Scientific and Technical Information of China (English)

    崔明义; 胡华

    2001-01-01

    The main factors deciding the compressive strength of binder backfill body are tailing density and binder dosage in binder backfill materials. Based on the antecedent of certain pulp density, the method of increasing the tailing density and reducing the binder dosage, or the manner of cutting down the tailing density and gaining the binder dosage are taken to guarantee the strength of backfill body. The problem that should be solved is how to determine the tailing density and the binder dosage rationally. This paper tries to realize the correct selection of the tailing density and the binder dosage in computer with the method of fuzzy mathematics.

  9. Influence of environment on the historical material with mineral binder

    OpenAIRE

    Štukovnik, Petra

    2015-01-01

    Deterioration of historical materials with mineral binders in buildings of architectural heritage can be influenced by several different factors, which are often the result of changes in the environment where the buildings are located. In order to analyse the damages of these materials and the causes for their occurrence, three buildings of architectural heritage located in three different climatic zones were subjected to visual analysis and non-destructive testing using 3D microscopic system...

  10. Mechanical Activation of Construction Binder Materials by Various Mills

    Science.gov (United States)

    Fediuk, R. S.

    2016-04-01

    The paper deals with the mechanical grinding down to the nano powder of construction materials. During mechanical activation a composite binder active molecules cement minerals occur in the destruction of the molecular defects in the areas of packaging and breaking metastable phase decompensation intermolecular forces. The process is accompanied by a change in the kinetics of hardening of portland cement. Mechanical processes during grinding mineral materials cause, along with the increase in their surface energy, increase the Gibbs energy of powders and, respectively, their chemical activity, which also contributes to the high adhesion strength when contacting them with binders. Thus, the set of measures for mechanical activation makes better use of the weight of components filled with cement systems and adjust their properties. At relatively low cost is possible to provide a spectacular and, importantly, easily repeatable results in a production environment.

  11. The Influence of Aggregate Size and Binder Material on the Properties of Pervious Concrete

    OpenAIRE

    Tun Chi Fu; Weichung Yeih; Jiang Jhy Chang; Ran Huang

    2014-01-01

    Specimens were prepared by altering parameters such as aggregate sizes, binder materials, and the amounts of binder used and were subsequently tested by using permeability, porosity, mechanical strength, and soundness tests. The results indicated that the water permeability coefficient and connected porosity decreased as the amount of binder used increased and increased with increasing aggregate size. In the mechanical strength test, the compressive, splitting tensile, and flexural strengths ...

  12. Materials Science

    Science.gov (United States)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  13. Preparation of Fiber Based Binder Materials to Enhance the Gas Adsorption Efficiency of Carbon Air Filter.

    Science.gov (United States)

    Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young

    2015-10-01

    Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter. PMID:26726459

  14. Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications

    Science.gov (United States)

    Miyanaji, Hadi; Zhang, Shanshan; Lassell, Austin; Zandinejad, Amirali; Yang, Li

    2016-03-01

    Custom ceramic structures possess significant potentials in many applications such as dentistry and aerospace where extreme environments are present. Specifically, highly customized geometries with adequate performance are needed for various dental prostheses applications. This paper demonstrates the development of process and post-process parameters for a dental porcelain ceramic material using binder jetting additive manufacturing (AM). Various process parameters such as binder amount, drying power level, drying time and powder spread speed were studied experimentally for their effect on geometrical and mechanical characteristics of green parts. In addition, the effects of sintering and printing parameters on the qualities of the densified ceramic structures were also investigated experimentally. The results provide insights into the process-property relationships for the binder jetting AM process, and some of the challenges of the process that need to be further characterized for the successful adoption of the binder jetting technology in high quality ceramic fabrications are discussed.

  15. Selection of appropriate polyoxymethylene based binder for feedstock material used in powder injection moulding

    Science.gov (United States)

    Gonzalez-Gutierrez, J.; Stringari, G. B.; Megen, Z. M.; Oblak, P.; von Bernstorff, B. S.; Emri, I.

    2015-04-01

    Polyoxymethylene (POM) has found applications as a binder material in Powder Injection Moulding (PIM) due to its ability to depolymerize rapidly under acidic conditions. Such ability represents an advantage during the binder removal step of PIM. However, currently available POM has high viscosity that can complicate the injection moulding process of parts with complex geometry. For this reason it is necessary to investigate methods of lowering the viscosity of POM-based binders, but without affecting their solid mechanical properties (i.e. creep compliance). In this investigation, the addition of a low molecular weight polymer, and the reduction of the average molecular weight of POM were investigated as possible ways of decreasing the viscosity of PIM binders. The addition of the low molecular weight additive (WAX) caused a small decrease in the viscosity of the POM-based binder and a small increase in its solid creep compliance. On the other hand, lowering the average molecular weight of POM caused a large decrease in viscosity, but also an acceptable increase in creep compliance. Therefore, by selecting an appropriate molecular weight of POM, it is possible to improve the performance of POM-based binders for PIM.

  16. STRUCTURE AND PROPERTIES OF COMPOSITE MATERIAL BASED ON GYPSUM BINDER AND CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    CHUMAK Anastasia Gennadievna

    2013-04-01

    Full Text Available The aim of this work is to carry out a number of studies in the area of nanomodi­fication of gypsum binder matrix and to investigate the influence of multilayer carbon nanotubes on the structure, physical and mechanical properties of obtained compos­ites. The study of the gypsum binders structure formation mechanisms with the use of nanoadditives makes it possible to control the production processes of gypsum materi­als and articles with the given set of properties. The main tasks of the binder nanomodification are: even distribution of carbon nanostructures over the whole volume of material and provision of stability for the nanodimensional modifier during production process of the construction composite.

  17. The Influence of Aggregate Size and Binder Material on the Properties of Pervious Concrete

    Directory of Open Access Journals (Sweden)

    Tun Chi Fu

    2014-01-01

    Full Text Available Specimens were prepared by altering parameters such as aggregate sizes, binder materials, and the amounts of binder used and were subsequently tested by using permeability, porosity, mechanical strength, and soundness tests. The results indicated that the water permeability coefficient and connected porosity decreased as the amount of binder used increased and increased with increasing aggregate size. In the mechanical strength test, the compressive, splitting tensile, and flexural strengths increased as the amount of binder used increased and decreased with the increase of aggregate size. Highly viscous binder enhanced compressive strength, water permeability, and the resistance to sulfate attacks. In the mechanics and sulfate soundness tests, the mix proportion of alkali-activated slag paste used in this study exhibited a superior performance than the Portland cement pervious concrete (the control did, but the difference in water permeability between the two types of concrete was insignificant. The mix proportions of cement paste containing 20% and 30% silica fume exhibited less mechanical strength than the control did. Moreover, compared with the control, the cement paste containing silica fume demonstrated poor resistance to sulfate attacks, and the difference in the water permeability between such specimen and the control was not noticeable.

  18. Effect of the properties of natural resin binder in a high friction composite material

    OpenAIRE

    S. Stephen Bernard; L. S. Jayakumari

    2014-01-01

    In this paper, a high-friction composite material based on the combination of binder, friction modifiers, fibers and fillers is investigated. In the binder, up to 20% of phenol are replaced by cardanol with various weight ratios of 100/0, 95/5, 90/10, 85/15, 80/20. Cardanol may react both through the phenolic group and the double bond of the side chain yielding addition, condensation and polymerisation reactions that allow the synthesis of tailor-made products and polymers of high value. In t...

  19. Lunar building materials: Some considerations on the use of inorganic polymers. [adhesives, coatings, and binders

    Science.gov (United States)

    Lee, S. M.

    1979-01-01

    The use of inorganic polymer systems synthesized from the available lunar chemical elements, viz., silicon, aluminum, and oxygen to make adhesives, binders, and sealants needed in the fabrication of lunar building materials and the assembly of structures is considered. Inorganic polymer systems, their background, status, and shortcomings, and the use of network polymers as a possible approach to synthesis are examined as well as glassy metals for unusual structural strength, and the use of cold-mold materials as well as foam-sintered lunar silicates for lightweight shielding and structural building materials.

  20. A Comparison of New TATBs, FK-800 binder and LX-17-like PBXs to Legacy Materials

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; DePiero, S C; Hoffman, D M

    2009-05-01

    Two newly synthesized versions of the insensitive high explosive (IHE) 1,3,5-triamino-2,4,6-trinitrobenzenes (TATBs) were compared to two legacy explosives currently used by the Department of Energy. Except for thermal analysis, small scale safety tests could not distinguish between the different synthetic routes. Morphologies of new TATBs were less faceted and more spherical. The particle size distribution of one new material was similar to legacy TATBs, but the other was very fine. Densities and submicron structure of the new TATBs were also significantly different from the legacy explosives. Pressed pellets of the new explosives were less dense. New FK-800 binder was used to prepare LX-17-like plastic bonded explosives (PBXs) from new and wet aminated TATB. Some mechanical, thermal and performance characterization of the new binder and LX-17-like PBXs was done. Significant differences were found. The reason for a number of these differences is not well understood.

  1. Materials science symposium 'materials science using accelerators'

    International Nuclear Information System (INIS)

    The facility of the JAERI-Tokai tandem accelerator and its booster has been contributing to advancing heavy-ion sciences in the fields of nuclear physics, nuclear chemistry, atomic and solid-state physics and materials science, taking advantage of its prominent performance of heavy-ion acceleration. This facility was recently upgraded by changing the acceleration tubes and installing an ECR ion-source at the terminal. The radioactive nuclear beam facility (Tokai Radioactive Ion Accelerator Complex, TRIAC) was also installed by the JAERI-KEK joint project. On this occasion, this meeting was held in order to provide a new step for the advancement of heavy-ion science, and to exchange information on recent activities and future plans using the tandem facility as well as on promising new experimental techniques. This meeting was held at Tokai site of JAERI on January 6th and 7th in 2005, having 24 oral presentations, and was successfully carried out with as many as 90 participants and lively discussions among scientists from all the fields of heavy-ion science, including solid-sate physics, nuclear physics and chemistry, and accelerator physics. This summary is the proceedings of this meeting. We would like to thank all the staffs of the accelerators section, participants and office workers in the Department of Materials Science for their support. The 24 of the presented papers are indexed individually. (J.P.N.)

  2. Fugitive binder-containing nuclear fuel material and method of production

    International Nuclear Information System (INIS)

    A nuclear fuel material green body of density from about 30 to 70% of theoretical density having tensile strength and plastici adequate to maintain the integrity of the body during processing leading to ultimate sintered condition is produced by adding one or more amines to a particulate mass of the nuclear fuel containing about five percent of ammonium uranyl carbonate under conditions resulting in reaction of the amine with the ammonium uranyl carbonate, liberation of ammonia and formation of a watersoluble uranyl compound more effective as a binder than the ammonium uranyl carbonate

  3. Rudiments of materials science

    CERN Document Server

    Pillai, SO

    2007-01-01

    Writing a comprehensive book on Materials Science for the benefit of undergraduate courses in Science and Engineering was a day dream of the first author, Dr. S.O. Pillai for a long period. However, the dream became true after a lapse of couple of years. Lucid and logical exposition of the subject matter is the special feature of this book.

  4. Materials Sciences Programs

    International Nuclear Information System (INIS)

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs

  5. Materials Sciences Programs

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. (GHT)

  6. Effect of the properties of natural resin binder in a high friction composite material

    Directory of Open Access Journals (Sweden)

    S. Stephen Bernard

    2014-01-01

    Full Text Available In this paper, a high-friction composite material based on the combination of binder, friction modifiers, fibers and fillers is investigated. In the binder, up to 20% of phenol are replaced by cardanol with various weight ratios of 100/0, 95/5, 90/10, 85/15, 80/20. Cardanol may react both through the phenolic group and the double bond of the side chain yielding addition, condensation and polymerisation reactions that allow the synthesis of tailor-made products and polymers of high value. In the present work, mechanical, thermal and wear characteristics of cardanol based phenolic resin with organic ingredients were manufactured and tested. An analysis of microstructure characteristics of composites was carried out using scanning electron microscope. The effect of environment on the composite was investigated in water, salty water and oil. The results showed that the addition of cardanol reduces the wear resistance and increases the compressibility which reduces the noise propensity.

  7. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    Science.gov (United States)

    Jeong, Woo Yun

    2013-06-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  8. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  9. Sapropel as a Binder: Properties and Application Possibilities for Composite Materials

    Science.gov (United States)

    Obuka, V.; Šinka, M.; Kļaviņš, M.; Stankeviča, K.; Korjakins, A.

    2015-11-01

    Recent development trends largely look for possibilities of a wider use of natural materials and local resources. In this perspective, the use of organic rich lake sediment - sapropel - as a binding material in line with other environmentally friendly filling materials can be considered as a challenge. Sapropel itself is a valuable resource with multiple areas of application, for example, medicine, veterinary, agriculture, livestock farming, balneology, cosmetic applications, construction, and its application options have been widely studied in the 20th century in the Baltic countries, Ukraine and Russia. Birch wood fibre and sanding dust, hemp shives, ‘Aerosil’ are used as a filler and three types of sapropel are used as a binder in making composites. After material preparation and curing, physical and mechanical properties - density, thermal conductivity, compressive and flexural strength, were determined and compared to the data in the literature, and the opportunities to use them in the ecological construction were considered. The obtained results give insight into possibilities to use sapropel as a raw material, which can be considered as prospective material for construction materials and design products.

  10. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Holden, T.M.

    1995-10-01

    The science-based stockpile stewardship program emphasizes a better understanding of how complex components function through advanced computer calculations. Many of the problem areas are in the behavior of materials making up the equipment. The Los Alamos Neutron Science Center (LANSCE) can contribute to solving these problems by providing diagnostic tools to examine parts noninvasively and by providing the experimental tools to understand material behavior in terms of both the atomic structure and the microstructure. Advanced computer codes need experimental information on material behavior in response to stress, temperature, and pressure as input, and they need benchmarking experiments to test the model predictions for the finished part.

  11. Materials Science Programs

    International Nuclear Information System (INIS)

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  12. Next Generation Advanced Binder Chemistries for High Performance, Environmetally DurableThermal Control Material Systems. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative SBIR Phase I proposal will develop new binder systems through the systematic investigations to tailor required unique performance properties and...

  13. Volume 2: Materials Science

    CERN Document Server

    Richter, Silvia; EMC 2008 14th European Microscopy Congress

    2008-01-01

    Proceedings of the14th European Microscopy Congress, held in Aachen, Germany, 1-5 September 2008. Jointly organised by the European Microscopy Society (EMS), the German Society for Electron Microscopy (DGE) and the local microscopists from RWTH Aachen University and the Research Centre Jülich, the congress brings together scientists from Europe and from all over the world. The scientific programme covers all recent developments in the three major areas of instrumentation and methods, materials science and life science.

  14. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  15. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  16. Testing a Novel Geopolymer Binder as a Refractory Material for Rocket Plume Environments at SSC Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project involved the development and testing of a new alumina-silicate based multi-purpose, cost-effective, ‘green’ cementitious binder (geopolymer)...

  17. On the dispersion of lithium-sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders

    Science.gov (United States)

    Hong, Xiaoheng; Jin, Jun; Wen, Zhaoyin; Zhang, Sanpei; Wang, Qingsong; Shen, Chen; Rui, Kun

    2016-08-01

    Sodium carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR), sodium alginate (SA) and LA132 are utilized as the polymer binders for the cathodes of Li-S batteries to study their dispersion mechanism on the cathode materials and the consequent influence on the performance of Li-S batteries. Zeta potential tests, differential scanning calorimetry analysis and calculations of the rotational barriers of the links of the polymer chains by General Atomic and Molecular Electronic Structure System (GAMESS) reveal that higher charge densities and better chain flexibility of the binders promise the dispersion of the downsized cathode materials. LA132 is found to have optimal characteristic for dispersing and stabilizing the cathode materials in aqueous environment. The cycling performance and SEM images of the cathodes demonstrate that cathodes with higher dispersion degree achieve higher discharge capacities. The electrochemical impedance spectroscopy (EIS) results further support that better dispersed cathodes have lower impedance resulting from their well established conducting frameworks.

  18. Evaluation of the rheological behavior of asphaltic binder modified with zeolite material

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, E.M. da; Sant' ana, Hosiberto B.; Soares, Sandra A.; Soares, Jorge B. [Federal University of Ceara, Fortaleza, CE (Brazil)

    2008-07-01

    Several new processes have been developed to reduce mixing and compaction temperatures of hot mix asphalt without sacrificing the quality of the resulting pavement. One of these processes utilizes the zeolite, a crystalline hydrated aluminum silicate. A laboratory study was conducted to determine the applicability of zeolite to improve the rheological and chemical behavior of an asphaltic binder. The synthetic asphaltic binder was produced with different zeolite contents (0,1; 0.3; and 0.5% w/w) by wet process. The rheological and chemical behavior was verified by Dynamic Shear Rheometer and Infrared Spectroscopy, respectively. The zeolite's chemical composition and morphology was studied by Dispersive X-ray Spectroscopy (EDX). Additionally, the scanning electron microscope (SEM) was utilized to establish the zeolite elemental composition. The results showed that investigated zeolite was classified as a sodium aluminum silicate and it was able to modify the rheological properties of the neat asphalt binder. The G*/sin{delta} parameter was affected by the zeolite presence, indicating better performance for the binders with zeolite. The results show that synthetic binders can partly replicate the rheological properties of conventional AB. Comparable complex modulus values was obtained. No significant difference was found in viscoelastic response, given by the phase angles as a function of both temperature and frequency. (author)

  19. Panel 3 - material science

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, John L [Los Alamos National Laboratory; Yip, Sidney [MIT

    2010-01-01

    In the last decades, NNSA's national security challenge has evolved, and the role of simulation and computation has grown dramatically. The process of certifying nuclear weapons performance has changed from one based on integrated tests to science-based certification in which underground nuclear tests have been replaced by large-scale simulations, appropriately validated with fundamental experimental data. Further, the breadth of national security challenges has expanded beyond stewardship of a nuclear deterrent to a broad range of global and asymmetric threats. Materials challenges are central to the full suite of these national security challenges. Mission requirements demand that materials perform predictably in extreme environments -- high pressure, high strain rate, and hostile irradiation and chemical conditions. Considerable advances have been made in incorporating fundamental materials physics into integrated codes used for component certification. On the other hand, significant uncertainties still remain, and materials properties, especially at the mesoscale, are key to understanding uncertainties that remain in integrated weapons performance codes and that at present are treated as empirical knobs. Further, additional national security mission challenges could be addressed more robustly with new and higher performing materials.

  20. Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal

    OpenAIRE

    Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana

    2014-01-01

    Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by ...

  1. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Bernhard Ilschner

    2003-06-01

    This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  2. Crystal structure of the binder phase in a model HfC-TiC-Ni material

    International Nuclear Information System (INIS)

    The crystal structure of the binder phase in a model HfC-TiC-Ni sample produced by hot pressing is investigated. The nature of the binder depends on the amount of Hf and Ti that remains in solution with Ni after cooling. Four different crystal structures are identified by analysis of electron diffraction patterns obtained using transmission electron microscopy techniques and the composition of the phases determined by energy dispersive X-ray spectrometry. Three of the phases are cubic; Ni, Ni3(Ti,Hf) and Ni23(Ti,Hf)6 with lattice parameters of 3.52 ± 0.05, 3.52 ± 0.03 and 10.70 ± 0.40 A, respectively. The hexagonal phase is an intermetallic Ni3Ti phase, with lattice parameters of a = b = 5.00 ± 0.20 A and c = 8.16 ± 0.20 A. The crystal structures are confirmed by simulations of the electron diffraction patterns using JEMS software

  3. Graphene oxide nanosheets/polymer binders as superior electrocatalytic materials for vanadium bromide redox flow batteries

    International Nuclear Information System (INIS)

    Few layered graphene oxide (GO) nanosheets with large specific surface area (42.1 m2 g−1) are successfully prepared by a modified Hummers method for use as electrodes in the vanadium bromide redox battery. The structure and physicochemical properties of GO are investigated by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Cyclic voltammetry results indicate that GO nanosheets with polymer binder (i.e., polyvinylidiene fluoride (PVDF) or sulfonated poly(ether ether ketone) (SPEEK)) hybrids demonstrate more favorable electrocatalytic activity towards the Br−/Br3− and V3+/V2+ redox couples than the pure graphite. This is attributed to the large numbers of oxygen-containing functional groups on the GO nanosheet surface which can generate more active sites to catalyze the redox reactions. For the binder-based electrodes, the SPEEK based electrode gives the best electrochemical performance (e.g., lower overvoltage for both Br−/Br3− and V3+/V2+ redox couple reactions and higher peak currents for the V3+/V2+ redox couple).

  4. Lectin binders

    International Nuclear Information System (INIS)

    Lectins are widely distributed in the plant kingdom, many of them being well characterized in their chemical structure and the effects they have on alien biological systems such as erythrocytes or lymphocytes. The biological function of plant lectins remains speculative. We therefore inspected plant extracts from components which might bind specifically to the lectin from the respective plant. Single proteins (lectin binders) could be isolated from each plant extract. The interaction of these proteins with lectins was demonstrated and qualified by several methods. Similar to the lectins, the lectin binders are localized in the cytoplasm in contrast to them, however, they persist during germination and plant growth. Their precise role in the plant is not known, but they are likely to be associated with lectins not only in vitro but also in vivo. They also interact with alien cells, and are able to stimulate mitosis in murine lymphocytes. Some lectin binders act specifically on B lymphocytes, leaving T cells uninfluenced

  5. Moessbauer Spectroscopy in Materials Science

    International Nuclear Information System (INIS)

    The publication in electronic form has been set up as proceedings of the conference dealing with applications of the Moessbauer spectroscopy in material science. Twenty-three abstracts and twenty-two presentations are included.

  6. Chemistry and Materials Science

    International Nuclear Information System (INIS)

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director's initiatives and individual projects, and transactinium institute studies

  7. Weightless Materials Science

    Science.gov (United States)

    Curtis, Jeremy

    2012-01-01

    Gravity affects everything we do. Only in very recent years have we been able to carry out experiments in orbit around the Earth and see for the first time how things behave in its absence. This has allowed us to understand fundamental processes better and to design new materials using this knowledge. (Contains 6 figures.)

  8. Automotive Friction Materials: from Experience to Science

    Institute of Scientific and Technical Information of China (English)

    Yafei Lu

    2000-01-01

    An optimizing friction material formulation technique based on Golden Section and Relational Grade Analysis was developed. Approach 2 of this technique was tested by using 7 ingredients including 2 fibers, 4 fillers and 1 binder as raw materials. By doing 19 formulations, an optimizing one (BU18)was obtained with stableμ and averageμ = 0.451 and wear = 3.46 wt %.

  9. Setting science free from materialism.

    Science.gov (United States)

    Sheldrake, Rupert

    2013-01-01

    Contemporary science is based on the claim that all reality is material or physical. There is no reality but material reality. Consciousness is a by-product of the physical activity of the brain. Matter is unconscious. Evolution is purposeless. This view is now undergoing a credibility crunch. The biggest problem of all for materialism is the existence of consciousness. Panpsychism provides a way forward. So does the recognition that minds are not confined to brains. PMID:23906099

  10. Materials Science in Ancient Rome

    CERN Document Server

    Sparavigna, Amelia Carolina

    2011-01-01

    Two books, the "De Architectura" by Vitruvius and the "Naturalis Historia" by Pliny the Elder, give us a portrait of the Materials Science, that is, the knowledge of materials, in Rome at the beginning of the Empire. Here, I am reporting some very attractive contents that we can find in these books. The reader will see the discussion proposed in fours case studies: concretes, coatings, amorphous materials and colloidal crystals, to describe them in modern words.

  11. Neutrons for materials science

    International Nuclear Information System (INIS)

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particularly electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Examples are given. Small angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of 'in situ' time dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. High resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasing complex phases. The structure and volume fraction of minority phases can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. (author)

  12. Mineral Wool Insulation Binders

    Science.gov (United States)

    Kowatsch, Stefan

    Mineral wool is considered the best known insulation type among the wide variety of insulation materials. There are three types of mineral wool, and these consist of glass, stone (rock), and slag wool. The overall manufacturing processes, along with features such as specifications and characteristics for each of these types, as well as the role of the binder within the process are described.

  13. Neutrons for materials science

    International Nuclear Information System (INIS)

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particular electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Small-angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of in situ time-dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. Examples will be given of small-angle scattering projects from the nuclear metallurgy, coal, oil, cement, detergent and plastics industries. High-resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasingly complex phases. The structure and volume fraction of minority phase can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Neutron diffraction is unique in being able to measure the full strain tensor from a specified volume within a bulk specimen. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. Examples will be chosen from the field of catalysis where inelastic spectroscopy has revealed the nature of the bonding of hydrocarbon molecules. (author)

  14. Form and Mechanism of Sulfate Attack on Cement-based Material Made of Limestone Powder at Low Water-binder Ratio under Low Temperature Conditions

    Institute of Scientific and Technical Information of China (English)

    LIU Juanhong; SONG Shaomin; XU Guoqiang; XU Weiguo

    2012-01-01

    The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied.The results indicate that when water-binder ratio is lower than 0.40,the cement-based material with limestone powder has insignificant change in appearance after being soaked in 10% magnesium sulfate solution at low temperature for 120 d,and has significant change in appearance after being soaked at the age of 200 d.Expansion damage and exfoliation occur on the surface of concrete test cube at different levels.When limestone powder accounts for about 28 percent of cementitious material,with the decrease of water-binder ratio,the compressive strength loss has gradually decreased after the material is soaked in the magnesium sulfate solution at low temperature at the age of 200 d.After the specimen with the water-binder ratio of less than 0.4 and the limestone powder volume of greater than 20% is soaked in 10% magnesium sulfate solution at low temperature at the age of 200 d,gypsum attack-led destruction is caused to the concrete test cube,without thaumasite sulfate attack.

  15. Advanced batteries materials science aspects

    CERN Document Server

    Huggins, Robert A

    2008-01-01

    Storage and conversion are critical components of important energy-related technologies. This title employs materials science concepts and tools to describe the features that control the behavior of advanced electrochemical storage systems. It focuses on the basic phenomena that determine the properties of the components.

  16. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  17. Next Generation Advanced Binder Chemistries for High Performance, Environmentally DurableThermal Control Material Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative SBIR Phase II proposal will develop next generation products for Thermal Control Material Systems (TCMS) an adhesives based on the next generation...

  18. Materials Sciences Division 1990 annual report

    International Nuclear Information System (INIS)

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals

  19. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  20. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  1. Materials Sciences Division long range plan

    International Nuclear Information System (INIS)

    The intent of this document is to provide a framework for programmatic guidance into the future for Materials Sciences. The Materials Sciences program is the basic research program for materials in the Department of Energy. It includes a wide variety of activities associated with the sciences related to materials. It also includes the support for developing, constructing, and operating major facilities which are used extensively but not exclusively by the materials sciences

  2. Influence of the binder nature and the temperature on the chloride transport through cementitious materials

    International Nuclear Information System (INIS)

    The objective of this work is to document the effect of the temperature on the chloride diffusion through cement-based materials. The chloride diffusion coefficient, the penetration profiles and the chloride interactions with the solid phase were highlighted. The materials were CEM I and CEM V/A mortars and pastes. They were cured in wet room (21 ± 2 C, 90% relative humidity) for 1 month in the case of CEM I and 3 months in the case of CEM V before the experiments started. The temperature levels were 5, 21, 35 and 80 C.In addition, microstructure analyses were carried on using X-rays diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. The experimental results were then used to continue to develop the numerical code, MsDiff, developed in our research group. A good agreement between the numerical concentration profiles and the experimental ones was found. (author)

  3. Hybrid CuO/SnO2 nanocomposites: Towards cost-effective and high performance binder free lithium ion batteries anode materials

    International Nuclear Information System (INIS)

    Hybrid CuO/SnO2 nanocomposites are synthesized by a facile thermal annealing method on Cu foils. Compared to pristine CuO and SnO2 nanostructures, hybrid CuO/SnO2 nanocomposites exhibit the enhanced electrochemical performances as the anode material of lithium ion batteries (LIBs) with high specific capacity and excellent rate capability. The binder free CuO/SnO2 nanocomposites deliver a specific capacity of 718 mA h g−1 at a current density of 500 mA g−1 even after 200 cycles. The enhanced electrochemical performances are attributed to the synergistic effect between SnO2 nanoparticles and CuO nanoarchitectures. Such hybrid CuO/SnO2 nanocomposites could open up a new route for the development of next-generation high-performance and cost-effective binder free anode material of LIBs for mass production.

  4. Innovative organic binders for metallurgy and the refractories industry

    OpenAIRE

    Zemlyanoi, K. G.; Kiik, A. A.; Markova, S. V.; Kormina, I. V.

    2013-01-01

    Questions related to the use of binders for briquetting in industry are considered. Results of pilot-plant and industrial tests of domestically produced innovative binders are presented. © 2013 Springer Science+Business Media New York.

  5. Study of ice formation in the porosity of hydraulic binder based materials

    International Nuclear Information System (INIS)

    This work concerns the nuclear waste management problematic, and aims at contributing to a better prediction of concrete freeze / thaw behaviour. Ice formation in the porosity of cement pastes and concrete was studied using differential scanning calorimetry and a thermodynamic model. It is shown that ice formation low temperatures in the pores can't be explained considering only interstitial solution under-cooling induced by crystal size restrictions, dissolved chemical elements, and containment pressures. On the other hand, taking into account the nucleation theory and the porosity division degree, three ice formation mechanisms can be defined, near -10, -25 et -40 deg. C. These results allow to explain freeze / thaw behaviour differences between blended and portland cement based materials, as well as, probably, between some high performance concrete, and allow to consider using differential scanning calorimetry as a tool for testing concrete freeze / thaw behaviour. In addition, this study highlights an irreversible shrinkage for cement pastes and concrete induced by freeze / thaw cycles without provision of water, and, on the basis of small angle neutrons scattering measures, the presence of a fractal surface type porosity in high performance cement pastes. (author)

  6. Nanoscale tomography in materials science

    Directory of Open Access Journals (Sweden)

    Günter Möbus

    2007-12-01

    Full Text Available In materials science, various techniques for three-dimensional reconstruction of microstructures have been applied successfully for decades, such as X-ray tomography and mechanical sectioning. However, in the last decade the family tree of methods has grown significantly. This is partly through advances in instrumentation. The introduction of the focused ion beam microscope and the transformation of transmission electron microscopy into a multipurpose analytical and structural tool have made major impacts. The main driving force for progress is perhaps the advent of nanotechnology with the need to achieve nanometer-scale resolution and the desire to get a real three-dimensional view of the nanoscale world.

  7. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  8. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  9. Inertial Confinement Fusion Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, A V

    2004-06-01

    Demonstration of thermonuclear ignition and gain on a laboratory scale is one of science's grand challenges. The National Ignition Facility (NIF) is committed to achieving inertial confinement fusion (ICF) by 2010. Success in this endeavor depends on four elements: the laser driver performance, target design, experimental diagnostics performance, and target fabrication and target materials performance. This article discusses the current state of target fabrication and target materials performance. The first three elements will only be discussed insofar as they relate to target fabrication specifications and target materials performance. Excellent reviews of the physics of ICF are given by Lindl [Lindl 1998] and Lindl et al. [Lindl 2004]. To achieve conditions under which inertial confinement is sufficient to achieve thermonuclear burn, an imploded fuel capsule is compressed to conditions of high density and temperature. In the laboratory a driver is required to impart energy to the capsule to effect an implosion. There are three drivers currently being considered for ICF in the laboratory: high-powered lasers, accelerated heavy ions, and x rays resulting from pulsed power machines. Of these, high-powered lasers are the most developed, provide the most symmetric drive, and provide the most energy. Laser drive operates in two configurations. The first is direct drive where the laser energy impinges directly on the ICF capsule and drives the implosion. The second is indirect drive, where the energy from the laser is first absorbed in a high-Z enclosure or hohlraum surrounding the capsule, and the resulting x-rays emitted by the hohlraum material drives the implosion. Using direct drive the laser beam energy is absorbed by the electrons in the outer corona of the target. The electrons transport the energy to the denser shell region to provide the ablation and the resulting implosion. Laser direct drive is generally less efficient and more hydrodynamically unstable

  10. Use of step scan FT-IR and multivariate curve resolution to understand aging of propellant binder as a function of depth into the polymer material.

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, Dion Arledge; Alam, Mary Kathleen

    2003-01-01

    A sample of polymeric propellant binder was aged from 0 to 60 days at 95 C and analyzed using FT-IR step scan photoacoustic spectroscopy. This technique has the ability of to obtain spectra of the polymer as a function of depth into the polymer material. Multivariate curve resolution was applied to the spectra data obtained to extract the contributions of the aged and un-aged spectral components from the spectra. It was found that multivariate curve resolution could efficiently separate highly overlapped spectra and yielded insights into the aging process.

  11. Metal-phosphate binders

    Science.gov (United States)

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  12. Influence of Binder in Iron Matrix Composites

    International Nuclear Information System (INIS)

    The ability to use iron and its alloys as the matrix material in composite systems is of great importance because it is the most widely used metallic material with a variety of commercially available steel grades [1]. The aim of this study is to investigate the influence of binder in particulate iron based metal matrix composites. There are four types of binder that were used in this study; Stearic Acid, Gummi Arabisch, Polyvinyl alcohol 15000 MW and Polyvinyl alcohol 22000 MW. Six different weight percentage of each binder was prepared to produce the composite materials using powder metallurgy (P/M) route; consists of dry mixing, uniaxially compacting at 750 MPa and vacuum sintering at 1100 deg. C for two hours. Their characterization included a study of density, porosity, hardness and microstructure. Results indicate that MMC was affected by the binder and stearic acid as a binder produced better properties of the composite.

  13. Alternative binder for copper concentrate briquetting

    Directory of Open Access Journals (Sweden)

    J. Łabaj

    2015-10-01

    Full Text Available In the paper, results of investigations on the use of new, alternative binder, based on technical grade glycerine and higher alcohols, for copper matte briquetting are presented. The use of alternative binder yields briquettes that show better drop and compressive strength properties compared with briquettes produced using traditional, sulphite lye binding material.

  14. Alternative binder for copper concentrate briquetting

    OpenAIRE

    J. Łabaj; M. Jodkowski; Szeja, W.; Helhmann, J.; Kozioł, M.

    2015-01-01

    In the paper, results of investigations on the use of new, alternative binder, based on technical grade glycerine and higher alcohols, for copper matte briquetting are presented. The use of alternative binder yields briquettes that show better drop and compressive strength properties compared with briquettes produced using traditional, sulphite lye binding material.

  15. Lithium ion batteries made of electrodes with 99 wt% active materials and 1 wt% carbon nanotubes without binder or metal foils

    Science.gov (United States)

    Hasegawa, Kei; Noda, Suguru

    2016-07-01

    Herein, we propose lithium ion batteries (LIBs) without binder or metal foils, based on a three-dimensional carbon nanotube (CNT) current collector. Because metal foils occupy 20-30 wt% of conventional LIBs and the polymer binder has no electrical conductivity, replacing such non-capacitive materials is a valid approach for improving the energy and power density of LIBs. Adding only 1 wt% of few-wall CNTs to the active material enables flexible freestanding sheets to be fabricated by simple dispersion and filtration processes. Coin cell tests are conducted on full cells fabricated from a 99 wt% LiCoO2-1 wt% CNT cathode and 99 wt% graphite-1 wt% CNT anode. Discharge capacities of 353 and 306 mAh ggraphite-1 are obtained at charge-discharge rates of 37.2 and 372 mA ggraphite-1, respectively, with a capacity retention of 65% at the 500th cycle. The suitability of the 1 wt% CNT-based composite electrodes for practical scale devices is demonstrated with laminate cells containing 50 × 50 mm2 electrodes. Use of metal combs instead of metal foils enables charge-discharge operation of the laminate cell without considerable IR drop. Such electrodes will minimize the amount of metal and maximize the amount of active materials contained in LIBs.

  16. Powder injection molding of HA/Ti6Al4V composite using palm stearin as based binder for implant material

    International Nuclear Information System (INIS)

    Highlights: • Fabrication of HA/Ti6Al4V composite using powder injection molding. • Rheological results show that palm stearin is suitable as binder. • Resulted mechanical properties in between titanium alloy and HA values. • Micro porous enable accelerated bioactivity based on in vitro test. - Abstract: Titanium alloy (Ti6Al4V) and hydroxyapatite (HA) are well-known materials applied in implants. Ti6Al4V shows good mechanical properties and corrosion resistance, whereas HA possesses excellent biocompatibility and bioactivity but weak mechanical properties. The combination of the Ti6Al4V and HA properties is expected to produce a superior material for bio-implants. This study aimed to analyze the feasibility of fabricating HA/Ti6Al4V composites through powder injection molding (PIM) using palm stearin as base binder. In this study, 90 wt% Ti6Al4V and 10 wt% HA were mixed with the palm stearin and polyethylene binder system. The HA/Ti6Al4V feedstock showed pseudoplastic properties, suggesting its suitability for PIM. Flexural test revealed that the strength of the sintered composite ranges from 67.12 MPa to 112.97 MPa and its Young’s modulus ranges from 39.28 GPa to 44.25 GPa. The X-ray diffraction patterns and energy-dispersive X-ray spectra of the composite showed that the HA decomposed and formed secondary phases. Isotropic porous structure was observed on the sintered sample because of HA decomposition. Results showed that the palm stearin can be used as based binder in fabricating HA/Ti6Al4V composites via PIM. The mechanical properties of the sintered composites are nearly similar to those of the human bone. In addition, the increase in weight of the sintered composite during in vitro tests indicated the nucleation and growth of the Ca–P phase, which exhibited the biocompatibility of the fabricated HA/Ti6Al4V composite

  17. Materials sciences programs, fiscal year 1994

    International Nuclear Information System (INIS)

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects

  18. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  19. Hybrid CuO/SnO{sub 2} nanocomposites: Towards cost-effective and high performance binder free lithium ion batteries anode materials

    Energy Technology Data Exchange (ETDEWEB)

    Xing, G. Z. [Pillar of Engineering Product Development, Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682 (Singapore); School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia); Wang, Y.; Wong, J. I.; Shi, Y. M.; Huang, Z. X.; Yang, H. Y., E-mail: yanghuiying@sutd.edu.sg [Pillar of Engineering Product Development, Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682 (Singapore); Li, S. [School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2014-10-06

    Hybrid CuO/SnO{sub 2} nanocomposites are synthesized by a facile thermal annealing method on Cu foils. Compared to pristine CuO and SnO{sub 2} nanostructures, hybrid CuO/SnO{sub 2} nanocomposites exhibit the enhanced electrochemical performances as the anode material of lithium ion batteries (LIBs) with high specific capacity and excellent rate capability. The binder free CuO/SnO{sub 2} nanocomposites deliver a specific capacity of 718 mA h g{sup −1} at a current density of 500 mA g{sup −1} even after 200 cycles. The enhanced electrochemical performances are attributed to the synergistic effect between SnO{sub 2} nanoparticles and CuO nanoarchitectures. Such hybrid CuO/SnO{sub 2} nanocomposites could open up a new route for the development of next-generation high-performance and cost-effective binder free anode material of LIBs for mass production.

  20. Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor.

    Science.gov (United States)

    Zou, Yuqin; Wang, Shuangyin

    2015-01-01

    Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are used as both current collector and electrode materials for flexible supercapacitors, in which the in-situ exfoliated graphene act as active materials and conductive "binders". The in-situ electrochemical intercalation technique ensures the low contact resistance between electrode (graphene) and current collector (carbon cloth) with enhanced conductivity. The as-prepared electrode materials show significantly improved performance for flexible supercapacitors. PMID:26149290

  1. The idea of material science virtual laboratory

    OpenAIRE

    L.A. Dobrzański; R. Honysz

    2010-01-01

    Purpose: This article was written to describe the Material Science Virtual Laboratory. Presented laboratory is an open scientific, investigative, simulating and didactic medium helpful in the realisation of the scientific and didactic tasks in the field of material Science. This laboratory is implemented in the Institute of Engineering Materials and Biomaterials of Silesian University of Technology in Gliwice, Poland.Design/methodology/approach: The laboratory is an aggregate of testers and t...

  2. Radiation materials science. V. 10

    International Nuclear Information System (INIS)

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  3. Radiation materials science. V. 6

    International Nuclear Information System (INIS)

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  4. Radiation materials science. V. 5

    International Nuclear Information System (INIS)

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  5. Radiation materials science. V. 8

    International Nuclear Information System (INIS)

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  6. Radiation materials science. V. 9

    International Nuclear Information System (INIS)

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  7. The Science of Smart Materials

    Science.gov (United States)

    Boohan, Richard

    2011-01-01

    Over the last few decades, smart materials have become increasingly important in the design of products. Essentially, a smart material is one that has been designed to respond to a stimulus, such as a change in temperature or magnetic field, in a particular and useful way. This article looks at a range of smart materials that are relatively…

  8. Radiation materials science. V. 7

    International Nuclear Information System (INIS)

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  9. Crystal growth and computational materials science

    International Nuclear Information System (INIS)

    The proceedings of the international conference on advanced materials discusses the advances being made in the area of single crystals, their preparation and device development from these crystals and details of the progress that is taking place in the computational field relating to materials science. Computational materials science makes use of advanced simulation tools and computer interfaces to develop a virtual platform which can provide a model for real-time experiments. This book includes selected papers in topics of crystal growth and computational materials science. We are confident that the new concepts and results presented will stimulate and enhance progress of research on crystal growth and computational materials science. Papers relevant to INIS are indexed separately

  10. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum)

  11. 3. Interindustry conference on reactor materials science

    International Nuclear Information System (INIS)

    This document contains abstracts on papers presented at the Third Interindustry Conference on Reactor Materials Science (Dimitrovgrad, 27-30 October 1992). The subject scope of the papers is a follows: fuel and fuel elements of power reactors; structural materials of fast breeder reactors and thermonuclear reactors; structural materials of WWER and RBMK type reactors; absorbers and moderators

  12. Materials science for nuclear detection

    Directory of Open Access Journals (Sweden)

    Anthony Peurrung

    2008-03-01

    Full Text Available The increasing importance of nuclear detection technology has led to a variety of research efforts that seek to accelerate the discovery and development of useful new radiation detection materials. These efforts aim to improve our understanding of how these materials perform, develop formalized discovery tools, and enable rapid and effective performance characterization. We provide an overview of these efforts along with an introduction to the history, physics, and taxonomy of radiation detection materials.

  13. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  14. Materials Sciences programs, Fiscal Year 1983

    International Nuclear Information System (INIS)

    The Materials Sciences Division constitutes one portion of a wide range of research supported by the DOE Office of Basic Energy Sciences. This report contains a listing of research underway in FY 1983 together with a convenient index to the program

  15. First principles phonon calculations in materials science

    OpenAIRE

    Togo, Atsushi; Tanaka, Isao

    2015-01-01

    Phonon plays essential roles in dynamical behaviors and thermal properties, which are central topics in fundamental issues of materials science. The importance of first principles phonon calculations cannot be overly emphasized. Phonopy is an open source code for such calculations launched by the present authors, which has been world-widely used. Here we demonstrate phonon properties with fundamental equations and show examples how the phonon calculations are applied in materials science.

  16. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  17. Computational materials science: Nanoscale plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2002-01-01

    How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour....

  18. UPDATED INSIGHT ON FOAM BINDER GRANULATION

    OpenAIRE

    Saikh Mahammed Athar Alli

    2013-01-01

    To have updated handy reference as source of outstanding knowledge on foam binder granulation process in granulating the material(s). Granulation considered being important unit operation for producing pharmaceutical oral dosage forms. Revolutionising binder application methodology as advancement of wet granulation process best owed said process. It is a modified version of atomised spraying method and gaining wide acceptance. Product and process development calls for method of optimisation i...

  19. Neutron imaging in materials science

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2011-06-01

    Full Text Available Neutron imaging is a non-destructive technique that can reveal the interior of many materials and engineering components and also probe magnetic fields. Within the past few years, several new imaging modes have been introduced that extend the scope of neutron imaging beyond conventional neutron attenuation imaging, yielding both 2- and 3D information about properties and phenomena inaccessible until now. We present an overview of the most important advances in the application of neutron imaging in materials research with a focus on novel techniques such as energy-selective imaging, interferometric imaging with phase gratings, and polarized-neutron imaging. Examples given include the investigation of fluid dynamics in fuel cells, materials phases and structural heterogeneities, distribution of strains, and magnetic structures or phase transitions.

  20. Introduction into modern materials science

    International Nuclear Information System (INIS)

    This book is divided into the following headings: Preliminary remarks on mathematics, statistical mechanics, intermolecular interactions; gases and fluids - general fundamentals, liquids and solutions, crystals, metals and alloys, non-metallic solids, composites; thermodynamic properties, mechanical properties, electric conductivity, dielectric and magnetic properties, surface effects, and materials testing - an outline. (orig./MM) With 128 figs., 21 tabs

  1. Synchrotron radiation in material science

    International Nuclear Information System (INIS)

    A brief review on the several experimental techniques (XRD, SAXS, EXAFS, IRRS, etc...) which, utilizing of synchrotron radiation can be applied in glass structural studies, is presented. The major part of these techniques can be also used for studies of other materials such as polymers, metals, etc... (L.C.)

  2. Modeling binder removal in ceramic compacts

    Science.gov (United States)

    Incledon, Matthew L.

    Binder is often added to ceramic systems to provide mechanical strength to the green bodies during processing. The binder removal sequence for an individual system is difficult to predict due to the thermal reaction and mass transport of the volatile products. The objective of this work is to use computational methods to predict the kinetics of binder removal as a function of composition, particle size, pore size and tortuosity, temperature, body size and shape, etc.. The model will be used to predict the composition, temperature, and pore pressure as a function of time, position within the body, and heating sequence parameters. This will provide the ability to predict optimum heating sequences that minimize processing time and energy input while avoiding harmful high internal pressures and temperatures. Since there are many binder systems in use, a few specific cases will be considered. TGA (thermogravimetric analysis) of binders will be used to measure kinetics parameters that are inputs for the computational model. A framework will be developed to assess the binder removal sequence for a binder and ceramic system. The input for the model, computed in COMSOL Multiphysics, will be determined through analysis of TGA weight loss data and green body characterization. A set of tools will be presented that assist in the fitting of the TGA data, including the binder degrading into multiple species, higher order reactions, parallel and series reactions, etc.. The use of these ideas and tools will allow the modeler to better predict the heating sequence required for a ceramic and binder system to successfully remove all binder material.

  3. The Materials Science of Superheroes

    Science.gov (United States)

    Kakalios, James

    2008-03-01

    While materials scientists don't typically consult comic books when selecting research topics, innovations first introduced in superhero adventures as fiction can sometimes find their way off the comic book page and into reality. As amazing as the Fantastic Four's powers is the fact that their costumes are undamaged when the Human Torch flames on or Mr. Fantastic stretches his elastic body. In shape memory materials, an external force or torque induces a structural change that is reversed upon warming. Smart fabrics used in hiking clothing expand at low temperatures, while other materials increase their porosity at higher temperatures, allowing body heat and water vapor to escape. Some polymers can be stretched to over twice their normal dimensions and return to their original state when annealed, a feature appreciated by Mr. Fantastic. In order to keep track of the Invisible Woman, the Fantastic Four's arch nemesis Dr. Doom employed sensors in the eye-slits of his armored face-plate, using the same physics underlying night vision goggles. Certain forms of blindness may be treated using an artificial retina consisting of silicon microelectrode arrays, surgically attached to the back of the eye, that transmit a voltage to the optic nerve proportional to the incident visible light intensity (one of the few positive applications of Dr. Doom's scheming). Spider-Man's wall crawling ability has been ascribed to the same van der Waals attractive force that gecko lizards employ through the millions of microscopic hairs on their toes. Scientists have recently developed ``gecko tape,'' consisting of arrays of fibers that provide a strong enough attraction to support a modest weight. Before this tape is able to support a person, however, major materials constraints must be overcome (if this product ever becomes commercially available, I for one will never wait for the elevator again!) All this, and the chemical composition of Captain America's shield, will be discussed.

  4. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility)

  5. Neutron imaging in materials science

    OpenAIRE

    Nikolay Kardjilov; Ingo Manke; André Hilger; Markus Strobl; John Banhart

    2011-01-01

    Neutron imaging is a non-destructive technique that can reveal the interior of many materials and engineering components and also probe magnetic fields. Within the past few years, several new imaging modes have been introduced that extend the scope of neutron imaging beyond conventional neutron attenuation imaging, yielding both 2- and 3D information about properties and phenomena inaccessible until now. We present an overview of the most important advances in the application of neutron imagi...

  6. Editorial: Defining materials science: A vision from APL Materials

    Science.gov (United States)

    MacManus-Driscoll, Judith

    2014-07-01

    These are exciting times for materials science—a field which is growing more rapidly than any other physical science discipline. More than ever, the field is providing the vital link between science and engineering, between pure and applied. But what is the subject's definition and why is the field ballooning? I address these questions in the context of how APL Materials intends to play a role in advancing this important field. My introspective focus arises as we approach the first year anniversary of APL Materials.

  7. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  8. Characteristics and Electrochemical Performance of Si-Carbon Nanofibers Composite as Anode Material for Binder-Free Lithium Secondary Batteries.

    Science.gov (United States)

    Hyun, Yura; Park, Heai-Ku; Park, Ho-Seon; Lee, Chang-Seop

    2015-11-01

    The carbon nanofibers (CNFs) and Si-CNFs composite were synthesized using a chemical vapor deposition (CVD) method with an iron-copper catalyst and silicon-covered Ni foam. Acetylene as a carbon source was flowed into the quartz reactor of a tubular furnace heated to 600 degrees C. This temperature was maintained for 10 min to synthesize the CNFs. The morphologies, compositions, and crystal quality of the prepared CNFs were characterized by Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), X-ray Diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The electrochemical characteristics of the Si-CNFs composite as an anode of the Li secondary batteries were investigated using a three-electrode cell. The as-deposited Si-CNF composite on the Ni foam was directly employed as an working electrode without any binder, and lithium foil was used as the counter and reference electrode. A glass fiber separator was used as the separator membrane. Two kinds of electrolytes were employed; 1) 1 M LiPF6 was dissolved in a mixture of EC (ethylene carbonate): PC (propylene carbonate): EMC (Ethyl methyl carbonate) in a 1:1:1 volume ratio and 2) 1 M LiClO4 was dissolved in a mixture of propylene carbonate (PC): ethylene carbonate (EC) in a 1:1 volume ratio. The galvanostatic charge-discharge cycling and cyclic voltammetry measurements were carried out at room temperature by using a battery tester. The resulting Si-CNFs composite achieved the large discharge capacity of 613 mAh/g and much improved cycle-ability with the retention rate of 87% after 20 cycles. PMID:26726625

  9. Metallurgy, the Father of Materials Science

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The evolution of the discipline of materials science during the second half of the twentieth century is outlined. The concept emerged in the USA, almost simultaneously in an academic metallurgy department and in an avant-garde industrial research laboratory, and its development subsequently all over the world has been a joint enterprise involving universities, industrial laboratories and government establishments. The initial impetus came unambiguously from the well established discipline of physical metallurgy, but from the 1960s onwards, the input from solid-state physicists grew very rapidly, while materials chemistry is a later addition. Of all the many subdivisions of modern materials science, polymer science has been the slowest to fit under the umbrella of the broad discipline; its concepts are very different from those familiar to metallurgists. Two fields have contributed mightily to the creation of modern materials science: One is nuclear energy and, more specifically, the study of radiation damage, the other is the huge field of electronic and opto-electronic materials in which physics, chemistry and metallurgy are seamlessly combined.

  10. Materials and Chemical Sciences Division annual report, 1987

    International Nuclear Information System (INIS)

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described

  11. Materials and Chemical Sciences Division annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  12. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  13. Materials Sciences programs, Fiscal Year 1992

    International Nuclear Information System (INIS)

    The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. This report contains a listing of research underway in FY 1992 together with an index to the Division's programs. Recent publications from Division-sponsored panel meetings and workshops are listed. The body of the report is arranged under the following section headings: laboratories, grant and contract research, small business innovation research, major user facilities, other user facilities, funding levels, and index

  14. The future research of material science

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hironobu [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    High Energy Accelerator Research Organization (KEK), which was established on 1 April, consists of two institutes. One of these is Institute of Materials Structure Science. New research program in the new institute using synchrotron radiation, neutrons and muons are discussed. (author)

  15. Materials Sciences programs, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  16. The future research of material science

    International Nuclear Information System (INIS)

    High Energy Accelerator Research Organization (KEK), which was established on 1 April, consists of two institutes. One of these is Institute of Materials Structure Science. New research program in the new institute using synchrotron radiation, neutrons and muons are discussed. (author)

  17. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  18. Material Science and Engineering with Neutron Imaging

    Science.gov (United States)

    Penumadu, D.

    This chapter summarizes some of the results related to the use of neutron imaging (radiography and tomography) as applied to the broad area of materials science and engineering research. These include multi-phase flow visualization in metal casting techniques, energy-selective imaging of materials and its use for texture and stress imaging in polycrystalline materials, characterization of discrete particle systems, flow through porous media, and stroboscopic imaging. The importance of spatial resolution and neutron detector type for given engineering applications is also addressed.

  19. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    The facility of the JAERI tandem accelerator and its booster has been contributing to advancing heavy ion science researches in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking advantage of its prominent performances in providing various heavy ions. This meeting, as well as the previous ones held twice, offered scientists from the fields of heavy ion science, including nuclear physics, solid-state physics and cross-field physics, an opportunity to have active discussions among them, as well as to review their research accomplishments in the last two years. Oral presentations were selected from a wider scope of prospective fields, expecting a new step of advancing in heavy ion science. Main topics of the meeting were the status of the JAERI-KEK joint project of developing a radioactive nuclear beam (RNB) facility and research programs related to the RNB. This meeting was held at Advanced Science Research Center in JAERI-Tokai on January 8th and 9th in 2003, and successfully carried out with as many as 190 participants and a lot of sincere discussions. The proceedings are presented in this report. The 51 of the presented papers are indexed individually. (J.P.N.)

  20. Chemistry and Materials Science Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rhodie, K B; Mailhiot, C; Eaglesham, D; Hartmann-Siantar, C L; Turpin, L S; Allen, P G

    2004-04-21

    Lawrence Livermore National Laboratory's mission is as clear today as it was in 1952 when the Laboratory was founded--to ensure our country's national security and the safety and reliability of its nuclear deterrent. As a laboratory pursuing applied science in the national interest, we strive to accomplish our mission through excellence in science and technology. We do this while developing and implementing sound and robust business practices in an environment that emphasizes security and ensures our safety and the safety of the community around us. Our mission as a directorate derives directly from the Laboratory's charter. When I accepted the assignment of Associate Director for Chemistry and Materials Science (CMS), I talked to you about the need for strategic balance and excellence in all our endeavors. We also discussed how to take the directorate to the next level. The long-range CMS strategic plan presented here was developed with this purpose in mind. It also aligns with the Lab's institutional long-range science and technology plan and its 10-year facilities and infrastructure site plan. The plan is aimed at ensuring that we fulfill our directorate's two governing principles: (1) delivering on our commitments to Laboratory programs and sponsors, and (2) anticipating change and capitalizing on opportunities through innovation in science and technology. This will require us to attain a new level of creativity, agility, and flexibility as we move forward. Moreover, a new level of engagement in partnerships with other directorates across the Laboratory as well as with universities and other national labs will also be required. The group of managers and staff that I chartered to build a strategic plan identified four organizing themes that define our directorate's work and unite our staff with a set of common goals. The plan presented here explains how we will proceed in each of these four theme areas: (1) Materials properties and

  1. Understanding solids the science of materials

    CERN Document Server

    Tilley, Richard J D

    2005-01-01

    A modern introduction to the subject taking a unique integrated approach designed to appeal to both science and engineering students. Covering a broad spectrum of topics, this book includes numerous up-to-date examples of real materials with relevant applications and a modern treatment of key concepts. The science bias allows this book to be equally accessible to engineers, chemists and physicists. * Carefully structured into self-contained bite-sized chapters to enhance student understanding * Questions have been designed to reinforce the concepts presented * Includes coverage of radioactivit

  2. Preparation of a Binder-Free Three-Dimensional Carbon Foam/Silicon Composite as Potential Material for Lithium Ion Battery Anodes.

    Science.gov (United States)

    Roy, Amit K; Zhong, Mingjie; Schwab, Matthias Georg; Binder, Axel; Venkataraman, Shyam S; Tomović, Željko

    2016-03-23

    We report a novel three-dimensional nitrogen containing carbon foam/silicon (CFS) composite as potential material for lithium ion battery anodes. Carbon foams were prepared by direct carbonization of low cost, commercially available melamine formaldehyde (MF, Basotect) foam precursors. The carbon foams thus obtained display a three-dimensional interconnected macroporous network structure with good electrical conductivity (0.07 S/cm). Binder free CFS composites used for electrodes were prepared by immersing the as-fabricated carbon foam into silicon nanoparticles dispersed in ethanol followed by solvent evaporation and secondary pyrolysis. In order to substantiate this new approach, preliminary electrochemical testing has been done. The first results on CFS electrodes demonstrated initial capacity of 1668 mAh/g with 75% capacity retention after 30 cycles of subsequent charging and discharging. In order to further enhance the electrochemical performance, silicon nanoparticles were additionally coated with a nitrogen containing carbon layer derived from codeposited poly(acrylonitrile). These carbon coated CFS electrodes demonstrated even higher performance with an initial capacity of 2100 mAh/g with 92% capacity retention after 30 cycles of subsequent charging and discharging. PMID:26909748

  3. Controlled Synthesis of Carbon Nanofibers Anchored with Zn(x)Co(3-x)O4 Nanocubes as Binder-Free Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Renzhong; Hu, Yi; Shen, Zhen; Chen, Yanli; He, Xia; Zhang, Xiangwu; Zhang, Yan

    2016-02-01

    The direct growth of complex ternary metal oxides on three-dimensional conductive substrates is highly desirable for improving the electrochemical performance of lithium-ion batteries (LIBs). We herein report a facile and scalable strategy for the preparation of carbon nanofibers (CNFs) anchored with ZnxCo3-xO4 (ZCO) nanocubes, involving a hydrothermal process and thermal treatment. Moreover, the size of the ZCO nanocubes was adjusted by the quantity of urea used in the hydrothermal process. Serving as a binder-free anode material for LIBs, the ZnCo2O4/CNFs composite prepared using 1.0 mmol of urea (ZCO/CNFs-10) exhibited excellent electrochemical performance with high reversible capacity, excellent cycling stability, and good rate capability. More specifically, a high reversible capacity of ∼600 mAh g(-1) was obtained at a current density of 0.5 C following 300 charge-discharge cycles. The excellent electrochemical performance could be associated with the controllable size of the ZCO nanocubes and synergistic effects between ZCO and the CNFs. PMID:26761129

  4. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  5. Strength properties of moulding sands with chosen biopolymer binders

    OpenAIRE

    St.M. Dobosz; K. Major-Gabryś

    2010-01-01

    The article presents the results of primary researches of the IV generation moulding sands, in which as the binders are used differentbiodegradable materials. The bending and the tensile strength of the moulding sands with polylactide, poly(lactic-co-glycolic acid),polycaprolactone, polyhydroxybutyrate and cellulose acetate as binders were measured. The researches show that the best strengthproperties have the moulding sands with polylactide as binder. It was proved that the tested moulding s...

  6. Materials Science Research Rack-1 (MSRR-1)

    Science.gov (United States)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).

  7. Brilliant Light in Life and Material Sciences

    CERN Document Server

    Tsakanov, Vasili

    2007-01-01

    The present book contains an excellent overview of the status and highlights of brilliant light facilities and their applications in biology, chemistry, medicine, materials and environmental sciences. Overview papers on diverse fields of research by leading experts are accompanied by the highlights in the near and long-term perspectives of brilliant X-Ray photon beam usage for fundamental and applied research. The book includes advanced topics in the fields of high brightness photon beams, instrumentation, the spectroscopy, microscopy, scattering and imaging experimental techniques and their applications. The book is strongly recommended for students, engineers and scientists in the field of accelerator physics, X-ray optics and instrumentation, life, materials and environmental sciences, bio and nanotechnology.

  8. The materials science of protein aggregation

    OpenAIRE

    Cox, D L; Lashuel, H. A.; Lee, K. Y. C.; Singh, R. R. R.

    2005-01-01

    Numerous human diseases are associated with conformational change and aggregation of proteins, including Alzheimer's, Parkinson's, prion diseases (such as mad cow disease), familial amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease), Huntington's, and type II (mature onset) diabetes. In many cases, it has been demonstrated that conformational change and aggregation can occur outside living cells and complex biochemical networks. Hence, approaches from materials and physical science ...

  9. Materials Sciences programs, fiscal year 1986

    International Nuclear Information System (INIS)

    Purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  10. Materials Sciences programs, Fiscal Year 1984

    International Nuclear Information System (INIS)

    This report provides a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research program, Section D has information on DOE collaborative research centers, Section E gives distributions of funding, and Section F has various indexes

  11. Materials sciences programs fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  12. Applications of neutron scattering in materials science

    International Nuclear Information System (INIS)

    It can be expected that the application of neutron scattering in materials science will become more widespread with increasing interaction between neutron scatterers and materials scientists. Several potential growth areas are identified, e.g., structural analysis of polycrystalline and multi-phase systems as well as amorphous substances; small-angle scattering analysis of extended defects such as vacancy clusters, precipitate zones, etc., including the kinetics of their formation, in crystalline and vitreous substances; and dynamic effects near phase transformations. Small-angle scattering methods are illustrated by two examples, the formation of voids in β'-NiAl and the decomposition of Al-Zn alloys. (author)

  13. Materials sciences programs: Fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  14. Materials science. 10. compl. rev. ed.; Werkstoffwissenschaft

    Energy Technology Data Exchange (ETDEWEB)

    Worch, Hartmut; Pompe, Wolfgang [Technische Univ. Dresden (Germany). Inst. fuer Werkstoffwissenschaft; Schatt, Werner (eds.)

    2011-07-01

    This materials science textbook describes and explains the properties of materials using a standardized, scientific approach. It comprises the following chapters: 1. Materials in the solid state; 2. Transition into the solid state; 3. Phase transition in the solid state; 4. State diagrams; 5. Structures of materials; 6. Thermally activated processes (diffusion, crystal regeneration, recrystallisation); 7. Corrosion; 8. Mechanical phenomena (deformation etc.); 9. Physical phenomena (electric conductivity, superconductivity, etc.) [German] Dieses Lehrbuch zur Werkstoffwissenschaft befasst sich mit der Darstellung und Erklaerung der Eigenschaften von Werkstoffen auf der Grundlage einer einheitlichen, naturwissenschaftlich geleiteten Betrachtungsweise. Es ist in folgende Kapitel aufgeteilt: 1. Zustaende des festen Koerpers; 2. Uebergaenge in den festen Zustand; 3. Phasenumwandlung im festen Zustand; 4. Zustandsdiagramme; 5. Gefuege der Werkstoffe; 6. Thermisch aktivierte Vorgaenge (Diffusion, Kristallerholung und Rekristallisation); 7. Korrosion; 8. Mechanische Erscheinungen (Verformung, etc.); 9. Physikalische Erscheinungen (Elektrische Leitfaehigkeit; Supraleitung; etc.).

  15. Thermal Boundary Conductance: A Materials Science Perspective

    Science.gov (United States)

    Monachon, Christian; Weber, Ludger; Dames, Chris

    2016-07-01

    The thermal boundary conductance (TBC) of materials pairs in atomically intimate contact is reviewed as a practical guide for materials scientists. First, analytical and computational models of TBC are reviewed. Five measurement methods are then compared in terms of their sensitivity to TBC: the 3ω method, frequency- and time-domain thermoreflectance, the cut-bar method, and a composite effective thermal conductivity method. The heart of the review surveys 30 years of TBC measurements around room temperature, highlighting the materials science factors experimentally proven to influence TBC. These factors include the bulk dispersion relations, acoustic contrast, and interfacial chemistry and bonding. The measured TBCs are compared across a wide range of materials systems by using the maximum transmission limit, which with an attenuated transmission coefficient proves to be a good guideline for most clean, strongly bonded interfaces. Finally, opportunities for future research are discussed.

  16. Material science experiments at the ATLAS facility

    CERN Document Server

    Keinigs, R K; Atchison, W L; Bartsch, R R; Faehl, R J; Flower-Maudlin, E C; Hammerberg, J E; Holtkamp, D B; Kyrala, G A; Oro, D M; Parker, J V; Preston, D L; Removsky, R E; Scudder, D W; Sheehey, P T; Shlachter, J S; Taylor, A J; Tonks, D L; Turchi, P J; Chandler, E A

    2001-01-01

    Summary form only given, as follows. Three experimental campaigns designed for fielding on the Atlas Pulsed Power Facility are discussed. The foci of these experiments are directed toward a better understanding of three material science issues; (1) strength at high strain and high strain rate, (2) friction at material interfaces moving at high relative velocities, and (3) material failure in convergent geometry. Atlas provides an environment for investigating these problems in parameter regimes and geometries that are inaccessible with standard techniques. For example, flow stress measurements of material strength using conventional Hopkinson bar experiments are limited to strain rates ~10/sup 4/ sec/sup -1/. Atlas will be capable of imploding metal shells to combined strains of 200% and strain rates >10/sup 6/ sec/sup -1/. Data obtained regimes is used to test different constitutive strength models used in several Los Alamos hydrocodes. Dynamic friction has been investigated for nearly 300 years, but a first...

  17. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel

    2003-01-01

    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  18. The use of image analysis for the interaction of 1,3,5-trisubstituted isocyanurates with oxidizer and different binders in composite materials

    Directory of Open Access Journals (Sweden)

    Dostanić Jasmina

    2006-01-01

    Full Text Available Composite propellants are non-homogenous propellants and comprise primarily crystalline oxidizer and metal fuels uniformly suspended in a resin binder. The strength of the bonds between the polymer matrix and the oxidizer determine the mechanical properties of composite propellants. In order to achieve good mechanical properties of the fuel, bonding agents are added to the mixture. The role of the bonding agents is to enable good interactions (interphase between the polymer matrix and the oxidizer grains. The level of interconnection between the phases could be measured by using the surface obtained by cutting the composite material and observing the resulting surface. A problem in the visualization of such a material is to enable the visibility of the polymer matrix and the grains in the image as both phases are white. There are two possible ways to overcome this problem: to add a pigment into the matrix polymer and to color the matrix and make it different from the grain color. Another possibility is to find a solvent for one of the phases and to dissolve one of the phases in an appropriate solvent so that the remaining phase could be stained, photographed and analyzed using the image analysis program. The morphological characteristics of the image could be established and analyzed. The topic of this study was to establish the conditions of preparation of composite propellants containing ammonium per chlorate and HMX and RDX as oxidizers, and polymer of the polybutadiene type and 1,3,5-trisubstituted isocyanurates as bonding agents. The bonding phenomenon was investigated by optical microscopy. The established procedure of preparation will enable the visualization of the composite structure and the morphological characteristics of the surface will be obtained. From the morphological properties of the obtained composite, it will be possible to select a suitable polymer for the preparation of uniformly distributed composite propellant.

  19. The idea of material science virtual laboratory

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2010-09-01

    Full Text Available Purpose: This article was written to describe the Material Science Virtual Laboratory. Presented laboratory is an open scientific, investigative, simulating and didactic medium helpful in the realisation of the scientific and didactic tasks in the field of material Science. This laboratory is implemented in the Institute of Engineering Materials and Biomaterials of Silesian University of Technology in Gliwice, Poland.Design/methodology/approach: The laboratory is an aggregate of testers and training simulators, placed in the virtual reality and created in various languages and the programming techniques, which represents the properties, functionality and manual principles of real equipment installed and accessible in the real laboratories of scientific universities.Findings: Application of the equipment, that is practically imperishable, cheap in exploitation and easy in the use encourages students and scientific workers to independent audits and experiments in situations, where the possibilities of their execution in the real investigative laboratory will be limited because of the high material costs, difficult access to real equipment or the possible risk of his damage. Practical implications: The use possibilities of the virtual laboratory are practically unrestricted; it can be a base for any studies, course or training programme.Originality/value: The project of the virtual laboratory corresponds with the global tendency for expand the investigative and academic centres about the possibilities of training and experiments performance with use of the virtual reality. This enriches investigation and education programmes of the new abilities reserved so far exclusively for effecting only on real equipment

  20. Molecular forensic science of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, Marianne Perry [Los Alamos National Laboratory

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  1. Molecular forensic science of nuclear materials

    International Nuclear Information System (INIS)

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO2 (An: U, Pu) to form non-stoichiometric species described as AnO2+x. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  2. The science of superconductivity and new materials

    International Nuclear Information System (INIS)

    The authors have set as the objective of this symposium the full-scale evaluation of the present state of research and development in the theoretical fields of superconductivity and new materials; two fields which the entire world's attention is focused and which a great number of researchers are presently putting in their maximum efforts. Their symposium consists of two workshops respectively dealing with superconductivity and new materials. It is needless to say that physical science and material development move forward hand in hand. And they see a recent tendency worldwide that inventions and discoveries in both science and technology are touted fashionably as news topics. The search for new materials that have high critical temperature for use in the field of developing superconductivity has become the focus of social attention around the world. Yet they must not forget that the true important lies in the fundamental study of the mechanism of superconductivity and of its applications. The quantum leap of the Industrial Revolution in England brought forth increased productivity through the development of new technology and locomotive power, eventually leading to the establishment of a new production system, and subsequently, an industrial society in which we live now

  3. Progress in the materials science of silicene

    International Nuclear Information System (INIS)

    In its freestanding, yet hypothetical form, the Si counterpart of graphene called silicene is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Such interesting electronic properties are not realized in two-dimensional (2D) Si honeycomb lattices prepared recently on metallic substrates where the crystal and hybrid electronic structures of these ‘epitaxial silicene’ phases are strongly influenced by the substrate, and thus different from those predicted for isolated 2D structures. While the realization of such low-dimensional Si π materials has hardly been imagined previously, it is evident that the materials science behind silicene remains challenging. In this contribution, we will review our recent results that lead to an enhanced understanding of epitaxial silicene formed on diboride thin films, and discuss the remaining challenges that must be addressed in order to turn Si 2D nanostructures into technologically interesting nanoelectronic materials. (focus issue review)

  4. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.

    2012-09-01

    Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).

  5. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science

    Science.gov (United States)

    Agrawal, Ankit; Choudhary, Alok

    2016-05-01

    Our ability to collect "big data" has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery. The need for data informatics is also emphasized by the Materials Genome Initiative (MGI), further boosting the emerging field of materials informatics. In this article, we look at how data-driven techniques are playing a big role in deciphering processing-structure-property-performance relationships in materials, with illustrative examples of both forward models (property prediction) and inverse models (materials discovery). Such analytics can significantly reduce time-to-insight and accelerate cost-effective materials discovery, which is the goal of MGI.

  6. Materials Sciences programs. Fiscal year 1982

    International Nuclear Information System (INIS)

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. The report is divided into five sections. Section A contains all laboratory projects, Section B has all contract research projects, Section C has information on DOE collaborative research centers, Section D shows distribution of funding, and Section E has various indices

  7. Annual report, Materials Science Branch, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, S. [ed.

    1993-10-01

    This report summarizes the progress of the Materials Science Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1991, through September 30, 1992. Six technical sections of the report cover these main areas of NREL`s in-house research: Crystal Growth, Amorphous Silicon, III-V High-Efficiency Photovoltaic Cells, Solid State Theory, Solid State Spectroscopy, and Program Management. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  8. Materials Sciences Programs. Fiscal Year 1985

    International Nuclear Information System (INIS)

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  9. Small-angle scattering in materials science

    International Nuclear Information System (INIS)

    Small-angle scattering (SAS) of X-rays (SAXS) or neutrons (SANS) are a powerful tools to investigate inhomogeneities in the size range from ∼ 1 nm to ∼ 100 nm. Typical examples in materials science are pores, precipitates in metal alloys or nano-particles in composites. Frequently, these inhomogeneities are not spherical and their alignment is not random, quite in contrast to many other applications of SAS. This requires the use of pinhole geometry and area detectors for the experimental set-up. The present paper focuses on evaluation techniques of two-dimensional (2D) SAS-patterns from some materials investigated by the authors, i.e. metal alloys, carbon composites, wood and bone. Although the examples shown are derived exclusively from SAXS measurements, most of them could stem from SANS measurements as well. (author)

  10. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    The tandem accelerator established at Japan Atomic Energy Research Institute (JAERI) in 1982 has been one of the most prominent electrostatic accelerators in the world. The accelerator has been serving for many researches planned by not only JAERI staff but also researchers of universities and national institutes. After the completion of the tandem booster in 1993, four times higher beam energy became available. These two facilities, the tandem accelerator and the booster, made great strides in heavy ion physics and a lot of achievements have been accumulated until now. The research departments of JAERI were reformed in 1998, and the accelerators section came under the Department of Materials Science. On this reform of the research system, the symposium 'Heavy Ion Science in Tandem Energy Region' was held in cooperation with nuclear and solid state physicists although there has been no such symposium for many years. The symposium was expected to stimulate novel development in both nuclear and solid state physics, and also interdisciplinary physics between nuclear and solid state physics. The 68 papers are indexed individually. (J.P.N.)

  11. A new direction in mathematics for materials science

    CERN Document Server

    Ikeda, Susumu

    2015-01-01

    This book is the first volume of the SpringerBriefs in the Mathematics of Materials and provides a comprehensive guide to the interaction of mathematics with materials science. The anterior part of the book describes a selected history of materials science as well as the interaction between mathematics and materials in history. The emergence of materials science was itself a result of an interdisciplinary movement in the 1950s and 1960s. Materials science was formed by the integration of metallurgy, polymer science, ceramics, solid state physics, and related disciplines. We believe that such historical background helps readers to understand the importance of interdisciplinary interaction such as mathematics–materials science collaboration. The middle part of the book describes mathematical ideas and methods that can be applied to materials problems and introduces some examples of specific studies—for example, computational homology applied to structural analysis of glassy materials, stochastic models for ...

  12. Gender Equity in Materials Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Angus Rockett

    2008-12-01

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases

  13. Application of synchrotron radiation in material Science

    International Nuclear Information System (INIS)

    In recent years many synchrotron radiation facilities are built around the world. The properties of this radiation, it's intensity and tuneability, are leading to exciting new experiments in chemistry, physics, biology and material sciences. In X-ray crystallographic studies, data can be collected on very small samples of only a few microns in size and time as short as one millisecond. Other techniques allow us to probe the local structures of impurities in technologically important materials. In the present paper unique properties of synchrotron radiation will be described. X-ray diffraction (XRD) and X-ray Absorption Fine Structure (XAFS) spectroscopic techniques are now routinely used for materials characterization. X-ray Absorption Fine Structure (XAFS) spectroscopic techniques have been applied to study the local structural environment of host and dopant cations in complex systems. X-ray Absorption Near Edge Structure (XANES) spectroscopy is useful to determine the valence state of different cations. To examine the local structure around different cations Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy is the most appropriate technique. A review of these methodologies and the results on Yba/sub 2/ Cu/sub 3-x/ Sb/sub x/O/sub 7/, and SrFe/sub 1-x/ Nb/sub x/O/sub 3/ (where x = 0.0 and 0.5) will be presented. The Synchrotron light for Experimental Science and Applications in the Middle East (SESAME) is under construction in jordan, Pakistan in one of the member states of SESAME project, therefore a brief review of SESAME will be presented. (author)

  14. FOREWORD: Focus on Combinatorial Materials Science Focus on Combinatorial Materials Science

    Science.gov (United States)

    Chikyo, Toyohiro

    2011-10-01

    About 15 years have passed since the introduction of modern combinatorial synthesis and high-throughput techniques for the development of novel inorganic materials; however, similar methods existed before. The most famous was reported in 1970 by Hanak who prepared composition-spread films of metal alloys by sputtering mixed-material targets. Although this method was innovative, it was rarely used because of the large amount of data to be processed. This problem is solved in the modern combinatorial material research, which is strongly related to computer data analysis and robotics. This field is still at the developing stage and may be enriched by new methods. Nevertheless, given the progress in measurement equipment and procedures, we believe the combinatorial approach will become a major and standard tool of materials screening and development. The first article of this journal, published in 2000, was titled 'Combinatorial solid state materials science and technology', and this focus issue aims to reintroduce this topic to the Science and Technology of Advanced Materials audience. It covers recent progress in combinatorial materials research describing new results in catalysis, phosphors, polymers and metal alloys for shape memory materials. Sophisticated high-throughput characterization schemes and innovative synthesis tools are also presented, such as spray deposition using nanoparticles or ion plating. On a technical note, data handling systems are introduced to familiarize researchers with the combinatorial methodology. We hope that through this focus issue a wide audience of materials scientists can learn about recent and future trends in combinatorial materials science and high-throughput experimentation.

  15. Dynamic linear viscoelastic properties and extensional failure of asphalt binders

    Science.gov (United States)

    Ruan, Yonghong

    Billions of dollars are spent annually in USA to maintain old pavements that are badly cracked. In order to reduce this expenditure, it is desirable to have criteria for selecting asphalts with superior cracking resistance that will provide pavements with longer durability. Literature reports indicate that the ductility of binders recovered from asphalt pavements correlates with cracking failure. However, ductility measurement is a time and material consuming process, and subject to reproducibility difficulties, as are all failure tests. In addition, ductility measurement does not belong to the currently used Superpave(TM) specification. Correlations between ductility and dynamic viscoelastic properties (measured with the dynamic shear rheometer, DSR), which are much easier and faster to perform and may be included into the Superpave(TM) system, are studied for both straight and modified binders. Ductility correlates quite well with G'/(eta '/G') for conventional asphalt binders aged at different conditions, especially when ductility is below 10 cm. However, for modified asphalts, there is no universal correlation between ductility and G'/(eta'/G'), even in the low ductility region. As far as the asphalt binder in pavement is concerned, the loss due to oxidative aging of its ductility is an important reason for pavement cracking. Polymer modification modifies the rheological and oxidative hardening properties of asphalt binders. The effect of polymeric modifiers on various properties of asphalt binders was investigated. Modifiers studied were diblock poly (styrene-b-butadiene) rubber (SBR), triblock poly (styrene-b-butadiene-b-styrene) (SBS), and tire rubber. Polymer modified binders have a lower hardening and oxidation rate than their corresponding base asphalts. In addition, modified binders have lower hardening susceptibility compared with their base materials and in some cases the results can be dramatic. Polymer modification improves asphalt binders' shear

  16. Molecular forensic science analysis of nuclear materials

    Science.gov (United States)

    Reilly, Dallas David

    Concerns over the proliferation and instances of nuclear material in the environment have increased interest in the expansion of nuclear forensics analysis and attribution programs. A new related field, molecular forensic science (MFS) has helped meet this expansion by applying common scientific analyses to nuclear forensics scenarios. In this work, MFS was applied to three scenarios related to nuclear forensics analysis. In the first, uranium dioxide was synthesized and aged at four sets of static environmental conditions and studied for changes in chemical speciation. The second highlighted the importance of bulk versus particle characterizations by analyzing a heterogeneous industrially prepared sample with similar techniques. In the third, mixed uranium/plutonium hot particles were collected from the McGuire Air Force Base BOMARC Site and analyzed for chemical speciation and elemental surface composition. This work has identified new signatures and has indicated unexpected chemical behavior under various conditions. These findings have lead to an expansion of basic actinide understanding, proof of MFS as a tool for nuclear forensic science, and new areas for expansion in these fields.

  17. Alkali-activated binders/geopolymer and an application to environmental engineering

    OpenAIRE

    Nida Chaimoon; Krit Chaimoon

    2014-01-01

    For environmental reason, new binders that can be used as Portland cement replacement materials are being needed. Recently, alkali-activated binders (AAB) and geopolymer have found increasing interest. As several research reports have showed that the two new binders are likely to have high potential to be developed and become an alternative to OPC. However, confusion in the classification of both binders is still there. This paper reviews knowledge about AAB and geopolymer including historica...

  18. Medipix3 CT for material sciences

    International Nuclear Information System (INIS)

    Innovative detector systems for non-destructive material analysis and for medical diagnosis are an important development to improve the performance and the quality of examination methods. For a number of years now photon-counting X-ray detectors are being developed to process incoming X-ray photons as single events. These detectors facilitate a higher signal-to-noise ratio (SNR) than conventional, non-photon-counting, scintillator based detector systems, which detect X-ray photons indirectly through conversion into visible light. The Medipix is a pixelated photon counting semiconductor detector which features adjustable energy thresholds allowing energy selective, multispectral X-ray imaging. The Medipix chip is under continued development by the ''Medipix2 Collaboration'' and ''Medipix3 Collaboration'' at CERN. The Medipix electronic offers 256 × 256 pixels with a pixel pitch of 55 × 55 μm2 and can be hybridized with different sensor materials like Si, CdTe or GaAs. The newest member of the Medipix family is the Medipix3 (ASIC in 0.13 μm CMOS technology) providing up to eight separate 12-bit counters per pixel. It offers a couple of different working modes, which are useful for X-ray imaging applications. A Medipix3 CT X-ray measuring station was built up for small animal X-ray imaging and non-destructive material analysis. The combination of the low energy threshold (∼ 4 keV) of the Medipix3 with its multispectral capability enables tomographic investigations on objects with low absorption contrast. The advantage of photon counting, multispectral detectors like Medipix3 for material sciences will be presented here as well as a comparison with a scintillator based CT.

  19. Focuses of material science development in recent years

    Institute of Scientific and Technical Information of China (English)

    WANG Jing

    2011-01-01

    Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering.This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties.It incorporates elements of applied physics and chemistry.With significant media attention focused on nanoscience and nanotechnology in recent years,materials science has been propelled to the forefront at many universities.Materials science encompasses various classes of materials,including electronic materials,functional ceramics,magnesium,material and processes for flat-panel displays,eco/environmental materials,sustainable energy materials,transportation materials,electronic packaging materials,etc.

  20. Division of Materials Science (DMS) meeting presentation

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.F.; Weber, M.J.

    1982-11-08

    Materials preparation techniques are listed. Materials preparation capabilities are discussed for making BeF/sub 2/ glasses and other materials. Materials characterization techniques are listed. (DLC)

  1. Chemistry and Materials Science progress report, FY 1994. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

  2. From Materials Science to Vacuum Microelectronics

    International Nuclear Information System (INIS)

    Electron beams using heated tungsten filaments as sources, have found application in instruments ranging from electron microscopes and vacuum tubes to television monitors and CRT displays. However, silicon based devices have nearly replaced vacuum tubes, field electron emitters are used extensively in electron optical instruments, and other display technologies are replacing CRTs. Recently, processing methods have evolved to fabricate large arrays of micron scale vacuum tubes, using field emitters. Such devices are collectively identified as vacuum microelectronics with applications ranging from flat panel displays to microwave sources. Individual sources also have been configured into miniature electron optical columns, with applications in lithography or imaging. Many of these new 'devices' are silicon based and others use metal field emitters. Thin coatings of Si C, diamond-like materials, or metal silicides on silicon are also attractive. Since most field emitters are needle shaped, they may also be characterized individually, thereby becoming sources for field emission microscopy (FEM), field-ion microscopy (FIM) or atom probe studies (AP). Individual needles also make excellent specimens for High resolution electron microscopy (HREM). Vacuum microelectronics thus provide an unusual opportunity to obtain fundamental data on the same specimens that can be used as devices. This bridge from fundamental materials science to device application will be described specific examples. 8 figs

  3. Pulsed Neutron Powder Diffraction for Materials Science

    International Nuclear Information System (INIS)

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 A-1-1. IPD is fully

  4. Materials Data Science: Current Status and Future Outlook

    Science.gov (United States)

    Kalidindi, Surya R.; De Graef, Marc

    2015-07-01

    The field of materials science and engineering is on the cusp of a digital data revolution. After reviewing the nature of data science and Big Data, we discuss the features of materials data that distinguish them from data in other fields. We introduce the concept of process-structure-property (PSP) linkages and illustrate how the determination of PSPs is one of the main objectives of materials data science. Then we review a selection of materials databases, as well as important aspects of materials data management, such as storage hardware, archiving strategies, and data access strategies. We introduce the emerging field of materials data analytics, which focuses on data-driven approaches to extract and curate materials knowledge from available data sets. The critical need for materials e-collaboration platforms is highlighted, and we conclude the article with a number of suggestions regarding the near-term future of the materials data science field.

  5. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  6. Chemistry and materials science progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

  7. Materials and Chemical Sciences Division annual report 1989

    International Nuclear Information System (INIS)

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program

  8. Materials and Chemical Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  9. A Redox-Active Binder for Electrochemical Capacitor Electrodes.

    Science.gov (United States)

    Benoit, Corentin; Demeter, Dora; Bélanger, Daniel; Cougnon, Charles

    2016-04-18

    A promising strategy for increasing the performance of supercapacitors is proposed. Until now, a popular strategy for increasing the specific capacity of the electrode consists of grafting redox molecules onto a high surface area carbon structure to add a faradaic contribution to the charge storage. Unfortunately, the grafting of molecules to the carbon surface leads to a dramatic decrease of the electrochemical performances of the composite material. Herein, we used the organic binder as an active material in the charge/discharge process. Redox molecules were attached onto its polymeric skeleton to obtain a redox binder with the dual functionalities of both the binder and the active material. In this way, the electrochemical performance was improved without detrimentally affecting the properties of the porous carbon. Results showed that the use of a redox binder is promising for enhancing both energy and power densities. PMID:26997572

  10. "Sweet Science": Romantic Materialism and the New Sciences of Life

    OpenAIRE

    Goldstein, Amanda Jo

    2011-01-01

    This dissertation on late Enlightenment poetics and the history of the biomedical sciences unfolds a lapsed possibility near the historical beginnings of the division of labor between literary and scientific representation. Against the pressure, then and now, to treat the culture of science as context or antithesis to literary production, I recover a countervailing epistemology that cast poetry as a privileged technique of empirical inquiry: a knowledgeable practice whose figurative work brou...

  11. Alkali-activated binders/geopolymer and an application to environmental engineering

    Directory of Open Access Journals (Sweden)

    Nida Chaimoon

    2014-06-01

    Full Text Available For environmental reason, new binders that can be used as Portland cement replacement materials are being needed. Recently, alkali-activated binders (AAB and geopolymer have found increasing interest. As several research reports have showed that the two new binders are likely to have high potential to be developed and become an alternative to OPC. However, confusion in the classification of both binders is still there. This paper reviews knowledge about AAB and geopolymer including historical background, reaction mechanisms and reaction products. The similarities and differences of both binders are discussed. The application to environmental engineering on hazardous waste management using stabilization/solidification is also described.

  12. Strength properties of moulding sands with chosen biopolymer binders

    Directory of Open Access Journals (Sweden)

    St.M. Dobosz

    2010-07-01

    Full Text Available The article presents the results of primary researches of the IV generation moulding sands, in which as the binders are used differentbiodegradable materials. The bending and the tensile strength of the moulding sands with polylactide, poly(lactic-co-glycolic acid,polycaprolactone, polyhydroxybutyrate and cellulose acetate as binders were measured. The researches show that the best strengthproperties have the moulding sands with polylactide as binder. It was proved that the tested moulding sands’ strength properties are goodenough for foundry practice.

  13. UPDATED INSIGHT ON FOAM BINDER GRANULATION

    Directory of Open Access Journals (Sweden)

    Saikh Mahammed Athar Alli

    2013-09-01

    Full Text Available To have updated handy reference as source of outstanding knowledge on foam binder granulation process in granulating the material(s. Granulation considered being important unit operation for producing pharmaceutical oral dosage forms. Revolutionising binder application methodology as advancement of wet granulation process best owed said process. It is a modified version of atomised spraying method and gaining wide acceptance. Product and process development calls for method of optimisation involving multidisciplinary activity and creates difficulties as several rudiments needed to be achievable, associated with umpteen features. Depth knowledge on process and formulation properties, monitoring granulation behaviour and its performance, is prerequisite. In this regard, information collected and presented as a handy note. Presented note will give insight on associated technicality and will assist researchers in getting optimised granule, having applicability in product evolution. This considered being offering outstanding knowledge and helping hand for getting granule with excellent feature.

  14. Composite binders for concrete with reduced permeability

    Science.gov (United States)

    Fediuk, R.; Yushin, A.

    2016-02-01

    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m2, it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa).

  15. PREFACE: Tsukuba International Conference on Materials Science 2013

    Science.gov (United States)

    Kijima, Masashi; Ohshima, Kenichi; Kojima, Seiji; Nagasaki, Yukio; Miyazaki, Shuichi; Kim, Hee Young; Kadowaki, Kazuo; Kashiwagi, Takanari; Nakamura, Junji; Yamamoto, Yohei; Goto, Hiromasa

    2014-03-01

    Tsukuba International Conference on Materials Science (TICMS) was held from 28th August to 6th September, 2013 for the celebration of 40th year anniversary of the University of Tsukuba. The conference was organized by the Division of Materials Science, in cooperation with the Graduate School of Pure and Applied Sciences, and Tsukuba Research Center for Interdisciplinary Materials Science. The purpose of the conference was to provide a unique forum for researchers and students working in various fields of materials science, which have been progressing so rapidly that no single society could cover. The conference consists of following seven workshops to cover various fields. The organizing committee believed that the conference gave all participants new insights into the widespread development of materials science and enhanced the circulation, among them, of information released at the conference. The organizers are grateful for the financial support from University of Tsukuba. This volume contains 25 selected papers from invited and contributed papers, all of which have been screened on the basis of the standard review process of the program committee. The editors express their thanks to those authors who contributed the papers published in this proceedings, which reflects the scientific value of the conference. Nov. 20, 2013 Seiji Kojima, Prof. Dr. Chair, Division of Materials Science Chair, Doctoral Program in Materials Science TICMS 2013 (http://www.ticonfms.tsukuba.ac.jp/) Workshop list The 13th Japan-Korea Joint Workshop on Materials Science Summer School of Biomaterials Science The Japan-Korea Joint Workshop on Shape Memory and Superelastic Technologies The 2nd Workshop on THz Radiation from Intrinsic Josephson Junctions The 3rd German-Japan Nanoworkshop TICMS and IWP Joint Workshop on Conjugated Polymers International Workshop on Science and Patents (IWP) 2013

  16. Materials science with SR using x-ray imaging

    International Nuclear Information System (INIS)

    Some examples of applications of synchrotron radiation to materials science demonstrate the importance of microstructure information within structural as well as functional materials in order to control their properties and quality as designed for industrial purposes. To collect such information, x-ray imaging in quasi real time is required in either the microradiographic mode or the diffraction (in transmission) mode. New measurement technologies based on imaging are applied to polycrystalline materials, single crystal materials and multilayered device materials to illustrate what kind of synchrotron radiation facility is most desirable for materials science and engineering. (author)

  17. Rheology of crumb-rubber modified asphalt binders and mixes

    Science.gov (United States)

    Sheth, Vikas Rameshchandra

    Laboratory test procedures are presented to determine the rheological properties of crumb rubber modified asphalt (CRMA) binders and mixes. These tests provide simple, fast, and cost-effective alternatives to evaluate the performance (rutting and cracking potential) of binders and mixes used for pavement construction. Viscoelastic properties of CRMA binders are measured using dynamic shear analysis. Master curves were generated using the principle of time-temperature superposition to evaluate the effects of aging, rubber concentration, and curing conditions on the rheology of the modified binder. Results indicate that the rheology of CRMA binders can be divided into three regions of viscoelasticity: glassy region at high frequencies, transition/viscoelastic region at intermediate frequencies, and viscous region at low frequencies. Modification of the asphalt by addition of rubber leads to an improvement in both the high and low temperature properties, as reflected by changes in Gsp' and Gsp{''}, which causes the binder to have a greater resistance to specific pavement failure mechanisms. Both transient and dynamic properties of CRMA mixes were measured in the laboratory using the creep and recovery, direct tension, and frequency sweep tests. Rheological properties of the mix generated from the test data were compared to those of the binder to evaluate the effect of aging, rubber concentration, and curing conditions on mix performance. Several rheological parameters have been identified to characterize the rutting and cracking potential of mixes. A power law equation was found to give good correlations between several mix rheological parameters. Analysis of binder and mix failure energies show that work of cohesion of the binder is negligible compared to the failure energies. A unique relationship between Paris law material parameters has been confirmed. It is also shown that mix failure properties bear a one-to-one correlation with binder failure properties. Based

  18. DOE fundamentals handbook: Material science. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  19. Performance prediction of hot mix asphalt from asphalt binders

    International Nuclear Information System (INIS)

    Asphalt binder being a high weight hydrocarbon contains asphaltene and maltene and is widely used as cementing materials in the construction of flexible pavements. Its performance in hot mix asphalt also depends on combining with different proportions of aggregates. The main objective of this study was to characterize asphalt cement rheological behavior and to investigate the influence of asphalt on asphalt-aggregate mixtures prepared with virgin binders and using polymers. Binder rheology and mixtures stiffness were determined under a range of cyclic loadings and temperature conditions. Master curves were developed for the evaluation of relationship between parameters like complex modulus and phase angle at different frequencies. Horizontal shift factors were also computed to determine time and temperature response of binders and mixes. The results showed that the stiffness of both the binder and the mixes depends on temperature and frequency of load. Polymer modified binder is least susceptible to temperature variations as compared to other virgin asphalt cement. Performance of asphalt mixtures can be predicted from those of asphalt binders using the master curve technique. (author)

  20. General and special engineering materials science. Vol. 1

    International Nuclear Information System (INIS)

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes: Volume I treats general engineering materials science in 4 capital chapters on the structure of materials, the properties of materials, materials technology and materials testing and investigation supplemented by a selected detailed chapter about elasticity plasticity and rupture mechanics. Volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including reactor clad and structural materials, nuclear fuels and fuel elements and nuclear waste as a materials viewpoint. Volume III - also concerning special engineering materials science - considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accidents and nuclear materials in core melt accidents. (orig.)

  1. Reinforcing Effects of Carbon Black on Asphalt Binder for Pavement

    OpenAIRE

    Yamaguchi, Katsuyuki; Sasaki, Iwao; Nishizaki, Itaru; Meiarashi, Seishi; Moriyoshi, Akihiro

    2005-01-01

    Carbon black, used as a reinforcing filler for rubber materials, was evaluated for asphalt binders in pavements. Carbon black added to straight asphalt within 20 wt% caused an increase in the elastic modulus and a decrease in the viscosity of the asphalt, especially at temperatures higher than room temperature. Addition of carbon black raised the maximum service temperature of asphalt in the category of the binder performance grade according to the SHRP (Strategic Highway Research Program) sp...

  2. Thermal deformation of moulding sands with biopolymer binders

    OpenAIRE

    K. Major-Gabryś; St. M. Dobosz; J. Jakubski

    2010-01-01

    Investigations concerning an application of biopolymer materials as binders for moulding sands are presented in the paper. Theseinvestigations constitute the continuation of examinations related to applications of various biopolymers as binding agents. The results ofstrength tests, obtained for the investigated sands (with the PLA2 biopolymer binder) prepared in a self-hardening sands technology andair as well as microwave hardened, are presented. Examinations of sand thermal deformations bas...

  3. The use of historical materials in elementary science classrooms

    Science.gov (United States)

    Kafai, Yasmin B.; Gilliland-Swetland, Anne J.

    2001-07-01

    Science educators have stressed in recent years the importance of providing students with an historical understanding of the development of scientific knowledge. Although many approaches have been suggested for building historical understanding of science, historical source materials have often been deemed too difficult to use with elementary school students. This article reports on a case study that used archival and contemporary source materials in project activities, such as photographs and field notes, to engage students in the processes of data generation, selection, annotation, and evaluation. The curricular science activities of one elementary classroom with 29 fourth and fifth grade students are decribed and analyzed as they build and use archives of historical and contemporary naturalist materials. The article concludes with a discussion of the feasibility and benefits of using historical source materials within elementary science education, as well as the implications for selecting and preparing historical source materials in digital format for use in elementary education.

  4. Piezoelectric materials and devices applications in engineering and medical sciences

    CERN Document Server

    Vijaya, M S

    2012-01-01

    Piezoelectric Materials and Devices: Applications in Engineering and Medical Sciences provides a complete overview of piezoelectric materials, covering all aspects of the materials starting from fundamental concepts. The treatment includes physics of piezoelectric materials, their characteristics and applications. The author uses simple language to explain the theory of piezoelectricity and introduce readers to the properties and design of different types of piezoelectric materials, such as those used in engineering and medical device applications.This book: Introduces various types of dielect

  5. Radiosotopic assay and binder therefor

    International Nuclear Information System (INIS)

    A rapid and less costly radioisotopic assay for measuring the concentration of folate in blood serum is described. This procedure utilizes 3H-pteroylmonoglutamate, unlabeled 5-methyltetrahydrofolic acid, and a partially purified folate binder, such as for example a folate binder extracted from hog kidney. The procedure involves radioisotopically relating the bound amounts of a labeled folate and a known folate at various concentrations of the known folate in a system containing a predetermined amount of the labeled folate, a predetermined amount of the binder factor for the folates, and a predetermined amount of defolated test serum. 16 claims, 8 drawing figures

  6. The materiality of materials and artefacts used in science classrooms

    DEFF Research Database (Denmark)

    Cowie, Bronwen; Otrel-Cass, Kathrin; Moreland, Judy

    2015-01-01

    between materials as natural objects in this world and artefacts as manmade objects. We are aware that in a classroom material objects and artefacts shape, and are shaped by classroom practice through the way they selectively present scientific explanations. However, materials and artefacts have no...... as fossils, plant samples and artefacts like test tubes, worksheets and digital tools along with written inscriptions produced during interactions and that served as artefacts in subsequent interactions (Roehl, 2012). Data sources Data were generated via classroom observation using video, student...... but thought about means and ends of artefacts/ materials. They explored artefacts/materials and how they could be used and through this exemplified materiality in the objects. More deliberate and focused attention to what constitutes materiality can support collaboration and communication to support...

  7. Materials science for solar energy conversion systems

    CERN Document Server

    Granqvist, CG

    1991-01-01

    Rapid advances in materials technology are creating many novel forms of coatings for energy efficient applications in solar energy. Insulating heat mirrors, selective absorbers, transparent insulation and fluorescent concentrators are already available commercially. Radiative cooling, electrochromic windows and polymeric light pipes hold promise for future development, while chemical and photochemical processes are being considered for energy storage. This book investigates new material advances as well as applications, costs, reliability and industrial production of existing materials. Each c

  8. 2005 Research Briefs : Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2005-05-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  9. 2003 research briefs : Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2003-08-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems and Materials Modeling and Computational Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  10. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  11. Proceedings of the international conference on material science: abstract volume

    International Nuclear Information System (INIS)

    Materials Science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. In the recent years, materials science has been propelled to the forefront at many universities and research institutions due to the significant advancement on nanoscience and nanotechnology. ICMS-2013 will cover a wide range of interdisciplinary and current research topics related to material science. Research on advanced materials includes nanomaterials, bio-nanomaterials, zero bandgap materials, composites, surface engineering, tissue engineering and biomaterials etc. These materials have numerous applications in electronics, biotechnology, medicine and energy harvesting. The importance of nano-science and nanotechnology has been well documented by both industrial and academic communities worldwide. It is believed that breakthroughs in nano-science and technology will change all aspects of human life in such diverse areas as, electronic devices, energy, biomedicine, sensing, environment, and security etc. Papers relevant to INIS are indexed separately

  12. First Materials Science Research Rack Capabilities and Design Features

    Science.gov (United States)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  13. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    Science.gov (United States)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  14. Materials science of graphene: a flagship perspective

    Science.gov (United States)

    Garcia-Hernandez, Mar; Coleman, Jonathan

    2016-03-01

    Driving the superlative properties of mechanically exfoliated graphene to real world applications requires a large effort to develop synthetic routes providing cost effective high quality materials. It can also be agreed, that when it comes to reality, one should not refer just to Graphene but ‘Graphenes’ as each synthesis method renders a material characterized by different properties. Recently, Graphene and other 2D materials scalable synthesis methods have provided improved materials at highly competitive costs. However, a long way is ahead to approach the properties of mechanically exfoliated materials. Also, as a scalable method succeeds and it is indeed upscaled for industrial production, new characterization protocols and metrics have to be devised to enable efficient on line quality control of the produced materials. Significant advances can be reported recently in the synthesis of high quality graphene although a shift towards other 2D materials research is clearly observed. An overview of the progress made by several groups in WP ‘ Materials‘ of the Graphene Flagship is given.

  15. Binding Autobiographies: Torah Binders Revisited

    OpenAIRE

    Oicherman, Ekaterina

    2014-01-01

    The thesis investigates contemporary textile practice and its links to traditional forms of textile art. It focuses on the 19th century German circumcision binders (“Jewishing cloths”), ceremonial Torah scroll wrappings, which documented male births. The case study examines images on the seams of a 1836 binder, showing that the seams acted as a transitional territory, where the embroiderer consciously played around with traditional images, transposing the concern with birth and fertility into...

  16. Material Science in Cervical Total Disc Replacement.

    Science.gov (United States)

    Pham, Martin H; Mehta, Vivek A; Tuchman, Alexander; Hsieh, Patrick C

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation. PMID:26523281

  17. Material Science in Cervical Total Disc Replacement

    Directory of Open Access Journals (Sweden)

    Martin H. Pham

    2015-01-01

    Full Text Available Current cervical total disc replacement (TDR designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti, and cobalt-chrome (CoCr. These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation.

  18. Computational materials science: Predictions of pinning

    Science.gov (United States)

    Paruch, Patrycja; Ghosez, Philippe

    2016-06-01

    A multiscale model has been implemented that provides accurate predictions of the behaviour of ferroelectric materials in electric fields, and might aid efforts to design devices such as sensors and digital memory. See Letter p.360

  19. Environmental issues in materials science and engineering

    OpenAIRE

    Srebrenkoska, Vineta; Fidancevska, Emilija

    2013-01-01

    Тhe industrial engineering consumes of materials and is dependent on a continuous supply of them. Increasing population and living standards cause the consumption rate to grow - something it cannot do forever. Finding ways to use materials more efficiently is a prerequisite for a sustainable future. Recent global attention to the issues and challenges of sustainable development is forcing industries to conduct self-assessments to identify where they stand within the framework for ...

  20. Materials science: Like cartilage, but simpler

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    2015-01-01

    The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties.......The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties....

  1. Material Science in Cervical Total Disc Replacement

    OpenAIRE

    Pham, Martin H.; Mehta, Vivek A.; Alexander Tuchman; Hsieh, Patrick C.

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common ...

  2. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  3. Using Federally Funded Curricular Materials to meet Next Geneartion Science Standards in Earth System Science

    Science.gov (United States)

    McAuliffe, C.

    2015-12-01

    The Next Generation Science Standards (NGSS) describe teaching and learning goals for Earth system science at all levels of K-12, including elementary, middle school, and high school. Teachers must consider science and engineering practices, cross-cutting concepts, and disciplinary core ideas. The National Science Foundation and other federal organizations have supported the development of reformed curricular materials at the K-12 level for many years. Although developed before the adoption of NGSS, many of these Earth system science resources are, in fact, NGSS congruent. Such resources include those developed by TERC, SERC, EDC, NASA, NOAA, USGS, and others. This session features NGSS congruent materials, carefully examining and dissecting the performance expectations that embody these materials. It also shares a process of tagging these materials via NSTA's, NGSS portal guidelines.

  4. Surface physics of materials materials science and technology

    CERN Document Server

    Blakely, J M

    2013-01-01

    Surface Physics of Materials presents accounts of the physical properties of solid surfaces. The book contains selected articles that deal with research emphasizing surface properties rather than experimental techniques in the field of surface physics. Topics discussed include transport of matter at surfaces; interaction of atoms and molecules with surfaces; chemical analysis of surfaces; and adhesion and friction. Research workers, teachers and graduate students in surface physics, and materials scientist will find the book highly useful.

  5. Use of muons beams in material science

    International Nuclear Information System (INIS)

    One presents a review on the use of the μSR spectroscopy in studies of the physical and chemical properties of materials: physical metallurgy, electronic and magnetic properties of solids, kinetics of chemical reactions, free radicals, molecules of biological interest

  6. Understanding structural conservation through materials science:

    DEFF Research Database (Denmark)

    Fuster-López, Laura; Krarup Andersen, Cecil

    2014-01-01

    Mechanical properties and the structure of materials are key elements in understanding how structural interventions in conservation treatments affect cultural heritage objects. In this context, engineering mechanics can help determine the strength and stability found in art objects as it can prov...

  7. Understanding solids: the science of materials

    CERN Document Server

    Tilley, Richard J. D.

    2013-01-01

    This edition contains new sections on the use of computing methods to solve materials problems and has been thoroughly updated to include the many developments and advances made in the past 10 years, e.g.  batteries, solar cells, lighting technology, laser...

  8. Evaluation of wettability of binders used in moulding sands

    Directory of Open Access Journals (Sweden)

    Hutera B.

    2007-01-01

    Full Text Available Binders used in moulding sand have the differential properties. One of the main parameters influencing on moulding sand properties is wettability of the sand grain by binding material. In the article some problems concerned with wettability evaluation have been presented and the importance of this parameter for quantity description of process occurring in system: binder- sand grain has been mentioned. The procedure of wetting angle measurement and operation of prototype apparatus for wettability investigation of different binders used in moulding sand have been described, as well as the results of wetting angle measurement for different binders at different conditions. The addition of little amount of proper diluent to binder results in the state of equilibrium reached almost immediately. Such addition can also reduce the value of equilibrium contact angle. The uniform distribution of binder on the surface of the sand grains and reducing of the required mixing time can be obtained. It has also a positive effect on the moulding sand strength.

  9. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Improving oxygen reduction in microbial fuel cell (MFC) cathodes requires a better understanding of the effects of the catalyst binder chemistry and properties on performance. A series of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) polymers with systematically varying hydrophilicity were designed to determine the effect of the hydrophilic character of the binder on cathode performance. Increasing the hydrophilicity of the PS-b-PEO binders enhanced the electrochemical response of the cathode and MFC power density by ∼15%, compared to the hydrophobic PS-OH binder. Increased cathode performance was likely a result of greater water uptake by the hydrophilic binder, which would increase the accessible surface area for oxygen reduction. Based on these results and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes with two different Pt loadings initially (after 2 cycles) had lower MFC performance (1360 and 630 mW m-2 for 0.5 and 0.05 mg Pt cm-2) than Nafion cathodes (1980 and 1080 mW m -2 for 0.5 and 0.05 mg Pt cm-2). However, after long-term operation (22 cycles, 40 days), power production of each cell was similar (∼1200 and 700-800 mW m-2 for 0.5 and 0.05 mg Pt cm-2) likely due to cathode biofouling that could not be completely reversed through physical cleaning. While binder chemistry could improve initial electrochemical cathode performance, binder materials had less impact on overall long-term MFC performance. This observation suggests that long-term operation of MFCs will require better methods to avoid cathode biofouling. © 2011 The Royal Society of Chemistry.

  10. New bicomponent binders for foundry moulding sands composed of phenol-furfuryl resin and polycaprolactone

    OpenAIRE

    K. Major – Gabryś; A. Grabarczyk; St. M. Dobosz; J. Jakubski

    2016-01-01

    The aim of this article is to test the properties of foundry moulding sands with a new bicomponent organic binder. The new binder is the composition of phenol-furfuryl resin, commonly used in foundry practice and biodegradable material – polycaprolactone. The paper presents the research of strength properties, thermal destruction and thermal deformation of moulding sands with a new bicomponent binder. It was proved that inserting polycaprolactone to phenol-furfuryl resin did not lower the ...

  11. The influence of recycled asphalt pavement on 20mm binder course mix performance

    OpenAIRE

    Tabakovic, Amir; Gibney, Amanda; Gilchrist, M. D.; McNally, Ciaran

    2006-01-01

    This paper presents the results of ongoing research on the mechanical performance of a 20mm binder course asphalt pavement mix incorporating recycled asphalt pavement (RAP). A series of binder course mixes were designed containing varying percentages of RAP. A mix made only from virgin material was selected as the control mix for the investigation. The effect of introducing RAP into the binder course mix was evaluated through a series of laboratory tests including the Marshall Test, Indire...

  12. Development of composite solid propellent using dicyclopentadien binder

    Science.gov (United States)

    Bluestone, Stephen Ray

    Through the history of composite solid propellant binders new chemicals are introduced as binders to improve upon the previous generation. Sometimes this is done to improve upon the flaws or shortcomings of a previous binder. Other time it is to meet a new set of requirements desired by industry. Dicyclopentadiene (DCPD) is a hydrocarbon monomer being considered for its potential as a new binder in the composite propellant industry. The binder of a composite solid propellant is arguably the most important feature of the propellant. It is the binder that provides the majority of the structural characteristics of the propellant while also contributing itself as fuel to the combustion process. A binder in composite propellants must also be able to accept the introduction of a large quantity of solid filler; oxidizer, fuel, and other energetic and non-energetic particles. Many of the composite propellants used in industry today have over 80% of their weight composed of non-binder solid or liquid fillers. These requirements must be met by the binder in some form or fashion to produce a propellant able to compete with binders currently in use. When DCPD is polymerized it produces an extremely tough plastic with excellent tensile and impact strength. Experimentation has found that DCPD is able to support a large quantity of solid materials, over 80% weight of the mixture, while still retaining a great portion of its original strength. When compared to another similarly loaded binder currently used in industry, Hydroxyl-Terminated Polybutadiene (HTPB), it was found that DCPD composite propellant had nearly 1.5 times the stress capacity while still exhibiting over 75% of the strain capacity of HTPB based composite propellant. In addition it was also shown that DCPD composite propellant allows for tailoring of its mechanical properties with the addition of plasticizers. The DCPD based composite propellant also exhibits a burning rate nearly twice that HTPB. These factors

  13. DOE fundamentals handbook: Material science. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility).

  14. Low Energy Electron Microscopy in Materials Science

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Frank, Luděk; Konvalina, Ivo; Matsuda, K.; Mikmeková, Eliška; Pokorná, Zuzana; Walker, Christopher

    Chiang Mai : Chiang Mai University, 2015. s. 20. [International Conference on the Physical Properties and Application of Advanced Materials (ICPMAT) /10./. 17.11.2015-21.11.2015, Chiang Mai] R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : low energy electrons * contrast in scanning electron microscope * transmission mode in SEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  15. Chemistry and Materials Science 2004 Annual Report, Preview Edition

    Energy Technology Data Exchange (ETDEWEB)

    Shang, S; Diaz de la Rubia, T; Rennie, G

    2005-05-16

    Thriving from change is a constant element at LLNL. Through our commitment to scientific accomplishments, we have met the challenges posed by our evolving missions in 2004. It is the scientific breakthroughs that substantiate our strategic directions. Investments based on our strategic directions are bearing fruit, as illustrated in this preview of the 2004 Annual Report. We describe how our science is built around a strategic plan with four organizing themes: {sm_bullet} Materials properties and performance under extreme conditions {sm_bullet} Chemistry under extreme conditions and chemical engineering in support of national-security programs {sm_bullet} Science supporting national objectives at the intersection of chemistry, materials science, and biology {sm_bullet} Applied nuclear science for human health and national security We are particularly pleased with achievements within the 'intersection of chemistry, materials science, and biology,' an emerging area of science that may reshape the landscape of our national-security mission. CMS continues to have an unambiguous role both as a technology leader and as a partner for all of the four theme areas. We look forward to expanding the frontiers of science and continuing our partnership with the worldwide scientific community, as we firmly respond to the changing environment with agility and flexibility.

  16. Learning about materials science and technology by deconstructing modern products

    DEFF Research Database (Denmark)

    Horsewell, Andy

    processes have been chosen in their manufacture i.e. deconstruct modern products. Suitable items can easily be found in personal communication and entertainment, including all manner of sports goods. Further, the current pace of materials product development ensures that using these objects to focus......Get the attention of young engineering students, interest and inspire them. Encourage them to think about materials science and technology by looking at the consumer products and gadgets that interest them. Analyse what modern products are constructed of, and how and why the materials and the...... teaching encourages and demands constant modernisation of the course and the materials being presented. A consideration of material and process selection for components in a modern product can be a dynamic starting point for a course on materials science and engineering; providing inspiration and showing...

  17. Understanding Materials Science History · Properties · Applications

    CERN Document Server

    Hummel, Rolf E

    2005-01-01

    This introduction to materials science both for students of engineering and physics and for the interested general public examines not only the physical and engineering properties of virtually all kinds of materials, but also their history, uses, development, and some of the implications of resource depletion and recycling. It covers all topics on materials from an entirely novel perspective: the role materials have played throughout history in the development of humankind and technologies. Specifically, it shows the connection between the technical and the cultural, economic, ecological, and societal aspects of materials science. It aims to whet the appetite of its readers and inspire them to further explore the properties and applications of metals, alloys, ceramics, plastics, and electronic materials by presenting easily understandable explanations and entertaining historical facts. It is also intended to raise the reader’s awareness of their obligations to society as practicing engineers and scientists....

  18. Energy storage improvement through material science approaches

    Science.gov (United States)

    Kelly, Brandon Joseph

    A need for improved energy storage is apparent for the improvement of our society. Lithium ion batteries are one of the leading energy storage technologies being researched today. These batteries typically utilize coupled reduction/oxidation reactions with intercalation reactions in crystalline metal oxides with lithium ions as charge carriers to produce efficient and high power energy storage options. The cathode material (positive electrode) has been an emphasis in the recent research as it is currently the weakest link of the battery. Several systems of cathode materials have been studied with different structures and chemical makeup, all having advantages and disadvantages. One focus of the research presented below was creating a low cost and high performance cathode material by creating a composite of the low cost spinel structured LiMn2O4 and the higher capacity layered structure materials. Two compositional diagrams were used to map out the composition space between end members which include two dimensional layer structured LiCoO 2, LiNiO2, LiNi0.8Co0.2O2 and three dimensional spinel structured LiMn2O4. Several compositions in each composition map were electrochemically tested and structurally characterized in an attempt to discover a high performance cathode material with a lower cost precursor. The best performing composition in each system shows the desired mixed phase of the layered and spinel crystal structures, yielding improved performance versus the individual end member components. The surrounding compositions were then tested in order to find the optimum composition and performance. The best performing composition was 0.2LiCoO 2•0.7LiNi0.8Co0.2O2•0.1LiMn 2O4 and yielded a specific capacity of 182mAh/g. Another promising area of chemical energy storage is in the storage of hydrogen gas in chemical hydrides. Hydrogen gas can be used as a fuel in a variety of applications as a viable method for storing and transporting energy. Currently, the

  19. E-learning on the example of materials science

    OpenAIRE

    L.A. Dobrzański; F. Brom

    2008-01-01

    Purpose: The main aim of this article is to present the use of the Moodle educational platform in teaching Fundamentals of Materials Science and Metal Materials in the Institute of Engineering Materials and Biomaterials at Silesian University of Technology in Gliwice, and to analyse the efficacy of e-learning as the means of introducing education within a traditional model.Design/methodology/approach: This article contains the description of learning within the mixed mode, which is education ...

  20. Object-Oriented Heterogeneous Database for Materials Science

    OpenAIRE

    David Hansen; David Maier; James Stanley; Jonathan Walpole

    1992-01-01

    As a part of the scientific database research underway at the Oregon Graduate Institute, we are collaborating with materials scientists in the research and development of an extensible modeling and computation environment for materials science. Materials scientists are prolific users of computers for scientific research. Modeling techniques and algorithms are well known and refined, and computerized databases of chemical and physical property data abound. However, applications are typically d...

  1. Science and technology of thermochromic materials

    Energy Technology Data Exchange (ETDEWEB)

    Day, J.H. [Ohio Univ., Athens, OH (United States). Dept. of Chemistry; Willett, R.D. [Washington State Univ., Pullman, WA (United States). Dept. of Chemistry

    1990-12-31

    The color of a substance in general depends upon its state and upon the external forces it experiences, both past and present. One of the simplest methods of attempting to change the state of a material is to vary its temperature. Thermochromism is a noticeable dependence of the color of a substance on temperature. This is thus one of the easier chromogenic effects to detect. Since the changes triggered by temperature variation often are indicative of the effects that can be induced by other means, it is convenient to use the observation of thermochromism as an indication of the possible existence of other chromogenic behavior. Reversibility is an important factor to be considered for thermochromic materials. A compound which decomposes as it is heated may be totally irreversible or may be irreversible because a product of chemical change is removed and not replaced. For reversible systems, long term stability is important, although there are many uses in which stability over a few thermal cycles are adequate for the purpose. The possibility of an indefinitely large number of cycles is frequently limited by secondary and side reactions that may be present. There are a number of excellent reviews of the subject of thermochromism. The following sections of this chapter give an overview of the research done in polymeric, organic, and metal containing systems, as well as a summary of applications development, in the past two years. 165 refs., 9 figs., 1 tab.

  2. Radiation material science at the INP AS RUz

    International Nuclear Information System (INIS)

    Among the critical technologies, determining the national priority of USA and Russia the first place is taken by manufacturing new materials. It means synthesis and production of materials for electronics (micro- and nano-) and photonics, ceramics and nano-ceramics, composites, metals and alloys with particular properties, super-hard materials, bio-compatible materials, catalysts and membranes. Radiation solid state physics gave birth of many radiation technologies for obtaining unique new or modified materials. In the table lists the experimental results recently obtained at the INP AS RUz. The studies are supported by grants of STCU and Uzbekistan Center of Science and Technology

  3. Development Approach for the Accommodation of Materials Science Research for the Materials Science Research Facility on the International Space Station

    Science.gov (United States)

    Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

    2000-01-01

    The Materials Science Research Facility (MSRF) is a modular facility comprised of autonomous Materials Science Research Racks (MSRR's) for research in the microgravity environment afforded by the International Space Station (ISS). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on the third Utilization Flight (UF-3). The facility will house materials processing apparatus and common subsystems required for operating each device. Each MSRR is a stand alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multiuser generic processing apparatus. Each MSRR will support a wide range of materials science themes in the NASA research program and will use the ISS Active Rack Isolation System (ARIS). MSRF is being developed for the United States Laboratory Module and will provide the apparatus for satisfying near-term and long-range Materials Science Discipline goals and objectives.

  4. Binder fraction reduction in non-ferrous metals concentrates briquetting process

    Directory of Open Access Journals (Sweden)

    M. Jodkowski

    2016-10-01

    Full Text Available The research results on a method of reducing the amount of binder applied during formation of metal concentrates are presented. Research was done on a model copper concentrate, which was mixed in assumed mass fraction with binder, as well as binder with addition of waste polyols. Such mixtures were formed and tested using static compressive strength, both immediately after forming and after the assumed seasoning times: 24, 96, 192 and 336 hours. The results confirm the possibility of binder dose lowering using high-efficiency system of binder dispersing with small addition of waste polyols and by homogeneous mixing of the binder with the material. In all examined cases increase in seasoning time influenced mechanical strength of the formed shapes advantageously.

  5. General and special engineering materials science. Vol. 2

    International Nuclear Information System (INIS)

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including 1. reactor clad and structural materials, 2. nuclear fuels and fuel elements, 3. nuclear waste as a materials viewpoint. (orig./IHOE)

  6. General and special engineering materials science. Vol. 3

    International Nuclear Information System (INIS)

    The report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume III concerns special engineering materials science and considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accident and nuclear materials in core melt accidents. (orig./IHOE)

  7. Contribution of Frenkel's theory to the development of materials science

    Directory of Open Access Journals (Sweden)

    Pavlović V.B.

    2006-01-01

    Full Text Available The original and comprehensive research of Yakov Ilich Frenkel in physics and physical chemistry of condensed states, nuclear physics, electrodynamics, science of sintering has significantly contributed to the development of modern scientific knowledge and his scientific ideas are still an inspiration to many scientists. Having in mind the wealth of scientific ideas he had in the research of electroconductivity in metals, crystal structure imperfections and phase transitions and in founding the science of sintering, the contribution of individual theories of Frenkel of significance to materials science are presented in this paper.

  8. In silico design of smart binders to anthrax PA

    Science.gov (United States)

    Sellers, Michael; Hurley, Margaret M.

    2012-06-01

    The development of smart peptide binders requires an understanding of the fundamental mechanisms of recognition which has remained an elusive grail of the research community for decades. Recent advances in automated discovery and synthetic library science provide a wealth of information to probe fundamental details of binding and facilitate the development of improved models for a priori prediction of affinity and specificity. Here we present the modeling portion of an iterative experimental/computational study to produce high affinity peptide binders to the Protective Antigen (PA) of Bacillus anthracis. The result is a general usage, HPC-oriented, python-based toolkit based upon powerful third-party freeware, which is designed to provide a better understanding of peptide-protein interactions and ultimately predict and measure new smart peptide binder candidates. We present an improved simulation protocol with flexible peptide docking to the Anthrax Protective Antigen, reported within the context of experimental data presented in a companion work.

  9. 1. international spring school and symposium on advances in materials science; contributed papers. Proceedings. V.2

    International Nuclear Information System (INIS)

    The first International Conference on Advances in Materials Science was held on 15-20 March, 1994 in Cairo. The specialists discussed advances in materials science formation, development and observation. The applications of materials science technique in the field of construction material, Moessbauer measurements, physico science, corrosion and mechanical alloying were discussed at the meeting. more than 700 papers were presented in the meeting

  10. Standard and reference materials for marine science, revised edition, 1993

    OpenAIRE

    IOC for UNESCO

    1993-01-01

    This is the third edition of the catalog of reference materials suited for use in marine science, originally compiled in 1986 for NOAA, IOC and UNEP. The catalog lists close to 2,000 reference materials from sixteen producers and contains information about their proper use, sources, availability, and analyte concentrations. Indices are included for elements, isotopes, and organic compounds, as are cross references to CAS registry numbers, alternate names, and chemical structures of selected o...

  11. Learning about materials science and technology by deconstructing modern products

    OpenAIRE

    Horsewell, Andy

    2007-01-01

    Get the attention of young engineering students, interest and inspire them. Encourage them to think about materials science and technology by looking at the consumer products and gadgets that interest them. Analyse what modern products are constructed of, and how and why the materials and the processes have been chosen in their manufacture i.e. deconstruct modern products. Suitable items can easily be found in personal communication and entertainment, including all manner of sports goods. Fur...

  12. Materials Science Division activity report 1991-1993

    International Nuclear Information System (INIS)

    This progress report gives an account of the various research and developmental activities carried out at the Materials Science Division of the Indira Gandhi Centre for Atomic Research, Kalpakkam during 1991-93. It also gives a summary of the results of the research activities, describes the experimental facilities and also list the publications

  13. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    International Nuclear Information System (INIS)

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY '95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately

  14. Polymerization Simulator for Introductory Polymer and Material Science Courses

    Science.gov (United States)

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  15. Materials Science Research Rack Onboard the International Space Station

    Science.gov (United States)

    Reagan, Shawn; Leman, John R.; Frazier, Natalie C.

    2013-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1000 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  16. Materials for construction and civil engineering science, processing, and design

    CERN Document Server

    Margarido, Fernanda

    2015-01-01

    This expansive volume presents the essential topics related to construction materials composition and their practical application in structures and civil installations. The book's diverse slate of expert authors assemble invaluable case examples and performance data on the most important groups of materials used in construction, highlighting aspects such as nomenclature, the properties, the manufacturing processes, the selection criteria, the products/applications, the life cycle and recyclability, and the normalization. Civil Engineering Materials: Science, Processing, and Design is ideal for practicing architects; civil, construction, and structural engineers, and serves as a comprehensive reference for students of these disciplines. This book also: ·       Provides a substantial and detailed overview of traditional materials used in structures and civil infrastructure ·       Discusses properties of natural and synthetic materials in construction and materials' manufacturing processes ·  �...

  17. Biomimetics in materials science self-healing, self-lubricating, and self-cleaning materials

    CERN Document Server

    Nosonovsky, Michael

    2012-01-01

    Biomimetics in Materials Science provides a comprehensive theoretical and practical review of biomimetic materials with self-healing, self-lubricating and self-cleaning properties. These three topics are closely related and constitute rapidly developing areas of study. The field of self-healing materials requires a new conceptual understanding of this biomimetic technology, which is in contrast to traditional  engineering processes such as wear and fatigue.  Biomimetics in Materials Science is the first monograph to be devoted to these materials. A new theoretical framework for these processes is presented based on the concept of multi-scale structure of entropy and non-equilibrium thermodynamics, together with a detailed review of the available technology. The latter includes experimental, modeling, and simulation results obtained on self-healing/lubricating/cleaning materials since their emergence in the past decade. Describes smart, biomimetic materials in the context of nanotechnology, biotechnology, an...

  18. Chemistry and Materials Science progress report, first half FY 1992

    International Nuclear Information System (INIS)

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy

  19. Perspective: Codesign for materials science: An optimal learning approach

    Science.gov (United States)

    Lookman, Turab; Alexander, Francis J.; Bishop, Alan R.

    2016-05-01

    A key element of materials discovery and design is to learn from available data and prior knowledge to guide the next experiments or calculations in order to focus in on materials with targeted properties. We suggest that the tight coupling and feedback between experiments, theory and informatics demands a codesign approach, very reminiscent of computational codesign involving software and hardware in computer science. This requires dealing with a constrained optimization problem in which uncertainties are used to adaptively explore and exploit the predictions of a surrogate model to search the vast high dimensional space where the desired material may be found.

  20. Nature of science in instruction materials of science through the model of educational reconstruction

    Science.gov (United States)

    Azizah, Nur; Mudzakir, Ahmad

    2016-02-01

    The study was carried out to reconstruct the science teaching materials charged view of the nature of science (VNOS). This reconstruction process using the Model of Educational Reconstruction (MER), which is the framework for research and development of science education as well as a guide for planning the teaching of science in the schools is limited in two stages, namely: content structure analysis, and empirical studies of learners. The purpose of this study is to obtain a pre-conception of learners and prospective scientists to the topic of the nature of the material and utilization. The method used to descriptive with the instruments is guidelines for interviews for 15 students of class VIII, text analysis sheet, sheet analysis of the concept, and the validation sheet indicators and learning objectives NOS charged on cognitive and affective aspects. The results obtained in the form of pre-conceptions of learners who demonstrate almost 100% of students know the types of materials and some of its nature, the results of the scientist's perspective on the topic of the nature of the material and its use, as well as the results of the validation indicators and learning objectives charged NOS and competencies PISA 2015 cognitive and affective aspects with CVI value of 0.99 and 1.0 after being validated by five experts. This suggests that the indicators and the resulting learning objectives feasible and can proceed to the reconstruction of teaching materials on the topic of material properties and utilization.

  1. Elements of informatics for combinatorial solid-state materials science

    Science.gov (United States)

    Meguro, S.; Ohnishi, T.; Lippmaa, M.; Koinuma, H.

    2005-01-01

    The main purpose of using combinatorial techniques for materials science studies is to achieve higher experimental throughput than what is possible when samples are synthesized and characterized one at a time. The instrumentation needed for performing high-throughput synthesis and characterization has seen rapid development in recent years. The software tools needed to connect all parts of the materials development process are still largely lacking. In this paper we discuss the requirements of a combinatorial informatics system for materials science experiments. Specifically, we focus on solid-state thin film synthesis. We also describe an implementation of such a system that is based on widely-available open-source software. The system offers features such as remote access via a Web browser, an electronic notebook-style Web interface, automatic upload of new measurement or processing results and rapid preview of experimental data.

  2. Materials science research at the European Synchrotron Radiation Facility

    CERN Document Server

    Kvick, A

    2003-01-01

    The Materials Science Beamline ID11 at the European Synchrotron Radiation Facility in Grenoble, France is dedicated to research in materials science notably employing diffraction and scattering techniques. Either an in-vacuum undulator with a minimum gap of 5 mm or a 10 kW wiggler giving high-flux monochromatic X-rays generates the synchrotron radiation in the energy range 5-100 keV. The dominant research is in the area of time-resolved diffraction, powder diffraction, stress/strain studies of bulk material, 3D mapping of grains and grain interfaces with a measuring gauge down approx 5x5x50 mu m, and microcrystal diffraction. A variety of CCD detectors are used to give time-resolution down to the millisecond time regime.

  3. Innovation Study for Materials Science Laboratory Management, Supported by Knowledge Science Tools : Five Cross-Disciplinary Projects

    OpenAIRE

    Tsuruoka, Hiroyuki; Yoshinaga, Takashi; Nakamori, Yoshiteru

    2007-01-01

    It has become a topical and widely accepted argument that innovation is the key to revitalizing competitiveness of a country, company and university. As a graduate university having the School of Knowledge Science, and the School of Materials Science, we have organized to make “innovation studies” for Materials Science Laboratory, supported by Knowledge Science tools with collaboration of these two schools as 5 cross-disciplinary projects. Knowledge Science side has provided knowledge tools, ...

  4. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  5. An Interdisciplinary Program in Materials Science at James Madison University.

    Science.gov (United States)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  6. Hybrid modelling methods in materials science - selected examples

    Directory of Open Access Journals (Sweden)

    W. Sitek

    2012-09-01

    Full Text Available Purpose: The paper presents selected examples of application of computational tools, including artificial intelligence methods to solve examples of tasks in the area of materials science. (i Selection method of steel grade with required hardenability; (ii Modelling of CCT diagrams for engineering and constructional steels; (iii Application of neural networks for selection of steel with the assumed hardness after cooling from the austenitising temperature; (iv Designing of high-speed steels chemical compositionDesign/methodology/approach: In the paper been applied a hybrid approach that combined application of various mathematical tools including artificial neural networks, linear regression and genetic algorithms to solve selected tasks from the area of materials science.Findings: Computer modelling and simulation make improvement of engineering materials properties possible, as well as prediction of their properties, even before the materials are fabricated, with the significant reduction of expenditures and time necessary for their investigation and application. Methods used in hybrid systems are complementary and disadvantages of one method are compensated by the advantages of another method.Practical implications: Solutions presented in the work, based on using the adequate material models may feature an interesting alternative in designing of the new materials with the required properties. The practical aspect has to be noted, resulting form the developed models, which may successfully replace the above mentioned technological investigations, consisting in one time selection of the chemical composition and heat treatment parameters and experimental verification of the newly developed materials to check of its properties meet the requirements.Originality/value: The presented approach to new materials design assumes the maximum possible limitation of carrying out the indispensable experiments, to take advantage of the existing experimental

  7. Environmentally Friendly Geopolymeric Binders Made with Perlite

    Science.gov (United States)

    Erdogan, S. T.

    2011-12-01

    Production of Portland cement (PC), the ubiquitous binding material for construction works, is responsible for 5-10 % of all anthropogenic CO2 emissions. Nearly half of these emissions arise from the decomposition of calcareous raw materials, and the other half from kiln fuel combustion and cement clinker grinding operations. As such, PC production contributes significantly to global warming and climate change. Lately, there have been efforts to develop alternative binders with lower associated green house gas emissions. An important class of such binders is geopolymers, formed by activating natural or waste materials with suitable alkaline or acidic solutions. These binders have very low CO2 emissions from grinding of the starting material, and some from the production of the activating chemical. The total CO2 emission from carefully formulated mixtures can be as low as 1/5th - 1/10th of those of Portland cement concrete mixtures with comparable properties. While use of industrial wastes is environmentally preferable, the variability of their chemical compositions over time makes their use difficult. Use of natural materials depletes resources but can have more consistent properties and can be more easily accepted. Perlite is a volcanic aluminosilicate glass abundant in Turkey, China, Japan, the US and several EU countries. It has been used in its expanded form, for horticulture, for insulation, and for producing lightweight concrete. Turkish perlites contain more than 70 % SiO2, and have a SiO2/Al2O3 ratio of ~5.5. This study shows that ground perlite can be mixed with alkaline activators like sodium hydroxide or sodium silicate to yield mortars with strengths comparable to those of portland cement mortars. Strength gain is slower than with PC mixtures at room temperature but adequate ultimate strength can be achieved with curing at slightly elevated temperatures in 24 h or less. Since perlite is natural, perlite geopolymers can have environmental, energetic, and

  8. Chemistry and Materials Science Directorate 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

    2006-08-08

    In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent

  9. Chemistry and Materials Science Directorate 2005 Annual Report

    International Nuclear Information System (INIS)

    In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent

  10. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); Glotzer, Sharon [University of Michigan; McCurdy, Bill [University of California Davis; Roberto, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2010-07-26

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. New materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of

  11. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  12. High temperature intermetallic binders for HVOF carbides

    International Nuclear Information System (INIS)

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr3C2-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr3C2 cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr3C2-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders

  13. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  14. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    International Nuclear Information System (INIS)

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index

  15. Neutron scattering treatise on materials science and technology

    CERN Document Server

    Kostorz, G

    1979-01-01

    Treatise on Materials Science and Technology, Volume 15: Neutron Scattering shows how neutron scattering methods can be used to obtain important information on materials. The book discusses the general principles of neutron scattering; the techniques used in neutron crystallography; and the applications of nuclear and magnetic scattering. The text also describes the measurement of phonons, their role in phase transformations, and their behavior in the presence of crystal defects; and quasi-elastic scattering, with its special merits in the study of microscopic dynamical phenomena in solids and

  16. First Materials Science Research Facility Rack Capabilities and Design Features

    Science.gov (United States)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  17. New materials: Fountainhead for new technologies and new science

    Science.gov (United States)

    Rustum, Roy

    1993-01-01

    The role of materials as the benchmark technologies which give epochs of human history their names continues into the present. The discovery of new materials has nearly always been the source of new materials science, and frequently of new technologies. This paper analyzes the actual processes by which new materials are synthesized, i.e. whether driven by serendipitous observations, new knowledge is pulled by the market, or integrated into a technological thrust. This analysis focuses on modern ceramic materials discoveries, since World War 2 and uses 45 years experience in materials synthesis in the author's own laboratory as case studies. A dozen different families of materials or processes are involved: hydrothermal reactions; sol-gel processing; clays and zeolites; electroceramics; zero expansion ceramics; diamond films; and radioactive waste host phases. Nanocomposite concepts introduced by the author a decade ago offer an entire, large, new class of materials which will dominate synthesis for the next period. The future of materials research for the next 25 years cannot be extrapolated from the past 25 years. We are near the asymptote for materials utilization in most metals. Likewise we are approaching saturation in improvement of many useful properties. Justifying much further 'basic' R/D for incremental improvement in civilian-oriented industries will not be easy. In materials synthesis, the near-term future is sure to emphasize not new phases, but tailored micro- and nanocomposites for chemical, electrical, optical, and magnetic uses. Unexpected new discoveries such as the Lanxide process may offer rarer chances for step function advances. The new structure of knowledge management will rely less on local research than on integration of worldwide inputs. Better scientific and technological opportunities will lie in designing knowledge intensive materials to meet the new environmental and conservation goals, and the human needs of the very large numbers at

  18. Functional binders as graphite exfoliation suppressants in aggressive electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Graphite electrodes are cycled in propylene carbonate rich electrolytes. • Binder swelling adversely affects electrode degradation. • Presence of carboxyl groups and sodium ions improve SEI properties. • Protection correlates with surface coverage and functionality of binder. • CMC-Na is less surface selective and provides protection at low binder content. - Abstract: A comparative study of various electrode binders for graphite electrodes was conducted in a carbonate-based electrolyte with a high content of propylene carbonate (PC) as a means to evaluate anode degradation in presence of different binders. Because of its direct contact with the active material, a binder can be interpreted as an interfacial layer and as a local part of the electrolyte, the properties of which greatly depend on the interaction with the liquid electrolyte. In this work we demonstrate how a carefully chosen binder can create a specific surface environment that can protect graphite from exfoliation when the binder exhibits poor solubility in the electrolyte solvent and good surface adhesion to the active material. The exceptional stability of graphite electrodes containing poly(acrylic acid) sodium salt (PAA-Na) and carboxymethyl cellulose sodium salt (CMC-Na), respectively, in a PC-rich electrolyte is explained through the understanding of binder swelling and functionality. Interfacial resistances and electrochemical stability were investigated with impedance spectroscopy and galvanostatic cycling. Electrode morphologies and distributions of material were analysed with SEM and EDX. Evidence is presented that the surface selectivity increases with concentration of functional groups and polymer flexibility. Therefore only the less selective, stiff polymer with less functional groups, CMC-Na, provides sufficient protection at low binder contents

  19. Mineral Surface Reactivity in teaching of Science Materials

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    In the last fifty years, science materials issues has required the study of air pollution, water and soil to prevent and remedy the adverse effects of waste originating from anthropogenic activity and the development of new energies and new materials. The teaching of this discipline has been marked by lectures on general lines, materials, disciplines, who explained biased objects of reality, but often forgot the task of reconstruction and integration of such visions. Moving from that model, otherwise quite static, to a dynamic relational model, would in our view, a real revolution in education. This means taking a systematic approach to complex both in interpreting reality and in favor when learning. Children relationships are as important or more than single objects, and it is to discover fundamental organizational principles of phenomena we seek to interpret or in other words, find the pattern that connects. Thus, we must work on relationships and also take into account the relation between the observer and the observed. Educate about relationships means that studies should always be considered within a framework of probabilities, not absolute certainties. This model of systemic thinking, dealing with complexity, is a possibility to bring coherence to our educational work, because the complexity is not taught, complexity is live, so that complex thinking is extended (and fed) in a form educate complex. It is the task of teaching to help people move from level to level of decision reviews. This means that systems thinking should be extended in a local action, action that engages the individual and the environment. Science Materials has emerged as a discipline of free choice for pupils attending chemical engineering which has been assigned 6.0 credits. The chemical engineer's professional profile within the current framework is defined as a professional knowledge as a specialization technical / functional, working in a learning organization and the formation of

  20. Living in a material world: Development and evaluation of a new materials science course for non-science majors

    Science.gov (United States)

    Brust, Gregory John

    This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science

  1. Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [Dept. of Chemistry, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Le, D.-B. [3M Electronic Markets Materials Division, 3M Center, St. Paul, MN 55144-1000 (United States); Ferguson, P.P. [Dept. of Physics and Atmospheric Science, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Dahn, J.R., E-mail: jeff.dahn@dal.c [Dept. of Chemistry, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Dept. of Physics and Atmospheric Science, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada)

    2010-03-01

    A lithium polyacrylate (Li-PAA) binder has been developed by 3M Company that is useful with electrodes comprising alloy anode materials. This binder was used to prepare electrodes made with Sn{sub 30}Co{sub 30}C{sub 40} material prepared by mechanical attrition. The electrochemical performance of electrodes using Li-PAA binder was characterized and compared to those using sodium carboxymethyl cellulose (CMC) and polyvinylidene fluoride (PVDF) binders. The Sn{sub 30}Co{sub 30}C{sub 40} electrodes using Li-PAA and CMC binders show much smaller irreversible capacity than the ones using PVDF binder. Poor capacity retention is observed when PVDF binder is used. By contrast, the electrodes using Li-PAA binder show excellent capacity retention for Sn{sub 30}Co{sub 30}C{sub 40} materials and a specific capacity of 450 mAh/g is achieved for at least 100 cycles. The results suggest that Li-PAA is a promising binder for electrodes made from large-volume change alloy materials.

  2. Teleconferences and Audiovisual Materials in Earth Science Education

    Science.gov (United States)

    Cortina, L. M.

    2007-05-01

    Unidad de Educacion Continua y a Distancia, Universidad Nacional Autonoma de Mexico, Coyoaca 04510 Mexico, MEXICO As stated in the special session description, 21st century undergraduate education has access to resources/experiences that go beyond university classrooms. However in some cases, resources may go largely unused and a number of factors may be cited such as logistic problems, restricted internet and telecommunication service access, miss-information, etc. We present and comment on our efforts and experiences at the National University of Mexico in a new unit dedicated to teleconferences and audio-visual materials. The unit forms part of the geosciences institutes, located in the central UNAM campus and campuses in other States. The use of teleconference in formal graduate and undergraduate education allows teachers and lecturers to distribute course material as in classrooms. Course by teleconference requires learning and student and teacher effort without physical contact, but they have access to multimedia available to support their exhibition. Well selected multimedia material allows the students to identify and recognize digital information to aid understanding natural phenomena integral to Earth Sciences. Cooperation with international partnerships providing access to new materials and experiences and to field practices will greatly add to our efforts. We will present specific examples of the experiences that we have at the Earth Sciences Postgraduate Program of UNAM with the use of technology in the education in geosciences.

  3. Components of abstracts in materials science and technology

    Directory of Open Access Journals (Sweden)

    Alenka Šauperl

    2009-01-01

    Full Text Available We investigated the structure of abstracts in Slovenian and international journals in the field of materials and technology. The aim of the study was to analyze the adherence of the abstracts published in Materials and Technology (MIT and Materials Science and Technology (MST to two different instructions for the preparation of abstracts (scheme based on ISO 214:1976 and Spanring system. 25 abstracts from each journal were divided into sentences. We tried to place the sentences into one of the categories of the above mentioned schemes. The research was a part of the postgraduate study in the Department of Library and Information Science and Book Studies (Faculty of Arts, Ljubljana in September and October 2008. There are no important differences between MIT and MST. Spanring system seems more appropriate for the field of materials and technology. The place and the time of the research should be added to abstracts and the Hu-bit category should be distributed into two parts: Hu-M (method and Hu-R (results. The recommended Spanring system should be harmonized with authors, who publish in these serials and the effect of the instructions should be analyzed, too.

  4. Computational materials science: The emergence of predictive capabilities of material behaviour

    Indian Academy of Sciences (India)

    Vijay Kumar

    2003-06-01

    The availability of high performance computers and development of efficient algorithms has led to the emergence of computational materials science as the third branch of materials research complementing the traditional theoretical and experimental approaches. It has created new virtual realities in materials design that are either experimentally not realizable easily or are prohibitively expensive. The possibilities of doing calculations from first principles have led to predictive capabilities that open up new avenues of discovering novel materials with desired properties, understanding material behaviour on the nano- to the macroscopic scale and helping research in new frontiers that could interface between nano-materials and drug design, as well as in understanding biological systems. Here, we describe some significant recent developments related to alloy and steel design as well as the study of matter on the nano-scale — an area that has gained much prominence in current materials research.

  5. Particle-solid interactions and 21st century materials science

    International Nuclear Information System (INIS)

    The basic physics that governs the interaction of energetic ion beams with solids has its roots in the atomic and nuclear physics of the last century. The central formalism of Jens Lindhard, describing the 'particle-solid interaction', provides a valuable quantitative guide to statistically meaningful quantities such as energy loss, ranges, range straggling, channeling effects, sputtering coefficients, and damage intensity and profiles. Modern materials modification (nanoscience, solid state dynamics) requires atomic scale control of the particle-solid interaction. Two recent experimental examples are discussed: (1) the control of the size distribution of nanocrystals formed in implanted materials and (2) the investigation of the site-specific implantation of hydrogen into silicon. Both cases illustrate unique solid-state configurations, created by ion implantation, that address issues of current materials science interest

  6. Recent trends in physics of material science and technology

    CERN Document Server

    Shrivastava, Keshav; Akhtar, Jamil

    2015-01-01

    This book discusses in detail the recent trends in Computational Physics, Nano-physics and Devices Technology. Numerous modern devices with very high accuracy, are explored In conditions such as longevity and extended possibilities to work in wide temperature and pressure ranges, aggressive media, etc. This edited volume presents 32 selected papers  of the 2013 International Conference on Science & Engineering in Mathematics, Chemistry and Physics . The book is divided into three  scientific Sections: (i) Computational Physics, (ii) Nanophysics and Technology, (iii) Devices and Systems and is addressed to Professors, post-graduate students, scientists and engineers taking part in R&D of nano-materials, ferro-piezoelectrics, computational Physics and devices system, and also different devices based on broad applications in different areas of modern science and technology.

  7. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  8. Chemistry and Materials Science Department annual report, 1988--1989

    Energy Technology Data Exchange (ETDEWEB)

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W. [eds.

    1989-12-31

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  9. The Science of Materials: from Materials Discovered by Chance to Customized Materials

    OpenAIRE

    Bréchet, Yves; Haroche, Serge

    2015-01-01

    Throughout the ages, humans have applied knowledge and know-how to master materials. They have gone from materials encountered by chance available in their environment to customized materials designed to meet multi-criteria specifications. Today, owing particularly to digital modelling on different scales, we are able to design high-performance materials, combining various classes of materials, in controlled geometries and dimensions. These innovation strategies – architectured or bio-inspire...

  10. 1. international spring school and symposium on advances in materials science; invited lectures. Proceedings. V.1

    International Nuclear Information System (INIS)

    The 1 st international conference on advances in materials science was held on 15-20 March, 1994 in cairo. The specialist discussed material science formation, development and observation. The application of advances in material science technique in the field of atomic energy, structure design, microelectronic structure were discussed at the meeting. more than 400 papers were presented in the meeting

  11. The Materials Science beamline upgrade at the Swiss Light Source.

    Science.gov (United States)

    Willmott, P R; Meister, D; Leake, S J; Lange, M; Bergamaschi, A; Böge, M; Calvi, M; Cancellieri, C; Casati, N; Cervellino, A; Chen, Q; David, C; Flechsig, U; Gozzo, F; Henrich, B; Jäggi-Spielmann, S; Jakob, B; Kalichava, I; Karvinen, P; Krempasky, J; Lüdeke, A; Lüscher, R; Maag, S; Quitmann, C; Reinle-Schmitt, M L; Schmidt, T; Schmitt, B; Streun, A; Vartiainen, I; Vitins, M; Wang, X; Wullschleger, R

    2013-09-01

    The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new source, the entire front-end and optics had to be redesigned. In this work, the upgrade of the beamline is described in detail. The tone is didactic, from which it is hoped the reader can adapt the concepts and ideas to his or her needs. PMID:23955029

  12. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index (the investigator index is in two parts - laboratory and contract research).

  13. Chitosan oligosaccharides: A novel and efficient water soluble binder for lithium zinc titanate anode in lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Physical properties of chitosan oligosaccharides binder are researched. • Electrodes with COS and PVDF binder systems are fabricated to compare physical and electrochemical properties. • Li2ZnTi3O8 electrode with COS binder system shows improved electrochemical performance. - Abstract: Chitosan oligosaccharides (COS) as a new, environmentally and water-based organic compound, is firstly applied as the electrode binder for Li2ZnTi3O8 electrode in lithium-ion batteries. Compared with conventional polyvinylidene fluoride (PVDF) binder, the COS binder is used for Li2ZnTi3O8 electrode significantly improves the electrochemical performances in terms of the first Columbic efficiency, cycling behavior, rate capability and long life cycle. At 0.1 A g−1, the initial discharge capacity of 215.6 mAh g−1 can be obtained for Li2ZnTi3O8 with COS binder system and the Columbic efficiency is as high as 93.6%, which are apparently better than PVDF binder system. Moreover, 66.1 mAh g−1 can be remained after 1000 cycles and the retention is 33.6% for COS binder system, while the PVDF binder system has only 37.9 mAh g−1 (22.8%). In addition, the cycling stability of Li2ZnTi3O8 electrode has been improved after using COS as binder. The elevated electrochemical performances of Li2ZnTi3O8 electrode with COS binder system can be ascribed to the characters of COS binder, which not only provide numerous hydroxyl groups formed strong hydrogen binds with both active materials and copper current collector, but also suppress swelling of electrode with electrolyte solution

  14. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    Science.gov (United States)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  15. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    Energy Technology Data Exchange (ETDEWEB)

    Anne Seifert; Louis Nadelson

    2011-06-01

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a

  16. Study of radionuclides migration in hydraulic binders. Influence of binder alteration on transfer mechanisms and kinetic

    International Nuclear Information System (INIS)

    In the framework of low and medium activity wastes surface storage, hydraulic binders materials are usually used as containment barrier. The safety analysis of this storage mode involves the knowledge of their behaviour and of their retention capacity towards radionuclides, at short and long-term. The knowledge of diffusional processes inside their liquid phase and those of the interactions existing between the diffusing element and the cement matrix, as well as their kinetics, are essential elements for the study of their durability on 300 years. An experimental methodology has been defined, allowing the characterization of the transfer of an element j in a porous material by the determination of the diffusion coefficient of j in the pores of the material x and the determination of the local equilibrium constant characterizing the interaction of j with the material x. This can be made from the analytical expressions coming from the Fick laws. These parameters have been studied from diffusion and leaching experiments of radionuclides in pure cement pastes. A modelling of the leaching processes is proposed here. The decomposition of the hydraulic binders, by their leaching in a demineralized solution at 'aggressive' pH, leads essentially to their decalcification - whose kinetics answers to a pure diffusion law in √t - and an increase of their porosity. In these attack conditions, it seems that it exists a decalcification limit condition, from which a lattice of interconnected microcracks is developed in all the material. In consequence, the retention capacity of these degraded materials towards radionuclides decreases. The cesium transfer appears more sensitive to the degradation of the material than of those of the tritium. (O.M.)

  17. Materials Science Constraints on the Development of Aluminium Reduction Cells

    Science.gov (United States)

    Metson, James; McIntosh, Grant; Etzion, Ronny

    The Hall-Heroult process for the production of Aluminium metal is some 125 years old. The process is energy constrained by the need to shed around half of the (electrical) energy supplied to the cell as waste heat. The molten cryolite electrolyte is sufficiently aggressive that the only reliable method of protecting the side wall of the cell is to maintain a frozen layer of electrolyte at the hot face of the sidewall. Thus the lack of a cryolite resistant sidewall is but one of several materials science constraints which still limit the energy efficiency of the process. An inert anode and non-consumable cathode are also significant challenges which limit cell life and energy efficiency. Thus there are major challenges in both materials development and new conceptual cell designs to improve the efficiency of this process.

  18. Materials Science Division progress report 1986-1988

    International Nuclear Information System (INIS)

    This is a report on the various Research and Developmental (R and D) activities carried out in the Materials Science Division during the period 1986-88. Most contributions have been presented in the form of abstracts and wherever possible results of several contributions on a related problem have been consolidated into one. The R and D activities covered the following areas: (1) quasicrystalline phase, (2) high temperature superconducting behaviour in metal oxides, (3) physics of colloidal suspensions, (4) behaviour of materials under high pressure, (5) radiation effects in complex alloy systems, (6) inert gas behaviour in metals, and production of crystals, particularly of volatile semiconducting compounds. The lists of publications by the members of the Division and seminars held during 1986-88 are given at the end of the report. (a uthor)

  19. 10th International School of Materials Science and Technology : Intercalation in Layered Materials "Ettore Majorana"

    CERN Document Server

    1986-01-01

    This volume is prepared from lecture notes for the course "Intercalation in Layered Materials" which was held at the Ettore Majorana Centre for Scientific Culture at Erice, Sicily in July, 1986, as part of the International School of Materials Science and Tech­ nology. The course itself consisted of formal tutorial lectures, workshops, and informal discussions. Lecture notes were prepared for the formal lectures, and short summaries of many of the workshop presentations were prepared. This volume is based on these lecture notes and research summaries. The material is addressed to advanced graduate students and postdoctoral researchers and assumes a background in basic solid state physics. The goals of this volume on Intercalation in Layered Materials include an introduc­ tion to the field for potential new participants, an in-depth and broad exposure for stu­ dents and young investigators already working in the field, a basis for cross-fertilization between workers on various layered host materials...

  20. Multiscale paradigms in integrated computational materials science and engineering materials theory, modeling, and simulation for predictive design

    CERN Document Server

    Runge, Keith; Muralidharan, Krishna

    2016-01-01

    This book presents cutting-edge concepts, paradigms, and research highlights in the field of computational materials science and engineering, and provides a fresh, up-to-date perspective on solving present and future materials challenges. The chapters are written by not only pioneers in the fields of computational materials chemistry and materials science, but also experts in multi-scale modeling and simulation as applied to materials engineering. Pedagogical introductions to the different topics and continuity between the chapters are provided to ensure the appeal to a broad audience and to address the applicability of integrated computational materials science and engineering for solving real-world problems.

  1. International Conference on Materials Science and Technology (ICMST 2012)

    Science.gov (United States)

    Joseph, Ginson P.

    2015-02-01

    FROM THE CONVENOR'S DESK The Department of Physics, St. Thomas College Pala, is highly privileged to organize an International Conference on Materials Science and Technology (ICMST 2012) during 10-14 June 2012, and as Convenor of the conference it is with legitimate pride and immense gratitude to God that I remember the most enthusiastic responses received for this from scientists all over the world. In a time of tremendous revolutionary changes in Materials Science and Technology, it is quite in keeping with the tradition of a pioneering institute that St. Thomas College is, to have risen to the occasion to make this conference a reality. We have no doubt that this proved to be a historic event, a real breakthrough, not only for us the organizers but also for all the participants. A conference of this kind provides a nonpareil, a distinctly outstanding platform for the scholars, researchers and the scientists to discuss and share ideas with delegates from all over the world. This had been most fruitful to the participants in identifying new collaborations and strengthening existing relations. That experts of diverse disciplines from across the world were sitting under one roof for five days, exchanging views and sharing findings, was a speciality of this conference. The event has evoked excellent responses from all segments of the Materials Science community worldwide. 600 renowned scholars from 28 countries participated in this. We were uniquely honoured to have Prof. C.N.R. Rao, Chairman, Scientific Advisory Council to the Prime Minister of India, to inaugurate this conference. May I take this opportunity to thank all those who have contributed their valuable share, diverse in tone and nature, in the making of this conference. My whole hearted gratitude is due to the international and national members of the advisory committee for their valuable guidance and involvement. I place on record my heartfelt gratitude to our sponsors. I am sure that this conference has

  2. Biomass conversion. The interface of biotechnology, chemistry and materials science

    Energy Technology Data Exchange (ETDEWEB)

    Baskar, Chinnappan [Myongji Univ., Yongin (Korea, Republic of). Dept. of Environmental Engineering and Biotechnology; Baskar, Shikha [Uttarakhand Technical Univ. (India). THDC Inst. of Hydropower Engineering and Technology, Tehri; Dhillon, Ranjit S. (eds.) [Punjab Aricultural Univ. (India). Dept. of Chemistry

    2012-11-01

    Gives state-of-the-art of biomass conversion plus future development. Connects the applications into the fields of biotechnology, microbiology, chemistry, materials science. Written by international experts. The consumption of petroleum has surged during the 20th century, at least partially because of the rise of the automobile industry. Today, fossil fuels such as coal, oil, and natural gas provide more than three quarters of the world's energy. Unfortunately, the growing demand for fossil fuel resources comes at a time of diminishing reserves of these nonrenewable resources. The worldwide reserves of oil are sufficient to supply energy and chemicals for only about another 40 years, causing widening concerns about rising oil prices. The use of biomass to produce energy is only one form of renewable energy that can be utilized to reduce the impact of energy production and use on the global environment. Biomass can be converted into three main products such as energy, biofuels and fine chemicals using a number of different processes. Today, it is a great challenge for researchers to find new environmentally benign methodology for biomass conversion, which are industrially profitable as well. This book focuses on the conversion of biomass to biofuels, bioenergy and fine chemicals with the interface of biotechnology, microbiology, chemistry and materials science. An international scientific authorship summarizes the state-of-the-art of the current research and gives an outlook on future developments.

  3. Chemistry and Materials Science Directorate Annual Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Diaz de la Rubia, T; Shang, S P; Kitrinos, G A; Fluss, M; Westbrook, C; Rennie, G

    2004-04-21

    Evolving challenges and solid accomplishments define the year 2003 for us. Our scientific breakthroughs validate our strategic directions and reaffirm our critical role in fulfilling the Laboratory's missions. Our growth continues in new research projects and significant new programmatic support. Our mission is clear: to enable the Laboratory to accomplish its primary mission through excellence in the chemical and materials sciences. The directorate's common theme and determination has remained constant: Deliver on our commitments, while anticipating and capitalizing on opportunities through innovation in science and technology. In this, the 2003 Annual Report, we describe how our science is built around a strategic plan with four organizing themes, each with key scientific accomplishments by our staff and collaborators. Our strategic plan is synergistic with the Laboratory's Long-Range Science and Technology Plan, which identifies six areas of institutional research and development strategy. This 2003 CMS Annual Report is organized into two major sections: research themes and dynamic teams. The research-theme section addresses challenges, achievements, and new frontiers within each of the four research themes. The dynamic-teams section illustrates the directorate's organizational structure of divisions, centers, and institutes that supports a team environment across disciplinary and institutional boundaries. The research presented gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with the institutional strategy. Our organizational structure offers an environment of collaborative problem-solving opportunities, an environment that attracts and retains the best and the brightest from across the Laboratory and around the world.

  4. Soleil a new powerful tool for materials science

    International Nuclear Information System (INIS)

    The first photons delivered by the third generation synchrotron source SOLEIL will be soon available for the scientific community. In this context, this paper presents an overview of the potentialities offered by this new machine for the study of materials. The outstanding brilliance of the SOLEIL source will enable to reduce by several orders of magnitude the data collection time for most of the synchrotron techniques (X-ray absorption spectroscopy - EXAFS, wide and small angle X-ray scattering - WAXS and SAXS, X-ray diffraction -XRD, photoelectron spectroscopy and microscopy-XPS and PEEM, etc.) thus allowing an operando approach of catalysis processes. The spatial resolution, from a few micrometers to sub micrometer scale, accessible by micro-diffraction and micro-spectroscopy in the wavelength range from the far IR to the hard X-rays, will provide spatial distributions of different elements (atomic and chemical state selectivity) in a material, from the working heterogeneous catalyst to the reservoir rocks. The reactivity of surfaces and nano-particles exposed to controlled gas fluxes will be studied by several in situ techniques. Finally the combination of different synchrotron techniques (diffraction, absorption and fluorescence X) and the access to complementary information obtained through the simultaneous combination of these techniques with those routinely applied in Materials Science, such as UV-Vis or Raman spectroscopy, will offer enlarged capabilities for the operando characterization of materials. (authors)

  5. Transmission electron microscopy a textbook for materials science

    CERN Document Server

    Williams, David B

    1996-01-01

    Electron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi­ of materials by completing the processing-structure-prop­ croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them­ to achieve specific sets of properties; the extraordinary abili­ selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM­ of all of these areas before one can hope to tackle signifi­ instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate­ be use...

  6. Development of materials science by Ab initio powder diffraction analysis

    International Nuclear Information System (INIS)

    Crystal structure is most important information to understand properties and behavior of target materials. Technique to analyze unknown crystal structures from powder diffraction data (ab initio powder diffraction analysis) enables us to reveal crystal structures of target materials even we cannot obtain a single crystal. In the present article, three examples are introduced to show the power of this technique in the field of materials sciences. The first example is dehydration/hydration of the pharmaceutically relevant material erythrocycin A. In this example, crystal structures of two anhydrous phases were determined from synchrotron X-ray powder diffraction data and their different dehydration/hydration properties were understood from the crystal structures. In the second example, a crystal structure of a three dimensional metal-organic-framework prepared by a mechanochemical reaction was determined from laboratory X-ray powder diffraction data and the reaction scheme has been revealed. In the third example, a crystal structure of a novel oxide-ion conductor of a new structure family was determined from synchrotron X-ray and neutron powder diffraction data which gave an important information to understand the mechanism of the oxide-ion conduction. (author)

  7. New bicomponent binders for foundry moulding sands composed of phenol-furfuryl resin and polycaprolactone

    Directory of Open Access Journals (Sweden)

    K. Major – Gabryś

    2016-07-01

    Full Text Available The aim of this article is to test the properties of foundry moulding sands with a new bicomponent organic binder. The new binder is the composition of phenol-furfuryl resin, commonly used in foundry practice and biodegradable material – polycaprolactone. The paper presents the research of strength properties, thermal destruction and thermal deformation of moulding sands with a new bicomponent binder. It was proved that inserting polycaprolactone to phenol-furfuryl resin did not lower the strength properties of tested moulding sands. The new additive did not affect the moulding sands thermal degradation but it changed their thermal deformation course.

  8. Rheological characteristics of aged asphalt binder

    Institute of Scientific and Technical Information of China (English)

    刘聪慧; 吴少鹏; 刘全涛; 朱国军

    2008-01-01

    Different aging levels(RTFOT,PAV-10h,PAV-20h and PAV-30 h) of asphalt binders with various mass ratios of mineral powder to asphalt(0,0.4,0.8,1.2,1.6,2.0) were used to investigate the rheological properties of aged asphalt binders with respect to their short and long terms aging characteristics.Viscosity test,dynamic shear test and creep test were conducted.The test results indicate that the viscosity of aged asphalt binder increases sharply with the extension of aging period.Complex shear modulus of aged asphalt increases,which indicates that the stiffness of asphalt binders can increase.The phase angle for aged asphalt binders reduces,which indicates that the elastic portion for viscoelastic property of asphalt binders increases.|G*|·sin δ increases after aging procedure which means that the fatigue resistance becomes poor.The creep test results show that creep strain curves varies remarkably for virgin and aged asphalt binders.The total strain during loading period and the permanent strain decreases significantly for aged asphalt binders,which implies that the elastic portion increases and the viscous portion decreases.

  9. Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders

    Science.gov (United States)

    Airey, G. D.; Grenfell, J. R. A.; Apeagyei, A.; Subhy, A.; Lo Presti, D.

    2016-04-01

    Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best known form of modification is by means of polymer modification, traditionally used to improve the temperature and time susceptibility of bitumen. Tyre rubber modification is another form using recycled crumb tyre rubber to alter the properties of conventional bitumen. In addition, alternative binders (synthetic polymeric binders as well as renewable, environmental-friendly bio-binders) have entered the bitumen market over the last few years due to concerns over the continued availability of bitumen from current crudes and refinery processes. This paper provides a detailed rheological assessment, under both temperature and time regimes, of a range of conventional, modified and alternative binders in terms of the materials dynamic (oscillatory) viscoelastic response. The rheological results show the improved viscoelastic properties of polymer- and rubber-modified binders in terms of increased complex shear modulus and elastic response, particularly at high temperatures and low frequencies. The synthetic binders were found to demonstrate complex rheological behaviour relative to that seen for conventional bituminous binders.

  10. OPERATIONAL PROPERTIES AS THE INDICATORS OF SULFUR BINDERS NANOMODIFICATION

    Directory of Open Access Journals (Sweden)

    KOROLEV Evgenij Valerjevich

    2013-06-01

    Full Text Available Both computed dependence and theoretical estimation of the variation range for generalized material’s quality criterion are presented. It is shown that first of all realization of nanotechnology should be held in respect to the properties which determine the area of material’s application. As the particular criteria of the material’s quality, it is most appropriate to use the attributes which are closely connected to the intrinsic features of the process or property being analyzed. The technology of sulfur-based binders was the area of application of nanoscale improvement of disperse phases. It was found that sulfur-based binders are chemically resistant materials (according to RU GOST 25246–82**. Fillers nanomodification increases resistance of materials within the predicted range of values.

  11. A binder phase of TiO based cermets

    Institute of Scientific and Technical Information of China (English)

    LI Qing-kui; GUAN Shao-kang; ZHONH Hui; LI Jiang; ZHONG Hai-yun

    2005-01-01

    A binder phase of TiO based cermets, a kind of imitated gold materials, was developed by adding active element Si to Fe-Cr alloy, and the related mechanisms were studied. The wettability, matching in thermodynamics and interfacial strength were investigated by the high temperature sessile drop method and element area scanning. The linear expansion coefficients of the materials were measured using TAH100 thermal analyzer. The results show that the wettability of Fe-Cr alloy on TiO are small, with a wetting angle about 90°. After adding some Si in Fe-Cr alloy, its wetting angle can be decreased to about 25°, the interfacial reactions can be prevented effectively and high interface binding can be formed. Fe-25%Cr-1.5%Si matches the thermal expansion coefficient of TiO, so it is a kind of relatively perfect binder for TiO based cermets imitated gold.

  12. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  13. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  14. Materials science virtual laboratory as an example of the computer aid in materials engineering

    OpenAIRE

    L.A. Dobrzański; R. Honysz

    2007-01-01

    Purpose: The purpose of the presented article is to describe the material science virtual laboratory, which is an open scientific, investigative, simulating and didactic medium for the realization of the didactic and educational tasks performed by traditional and e-learning methods.Design/methodology/approach: The laboratory is an aggregate of testers and training simulators, placed in the virtual reality and created in various languages and the programming techniques, which represents the pr...

  15. New experimental methods to monitor and characterize asphalt rubber binders

    OpenAIRE

    Peralta, J.; Silva, Hugo Manuel Ribeiro Dias da; Pais, Jorge C.

    2010-01-01

    The need for continuous quality improvement of the road pavements, leads to the development of new binders, such as asphalt rubber (AR). AR is produced by the digestion of crumb rubber from used tires on bitumen. The resulting AR is a heterogeneous material with high viscosity. The study of this product during its production is essential due to the sudden and sharp increase in the volume of AR in this phase. Knowledge of the extent of this phenomenon has obvious implications in...

  16. Energy analysis of Binder-jetting Additive Manufacturing Processes

    OpenAIRE

    Xu, Xin; METEYER, Simon; PERRY, Nicolas; ZHAO, Yaoyao Fiona

    2014-01-01

    Considering the potential for new product design possibilities and the reduction of environmental impacts, Additive Manufacturing (AM) processes are considered to possess significant advantages for automotive, aerospace and medical equipment industries. One of the commercial AM techniques is Binder-Jetting (BJ). This technique can be used to process a variety of materials including stainless steel, ceramic, polymer and glass. However, there is very limited research about this AM technology on...

  17. Energy consumption model of Binder-jetting additive manufacturing processes

    OpenAIRE

    Xu, Xin; METEYER, Simon; PERRY, Nicolas; ZHAO, Yaoyao Fiona

    2014-01-01

    Considering the potential for new product design possibilities and the reduction of environmental impacts, Additive Manufacturing (AM) processes are considered to possess significant advantages for automotive, aerospace and medical equipment industries. One of the commercial AM techniques is Binder-Jetting (BJ). This technique can be used to process a variety of materials including stainless steel, ceramic, polymer and glass. However, there is very limited research about this AM technology on...

  18. High temperature magnetic balance for education : A basic investigation of the teaching materials for the material science education

    OpenAIRE

    Tokunaga, Toshihiko; Kasagi, Teruhiko; Maehara, Toshinobu; Tsutaoka, Takanori

    2005-01-01

    Magnetic properties of the several magnetic alloys and compounds were studied for the development of the teaching materials in the material science education by using a hand made high temperature magnetic balance. Magnetism treated were ferro-, para- and antiferromagnetism and magnetic phase transitions among them. Together with the data of resistivity, the possibility of the teaching materials concerning the material scie.nce education will he discussed.

  19. Uses of Computed Tomography in the NASA Materials Science Program

    Science.gov (United States)

    Engel, H. Peter; Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Computed Tomography (CT) has proved to be of inestimable use in providing a rapid evaluation of a variety of samples from Mechanics of Granular Materials (MGM) to electronic materials (Ge-Si alloys) to space grown materials such as meteorites. The system at Kennedy Space Center (KSC), because of its convenient geographical location, is ideal for examining samples immediately after returning to Earth. It also has the advantage of the choice of fluxes, and in particular the use of a radioactive cobalt source, which is basically monochromatic. This permits a reasonable measurement of density to be made from which chemical composition can be determined. Due to the current dearth of long duration space grown materials, the CT instrument has been used to characterize materials in preparation for flight, to determine thermal expansion values, and to examine long duration space grown materials, i.e. meteorites. The work will first describe the establishment of the protocol for obtaining the optimum density readings for any material. This will include both the effects of the hardware or instrumental parameters that can be controlled, and the techniques used to process the CT data. Examples will be given of the compositional variation along single crystals of germanium-silicon alloys. Density variation with temperature has been measured in preparation for future materials science experiments; this involved the fabrication and installation of a single zone furnace incorporating a heat pipe to ensure of high temperature uniformity. At the time of writing the thermal expansion of lead has been measured from room temperature to 900 C. Three methods are available. Digital radiography enable length changes to be determined. Prior to melting the sample is small than the container and the diameter change can be measured. Most critical, however, is the density change in solid, through the melting region, and in the liquid state. These data are needed for engineering purposes to aid

  20. Uses of Compted Tomography in the NASA Materials Science Program

    Science.gov (United States)

    Engel, H. Peter; Gillies, Donald C.

    2002-01-01

    Computed Tomography (CT) has proved to be of inestimable use in providing a rapid evaluation of a variety of samples from Mechanics of Granular Materials (MGM) to electronic materials (Ge-Si alloys) to space grown materials such as meteorites. The system at Kennedy Space Center (KSC), because of its convenient geographical location, is ideal for examining samples before launch and immediately after returning to Earth. It also has the advantage of the choice of fluxes, and in particular the use of a radioactive cobalt source, which is basically monochromatic. This permits a reasonable measurement of density to be made from which chemical composition can be determined. Due to the current dearth of long duration space grown materials, the CT instrument has been used (1) to characterize materials in preparation for flight, (2) to determine thermal expansion values, and (3) to examine long duration space grown materials, i.e. meteorites. This work will first describe the establishment of the protocol for obtaining the optimum density readings for any material. This will include both the effects of the hardware or instrumental parameters that can be controlled, and the techniques used to process the CT data. Examples will be given of the compositional variation along single crystals of germanium-silicon alloys. Density variation with temperature has been measured in preparation for future materials science experiments; this involved the fabrication and installation of a single zone furnace incorporating a heat pipe to ensure high temperature uniformity. At the time of writing the thermal expansion of lead has been measured from room temperature to 900 C. Three methods are available. Digital radiography enables length changes to be determined. Prior to melting the sample is smaller than the container and the diameter change can be measured. Most critical, however, is the density change in solid, through the melting region, and in the liquid state. These data are needed

  1. Non-Structured Materials Science Data Sharing Based on Semantic Annotation

    OpenAIRE

    HU Changjun; Ouyang, Chunping; Wu, Jinbin; Zhang, Xiaoming; Zhao, Chongchong

    2009-01-01

    The explosion of non-structured materials science data makes it urgent for materials researchers to resolve the problem of how to effectively share this information. Materials science image data is an important class of non-structured data. This paper proposes a semantic annotation method to resolve the problem of materials science image data sharing. This method is implemented by a four-layer architecture, which includes ontology building, semantic annotation, reasoning service, and applicat...

  2. Trends in the Use of Supplementary Materials in Environmental Science Journals

    Science.gov (United States)

    Kenyon, Jeremy; Sprague, Nancy R.

    2014-01-01

    Our research examined the use of supplementary materials in six environmental science disciplines: atmospheric sciences, biology, fisheries, forestry, geology, and plant sciences. Ten key journals were selected from each of these disciplines and the number of supplementary materials, such as data files or videos, in each issue was noted over a…

  3. Computed Tomography Support for Microgravity Materials Science Experiments

    Science.gov (United States)

    Gillies, Donald C.; Engel, H. Peter; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The accurate measurement of density in both liquid and solid samples is of considerable interest to Principal Investigators with materials science experiments slated for the ISS. The work to be described is an innovative application of a conventional industrial nondestructive evaluation instrument. Traditional applications of industrial computed tomography (CT) rely on reconstructing cross sections of large structures to provide two-dimensional planar views which can identify defects such as porosity, or other material anomalies. This has been done on microgravity materials science experiments to check the integrity of ampoule-cartridge assemblies for safety purposes. With a substantially monoenergetic flux, as can be obtained with a radioactive cobalt source, there will be a direct correlation between absorption and density. Under such conditions it then becomes possible to make accurate measurements of density throughout a sample, and even when the sample itself is enclosed within a furnace and a safety required cartridge. Such a system has been installed at Kennedy Space Center (KSC) and is available to PIs to examine samples before and after flight. The CT system is being used to provide density information for two purposes. Firstly, the determination of density changes from liquid to solid is vital information to the PI for purposes of modeling the solidification behavior of his sample, and to engineers who have to design containment ampoules and must allow for shrinkage and other volume changes that may occur during processing. While such information can be obtained by pycnometric measurements, the possibility of using a furnace installed on the CT system enables one to examine potentially dangerous materials having high vapor pressures, while not needing visible access to the material. In addition, uniform temperature can readily be obtained, and the system can be controlled to ramp up, hold, and ramp down while collecting data over a wide range of

  4. Influence of the bitumen properties on the functional and rheological behaviour of asphalt rubber binders

    OpenAIRE

    Peralta, J.; Silva, Hugo Manuel Ribeiro Dias da; Machado, A.V.; Pais, Jorge C.

    2009-01-01

    It is estimated that about ten kilograms of tires are discarded per inhabitant annually. The negative impact of this residue can be reduced since rubber can be reused as a constituent of asphalt rubber (AR) builder in road pavements. However, the materials which constitute the AR binders and their interaction are not sufficiently characterized, In this work several base bitumens interacted with crumb rubber in order to produce AR binders, which were subsequently separated, by using a modified...

  5. Production of Steel Casts in Two-Layer Moulds with Alkaline Binders Part 1. Backing sand with the alkaline inorganic binder RUDAL

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-04-01

    Full Text Available Steel casts in Z.N. POMET were produced in moulds made of the moulding sand Floster. This sand did not have good knocking outproperties, required a significant binder addition (4.5-5.0 parts by weight, and the casting surface quality gave rise to clients objections.Therefore a decision of implementing two-layer moulds, in which the facing sand would consist of the moulding sand with an alkalineorganic binder while the backing sand would be made of the moulding sand with an inorganic binder also of an alkaline character - wasundertaken. The fraction of this last binder in the moulding sand mass would be smaller than that of the binder used up to now (waterglass. The application of two moulding sands of the same chemical character (highly alkaline should facilitate the reclamation processand improve the obtained reclaimed material quality, due to which it would be possible to increase the reclaim fraction in the mouldingsand (up to now it was 50%. The results of the laboratory investigations of sands with the RUDAL binder are presented in the paper.

  6. Remote Monitoring and Controlling of a Material Science Experiment

    Directory of Open Access Journals (Sweden)

    Wattanapong KURDTHONGMEE

    2004-01-01

    Full Text Available The computer industry’s remarkable ability to integrate more transistors into a small area of silicon is increasing the intelligence of our devices and simultaneously decreasing their cost and power consumption. In addition, the proliferation of wired and wireless networking spurred by the development of the world-wide web and demands for mobile access are enabling low-cost connectivity among computing devices. It is now possible to connect every computing device into a true world-wide web that connects the physical world of sensors and actuators to the virtual world of our information utilities and services. This paper examines an application of an integration of the intelligent chip with the network connectivity into a material science experiment designed to study the sorption of woods. The intelligence and network connectivity infrastructures of the system eliminate laborious tasks previously required during experiment control and data collection processes.

  7. Study on aluminum phosphate binder and related Al2O3-SiC ceramic coating

    International Nuclear Information System (INIS)

    Refractory and wear-resistant Al2O3-SiC ceramic coatings have been fabricated on A3 steel using alumina (Al2O3), silicon carbide (SiC), aluminum phosphate binder (inorganic binder), and other additives as starting materials. The powder X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TG/DTA), and scanning electron microscopy (SEM) techniques are applied to investigate the chemical compositions of the in-house synthesized aluminum phosphate binder and the morphologies of the fabricated ceramic coatings after abrasion test. The XRD results indicate that monoaluminum phosphate (Al(H2PO4)3) is the most effective binding phase in the synthesized aluminum phosphate binder. The TG/DTA analysis shows that two phase transformations occur at 100.7 and 217.7 deg. C when the synthesized aluminum phosphate binder is heated in a range 60-1000 deg. C and the binder after heat treatment is a mixture of several phases. The wear test results show that the wear durability of the A3 steel covered with Al2O3-SiC ceramic coatings is about two times that of the uncoated A3 steel. The results also indicate that the wear properties of Al2O3-SiC ceramic coatings are dependent on fabrication conditions such as the weight ratio of ceramics (Al2O3 and SiC) to the binder (RCB), the distribution of particle size of ceramics, the density of the aluminum phosphate binder, and the Al/P atomic ratio in the aluminum phosphate binder. Upon the above results, optimal fabrication conditions for achieving good wear resistance of Al2O3-SiC ceramic coatings are suggested in this paper

  8. Environmentally-Friendly Geopolymeric Binders Made with Silica

    Science.gov (United States)

    Erdogan, S. T.

    2013-12-01

    Portland cement (PC) is the ubiquitous binding material for constructions works. It is a big contributor to global warming and climate change since its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. Recently there have been efforts to develop alternative binders with lower greenhouse gas emissions. One such class of binders is geopolymers, formed by activating natural or waste materials with suitable alkaline or acidic solutions. These binders use natural or industrial waste raw materials with a very low CO2 footprint from grinding of the starting materials, and some from the production of the activating chemicals. The total CO2 emissions from carefully formulated mixtures can be as low as 1/10th - 1/5th of those of PC concrete mixtures with comparable properties. While use of industrial wastes as raw materials is environmentally preferable, the variability of their chemical compositions over time renders their use difficult. Use of natural materials depletes resources but can have more consistent properties and can be more easily accepted. Silica sand is a natural material containing very high amounts of quartz. Silica fume is a very fine waste from silicon metal production that is mostly non-crystalline silica. This study describes the use of sodium hydroxide and sodium silicate solutions to yield mortars with mechanical properties comparable to those of portland cement mortars and with better chemical and thermal durability. Strength gain is slower than with PC mixtures at room temperature but adequate ultimate strength can be achieved with curing at slightly elevated temperatures in less than 24 h. The consistency of the chemical compositions of these materials and their abundance in several large, developing countries makes silica attractive for producing sustainable concretes with reduced carbon

  9. Advances in materials science, metals and ceramics division. Triannual progress report, June-September 1980

    International Nuclear Information System (INIS)

    Information is presented concerning the magnetic fusion energy program; the laser fusion energy program; geothermal research; nuclear waste management; Office of Basic Energy Sciences (OBES) research; diffusion in silicate minerals; chemistry research resources; and chemistry and materials science research

  10. The Effects of Cross-Linking in a Supramolecular Binder on Cycle Life in Silicon Microparticle Anodes.

    Science.gov (United States)

    Lopez, Jeffrey; Chen, Zheng; Wang, Chao; Andrews, Sean C; Cui, Yi; Bao, Zhenan

    2016-01-27

    Self-healing supramolecular binder was previously found to enhance the cycling stability of micron-sized silicon particles used as the active material in lithium-ion battery anodes. In this study, we systematically control the density of cross-linking junctions in a modified supramolecular polymer binder in order to better understand how viscoelastic materials properties affect cycling stability. We found that binders with relaxation times on the order of 0.1 s gave the best cycling stability with 80% capacity maintained for over 175 cycles using large silicon particles (∼0.9 um). We attributed this to an improved balance between the viscoelastic stress relaxation in the binder and the stiffness needed to maintain mechanical integrity of the electrode. The more cross-linked binder showed markedly worse performance confirming the need for liquid-like flow in order for our self-healing polymer electrode concept to be effective. PMID:26716873

  11. Numerical simulation in material science: principles and applications

    International Nuclear Information System (INIS)

    The objective is here to describe the main simulation techniques currently used in material science. After a presentation of the concepts of modelling and simulation, of their objectives and uses, of the issue of simulation scale, and of means of numeric simulation, the author addresses simulations performed at a nano-scopic scale: 'ab-initio' methods, molecular dynamics, examples of applications of ab-initio methods to energy issues or to the study of surface properties of nano-materials. The next chapter addresses various Monte Carlo methods (Metropolis, atomic kinetics, objects kinetics, transport with the simulation of particle trajectories, generation of random numbers). The next parts address simulations performed at a mesoscopic scale (simulation and microstructure, phase field methods, dynamics of discrete dislocations, homogeneous chemical kinetics) and at a macroscopic scale (medium discretization with the notion of mesh, simulation of structure mechanics and of fluid behaviour). The issues of code coupling and scale coupling are then discussed. The last part proposes an overview of virtual metallurgy and modelling of industrial processes (welding, vacuum arc re-fusion, rolling, forming)

  12. A materials science vision of extracellular matrix mineralization

    Science.gov (United States)

    Reznikov, N.; Steele, J. A. M.; Fratzl, P.; Stevens, M. M.

    2016-08-01

    From an engineering perspective, skeletal tissues are remarkable structures because they are lightweight, stiff and tough, yet produced at ambient conditions. The biomechanical success of skeletal tissues is largely attributable to the process of biomineralization — a tightly regulated, cell-driven formation of billions of inorganic nanocrystals formed from ions found abundantly in body fluids. In this Review, we discuss nature's strategies to produce and sustain appropriate biomechanical properties in mineralizing (by the promotion of mineralization) and non-mineralizing (by the inhibition of mineralization) tissues. We review how perturbations of biomineralization are controlled over a continuum that spans from the desirable (or defective in disease) mineralization of the skeleton to pathological cardiovascular mineralization, and to mineralization of bioengineered constructs. A materials science vision of mineralization is presented with an emphasis on the micro- and nanostructure of mineralized tissues recently revealed by state-of-the-art analytical methods, and on how biomineralization-inspired designs are influencing the field of synthetic materials.

  13. Applications of intense pulsed ion beam to materials science

    International Nuclear Information System (INIS)

    In addition to being initially developed as an energy driver for an inertial confinement fusion, an intense, pulsed, light-ion beam (LIB) has been found to be applied to materials science. If a LIB is used to irradiate targets, a high-density ''ablation'' plasma is produced near the surface since the range of the LIB in materials is very short. Since the first demonstration of quick preparation of thin films of ZnS by an intense, pulsed, ion-beam evaporation (IBE) using the LIB-produced ablation plasma, various thin films have been successfully prepared, such as of ZnS:Mn, YBaCuO, BaTiO3, cubic BN, SiC, ZrO2, ITO, B, C, and apatite. Some of these data will be presented in this paper, with its analytic solution derived from a one-dimensional, hydrodynamic, adiabatic expansion model for the IBE. The temperature will be deduced using ion-flux signals measured by a biased ion collector. Reasonable agreement is obtained between the experiment and the simulation. High-energy LIB implantation to make chemical compounds and the associated surface modification are also discussed

  14. The application of the Kelvin probe in materials science

    International Nuclear Information System (INIS)

    This thesis reports on the application of the Kelvin probe in materials science and in particular on the study of metal and semiconductor surfaces in both ambient and UHV environments. The concept of the work function φ and its importance as a parameter in materials science is discussed in the context of novel technological applications. The various methods to determine the work function are reviewed. The main measurement technique used here - the Kelvin probe - is described in detail. The Kelvin probe measures local work function differences between a conducting sample and a reference tip in a non-contact, truly non-invasive way over a wide temperature range. However, it is an inherently relative technique and does not provide an absolute work function if the work function of the tip (φtip) is not known. Therefore, a novel technique has been developed to measure φtip with the Kelvin probe via the photoelectric effect, thus combining the advantages of both methods to provide the absolute work function of the sample surface. High and low work function surfaces were generated as target materials for a novel ion source based on hyperthermal surface ionisation: oxidised rhenium exhibits the highest work function of 7.15eV at a temperature of ∼900K whereas the lowest work function of ∼2.54eV was measured on lanthanum hexaboride, LaB6. The process of thermal and hyperthermal surface ionisation (SI, HSI) as well as the generation of hyperthermal molecular beams is discussed and a model of the surface ionisation process is developed to estimate its efficiency. Experimental data of SI and HSI are presented. The application of the Kelvin probe for the detection of defects and impurities in semiconductors, namely iron contamination, is demonstrated via two methods based on the measurement of the surface photovoltage. We find that both methods yield a lower surface potential and surface charge for iron contaminated wafers compared to a clean sample and therefore can be

  15. Characterization of low-purity clays for geopolymer binder formulation

    Institute of Scientific and Technical Information of China (English)

    Nasser Y.Mostafa; Q.Mohsen; A.El-maghraby

    2014-01-01

    The production of geopolymer binders from low-purity clays was investigated. Three low-purity clays were calcined at 750°C for 4 h. The calcined clays were chemically activated by the alkaline solutions of NaOH and Na2SiO3. The compressive strength was measured as a function of curing time at room temperature and 85°C. The results were compared with those of a pure kaolin sample. An amorphous aluminosilicate polymer was formed in all binders at both processing temperatures. The results show that, the mechanical properties depend on the type and amount of active aluminum silicates in the starting clay material, the impurities, and the processing temperature.

  16. Compressive strength and rheology of environmentally-friendly binders

    Directory of Open Access Journals (Sweden)

    Juan Manuel Lizarazo Marriaga

    2010-07-01

    Full Text Available Ordinary Portland cement production accounts for 9% of worldwide greenhouse gas emissions. This paper summarises the results of research aimed at developing environmentally-friendly binders which can be used as an alternative in civil construction, aimed at generating alternatives and sustainable materials. Mixes of the combination of granulated ground blast furnace slag, basic oxygen slag, cement kiln dust and plasterboard gypsum were used for optimising the binders, according to their compressive strength, to obtain 5 concrete mixtures made partially or completely with industrial waste. The results showed that the compressive strength of mixtures of Portland cement and industrial waste were suitable for different civil construction applications and, although mixtures formed entirely from industrial waste had a significant decrease in their compressive strength, the results sho- wed great potential for specific industrial applications. In addition to compressive strength, the rheological properties of these mixtures were determined for defining flow and workability characteristics.

  17. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  18. Tapioca binder for porous zinc anodes electrode in zinc–air batteries

    Directory of Open Access Journals (Sweden)

    Mohamad Najmi Masri

    2015-07-01

    Full Text Available Tapioca was used as a binder for porous Zn anodes in an electrochemical zinc-air (Zn-air battery system. The tapioca binder concentrations varied to find the optimum composition. The effect of the discharge rate at 100 mA on the constant current, current–potential and current density–power density of the Zn-air battery was measured and analyzed. At concentrations of 60–80 mg cm−3, the tapioca binder exhibited the optimum discharge capability, with a specific capacity of approximately 500 mA h g−1 and a power density of 17 mW cm−2. A morphological analysis proved that at this concentration, the binder is able to provide excellent binding between the Zn powders. Moreover, the structure of Zn as the active material was not affected by the addition of tapioca as the binder, as shown by the X-ray diffraction analysis. Furthermore, the conversion of Zn into ZnO represents the full utilization of the active material, which is a good indication that tapioca can be used as the binder.

  19. Advances in science and technology of modern energetic materials: an overview.

    Science.gov (United States)

    Badgujar, D M; Talawar, M B; Asthana, S N; Mahulikar, P P

    2008-03-01

    Energetic materials such as explosives, propellants and pyrotechnics are widely used for both civilian and military explosives applications. The present review focuses briefly on the synthesis aspects and some of the physico-chemical properties of energetic materials of the class: (a) aminopyridine-N-oxides, (b) energetic azides, (c) high nitrogen content energetic materials, (d) imidazoles, (e) insensitive energetic materials, (f) oxidizers, (g) nitramines, (h) nitrate esters and (i) thermally stable explosives. A brief comment is also made on the emerging nitration concepts. This paper also reviews work done on primary explosives of current and futuristic interest based on energetic co-ordination compounds. Lead-free co-ordination compounds are the candidates of tomorrow's choice in view of their additional advantage of being eco-friendly. Another desirable attribute of lead free class of energetic compounds is the presence of almost equivalent quantity of fuel and oxidizer moieties. These compounds may find wide spectrum of futuristic applications in the area of energetic materials. The over all aim of the high energy materials research community is to develop the more powerful energetic materials/explosive formulations/propellant formulations in comparison to currently known benchmark materials/compositions. Therefore, an attempt is also made to highlight the important contributions made by the various researchers in the frontier areas energetic ballistic modifiers, energetic binders and energetic plasticizers. PMID:18061344

  20. Improving the quality of innovative science teaching materials

    NARCIS (Netherlands)

    Eijkelhof, H.M.C.; Krüger, J.

    2009-01-01

    An increasing number of scientists of different fields is working together in interdisciplinary subjects. For school science it is difficult to bring these interdisciplinary developments into the classroom. Pupils thus get an outdated view of science and of possibilities in science and technology fo

  1. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  2. Materials Science Division second quarterly report for period ending March 15, 1975. [Gasification plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Tevebaugh, A. D.; Weeks, R. W.

    1975-01-01

    Progress in material science studies for coal gasification plants, in particular for the BI-GAS process pilot plant, is reported. The results of slag corrosion tests of various refractories (compositions are given) are presented. The development and testing (by thermal cycling) of protective ceramic coatings on metals is described. The capability for several kinds of nondestructive testing is being developed and some results are reported. A major part of the effort involves the development of mathematical models of wear processes (erosion and corrosion) based on the elastic, plastic and fracture properties of materials and particle size, impact velocity, angle of impact, etc. Another major section involves the behavior of iron and nickel base alloys in the hostile environments expected with respect to oxidation, corrosion, sulfidation, carburization, nitridation and erosion. The investigation of a pipe failure is reported (stress corrosion cracking). (LTN)

  3. [Phosphate binders in renal patients: a point estimate from rationale, through evidences to the real world setting].

    Science.gov (United States)

    Galassi, Andrea; Giovenzana, Maria Enrica; Galbiati, Eleonora; Auricchio, Sara; Colzani, Sara; Scanziani, Renzo

    2016-01-01

    Phosphate binders represent a common intervention in renal patients affected by chronic kidney disease and mineral bone disorder (CKD-MBD). Although counteracting P overload through binders adoption is argued by a physiology-driven approach, the efficacy of this intervention on hard endpoints remains poorly evident. The inconsistencies between rationale and methodological weakness, concerning the clinical relevance of P binding in chronic kidney disease, will be herein discussed with special focus on the need of a multi-factorial treatment against CKD-MBD, which is currently more achievable due to the variety of P binders and the rapid evolution of nutritional therapy, dialysis techniques and nursing science. PMID:27545626

  4. Educational teaching materials for nuclear science: A proposal

    International Nuclear Information System (INIS)

    It has been made clear and possible that problems met in teaching nuclear topics can be remedied with much care and attention to the application of the experimental photographs converted into a classroom science teaching device; a proposal which was conducted at Kyoto University Research Reactor Institute. Under Methodology, materials that comprised the experimentation process were provided with simplicity and clarity. Introductions on how to carry out the experiments were logically arranged so as to ensure systematic execution and organization of experimental processes. The inclusion of the experimental set ups were also manifested and of the experimental results (developed photos) presented in a manner suitably good for learners. Determination of the sequential models of the study was reflected, highlighted and specifically simplified as appropriate as possible. Further results and discussions were not shown but can be proposed and suggested that as to further application of the device, peak area spectral measurement and nuclide identification of irradiated samples can be made possible using DSA-1000 Digital Spectrum Analyzer System for countries equipped with ''high touch'' apparatus and facility as spiral basis for concept development. Production and dissemination of photographs can be realized for schools far beyond to cope and afford to buy these expensive laboratory and experimental facility to perform the same task. (author)

  5. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro [eds.

    2000-01-01

    The tandem accelerator established at Japan Atomic Energy Research Institute (JAERI) in 1982 has been one of the most prominent electrostatic accelerators in the world. The accelerator has been serving for many researches planned by not only JAERI staff but also researchers of universities and national institutes. After the completion of the tandem booster in 1993, four times higher beam energy became available. These two facilities, the tandem accelerator and the booster, made great strides in heavy ion physics and a lot of achievements have been accumulated until now. The research departments of JAERI were reformed in 1998, and the accelerators section came under the Department of Materials Science. On this reform of the research system, the symposium 'Heavy Ion Science in Tandem Energy Region' was held in cooperation with nuclear and solid state physicists although there has been no such symposium for many years. The symposium was expected to stimulate novel development in both nuclear and solid state physics, and also interdisciplinary physics between nuclear and solid state physics. The 68 papers are indexed individually. (J.P.N.)

  6. Fabrication of porous silicon nitride ceramics using binder jetting technology

    Science.gov (United States)

    Rabinskiy, L.; Ripetsky, A.; Sitnikov, S.; Solyaev, Y.; Kahramanov, R.

    2016-07-01

    This paper presents the results of the binder jetting technology application for the processing of the Si3N4-based ceramics. The difference of the developed technology from analogues used for additive manufacturing of silicon nitride ceramics is a method of the separate deposition of the mineral powder and binder without direct injection of suspensions/slurries. It is assumed that such approach allows reducing the technology complexity and simplifying the process of the feedstock preparation, including the simplification of the composite materials production. The binders based on methyl ester of acrylic acid with polyurethane and modified starch were studied. At this stage of the investigations, the technology of green body's fabrication is implemented using a standard HP cartridge mounted on the robotic arm. For the coordinated operation of the cartridge and robot the specially developed software was used. Obtained green bodies of silicon powder were used to produce the ceramic samples via reaction sintering. The results of study of ceramics samples microstructure and composition are presented. Sintered ceramics are characterized by fibrous α-Si3N4 structure and porosity up to 70%.

  7. Polyaromatic polymers as binders in PEMFC catalyst layers

    Energy Technology Data Exchange (ETDEWEB)

    Peron, J.M.; Edwards, D.; Le Marquand, P.; Shi, Z.; Holdcroft, S. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2009-07-01

    The catalyst layers in proton exchange membrane (PEM) fuel cells are typically composed of platinum as the catalyst and carbon as the electron conductor. The binder that ensures the ionic pathway between catalyst particles and the electrolyte membrane is a perfluorinated polymer that brings the electrolyte, gaseous reactants, electrocatalyst and current collector into close contact within a confined spatial region known as the triple-phase-boundary. New non-fluorinated polymers have been developed in an effort to lower the cost and improve the stability of fuel cells. Although polyaromatic polymers have been extensively presented in the literature for membrane preparation, these new materials have been mainly characterized in presence of Nafion as a binder in the catalyst layer. This paper discussed the incorporation of polyaromatic polymers, such as sulfonated-PEEK (sPEEK), and its properties as a binder. sPEEK-based catalyst ink solutions, using different sPEEK/Pt ratios and preparation methods, have been deposited on membranes to form catalyst-coated-membranes (CCM). Initial catalyst ink were characterized using dynamic light scattering to determine agglomerate size. Catalyst layers were examined using SEM and TEM and their porosity was determined by Hg porosimetry. Various electrochemical techniques were used for in-situ characterization of prepared sPEEK CCMs.

  8. CERN: Materials science with radioactive isotopes from ISOLDE

    International Nuclear Information System (INIS)

    Full text: Among the major physics objectives at CERN's ISOLDE on-line isotope separator is the growth field of nuclear solid state physics, where the goals are both technological and scientific. ISOLDE research entered a new era when the facility began operations last year in its new home at the 1 GeV Booster synchrotron (July 1992, page 5). Nuclear solid state physics accounts for about 30% of ISOLDE beam time, other research highlights being nuclear physics, atomic physics, nuclear astrophysics, and biophysics. The achievements so far and ongoing goals of nuclear solid state research were covered in a recent workshop - 'Materials Science with Radioactive Isotopes' - held at CERN from 5-7 April. This carried on from where the 'Radioactive Implants in Materials Science' meeting in Bad Honnef left off in January 1992. The main aims of the CERN meeting were: - to show the outstanding possibilities offered by ISOLDE for solid state experiments using short-lived isotopes; - to stimulate discussion between physicists using nuclear techniques and those employing other methods; and - to look for collaboration opportunities between present ISOLDE users and other researchers: small teams could be strengthened to provide a very cost-effective way of exploiting ISOLDE beams. Nuclear solid state physics at ISOLDE is mainly focused on the investigation of defects and impurities in semiconductors, but will also be used for metals, surfaces and interfaces, using nuclear techniques such as radiotracer diffusion, emission channeling, and Mössbauer or Perturbed Angular Correlation Spectroscopy (PACS). The hitherto serious limitation of many nuclear methods due to a restricted range of chemically different suitable radioactive probe atoms can be easily overcome by ISOLDE'S lengthy isotope menu. Thus whole new classes of semiconductors become accessible for PACS, yielding information on the annealing of radiation damage after heavy ion implantation and

  9. Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists

    Science.gov (United States)

    Wadsworth, Jeffrey

    2010-05-01

    The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool

  10. Progress on research of materials science and biotechnology by ion beam application

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Isao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Research of materials science and biotechnology by ion beam application in Takasaki Establishment was reviewed. Especially, the recent progresses of research on semiconductors in space, creation of new functional materials and topics in biotechnology were reported. (author)

  11. Information technologies and software packages for education of specialists in materials science [In Russian

    NARCIS (Netherlands)

    V. Krzhizhanovskaya; S. Ryaboshuk

    2009-01-01

    This paper presents methodological materials, interactive text-books and software packages developed and extensively used for education of specialists in materials science. These virtual laboratories for education and research are equipped with tutorials and software environment for modeling complex

  12. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders.

    Science.gov (United States)

    Han, Zhen-Ji; Yamagiwa, Kiyofumi; Yabuuchi, Naoaki; Son, Jin-Young; Cui, Yi-Tao; Oji, Hiroshi; Kogure, Akinori; Harada, Takahiro; Ishikawa, Sumihisa; Aoki, Yasuhito; Komaba, Shinichi

    2015-02-01

    Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed. PMID:25559330

  13. Virtual tensile test machine as an example of Material Science Virtual Laboratory post

    OpenAIRE

    L.A. Dobrzański; A. Jagiełło; R. Honysz

    2008-01-01

    Purpose: of this paper is to present virtual strength machine from material science virtual laboratory, which can be used for laboratory staff or students training. Material Science Virtual Laboratory, is an open scientific, simulating and didactic medium helpful in the realization of the didactic and educational tasks from the field of material engineering in Institute of Engineering Materials and Biomaterials of the Silesian University of Technology in Gliwice, Poland.Design/methodology/app...

  14. Water-soluble binders for MCMB carbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Courtel, Fabrice M.; Niketic, Svetlana; Duguay, Dominique; Abu-Lebdeh, Yaser; Davidson, Isobel J. [National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada)

    2011-02-15

    We have investigated the suitability of four different binders for the conventional mesocarbon microbeads (MCMBs) anode material in Li-ion batteries. Unlike the conventional polyvinylidene fluoride (PVDF), the binders were water soluble and were either cellulose based, such as the lithium and sodium salts of carboxymethyl cellulose (NaCMC, and LiCMC) and Xanthan Gum (XG), or the conjugated polymer: poly(3,4-ethylendioxythiophene) (PEDOT, a.k.a. Baytron). All binders were commercially available except LiCMC, which was synthesized and characterized by FTIR and NMR. Thermal studies of the binders by TGA and DSC showed that, in air, the binders have a broad melting event at 100-150 C, with an onset temperature for decomposition above 220 C. Li/MCMB half-cell batteries were assembled using the studied binders. Slow scan voltammograms of all cells showed characteristic lithium insertion and de-insertion peaks including that of the SEI formation which was found to be embedded into the insertion peaks during the first cycle. Cycling of the cells showed that the one containing XG binder gave the highest capacities reaching 350 mAh g{sup -1} after 100 cycles at C/12, while the others gave comparable capacities to those of the conventional binder PVDF. The rate capabilities of cells were examined and found to perform well up to the studied C/2 rate with more than 50% capacity retained. Further studies of the XG-based MCMB electrodes were performed and concluded that an optimal thickness of 300-365 {mu}m gave the highest capacities and sustained high C-rates. (author)

  15. Efeito da adição de material vegetal (fibra da castanha de cutia e polímero (SBS nas propriedades do ligante asfáltico (CAP 50/70 Effect of addition of plant material (fiber of cutia chesnut and polymer (SBS on the properties of asphalt binder (CAP 50/70

    Directory of Open Access Journals (Sweden)

    Tayana M. F. Cunha

    2012-01-01

    Full Text Available Tendo em vista a necessidade do mercado brasileiro por ligantes que minimizem a prematura falência estrutural dos revestimentos nas vias urbanas, a modificação do cimento asfáltico de petróleo (CAP 50/70 constitui uma excelente opção tecnológica. Nesta pesquisa utilizou-se 2% p/p do copolímero de estireno-butadieno-estireno (SBS e 2% p/p de fibra natural da casca dos frutos de Couepia edulis (Prance, conhecida como castanha de cutia, material vegetal com característica de reforço e biodisponibilidade na região Amazônica. Os efeitos oxidativos e térmicos, bem como as características físicas dos materiais asfálticos modificados, foram estudados e comparados ao ligante convencional, utilizando-se ensaios estabelecidos pela Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP e análise térmica - termogravimetria (TG, a fim de determinar as propriedades de degradação e estabilização térmica. Os resultados para os ligantes modificados, confrontados ao ligante tradicional, apresentaram: maior resistência ao envelhecimento, melhorias evidenciadas pelo aumento da consistência, ponto de amolecimento, além da excelente estabilidade térmica em toda faixa de temperatura de utilização (10 ºC a 80 ºC e aplicação (130 ºC a 170 ºC dos cimentos asfálticos de petróleo, fornecendo uma opção ao pavimento regional.There is a need in the Brazilian market for asphalt binders that minimize premature structural failure of the coatings on urban roads, and the modification of asphalt cement oil (CAP 50/70 is an excellent option. In this research we used 2% w/w of the styrene - butadiene-styrene (SBS copolymer and 2% w/w of natural fiber from Couepia edulis (Prance, known as cutia chesnut, which is a plant from the Amazon region with strengthening properties. The oxidative and thermal effects, as well as the physical characteristics of the asphalt modified materials, were studied and compared to the conventional binder

  16. Enhancing Asphalt Binder's Rheological Behavior and Aging Susceptibility Using Nano-Particles

    Science.gov (United States)

    Walters, Renaldo C.

    The life expectancy of Asphalt Binder (AB) has been negatively impacted by the harsh bombardment of UV rays. UV rays cause asphalt to oxidize faster which results in deterioration of asphalt rheological characteristics that can lead to pavement distresses. This study investigates the impact that nano-particles and bio modification have on the aging susceptibility of asphalt binder. As such, the following hypothesis was investigated: Introduction of nano particles to asphalt binder will reduce asphalt oxidation aging by increasing the inter layer spacing of the nano particles. Two nano scale materials were used for this study, nano-clay and bio-char as well as one micro scale material, silica fume. Nano-clay (Cloisite 30B) is a naturally occurring inorganic mineral. Bio-char is the waste product from bio-binder production. Bio-binder is produced from swine manure using a thermochemical conversion process. This process is then followed by a filtration procedure where the bio-char is produced. Chemical and physical properties of bio-char showed a significant presence of carbon which could in turn reduce the rate of asphalt oxidation. Silica Fume is an ultra-fine powder collected as a by-product of silicon and ferrosilicon alloy production and consists of spherical particles. In this study several mixtures are designed and evaluated using RV testing (Rotational Viscometer), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Nano-clay is blended at 2% and 4% by weight of dry mass, with and without bio-binder (5% by weight of dry mass). Bio-char is grinded to nano scale and added to the virgin asphalt binder (PG 64-22) at 2%, 5% and 10% by weight of dry mass. Silica Fume is added to virgin asphalt binder (PG 64-22) at 2%, 4% and 8% by weight of dry mass. The optimum percent of nano scale material that is added to virgin asphalt binder is expected to reduce aging susceptibility of asphalt binder, extending its service life.

  17. 75 FR 69078 - Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA)

    Science.gov (United States)

    2010-11-10

    ... AGENCY Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA) AGENCY... a workshop to evaluate initial draft materials for the Pb Integrated Science Assessment (ISA) is... within each discipline to assist EPA in integrating within and across disciplines. This workshop...

  18. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending December 31, 1982

    International Nuclear Information System (INIS)

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division. These activities constitute about one-fourth of the research and development conducted by the division. The major elements of the Materials Sciences Program can be grouped under the areas of (1) structural characterization, (2) high-temperature alloy studies, (3) structural ceramics, and (4) radiation effects

  19. COMMUNICATION - BINDER OF TEACHING STRATEGIES

    OpenAIRE

    Ioana Corina ILIE

    2011-01-01

    In the education science, the training methodology represents the theory and practice of teaching methods and procedures, the science that studies the nature, definition, status, functions, classification and their recovery requirements, based on a unitary conception of the act of teaching and learning. This definition highlights the operational characteristics of the method in terms of their suitability to different training circumstances and the opportunities for their differential applicat...

  20. Dispositions Supporting Elementary Interns in the Teaching of Reform-Based Science Materials

    Science.gov (United States)

    Eick, Charles J.; Stewart, Bethany

    2010-11-01

    Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs about the teaching and learning of science through structured inquiry. Supportive dispositions included curiosity and questioning, investigating first-hand, learning together, and active learning. These dispositions supported early science teaching despite candidates limited science content knowledge, and may contribute to candidates’ further learning of science.

  1. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  2. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    International Nuclear Information System (INIS)

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory's defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location

  3. Effects of ageing on different binders for retouching and on some binder-pigment combinations used for restoration of wall paintings

    International Nuclear Information System (INIS)

    In restoration of colour layers, the selection of the most appropriate retouching binder is a very important step that may have a crucial impact on materials durability. As different weather conditions can have versatile influence on stability of colour layers, we determined the effect of ageing on carefully selected samples of binders (Tylose, Klucel, ammonium caseinate, gum arabicum, fish and skin glues and some other synthetic binders) as well as on several binder-pigment combinations (the pigments in combinations being cinnabar, green earth and smalt). The samples were subjected to accelerated ageing tests in climatic chambers. In these tests the temperature and the relative humidity were daily oscillating between - 20 deg. C and 50 deg. C and 50% to 90%, respectively, for a period of one month. Then the samples were exposed to UV and visible light generated by a metal halide lamp for a month. The differences in microstructure before and after ageing were determined by optical and scanning electron microscopy, while the ageing of the organic structures in binders was investigated by Fourier transform infrared (FTIR) microscopy

  4. Effect of binders on natural graphite powder-based gas diffusion electrode for Mg-air cell

    Science.gov (United States)

    Arinton, Ghenadi; Rianto, Anton; Faizal, Ferry; Hidayat, Darmawan; Hidayat, Sahrul; Panatarani, Camellia; Joni, I. Made

    2016-03-01

    This paper mainly discussed the electrical performance of gas diffusion electrode of Mg-Air Cell. The gas diffusion electrodes (GDE) use a natural graphite powder as catalyst material. The effect of additional binders to the GDE have been investigated to improve electrode performances. Several types of GDE have been developed using binder materials such as epoxy resin, natural clay, carboxymethyl cellulose (CMC) and urea-formaldehyde (UF). By using discharge performance measurement, the characteristics of the as-prepared GDEs are reported.

  5. Small-angle neutron scattering in materials science - an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Fratzl, P. [Vienna Univ., Inst. fuer Materialphysik, Vienna (Austria)

    1996-12-31

    The basic principles of the application of small-angle neutron scattering to materials research are summarized. The text focusses on the classical methods of data evaluation for isotropic and for anisotropic materials. Some examples of applications to the study of alloys, porous materials, composites and other complex materials are given. (author) 9 figs., 38 refs.

  6. Materials science aspects of nanocrystalline PVD hard coatings

    International Nuclear Information System (INIS)

    -B-C coatings was characterized by means of differential scanning calorimetry (DSC). Grain growth occurred for the individual phases in TiB-1.2N-0.5 and Ti-1.2C-0.6 coatings during heating up to 1400oC from approximately 4 to 15 nm and 4 to 5 nm, respectively. To interpret the interrelationships between processing, microstructure and mechanical and thermal properties, the well-known fundamentals of materials science are used. (author)

  7. Proceedings of the national symposium on advances in materials science and technology: abstract book

    International Nuclear Information System (INIS)

    This symposium sheds light on various topics like magnetic materials, oxides, nanomaterials, spintronics, semiconductors, microwave dielectric, multiferroics, and computational materials science and technology. The influence of modern technologies based on innovations and new discoveries in the field of materials science can be seen in all spheres of life, which include nanotechnology based new solar cells, purifiers for clean drinking water and guided drug delivery. Papers relevant to INIS are indexed separately

  8. The assessment of teaching materials science subjects using e-learning method

    OpenAIRE

    L.A. Dobrzański; F. Brom

    2008-01-01

    Purpose: The main aim of this article is to present the advantages and disadvantages of the use of blended learning in teaching Fundamentals of Materials Science and Metal Materials. The purpose of carried research is to analyse the effectiveness of e-learning as means of teaching in blended learning model.Design/methodology/approach: This article includes a description of blended learning; comparison of students’ results in materials science between the traditional method and remot...

  9. Blended learning in teaching materials science subjects at full time studies

    OpenAIRE

    L.A. Dobrzański,; F. Brom

    2008-01-01

    Purpose: The main aim of this article is to present the advantages and disadvantages of the use of blendedlearning in teaching Fundamentals of Materials Science and Metal Materials. The purpose of carried research is toanalyse the effectiveness of e-learning as means of teaching in blended learning model.Design/methodology/approach: This article includes a description of blended learning; comparison ofstudents’ results in materials science between the traditional method and remote teaching us...

  10. THE DEVELOPMENT OF GUIDED INQUIRY SCIENCE LEARNING MATERIALS TO IMPROVE SCIENCE LITERACY SKILL OF PROSPECTIVE MI TEACHERS

    Directory of Open Access Journals (Sweden)

    M. I. S. Putra

    2016-04-01

    Full Text Available This study aimed to produce valid, practical and effective guided inquiry model science learning materials to enhance science literacy skill of prospective MI teachers. The tryout of the materials was implementedto students of MI teacher educationof Unipdu Jombang at academic year of 2015/2016 semesters 3 using One Group Pretest Posttest Design. The data collections were done using observation, testing, and questionnaires. Data were analysed using descriptive analysis of quantitative, qualitative and non-parametric statistical tests. The findings of the research were: 1 the learning materials were valid; 2 Practicality of the materials was tested through the implementation of lesson plans, while the learners’ activity wereappropriate to the guided inquirymodel; and 3 The effectiveness of the learning materials in terms of improvement of learning outcomes of students was seen from the n-gain with high category and increasing mastery of science literacy skills of learners also scored n-gain with high category and the response of students to the device and the implementation of learning is very positive. It was concluded that the materials were valid, practical, and effective to enhance science literacy skills of prospective MI teachers.

  11. Marginalization of Socioscientific Material in Science-Technology-Society Science Curricula: Some Implications for Gender Inclusivity and Curriculum Reform

    Science.gov (United States)

    Hughes, Gwyneth

    2000-05-01

    Science education reformers have argued that presenting science in the abstract is neither motivating nor inclusive of the majority of students. Science-technology-society (STS) curricula that give science an accessible social context have developed in response, but controversy surrounds the extent to which students should be introduced to socioscientific debate. Using material from a case study of Salters' Advanced Chemistry in the United Kingdom, this article demonstrates how socioscientific material is marginalized through the structures and language of syllabus texts and through classroom practices. This means students are unlikely to engage with socioscientific aspects in their course. Socioscientific content is gendered through association with social concerns and epistemological uncertainty, and because gender is asymmetric, socioscience is devalued with respect to the masculinity of abstract science. Teachers fear that extensive coverage of socioscience devalues the curriculum, alienates traditional science students and jeopardizes their own status as gatekeepers of scientific knowledge. Thus, although STS curricula such as Salters' offer potential for making science more accessible, the article concludes that greater awareness of, and challenges to, gender binaries could result in more effective STS curriculum reform.

  12. Materials science virtual laboratory as an example of the computer aid in materials engineering

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-10-01

    Full Text Available Purpose: The purpose of the presented article is to describe the material science virtual laboratory, which is an open scientific, investigative, simulating and didactic medium for the realization of the didactic and educational tasks performed by traditional and e-learning methods.Design/methodology/approach: The laboratory is an aggregate of testers and training simulators, placed in the virtual reality and created in various languages and the programming techniques, which represents the properties, functionality and manual principles of real equipment installed and accessible in the real laboratories of scientific universities.Findings: Application of the equipment, that is practically imperishable, cheap in exploitation and easy in the use certainty will encourage students and scientific workers to independent audits and experiments in situations, where the possibilities of their execution in the true investigative laboratory will be limited because of the high material costs, difficult access to real equipment or the possible risk of his damage.Practical implications: The use possibilities of the virtual laboratory are practically unrestricted; it can be a base for any studies, course or training programme. It is assumed, that the project of the laboratory as fully multimedial. The participants of this laboratory can e.g. investigate training experiments from the definite field of material engineering, give questions, pass tests, contact with lecturers and the different users of the laboratory and obviously on participate in his design and content.Originality/value: The project of the virtual laboratory corresponds with the global tendency for expand the investigative and academical centers about the possibilities of training and experiments performance with use of the virtual reality. This enriches the education programme of the new abilities reserved so far exclusively for effecting only on real equipment.

  13. From the perception of science to the design of teaching materials

    Directory of Open Access Journals (Sweden)

    Laura Dumbrăveanu

    2007-09-01

    Full Text Available To design teaching materials starting from the subject matter in Science field, from the contents of textbooks or by studying the syllabuses are regular practices within schools. The SEDEC project proposes concrete and innovative modalities of conceiving teaching materials starting from teachers perception of science and by talking with them about their ideas and needs regarding teaching Science. A deep discussion of the relationships between science education and European citizenship has been another important ingredient of this new process of didactic design.

  14. Chemical Stability Investigations of Polyisobutylene as New Binder for Application in Lithium Air-Batteries

    International Nuclear Information System (INIS)

    ABSTRACT: The side reactions of LiO2, Li2O2 and Li2O, formed during the discharge process at the cathode/electrolyte interphase, are still a main challenge of lithium-air batteries. During these reactions, polyvinylidene difluoride (PVdF), as the commonly used cathode binder material, is decomposing, leading to a shorter lifetime of the battery. In this paper, we introduced and investigated polyisobutylene (PIB), a chemically and electrochemically inert polymeric material, to substitute PVdF as binder for lithium-air batteries. Results obtained by X-ray diffraction and spectroscopic methods showed, that PIB is far more stable in the presence of O2−, O22− as well as O2− species compared to PVdF. This distinct inertness makes PIB a promising binder for lithium-air batteries

  15. The estimation of ability to reclame of moduling sands with biopolymer binders

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2011-04-01

    Full Text Available Applied up till now organic binding materials, on the basis of synthetic resins are characterised by good technological properties, but cause high emission of harmful substances. That’s why contemporary scientific researches are leading to progressive replacing the binders obtained from petrochemical materials with polymer biocomposites coming from renewable resources. Increasing concern of aliphatic polyesters such as polylactide, polycaprolactone, poly(hydroxyalkanoates and aliphatic-aromatic polyesters is caused by the possibility of using them for producing many biodegradable products. In that context it is important to expand the researches connected to using biopolymers as moulding sands binders. Contemporary authors’ papers were focused on technological properties and harmfulness for the environment of this ecological moulding sands. TThis article takes into consideration the ability to reclamation of moulding sands with biopolymer binders.

  16. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    Science.gov (United States)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement

  17. The Development Materials from Substances Waste for Some Topics in Science and Technology Textbook for Primary

    Directory of Open Access Journals (Sweden)

    Abdullah Aydın

    2011-06-01

    Full Text Available The aim of study is to develop instructional materials from substances waste in which students teachers have problems to learn, taught in Instructional Technology and Materials Course at the third year of primary science teacher education program. The study was carried out with 54 primary science student teachers attending primary science teacher education program in Ahi Evran University Faculty of Education, in the fall term of the 2009-2010 academic year. Material design or development of prospective teachers' views were taken before and after. The findings from the material prepared were supported by the data obtained from the interviews conducted with 16 head student teachers. It was concluded that, based on the findings obtained from the material design the environmental pollution by waste products are designed for visual teaching materials. Can be taken into account the materials designed or developed by nominated teacher, during revised to be name of last books.

  18. Center for BioBased Binders and Pollution Reduction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Jerry [Univ. of Northern Iowa, Cedar Falls, IA (United States)

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  19. Effect of moisture on the aging behavior of asphalt binder

    Science.gov (United States)

    Ma, Tao; Huang, Xiao-Ming; Mahmoud, Enad; Garibaldy, Emil

    2011-08-01

    The moisture aging effect and mechanism of asphalt binder during the in-service life of pavement were investigated by laboratory simulating tests. Pressure aging vessel (PAV) test simulating the long-term aging of binder during the in-service life of pavement was modified to capture the long-term moisture aging effect of binder. Penetration grade tests including penetration test, soften point test, and ductility test as well as Superpave™ performance grade tests including viscosity test, dynamic shear rheometer test, and bending beam rheometer test were conducted to fully evaluate the moisture aging effect of binder. Fourier transform infrared spectroscopy test and Gel-permeation chromatography test were applied to provide a fundamental understanding of the moisture aging mechanism of binder. The results indicate that moisture condition can accelerate the aging of asphalt binder and shorten the service life of asphalt binder. The modified PAV test with moisture condition can well characterize the moisture aging properties of asphalt binder.

  20. THE STUDY ON MECHANISM OF BINDER MIGRATION DURING COATING PROCESS

    Institute of Scientific and Technical Information of China (English)

    Yun Liang; Kefu Chen

    2004-01-01

    Binder migration during coating process and the mechanism of binder migration were studied in this paper. After the latex was tagged by osmium, the degree of binder migration was measured by energy-dispersive X-ray spectrometer. For the wet sample just after coating application, the real information of binder distribution was kept by quenching the sample in liquid nitrogen followed by freeze-drying. The results showed: under the condition of this research, binder migration occurred both in the process of coating application and drying.But the amount of binder migration occurred during coating application was much little than that occurred during drying. The mechanism of binder migration during the process of coating application was studied by force analyses. And one viewpoint was proposed that was binder migration was caused by Magnus force and Saffman force.

  1. THE STUDY ON MECHANISM OF BINDER MIGRATION DURING COATING PROCESS

    Institute of Scientific and Technical Information of China (English)

    YunLiang; KefuChen

    2004-01-01

    Binder migration during coating process and themechanism of binder migration were studied in thispaper. After the latex was tagged by osmium, thedegree of binder migration was measured byenergy-dispersive X-ray spectrometer. For the wetsample just after coating application, the realinformation of binder distribution was kept byquenching the sample in liquid nitrogen followed byfreeze-drying. The results showed: under thecondition of this research, binder migration occurredboth in the process of coating application and drying.But the amount of binder migration occurred duringcoating application was much little than that occurredduring drying. The mechanism of binder migrationduring the process of coating application was studiedby force analyses. And one viewpoint was proposedthat was binder migration was caused by Magnusforce and Saffman force.

  2. The material co-construction of hard science fiction and physics

    Science.gov (United States)

    Hasse, Cathrine

    2015-12-01

    This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of doing science. There are many kinds of fiction within the science fiction genre. In the presented empirical exploration physics students seem particularly fond of what is called `hard science fiction': a particular type of science fiction dealing with technological developments (Hartwell and Cramer in The hard SF renaissance, Orb/TOR, New York, 2002). Especially hard science fiction as a motivating fantasy may, however, also come with a gender bias. The locally materialized techno-fantasies spurring dreams of the terraforming of planets like Mars and travels in time and space may not be shared by all physics students. Especially female students express a need for other concerns in science. The entanglement of physics with hard science fiction may thus help develop some students' interest in learning school physics and help create an interest for studying physics at university level. But research indicates that especially female students are not captured by the hard techno-fantasies to the same extent as some of their male colleagues. Other visions (e.g. inspired by soft science fiction) are not materialized as a resource in the local educational culture. It calls for an argument of how teaching science is also teaching cultural values, ethics and concerns, which may be gendered. Teaching materials, like the use of hard science fiction in education, may not just be (yet another) gender bias in science education but also carrier of particular visions for scientific endeavours.

  3. Analytical techniques for thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1988-01-01

    Treatise on Materials Science and Technology, Volume 27: Analytical Techniques for Thin Films covers a set of analytical techniques developed for thin films and interfaces, all based on scattering and excitation phenomena and theories. The book discusses photon beam and X-ray techniques; electron beam techniques; and ion beam techniques. Materials scientists, materials engineers, chemical engineers, and physicists will find the book invaluable.

  4. Development of tomographic reconstruction methods in materials science with focus on advanced scanning methods

    DEFF Research Database (Denmark)

    Lyckegaard, Allan

    Techniques for obtaining 3 dimensional information of individual crystals, socalled grains, in polycrystalline materials are important within the field of materials science for understanding and modeling the behavior of materials.In the last decade, a number of nondestructive X-ray diffraction...

  5. REUSAGE OF GYPSUM TAILING BINDER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Gypsum tailings, slag, cement, and other additives are used to produce gypsum building material products with simple technological processes and low costs. It provides a new effective approach to reuse gypsum tailings.

  6. Assessing ''last mile'' tools for affinity binder databases

    OpenAIRE

    Sherman, David James; Golenetskaya, Natalia

    2011-01-01

    International audience The EU ProteomeBinders coordination action helped define community standards for reporting and comparing binder and binder-target properties, with an eye toward quality control. This included reporting standards, an ontology for unambiguously describing binders and their properties, and a database schema for storing the experimental molecular interaction evidence used to support claims about those properties. But it left unresolved the question of how best to enable ...

  7. Life Science Research Facility materials management requirements and concepts

    Science.gov (United States)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  8. Tribology of ceramics and composites materials science perspective

    CERN Document Server

    Basu, Bikramjit

    2011-01-01

    This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.

  9. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Chitosan is used as a new electrode binder for graphite anode. • Electrochemical properties of the chitosan-based electrode are compared with that of PVDF-based one. • Electrochemical performances of the graphite anode are improved by using chitosan binder. • Chitosan binder facilitates the formation of a thin, homogenous and stable SEI film of the electrode. -- Abstract: Chitosan was applied as the electrode binder material for a spherical graphite anode in lithium-ion batteries. Compared to using poly (vinylidene fluoride) (PVDF) binder, the graphite anode using chitosan exhibited enhanced electrochemical performances in terms of the first Columbic efficiency, rate capability and cycling behavior. With similar specific capacity, the first Columbic efficiency of the chitosan-based anode is 95.4% compared to 89.3% of the PVDF-based anode. After 200 charge–discharge cycles at 0.5C, the capacity retention of the chitosan-based electrode showed to be significantly higher than that of the PVDF-based electrode. Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) measurements were carried out to investigate the formation and evolution of the solid electrolyte interphase (SEI) formed on the graphite electrodes. The results show that a thin, homogenous and stable SEI layer is formed on the graphite electrode surface with chitosan binder compared with that using the conventional PVDF binder

  10. BIOMIMICRY BASED ON MATERIAL SCIENCE: THE INSPIRING ART FROM NATURE (REVIEW ARTICLE)

    OpenAIRE

    Okuyucu, Can

    2015-01-01

    Biomimicry is an art which adopts the nature to science. Basically, it is the name of an art which converts the birds to the planes. It finds the qualities which the humanity does not have, the evolution gave to the nature. Moreover, it discovers these qualities and makes available for humanity with scientific methods. Therefore, as far as its relation to material science as concerned, it is the most important inter-disciplinary science field for humanity. Hence, when this scientific value an...

  11. Iron-based phosphate binders: do they offer advantages over currently available phosphate binders?

    OpenAIRE

    Negri, Armando Luis; Ureña Torres, Pablo Antonio

    2014-01-01

    Increased cardiovascular morbidity and mortality has been associated with the hyperphosphatemia seen in patients with end-stage chronic kidney disease (CKD). Oral phosphate binders are prescribed in these patients to prevent intestinal absorption of dietary phosphate and reduce serum phosphate. In prospective observational cohorts they have shown to decrease all-cause and cardiovascular mortality risk. Different problems have been associated with currently available phosphate binders as posit...

  12. Development of a rubber-modified fractionated bio-oil for use as noncrude petroleum binder in flexible pavements

    OpenAIRE

    Peralta, J.; Williams, R. Christopher; Rover, Marjori; Silva, Hugo Manuel Ribeiro Dias da

    2012-01-01

    The increasing demand for petroleum-derived products coupled with decreasing world crude reserves has led to substantial increases in asphalt pricing. Society’s additional interest in energy independence and use of renewable sources of energy is also a motivation for developing and using more sustainable materials such as binders derived from noncrude petroleum sources for use in highway applications. Iowa State University has been developing noncrude petroleum binders derived from the produc...

  13. Dispositions Supporting Elementary Interns in the Teaching of Reform-Based Science Materials

    Science.gov (United States)

    Eick, Charles J.; Stewart, Bethany

    2010-01-01

    Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs…

  14. The Elaboration of the Academic Technology Roadmap (ATRM) : Three Cases in Academic Material Science Laboratories

    OpenAIRE

    Okutsu, Shoko; Tatsuse, Takashi

    2005-01-01

    The Academic Technology Road Map (ATRM) was originally proposed to support academic Science and Engineering (S&E) laboratories. In this paper, ATRM is elaborated through three cases in academic materials science laboratories. According to those cases, a knowledge collaboration board (KCB) is newly designed based on the “Kadai-Barashi approach”and the original ATRM.

  15. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  16. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  17. Development of engineering and materials science in Pronuclear: retrospective and perspectives for the 80's

    International Nuclear Information System (INIS)

    The evolution of a great number of persons that completed engineering and materials science course, up to 1981, is showed. The Pronuclear, an organ that finances the personel education with emphasis in nuclear engineering, is described. (E.G.)

  18. Powder diffraction in materials science using the KENS cold-neutron source

    International Nuclear Information System (INIS)

    Since superconductivity fever spread around the world, neutron powder diffraction has become very popular and been widely used by crystallographers, physicists, chemists, mineralogists, and materials scientists. The purpose of present paper is to show, firstly, important characteristics of time-of-flight TOF powder diffraction using cold-neutron source in the study of materials science, and, secondly, recent studies on the structure and function of batteries at the Neutron Science Laboratory (KENS) in the High Energy Accelerator Research Organization (KEK)

  19. RIMS International Conference : Mathematical Challenges in a New Phase of Materials Science

    CERN Document Server

    Kotani, Motoko

    2016-01-01

    This volume comprises eight papers delivered at the RIMS International Conference "Mathematical Challenges in a New Phase of Materials Science", Kyoto, August 4–8, 2014. The contributions address subjects in defect dynamics, negatively curved carbon crystal, topological analysis of di-block copolymers, persistence modules, and fracture dynamics. These papers highlight the strong interaction between mathematics and materials science and also reflect the activity of WPI-AIMR at Tohoku University, in which collaborations between mathematicians and experimentalists are actively ongoing.

  20. Research planning for new materials development based on basic · interdisciplinary science

    International Nuclear Information System (INIS)

    This work is aimed to apply the super-interface theory to the basic · interdisciplinary science to find novel material and establish the basic technology for future economy. For this purpose, definition of the super-interface theory and new material, classification of three characteristics and four application fields for the super-interface theory, and planning the technology development roadmap were conducted. Through this work, the national competitiveness in the field of the new material development can be maximized by suggesting the development direction of multi-functional material based on the basic · interdisciplinary science

  1. Science of materials. Progress report, January 1-December 31, 1979

    International Nuclear Information System (INIS)

    The research program includes studies of the microchemistry, microstructure, deformation, corrosion and fracture of metals, ceramics and alloy materials, of the hydrogen embrittlement of metals, the mechanism of heat transfer across interfacts, catalytic properties of surfaces, and erosion of surfaces by fluid suspended particles. The structure of liquids, polymers and disordered solids is under investigation with emphasis on molecular interactions and bonding, on ionic conduction, phase transitions and radiation damage. Ferro- and pyro-electric materials with potential for solar energy applications are under development. The study of optical properties includes the mechanism of luminescence, the design of molecular photoreceptors, and new semiconductor materials for photovoltaic devices

  2. Time Resolved X Ray Scattering and Spectroscopy In Materials Science

    International Nuclear Information System (INIS)

    The study of materials relevant for energy applications covers a large array of experimental techniques, time domains and types of materials. In this paper, we will discuss some of the issues that we have encountered and describe some experiments and which combinations of techniques were used. The paper mainly presents results based on synchrotron radiation X ray techniques but also shows how important it is to complement their results with those obtained through non X ray techniques in order to obtain a comprehensive picture of the time evolution of the materials under study. (author)

  3. Science of materials. Progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The research program includes studies of the microchemistry, microstructure, deformation, corrosion and fracture of metals, ceramics and alloy materials, of the hydrogen embrittlement of metals, the mechanism of heat transfer across interfacts, catalytic properties of surfaces, and erosion of surfaces by fluid suspended particles. The structure of liquids, polymers and disordered solids is under investigation with emphasis on molecular interactions and bonding, on ionic conduction, phase transitions and radiation damage. Ferro- and pyro-electric materials with potential for solar energy applications are under development. The study of optical properties includes the mechanism of luminescence, the design of molecular photoreceptors, and new semiconductor materials for photovoltaic devices.

  4. IMP Science Gateway: from the Portal to the Hub of Virtual Experimental Labs in Materials Science

    OpenAIRE

    Gordienko, Yuri; Bekenev, Lev; Baskova, Olexandra; Gatsenko, Olexander; Zasimchuk, Elena; Stirenko, Sergii

    2014-01-01

    "Science gateway" (SG) ideology means a user-friendly intuitive interface between scientists (or scientific communities) and different software components + various distributed computing infrastructures (DCIs) (like grids, clouds, clusters), where researchers can focus on their scientific goals and less on peculiarities of software/DCI. "IMP Science Gateway Portal" (http://scigate.imp.kiev.ua) for complex workflow management and integration of distributed computing resources (like clusters, s...

  5. Polyamidoamine Dendrimer-Based Binders for High-Loading Lithium-Sulfur Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping; Schwarz, Ashleigh M.; Darsell, Jens T.; Henderson, Wesley A.; Tomalia, Donald A.; Liu, Jun; Zhang, Jiguang; Xiao, Jie

    2016-01-01

    Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfide shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).

  6. Possible applications of synchrotron radiation for materials science

    International Nuclear Information System (INIS)

    In the past 20 years, synchrotron radiation has become an important aid for solid-state physicists, chemists and biologists. On the other hand, the use of synchrotron radiation for experimental studies of a large series of specimens is still in the preliminary stage, however, is necessary for the analyzation of materials. In this paper, present and future possible applications of synchrotron radiation for the characterization of advanced materials are discussed. Beside the further optimization of techniques for the analysis of the atomic structure (e.g. diffraction, absorption spectroscopy), essential progress has to be expected in the field of nondestructive, threedimensional characterization of the microstructure of metallic and ceramic materials, especially during the synthesis of materials. (orig.)

  7. Physical-chemical characteristics of an eco-friendly binder using ternary mixture of industrial wastes

    OpenAIRE

    Nguyen, Hoang-Anh; Chang, Ta-Peng; Chen, Chun-Tao; Yang, Tzong-Ruey; Nguyen, Tien-Dung

    2015-01-01

    This study explores the physical-chemical characteristics of paste and mortar with an eco-friendly binder named as SFC cement, produced by a ternary mixture of industrial waste materials of ground granulated blast furnace slag (S), Class F fly ash (FFA), and circulating fluidized bed combustion fly ash (CFA). To trigger the hydration, the CFA, which acted as an alkaline-sulfate activator, was added to the blended mixture of slag and FFA. The water to binder ratio (W/B), curing regime, and FFA...

  8. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    OpenAIRE

    Chen, W.

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane module. A simple and easy method to measure the oxygen nonstoichiometry of a perovskite material is described in chapter 2. A Computing Fluid Dynamic (CFD) model is developed in chapter 3 to describe th...

  9. Chemistry and Materials Science, 1990--1991. [Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, T.T.; Bruner, J.M.; McElroy, L.A. [eds.

    1991-12-31

    This 2-year (FY 1990-91) contains 49 technical articles in ten sections: research sampler, metals and alloys, energetic materials, chemistry and physics of advanced materials, bonding and reactions at surfaces and interfaces, superconductivity, energy R and D, waste processing and management, characterization and analysis, and facilities and instrumentation. Two more sections list department personnel, their publications etc., consultants, and summary of department budgets. The articles are processed separately for the data base. (DLC)

  10. Energy-selective neutron imaging for materials science

    OpenAIRE

    Peetermans, Steven Luc X

    2015-01-01

    Common neutron imaging techniques study the attenuation of a neutron beam penetrating a sample of interest. The recorded radiograph shows a contrast depending on traversed material and its thickness. Tomography allows separating both and obtaining 3D spatial information about the material distribution, solving problems in numerous fields ranging from virtually separating fossils from surrounding rock to water management in fuel cells. It is nowadays routinely performed at PSI¿s neutron imagin...

  11. The review of the modeling methods and numerical analysis software for nanotechnology in material science

    OpenAIRE

    SMIRNOV Vladimir Alexeevich; KOROLEV Evgenij Valerjevich; EVSTIGNEEV Alexandr Viktorovich

    2014-01-01

    Due to the high demand for building materials with universal set of roperties which extend their application area the research efforts are focusing on nanotechnology in material science. The rational combination of theoretical studies, mathematical modeling and simulation can favour reduced resource and time consumption when nanomodified materials are being developed. The development of composite material is based on the principles of system analysis which provides for the necessity of criter...

  12. Methods of characterization of the binder phase in WC-Co cermets

    International Nuclear Information System (INIS)

    In technological application of cermets carbides are sintered with so-called binder metals Co and Ni. It is supposed that relevant properties are dependent on the partial solution of carbides and carbon in the binder. In thepresent work alloys W-Co-C were produced with more than 850Co to simulate the binder phase of the technological material, solution treated at 1300K, 1400K and 1500K, and saturation magnetisation plus the lattice parameter of the cubic Co determined. The corresponding property curves show breaks at the solubility limits. In the solubility regions the content dependence of the two properties were fitted to certain expressions. Whereas the W dependence is well-known from the literature the present work show als a significant C dependence. (G.Q.)

  13. Biobased adhesives, gums, emulsions and binders: current trends and future prospects

    Science.gov (United States)

    Biopolymers derived from renewable resources are an emerging class of advanced materials that offer many useful properties for a wide range of food and non-food applications. Current state of the art in research and development of renewable polymers as adhesives, gums, binders and emulsions will be ...

  14. How design can contribute to materials research - Explorative prototyping as a method for collaboration between design and materials science

    OpenAIRE

    Itälä, Jukka

    2014-01-01

    This thesis examines how design, particularly industrial design practice, can contribute to the research and development of materials and their applications in collaboration with materials science. The topic is approached through the notion of constructive design research, which refers to the utilization of concrete design outputs as a means for research. The scientific community is struggling with increasing demands for the generation of impact through research, this being the case also...

  15. Phenomena during thermal removal of binders

    Science.gov (United States)

    Hrdina, Kenneth Edward

    The research presented herein has focused on debinding of an ethylene copolymer from a SiC based molded ceramic green body. Examination of the binder burnout process was carried out by breaking down the process into two distinct regions: those events which occur before any weight loss begins, and those events occurring during binder removal. Below the temperature of observed binder loss (175sp°C), both reversible and irreversible displacement was observed to occur. The displacement was accounted for by relaxation of molding stresses, thermal expansion of the system, and melting of the semicrystalline copolymer occurring during heating. Upon further heating the binder undergoes a two stage thermal degradation process. In the first stage, acetic acid is the only degradation product formed, as determined by GC/MS analysis. In this stage, component shrinkage persisted and it was found that one unit volume of shrinkage corresponded with one unit volume of binder removed, indicating that no porosity developed. The escaping acetic acid effluents must diffuse through liquid polymer filled porous regions to escape. The gas pressure of the acetic acid species produced in the first stage of the thermal degradation may exceed the ambient pressure promoting bubble formation. Controlling the heating rate of the specimen maintains the gas pressure below the bubbling threshold and minimizes the degradation time. Experiments have determined the kinetics of the reaction in the presence of the high surface area (10-15msp2/g) ceramic powder and then verified that acetic acid was diffusing through the polymer phase to the specimen surface where evaporation is taking place. The sorption method measured the diffusivity and activity of acetic acid within the filled ceramic system within a TGA. These data were incorporated into a Fickian type model which included the rate of generation of the diffusing species. The modeling process involved prediction of the bloating temperature as a

  16. Ultrafast laser inscribed integrated photonics: material science to device development

    Directory of Open Access Journals (Sweden)

    Gross S.

    2013-11-01

    Full Text Available Detailed studies of intense light – material interactions has led to new insights into fs laser induced refractive index change in a range of glass types. This body of knowledge enables the development of advanced processing methodologies, resulting in novel planar and 3D guided wave devices. We will review the chemistry and morphology associated with fs laser induced refractive index change in multi-component glasses such as ZBLAN, phosphates and silicates, and discuss how these material changes inform our research programs developing a range of active and passive lightwave systems.

  17. Technological and ecological studies of moulding sands with new inorganic binders for casting of non-ferrous metal alloys

    Directory of Open Access Journals (Sweden)

    I. Izdebska-Szanda

    2011-01-01

    Full Text Available The article presents the results of studies which form a part of broader research programme executed under the project POIG.01.01.02-00-015/09 "Advanced materials and technologies".In a concise manner, the results of studies on the effect of chemical modification of inorganic binders on the technological properties ofmoulding sands containing these binders were presented.Special attention was paid to the effect of modification of inorganic binders on their thermal destruction behaviour in the range of pouringtemperatures of the non-ferrous metals and their alloys.Also the results of comparative studies of the thermal emission of toxic gases and odours from moulding sands with new inorganic andorganic binders were discussed.

  18. Quantification of the effects of crumb rubber in CRM binders

    Science.gov (United States)

    Putman, Bradley James

    Since the mid-1960s, crumb rubber has been used to modify asphalt binders. The crumb rubber, also referred to as crumb rubber modifier (CRM), is produced by grinding scrap tires into fine powders with particulate sizes generally smaller than 2 mm. In most cases, CRM is incorporated into binder using the "wet" method, where the crumb rubber is blended with the asphalt binder. The binder modification that occurs during this blending process is physical in nature, where the lighter oils of the binder diffuse into the CRM particles. As the rubber particles absorb the oils, the particles swell; therefore, increasing the viscosity and stiffness of the CRM binder. This research evaluated the viscosity and complex shear modulus (G*) of 36 different laboratory-produced CRM binder combinations (two CRM processing methods, two CRM contents, three CRM sizes, and three binder sources) and three base binders. From this investigation, a method was developed to quantify the effects of the crumb rubber modification. These effects were identified as the interaction effect (IE) resulting from the diffusion of the lighter binder factions into the rubber particles and the particle effect (PE), which is the result of the change in the rheological properties due to the filling effect of the particulate CRM. Following statistical analyses of the results, it was determined that CRM binders had greater viscosity and complex shear modulus (G*) values than the base binders. These values increased with CRM content. The CRMs having higher surface area (i.e., ambient ground and finer CRM) generally had higher IE values, while the PE generally increased with particle size. HP-GPC testing indicated that the CRM binders also had higher large molecular size (LMS) fractions and lower small molecular size (SMS) fractions as determined from the HP-GPC profiles. As the LMS increased and the SMS decreased, the IE increased. Two of the three binder sources followed this trend, indicating that those

  19. Department F3. Condensed matter research and materials sciences

    International Nuclear Information System (INIS)

    The report deals with work done during 1988 in the field of muon spectroscopy, neutron scattering, spallation neutron source SINQ, cryogenic detectors, accelerator mass spectrometry, geochemistry, trace elements, aerosol chemistry, heavy elements, cement products, defect physics, irradiation damages in fusion reactor materials, and superconductivity. 111 figs., 19 tabs., 321 refs

  20. Chemistry and Materials Science. Progress report, first half, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director`s initiatives and individual projects, and transactinium institute studies.

  1. [Science and Technology and Recycling: Instructional Materials on Aluminum.

    Science.gov (United States)

    Aluminum Association, New York, NY.

    Educational materials on the manufacture and use of aluminum are assembled in this multi-media unit for use by junior high and secondary school students. Student booklets and brochures include: "The Story of Aluminum,""Uses of Aluminum,""Independent Study Guide for School Research Projects,""Questions and Answers About Litter, Solid Waste, and…

  2. NANOTECHNOLOGY IN CONSTRUCTION MATERIAL SCIENCE: REALITY AND PROSPECTS

    Directory of Open Access Journals (Sweden)

    S. Zhdanok

    2009-01-01

    Full Text Available The paper presents information on the beginning, state and prospects of nanotechnology application in the construction industry inBelarus. These technologies are based on the national carbon nano-materials, obtained at theInstituteofHeatand Mass Transfer of NAS of Belarus. 

  3. NANOTECHNOLOGY IN CONSTRUCTION MATERIAL SCIENCE: REALITY AND PROSPECTS

    OpenAIRE

    S. Zhdanok; Khroustalev, B.; E. Batyanowski; S. Leonovich

    2009-01-01

    The paper presents information on the beginning, state and prospects of nanotechnology application in the construction industry inBelarus. These technologies are based on the national carbon nano-materials, obtained at theInstituteofHeatand Mass Transfer of NAS of Belarus. 

  4. Use of grape must as a binder to obtain activated carbon briquettes

    OpenAIRE

    A. C. Deiana; D. L. Granados; L. M. Petkovic; M. F. Sardella; H. S. Silva

    2004-01-01

    The results of studies on briquetting activated-carbon-based adsorbent materials, prepared from raw materials from the region of Cuyo, Argentina, are reported in this article. Several steps were carried out to obtain activated-carbon briquettes from Eucalyptus camaldulensis Dehn wood. These steps included carbonization of wood to obtain char; blending of char and a novel binder, i.e., grape must; formation of cylinder-like briquettes by pressure; and activation of the resulting material. The ...

  5. Curing Reaction Model of Epoxy Asphalt Binder

    Institute of Scientific and Technical Information of China (English)

    QIAN Zhendong; CHEN Leilei; WANG Yaqi; SHEN Jialin

    2012-01-01

    In order to understand the strength developing law of the epoxy asphalt mixture,a curing reaction model of the epoxy asphalt binder was proposed based upon the thermokinetic analysis.Given some assumptions,the model was developed by applying the Kissinger law as well as Arrhenius equation,and the differential scanning calorimetry was performed for estimating the model parameters.To monitor the strength development of the epoxy asphalt mixture,a strength test program was employed and then results were compared to those produced from the proposed model.The comparative evaluation shows that a good consistency exists between the outputs from test program and the proposed model,indicating that the proposed model can be used effectively for simulating the curing reaction process for the epoxy asphalt binder and predicting the strength development for the epoxy asphalt mixture.

  6. Valorization of phosphogypsum as hydraulic binder.

    Science.gov (United States)

    Kuryatnyk, T; Angulski da Luz, C; Ambroise, J; Pera, J

    2008-12-30

    Phosphogypsum (calcium sulfate) is a naturally occurring part of the process of creating phosphoric acid (H(3)PO(4)), an essential component of many modern fertilizers. For every tonne of phosphoric acid made, from the reaction of phosphate rock with acid, commonly sulfuric acid, about 3t of phosphogypsum are created. There are three options for managing phosphogypsum: (i) disposal or dumping, (ii) stacking, (iii) use-in, for example, agriculture, construction, or landfill. This paper presents the valorization of two Tunisian phosphogypsums (referred as G and S) in calcium sulfoaluminate cement in the following proportions: 70% phosphogypsum-30% calcium sulfoaluminate clinker. The use of sample G leads to the production of a hydraulic binder which means that it is not destroyed when immersed in water. The binder including sample S performs very well when cured in air but is not resistant in water. Formation of massive ettringite in a rigid body leads to cracking and strength loss. PMID:18433998

  7. New pharmaceutical applications for macromolecular binders.

    Science.gov (United States)

    Bertrand, Nicolas; Gauthier, Marc A; Bouvet, Céline; Moreau, Pierre; Petitjean, Anne; Leroux, Jean-Christophe; Leblond, Jeanne

    2011-10-30

    Macromolecular binders consist of polymers, dendrimers, and oligomers with binding properties for endogenous or exogenous substrates. This field, at the frontier of host/guest chemistry and pharmacology, has met a renewed interest in the past decade due to the clinical success of several sequestrants, like sevelamer hydrochloride (Renagel®) or sugammadex (Bridion®). In many instances, multivalent binding by the macromolecular drugs can modify the properties of the substrate, and may prevent it from reaching its site of action and/or trigger a biological response. From small (e.g., ions) to larger substrates (e.g., bacteria and cells), this review presents the state-of-the-art of macromolecular binders and provides detailed illustrative examples of recent developments bearing much promise for future pharmaceutical applications. PMID:21571017

  8. Student Reactions to Materials Relating to the Social Sciences in a Third Semester College Spanish Class.

    Science.gov (United States)

    Stansfield, Charles W.

    The problem of evaluating instructional materials in foreign language courses in terms of educational relevance is examined in this survey of a third-semester, college, Spanish class. Students were given reading materials in the social sciences in lieu of the more traditional literary selections and asked to evaluate them through an attitudinal…

  9. Materials science approaches to solve problems with emerging mycotoxins in corn

    Science.gov (United States)

    Materials science technology is an attractive, cost effective, and robust alternative to address the limitations of highly selective natural receptors. These materials are especially well suited to address issues with emerging toxins for which a better understanding is needed to establish levels of ...

  10. 4. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    This book includes more than 200 abstracts on various aspects of: materials processing and characterization, crystal growth methods, solid-state and crystal technology, development of condensed matter theory and modeling of materials properties, solid-state device physics, nano science and nano technology, heterostructures, superlattices, quantum wells and wires, advanced quantum physics for nano systems

  11. Interacting with a Suite of Educative Features: Elementary Science Teachers' Use of Educative Curriculum Materials

    Science.gov (United States)

    Arias, Anna Maria; Bismack, Amber Schultz; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of learning both the practices and content of science. This integration of practices and content requires sophisticated teaching that does not often happen in elementary classrooms. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited…

  12. High Performance Binder for EMCDB Propellants

    Directory of Open Access Journals (Sweden)

    V. K. Bhat

    1995-01-01

    Full Text Available A novel block polymer has been synthesised from caprolactone using hydroxy terminated polybutadiene as ring opening initiator. Usefulness of this polymer as propellant binder has been studied by generating data on physico-chemical properties of the polymer. The polymer exhibited high miscibility with nitrate ester and high solid loading capability. Preliminary data generated on typical propellant formulation indicated higher performance as compared to composite propellant.

  13. Towards a microalgae-based road binder

    OpenAIRE

    AUDO, Mariane; Queffelec, Clémence; LEPINE, Olivier; Legrand, Jack; Chailleux, Emmanuel

    2013-01-01

    Asphalt is a sticky viscoelastic petroleum industry by-product, used in sealing surface but mostly as aggregates binder in road pavement. For about seven years, the worldwide petroleum production didn’t increase anymore. In that context, refining strategies are changing: for example, high molecular fractions can be cracked into lighter fuel fractions and consequently, in the future, it could be difficult to answer to the worldwide needs in asphalt. To avoid this problem, some biomass-ba...

  14. Ethnic Diversity in Materials Science and Engineering. A report on the workshop on ethnic diversity in materials science and engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Justin

    2014-06-30

    The immediate goal of the workshop was to elevate and identify issues and challenges that have impeded participation of diverse individuals in MSE. The longerterm goals are to continue forward by gathering and disseminating data, launching and tracking initiatives to mitigate the impediments, and increase the number of diverse individuals pursuing degrees and careers in MSE. The larger goal, however, is to create over time an ever-increasing number of role models in science fields who will, in turn, draw others in to contribute to the workforce of the future.

  15. Materials Science Research Rack Onboard the International Space Station Hardware and Operations

    Science.gov (United States)

    Lehman, John R.; Frazier, Natalie C.; Johnson, Jimmie

    2012-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly, logging more than 620 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via

  16. Physical Oceanography: Project Earth Science. Material for Middle School Teachers in Earth Science.

    Science.gov (United States)

    Ford, Brent A.; Smith, P. Sean

    This book is one in a series of Earth science books and contains a collection of 18 hands-on activities/demonstrations developed for the middle/junior high school level. The activities are organized around three key concepts. First, students investigate the unique properties of water and how these properties shape the ocean and the global…

  17. Positron lifetime technique with applications in materials science

    International Nuclear Information System (INIS)

    This thesis deals with the positron lifetime technique as a method to measure extremely low concentrations of extremely small cavities in materials. The method is based upon the fact that the positron lieftime decreases as the electron density increases and upon the fact that a positron preferably annihilates in cavity-like defects in lattices. The theory of positron behaviour in materials and technical aspects of measuring positron liefetimes are described in ch.'s 2 and 3 respectively. Three methods for increasing the time resolution are discussed and some positron sources are described (ch.4). Some applications of the positron lifetime technique and experimental results are shown in chapter 5. 125 refs.; 61 figs.; 18 tabs

  18. Chemistry and material science at the cell surface

    OpenAIRE

    Weian Zhao; Grace Sock Leng Teo; Namit Kumar; Karp, Jeffrey M.

    2010-01-01

    Cell surfaces are fertile ground for chemists and material scientists to manipulate or augment cell functions and phenotypes. This not only helps to answer basic biology questions but also has diagnostic and therapeutic applications. In this review, we summarize the most recent advances in the engineering of the cell surface. In particular, we focus on the potential applications of surface engineered cells for 1) targeting cells to desirable sites in cell therapy, 2) programming assembly of c...

  19. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    Baldev Raj

    2009-06-01

    The paper gives an insight into basic as well as applied research being carried out at the Indira Gandhi Centre for Atomic Research for the development of advanced materials for sodium cooled fast reactors towards extending the life of reactors to nearly 100 years and the burnup of fuel to 2,00,000 MWd/t with an objective of providing fast reactor electricity at an affordable and competitive price.

  20. The High Energy Materials Science Beamline (HEMS) at PETRA III

    Science.gov (United States)

    Schell, Norbert; King, Andrew; Beckmann, Felix; Ruhnau, Hans-Ulrich; Kirchhof, René; Kiehn, Rüdiger; Müller, Martin; Schreyer, Andreas

    2010-06-01

    The HEMS Beamline at the German high-brilliance synchrotron radiation storage ring PETRA III is fully tunable between 30 and 250 keV and optimized for sub-micrometer focusing. Approximately 70 % of the beamtime will be dedicated to Materials Research. Fundamental research will encompass metallurgy, physics and chemistry with first experiments planned for the investigation of the relationship between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, and the development of smart materials or processes. For this purpose a 3D-microsctructure-mapper has been designed. Applied research for manufacturing process optimization will benefit from high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during welding processes. The beamline infrastructure allows accommodation of large and heavy user provided equipment. Experiments targeting the industrial user community will be based on well established techniques with standardized evaluation, allowing full service measurements, e.g. for tomography and texture determination. The beamline consists of a five meter in-vacuum undulator, a general optics hutch, an in-house test facility and three independent experimental hutches working alternately, plus additional set-up and storage space for long-term experiments. HEMS is under commissioning as one of the first beamlines running at PETRA III.

  1. Structural properties of porous materials and powders used in different fields of science and technology

    CERN Document Server

    Volfkovich, Yury Mironovich; Bagotsky, Vladimir Sergeevich

    2014-01-01

    This book provides a comprehensive and concise description of most important aspects of experimental and theoretical investigations of porous materials and powders, with the use and application of these materials in different fields of science, technology, national economy and environment. It allows the reader to understand the basic regularities of heat and mass transfer and adsorption occurring in qualitatively different porous materials and products, and allows the reader to optimize the functional properties of porous and powdered products and materials. Written in an straightforward and transparent manner, this book is accessible to both experts and those without specialist knowledge, and it is further elucidated by drawings, schemes and photographs. Porous materials and powders with different pore sizes are used in many areas of industry, geology, agriculture and science. These areas include (i) a variety of devices and supplies; (ii) thermal insulation and building materials; (iii) oil-bearing geologic...

  2. Building methodology of virtual laboratory posts for materials science virtual laboratory purposes

    OpenAIRE

    R. Honysz; L.A. Dobrzański

    2007-01-01

    Purpose: The purpose of this article is to describe the building methodology of virtual laboratory posts placed in Material Science Virtual Laboratory. Presented laboratory is an open scientific, investigative, simulating and didactic medium helpful in the realization of the didactic and educational tasks from the field of material engineering in Institute of Engineering Materials and Biomaterials of the Silesian University of Technology in Gliwice, Poland.Design/methodology/approach: The us...

  3. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending June 30, 1984

    International Nuclear Information System (INIS)

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division for the period January 1, 1983, to June 30, 1984. These activities constitute about one-fourth of the research and development conducted by the division. The emphasis of the program can be described as the scientific design of materials. The efforts are directed toward three classes of materials: high-temperature metallic alloys based on intermetallic compounds, structural ceramics, and radiation-resistant alloys

  4. Sustainable hydrogen - A challenge for materials science and equipment design

    International Nuclear Information System (INIS)

    Full text: Hydrogen is the ideal fuel, considering its fully non-polluting by-products. Still, in discussions on 'sustainable hydrogen', there must be considered all the steps implied in hydrogen production, storage and use and the overall energy balance represents the real starting point of evaluating the sustainability. So far, hydrogen production is related to rather energy-consuming processes; extended research is devoted to develop high efficiency processes, but the industrial hydrogen production makes use of either large electrical or thermal energy amounts. Hydrogen production via water photolysis represents, consequently a viable alternative although many steps have to be elaborated to reached the industrial scale of these processes. Hydrogen storing represents another problem that affects its application; a safe storage way, in metal hydrides, is still under intensive research all over the world. The group of the Centre of Product Design for Sustainable Development is engaged in research for developing a laboratory photolyser, able to produce hydrogen and to offer an efficient storage alternative. The photolyser is a photo-electrochemical cell, and the efficiency of the photolysis process depends on several factors: - the photo-electrodes: thin films of wide band gap semiconductors with tailored properties; - the aqueous environment, with effect on the electrode materials properties and stability; - the external bias; - the cell design. The paper focuses mainly on the photo-electrode materials that were tested. The influence of the composition, crystalline and defect structure, of the morphology and of the interfaces on the photolysis process are reviewed. The effect of the pH in the aqueous media is discussed along with the stability of the materials and the reversibility of the adsorption/desorption processes. The design criteria that must be fulfilled in developing the photolyser are also discussed. (authors)

  5. Binder-Free and Carbon-Free Nanoparticle Batteries: A Method for Nanoparticle Electrodes without Polymeric Binders or Carbon Black

    KAUST Repository

    Ha, Don-Hyung

    2012-10-10

    In this work, we have developed a new fabrication method for nanoparticle (NP) assemblies for Li-ion battery electrodes that require no additional support or conductive materials such as polymeric binders or carbon black. By eliminating these additives, we are able to improve the battery capacity/weight ratio. The NP film is formed by using electrophoretic deposition (EPD) of colloidally synthesized, monodisperse cobalt NPs that are transformed through the nanoscale Kirkendall effect into hollow Co 3O 4. EPD forms a network of NPs that are mechanically very robust and electrically connected, enabling them to act as the Li-ion battery anode. The morphology change through cycles indicates stable 5-10 nm NPs form after the first lithiation remained throughout the cycling process. This NP-film battery made without binders and conductive additives shows high gravimetric (>830 mAh/g) and volumetric capacities (>2100 mAh/cm 3) even after 50 cycles. Because similar films made from drop-casting do not perform well under equal conditions, EPD is seen as the critical step to create good contacts between the particles and electrodes resulting in this significant improvement in battery electrode assembly. This is a promising system for colloidal nanoparticles and a template for investigating the mechanism of lithiation and delithiation of NPs. © 2012 American Chemical Society.

  6. PAT challenges routine techniques on defect spectroscopy in material science

    International Nuclear Information System (INIS)

    Atomic or Point Defects are the most simple defects in solids. Due to the small size their direct observation by the routine techniques is not possible. A single type of defects (thermal defect) was observed in the quenching process. Using the Arrhenius method and threshold method we recommended the accurate both method of treatments. The calculated values for formation enthalpies and self-diffusion using positron lifetime and Doppler broadening in a good agreement in (A356.0) and (A413.1). Specifically it is show how PAT detect defect concentrations, (formation- migration) enthalpies and grain size for the material under investigation. Most of the these data are reported

  7. Chemistry and material science at the cell surface

    Directory of Open Access Journals (Sweden)

    Weian Zhao

    2010-04-01

    Full Text Available Cell surfaces are fertile ground for chemists and material scientists to manipulate or augment cell functions and phenotypes. This not only helps to answer basic biology questions but also has diagnostic and therapeutic applications. In this review, we summarize the most recent advances in the engineering of the cell surface. In particular, we focus on the potential applications of surface engineered cells for 1 targeting cells to desirable sites in cell therapy, 2 programming assembly of cells for tissue engineering, 3 bioimaging and sensing, and ultimately 4 manipulating cell biology.

  8. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    Science.gov (United States)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-04-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  9. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    Science.gov (United States)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  10. Teacher-Made Tactile Science Materials with Critical and Creative Thinking Activities for Learners Including Those with Visual Impairments

    Science.gov (United States)

    Teske, Jolene K.; Gray, Phyllis; Kuhn, Mason A.; Clausen, Courtney K.; Smith, Latisha L.; Alsubia, Sukainah A.; Ghayoorad, Maryam; Rule, Audrey C.; Schneider, Jean Suchsland

    2014-01-01

    Gifted students with visual impairments are twice exceptional learners and may not evidence their advanced science aptitudes without appropriate accommodations for learning science. However, effective tactile science teaching materials may be easily made. Recent research has shown that when tactile materials are used with "all" students…

  11. 50 years of ion channeling in materials science

    Science.gov (United States)

    Vantomme, André

    2016-03-01

    In the early days of ion beam analysis, i.e. the early 60s, channeling was discovered and brought to maturity via a combined effort in experimental, computational and theoretical research. It was soon realized that the probability for nuclear interaction (such as nuclear scattering, nuclear reactions, ionization followed by X-ray emission…) would significantly decrease when steering the ion beam along a crystallographic direction of a single crystal. Hence, this effect would be optimally suited to investigate a wide range of materials properties related to their crystal structure, such as defects, elastic strain, the lattice site of impurities, as well as phonon-related properties. In this paper, I will briefly review some of the pioneering work, which led to the discovery and theoretical understanding of ion channeling. Subsequently, a number of applications will be discussed where the strength of the ion beam analysis technique allows deducing information which is often hardly (or not) attainable by other techniques. Throughout the paper, I will reflect on the future of channeling in materials research, and pay special attention to potential pitfalls, challenges and opportunities.

  12. Serial snapshot crystallography for materials science with SwissFEL

    Directory of Open Access Journals (Sweden)

    Catherine Dejoie

    2015-05-01

    Full Text Available New opportunities for studying (submicrocrystalline materials with small unit cells, both organic and inorganic, will open up when the X-ray free electron laser (XFEL presently being constructed in Switzerland (SwissFEL comes online in 2017. Our synchrotron-based experiments mimicking the 4%-energy-bandpass mode of the SwissFEL beam show that it will be possible to record a diffraction pattern of up to 10 randomly oriented crystals in a single snapshot, to index the resulting reflections, and to extract their intensities reliably. The crystals are destroyed with each XFEL pulse, but by combining snapshots from several sets of crystals, a complete set of data can be assembled, and crystal structures of materials that are difficult to analyze otherwise will become accessible. Even with a single shot, at least a partial analysis of the crystal structure will be possible, and with 10–50 femtosecond pulses, this offers tantalizing possibilities for time-resolved studies.

  13. Applied solid state science advances in materials and device research 2

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 2 covers topics about complex oxide materials such as the garnets, which dominate the field of magnetoelasticity and are among the most important laser hosts, and sodalite, which is one of the classic photochromic materials. The book discusses the physics of the interactions of electromagnetic, elastic, and spin waves in single crystal magnetic insulators. The text then describes the mechanism on which inorganic photochromic materials are based, as observed in a variety of materials in single crystal, powder, and gl

  14. Hemp Thermal Insulation Concrete with Alternative Binders, Analysis of their Thermal and Mechanical Properties

    Science.gov (United States)

    Sinka, M.; Sahmenko, G.; Korjakins, A.; Radina, L.; Bajare, D.

    2015-11-01

    One of the main challenges that construction industry faces today is how to address the demands for more sustainable, environmentally friendly and carbon neutral construction materials and building upkeep processes. One of the answers to these demands is lime-hemp concrete (LHC) building materials - carbon negative materials that have sufficient thermal insulation capabilities to be used as thermal insulation materials for new as well as for existing buildings. But one problem needs to be overcome before these materials can be used on a large scale - current manufacturing technology allows these materials to be used only as self-bearing thermal insulation material with large labour intensity in the manufacturing process. In order to lower the labour intensity and allow the material to be used in wider applications, a LHC block and board production is necessary, which in turn calls for the binders different from the classically used ones, as they show insufficient mechanical strength for this new use. The particular study focuses on alternative binders produced using gypsum-cement compositions ensuring they are usable in outdoor applications together with hemp shives. Physical, mechanical, thermal and water absorption properties of hemp concrete with various binders are addressed in the current study.

  15. Mechanical and Permeability Characteristics of Latex-Modified Pre-Packed Pavement Repair Concrete as a Function of the Rapid-Set Binder Content

    Directory of Open Access Journals (Sweden)

    Jae-Woong Han

    2015-10-01

    Full Text Available We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ¥21 MPa and a flexural strength of ¥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement. The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ¥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.29. The mixture exhibited a flexural strength of ¥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ¤0.29.

  16. Three-year performance of in-situ solidified/stabilised soil using novel MgO-bearing binders.

    Science.gov (United States)

    Jin, Fei; Wang, Fei; Al-Tabbaa, Abir

    2016-02-01

    A new group of MgO-bearing binders has been developed recently which showed improved sustainability and technical performance compared to Portland cement (PC). However, the application of these MgO-bearing binders in the Solidification/Stabilisation (S/S) techniques is very limited. This study investigates the three-year performance of a highly contaminated soil treated by in-situ S/S using MgO-bearing binders and PC. The core quality, strength, permeability and the leaching properties of the S/S materials were evaluated. The effects of binder composition, addition of inorgano-organo-clay (IOC) and the grout content on the properties of the 3-y S/S materials are discussed. It is found that although MgO alone provided negligible strength to the soil, it is superior in immobilising both inorganic and organic contaminants. Replacing MgO by ground granulated blast-furnace slag (GGBS) significantly enhanced the strength while also performed well in immobilising the contaminants. The improved pH buffering capacity was attributed to the low solubilities of brucite and hydrotalcite-like phases formed in the MgO-bearing binders, and was also the reason for the improved performance in stabilising contaminants. The addition of IOC slightly decreased the strength and the permeability of the S/S materials but inconsistent effect on the contaminant immobilisation was found depending on the binder composition. This study showed no degradation of the S/S materials after 3 y exposure to field conditions and has proved the applicability and the advantages of MgO-bearing binders over PC in S/S. PMID:26408974

  17. Fundamentals of radiation materials science metals and alloys

    CERN Document Server

    Was, Gary S

    2017-01-01

    The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of t...

  18. Advanced Bioinks for 3D Printing: A Materials Science Perspective.

    Science.gov (United States)

    Chimene, David; Lennox, Kimberly K; Kaunas, Roland R; Gaharwar, Akhilesh K

    2016-06-01

    Advanced bioinks for 3D printing are rationally designed materials intended to improve the functionality of printed scaffolds outside the traditional paradigm of the "biofabrication window". While the biofabrication window paradigm necessitates compromise between suitability for fabrication and ability to accommodate encapsulated cells, recent developments in advanced bioinks have resulted in improved designs for a range of biofabrication platforms without this tradeoff. This has resulted in a new generation of bioinks with high print fidelity, shear-thinning characteristics, and crosslinked scaffolds with high mechanical strength, high cytocompatibility, and the ability to modulate cellular functions. In this review, we describe some of the promising strategies being pursued to achieve these goals, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks. We also provide an overview of current and emerging trends in advanced bioink synthesis and biofabrication, and evaluate the potential applications of these novel biomaterials to clinical use. PMID:27184494

  19. From Environmental Science to Next-Generation Manufacturing Materials: How Important is Nano?

    OpenAIRE

    Keller, Martin

    2014-01-01

    From Environmental Science to Next Generation Manufacturing Materials: How Important is Nano? With: Martin Keller, Associate Laboratory Director, Energy and Environmental Sciences, Oak Ridge National Laboratory 11/19/2013, 2:00 - 3:30 pm, Kelly Hall, 310 The development of a sustainable energy portfolio to mitigate climate change is one of the great challenges we are facing today. The United States has set goals to develop a bio-based industry for fuel, power, and other products. At the same ...

  20. The material realization of science from Habermas to experimentation and referential realism

    CERN Document Server

    Radder, Hans

    2012-01-01

    This book develops a conception of science as a multi-dimensional practice, which includes experimental action and production, conceptual-theoretical interpretation, and formal-mathematical work. On this basis, it addresses the topical issue of scientific realism and expounds a detailed, referentially realist account of the natural sciences. This account is shown to be compatible with the frequent occurrence of conceptual discontinuities in the historical development of the sciences. Referential realism exploits several fruitful ideas of Jürgen Habermas, especially his distinction between objectivity and truth; it builds on a in-depth analysis of scientific experiments, including their material realization; and it is developed through an extensive case study in the history and philosophy of quantum mechanics. The new postscript explains how the book relates to several important issues in recent philosophy of science and science studies.

  1. Time-Dependent Properties of Multimodal Polyoxymethylene Based Binder for Powder Injection Molding

    Science.gov (United States)

    Gonzalez-Gutierrez, Joamin; Stringari, Gustavo Beulke; Zupancic, Barbara; Kubyshkina, Galina; Bernstorff, Bernd Von; Emri, Igor

    Powder injection molding (PIM) is one of the most versatile methods for the manufacturing of small complex shaped components from metal, ceramic or cemented carbide powders for the use in many applications. PIM consists of mixing the powder and a polymeric binder, injecting this mixture in a mold, debinding and then sintering. Catalytic debinding of polyoxymethylene (POM) is attractive since it shows high debinding rates and low risk of cracking. This work examines the possibility of using POM with bimodal molecular mass distribution as the main component of the binding agent by studying its time-dependent properties and comparing them to monomodal POM. Furthermore, possible optimization of the binder formulation was investigated by the addition of shorter polymeric chains (wax) to bimodal POM, as to create a multimodal material. It was observed that the magnitude of the complex viscosity for the commercial bimodal material was more than 2 times lower than for the chemically identical monomodal POM within the investigated frequency range and temperature. Viscosity values were observed to drop as the content of wax was increased, without compromising the binders mechanical properties in solid state. A new formulation of bimodal POM plus 8 wt.% of added wax provided the most appropriate results from investigated combinations. This work has shown how the addition of short polymeric chains in POM influences its time-dependent properties in solid and molten state, which can be an important tool for the optimization of binders designed to be used in PIM technology.

  2. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    Science.gov (United States)

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science. PMID:27400510

  3. The assessment of teaching materials science subjects using e-learning method

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2008-10-01

    Full Text Available Purpose: The main aim of this article is to present the advantages and disadvantages of the use of blended learning in teaching Fundamentals of Materials Science and Metal Materials. The purpose of carried research is to analyse the effectiveness of e-learning as means of teaching in blended learning model.Design/methodology/approach: This article includes a description of blended learning; comparison of students’ results in materials science between the traditional method and remote teaching using the Internet; dependencies between the effects of teaching and results of students’ tests written using the platform.Findings: This article includes a description of blended learning; comparison of students’ results in materials science between the traditional method and remote teaching using the Internet; dependencies between the effects of teaching and results of students’ tests written using the platform.Research limitations/implications: Larger population of students should be tested so as to give measurable results, which would imply what needs to be worked on and what changes to introduce in order to improve the e-learning process.Originality/value: The document’s research material confirms that e-learning makes it possible to use a new form of education which can connect the advantages of traditional learning and remote education in the field of materials science.

  4. Water soluble styrene butadiene rubber and sodium carboxyl methyl cellulose binder for ZnFe2O4 anode electrodes in lithium ion batteries

    Science.gov (United States)

    Zhang, Rongyu; Yang, Xu; Zhang, Dong; Qiu, Hailong; Fu, Qiang; Na, Hui; Guo, Zhendong; Du, Fei; Chen, Gang; Wei, Yingjin

    2015-07-01

    ZnFe2O4 nano particles as an anode material for lithium ion batteries are prepared by the glycine-nitrate combustion method. The mixture of styrene butadiene rubber and sodium carboxyl methyl cellulose (SBR/CMC) with the weight ratio of 1:1 is used as the binder for ZnFe2O4 electrode. Compared with the conventional polyvinylidene-fluoride (PVDF) binder, the SBR/CMC binder is much cheaper and environment benign. More significantly, this water soluble binder significantly improves the rate capability and cycle stability of ZnFe2O4. A discharge capacity of 873.8 mAh g-1 is obtained after 100 cycles at the 0.1C rate, with a very little capacity fading rate of 0.06% per cycle. Studies show that the SBR/CMC binder enhances the adhesion of the electrode film to the current collector, and constructs an effective three-dimensional network for electrons transport. In addition, the SBR/CMC binder helps to form a uniform SEI film thus prohibiting the formation of lithium dendrite. Electrochemical impedance spectroscopy shows that the SBR/CMC binder lowers the ohmic resistance of the electrode, depresses the formation of SEI film and facilitates the charge transfer reactions at the electrode/electrolyte interface. These advantages highlight the potential applications of SBR/CMC binder in lithium ion batteries.

  5. Exploring preservice elementary teachers' critique and adaptation of science curriculum materials in respect to socioscientific issues

    Science.gov (United States)

    Forbes, Cory T.; Davis, Elizabeth A.

    2008-09-01

    The work presented here represents a preliminary effort undertaken to address the role of teachers in supporting students’ learning and decision-making about socioscientific issues (SSI) by characterizing preservice elementary teachers’ critique and adaptation of SSI-based science curriculum materials and identifying factors that serve to mediate this process. Four undergraduate preservice elementary teachers were studied over the course of one semester. Results indicate that the teachers navigated multiple learning goals, as well as their own subject-matter knowledge, informal reasoning about SSI, and role identity, in their critique and adaptation of SSI-oriented science instructional materials. Implications for science teacher education and the design of curriculum materials in respect to SSI are discussed.

  6. Materials science and biophysics applications at the ISOLDE radioactive ion beam facility

    CERN Document Server

    Wahl, U

    2011-01-01

    The ISOLDE isotope separator facility at CERN provides a variety of radioactive ion beams, currently more than 800 different isotopes from ~65 chemical elements. The radioisotopes are produced on-line by nuclear reactions from a 1.4 GeV proton beam with various types of targets, outdiffusion of the reaction products and, if possible, chemically selective ionisation, followed by 60 kV acceleration and mass separation. While ISOLDE is mainly used for nuclear and atomic physics studies, applications in materials science and biophysics account for a significant part (currently ~15%) of the delivered beam time, requested by 18 different experiments. The ISOLDE materials science and biophysics community currently consists of ~80 scientists from more than 40 participating institutes and 21 countries. In the field of materials science, investigations focus on the study of semiconductors and oxides, with the recent additions of nanoparticles and metals, while the biophysics studies address the toxicity of metal ions i...

  7. Materials science activities using accelerator facilities at VECC

    International Nuclear Information System (INIS)

    Charged particle irradiation on high temperature superconductor (HTSC) Bi-Sr-Ca-Cu-O system stable in ambient conditions is studied extensively. Both light particles like proton and heavy ions like oxygen from VECC have been employed. A notable difference between Bi2Sr2CaCu2O8+x (Bi-2212) and (Bi,Pb)2Sr2Ca2Cu2O10+y (Bi-2223) systems is observed. In former system, particle Irradiation caused knock-out of oxygen generating thereby oxygen vacancies-ideal pinning centres, whereas in Bi-2223 system, irradiation induced knock-out of oxygen was insignificant and it reflected in insignificant enhancement in Jc which was prominent in Bi-2212. It has proposed a model on Oxygen knock-out which was based on tensile stress in Bi-O layer arising from the small Bi3+ ion leading to accommodation of excess loosely bound excess oxygen along a-axis at a leading to 4.8b causing an incommensurate modulation. This excess oxygen being loosely bound is vulnerable to be knocked out by particle irradiation. On the other hand in (Bi,Pb)-2223, the large size Pb(II) partially substitutes for small Bi(III) and thereby the structural strain in Bi-O layer is relieved and hence no loosely bound oxygen. As a result, irradiation induced oxygen knock-out is absent. This manifests in insignificant changes in Jc for Bi-2223 due to particle irradiation in contrast to Bi-2212. Magnetisation Jc , defect sizes by positron annihilation lifetime spectroscopy and pinning potential by magnetoresistance measurements has been analysed. The difference in the behaviour to particle irradiation in these two systems has its manifestations in the pinning mechanism too- statistical pinning in irradiated Bi-2212 and collective weak pinning in Bi-2223. Sometimes, grain boundary pinning becomes more effective as compared to intragranular pinning as has been revealed by our studies in Neon ion irradiated MgB2 system. These have a great impact on the application of these materials in devices. We have also employed low

  8. Materials science and physics of non-conventional energy sources

    International Nuclear Information System (INIS)

    Recently, many countries in the world have restructured their energy policy to include renewables, for example, in UK the Government expect that by the year 2010 it will be possible to meet 20% of the electricity supply by renewables. Photovoltaic is one of the easiest forms of changing sunlight into direct electricity. Research initiatives have reduced the cost of it from $1,000 per peak watt in 1960 to less than $5 per peak watt nowadays. It is anticipated that by the year 2000 this cost will be $2 per peak watt. ICTP has, since 1977, taken an active role in disseminating knowledge and promoting renewable energy through its massive programme, Physics of Renewable Energy. The aim is to help the developing countries in grasping the technology as well as the transfer of this technology through courses, seminars and workshops. These workshops are repeated every two years and the theme of them has gradually been changed to emphasize the high-powered physics associated with renewable energy and in particular material technology. The workshops are run for three weeks and include lectures, seminars, discussion, visits to industry and small task presentation. Although the Proceedings of these workshops emphasize mainly the photovoltaic conversion, technology and manufacturing facilities, a few other lectures on the state-of-the-art, development and potential of other forms of renewable energy are included. Refs, figs and tabs

  9. 5. International conference on materials science and condensed matter physics and symposium 'Electrical methods of materials treatment'. Abstracts

    International Nuclear Information System (INIS)

    This book includes abstracts of the communications presented at the 5th International Conference on Materials Science and Condensed-Matter Physics and at the Symposium dedicated to the 100th anniversary of academician Boris Lazarenko, the prominent scientist and inventor, the first director of the Institute of Applied Physics of the Academy of Sciences of Moldova. The abstracts presented in the book cover a vast range of subjects, such as: advanced materials and fabrication processes; methods of crystal growth, post-growth technological processes, doping and implantation, fabrication of solid state structures; defect engineering, engineering of molecular assembly; methods of nanostructures and nano materials fabrication and characterization; quantum wells and superlattices; nano composite, nanowires and nano dots; fullerenes and nano tubes, molecular materials, meso- and nano electronics; methods of material and structure characterization; structure and mechanical characterization; optical, electrical, magnetic and superconductor properties, transport processes, nonlinear phenomena, size and interface effects; advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structure properties; development of theoretical methods of solid-state characterization; phase transition; advanced quantum physics for nano systems; device modelling and simulation, device structures and elements; micro- and optoelectronics; photonics; microsensors and micro electro-mechanical systems; microsystems; degradation and reliability, solid-state device design; theory and advanced technologies of electro-physico-chemical and combined methods of materials machining and treatment, including modification of surfaces; theory and advanced technologies of using electric fields, currents and discharges so as to intensify heat mass-transfer, to raise the efficiency of treatment of materials, of biological preparations and foodstuff; modern equipment for

  10. Teachers' use of educative curriculum materials to engage students in science practices

    Science.gov (United States)

    Arias, Anna Maria; Davis, Elizabeth A.; Marino, John-Carlos; Kademian, Sylvie M.; Sullivan Palincsar, Annemarie

    2016-06-01

    New reform documents underscore the importance of integrating science practices into the learning of science. This integration requires sophisticated teaching that does not often happen. Educative curriculum materials - materials explicitly designed to support teacher and student learning - have been posited as a way to support teachers to achieve these ambitious goals, yet little is known about how elementary teachers actually use educative curriculum materials to support student engagement in science practices. To address this gap, this study investigated how five upper elementary teachers supported students to engage in science practices during an enactment of two curriculum units. Three of the teachers had units enhanced with educative features, informed by current research and reforms, while two of the teachers had units without these features. The teachers varied in how they supported students in the science practices of justifying predictions, constructing evidence-based claims, recording observations, and planning investigations. For example, some of the teachers with the educative features supported students in constructing evidence-based claims and justifying predictions in ways called for by the educative features. Implications for curriculum developers and teacher educators are discussed based on the patterns found in the teachers' use of the educative curriculum materials.

  11. Analyzing the influence of manufacturing conditions of reclaimed asphalt concrete on the characteristics of the asphalt binder: development of a gradual binder extraction method

    Science.gov (United States)

    Navaro, J.; Bruneau, D.; Drouadaine, I.; Pouteau, B.; Colin, J.; Dony, A.

    2012-05-01

    When asphalt concrete is manufactured incorporating a high percentage (almost 70%) of reclaimed materials from the deconstruction of road surfaces under renovation, and when the corresponding production device is designed specifically to reduce the energy input need (lowering the production temperature), the resulting manufacturing process contributes to the protection of the environment and reduces production costs. However, to meet the quality requirements of the finished product, virgin materials of appropriate quality and quantity must also be added (mineral aggregates and new asphalt binder) and control systems set up to quantify and optimize the parameters involved (thus avoiding the guess work which still often prevails today). It was for this reason that a new experimental technique described here was devised, which will ultimately be used in asphalt concrete production plants. The technique involves lixiviating reclaimed asphalt concrete using a chlorinated solvent; the resulting solute is collected gradually, then the mixture of binders (virgin and reclaimed asphalt concrete) can be characterized and their mass fractions quantified using a combination of UV and IR spectrometry. With this experimental technique we were able to assess the extent to which the reclaimed asphalt pavement binder participates in the agglomeration and cohesion of the reclaimed asphalt concrete. This assessment was made in terms of the main parameters in the production process, temperature of the materials and mixing time.

  12. Opportunities for Teacher Learning During Enactment of Inquiry Science Curriculum Materials: Exploring the Potential for Teacher Educative Materials

    Science.gov (United States)

    Schneider, Rebecca M.

    2013-03-01

    The development of curriculum materials that are also educative for teachers has been proposed as a strategy to support teachers learning to teach inquiry science. In this study, one seventh-grade teacher used five inquiry science units with varying support for teachers over a two-year period. Teacher journals, interviews, and classroom videotape were collected. Analysis focused on engagement in planning and teaching, pedagogical content knowledge, and the match to teacher learning needs. Findings indicate that this teacher's ideas developed as she interacted with materials and her students. Information about student ideas, task- and idea-specific support, and model teacher language was most helpful. Supports for understanding goals, assessment, and the teacher's role, particularly during discussions and group work, were most needed.

  13. Development of method for identification of compounds emitted during thermal degradation of binders used in foundry

    OpenAIRE

    A. Bobrowski; B. Grabowska; M. Holtzer; Kubecki, M.

    2011-01-01

    The aim of the research was to develop a method for identification of compounds emitted during thermal degradation of binders used in foundry. Research were performed with the use of Certified Reference Materials mixtures of semi-volatiles compounds with furfuryl alcohol and aldehyde. Furfuryl-urea resin samples were also used. Station for thermal degradation of materials used in foundry was designed and made. Thermal degradation process conditions and gas chromatograph coupled with high reso...

  14. Design Features and Capabilities of the First Materials Science Research Rack

    Science.gov (United States)

    Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.

    2003-01-01

    The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.

  15. Positron Annihilation Technique is a Powerful Nuclear Technique in Material Sciences

    International Nuclear Information System (INIS)

    Positron Annihilation Doppler Broadening Spectroscopy (PADPS) is a nondestructive technique used in material science. Electrical measurements are one of the oldest techniques used also in material science. This paper aimed to discuss the availability of using both PADPS and electrical measurements as diagnostic techniques to detect the defects in a set of plastically deformed 5454 wrought aluminum alloy. The results of the positron annihilation measurements and the electrical measurements were analyzed in terms of the two-state trapping model. This model can be used to investigate both defect and dislocation densities of the samples under investigation. Results obtained by both nuclear and electrical techniques have been reported

  16. Applied solid state science advances in materials and device research 3

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 3 covers reviews that are directly related to the two devices which are the epitome of applied solid state science - the transistor and the laser. The book discusses the physics of multilayer-gate IGFET memories; the application of the transient charge technique in drift velocity; and trapping in semiconductors and in materials used in xerography, nuclear particle detectors, and space-charge-limited devices; as well as thin film transistors. The text describes the manipulation of laser beams in solids and discusses

  17. Fabrication and properties of binder for powder extrusion molding

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    By optimizing formulation and fabrication methods, a new binder for plasticizing powder extrusion molding ofhard metal, with excellent integrated properties and uniform distribution characters, has been developed. Thermal debond-ing mechanism and the extruding rheological behaviours have been studied. The technology of fabrication of binder andthermal debonding process have also been investigated. Using the novel binder, the hard-metal extrusion-molding rods withdiameter up to 25mm, have been manufactured.

  18. FWP executive summaries. Basic Energy Sciences/Materials Sciences Programs (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1994-01-01

    This report is divided into: budget, capital equipment requests, general programmatic overview and institutional issues, DOE center of excellence for synthesis and processing of advanced materials, industrial interactions and technology transfer, and research program summaries (new proposals, existing programs). Ceramics, semiconductors, superconductors, interfaces, CVD, tailored surfaces, adhesion, growth and epitaxy, boron-rich solids, nanoclusters, etc. are covered.

  19. Thermal Reactivity and Structure of Carbonized Binder Pitches

    OpenAIRE

    Madshus, Stian

    2005-01-01

    Pitches are used on a large scale in the manufacture of carbon anodes for the production of primary aluminium. The role of the pitch is to act as a binder between the petroleum coke grains. The structure of the carbonized pitch binder (pitch coke) has an important impact on the overall performance of the anode. Even though the binder pitch is the minor constituent in an anode, it is impossible to make a good quality anode without a good quality binder pitch.Pitch is an extremely complex mixtu...

  20. Opening of new field in material science and technology by materials irradiation research

    Energy Technology Data Exchange (ETDEWEB)

    Kurishita, Hiroaki [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1998-03-01

    It is believed that high energy particle irradiation causes severe degradation of materials, and great efforts have been made to reveal the underlying mechanism of such degradation. However, recent progress of the developments of irradiation rigs performed in the Japan Materials Testing Reactor (JMTR) and materials fabrication techniques has enabled to change our understanding of radiation effects on materials from the above pessimistic one to the very challenging one, i.e., irradiation has the beneficial effect of producing new phenomena and/or innovative materials that will not be available without irradiation. An example to be noted is that irradiation with neutrons in JMTR greatly improved the ductility of less ductile metals. This ductility improvement due to irradiation is directly opposite to irradiation embrittlement and is called radiation induced ductilization (RIDU). In this presentation the significance of RIDU and its mechanism will be stated. (author)

  1. Thermal debinding dynamics of novel binder system

    Institute of Scientific and Technical Information of China (English)

    周继承; 黄伯云; 张传福; 刘业翔

    2001-01-01

    The thermal debinding dynamics of newly developed binders for cemented carbides extrusion molding was studied. It is shown that the thermal debinding processes can be divided into two stages: low temperature region, in which the low molecular mass components (LMMCs) are removed; and high temperature region, in which the polymer components are removed. The rate of thermal debinding is controlled by diffusion mechanism. The thermal debinding activation energies were solved out by differential method and integral method. The results show that the addition of other components acted as a catalyzer can effectively decrease the activation energy of thermal debinding processes.

  2. Report on the main areas of the materials science and surface engineering own research

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2011-12-01

    Full Text Available Purpose: The purpose of the paper is to present the representative examples for the own scientific research in the area of the forming of the structure and properties of engineering materials including biomaterials, their properties testing and microstructure characterisation and modelling, simulation and prediction of the properties and structure of these materials after selected materials processing technologies.Design/methodology/approach: The main areas of the scientific interests reported in this paper on the basis of the own original research include forming of structure and properties of engineering materials including biomaterials using advanced synthesis and materials processing technologies and nanotechnologies, engineering materials including biomaterials properties testing and microstructure characterisation using very advanced contemporary research methodologies including electron microscopy, modelling, simulation and prediction of properties and structure of engineering materials including biomaterials using advanced methods of computational materials science including artificial intelligence methods.Findings: A general character of the paper concerning many aspects of material science research enabled a detailed description of research methodology and details concerning research results. Detailed information is included in many detailed cited works.Practical implications: Presented research results can be used in practice.Originality/value: The paper presents numerous research results which Has been made during last years generalising the achievements of the research team directed by the author.

  3. Development of the virtual light microscope for a material science virtual laboratory

    OpenAIRE

    L.A. Dobrzański; R. Honysz

    2007-01-01

    Purpose: Article describe an idea, bases and construction procedures of Material Science Virtual Laboratory.Design/methodology/approach: As an example of virtual laboratory post a virtual light microscope used inmetallographic investigations is presented. It allows to study the microstructures from different materials andalloys without use of real microscope placed in real laboratory. The only necessary equipment is the computerwith internet connection.Findings: Continuous progress in compute...

  4. Usage of e-learning in teaching fundamentals of materials science

    OpenAIRE

    L.A. Dobrzański; F. Brom; Z. Brytan

    2007-01-01

    Purpose: The main aim of this article is to present the usage of educational platform Moodle in teaching Fundamentals of Materials Science in the Institute of Engineering Materials and Biomaterials at Silesian University of Technology in Gliwice, and to analyse the efficacy of e-learning as the means of introducing education within a traditional model.Design/methodology/approach: This article contains the description of learning within the mixed mode, which is education embracing a face to fa...

  5. Applications of heavy-negative-ion sources for materials science (invited)

    OpenAIRE

    Ishikawa, Junzo

    2000-01-01

    Applications of heavy negative ions produced by sputter-type negative-ion sources for materials science are reviewed. Submilliampere and milliampere heavy-negative-ion beams can be produced by a neutral- and ionized-alkaline–metal-bombardment-type heavy-negative-ion source and rf plasma sputter-type negative-ion sources, respectively. These negative-ion beams can be applied for materials processing such as ion implantation, ion beam etching, and ion beam deposition. In negative-ion implantati...

  6. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal

    Energy Technology Data Exchange (ETDEWEB)

    Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Lambertin, D.; Lahalle, H.; Antonucci, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Cannes, C.; Delpech, S. [Institut de Physique Nucléaire, CNRS, Univ. Paris-Sud 11, 91406 Orsay Cedex (France)

    2014-10-15

    Highlights: • Binders capable of reducing the pore solution pH compared with Portland cements are reviewed. • The binders are then tested against aluminum corrosion. • Corrosion of aluminum metal is minimal with magnesium phosphate cement. • The H{sub 2} release can be reduced still further by adding LiNO{sub 3} to the mixing solution. • Electrochemical characterizations show that aluminum tends to a passive state. - Abstract: In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal is corroded, with continued production of hydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced still further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution. Open circuit potential measurement and Electrochemical Impedance Spectroscopy of aluminum electrode encapsulated in two pastes based on Portland cement and magnesium phosphate cement showed different redox behaviors. In the Portland cement paste, the electrochemical data confirmed the corrosion of aluminum whereas this latter tended to a passive state in the magnesium phosphate binder.

  7. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal

    International Nuclear Information System (INIS)

    Highlights: • Binders capable of reducing the pore solution pH compared with Portland cements are reviewed. • The binders are then tested against aluminum corrosion. • Corrosion of aluminum metal is minimal with magnesium phosphate cement. • The H2 release can be reduced still further by adding LiNO3 to the mixing solution. • Electrochemical characterizations show that aluminum tends to a passive state. - Abstract: In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal is corroded, with continued production of hydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced still further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution. Open circuit potential measurement and Electrochemical Impedance Spectroscopy of aluminum electrode encapsulated in two pastes based on Portland cement and magnesium phosphate cement showed different redox behaviors. In the Portland cement paste, the electrochemical data confirmed the corrosion of aluminum whereas this latter tended to a passive state in the magnesium phosphate binder

  8. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    Science.gov (United States)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented. PMID:24866174

  9. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    Science.gov (United States)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  10. New Curricular Material for Science Classes: How Do Students Evaluate It?

    Science.gov (United States)

    Freire, Sofia; Faria, Cláudia; Galvão, Cecília; Reis, Pedro

    2013-02-01

    Living in an unpredictable and ever changing society demands from its' citizens the development of complex competencies that challenges school, education and curriculum. PARSEL, a pan-European Project related to science education, emerges as a contribution to curricular development as it proposes a set of teaching-learning materials (modules) in order to make science classes more popular and relevant in the eyes of the students and as such to increase their interest with school science. The goal of this study was to understand how students evaluate those innovative modules. This paper presents data concerning 134 secondary students, collected through interviews, questionnaires and written documents. A quantitative analysis of the data collected through questionnaires was complemented by a qualitative analysis of the data collected by interviews and written documents. Results show that understanding the relationship between science and daily life, participating in practical activities based on problem solving and developing critical thinking and reasoning were the issues most valued by students.

  11. Artificial intelligence to maximise contributions of nondestructive evaluation to materials science and technology

    International Nuclear Information System (INIS)

    The paper reviews the current status of Nondestructive Testing and Evaluation (NDT and E), in relation to materials science and technology. It suggests a path of growth for Nondestructive Testing and Evaluation, taking into account the increase in data and knowledge. We recommend Artificial Intelligence (AI) concepts for maximising the contributions of and benefits from, Nondestructive Testing and Evaluation. (author)

  12. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    Science.gov (United States)

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  13. Materials Sciences programs, fiscal year 1978: Office of Basic Energy Services

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    A compilation and index are provided of the the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. The report is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index.

  14. Developing Teaching Materials PISA-Based for Mathematics and Science of Junior High School

    Science.gov (United States)

    Somakim; Suharman, Andi; Madang, Kodri; Taufiq

    2016-01-01

    This research aims to develop valid and practical teaching materials for mathematics and science lesson PISA-based for junior high school students and to determine potential effects on students in scientific activity. Subjects of this study were students of Junior High School 9 Palembang (SMP Negeri 9 Palembang). The method used in this study is…

  15. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    Science.gov (United States)

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  16. Enacting reform-based science materials: The range of teacher enactments in reform classrooms

    Science.gov (United States)

    Schneider, Rebecca M.; Krajcik, Joseph; Blumenfeld, Phyllis

    2005-03-01

    To promote large-scale science education reform, developers must create innovations that teachers can use to learn and enact new practices. As part of an urban systemic reform effort, science materials were designed to reflect desired reforms and to support teacher thinking by addressing necessary content, pedagogy, and pedagogical content knowledge for teachers. The goal of this research was to describe teachers' enactments in comparison to reform as instantiated in the materials. Four middle school teachers' initial enactment of an inquiry-based science unit on force and motion were analyzed. Findings indicate two teachers' enactments were consistent with intentions and two teachers' enactments were not. However, enactment ratings for the first two were less reflective of curriculum intent when challenges were greatest, such as when teachers attempted to present challenging science ideas, respond to students' ideas, structure investigations, guide small-group discussions, or make adaptations. Overall, findings suggest that purposefully using materials with detailed lesson descriptions and specific, consistent supports for teacher thinking can help teachers with enactment. However, materials alone are not sufficient; reform efforts must include professional development and efforts to create systemic change in context and policy to support teacher learning and classroom enactment.

  17. Trace and ultratrace analysis in material science by inorganic mass spectrometry

    International Nuclear Information System (INIS)

    This paper discusses the different inorganic mass spectrometric techniques including new analytical developments and their applications for the quantitative determination of trace and ultratrace elements and in surface analysis on quite different high-purity sample types (noble metals and noble metal clusters, ceramics, graphite, glass fibres, perovskites and layered structures) for materials science applications

  18. New developments in the application of synchrotron radiation to material science

    International Nuclear Information System (INIS)

    Recent developments in the application of synchrotrons radiation to materials science are discussed, using techniques which exploit the high brilliance of the newer synchrotrons sources, such as microbeam techniques and correlation spectroscopy. These include studies of environmental systems, residual stress, slow dynamics of condensed matter systems and studies of liquid surfaces and thin magnetic films

  19. Models and simulations in material science : two cases without error bars

    NARCIS (Netherlands)

    Wenmackers, Sylvia; Vanpoucke, Danny E. P.

    2012-01-01

    We discuss two research projects in material science in which the results cannot be stated with an estimation of the error: a spectroscopic ellipsometry study aimed at determining the orientation of DNA molecules on diamond and a scanning tunneling microscopy study of platinum-induced nanowires on g

  20. College-Mentored Polymer/Materials Science Modules for Middle and High School Students

    Science.gov (United States)

    Lorenzini, Robert G.; Lewis, Maurica S.; Montclare, Jin Kim

    2011-01-01

    Polymers are materials with vast environmental and economic ramifications, yet are generally not discussed in secondary education science curricula. We describe a program in which college mentors develop and implement hands-on, polymer-related experiments to supplement a standard, state regents-prescribed high school chemistry course, as well as a…

  1. Proposal: A Search for Sterile Neutrino at J-PARC Materials and Life Science Experimental Facility

    CERN Document Server

    Harada, M; Kasugai, Y; Meigo, S; Sakai, K; Sakamoto, S; Suzuya, K; Iwai, E; Maruyama, T; Nishikawa, K; Ohta, R; Niiyama, M; Ajimura, S; Hiraiwa, T; Nakano, T; Nomachi, M; Shima, T; Bezerra, T J C; Chauveau, E; Enomoto, T; Furuta, H; Sakai, H; Suekane, F; Yeh, M; Garvey, G T; Louis, W C; Mills, G B; Van de Water, R

    2013-01-01

    We propose a definite search for sterile neutrinos at the J-PARC Materials and Life Science Experimental Facility (MLF). With the 3 GeV Rapid Cycling Synchrotron (RCS) and spallation neutron target, an intense neutrino beam from muon decay at rest (DAR) is available. Neutrinos come from \\mu+ decay, and the oscillation to be searched for is (anti \

  2. Using Organic Light-Emitting Electrochemical Thin-Film Devices to Teach Materials Science

    Science.gov (United States)

    Sevian, Hannah; Muller, Sean; Rudmann, Hartmut; Rubner, Michael F.

    2004-01-01

    Materials science can be taught by applying organic light-emitting electrochemical thin-film devices and in this method students were allowed to make a light-emitting device by spin coating a thin film containing ruthenium (II) complex ions onto a glass slide. Through this laboratory method students are provided with the opportunity to learn about…

  3. Materials Sciences programs, fiscal year 1978: Office of Basic Energy Services

    International Nuclear Information System (INIS)

    A compilation and index are provided of the the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. The report is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index

  4. Enhanced Cyclability of C/Lithium Iron Phosphate Cathodes with a Novel water-soluble lithium-ion binder

    International Nuclear Information System (INIS)

    Graphical abstract: Lithium carboxymethyl cellulose (CMC-Li) was synthesized. CMC-Li, CMC-Li/Lithium Iron Phosphate (LiFePO4, LFP) and carbon nanofiber/lithium iron phosphate/lithium-Ion compound (CNF/LFP/Li, CLL) composite nanofibers were successfully obtained. A new method to modify electrode materials with lithium-ion polymer by electrospinning was developed, and CMC-Li was used as a novel lithium-ion binder in batteries. The batteries show good electrochemical properties, excellent stability and hight specific capacity. - Highlights: • The synthesis of CMC-Li using cotton as raw material is newly reported. • Water-soluble polysaccharide CMC-Li nanofibers are obtained by electrospinning. • Novel water-soluble lithium-ion binder CMC-Li is used in lithium-ion battery. • The CMC-Li binder improves the cyclability of the lithium-ion battery. • These new material and process may find appliance with other electrode materials. - Abstract: Novel cellulose-derived lithium carboxymethyl cellulose (CMC-Li) was synthesized using cotton as the raw material. Properties of electrospun CMC-Li-modified electrode materials and CMC-Li binders are described in this study. CMC-Li/Lithium Iron Phosphate (LiFePO4, LFP) composite fibers and CMC-Li nanofibers were successfully obtained by electrospinning. Next, CMC-Li/LFP nano-composite fibers were carbonized under nitrogen at a high-temperature to form carbon nanofibers (CNFs), and carbon nanofiber/lithium iron phosphate/lithium-Ion compound (CNF/LFP/Li, CLL) composite nanofibers were formed as the cathode material. CMC-Li was investigated as a novel water-soluble binder. Compared with conventional poly (vinylidene fluoride) (PVDF) binders, the CMC-Li binder significantly improved cycling performance of the LFP cathode with 97.5% of retention of initial reversible capacity after 200 cycles at 175 mAh g−1. Constant current charge-discharge test results demonstrated that the CLL electrodes with CMC-Li binders have the highest

  5. Investigation of carbonate rocks appropriate for the production of natural hydraulic lime binders

    Science.gov (United States)

    Triantafyllou, George; Panagopoulos, George; Manoutsoglou, Emmanouil; Christidis, George; Přikryl, Richard

    2014-05-01

    Cement industry is facing growing challenges in conserving materials and conforming to the demanding environmental standards. Therefore, there is great interest in the development, investigation and use of binders alternatives to Portland cement. Natural hydraulic lime (NHL) binders have become nowadays materials with high added value, due to their advantages in various construction applications. Some of them include compatibility, suitability, workability and the versatility in applications. NHL binders are made from limestones which contain sufficient argillaceous or siliceous components fired at relatively low temperatures, with reduction to powder by slaking with or without grinding. This study is focused in developing technology for small-scale production of cementitious binders, combining the knowledge and experience of geologists and mineral resources engineers. The first step of investigation includes field techniques to the study the lithology, texture and sedimentary structure of Neogene carbonate sediments, from various basins of Crete Island, Greece and the construction of 3D geological models, in order to determine the deposits of each different geological formation. Sampling of appropriate quantity of raw materials is crucial for the investigation. Petrographic studies on the basis of the study of grain type, grain size, types of porosity and depositional texture, are necessary to classify effectively industrial mineral raw materials for this kind of application. Laboratory tests should also include the study of mineralogical and chemical composition of the bulk raw materials, as well as the content of insoluble limestone impurities, thus determining the amount of active clay and silica components required to produce binders of different degree of hydraulicity. Firing of the samples in various temperatures and time conditions, followed by X-ray diffraction analysis and slaking rate tests of the produced binders, is essential to insure the

  6. Review on the EFDA programme on tungsten materials technology and science

    International Nuclear Information System (INIS)

    All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on 'Materials Science and Modeling'. This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.

  7. Review on the EFDA programme on tungsten materials technology and science

    Energy Technology Data Exchange (ETDEWEB)

    Rieth, M., E-mail: Michael.rieth@imf.fzk.de [Forschungszentrum Karlsruhe, Institute for Materials Research, Karlsruhe (Germany); Boutard, J.L. [EFDA-Close Support Unit, Garching (Germany); Dudarev, S.L. [Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Ahlgren, T. [University of Helsinki, Department of Physics, Helsinki (Finland); Antusch, S. [Forschungszentrum Karlsruhe, Institute for Materials Research, Karlsruhe (Germany); Baluc, N. [Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Barthe, M.-F. [CNRS, UPR3079 CEMHTI, 1D Avenue de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Universite d' Orleans, Polytech ou Faculte des Sciences, Avenue du Parc Floral, BP 6749, 45067 Orleans cedex 2 (France); Becquart, C.S. [Laboratoire de Metallurgie Physique et Genie des Materiaux, Villeneuve d' Ascq (France); Ciupinski, L. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Correia, J.B. [IST, Lisboa (Portugal); Domain, C. [Laboratoire de Metallurgie Physique et Genie des Materiaux, Villeneuve d' Ascq (France); Fikar, J. [Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Fortuna, E. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Fu, C.-C. [CEA, Service de Recherches de Metallurgie Physique, Saclay (France); Gaganidze, E. [Forschungszentrum Karlsruhe, Institute for Materials Research, Karlsruhe (Germany); Galan, T.L. [Universidad Rey Juan Carlos, Materials Science and Engineering, Madrid (Spain); Garcia-Rosales, C. [CEIT, San Sebastian (Spain); Gludovatz, B. [OAW, Erich Schmid Institute of Materials Science, Leoben (Austria); Greuner, H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Heinola, K. [University of Helsinki, Department of Physics, Helsinki (Finland)

    2011-10-01

    All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on 'Materials Science and Modeling'. This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.

  8. PREFACE: 26th Symposium on Plasma Science for Materials (SPSM-26)

    Science.gov (United States)

    2014-06-01

    26th Symposium on Plasma Science for Materials (SPSM-26) Takayuki Watanabe The 26th Symposium on Plasma Science for Materials (SPSM-26) was held in Fukuoka, Japan on September 23-24, 2013. SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. Plasma processing have attracted extensive attention due to their unique advantages, and it is expected to be utilized for a number of innovative industrial applications such as synthesis of high-quality and high-performance nanomaterials. The advantages of plasmas including high chemical reactivity in accordance with required chemical reactions are beneficial for innovative processing. In recent years, plasma materials processing with reactive plasmas has been extensively employed in the fields of environmental issues and biotechnology. This conference seeks to bring different scientific communities together to create a forum for discussing the latest developments and issues. The conference provides a platform for the exploration of both fundamental topics and new applications of plasmas by the contacts between science, technology, and industry. The conference was organized in plenary lectures, invited, contributed oral presentations, and poster sessions. At this meeting, we had 142 participants from 10 countries and 104 presentations, including 11 invited presentations. This year, we arranged special topical sessions that cover Plasma Medicine and Biotechnologies, Business and Academia Cooperation, Plasma with Liquids, Plasma Processes for Nanomaterials, together with Basic, Electronics, and Thermal Plasma sessions. This special issue presents 28

  9. Informatics for materials science and engineering data-driven discovery for accelerated experimentation and application

    CERN Document Server

    Rajan, Krishna

    2014-01-01

    Materials informatics: a 'hot topic' area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this ""quantitative avalanche""-and the resulting complex, multi-factor analyses required to understand it-means that interest, investment, and research are revisiting in

  10. X-ray, neutron, and electron scattering. Report of a materials sciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    The ERDA Workshop on X-ray, Neutron, and Electron Scattering to assess needs and establish priorities for energy-related basic research on materials. The general goals of the Workshop were: (1) to review various energy technologies where x-ray, neutron, and electron scattering techniques might make significant contributions, (2) to identify present and future materials problems in the energy technologies and translate these problems into requirements for basic research by x-ray, neutron, and electron scattering techniques, (3) to recommend research areas utilizing these three scattering techniques that should be supported by the DPR Materials Sciences Program, and (4) to assign priorities to these research areas.

  11. X-ray, neutron, and electron scattering. Report of a materials sciences workshop

    International Nuclear Information System (INIS)

    The ERDA Workshop on X-ray, Neutron, and Electron Scattering to assess needs and establish priorities for energy-related basic research on materials. The general goals of the Workshop were: (1) to review various energy technologies where x-ray, neutron, and electron scattering techniques might make significant contributions, (2) to identify present and future materials problems in the energy technologies and translate these problems into requirements for basic research by x-ray, neutron, and electron scattering techniques, (3) to recommend research areas utilizing these three scattering techniques that should be supported by the DPR Materials Sciences Program, and (4) to assign priorities to these research areas

  12. Three-diemensional materials science: An intersection of three-dimensional reconstructions and simulations

    DEFF Research Database (Denmark)

    Thornton, Katsuyo; Poulsen, Henning Friis

    2008-01-01

    The recent development of experimental techniques that rapidly reconstruct the three-dimensional microstructures of solids has given rise to new possibilities for developing a deeper understanding of the evolution of microstructures and the effects of microstructures on materials properties. Comb...... overview of this emerging field of materials science, as well as brief descriptions of selected methods and their applicability........ Combined with three-dimensional (3D) simulations and analyses that are capable of handling the complexity of these microstructures, 3D reconstruction, or tomography, has become a powerful tool that provides clear insights into materials processing and properties. This introductory article provides an...

  13. TOPICAL REVIEW: Metallo-supramolecular modules as a paradigm for materials science

    Directory of Open Access Journals (Sweden)

    Dirk G Kurth

    2008-01-01

    Full Text Available Metal ion coordination in discrete or extended metallo-supramolecular assemblies offers ample opportunity to fabricate and study devices and materials that are equally important for fundamental research and new technologies. Metal ions embedded in a specific ligand field offer diverse thermodynamic, kinetic, chemical, physical and structural properties that make these systems promising candidates for active components in functional materials. A key challenge is to improve and develop methodologies for placing these active modules in suitable device architectures, such as thin films or mesophases. This review highlights recent developments in extended, polymeric metallo-supramolecular systems and discrete polyoxometalates with an emphasis on materials science.

  14. Applied solid state science advances in materials and device research 6

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 6 covers the application of composites in electronic systems. The book discusses different types of composite-composite materials consisting of finely dispersed mixtures of metals and insulators; composite devices in which two distinct semiconductor devices are combined in one package; and composite glass fibers with the core and cladding differing in their optical properties. The text describes articles dealing with properties that can be achieved in versatile materials; light-emitting diodes and photodetectors th

  15. Mortar and concrete based on calcium sulphate binders

    NARCIS (Netherlands)

    Bakker, J.J.F.; Brouwers, H.J.H.

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For

  16. Development of Silane Hydrolysate Binder for Thermal-Control Coatings

    Science.gov (United States)

    Patterson, W. J.

    1983-01-01

    Technical report describes theoretical and experimental development of methyltriethoxysilane (MTES) hydrolysate binder for white, titanium dioxidepigmented thermal-control coatings often needed on satellites. New coating is tougher and more abrasion-resistant than conventional coating, S-13G, which comprises zinc oxide in hydroxyl-therminated dimethylsiloxane binder.

  17. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny;

    2015-01-01

    grain size of the structural constituents of the binder, what in turn leads to the improved simultaneously hardness, Young modulus, plastic extension, bending strength and performances of the metallic binders. Comparing service properties of diamond end-cutting drill bits with and without MWCNT one...

  18. SR{mu}CT in materials science at the beamline HARWI II

    Energy Technology Data Exchange (ETDEWEB)

    Herzen, Julia; Beckmann, Felix; Haibel, Astrid; Donath, Tilman; Bayraktar, Funda S.; Riekehr, Stefan; Kocak, Mustafa; Schreyer, Andreas [GKSS Research Centre, Geesthacht (Germany)

    2008-07-01

    The synchrotron radiation based micro tomography is a powerful imaging tool in the wide range of materials science. Compared to laboratory X-ray sources the micro tomography at a synchrotron allows to visualize non-destructively high and low absorbing materials without any beam hardening effect and with a very high density resolution. The beamline HARWI II operated by the GKSS Research Centre in cooperation with Deutsches Elektronen-Synchrotron DESY, Hamburg is designed for materials science experiments using hard X-rays. A fixed-exit monochromator provides a highly intense, monochromatic X-ray beam in the energy range between 15 and 200 keV. This large range of photon energies, the spatial resolution down to 3 {mu}m and the high density resolution are important for microtomographic applications. The advantages of the beamline are demonstrated for absorption contrast tomography study of crack propagation within laser welded Al-Alloy T-Joints.

  19. The use of high pressure in basic, materials, and life sciences

    International Nuclear Information System (INIS)

    Four of the most important applications of the high pressure technique in today's science are: (1) to help identify the materials which reside deep within our earth or other heavenly bodies and determine their properties, (2) to uncover underlying systematics and critically test theoretical models, (3) to synthesize novel and useful materials not readily available by other means, and (4) to determine the effect of pressure on living organisms and explore the conditions favorable for the origin of life itself. High pressure studies currently enjoy an increasing popularity which is fueled by recent advances in the notably difficult experimental techniques. In this paper I will attempt to capture some of the current excitement in this field by offering brief synopses of selected experiments in the basic, materials, and life sciences

  20. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    Science.gov (United States)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.